Nonlinear boundary value problems in quantum field theory
International Nuclear Information System (INIS)
Schrader, R.
1989-01-01
We discuss the general structure of a quantum field theory which is free in the interior of a bounded set B of R n . It is shown how to recover the field theory in the interior of B from a certain quantum field theory on the boundary. With an application to string theory in mind, we discuss the example where B equals an interval and the boundary value problem is given in terms of a euclidean functional integral with a P(var phi) interaction restricted to the boundary. copyright 1989 Academic Press, Inc
Existence theory for nonlinear functional boundary value problems
Directory of Open Access Journals (Sweden)
Bapurao Dhage
2004-01-01
Full Text Available In this paper the existence of a solution of a general nonlinear functional two point boundary value problem is proved under mixed generalized Lipschitz and Carath\\'eodory conditions. An existence theorem for extremal solutions is also proved under certain monotonicity and weaker continuity conditions. Examples are provided to illustrate the theory developed in this paper.
System, subsystem, hive: boundary problems in computational theories of consciousness
Directory of Open Access Journals (Sweden)
Tomer Fekete
2016-07-01
Full Text Available A computational theory of consciousness should include a quantitative measure of consciousness, or MoC, that (i would reveal to what extent a given system is conscious, (ii would make it possible to compare not only different systems, but also the same system at different times, and (iii would be graded, because so is consciousness. However, unless its design is properly constrained, such an MoC gives rise to what we call the boundary problem: an MoC that labels a system as conscious will do so for some – perhaps most – of its subsystems, as well as for irrelevantly extended systems (e.g., the original system augmented with physical appendages that contribute nothing to the properties supposedly supporting consciousness, and for aggregates of individually conscious systems (e.g., groups of people. This problem suggests that the properties that are being measured are epiphenomenal to consciousness, or else it implies a bizarre proliferation of minds. We propose that a solution to the boundary problem can be found by identifying properties that are intrinsic or systemic: properties that clearly differentiate between systems whose existence is a matter of fact, as opposed to those whose existence is a matter of interpretation (in the eye of the beholder. We argue that if a putative MoC can be shown to be systemic, this ipso facto resolves any associated boundary issues. As test cases, we analyze two recent theories of consciousness in light of our definitions: the Integrated Information Theory and the Geometric Theory of consciousness.
Electromagnetic wave theory for boundary-value problems an advanced course on analytical methods
Eom, Hyo J
2004-01-01
Electromagnetic wave theory is based on Maxwell's equations, and electromagnetic boundary-value problems must be solved to understand electromagnetic scattering, propagation, and radiation. Electromagnetic theory finds practical applications in wireless telecommunications and microwave engineering. This book is written as a text for a two-semester graduate course on electromagnetic wave theory. As such, Electromagnetic Wave Theory for Boundary-Value Problems is intended to help students enhance analytic skills by solving pertinent boundary-value problems. In particular, the techniques of Fourier transform, mode matching, and residue calculus are utilized to solve some canonical scattering and radiation problems.
Boundary value problems on the half line in the theory of colloids
Directory of Open Access Journals (Sweden)
Ravi P. Agarwal
2002-01-01
Full Text Available We present existence results for some boundary value problems defined on infinite intervals. In particular our discussion includes a problem which arises in the theory of colloids.
Asymptotic Solution of the Theory of Shells Boundary Value Problem
Directory of Open Access Journals (Sweden)
I. V. Andrianov
2007-01-01
Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.
Boundary value problem in the theory of Ginzburg-Landau
Energy Technology Data Exchange (ETDEWEB)
Boutet de Monvel-Berthier, A.M.; Georgescu, V.; Purice, R.
1988-06-01
We study an elliptic problem related to the Ginzburg-Landau model for the supraconductivity. We reduce the problem to a two-dimensional problem with an infinite dimensional symmetry group. We define the topological degree of a function of class H/sup 1/2/ and modulus one, defined on a plane curve diffeomorphic to a circle. We study the topological structure of the configuration space.
Muskhelishvili, N I
2011-01-01
Singular integral equations play important roles in physics and theoretical mechanics, particularly in the areas of elasticity, aerodynamics, and unsteady aerofoil theory. They are highly effective in solving boundary problems occurring in the theory of functions of a complex variable, potential theory, the theory of elasticity, and the theory of fluid mechanics.This high-level treatment by a noted mathematician considers one-dimensional singular integral equations involving Cauchy principal values. Its coverage includes such topics as the Hölder condition, Hilbert and Riemann-Hilbert problem
Boundary value problems of the circular cylinders in the strain-gradient theory of linear elasticity
International Nuclear Information System (INIS)
Kao, B.G.
1979-11-01
Three boundary value problems in the strain-gradient theory of linear elasticity are solved for circular cylinders. They are the twisting of circular cylinder, uniformly pressuring of concentric circular cylinder, and pure-bending of simply connected cylinder. The comparisons of these solutions with the solutions in classical elasticity and in couple-stress theory reveal the differences in the stress fields as well as the apparent stress fields due to the influences of the strain-gradient. These aspects of the strain-gradient theory could be important in modeling the failure behavior of structural materials
The Approximate Solution of Some Plane Boundary Value Problems of the Moment Theory of Elasticity
Directory of Open Access Journals (Sweden)
Roman Janjgava
2016-01-01
Full Text Available We consider a two-dimensional system of differential equations of the moment theory of elasticity. The general solution of this system is represented by two arbitrary harmonic functions and solution of the Helmholtz equation. Based on the general solution, an algorithm of constructing approximate solutions of boundary value problems is developed. Using the proposed method, the approximate solutions of some problems on stress concentration on the contours of holes are constructed. The values of stress concentration coefficients obtained in the case of moment elasticity and for the classical elastic medium are compared. In the final part of the paper, we construct the approximate solution of a nonlocal problem whose exact solution is already known and compare our approximate solution with the exact one. Supposedly, the proposed method makes it possible to construct approximate solutions of quite a wide class of boundary value problems.
Discrete quintic spline for boundary value problem in plate deflation theory
Wong, Patricia J. Y.
2017-07-01
We propose a numerical scheme for a fourth-order boundary value problem arising from plate deflation theory. The scheme involves a discrete quintic spline, and it is of order 4 if a parameter takes a specific value, else it is of order 2. We also present a well known numerical example to illustrate the efficiency of our method as well as to compare with other numerical methods proposed in the literature.
Extension Theory and Krein-type Resolvent Formulas for Nonsmooth Boundary Value Problems
DEFF Research Database (Denmark)
Abels, Helmut; Grubb, Gerd; Wood, Ian Geoffrey
2014-01-01
The theory of selfadjoint extensions of symmetric operators, and more generally the theory of extensions of dual pairs, was implemented some years ago for boundary value problems for elliptic operators on smooth bounded domains. Recently, the questions have been taken up again for nonsmooth domains....... In the present work we show that pseudodifferential methods can be used to obtain a full characterization, including Kreĭn resolvent formulas, of the realizations of nonselfadjoint second-order operators on 2(n−1)p>2(n−1) and q>nq>n. The advantage of the pseudodifferential boundary operator calculus is that the operators are represented by a principal part and a lower-order remainder, leading to regularity results; in particular we analyze resolvents, Poisson solution operators...
A non-local free boundary problem arising in a theory of financial bubbles.
Berestycki, Henri; Monneau, Regis; Scheinkman, José A
2014-11-13
We consider an evolution non-local free boundary problem that arises in the modelling of speculative bubbles. The solution of the model is the speculative component in the price of an asset. In the framework of viscosity solutions, we show the existence and uniqueness of the solution. We also show that the solution is convex in space, and establish several monotonicity properties of the solution and of the free boundary with respect to parameters of the problem. To study the free boundary, we use, in particular, the fact that the odd part of the solution solves a more standard obstacle problem. We show that the free boundary is [Formula: see text] and describe the asymptotics of the free boundary as c, the cost of transacting the asset, goes to zero. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
A non-local free boundary problem arising in a theory of financial bubbles
Berestycki, Henri; Monneau, Regis; Scheinkman, José A.
2014-01-01
We consider an evolution non-local free boundary problem that arises in the modelling of speculative bubbles. The solution of the model is the speculative component in the price of an asset. In the framework of viscosity solutions, we show the existence and uniqueness of the solution. We also show that the solution is convex in space, and establish several monotonicity properties of the solution and of the free boundary with respect to parameters of the problem. To study the free boundary, we use, in particular, the fact that the odd part of the solution solves a more standard obstacle problem. We show that the free boundary is and describe the asymptotics of the free boundary as c, the cost of transacting the asset, goes to zero. PMID:25288815
A review on application of MHD theory to plasma boundary problems in tokamaks
International Nuclear Information System (INIS)
Itoh, Kimitaka.
1992-08-01
A survey is made on the problems of the edge plasmas, to which the analyses based on the MHD theory have been successfully applied. Also discussed are the efforts to extend the model equation to more general (and important as well) problems such as H-mode physics. An overview is first made on the advantages of the MHD picture, and the necessary supplementary physics are examined. Next, one- and two-dimensional models of the spatial structure of the edge plasma is discussed. The results on the stationary structure, both analytical and numerical, are reviewed: Typical example as well as the scaling law are shown. The instabilities associated with edge plasma is next reviewed. The surface kink mode, ballooning mode, interchange mode, resistive interchange mode and thermal instability are discussed. Role of the geometry such as the location of the X-point is studied. Influences of the atomic processes, and those of the radial electric field are also discussed. The analysis of the H-mode transition physics is finally discussed. The boundary plasma is a nonlinear media which possesses the possibility for bifurcation in which the radial electric field plays a key role. The model of the ion viscosity is also studied. Transition physics is developed. Analysis on the self-generating oscillation is shown and the relation with ELMs is discussed. After reviewing these problems, several comments are made to what directions the study can be deepened. (author) 53 refs
A non-local free boundary problem arising in a theory of financial bubbles
Berestycki, Henri; Monneau, Regis; Scheinkman, José A.
2014-01-01
We consider an evolution non-local free boundary problem that arises in the modelling of speculative bubbles. The solution of the model is the speculative component in the price of an asset. In the framework of viscosity solutions, we show the existence and uniqueness of the solution. We also show that the solution is convex in space, and establish several monotonicity properties of the solution and of the free boundary with respect to parameters of the problem. To study the free boundary, we...
Analytic theory of curvature effects for wave problems with general boundary conditions
DEFF Research Database (Denmark)
Willatzen, Morten; Gravesen, Jens; Voon, L. C. Lew Yan
2010-01-01
A formalism based on a combination of differential geometry and perturbation theory is used to obtain analytic expressions for confined eigenmode changes due to general curvature effects. In cases of circular-shaped and helix-shaped structures, where alternative analytic solutions can be found......, the perturbative solution is shown to yield the same result. The present technique allows the generalization of earlier results to arbitrary boundary conditions. The power of the method is illustrated using examples based on Maxwell’s and Schrödinger’s equations for applications in photonics and nanoelectronics....
Multiple Solutions for a Nonlinear Fractional Boundary Value Problem via Critical Point Theory
Directory of Open Access Journals (Sweden)
Yang Wang
2017-01-01
Full Text Available This paper is concerned with the existence of multiple solutions for the following nonlinear fractional boundary value problem: DT-αaxD0+αux=fx,ux, x∈0,T, u0=uT=0, where α∈1/2,1, ax∈L∞0,T with a0=ess infx∈0,Tax>0, DT-α and D0+α stand for the left and right Riemann-Liouville fractional derivatives of order α, respectively, and f:0,T×R→R is continuous. The existence of infinitely many nontrivial high or small energy solutions is obtained by using variant fountain theorems.
Energy Technology Data Exchange (ETDEWEB)
Luscher, Darby J [Los Alamos National Laboratory; Bronkhorst, Curt A [Los Alamos National Laboratory; Mc Dowell, David L [GEORGIA TECH
2010-12-20
All nonlocal continuum descriptions of inelastic material response involve length scale parameters that either directly or implicitly quantify the physical dimensions of a neighborhood of response which influences the behavior at a particular point. The second-gradient continuum theories such as those developed by Germain, Toupin and Mindlin, and Eringen, and giving rise to strain-gradient plasticity, is becoming a common coarse-scale basis for homogenization of material response that respects the non local nature of heterogeneous material response. Ideally, the length scale parameters involved in such homogenization would be intrinsically associated with dominant aspects of the microstructure. However, these parameters, at least in some cases, are inextricably linked to the details of the coarse scale boundary value problem. Accordingly, they cannot be viewed as pure constitutive parameters. An example problem of multiscale homogenization is presented to underscore the dependence of second-gradient length scale parameters on the coarse scale boundary value problem, namely the multiscale response of an idealized porous microstructure. The fine scale (microstructure) comprises elastic perfectly plastic matrix with a periodic array of circular voids. This fine scale description of the problem is identical for two separate classes of coarse scale boundary value problem, viz. an extruded channel subject to compression and eventually developing plastic shear bands and a thin layer of material with larger (coarse scale) elliptical voids subject to shear deformation. Implications of the relationship between length scale parameters and the details of the coarse scale boundary value problem are discussed and ideas to ascertain such length parameters from evolving response fields are presented.
Schlichting (Deceased), Hermann
2017-01-01
This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
Directory of Open Access Journals (Sweden)
Mabrouk Briki
2016-05-01
Full Text Available In this paper, a fourth-order boundary value problem on the half-line is considered and existence of solutions is proved using a minimization principle and the mountain pass theorem.
Directory of Open Access Journals (Sweden)
A. Mokhtari
2016-01-01
Full Text Available In this paper we obtain existence results of \\(k\\ distinct pairs nontrivial solutions for an impulsive boundary value problem of \\(p(t\\-Kirchhoff type under certain conditions on the parameter \\(\\lambda\\.
Czech Academy of Sciences Publication Activity Database
Escudero, C.; Hakl, Robert; Peral, I.; Torres, P.J.
2014-01-01
Roč. 37, č. 6 (2014), s. 793-807 ISSN 0170-4214 Institutional support: RVO:67985840 Keywords : singular boundary value problem * epitaxial growth * radial solution Subject RIV: BA - General Mathematics Impact factor: 0.918, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/mma.2836/full
Separable boundary-value problems in physics
Willatzen, Morten
2011-01-01
Innovative developments in science and technology require a thorough knowledge of applied mathematics, particularly in the field of differential equations and special functions. These are relevant in modeling and computing applications of electromagnetic theory and quantum theory, e.g. in photonics and nanotechnology. The problem of solving partial differential equations remains an important topic that is taught at both the undergraduate and graduate level. Separable Boundary-Value Problems in Physics is an accessible and comprehensive treatment of partial differential equations i
Fourier analysis and boundary value problems
Gonzalez-Velasco, Enrique A
1996-01-01
Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics.A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field.Key Features* Topics are covered from a historical perspective with biographical information on key contributors to the field* The text contains more than 500 exercises* Includes practical applicati...
Boundary conditions in conformal and integrable theories
Petkova, V B
2000-01-01
The study of boundary conditions in rational conformal field theories is not only physically important. It also reveals a lot on the structure of the theory ``in the bulk''. The same graphs classify both the torus and the cylinder partition functions and provide data on their hidden ``quantum symmetry''. The Ocneanu triangular cells -- the 3j-symbols of these symmetries, admit various interpretations and make a link between different problems.
On Continuation of Solutions to Boundary Problems
DEFF Research Database (Denmark)
Modern investigation of the real-analytic continuability of solutions to boundary problems involves elements of complex and microlocal analysis, as well as the theory of pseudodifferential operators. Apart from its purely mathematical interest, this investigation can lead to significant improvement...... of numerical methods used in, e.g., acoustic and electromagnetic scattering. In this talk, I shall take as the starting point the desire to improve one such numerical method, namely the so-called Method of Auxiliary Sources (MAS). The latter is a promising numerical scheme, with the potential of replacing...... the traditional boundary layer formulations in the numerical solution of scattering problems. To address the convergence issues inherent to the MAS, I shall introduce a relevant general real-analytic continuation problem and describe how it can be reformulated in terms of an analytic Cauchy problem in the complex...
Boundary Value Problems and Approximate Solutions ...
African Journals Online (AJOL)
In this paper, we discuss about some basic things of boundary value problems. Secondly, we study boundary conditions involving derivatives and obtain finite difference approximations of partial derivatives of boundary value problems. The last section is devoted to determine an approximate solution for boundary value ...
Numerical Methods for Free Boundary Problems
1991-01-01
About 80 participants from 16 countries attended the Conference on Numerical Methods for Free Boundary Problems, held at the University of Jyviiskylii, Finland, July 23-27, 1990. The main purpose of this conference was to provide up-to-date information on important directions of research in the field of free boundary problems and their numerical solutions. The contributions contained in this volume cover the lectures given in the conference. The invited lectures were given by H.W. Alt, V. Barbu, K-H. Hoffmann, H. Mittelmann and V. Rivkind. In his lecture H.W. Alt considered a mathematical model and existence theory for non-isothermal phase separations in binary systems. The lecture of V. Barbu was on the approximate solvability of the inverse one phase Stefan problem. K-H. Hoff mann gave an up-to-date survey of several directions in free boundary problems and listed several applications, but the material of his lecture is not included in this proceedings. H.D. Mittelmann handled the stability of thermo capi...
Existence results for anisotropic discrete boundary value problems
Directory of Open Access Journals (Sweden)
Avci Avci
2016-06-01
Full Text Available In this article, we prove the existence of nontrivial weak solutions for a class of discrete boundary value problems. The main tools used here are the variational principle and critical point theory.
Adler, Stephen L.; Wilczek, Frank
1994-10-01
This report is a progress report on the work of two principal investigators in the broad area of particle physics theory, covering their personal work, that of their coworkers, and their proposed work for the future. One author has worked in the past on various topics in field theory and particle physics, among them current algebras, the physics of neutrino induced reactions, quantum electrodynamics (including strong magnetic field processes), the theory of the axial-vector current anomaly, topics in quantum gravity, and nonlinear models for quark confinement. While much of his work has been analytical, all of the projects listed above (except for the work on gravity) had phases which required considerable computer work as well. Over the next several years, he proposes to continue or initiate research on the following problems: (1) acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, and more generally, new research in computational neuroscience and pattern recognition; (2) construction of quaternionic generalizations of complex quantum mechanics and field theory, and their application to composite models of quarks and leptons, and to the problem of unifying quantum theories of matter with general relativity. One author has worked on problems in exotic quantum statistics and its applications to condensed matter systems. His work has also continued on the quantum theory of black holes. This has evolved toward understanding properties of quantum field theory and string theory in incomplete regions of flat space.
Problems in equilibrium theory
Aliprantis, Charalambos D
1996-01-01
In studying General Equilibrium Theory the student must master first the theory and then apply it to solve problems. At the graduate level there is no book devoted exclusively to teaching problem solving. This book teaches for the first time the basic methods of proof and problem solving in General Equilibrium Theory. The problems cover the entire spectrum of difficulty; some are routine, some require a good grasp of the material involved, and some are exceptionally challenging. The book presents complete solutions to two hundred problems. In searching for the basic required techniques, the student will find a wealth of new material incorporated into the solutions. The student is challenged to produce solutions which are different from the ones presented in the book.
Effective Field Theory on Manifolds with Boundary
Albert, Benjamin I.
In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.
International Nuclear Information System (INIS)
Adler, S.L.; Wilczek, F.
1992-11-01
Members of the Institute have worked on a number of problems including the following: acceleration algorithms for the Monte Carlo analysis of lattice field, and gauge and spin theories, based on changes of variables specific to lattices of dimension 2 ell ; construction of quaternionic generalizations of complex quantum mechanics and field theory; wave functions for paired Hall states; black hole quantum mechanics; generalized target-space duality in curved string backgrounds; gauge symnmetry algebra of the N = 2 string; two-dimensional quantum gravity and associated string theories; organizing principles from which the signal processing of neural networks in the retina and cortex can be deduced; integrable systems of KdV type; and a theory for Kondo insulators
Boundary value problems and partial differential equations
Powers, David L
2005-01-01
Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Professors and students agree that the author is a master at creating linear problems that adroitly illustrate the techniques of separation of variables used to solve science and engineering.* CD with animations and graphics of solutions, additional exercises and chapter review questions* Nearly 900 exercises ranging in difficulty* Many fully worked examples
Classical BV theories on manifolds with boundary
Cattaneo, A.S.; Mnev, P.; Reshetikhin, N.
2014-01-01
In this paper we extend the classical BV framework to gauge theories on spacetime manifolds with boundary. In particular, we connect the BV construction in the bulk with the BFV construction on the boundary and we develop its extension to strata of higher codimension in the case of manifolds with
Hierarchies of DIFFdifference boundary value problems II ...
African Journals Online (AJOL)
Hierarchies of DIFFdifference boundary value problems II - applications. ... In particular, we studied the effect of applying a Crum-type transformation to a weighted second order difference equation with general -dependent boundary conditions at the end points, for eigenparameter λ. In this paper we demonstrate by means ...
Dialogical Theories at the Boundary
Dr Theo Niessen; Dr. Sanne Akkerman
2011-01-01
Within social sciences, ranging from education to psychology, sociology and anthropology, we see theories emerging that are based on the concept that our social world is existentially dialogical. According to Valsiner and Van der Veer (2000), dialogical theories referring to the work of Hermans
Boundary Value Problems Arising in Kalman Filtering
Directory of Open Access Journals (Sweden)
Bashirov Agamirza
2008-01-01
Full Text Available The classic Kalman filtering equations for independent and correlated white noises are ordinary differential equations (deterministic or stochastic with the respective initial conditions. Changing the noise processes by taking them to be more realistic wide band noises or delayed white noises creates challenging partial differential equations with initial and boundary conditions. In this paper, we are aimed to give a survey of this connection between Kalman filtering and boundary value problems, bringing them into the attention of mathematicians as well as engineers dealing with Kalman filtering and boundary value problems.
Directory of Open Access Journals (Sweden)
Qingkai Kong
2012-02-01
Full Text Available In this paper, we study the existence and multiplicity of positive solutions of a class of nonlinear fractional boundary value problems with Dirichlet boundary conditions. By applying the fixed point theory on cones we establish a series of criteria for the existence of one, two, any arbitrary finite number, and an infinite number of positive solutions. A criterion for the nonexistence of positive solutions is also derived. Several examples are given for demonstration.
Solution of moving boundary problems with implicit boundary condition
International Nuclear Information System (INIS)
Moyano, E.A.
1990-01-01
An algorithm that solves numerically a model for studying one dimensional moving boundary problems, with implicit boundary condition, is described. Landau's transformation is used, in order to work with a fixed number of nodes at each instant. Then, it is necessary to deal with a parabolic partial differential equation, whose diffusive and convective terms have variable coefficients. The partial differential equation is implicitly discretized, using Laasonen's scheme, always stable, instead of employing Crank-Nicholson sheme, as it has been done by Ferris and Hill. Fixed time and space steps (Δt, Δξ) are used, and the iteration is made with variable positions of the interface, i.e. varying δs until a boundary condition is satisfied. The model has the same features of the oxygen diffusion in absorbing tissue. It would be capable of estimating time variant radiation treatments of cancerous tumors. (Author) [es
International Nuclear Information System (INIS)
Adler, S.L.; Wilczek, F.
1993-11-01
Areas of emphasis include acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, quaternionic generalizations of complex quantum mechanics and field theory, application of the renormalization group to the QCD phase transition, the quantum Hall effect, and black holes. Other work involved string theory, statistical properties of energy levels in integrable quantum systems, baryon asymmetry and the electroweak phase transition, anisotropies of the cosmic microwave background, and theory of superconductors
Unique solution to periodic boundary value problems
Directory of Open Access Journals (Sweden)
Yong Sun
1991-01-01
Full Text Available Existence of unique solution to periodic boundary value problems of differential equations with continuous or discontinuous right-hand side is considered by utilizing the method of lower and upper solutions and the monotone properties of the operator. This is subject to discussion in the present paper.
Topological invariants in nonlinear boundary value problems
International Nuclear Information System (INIS)
Vinagre, Sandra; Severino, Ricardo; Ramos, J. Sousa
2005-01-01
We consider a class of boundary value problems for partial differential equations, whose solutions are, basically, characterized by the iteration of a nonlinear function. We apply methods of symbolic dynamics of discrete bimodal maps in the interval in order to give a topological characterization of its solutions
Introduction to Mathematical Physics. Calculus of Variations and Boundary-value Problems
Adamyan, V. M.; Sushko, M. Ya.
2013-01-01
This book considers posing and the methods of solving simple linear boundary-value problems in classical mathematical physics. The questions encompassed include: the fundamentals of calculus of variations; one-dimensional boundary-value problems in the oscillation and heat conduction theories, with a detailed analysis of the Sturm-Liouville boundary-value problem and substantiation of the Fourier method; sample solutions of the corresponding problems in two and three dimensions, with essentia...
Riemann surfaces with boundaries and string theory
International Nuclear Information System (INIS)
Morozov, A.Yu.; Roslyj, A.A.
1989-01-01
A consideration of the cutting and joining operations for Riemann surfaces permits one to express the functional integral on a Riemann surface in terms of integrals over its pieces which are suarfaces with boundaries. This yields an expression for the determinant of the Laplacian on a Riemann surface in terms of Krichever maps for its pieces. Possible applications of the methods proposed to a study of the string perturbation theory in terms of an universal moduli space are mentioned
Energy Technology Data Exchange (ETDEWEB)
Schlichting, Hermann [Technische Univ. Braunschweig (Germany). Inst. fuer Stroemungsmechanik; Gersten, Klaus [Bochum Univ. (Germany). Lehrstuhl fuer Thermodynamik und Stroemungsmechanik
2017-03-01
This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
Group invariance in engineering boundary value problems
Seshadri, R
1985-01-01
REFEREN CES . 156 9 Transforma.tion of a Boundary Value Problem to an Initial Value Problem . 157 9.0 Introduction . 157 9.1 Blasius Equation in Boundary Layer Flow . 157 9.2 Longitudinal Impact of Nonlinear Viscoplastic Rods . 163 9.3 Summary . 168 REFERENCES . . . . . . . . . . . . . . . . . . 168 . 10 From Nonlinear to Linear Differential Equa.tions Using Transformation Groups. . . . . . . . . . . . . . 169 . 10.1 From Nonlinear to Linear Differential Equations . 170 10.2 Application to Ordinary Differential Equations -Bernoulli's Equation . . . . . . . . . . . 173 10.3 Application to Partial Differential Equations -A Nonlinear Chemical Exchange Process . 178 10.4 Limitations of the Inspectional Group Method . 187 10.5 Summary . 188 REFERENCES . . . . 188 11 Miscellaneous Topics . 190 11.1 Reduction of Differential Equations to Algebraic Equations 190 11.2 Reduction of Order of an Ordinary Differential Equation . 191 11.3 Transformat.ion From Ordinary to Partial Differential Equations-Search for First Inte...
Homology in Electromagnetic Boundary Value Problems
Directory of Open Access Journals (Sweden)
Matti Pellikka
2010-01-01
Full Text Available We discuss how homology computation can be exploited in computational electromagnetism. We represent various cellular mesh reduction techniques, which enable the computation of generators of homology spaces in an acceptable time. Furthermore, we show how the generators can be used for setting up and analysis of an electromagnetic boundary value problem. The aim is to provide a rationale for homology computation in electromagnetic modeling software.
Boundary operators in effective string theory
Energy Technology Data Exchange (ETDEWEB)
Hellerman, Simeon [Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo,Kashiwa, Chiba 277-8582 (Japan); Swanson, Ian [Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)
2017-04-13
Various universal features of relativistic rotating strings depend on the organization of allowed local operators on the worldsheet. In this paper, we study the set of Neumann boundary operators in effective string theory, which are relevant for the controlled study of open relativistic strings with freely moving endpoints. Relativistic open strings are thought to encode the dynamics of confined quark-antiquark pairs in gauge theories in the planar approximation. Neumann boundary operators can be organized by their behavior under scaling of the target space coordinates X{sup μ}, and the set of allowed X-scaling exponents is bounded above by +1/2 and unbounded below. Negative contributions to X-scalings come from powers of a single invariant, or “dressing' operator, which is bilinear in the embedding coordinates. In particular, we show that all Neumann boundary operators are dressed by quarter-integer powers of this invariant, and we demonstrate how this rule arises from various ways of regulating the short-distance singularities of the effective theory.
The scaled boundary FEM for nonlinear problems
Lin, Zhiliang; Liao, Shijun
2011-01-01
The traditional scaled boundary finite-element method (SBFEM) is a rather efficient semi-analytical technique widely applied in engineering, which is however valid mostly for linear differential equations. In this paper, the traditional SBFEM is combined with the homotopy analysis method (HAM), an analytic technique for strongly nonlinear problems: a nonlinear equation is first transformed into a series of linear equations by means of the HAM, and then solved by the traditional SBFEM. In this way, the traditional SBFEM is extended to nonlinear differential equations. A nonlinear heat transfer problem is used as an example to show the validity and computational efficiency of this new SBFEM.
Mixed Boundary Value Problem on Hypersurfaces
Directory of Open Access Journals (Sweden)
R. DuDuchava
2014-01-01
Full Text Available The purpose of the present paper is to investigate the mixed Dirichlet-Neumann boundary value problems for the anisotropic Laplace-Beltrami equation divC(A∇Cφ=f on a smooth hypersurface C with the boundary Γ=∂C in Rn. A(x is an n×n bounded measurable positive definite matrix function. The boundary is decomposed into two nonintersecting connected parts Γ=ΓD∪ΓN and on ΓD the Dirichlet boundary conditions are prescribed, while on ΓN the Neumann conditions. The unique solvability of the mixed BVP is proved, based upon the Green formulae and Lax-Milgram Lemma. Further, the existence of the fundamental solution to divS(A∇S is proved, which is interpreted as the invertibility of this operator in the setting Hp,#s(S→Hp,#s-2(S, where Hp,#s(S is a subspace of the Bessel potential space and consists of functions with mean value zero.
Grain Boundaries From Theory to Engineering
Priester, Louisette
2013-01-01
Grain boundaries are a main feature of crystalline materials. They play a key role in determining the properties of materials, especially when grain size decreases and even more so with the current improvements of processing tools and methods that allow us to control various elements in a polycrystal. This book presents the theoretical basis of the study of grain boundaries and aims to open up new lines of research in this area. The treatment is light on mathematical approaches while emphasizing practical examples; the issues they raise are discussed with reference to theories. The general approach of the book has two main goals: to lead the reader from the concept of ‘ideal’ to ‘real’ grain boundaries; to depart from established knowledge and address the opportunities emerging through "grain boundary engineering", the control of morphological and crystallographic features that affect material properties. The book is divided in three parts: I ‘From interganular order to disorder’ deals wit...
On the solvability of initial boundary value problems for nonlinear ...
African Journals Online (AJOL)
In this paper, we study the initial boundary value problems for a non-linear time dependent Schrödinger equation with Dirichlet and Neumann boundary conditions, respectively. We prove the existence and uniqueness of solutions of the initial boundary value problems by using Galerkin's method. Keywords: Initial boundary ...
A selfadjoint hyperbolic boundary-value problem
Directory of Open Access Journals (Sweden)
Nezam Iraniparast
2003-02-01
Full Text Available We consider the eigenvalue wave equation $$u_{tt} - u_{ss} = lambda pu,$$ subject to $ u(s,0 = 0$, where $uinmathbb{R}$, is a function of $(s, t in mathbb{R}^2$, with $tge 0$. In the characteristic triangle $T ={(s,t:0leq tleq 1, tleq sleq 2-t}$ we impose a boundary condition along characteristics so that $$ alpha u(t,t-beta frac{partial u}{partial n_1}(t,t = alpha u(1+t,1-t +betafrac{partial u}{partial n_2}(1+t,1-t,quad 0leq tleq1. $$ The parameters $alpha$ and $beta$ are arbitrary except for the condition that they are not both zero. The two vectors $n_1$ and $n_2$ are the exterior unit normals to the characteristic boundaries and $frac{partial u}{partial n_1}$, $frac{partial u}{partial n_2}$ are the normal derivatives in those directions. When $pequiv 1$ we will show that the above characteristic boundary value problem has real, discrete eigenvalues and corresponding eigenfunctions that are complete and orthogonal in $L_2(T$. We will also investigate the case where $pgeq 0$ is an arbitrary continuous function in $T$.
To the boundary value problem of ordinary differential equations
Directory of Open Access Journals (Sweden)
Serikbai Aisagaliev
2015-09-01
Full Text Available Method for solving of a boundary value problem for ordinary differential equations with boundary conditions at phase and integral constraints is proposed. The base of the method is an immersion principle based on the general solution of the first order Fredholm integral equation which allows to reduce the original boundary value problem to the special problem of the optimal equation.
International Nuclear Information System (INIS)
Pereira, Luis Carlos Martins
1998-06-01
New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)
Elasticity problems in domains with nonsmooth boundaries
Esparza, D
2001-01-01
In the present work we study the behaviour of elastic stress fields in domains with non-regular boundaries. We consider three-dimensional problems in elastic media with thin conical defects (inclusions or cavities) and analyse the stress singularity at their vertices. To construct asymptotic expansions for the stress and displacement fields in terms of a small parameter epsilon related to the 'thickness' of the defect, we employ a technique based on the work by Kondrat'ev, Maz'ya, Nazarov and Plamenevskii. We first study the stress distribution in an elastic body with a thin conical notch. We derive an asymptotic representation for the stress singularity exponent by reducing the original problem to a spectral problem for a 9x9 matrix. The elements of this matrix are found to depend upon the geometry of the cross-section of the notch and the elastic properties of the medium. We specify the sets of eigenvalues and the corresponding eigenvectors for a circular, elliptical, 'triangular' and 'square' cross-section...
Parametric bases for elliptic boundary value problem
Gusev, A. A.; Vinitsky, S. I.; Chuluunbaatar, O.; Derbov, V. L.; Góźdź, A.; Krassovitskiy, P. M.
2018-02-01
We consider the calculation schemes in the framework of Kantorovich method that consist in the reduction of a 3D elliptic boundary-value problem (BVP) to a set of second-order ordinary differential equations (ODEs) using the parametric basis functions. These functions are solution of the 2D parametric BVP. The coefficients in the ODEs are the parametric eigenvalues and the potential matrix elements expressed by the integrals of the eigenfunctions multiplied by their first derivatives with respect to the parameter. We calculate the parametric basis functions numerically in the general case using the high-accuracy finite element method. The efficiency of the proposed calculation schemes and algorithms is demonstrated by the example of the BVP describing the bound states of helium atom.
Parallel algorithms for boundary value problems
Lin, Avi
1991-01-01
A general approach to solve boundary value problems numerically in a parallel environment is discussed. The basic algorithm consists of two steps: the local step where all the P available processors work in parallel, and the global step where one processor solves a tridiagonal linear system of the order P. The main advantages of this approach are twofold. First, this suggested approach is very flexible, especially in the local step and thus the algorithm can be used with any number of processors and with any of the SIMD or MIMD machines. Secondly, the communication complexity is very small and thus can be used as easily with shared memory machines. Several examples for using this strategy are discussed.
Positive solutions for a fourth order boundary value problem
Directory of Open Access Journals (Sweden)
Bo Yang
2005-02-01
Full Text Available We consider a boundary value problem for the beam equation, in which the boundary conditions mean that the beam is embedded at one end and free at the other end. Some new estimates to the positive solutions to the boundary value problem are obtained. Some sufficient conditions for the existence of at least one positive solution for the boundary value problem are established. An example is given at the end of the paper to illustrate the main results.
State-dependent impulses boundary value problems on compact interval
Rachůnková, Irena
2015-01-01
This book offers the reader a new approach to the solvability of boundary value problems with state-dependent impulses and provides recently obtained existence results for state dependent impulsive problems with general linear boundary conditions. It covers fixed-time impulsive boundary value problems both regular and singular and deals with higher order differential equations or with systems that are subject to general linear boundary conditions. We treat state-dependent impulsive boundary value problems, including a new approach giving effective conditions for the solvability of the Dirichlet problem with one state-dependent impulse condition and we show that the depicted approach can be extended to problems with a finite number of state-dependent impulses. We investigate the Sturm–Liouville boundary value problem for a more general right-hand side of a differential equation. Finally, we offer generalizations to higher order differential equations or differential systems subject to general linear boundary...
Potential Theory Surveys and Problems
Lukeš, Jaroslav; Netuka, Ivan; Veselý, Jiří
1988-01-01
The volume comprises eleven survey papers based on survey lectures delivered at the Conference in Prague in July 1987, which covered various facets of potential theory, including its applications in other areas. The survey papers deal with both classical and abstract potential theory and its relations to partial differential equations, stochastic processes and other branches such as numerical analysis and topology. A collection of problems from potential theory, compiled on the occasion of the conference, is included, with additional commentaries, in the second part of this volume.
Free boundary problems in PDEs and particle systems
Carinci, Gioia; Giardinà, Cristian; Presutti, Errico
2016-01-01
In this volume a theory for models of transport in the presence of a free boundary is developed. Macroscopic laws of transport are described by PDE's. When the system is open, there are several mechanisms to couple the system with the external forces. Here a class of systems where the interaction with the exterior takes place in correspondence of a free boundary is considered. Both continuous and discrete models sharing the same structure are analysed. In Part I a free boundary problem related to the Stefan Problem is worked out in all details. For this model a new notion of relaxed solution is proposed for which global existence and uniqueness is proven. It is also shown that this is the hydrodynamic limit of the empirical mass density of the associated particle system. In Part II several other models are discussed. The expectation is that the results proved for the basic model extend to these other cases. All the models discussed in this volume have an interest in problems arising in several research fields...
Periodic boundary value problems of second order random differential equations
Directory of Open Access Journals (Sweden)
Bapurao Dhage
2009-04-01
Full Text Available In this paper, an existence and the existence of extremal random solutions are proved for a periodic boundary value problem of second order ordinary random differential equations. Our investigations have been placed in the space of real-valued functions defined and continuous on closed and bounded intervals of real line together with the applications of the random version of a nonlinear alternative of Leray-Schauder type and an algebraic random fixed point theorem of Dhage. An example is also indicated for demonstrating the realizations of the abstract theory developed in this paper.
Collection of problems in transport theory
International Nuclear Information System (INIS)
Kaper, H.G.
1975-01-01
Problems presented are: (1) definition of transport operators; (2) relation between the integro-differential and integral form of the transport equation; (3) asymptotic behavior of the scalar density near curved boundaries and interfaces; (4) singularities at a corner; (5) regularity of the solution of the transport equation; (7) transport equations on a manifold; (8) numerical analysis; (9) cubature; (10) point spectrum of the transport operator; (11) convergence of the multigroup approximation; (12) convergence of discrete ordinates approximations; (13) the finite double-norm property; (14) convergence of discrete ordinates approximation. The presentation of the problems is intended to direct attention to gaps in the existing knowledge of transport theory and to stimulate research into new areas of transport theory
Heat Kernel Asymptotics of Zaremba Boundary Value Problem
Energy Technology Data Exchange (ETDEWEB)
Avramidi, Ivan G. [Department of Mathematics, New Mexico Institute of Mining and Technology (United States)], E-mail: iavramid@nmt.edu
2004-03-15
The Zaremba boundary-value problem is a boundary value problem for Laplace-type second-order partial differential operators acting on smooth sections of a vector bundle over a smooth compact Riemannian manifold with smooth boundary but with discontinuous boundary conditions, which include Dirichlet boundary conditions on one part of the boundary and Neumann boundary conditions on another part of the boundary. We study the heat kernel asymptotics of Zaremba boundary value problem. The construction of the asymptotic solution of the heat equation is described in detail and the heat kernel is computed explicitly in the leading approximation. Some of the first nontrivial coefficients of the heat kernel asymptotic expansion are computed explicitly.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 1. A Problem in Graph Theory. K P Savithri. Think It Over Volume 12 Issue 1 January 2007 pp 81-81. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/012/01/0081-0081. Author Affiliations.
Second-Order Boundary Value Problem with Integral Boundary Conditions
Directory of Open Access Journals (Sweden)
Nieto JuanJ
2011-01-01
Full Text Available The nonlinear alternative of the Leray Schauder type and the Banach contraction principle are used to investigate the existence of solutions for second-order differential equations with integral boundary conditions. The compactness of solutions set is also investigated.
Boundary effects in super-Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Shah, Mushtaq B.; Ganai, Prince A. [National Institute of Technology, Department of Physics, Srinagar, Kashmir (India); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Alberta (Canada); Zaz, Zaid [University of Kashmir, Department of Electronics and Communication Engineering, Srinagar, Kashmir (India); Bhat, Anha [National Institute of Technology, Department of Metallurgical and Materials Engineering, Srinagar, Kashmir (India); Masood, Syed [International Islamic University, Department of Physics, Islamabad (Pakistan)
2017-05-15
In this paper, we shall analyze a three dimensional supersymmetry theory with N = 2 supersymmetry. We will analyze the quantization of this theory, in the presence of a boundary. The effective Lagrangian used in the path integral quantization of this theory, will be given by the sum of the gauge fixing term and the ghost term with the original classical Lagrangian. Even though the supersymmetry of this effective Lagrangian will also be broken due to the presence of a boundary, it will be demonstrated that half of the supersymmetry of this theory can be preserved by adding a boundary Lagrangian to the effective bulk Lagrangian. The supersymmetric transformation of this new boundary Lagrangian will exactly cancel the boundary term generated from the supersymmetric transformation of the effective bulk Lagrangian. We will analyze the Slavnov-Taylor identity for this N = 2 Yang-Mills theory with a boundary. (orig.)
Multiple positive solutions for second order impulsive boundary value problems in Banach spaces
Directory of Open Access Journals (Sweden)
Zhi-Wei Lv
2010-06-01
Full Text Available By means of the fixed point index theory of strict set contraction operators, we establish new existence theorems on multiple positive solutions to a boundary value problem for second-order impulsive integro-differential equations with integral boundary conditions in a Banach space. Moreover, an application is given to illustrate the main result.
On Antiperiodic Boundary Value Problems for Higher-Order Fractional Differential Equations
Directory of Open Access Journals (Sweden)
Ahmed Alsaedi
2012-01-01
Full Text Available We study an antiperiodic boundary value problem of nonlinear fractional differential equations of order q∈(4,5]. Some existence results are obtained by applying some standard tools of fixed-point theory. We show that solutions for lower-order anti-periodic fractional boundary value problems follow from the solution of the problem at hand. Our results are new and generalize the existing results on anti-periodic fractional boundary value problems. The paper concludes with some illustrating examples.
Prior Information in Inverse Boundary Problems
DEFF Research Database (Denmark)
Garde, Henrik
the change in distinguishability of inclusions (support of an inhomogeneity) as they are placed closer towards the measurement boundary. This is done by determining eigenvalue bounds for differences of pseudodifferential operators on the boundary of the domain. Ultimately, the bounds serves as insight...
On boundary value problems for degenerate differential inclusions in Banach spaces
Directory of Open Access Journals (Sweden)
Valeri Obukhovskii
2003-01-01
Full Text Available We consider the applications of the theory of condensing set-valued maps, the theory of set-valued linear operators, and the topological degree theory of the existence of mild solutions for a class of degenerate differential inclusions in a reflexive Banach space. Further, these techniques are used to obtain the solvability of general boundary value problems for a given class of inclusions. Some particular cases including periodic problems are considered.
METHOD OF GREEN FUNCTIONS IN MATHEMATICAL MODELLING FOR TWO-POINT BOUNDARY-VALUE PROBLEMS
Directory of Open Access Journals (Sweden)
E. V. Dikareva
2015-01-01
Full Text Available Summary. In many applied problems of control, optimization, system theory, theoretical and construction mechanics, for problems with strings and nods structures, oscillation theory, theory of elasticity and plasticity, mechanical problems connected with fracture dynamics and shock waves, the main instrument for study these problems is a theory of high order ordinary differential equations. This methodology is also applied for studying mathematical models in graph theory with different partitioning based on differential equations. Such equations are used for theoretical foundation of mathematical models but also for constructing numerical methods and computer algorithms. These models are studied with use of Green function method. In the paper first necessary theoretical information is included on Green function method for multi point boundary-value problems. The main equation is discussed, notions of multi-point boundary conditions, boundary functionals, degenerate and non-degenerate problems, fundamental matrix of solutions are introduced. In the main part the problem to study is formulated in terms of shocks and deformations in boundary conditions. After that the main results are formulated. In theorem 1 conditions for existence and uniqueness of solutions are proved. In theorem 2 conditions are proved for strict positivity and equal measureness for a pair of solutions. In theorem 3 existence and estimates are proved for the least eigenvalue, spectral properties and positivity of eigenfunctions. In theorem 4 the weighted positivity is proved for the Green function. Some possible applications are considered for a signal theory and transmutation operators.
Boundary Hamiltonian Theory for Gapped Topological Orders
Hu, Yuting; Wan, Yidun; Wu, Yong-Shi
2017-06-01
We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian in our approach yields a topologically protected, gapped energy spectrum, with the corresponding wave functions robust under topology-preserving transformations of the lattice of the system. We explicitly present the wavefunctions of the ground states and boundary elementary excitations. The creation and hopping operators of boundary quasi-particles are constructed. It is found that given a bulk topological order, the gapped boundary conditions are classified by Frobenius algebras in its input data. Emergent topological properties of the ground states and boundary excitations are characterized by (bi-) modules over Frobenius algebras.
Initial and boundary value problems for partial functional differential equations
Directory of Open Access Journals (Sweden)
S. K. Ntouyas
1997-01-01
Full Text Available In this paper we study the existence of solutions to initial and boundary value problems of partial functional differential equations via a fixed-point analysis approach. Using the topological transversality theorem we derive conditions under which an initial or a boundary value problem has a solution.
Energy Technology Data Exchange (ETDEWEB)
Kaikina, Elena I., E-mail: ekaikina@matmor.unam.mx [Centro de Ciencias Matemáticas, UNAM Campus Morelia, AP 61-3 (Xangari), Morelia CP 58089, Michoacán (Mexico)
2013-11-15
We consider the inhomogeneous Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation, formulated on a half-line. We study traditionally important problems of the theory of nonlinear partial differential equations, such as global in time existence of solutions to the initial-boundary value problem and the asymptotic behavior of solutions for large time.
International Nuclear Information System (INIS)
Kaikina, Elena I.
2013-01-01
We consider the inhomogeneous Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation, formulated on a half-line. We study traditionally important problems of the theory of nonlinear partial differential equations, such as global in time existence of solutions to the initial-boundary value problem and the asymptotic behavior of solutions for large time
Vertical and horizontal spheroidal boundary-value problems
Šprlák, Michal; Tangdamrongsub, Natthachet
2017-12-01
Vertical and horizontal spheroidal boundary-value problems (BVPs), i.e., determination of the external gravitational potential from the components of the gravitational gradient on the spheroid, are discussed in this article. The gravitational gradient is decomposed into the series of the vertical and horizontal vector spheroidal harmonics, before being orthogonalized in a weighted sense by two different approaches. The vertical and horizontal spheroidal BVPs are then formulated and solved in the spectral and spatial domains. Both orthogonalization methods provide the same analytical solutions for the vertical spheroidal BVP, and give distinct, but equivalent, analytical solutions for the horizontal spheroidal BVP. A closed-loop simulation is performed to test the correctness of the analytical solutions, and we investigate analytical properties of the sub-integral kernels. The systematic treatment of the spheroidal BVPs and the resulting mathematical equations extend the theoretical apparatus of geodesy and of the potential theory.
The initial boundary value problem for free-evolution formulations of general relativity
Hilditch, David; Ruiz, Milton
2018-01-01
We consider the initial boundary value problem for free-evolution formulations of general relativity coupled to a parametrized family of coordinate conditions that includes both the moving puncture and harmonic gauges. We concentrate primarily on boundaries that are geometrically determined by the outermost normal observer to spacelike slices of the foliation. We present high-order-derivative boundary conditions for the gauge, constraint violating and gravitational wave degrees of freedom of the formulation. Second order derivative boundary conditions are presented in terms of the conformal variables used in numerical relativity simulations. Using Kreiss–Agranovich–Métivier theory we demonstrate, in the frozen coefficient approximation, that with sufficiently high order derivative boundary conditions the initial boundary value problem can be rendered boundary stable. The precise number of derivatives required depends on the gauge. For a choice of the gauge condition that renders the system strongly hyperbolic of constant multiplicity, well-posedness of the initial boundary value problem follows in this approximation. Taking into account the theory of pseudo-differential operators, it is expected that the nonlinear problem is also well-posed locally in time.
Regular boundary value problems for the heat equation with scalar parameters
Kalmenov, Tynysbek Sh.; Besbaev, Gani; Medetbekova, Ryskul
2017-09-01
This paper belongs to the general theory of well-posed initial-boundary value problems for parabolic equations. The classical construction of a boundary value problem is as follows: an equation and a boundary condition are given. It is necessary to investigate the solvability of this problem and properties of the solution if it exists (in the sense of belonging to some space). Beginning with the papers of J. von Neumann and M.I. Vishik (1951), there exists another more general approach: an equation and a space are given, right-hand parts of the equation and boundary conditions, and a solution must belong to this space. It is necessary to describe all the boundary conditions, for which the problem is correctly solvable in this space. Further development of this theory was given by M. Otelbaev, who constructed a complete theory for ordinary differential operators and for symmetric semibounded operators in a Banach space. In this paper we find regular solution of the regular boundary problem for the heat equation with scalar parameter.
A free boundary problem on three-dimensional cones
Allen, Mark
2017-12-01
We consider a free boundary problem on cones depending on a parameter c and study when the free boundary is allowed to pass through the vertex of the cone. We show that when the cone is three-dimensional and c is large enough, the free boundary avoids the vertex. We also show that when c is small enough but still positive, the free boundary is allowed to pass through the vertex. This establishes 3 as the critical dimension for which the free boundary may pass through the vertex of a right circular cone. In view of the well-known connection between area-minimizing surfaces and the free boundary problem under consideration, our result is analogous to a result of Morgan that classifies when an area-minimizing surface on a cone passes through the vertex.
The Stokes phenomenon as a boundary-value problem
Energy Technology Data Exchange (ETDEWEB)
Lopez, Jose L [Departamento de Ingenieria Matematica e Informatica, Universidad Publica de Navarra, 31006-Pamplona (Spain)
2007-08-31
We show that the Stokes phenomenon is related to a boundary-value problem in two dimensions: for a large class of functions and near the Stokes lines, the subdominant multiplier satisfies a two-dimensional boundary-value problem of convection-diffusion type with discontinuous Dirichlet conditions at the boundary. The solution of this problem is approximated by an error function of a certain combination of the polar variables of the plane which measures the distance to the Stokes line. Then, we offer a different and very simple explanation of the smoothing of the Stokes phenomenon showing the universality of the error function as the smoothing factor.
Canonical problems in scattering and potential theory
Vinogradov, SS; Vinogradova, ED
2001-01-01
Although the analysis of scattering for closed bodies of simple geometric shape is well developed, structures with edges, cavities, or inclusions have seemed, until now, intractable to analytical methods. This two-volume set describes a breakthrough in analytical techniques for accurately determining diffraction from classes of canonical scatterers with comprising edges and other complex cavity features. It is an authoritative account of mathematical developments over the last two decades that provides benchmarks against which solutions obtained by numerical methods can be verified.The first volume, Canonical Structures in Potential Theory, develops the mathematics, solving mixed boundary potential problems for structures with cavities and edges. The second volume, Acoustic and Electromagnetic Diffraction by Canonical Structures, examines the diffraction of acoustic and electromagnetic waves from several classes of open structures with edges or cavities. Together these volumes present an authoritative and uni...
Canonical problems in scattering and potential theory
Vinogradov, SS; Vinogradova, ED
2002-01-01
Although the analysis of scattering for closed bodies of simple geometric shape is well developed, structures with edges, cavities, or inclusions have seemed, until now, intractable to analytical methods. This two-volume set describes a breakthrough in analytical techniques for accurately determining diffraction from classes of canonical scatterers with comprising edges and other complex cavity features. It is an authoritative account of mathematical developments over the last two decades that provides benchmarks against which solutions obtained by numerical methods can be verified.The first volume, Canonical Structures in Potential Theory, develops the mathematics, solving mixed boundary potential problems for structures with cavities and edges. The second volume, Acoustic and Electromagnetic Diffraction by Canonical Structures, examines the diffraction of acoustic and electromagnetic waves from several classes of open structures with edges or cavities. Together these volumes present an authoritative and uni...
On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation
Bory Reyes, Juan; Abreu Blaya, Ricardo; Rodríguez Dagnino, Ramón Martin; Kats, Boris Aleksandrovich
2018-01-01
The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R^2 . Our analysis is based on a suitable operator calculus.
Physical problems of the benthic boundary layer
Energy Technology Data Exchange (ETDEWEB)
Bowden, K.F.
1978-09-01
Since the boundary layer at the sea bed has a number of features in common with boundary layers found in laboratory scale flows and in meteorology, a brief review is given first of the properties that may be inferred from experience in these fields or from theroetical studies. Measurements of velocity profiles, turbulence, and shearing stress, which have been made near the bottom, in deep water, and on the continental shelf, are described in relation to this background. In particular, the logarithmic form of the velocity profile near the bed and deductions from it appear to be valid in certain conditions, but the occurrence of ripples and other bed forms is a complicating feature. The relation of the dynamical aspects of the flow to the transport of sediment as bed load and in suspension is discussed. The diffusive properties of the layer are then considered, in relation to fluxes near the sea-sediment interface and to the formation of nepheloid layers or layers well mixed in temperature and salinity. 90 references, 9 figures, 2 tables.
The boundary value problem for discrete analytic functions
Skopenkov, Mikhail
2013-06-01
This paper is on further development of discrete complex analysis introduced by R.Isaacs, J.Ferrand, R.Duffin, and C.Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete analytic, if for each face the difference quotients along the two diagonals are equal.We prove that the Dirichlet boundary value problem for the real part of a discrete analytic function has a unique solution. In the case when each face has orthogonal diagonals we prove that this solution uniformly converges to a harmonic function in the scaling limit. This solves a problem of S.Smirnov from 2010. This was proved earlier by R.Courant-K.Friedrichs-H.Lewy and L.Lusternik for square lattices, by D.Chelkak-S.Smirnov and implicitly by P.G.Ciarlet-P.-A.Raviart for rhombic lattices.In particular, our result implies uniform convergence of the finite element method on Delaunay triangulations. This solves a problem of A.Bobenko from 2011. The methodology is based on energy estimates inspired by alternating-current network theory. © 2013 Elsevier Ltd.
Boundary Value Problems and Approximate Solutions
African Journals Online (AJOL)
Tadesse
Referring to the classical beam theory, they stated that if denotes the configuration of the deformed beam, then the bending moment satisfies the relation. , where E is the Young modulus of elasticity and I is the inertial moment. Considering the deformation caused by a load they deduced, from a free-body diagram, that and.
Numerical solutions of fifth order boundary value problems using ...
African Journals Online (AJOL)
Mamadu-Njoseh polynomials are polynomials constructed in the interval [-1,1] with respect to the weight function () = 2 + 1. This paper aims at applying these polynomials, as trial functions satisfying the boundary conditions, in a numerical approach for the solution of fifth order boundary value problems. For this, these ...
Maxwell-Chern-Simons theory with a boundary
Energy Technology Data Exchange (ETDEWEB)
Blasi, A; Maggiore, N; Magnoli, N [Dipartimento di Fisica, Universita di Genova-via Dodecaneso 33, I-16146 Genova (Italy); Storace, S, E-mail: alberto.blasi@ge.infn.g, E-mail: nicola.maggiore@ge.infn.i, E-mail: nicodemo.magnoli@ge.infn.i, E-mail: stefano.storace@nyu.ed [Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)
2010-08-21
The Maxwell-Chern-Simons (MCS) theory with a planar boundary is considered. The boundary is introduced according to Symanzik's basic principles of locality and separability. A method of investigation is proposed, which, avoiding the straight computation of correlators, is appealing for situations where the computation of propagators, modified by the boundary, becomes quite complex. For the MCS theory, the outcome is that a unique solution exists, in the form of chiral conserved currents, satisfying a Kac-Moody algebra, whose central charge does not depend on the Maxwell term.
APPLICATION OF BOUNDARY INTEGRAL EQUATION METHOD FOR THERMOELASTICITY PROBLEMS
Directory of Open Access Journals (Sweden)
Vorona Yu.V.
2015-12-01
Full Text Available Boundary Integral Equation Method is used for solving analytically the problems of coupled thermoelastic spherical wave propagation. The resulting mathematical expressions coincide with the solutions obtained in a conventional manner.
Initial-boundary value problems for the wave equation
Directory of Open Access Journals (Sweden)
Tynysbek Sh. Kalmenov
2014-02-01
Full Text Available In this work we consider an initial-boundary value problem for the one-dimensional wave equation. We prove the uniqueness of the solution and show that the solution coincides with the wave potential.
Numerical solution of fuzzy boundary value problems using Galerkin ...
Indian Academy of Sciences (India)
point FBVPs. Nonhomogeneous FBVPs using collocation method has been studied by Mohammed and. Fadhel [16]. Jamshidi and Avazpour [17] applied shooting method for second-order fuzzy boundary value problems. (SOFBVPs) under ...
Existence results for nonlinear boundary-value problems with integral boundary conditions
Directory of Open Access Journals (Sweden)
Mouffak Benchohra
2005-01-01
Full Text Available In this paper, we investigate the existence of solutions for a second order nonlinear boundary-value problem with integral boundary conditions. By using suitable fixed point theorems, we study the cases when the right hand side has convex and nonconvex values.
An integral equation method to boundary value problems in elastostatics
International Nuclear Information System (INIS)
Gospodinov, G.K.
1987-01-01
The boundary element method (BEM) is already a well established numerical technique for solving some boundary value problems in elastostatics - Brebbia and Walker (1980). The main feature of this approach is the use of fundamental solutions which reduces the dimension of the problem by one and results in finding some unknown functions on the boundary only. So if we want to use the BEM we need: First - the fundamental solutions, and second - the boundary integral equations which are usually constructed by means of Betti's law or Green's second identity. In many cases of practical importance however, the fundamental solutions are not known, or they are so complicated that the effective implementation of the BEM is under question. On the other hand, if the thickness of the domain in the two dimensional case is not constant, or the material is orthotropic the solution with boundary element method is complicated in a similar way. (orig./GL)
Boundary-Transmission Problems for Acoustics in Mixed Media.
Khashanah, Khaldoun M.
This thesis is a study of acoustic wave propagation in fluid, elastic and poro-elastic media in general and it is a study of underwater acoustics with an interacting seabed in specific. In the first chapter we transform the equations describing acoustic wave propagation in a fluid, elastic, and poro-elastic medium to implement the Thompson-Haskell technique in solving the boundary-transmission problem. The Hankel transform of the equations of elasticity and poro-elasticity is a generalization of the work of Ahluwalia and Keller in fluid acoustics. The fundamental properties of the Biot equations are investigated and new results are proved. These results are essential starting points for potential theory of poro -elasticity. The Biot operator is shown to be elliptic in the sense of Douglas and Nirenberg; moreover, we calculate the fundamental solution to the Biot equations of acoustics. In the last chapter, we investigate the problem using the method of singular perturbations to calculate an approximate Green's function for the combined ocean -seabed system.
Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition
Directory of Open Access Journals (Sweden)
Exequiel Mallea-Zepeda
2018-01-01
Full Text Available We analyze an optimal boundary control problem for heat convection equations in a three-dimensional domain, with mixed boundary conditions. We prove the existence of optimal solutions, by considering boundary controls for the velocity vector and the temperature. The analyzed optimal control problem includes the minimization of a Lebesgue norm between the velocity and some desired field, as well as the temperature and some desired temperature. By using the Lagrange multipliers theorem we derive an optimality system. We also give a second-order sufficient condition.
Boundary value problems and Fourier expansions
MacCluer, Charles R
2004-01-01
Based on modern Sobolev methods, this text for advanced undergraduates and graduate students is highly physical in its orientation. It integrates numerical methods and symbolic manipulation into an elegant viewpoint that is consonant with implementation by digital computer. The first five sections form an informal introduction that develops students' physical and mathematical intuition. The following section introduces Hilbert space in its natural environment, and the next six sections pose and solve the standard problems. The final seven sections feature concise introductions to selected topi
Expanding boundaries: traveling theories in the Americas
Directory of Open Access Journals (Sweden)
Sandra Regina Goulart Almeida
2001-01-01
Full Text Available In the above quotes, two North-American women writers who traveled to Brazil in the twentieth century express their view of the potential of travel and the continuous possibilities of moving from one place to another in an endless list of “choices” that grant each journey a unique quality—“one’s route is one’s own.” Page’s traveler is also a “conjuror” who performs clever tricks and makes things appear and disappear—a magician who, in her reading, uses painting to create his or her own version of reality from the scenes observed while traveling (“Traveler” 36-37. Traveling becomes thus not only a trope for movement and Transference, but also for creation, rereading and translation. Of interest here is precisely this connection between traveling and translation as tropes that informs the encounter of cultures and the blurring of boundaries.
Boundary-value problems for wave equations with data on the whole boundary
Directory of Open Access Journals (Sweden)
Makhmud A. Sadybekov
2016-10-01
Full Text Available In this article we propose a new formulation of boundary-value problem for a one-dimensional wave equation in a rectangular domain in which boundary conditions are given on the whole boundary. We prove the well-posedness of boundary-value problem in the classical and generalized senses. To substantiate the well-posedness of this problem it is necessary to have an effective representation of the general solution of the problem. In this direction we obtain a convenient representation of the general solution for the wave equation in a rectangular domain based on d'Alembert classical formula. The constructed general solution automatically satisfies the boundary conditions by a spatial variable. Further, by setting different boundary conditions according to temporary variable, we get some functional or functional-differential equations. Thus, the proof of the well-posedness of the formulated problem is reduced to question of the existence and uniqueness of solutions of the corresponding functional equations.
Problems and Perspectives of Life Management Theory
平田, 道憲
2001-01-01
This paper examines the problems of life management theory and shows the directions of researches in this field. I examine the directions of research in home management theory, which is antecedents of life management theory. There are three directions of research in home management theory. The first direction is to make clear the problems of people's family lives in terms of time use, money expenditure, family relations and so on. The second direction is to examine the home management itself....
Numerical solution of fuzzy boundary value problems using Galerkin ...
Indian Academy of Sciences (India)
Abstract. This paper proposes a new technique based on Galerkin method for solving nth order fuzzy boundary value problem. The proposed method has been illustrated by considering three different cases depending upon the sign of coefficients with benchmark example problems. To show the applicability of the.
three solutions for a semilinear elliptic boundary value problem
Indian Academy of Sciences (India)
69
Keywords: The Laplacian operator, elliptic problem, Nehari man- ifold, three critical points, weak solution. 1. Introduction. Let Ω be a smooth bounded domain in RN , N ≥ 3 . In this work, we show the existence of at least three solutions for the semilinear elliptic boundary- value problem: (Pλ).. −∆u = f(x)|u(x)|p−2u(x) + ...
numerical solutions of fifth order boundary value problems using ...
African Journals Online (AJOL)
Dr A.B.Ahmed
Fifth order boundary value problems are prevalent in the mathematical stimulations of Viscoelastic flow, heat convection, and in many other fields of science and technology. However, analytic methods of solving these problems are often challenging. Hence, researchers have turned their search light to numerical solution ...
A finite difference method for free boundary problems
Fornberg, Bengt
2010-04-01
Fornberg and Meyer-Spasche proposed some time ago a simple strategy to correct finite difference schemes in the presence of a free boundary that cuts across a Cartesian grid. We show here how this procedure can be combined with a minimax-based optimization procedure to rapidly solve a wide range of elliptic-type free boundary value problems. © 2009 Elsevier B.V. All rights reserved.
Modified Differential Transform Method for Two Singular Boundary Values Problems
Directory of Open Access Journals (Sweden)
Yinwei Lin
2014-01-01
Full Text Available This paper deals with the two singular boundary values problems of second order. Two singular points are both boundary values points of the differential equation. The numerical solutions are developed by modified differential transform method (DTM for expanded point. Linear and nonlinear models are solved by this method to get more reliable and efficient numerical results. It can also solve ordinary differential equations where the traditional one fails. Besides, we give the convergence of this new method.
Directory of Open Access Journals (Sweden)
Rabah Haoua
2015-04-01
Full Text Available In this article we give some new results on abstract second-order differential equations of elliptic type with variable operator coefficients and general Robin boundary conditions, in the framework of Holder spaces. We assume that the family of variable coefficients verify the well known Labbas-Terreni assumption used in the sum theory. We use Dunford calculus, interpolation spaces and the semigroup theory to obtain existence, uniqueness and maximal regularity results for the solution of the problem.
Witten, Edward
2008-01-01
I sketch what it is supposed to mean to quantize gauge theory, and how this can be made more concrete in perturbation theory and also by starting with a finite-dimensional lattice approximation. Based on real experiments and computer simulations, quantum gauge theory in four dimensions is believed to have a mass gap. This is one of the most fundamental facts that makes the Universe the way it is. This article is the written form of a lecture presented at the conference "Geometric Analysis: Past and Future" (Harvard University, August 27-September 1, 2008), in honor of the 60th birthday of S.-T. Yau.
Inverse problems in linear transport theory
International Nuclear Information System (INIS)
Dressler, K.
1988-01-01
Inverse problems for a class of linear kinetic equations are investigated. The aim is to identify the scattering kernel of a transport equation (corresponding to the structure of a background medium) by observing the 'albedo' part of the solution operator for the corresponding direct initial boundary value problem. This means to get information on some integral operator in an integrodifferential equation through on overdetermined boundary value problem. We first derive a constructive method for solving direct halfspace problems and prove a new factorization theorem for the solutions. Using this result we investigate stationary inverse problems with respect to well posedness (e.g. reduce them to classical ill-posed problems, such as integral equations of first kind). In the time-dependent case we show that a quite general inverse problem is well posed and solve it constructively. (orig.)
The Dirichlet problem with L2-boundary data for elliptic linear equations
Chabrowski, Jan
1991-01-01
The Dirichlet problem has a very long history in mathematics and its importance in partial differential equations, harmonic analysis, potential theory and the applied sciences is well-known. In the last decade the Dirichlet problem with L2-boundary data has attracted the attention of several mathematicians. The significant features of this recent research are the use of weighted Sobolev spaces, existence results for elliptic equations under very weak regularity assumptions on coefficients, energy estimates involving L2-norm of a boundary data and the construction of a space larger than the usual Sobolev space W1,2 such that every L2-function on the boundary of a given set is the trace of a suitable element of this space. The book gives a concise account of main aspects of these recent developments and is intended for researchers and graduate students. Some basic knowledge of Sobolev spaces and measure theory is required.
Solution of Boundary-Value Problems using Kantorovich Method
Directory of Open Access Journals (Sweden)
Gusev A.A.
2016-01-01
Full Text Available We propose a computational scheme for solving the eigenvalue problem for an elliptic differential equation in a two-dimensional domain with Dirichlet boundary conditions. The solution is sought in the form of Kantorovich expansion over the basis functions of one of the independent variables with the second variable treated as a parameter. The basis functions are calculated as solutions of the parametric eigenvalue problem for an ordinary second-order differential equation. As a result, the initial problem is reduced to a boundary-value problem for a set of self-adjoint second-order differential equations for functions of the second independent variable. The discrete formulation of the problem is implemented using the finite element method with Hermite interpolation polynomials. The effciency of the calculation scheme is shown by benchmark calculations for a square membrane with a degenerate spectrum.
Optimal control problems for impulsive systems with integral boundary conditions
Directory of Open Access Journals (Sweden)
Allaberen Ashyralyev
2013-03-01
Full Text Available In this article, the optimal control problem is considered when the state of the system is described by the impulsive differential equations with integral boundary conditions. Applying the Banach contraction principle the existence and uniqueness of the solution is proved for the corresponding boundary problem by the fixed admissible control. The first and second variation of the functional is calculated. Various necessary conditions of optimality of the first and second order are obtained by the help of the variation of the controls.
Operator approximant problems arising from quantum theory
Maher, Philip J
2017-01-01
This book offers an account of a number of aspects of operator theory, mainly developed since the 1980s, whose problems have their roots in quantum theory. The research presented is in non-commutative operator approximation theory or, to use Halmos' terminology, in operator approximants. Focusing on the concept of approximants, this self-contained book is suitable for graduate courses.
International Nuclear Information System (INIS)
Vidossich, G.
1979-01-01
Bailey, Shampine and Waltman developed an existence theory for two-point boundary value problems of second order differential equations whose second members satisfy one-sided Lipschitz conditions. It is suggested that solutions should exist in a much more general situation. A comparison result is given and applied to uniqueness and existence of the Picard problem as well as to the convergence of successive approximation for this. (author)
Nonlinear Elliptic Boundary Value Problems at Resonance with Nonlinear Wentzell Boundary Conditions
Directory of Open Access Journals (Sweden)
Ciprian G. Gal
2017-01-01
Full Text Available Given a bounded domain Ω⊂RN with a Lipschitz boundary ∂Ω and p,q∈(1,+∞, we consider the quasilinear elliptic equation -Δpu+α1u=f in Ω complemented with the generalized Wentzell-Robin type boundary conditions of the form bx∇up-2∂nu-ρbxΔq,Γu+α2u=g on ∂Ω. In the first part of the article, we give necessary and sufficient conditions in terms of the given functions f, g and the nonlinearities α1, α2, for the solvability of the above nonlinear elliptic boundary value problems with the nonlinear boundary conditions. In other words, we establish a sort of “nonlinear Fredholm alternative” for our problem which extends the corresponding Landesman and Lazer result for elliptic problems with linear homogeneous boundary conditions. In the second part, we give some additional results on existence and uniqueness and we study the regularity of the weak solutions for these classes of nonlinear problems. More precisely, we show some global a priori estimates for these weak solutions in an L∞-setting.
Reconstruction of boundary conditions from internal conditions using viability theory
Hofleitner, Aude
2012-06-01
This article presents a method for reconstructing downstream boundary conditions to a HamiltonJacobi partial differential equation for which initial and upstream boundary conditions are prescribed as piecewise affine functions and an internal condition is prescribed as an affine function. Based on viability theory, we reconstruct the downstream boundary condition such that the solution of the Hamilton-Jacobi equation with the prescribed initial and upstream conditions and reconstructed downstream boundary condition satisfies the internal value condition. This work has important applications for estimation in flow networks with unknown capacity reductions. It is applied to urban traffic, to reconstruct signal timings and temporary capacity reductions at intersections, using Lagrangian sensing such as GPS devices onboard vehicles.
Universal entanglement and boundary geometry in conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Herzog, Christopher P.; Huang, Kuo-Wei; Jensen, Kristan [C.N. Yang Institute for Theoretical Physics, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)
2016-01-27
Employing a conformal map to hyperbolic space cross a circle, we compute the universal contribution to the vacuum entanglement entropy (EE) across a sphere in even-dimensional conformal field theory. Previous attempts to derive the EE in this way were hindered by a lack of knowledge of the appropriate boundary terms in the trace anomaly. In this paper we show that the universal part of the EE can be treated as a purely boundary effect. As a byproduct of our computation, we derive an explicit form for the A-type anomaly contribution to the Wess-Zumino term for the trace anomaly, now including boundary terms. In d=4 and 6, these boundary terms generalize earlier bulk actions derived in the literature.
Collocation-homotopy method to initial-boundary value problems
Directory of Open Access Journals (Sweden)
Ahmad Molabahrami
2013-06-01
Full Text Available In this paper, an algorithm based on the collocation and homotopy analysis methods, for solving initial-boundary value problems, is introduced. The application of this algorithm is based on the approximation and interpolation of the dependent variables by using suitable functions or polynomials according to their values in the collocation points corresponding to a suitable discretization of the space variable. Then the space derivatives are approximated using interpolation. Replacing them in the equation transforms the initial-boundary value problem into an initial value problem for ordinary differential equations. The obtained initial value problem is solved by homotopy analysis method. In the frame of the homotopy analysis method, the optimum value of convergence-parameter corresponding to each point is computed by a simple stochastic function minimizer, namely differential evolution method. Lagrange polynomials are usually adopted for the interpolation. In this framework, the Burgers model is considered as a prototype example.
Bibliography on moving boundary problems with key word index
International Nuclear Information System (INIS)
Wilson, D.G.; Solomon, A.D.; Trent, J.S.
1979-10-01
This bibliography concentrates mainly on time-dependent moving-boundary problems of heat and mass transfer. The bibliography is in two parts, a list of the references ordered by last name of the first author and a key word index to the titles. Few references from before 1965 are included
A Duality Approach for the Boundary Variation of Neumann Problems
DEFF Research Database (Denmark)
Bucur, Dorin; Varchon, Nicolas
2002-01-01
In two dimensions, we study the stability of the solution of an elliptic equation with Neumann boundary conditions for nonsmooth perturbations of the geometric domain. Using harmonic conjugates, we relate this problem to the shape stability of the solution of an elliptic equation with Dirichlet...
A duality approach or the boundary variation of Neumann problems
DEFF Research Database (Denmark)
Bucur, D.; Varchon, Nicolas
2002-01-01
In two dimensions, we study the stability of the solution of an elliptic equation with Neumann boundary conditions for nonsmooth perturbations of the geometric domain. Using harmonic conjugates, we relate this problem to the shape stability of the solution of an elliptic equation with Dirichlet...
Porosity of free boundaries in the obstacle problem for quasilinear ...
Indian Academy of Sciences (India)
(Math. Sci.) Vol. 123, No. 3, August 2013, pp. 373–382. c Indian Academy of Sciences. Porosity of free boundaries in the obstacle problem for quasilinear elliptic equations. JUN ZHENG1,∗. , ZHIHUA ZHANG2 and PEIHAO ZHAO3. 1Basic Course Department, Emei Campus, Southwest Jiaotong University, Leshan,. Sichuan ...
Robust Monotone Iterates for Nonlinear Singularly Perturbed Boundary Value Problems
Directory of Open Access Journals (Sweden)
Boglaev Igor
2009-01-01
Full Text Available This paper is concerned with solving nonlinear singularly perturbed boundary value problems. Robust monotone iterates for solving nonlinear difference scheme are constructed. Uniform convergence of the monotone methods is investigated, and convergence rates are estimated. Numerical experiments complement the theoretical results.
Bibliography on moving boundary problems with key word index
Energy Technology Data Exchange (ETDEWEB)
Wilson, D.G.; Solomon, A.D.; Trent, J.S.
1979-10-01
This bibliography concentrates mainly on time-dependent moving-boundary problems of heat and mass transfer. The bibliography is in two parts, a list of the references ordered by last name of the first author and a key word index to the titles. Few references from before 1965 are included. (RWR)
Positive solutions of singular boundary value problem of negative ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Thus we complete the proof of. Theorem 2.2. Acknowledgement. This work is supported in part by the NSF(Youth) of Shandong Province and NNSF of. China. References. [1] Fink A M, Gatica J A, Hernandez G E and Waltman P, Approximation of solutions of singular second order boundary value problems, SIAM J. Math.
Fourth-order discrete anisotropic boundary-value problems
Directory of Open Access Journals (Sweden)
Maciej Leszczynski
2015-09-01
Full Text Available In this article we consider the fourth-order discrete anisotropic boundary value problem with both advance and retardation. We apply the direct method of the calculus of variations and the mountain pass technique to prove the existence of at least one and at least two solutions. Non-existence of non-trivial solutions is also undertaken.
Periodic and boundary value problems for second order differential ...
Indian Academy of Sciences (India)
of multiple solutions for initial and boundary value problems of the first and second order. ... value problems. The overwhelming majority of the works in this direction, assume that the vector field is continuous in all variables and they look for solutions in the space. C2ً0; bق. ..... So from Vrabie [21] (Proposition 2.2.1, p. 56), we ...
Multi-layer potentials and boundary problems for higher-order elliptic systems in Lipschitz domains
Mitrea, Irina
2013-01-01
Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed...
Atmospheric boundary layers in storms: advanced theory and modelling applications
Zilitinkevich, S. S.; Esau, I. N.; Baklanov, A.
2005-03-01
Turbulent planetary boundary layers (PBLs) control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow). It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral) or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions) depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S were overlooked
Atmospheric boundary layers in storms: advanced theory and modelling applications
Directory of Open Access Journals (Sweden)
S. S. Zilitinkevich
2005-01-01
Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S
Asymptotic boundary conditions for dissipative waves: General theory
Hagstrom, Thomas
1990-01-01
An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
Asymptotic boundary conditions for dissipative waves - General theory
Hagstrom, Thomas
1991-01-01
An outstanding issue in computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
IMPSOR, 3-D Boundary Problems Solution for Thermal Conductivity Calculation
International Nuclear Information System (INIS)
Wilson, D.G.; Williams, M.A.
1994-01-01
1 - Description of program or function: IMPSOR implements finite difference methods for multidimensional moving boundary problems with Dirichlet or Neumann boundary conditions. The geometry of the spatial domain is a rectangular parallelepiped with dimensions specified by the user. Dirichlet or Neumann boundary conditions may be specified on each face of the box independently. The user defines the initial and boundary conditions as well as the thermal and physical properties of the problem and several parameters for the numerical method, e.g. degree of implicitness, time-step size. 2 - Method of solution: The spatial domain is partitioned and the governing equation discretized, which yields a nonlinear system of equations at each time-step. This nonlinear system is solved using a successive over-relaxation (SOR) algorithm. For a given node, the previous iteration's temperature and thermal conductivity values are used for advanced points with current values at previous points. This constitutes a Gauss-Seidel iteration. Most of the computing time used by the numerical method is spent in the iterative solution of the nonlinear system. The SOR scheme employed is designed to accommodate vectorization on a Cray X-MP. 3 - Restrictions on the complexity of the problem: Maximum of 70,000 nodes
Parametrices and exact paralinearisation of semi-linear boundary problems
DEFF Research Database (Denmark)
Johnsen, Jon
The subject is parametrices for semi-linear problems, based on parametrices for linear boundary problems and on non-linearities that decompose into solution-dependent linear operators acting on the solutions. Non-linearities of product type are shown to admit this via exact paralinearisation....... The parametrices give regularity properties under weak conditions; improvements in subdomains result from pseudo-locality of type 1,1-operators. The framework encompasses a broad class of boundary problems in Hölder and Lp -Sobolev spaces (and also Besov and Lizorkin-Triebel spaces). The Besov analyses...... of homogeneous distributions, tensor products and halfspace extensions have been revised. Examples include the von Karman equation....
New Theories on Boundary Layer Transition and Turbulence Formation
Directory of Open Access Journals (Sweden)
Chaoqun Liu
2012-01-01
Full Text Available This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.
Computing Evans functions numerically via boundary-value problems
Barker, Blake; Nguyen, Rose; Sandstede, Björn; Ventura, Nathaniel; Wahl, Colin
2018-03-01
The Evans function has been used extensively to study spectral stability of travelling-wave solutions in spatially extended partial differential equations. To compute Evans functions numerically, several shooting methods have been developed. In this paper, an alternative scheme for the numerical computation of Evans functions is presented that relies on an appropriate boundary-value problem formulation. Convergence of the algorithm is proved, and several examples, including the computation of eigenvalues for a multi-dimensional problem, are given. The main advantage of the scheme proposed here compared with earlier methods is that the scheme is linear and scalable to large problems.
[Population problems and theories in old China].
Li, S
1980-03-01
Population theories in China before the revolution are reviewed. The author considers whether there was a population problem, whether a surplus population did exist, and to what extent population pressures existed.
Topical Problems and Applications of Creep Theory
Altenbach, H.
2003-06-01
A historical review of achievements in creep theory is given. Primary attention is focused on the phenomenological approach. Different constitutive equations are discussed for primary and secondary creep as well as for creep with damage. New creep problems are examined
Energy Technology Data Exchange (ETDEWEB)
Gorenflo, Norbert [Beuth Hochschule fuer Technik Berlin (Germany). Fachbereich II; Kunik, Matthias [Magdeburg Univ. (Germany). Inst. fuer Analysis und Numerik
2009-07-01
We present a new and self-contained theory for mapping properties of the boundary operators for slit diffraction occurring in Sommerfeld's diffraction theory, covering two different cases of the polarisation of the light. This theory is entirely developed in the context of the boundary operators with a Hankel kernel and not based on the corresponding mixed boundary value problem for the Helmholtz equation. For a logarithmic approximation of the Hankel kernel we also study the corresponding mapping properties and derive explicit solutions together with certain regularity results. (orig.)
Chiral unitary theory: Application to nuclear problems
Indian Academy of Sciences (India)
Sept. 2001 physics pp. 417–431. Chiral unitary theory: Application to nuclear problems ... parameters which are adjusted to the data or alternatively derived in some models. Chiral perturbation theory up ..... consistent with a large broadening of the and more experimental studies are under way at GSI (HADES collaboration) ...
Analytic Solution to Shell Boundary – Value Problems
Directory of Open Access Journals (Sweden)
Yu. I. Vinogradov
2015-01-01
Full Text Available Object of research is to find analytical solution to the shell boundary – value problems, i.e. to consider the solution for a class of problems concerning the mechanics of hoop closed shells strain.The objective of work is to create an analytical method to define a stress – strain state of shells under non-axisymmetric loading. Thus, a main goal is to derive the formulas – solutions of the linear ordinary differential equations with variable continuous coefficients.The partial derivative differential equations of mechanics of shells strain by Fourier's method of variables division are reduced to the system of the differential equations with ordinary derivatives. The paper presents the obtained formulas to define solutions of the uniform differential equations and received on their basis formulas to define a particular solution depending on a type of the right parts of the differential equations.The analytical algorithm of the solution of a boundary task uses an approach to transfer the boundary conditions to the randomly chosen point of an interval of changing independent variable through the solution of the canonical matrix ordinary differential equation with the subsequent solution of system of algebraic equations for compatibility of boundary conditions at this point. Efficiency of algorithm is based on the fact that the solution of the ordinary differential equations is defined as the values of Cauchy – Krylova functions, which meet initial arbitrary conditions.The results of researches presented in work are useful to experts in the field of calculus mathematics, dealing with solution of systems of linear ordinary differential equations and creation of effective analytical computing methods to solve shell boundary – value problems.
Directory of Open Access Journals (Sweden)
Aqlan Mohammed H.
2016-01-01
Full Text Available We develop the existence theory for sequential fractional differential equations involving Liouville-Caputo fractional derivative equipped with anti-periodic type (non-separated and nonlocal integral boundary conditions. Several existence criteria depending on the nonlinearity involved in the problems are presented by means of a variety of tools of the fixed point theory. The applicability of the results is shown with the aid of examples. Our results are not only new in the given configuration but also yield some new special cases for specific choices of parameters involved in the problems.
Generalised boundary terms for higher derivative theories of gravity
Energy Technology Data Exchange (ETDEWEB)
Teimouri, Ali; Talaganis, Spyridon; Edholm, James [Consortium for Fundamental Physics, Lancaster University,North West Drive, Lancaster, LA1 4YB (United Kingdom); Mazumdar, Anupam [Consortium for Fundamental Physics, Lancaster University,North West Drive, Lancaster, LA1 4YB (United Kingdom); Kapteyn Astronomical Institute, University of Groningen,9700 AV Groningen (Netherlands)
2016-08-24
In this paper we wish to find the corresponding Gibbons-Hawking-York term for the most general quadratic in curvature gravity by using Coframe slicing within the Arnowitt-Deser-Misner (ADM) decomposition of spacetime in four dimensions. In order to make sure that the higher derivative gravity is ghost and tachyon free at a perturbative level, one requires infinite covariant derivatives, which yields a generalised covariant infinite derivative theory of gravity. We will be exploring the boundary term for such a covariant infinite derivative theory of gravity.
Fluid analog model for boundary effects in field theory
International Nuclear Information System (INIS)
Ford, L. H.; Svaiter, N. F.
2009-01-01
Quantum fluctuations in the density of a fluid with a linear phonon dispersion relation are studied. In particular, we treat the changes in these fluctuations due to nonclassical states of phonons and to the presence of boundaries. These effects are analogous to similar effects in relativistic quantum field theory, and we argue that the case of the fluid is a useful analog model for effects in field theory. We further argue that the changes in the mean squared density are, in principle, observable by light scattering experiments.
A Boundary Element-Response Matrix method for criticality diffusion problems in xyz geometry
International Nuclear Information System (INIS)
Cossa, G.; Giusti, V.; Montagnini, B.
2010-01-01
The Boundary Element-Response Matrix (BERM) method shown in the paper aims to represent an alternative to the Finite Element method in order to solve 3D multigroup diffusion (criticality) problems in xyz geometry. The theory extends the previous work on the diffusion equations in two dimensions and new techniques for the evaluation of the integrals involved in the boundary integral equations, as well as new procedures for solving the resulting linear system, have greatly enhanced the performances of the method. Results show that BERM can achieve an excellent accuracy, still keeping a good computational efficiency.
Multiparameter eigenvalue problems Sturm-Liouville theory
Atkinson, FV
2010-01-01
One of the masters in the differential equations community, the late F.V. Atkinson contributed seminal research to multiparameter spectral theory and Sturm-Liouville theory. His ideas and techniques have long inspired researchers and continue to stimulate discussion. With the help of co-author Angelo B. Mingarelli, Multiparameter Eigenvalue Problems: Sturm-Liouville Theory reflects much of Dr. Atkinson's final work.After covering standard multiparameter problems, the book investigates the conditions for eigenvalues to be real and form a discrete set. It gives results on the determinants of fun
Parametrices and exact paralinearization of semi-linear boundary problems
DEFF Research Database (Denmark)
Johnsen, Jon
2008-01-01
. The parametrices give regularity properties under weak conditions; improvements in subdomains result from pseudo-locality of type 1,1-operators. The framework encompasses a broad class of boundary problems in H lder and Lp-Sobolev spaces (and also Besov and Lizorkin-Triebel spaces). The Besov analyses...... of homogeneous distributions, tensor products and halfspace extensions have been revised. Examples include the von Karman equation....
K/S two-point-boundary-value problems. [for orbital trajectory optimization
Jezewski, D. J.
1976-01-01
A method for developing the missing general K/S (Kustaanheimo/Stiefel) boundary conditions is presented, with use of the formalism of optimal control theory. As an illustrative example, the method is applied to the K/S Lambert problem to derive the missing terminal condition. The necessary equations are developed for a solution to this problem with the generalized eccentric anomaly, E, as the independent variable. This formulation, requiring the solution of only one nonlinear, well-behaved equation in one unknown, E, results in considerable simplification of the problem.
Boundary element method solution for large scale cathodic protection problems
Rodopoulos, D. C.; Gortsas, T. V.; Tsinopoulos, S. V.; Polyzos, D.
2017-12-01
Cathodic protection techniques are widely used for avoiding corrosion sequences in offshore structures. The Boundary Element Method (BEM) is an ideal method for solving such problems because requires only the meshing of the boundary and not the whole domain of the electrolyte as the Finite Element Method does. This advantage becomes more pronounced in cathodic protection systems since electrochemical reactions occur mainly on the surface of the metallic structure. The present work aims to solve numerically a sacrificial cathodic protection problem for a large offshore platform. The solution of that large-scale problem is accomplished by means of “PITHIA Software” a BEM package enhanced by Hierarchical Matrices (HM) and Adaptive Cross Approximation (ACA) techniques that accelerate drastically the computations and reduce memory requirements. The nonlinear polarization curves for steel and aluminium in seawater are employed as boundary condition for the under protection metallic surfaces and aluminium anodes, respectively. The potential as well as the current density at all the surface of the platform are effectively evaluated and presented.
Solution of higher order boundary value problems by spline methods
Chaurasia, Anju; Srivastava, P. C.; Gupta, Yogesh
2017-10-01
Spline solution of Boundary Value Problems has received much attention in recent years. It has proven to be a powerful tool due to the ease of use and quality of results. This paper concerns with the survey of methods that try to approximate the solution of higher order BVPs using various spline functions. The purpose of this article is to thrash out the problems as well as conclusions, reached by the numerous authors in the related field. We critically assess many important relevant papers, published in reputed journals during last six years.
The turbulent boundary layer and the closure problem
Persen, L. N.
1980-01-01
Previous attempts to establish a proper phenomenological relation for turbulent flows are reviewed followed by a suggested approach to the problem in the case of a turbulent boundary layer. An attempt is made at showing the extreme flexibility that such a relation must exhibit if it is to account for effects of outside conditions and pre-history of the flow. By selecting proper 'inner variables' as parameters and properly characterizing the outer flow it is shown how a sufficiently general phenomenological relation can be established and how the closure problem may thus be considered in a different perspective.
Four-dimensional superconformal theories with interacting boundaries or defects
International Nuclear Information System (INIS)
Erdmenger, Johanna; Guralnik, Zachary; Kirsch, Ingo
2002-01-01
We study four-dimensional superconformal field theories coupled to three-dimensional superconformal boundary or defect degrees of freedom. Starting with bulk N=2, d=4 theories, we construct Abelian models preserving N=2, d=3 supersymmetry and the conformal symmetries under which the boundary/defect is invariant. We write the action, including the bulk terms, in N=2, d=3 superspace. Moreover we derive Callan-Symanzik equations for these models using their superconformal transformation properties and show that the beta functions vanish to all orders in perturbation theory, such that the models remain superconformal upon quantization. Furthermore, we study a model with N=4 SU(N) Yang-Mills theory in the bulk coupled to an N=4, d=3 hypermultiplet on a defect. This model was constructed by DeWolfe, Freedman, and Ooguri, and conjectured to be conformal based on its relation to an AdS configuration studied by Karch and Randall. We write this model in N=2, d=3 superspace, which has the distinct advantage that nonrenormalization theorems become transparent. Using N=4, d=3 supersymmetry, we argue that the model is conformal
Hyperbolic theories and problems of continuum mechanics
Directory of Open Access Journals (Sweden)
Yuri N. Radayev
2015-03-01
Full Text Available Theories and problems of that part of continuum thermomechanics which can not be properly formulated without partial differential equations of hyperbolic analytical type are considered. Special attention is paid to comparatively new hyperbolic continuum theories: the theory of three-dimensional perfect plasticity and the theory of micropolar thermoelasticity. The latter is accepted as type-II thermoelasticity. Three-dimensional statical and kinematical equations of the perfect plasticity theory by Ishlinskii and Ivlev are studied in order to elucidate their analytical type and opportunity to obtain integrable equations along some special lines. A new approach to hyperbolic formulations of thermoelasticity presumes consideration of referential gradients of thermodynamic state variables and extra field variables (rapid variables as independent functional arguments in the action density. New hyperbolic thermomechanics of micropolar thermoelastic media is developed within the framework of classical field theory by the variational action integral and the least action principle.
Directory of Open Access Journals (Sweden)
Sandra Regina Goulart Almeida
2008-04-01
Full Text Available In the above quotes, two North-American women writers who traveled to Brazil in the twentieth century express their view of the potential of travel and the continuous possibilities of moving from one place to another in an endless list of “choices” that grant each journey a unique quality—“one’s route is one’s own.” Page’s traveler is also a “conjuror” who performs clever tricks and makes things appear and disappear—a magician who, in her reading, uses painting to create his or her own version of reality from the scenes observed while traveling (“Traveler” 36-37. Traveling becomes thus not only a trope for movement and Transference, but also for creation, rereading and translation. Of interest here is precisely this connection between traveling and translation as tropes that informs the encounter of cultures and the blurring of boundaries. In the above quotes, two North-American women writers who traveled to Brazil in the twentieth century express their view of the potential of travel and the continuous possibilities of moving from one place to another in an endless list of “choices” that grant each journey a unique quality—“one’s route is one’s own.” Page’s traveler is also a “conjuror” who performs clever tricks and makes things appear and disappear—a magician who, in her reading, uses painting to create his or her own version of reality from the scenes observed while traveling (“Traveler” 36-37. Traveling becomes thus not only a trope for movement and Transference, but also for creation, rereading and translation. Of interest here is precisely this connection between traveling and translation as tropes that informs the encounter of cultures and the blurring of boundaries.
Atmospheric boundary layers in storms: advanced theory and modelling applications
S. S. Zilitinkevich; S. S. Zilitinkevich; S. S. Zilitinkevich; I. N. Esau; A. Baklanov
2005-01-01
Turbulent planetary boundary layers (PBLs) control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs ...
Liaison, Schottky Problem and Invariant Theory
Alonso, Maria Emilia; Mallavibarrena, Raquel; Sols, Ignacio
2010-01-01
This volume is a homage to the memory of the Spanish mathematician Federico Gaeta (1923-2007). Apart from a historical presentation of his life and interaction with the classical Italian school of algebraic geometry, the volume presents surveys and original research papers on the mathematics he studied. Specifically, it is divided into three parts: linkage theory, Schottky problem and invariant theory. On this last topic a hitherto unpublished article by Federico Gaeta is also included.
Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations
Directory of Open Access Journals (Sweden)
Olivier Sarbach
2012-08-01
Full Text Available Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein's theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity. The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein's equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.
Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations.
Sarbach, Olivier; Tiglio, Manuel
2012-01-01
Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein's theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity. The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein's equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.
On a Fourth-Order Boundary Value Problem at Resonance
Directory of Open Access Journals (Sweden)
Man Xu
2017-01-01
Full Text Available We investigate the spectrum structure of the eigenvalue problem u4x=λux, x∈0,1; u0=u1=u′0=u′1=0. As for the application of the spectrum structure, we show the existence of solutions of the fourth-order boundary value problem at resonance -u4x+λ1ux+gx,ux=hx, x∈0,1; u0=u1=u′0=u′1=0, which models a statically elastic beam with both end-points being cantilevered or fixed, where λ1 is the first eigenvalue of the corresponding eigenvalue problem and nonlinearity g may be unbounded.
Fifty Years of Boundary-Layer Theory and Experiment
Dryden, Hugh L.
1955-01-01
The year 1954 marked the 50th anniversary of the Prandtl boundary-layer theory from which we may date the beginning of man's understanding of the dynamics of real fluids. A backward look at this aspect of the history of the last 50 years may be instructive. This paper (1) attempts to compress the events of those 50 years into a few thousand words, to tell in this brief space the interesting story of the development of a new concept, its slow acceptance and growth, its spread from group to group within its country of origin, and its diffusion to other countries of the world. The original brief paper of Prandtl (2) was presented at the Third International Mathematical Congress at Heidelberg in 1904 and published in the following year. It was an attempt to explain the d'Alembert paradox, namely, that the neglect of the small friction of air in the theory resulted in the prediction of zero resistance to motion. Prandtl set himself the task of computing the motion of a fluid of small friction, so small that its effect could be neglected everywhere except where large velocity differences were present or a cumulative effect of friction occurred This led to the concept of boundary layer, or transition layer, near the wall of a body immersed in a fluid stream in which the velocity rises from zero to the free-stream value. It is interesting that Prandtl used the term Grenzsehicht (boundary layer) only once and the term Ubergangsschicht (transition layer) seven times in the brief article. Later writers also used Reibungsschicht (friction layer), but most writers today use Grenzschicht (boundary layer).
Infrared problems in field perturbation theory
International Nuclear Information System (INIS)
David, Francois.
1982-12-01
The work presented mainly covers questions related to the presence of ''infrared'' divergences in perturbation expansions of the Green functions of certain massless field theories. It is important to determine the mathematical status of perturbation expansions in field theory in order to define the region in which they are valid. Renormalization and the symmetry of a theory are important factors in infrared problems. The main object of this thesis resides in the mathematical techniques employed: integral representations of the Feynman amplitudes; methods for desingularization, regularization and dimensional renormalization. Nonlinear two dimensional space-time sigma models describing Goldstone's low energy boson dynamics associated with a breaking of continuous symmetry are studied. Random surface models are then investigated followed by infrared divergences in super-renormalizable theories. Finally, nonperturbation effects in massless theories are studied by expanding the two-dimensional nonlinear sigma model in 1/N [fr
Mathematical conversations multicolor problems, problems in the theory of numbers, and random walks
Dynkin, E B
2006-01-01
Comprises Multicolor Problems, dealing with map-coloring problems; Problems in the Theory of Numbers, an elementary introduction to algebraic number theory; Random Walks, addressing basic problems in probability theory. 1963 edition.
The Problem with Theory Is the Problem with Practice.
Otte, George
When composition educators talk about either "theory" or "practice," they are not referring to a monolithic and unified field, but instead to any number of competing, ideologically charged metacommentaries. The "problem with practice" refers to its own socially complex and temporally diffuse nature. Applications of…
Analytic solutions to a family of boundary-value problems for Ginsburg-Landau type equations
Vassilev, V. M.; Dantchev, D. M.; Djondjorov, P. A.
2017-10-01
We consider a two-parameter family of nonlinear ordinary differential equations describing the behavior of a critical thermodynamic system, e.g., a binary liquid mixture, of film geometry within the framework of the Ginzburg-Landau theory by means of the order-parameter. We focus on the case in which the confining surfaces are strongly adsorbing but prefer different components of the mixture, i.e., the order-parameter tends to infinity at one of the boundaries and to minus infinity at the other one. We assume that the boundaries of the system are positioned at a finite distance from each other and give analytic solutions to the corresponding boundary-value problems in terms of Weierstrass and Jacobi elliptic functions.
Electromagnetic Field Theory A Collection of Problems
Mrozynski, Gerd
2013-01-01
After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...
Partial differential equations and boundary-value problems with applications
Pinsky, Mark A
2011-01-01
Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems-rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate th
An improved local remeshing algorithm for moving boundary problems
Directory of Open Access Journals (Sweden)
Jianjing Zheng
2016-01-01
Full Text Available Three issues are tackled in this study to improve the robustness of local remeshing techniques. Firstly, the local remeshing region (hereafter referred to as ‘hole’ is initialized by removing low-quality elements and then continuously expanded until a certain element quality is reached after remeshing. The effect of the number of the expansion cycle on the hole size and element quality after remeshing is experimentally analyzed. Secondly, the grid sources for element size control are attached to moving bodies and will move along with their host bodies to ensure reasonable grid resolution inside the hole. Thirdly, the boundary recovery procedure of a Delaunay grid generation approach is enhanced by a new grid topology transformation technique (namely shell transformation so that the new grid created inside the hole is therefore free of elements of extremely deformed/skewed shape, whilst also respecting the hole boundary. The proposed local remeshing algorithm has been integrated with an in-house unstructured grid-based simulation system for solving moving boundary problems. The robustness and accuracy of the developed local remeshing technique are successfully demonstrated via industry-scale applications for complex flow simulations.
Two problems in thermal field theory
Indian Academy of Sciences (India)
Abstract. In this talk, I review recent progress made in two areas of thermal ﬁeld theory. In particular, I discuss various approaches for the calculation of the quark gluon plasma thermodynamical properties, and the problem of its photon production rate.
Chiral unitary theory: Application to nuclear problems
Indian Academy of Sciences (India)
PRAMANA c Indian Academy of Sciences. Vol. 57, Nos 2 & 3. — journal of. Aug. & Sept. 2001 physics pp. 417–431. Chiral unitary theory: Application to nuclear problems. E OSET ... Institute of High Energy Physics, Academia Sinica, Beijing, China. 3. Departamento ...... [57] D B Kaplan and A E Nelson, Phys. Lett. B175, 57 ...
Lectures on mathematical theory of extremum problems
1972-01-01
The author of this book, Igor' Vladimirovich Girsanov, was one of the first mathematicians to study general extremum problems and to realize the feasibility and desirability of a unified theory of extremal problems, based on a functional analytic approach. He actively advocated this view, and his special course, given at the Faculty of Mechanics and Mathematics of the Moscow State University in 1963 and 1964, was apparently the first systematic exposition of a unified approach to the theory of extremal problems. This approach was based on the ideas of Dubovitskii and Milyutin [1]. The general theory of extremal problems has developed so intensely during the past few years that its basic concepts may now be considered finalized. Nevertheless, as yet the basic results of this new field of mathematics have not been presented in a form accessible to a wide range of readers. (The profound paper of Dubovitskii and Milyutin [2] can hardly be recommended for a first study of the theory, since, in particular, it doe...
The Unknown Component Problem Theory and Applications
Villa, Tiziano; Brayton, Robert K; Mishchenko, Alan; Petrenko, Alexandre; Sangiovanni-Vincentelli, Alberto
2012-01-01
The Problem of the Unknown Component: Theory and Applications addresses the issue of designing a component that, combined with a known part of a system, conforms to an overall specification. The authors tackle this problem by solving abstract equations over a language. The most general solutions are studied when both synchronous and parallel composition operators are used. The abstract equations are specialized to languages associated with important classes of automata used for modeling systems. The book is a blend of theory and practice, which includes a description of a software package with applications to sequential synthesis of finite state machines. Specific topologies interconnecting the components, exact and heuristic techniques, and optimization scenarios are studied. Finally the scope is enlarged to domains like testing, supervisory control, game theory and synthesis for special omega languages. The authors present original results of the authors along with an overview of existing ones.
International Nuclear Information System (INIS)
Boisseau, Bruno; Forgacs, Peter; Giacomini, Hector
2007-01-01
A new (algebraic) approximation scheme to find global solutions of two-point boundary value problems of ordinary differential equations (ODEs) is presented. The method is applicable for both linear and nonlinear (coupled) ODEs whose solutions are analytic near one of the boundary points. It is based on replacing the original ODEs by a sequence of auxiliary first-order polynomial ODEs with constant coefficients. The coefficients in the auxiliary ODEs are uniquely determined from the local behaviour of the solution in the neighbourhood of one of the boundary points. The problem of obtaining the parameters of the global (connecting) solutions, analytic at one of the boundary points, reduces to find the appropriate zeros of algebraic equations. The power of the method is illustrated by computing the approximate values of the 'connecting parameters' for a number of nonlinear ODEs arising in various problems in field theory. We treat in particular the static and rotationally symmetric global vortex, the skyrmion, the Abrikosov-Nielsen-Olesen vortex, as well as the 't Hooft-Polyakov magnetic monopole. The total energy of the skyrmion and of the monopole is also computed by the new method. We also consider some ODEs coming from the exact renormalization group. The ground-state energy level of the anharmonic oscillator is also computed for arbitrary coupling strengths with good precision. (fast track communication)
A monotone iterative method for boundary value problems of parametric differential equations
Directory of Open Access Journals (Sweden)
Xinzhi Liu
2001-01-01
Full Text Available This paper studies boundary value problems for parametric differential equations. By using the method of upper and lower solutions, monotone sequences are constructed and proved to converge to the extremal solutions of the boundary value problem.
Boundary conditions for free surface inlet and outlet problems
Taroni, M.
2012-08-10
We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well known that the flux scales with Ca 2/3, but this classical result is non-uniform as the contact angle approaches π. By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed. © 2012 Cambridge University Press.
The collapse problem in gravitation theories
Gottloeber, S.
Gravitational collapse in competing gravitational theories is discussed with the aid of a simple star model (point-particle cluster) proposed by Einstein (1938). The existence of circular motions of test particles for all values of radii is found to be a criterion for the avoidance of gravitational collapse. Classical theories of gravitation in which the principle of causality is postulated and relativistic theories are compared with respect to the collapse problem. The Laue criterion (1965) is found to be no restriction in the avoidance of collapse, while the Treder tetrad theory (1967) makes possible this avoidance. In addition, circular motions are shown to be possible for all values of radii within the inertial-free mechanics put forward by Treder (1967).
Directory of Open Access Journals (Sweden)
Zhang Peiguo
2011-01-01
Full Text Available Abstract By obtaining intervals of the parameter λ, this article investigates the existence of a positive solution for a class of nonlinear boundary value problems of second-order differential equations with integral boundary conditions in abstract spaces. The arguments are based upon a specially constructed cone and the fixed point theory in cone for a strict set contraction operator. MSC: 34B15; 34B16.
Dirichlet-Neumann bracketing for boundary-value problems on graphs
Directory of Open Access Journals (Sweden)
Sonja Currie
2005-08-01
Full Text Available We consider the spectral structure of second order boundary-value problems on graphs. A variational formulation for boundary-value problems on graphs is given. As a consequence we can formulate an analogue of Dirichlet-Neumann bracketing for boundary-value problems on graphs. This in turn gives rise to eigenvalue and eigenfunction asymptotic approximations.
Existence of solutions to boundary value problem of fractional differential equations with impulsive
Directory of Open Access Journals (Sweden)
Weihua JIANG
2016-12-01
Full Text Available In order to solve the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line, the existence of solutions to the boundary problem is specifically studied. By defining suitable Banach spaces, norms and operators, using the properties of fractional calculus and applying the contraction mapping principle and Krasnoselskii's fixed point theorem, the existence of solutions for the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line is proved, and examples are given to illustrate the existence of solutions to this kind of equation boundary value problems.
A survey of problems in divertor and edge plasma theory
International Nuclear Information System (INIS)
Boozer, A.; Braams, B.; Weitzner, H.; Hazeltine, R.; Houlberg, W.; Oktay, E.; Sadowski, W.; Wootton, A.
1992-01-01
Theoretical physics problems related to divertor design are presented, organized by the region in which they occur. Some of the open questions in edge physics are presented from a theoretician's point of view. After a cursory sketch of the fluid models of the edge plasma and their numerical realization, the following topics are taken up: time-dependent problems, non-axisymmetric effects, anomalous transport in the scrape-off layer, edge kinetic theory, sheath effects and boundary conditions in divertors, electric field effects, atomic and molecular data issues, impurity transport in the divertor region, poloidally localized power dissipation (MARFEs and dense gas targets), helium ash removal, and neutral transport. The report ends with a summary of selected problems of particular significance and a brief bibliography of survey articles and related conference proceedings
Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter
Cong, Iris; Cheng, Meng; Wang, Zhenghan
2017-10-01
We present an exactly solvable lattice Hamiltonian to realize gapped boundaries of Kitaev's quantum double models for Dijkgraaf-Witten theories. We classify the elementary excitations on the boundary, and systematically describe the bulk-to-boundary condensation procedure. We also present the parallel algebraic/categorical structure of gapped boundaries.
A class of renormalised meshless Laplacians for boundary value problems
Basic, Josip; Degiuli, Nastia; Ban, Dario
2018-02-01
A meshless approach to approximating spatial derivatives on scattered point arrangements is presented in this paper. Three various derivations of approximate discrete Laplace operator formulations are produced using the Taylor series expansion and renormalised least-squares correction of the first spatial derivatives. Numerical analyses are performed for the introduced Laplacian formulations, and their convergence rate and computational efficiency are examined. The tests are conducted on regular and highly irregular scattered point arrangements. The results are compared to those obtained by the smoothed particle hydrodynamics method and the finite differences method on a regular grid. Finally, the strong form of various Poisson and diffusion equations with Dirichlet or Robin boundary conditions are solved in two and three dimensions by making use of the introduced operators in order to examine their stability and accuracy for boundary value problems. The introduced Laplacian operators perform well for highly irregular point distribution and offer adequate accuracy for mesh and mesh-free numerical methods that require frequent movement of the grid or point cloud.
Directory of Open Access Journals (Sweden)
Liu Yang
2007-10-01
Full Text Available By using coincidence degree theory of Mawhin, existence results for some higher order resonance multipoint boundary value problems with one dimensional p-Laplacian operator are obtained.
Chebyshev-Fourier Spectral Methods for Nonperiodic Boundary Value Problems
Directory of Open Access Journals (Sweden)
Bojan Orel
2014-01-01
Full Text Available A new class of spectral methods for solving two-point boundary value problems for linear ordinary differential equations is presented in the paper. Although these methods are based on trigonometric functions, they can be used for solving periodic as well as nonperiodic problems. Instead of using basis functions periodic on a given interval −1,1, we use functions periodic on a wider interval. The numerical solution of the given problem is sought in terms of the half-range Chebyshev-Fourier (HCF series, a reorganization of the classical Fourier series using half-range Chebyshev polynomials of the first and second kind which were first introduced by Huybrechs (2010 and further analyzed by Orel and Perne (2012. The numerical solution is constructed as a HCF series via differentiation and multiplication matrices. Moreover, the construction of the method, error analysis, convergence results, and some numerical examples are presented in the paper. The decay of the maximal absolute error according to the truncation number N for the new class of Chebyshev-Fourier-collocation (CFC methods is compared to the decay of the error for the standard class of Chebyshev-collocation (CC methods.
Initial boundary value problems for some damped nonlinear conservation laws
Directory of Open Access Journals (Sweden)
Manoj Yadav
2015-11-01
Full Text Available In this paper, we study the non-negative solutions of initial boundary value problems for some damped nonlinear conservation laws on the half line modelled by first order nonlinear hyperbolic PDEs. We consider the class of initial profile which are non-negative, bounded and compactly supported. Using the method of characteristics and Rankine-Hugoniot jump condition, an entropy solution is constructed subject to a top-hat initial profile. Then the large time behaviour of the constructed entropy solution is obtained. Finally, taking recourse to some comparison principles and the method of super and sub solutions the large time behaviour of entropy solutions subject to the general class of bounded and compactly supported initial profiles are established as the large time behaviour of the entropy solution subject to top-hat initial profiles.
Partial differential equations & boundary value problems with Maple
Articolo, George A
2009-01-01
Partial Differential Equations and Boundary Value Problems with Maple presents all of the material normally covered in a standard course on partial differential equations, while focusing on the natural union between this material and the powerful computational software, Maple. The Maple commands are so intuitive and easy to learn, students can learn what they need to know about the software in a matter of hours- an investment that provides substantial returns. Maple''s animation capabilities allow students and practitioners to see real-time displays of the solutions of partial differential equations. Maple files can be found on the books website. Ancillary list: Maple files- http://www.elsevierdirect.com/companion.jsp?ISBN=9780123747327 Provides a quick overview of the software w/simple commands needed to get startedIncludes review material on linear algebra and Ordinary Differential equations, and their contribution in solving partial differential equationsIncorporates an early introduction to Sturm-L...
Fixing the Big Bang Theory's Lithium Problem
Kohler, Susanna
2017-02-01
How did our universe come into being? The Big Bang theory is a widely accepted and highly successful cosmological model of the universe, but it does introduce one puzzle: the cosmological lithium problem. Have scientists now found a solution?Too Much LithiumIn the Big Bang theory, the universe expanded rapidly from a very high-density and high-temperature state dominated by radiation. This theory has been validated again and again: the discovery of the cosmic microwave background radiation and observations of the large-scale structure of the universe both beautifully support the Big Bang theory, for instance. But one pesky trouble-spot remains: the abundance of lithium.The arrows show the primary reactions involved in Big Bang nucleosynthesis, and their flux ratios, as predicted by the authors model, are given on the right. Synthesizing primordial elements is complicated! [Hou et al. 2017]According to Big Bang nucleosynthesis theory, primordial nucleosynthesis ran wild during the first half hour of the universes existence. This produced most of the universes helium and small amounts of other light nuclides, including deuterium and lithium.But while predictions match the observed primordial deuterium and helium abundances, Big Bang nucleosynthesis theory overpredicts the abundance of primordial lithium by about a factor of three. This inconsistency is known as the cosmological lithium problem and attempts to resolve it using conventional astrophysics and nuclear physics over the past few decades have not been successful.In a recent publicationled by Suqing Hou (Institute of Modern Physics, Chinese Academy of Sciences) and advisorJianjun He (Institute of Modern Physics National Astronomical Observatories, Chinese Academy of Sciences), however, a team of scientists has proposed an elegant solution to this problem.Time and temperature evolution of the abundances of primordial light elements during the beginning of the universe. The authors model (dotted lines
Chen, S.; Indrei, E.
2015-04-01
This paper concerns the regularity and geometry of the free boundary in the optimal partial transport problem for general cost functions. More specifically, we prove that a C1 cost implies a locally Lipschitz free boundary. As an application, we address a problem discussed by Caffarelli and McCann [1] regarding cost functions satisfying the Ma-Trudinger-Wang condition (A3): if the non-negative source density is in some Lp (Rn) space for p ∈ (n + 1/2, ∞ ] and the positive target density is bounded away from zero, then the free boundary is a semiconvex Cloc1,α hypersurface. Furthermore, we show that a locally Lipschitz cost implies a rectifiable free boundary and initiate a corresponding regularity theory in the Riemannian setting.
Supersymmetric Boundary Conditions in mathcal{N}=4 Super Yang-Mills Theory
Gaiotto, Davide; Witten, Edward
2009-06-01
We study boundary conditions in {N}=4 super Yang-Mills theory that preserve one-half the supersymmetry. The obvious Dirichlet boundary conditions can be modified to allow some of the scalar fields to have a "pole" at the boundary. The obvious Neumann boundary conditions can be modified by coupling to additional fields supported at the boundary. The obvious boundary conditions associated with orientifolds can also be generalized. In preparation for a separate study of how electric-magnetic duality acts on these boundary conditions, we explore moduli spaces of solutions of Nahm's equations that appear in the presence of a boundary. Though our main interest is in boundary conditions that are Lorentz-invariant (to the extent possible in the presence of a boundary), we also explore non-Lorentz-invariant but half-BPS deformations of Neumann boundary conditions. We make preliminary comments on the action of electric-magnetic duality, deferring a more serious study to a later paper.
A Duality Theory for Non-convex Problems in the Calculus of Variations
Bouchitté, Guy; Fragalà, Ilaria
2018-02-01
We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality gap. Further, we provide necessary and sufficient optimality conditions, and we show that our duality principle can be reformulated as a min-max result which is quite useful for numerical implementations. As an example, we illustrate the application of our method to a celebrated free boundary problem. The results were announced in Bouchitté and Fragalà (C R Math Acad Sci Paris 353(4):375-379, 2015).
Continuum mechanics concise theory and problems
Chadwick, P
1998-01-01
Written in response to the dearth of practical and meaningful textbooks in the field of fundamental continuum mechanics, this comprehensive treatment offers students and instructors an immensely useful tool. Its 115 solved problems and exercises not only provide essential practice but also systematically advance the understanding of vector and tensor theory, basic kinematics, balance laws, field equations, jump conditions, and constitutive equations.Readers follow clear, formally precise steps through the central ideas of classical and modern continuum mechanics, expressed in a common, effici
Directory of Open Access Journals (Sweden)
Nahed S. Hussein
2014-01-01
Full Text Available A numerical boundary integral scheme is proposed for the solution to the system of eld equations of plane. The stresses are prescribed on one-half of the circle, while the displacements are given. The considered problem with mixed boundary conditions in the circle is replaced by two problems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way, and the problem at this stage is reduced to the solution to a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution and the unknown boundary values of stresses or displacements on proper parts of the boundary. On the basis of the obtained results, it is inferred that a stress component has a singularity at each of the two separation points, thought to be of logarithmic type. The results are discussed and boundary plots are given. We have also calculated the unknown functions in the bulk directly from the given boundary conditions using the boundary collocation method. The obtained results in the bulk are discussed and three-dimensional plots are given. A tentative form for the singular solution is proposed and the corresponding singular stresses and displacements are plotted in the bulk. The form of the singular tangential stress is seen to be compatible with the boundary values obtained earlier. The efficiency of the used numerical schemes is discussed.
Problems in the theory of point explosions
Korobeinikov, V. P.
The book is concerned with the development of the theory of point explosions, which is relevant to the study of such phenomena as the initiation of detonation, high-power explosions, electric discharges, cosmic explosions, laser blasts, and hypersonic aerodynamics. The discussion covers the principal equations and the statement of problems; linearized non-self-similar one-dimensional problems; spherical, cylindrical, and plane explosions with allowance for counterpressure under conditions of constant initial density; explosions in a combustible mixture of gases; and point explosions in inhomogeneous media with nonsymmetric energy release. Attention is also given to point explosions in an electrically conducting gas with allowance for the effect of the magnetic field and to the propagation of perturbations from solar flares.
A continuum theory of a lubrication problem with solid particles
Dai, Fuling; Khonsari, M. M.
1993-01-01
The governing equations for a two-dimensional lubrication problem involving the mixture of a Newtonian fluid with solid particles at an arbitrary volume fraction are developed using the theory of interacting continuua (mixture theory). The equations take the interaction between the fluid and the particles into consideration. Provision is made for the possibility of particle slippage at the boundaries. The equations are simplified assuming that the solid volume fraction varies in the sliding direction alone. Equations are solved for the velocity of the fluid phase and that of the solid phase of the mixture flow in the clearance space of an arbitrary shaped bearing. It is shown that the classical pure fluid case can be recovered as a special case of the solutions presented. Extensive numerical solutions are presented to quantify the effect of particulate solid for a number of pertinent performance parameters for both slider and journal bearings. Included in the results are discussions on the influence of particle slippage on the boundaries as well as the role of the interacting body force between the fluid and solid particles.
Mathematical problems in wave propagation theory
1970-01-01
The papers comprising this collection are directly or indirectly related to an important branch of mathematical physics - the mathematical theory of wave propagation and diffraction. The paper by V. M. Babich is concerned with the application of the parabolic-equation method (of Academician V. A. Fok and M. A, Leontovich) to the problem of the asymptotic behavior of eigenfunc tions concentrated in a neighborhood of a closed geodesie in a Riemannian space. The techniques used in this paper have been föund useful in solving certain problems in the theory of open resonators. The topic of G. P. Astrakhantsev's paper is similar to that of the paper by V. M. Babich. Here also the parabolic-equation method is used to find the asymptotic solution of the elasticity equations which describes Love waves concentrated in a neighborhood of some surface ray. The paper of T. F. Pankratova is concerned with finding the asymptotic behavior of th~ eigenfunc tions of the Laplace operator from the exact solution for the surf...
An Algebraic Construction of Boundary Quantum Field Theory
Longo, Roberto; Witten, Edward
2011-04-01
We build up local, time translation covariant Boundary Quantum Field Theory nets of von Neumann algebras {mathcal A_V} on the Minkowski half-plane M + starting with a local conformal net {mathcal A} of von Neumann algebras on {mathbb R} and an element V of a unitary semigroup {mathcal E(mathcal A)} associated with {mathcal A}. The case V = 1 reduces to the net {mathcal A_+} considered by Rehren and one of the authors; if the vacuum character of {mathcal A} is summable, {mathcal A_V} is locally isomorphic to {mathcal A_+}. We discuss the structure of the semigroup {mathcal E(mathcal A)}. By using a one-particle version of Borchers theorem and standard subspace analysis, we provide an abstract analog of the Beurling-Lax theorem that allows us to describe, in particular, all unitaries on the one-particle Hilbert space whose second quantization promotion belongs to {mathcal E(mathcal A^{(0)})} with {mathcal A^{(0)}} the U(1)-current net. Each such unitary is attached to a scattering function or, more generally, to a symmetric inner function. We then obtain families of models via any Buchholz-Mack-Todorov extension of {mathcal A^{(0)}}. A further family of models comes from the Ising model.
Positive Solutions of Two-Point Boundary Value Problems for Monge-Ampère Equations
Directory of Open Access Journals (Sweden)
Baoqiang Yan
2015-01-01
Full Text Available This paper considers the following boundary value problem: ((-u'(tn'=ntn-1f(u(t, 01 is odd. We establish the method of lower and upper solutions for some boundary value problems which generalizes the above equations and using this method we present a necessary and sufficient condition for the existence of positive solutions to the above boundary value problem and some sufficient conditions for the existence of positive solutions.
Mapping physical problems on fractals onto boundary value problems within continuum framework
Balankin, Alexander S.
2018-01-01
In this Letter, we emphasize that methods of fractal homogenization should take into account a loop structure of the fractal, as well as its connectivity and geodesic metric. The fractal attributes can be quantified by a set of dimension numbers. Accordingly, physical problems on fractals can be mapped onto the boundary values problems in the fractional-dimensional space with metric induced by the fractal topology. The solutions of these problems represent analytical envelopes of non-analytical functions defined on the fractal. Some examples are briefly discussed. The interplay between effects of fractal connectivity, loop structure, and mass distributions on electromagnetic fields in fractal media is highlighted. The effects of fractal connectivity, geodesic metric, and loop structure are outlined.
Singular Integral Operators Associated with Elliptic Boundary Value Problems in Non-smooth Domains
Awala, Hussein
Many boundary value problems of mathematical physics are modelled by elliptic differential operators L in a given domain O. An effective method for treating such problems is the method of layer potentials, whose essence resides in reducing matters to solving a boundary integral equation. This, in turn, requires inverting a singular integral operator, naturally associated with L and O, on appropriate function spaces on ∂O. When the operator L is of second order and the domain O is Lipschitz (i.e., O is locally the upper-graph of a Lipschitz function) the fundamental work of B. Dahlberg, C. Kenig, D. Jerison, E. Fabes, N. Riviere, G. Verchota, R. Brown, and many others, has opened the door for the development of a far-reaching theory in this setting, even though several very difficult questions still remain unanswered. In this dissertation, the goal is to solve a number of open questions regarding spectral properties of singular integral operators associated with second and higher-order elliptic boundary value problems in non-smooth domains. Among other spectral results, we establish symmetry properties of harmonic classical double layer potentials associated with the Laplacian in the class of Lipschitz domains in R2. An array of useful tools and techniques from Harmonic Analysis, Partial Differential Equations play a key role in our approach, and these are discussed as preliminary material in the thesis: • Mellin Transforms and Fourier Analysis; • Calderon-Zygmund Theory in Uniformly Rectifiable Domains; • Boundary Integral Methods. Chapter four deals with proving invertibility properties of singular integral operators naturally associated with the mixed (Zaremba) problem for the Laplacian and the Lame system in infinite sectors in two dimensions, when considering their action on the Lebesgue scale of p integrable functions, for $1 their action on the Lebesgue scale of p integrable functions, for 1 functions). Finally, chapter six, deals with spectral issues
Information theory and coding solved problems
Ivaniš, Predrag
2017-01-01
This book is offers a comprehensive overview of information theory and error control coding, using a different approach then in existed literature. The chapters are organized according to the Shannon system model, where one block affects the others. A relatively brief theoretical introduction is provided at the beginning of every chapter, including a few additional examples and explanations, but without any proofs. And a short overview of some aspects of abstract algebra is given at the end of the corresponding chapters. The characteristic complex examples with a lot of illustrations and tables are chosen to provide detailed insights into the nature of the problem. Some limiting cases are presented to illustrate the connections with the theoretical bounds. The numerical values are carefully selected to provide in-depth explanations of the described algorithms. Although the examples in the different chapters can be considered separately, they are mutually connected and the conclusions for one considered proble...
Physiological Plausibility and Boundary Conditions of Theories of Risk Sensitivity
DEFF Research Database (Denmark)
Marchiori, Davide; Elqayam, Shira
2012-01-01
and physiological underpinnings of one of the central topics in judgment and decision-making (JDM) research – choice behavior in decisions from experience. Y&T successfully contributes to this goal by demonstrating a novel effect that losses increase experimental participants’ arousal as measured by pupil...... dilatation, which in turn positively correlates with a risk aversion behavior. They hypothesize that participants’ attention is increased in decision problems involving losses, which trigger an innate prudent behavior in situations entailing danger and/or hazard. Interestingly, Y&T find that the nature...... of attention is not selective, i.e., when losses are present, participants are shown to devote more attention to the task as a whole rather than to the single negative outcomes, in contrast to Prospect Theory's loss aversion....
ACTUAL PROBLEMS OF THE THEORY OF QUALITY
Directory of Open Access Journals (Sweden)
V. P. Panasyuk
2016-01-01
Full Text Available The aim of the publication is the analysis of the place and the role of scientific categories and application of the concept of «quality» as a threepronged science of quality, quality management, quality assessment in contemporary global processes, as well as applied aspects with regard to the adoption of specific management decisions.Methods. Methodology of interdisciplinary approach to the analysis of the "quality" category is used; the methods of theoretical analysis, synthesis and generalization.Analysis of the «quality» of the concept is carried out in conjunction with the global processes and trends in the economy, the crisis in the world, due to the emerging new technological order. The theoretical foundation that can be laid at the base of the further development of the theory of quality and making the qualitative nature of the reforms in the social sphere and the economic sphere is considered in details.Results. The tendencies, risks, problems and suggestions on the practical application of some or other quality concepts, approaches to enforcement are signified. The author's vision of the future development direction, associated with quality, including in international breaking is given.Scientific novelty consists in determining of qualitology potential applied to solve complex theoretical and practical problems, its place and role among emerging new classification of classical and non-classical sciences. The promising directions of the quality theory in relation to the economy, social sphere, education are identified.Practical significance. The proposed recommendations on use of ideas for management approaches reconsideration, organization of research and training in the field of quality.
Bilinear Inverse Problems: Theory, Algorithms, and Applications
Ling, Shuyang
We will discuss how several important real-world signal processing problems, such as self-calibration and blind deconvolution, can be modeled as bilinear inverse problems and solved by convex and nonconvex optimization approaches. In Chapter 2, we bring together three seemingly unrelated concepts, self-calibration, compressive sensing and biconvex optimization. We show how several self-calibration problems can be treated efficiently within the framework of biconvex compressive sensing via a new method called SparseLift. More specifically, we consider a linear system of equations y = DAx, where the diagonal matrix D (which models the calibration error) is unknown and x is an unknown sparse signal. By "lifting" this biconvex inverse problem and exploiting sparsity in this model, we derive explicit theoretical guarantees under which both x and D can be recovered exactly, robustly, and numerically efficiently. In Chapter 3, we study the question of the joint blind deconvolution and blind demixing, i.e., extracting a sequence of functions [special characters omitted] from observing only the sum of their convolutions [special characters omitted]. In particular, for the special case s = 1, it becomes the well-known blind deconvolution problem. We present a non-convex algorithm which guarantees exact recovery under conditions that are competitive with convex optimization methods, with the additional advantage of being computationally much more efficient. We discuss several applications of the proposed framework in image processing and wireless communications in connection with the Internet-of-Things. In Chapter 4, we consider three different self-calibration models of practical relevance. We show how their corresponding bilinear inverse problems can be solved by both the simple linear least squares approach and the SVD-based approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus allowing for real-time deployment. Explicit theoretical
Periodic and boundary value problems for second order differential ...
Indian Academy of Sciences (India)
Liouville and periodic boundary conditions. The vector field (, , ) is Caratheodory and in some instances the continuity condition on or is replaced by a monotonicity type hypothesis. Using the method of upper and lower solutions as well ...
Energy Technology Data Exchange (ETDEWEB)
Pereira, Luis Carlos Martins
1998-06-15
New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)
Projective geometry solved problems and theory review
Fortuna, Elisabetta; Pardini, Rita
2016-01-01
This book starts with a concise but rigorous overview of the basic notions of projective geometry, using straightforward and modern language. The goal is not only to establish the notation and terminology used, but also to offer the reader a quick survey of the subject matter. In the second part, the book presents more than 200 solved problems, for many of which several alternative solutions are provided. The level of difficulty of the exercises varies considerably: they range from computations to harder problems of a more theoretical nature, up to some actual complements of the theory. The structure of the text allows the reader to use the solutions of the exercises both to master the basic notions and techniques and to further their knowledge of the subject, thus learning some classical results not covered in the first part of the book. The book addresses the needs of undergraduate and graduate students in the theoretical and applied sciences, and will especially benefit those readers with a solid grasp of ...
Variational principle for boundary perturbation in transport theory
International Nuclear Information System (INIS)
Gheorghiu, H.N.M.; Rahnema, F.
1996-01-01
A new variational principle is presented for estimating the eigenvalue of the monoenergetic neutron transport equation when the external boundary of the system is slightly perturbed. It is shown that the principle reduces to the first-order perturbation result for small boundary perturbations. (author)
String Theory: Big Problem for Small Size
Sahoo, S.
2009-01-01
String theory is the most promising candidate theory for a unified description of all the fundamental forces that exist in nature. It provides a mathematical framework that combines quantum theory with Einstein's general theory of relativity. The typical size of a string is of the order of 10[superscript -33] cm, called the Planck length. But due…
Moreira, Diego; Wang, Lihe
2014-08-01
In this paper, we prove a Hausdorff measure estimate for the free boundaries of subsolutions of fully nonlinear and quasilinear equations of the type and where and μ is a signed Radon measure with some appropriate growth condition. Gradient estimates for nonnegative harmonic functions with bounded normal derivatives along the boundary obtained by Caffarelli and Salsa (Geometric Approach to Free Boundary Problems, 2005) are extended to the context of inhomogeneous problems involving fully nonlinear and p-Laplace equations. As an application, Lipschitz regularity is obtained for one phase solutions of inhomogeneous nonlinear free boundary problems.
Vragov’s boundary value problem for an implicit equation of mixed type
Egorov, I. E.
2017-10-01
We study a Vragov boundary value problem for a third-order implicit equation of mixed type with an arbitrary manifold of type switch. These Sobolev-type equations arise in many important applied problems. Given certain constraints on the coefficients and the right-hand side of the equation, we demonstrate, using nonstationary Galerkin method and regularization method, the unique regular solvability of the boundary value problem. We also obtain an error estimate for approximate solutions of the boundary value problem in terms of the regularization parameter and the eigenvalues of the Dirichlet spectral problem for the Laplace operator.
Farhat, Charbel; Lakshminarayan, Vinod K.
2014-04-01
Embedded Boundary Methods (EBMs) for Computational Fluid Dynamics (CFD) are usually constructed in the Eulerian setting. They are particularly attractive for complex Fluid-Structure Interaction (FSI) problems characterized by large structural motions and deformations. They are also critical for flow problems with topological changes and FSI problems with cracking. For all of these problems, the alternative Arbitrary Lagrangian-Eulerian (ALE) methods are often unfeasible because of the issue of mesh crossovers. However for viscous flows, Eulerian EBMs for CFD do not track the boundary layers around dynamic rigid or flexible bodies. Consequently, the application of these methods to viscous FSI problems requires either a high mesh resolution in a large part of the computational fluid domain, or adaptive mesh refinement. Unfortunately, the first option is computationally inefficient, and the second one is labor intensive. For these reasons, an alternative approach is proposed in this paper for maintaining all moving boundary layers resolved during the simulation of a turbulent FSI problem using an EBM for CFD. In this approach, which is simple and computationally reasonable, the underlying non-body-fitted mesh is rigidly translated and/or rotated in order to track the rigid component of the motion of the dynamic obstacle. Then, the flow computations away from the embedded surface are performed using the ALE framework, and the wall boundary conditions are treated by the chosen Eulerian EBM for CFD. Hence, the solution of the boundary layer tracking problem proposed in this paper can be described as an ALE implementation of a given EBM for CFD. Its basic features are illustrated with the Large Eddy Simulation using a non-body-fitted mesh of a turbulent flow past an airfoil in heaving motion. Its strong potential for the solution of challenging FSI problems at reasonable computational costs is also demonstrated with the simulation of turbulent flows past a family of
Directory of Open Access Journals (Sweden)
Guotao Wang
2012-01-01
Full Text Available We study nonlinear impulsive differential equations of fractional order with irregular boundary conditions. Some existence and uniqueness results are obtained by applying standard fixed-point theorems. For illustration of the results, some examples are discussed.
Directory of Open Access Journals (Sweden)
Liu Yuji
2008-01-01
Full Text Available Abstract This paper deals with the existence of solutions of the periodic boundary value problem of the impulsive Duffing equations: . Sufficient conditions are established for the existence of at least one solution of above-mentioned boundary value problem. Our method is based upon Schaeffer's fixed-point theorem. Examples are presented to illustrate the efficiency of the obtained results.
Fayolle, Guy; Malyshev, Vadim
2017-01-01
This monograph aims to promote original mathematical methods to determine the invariant measure of two-dimensional random walks in domains with boundaries. Such processes arise in numerous applications and are of interest in several areas of mathematical research, such as Stochastic Networks, Analytic Combinatorics, and Quantum Physics. This second edition consists of two parts. Part I is a revised upgrade of the first edition (1999), with additional recent results on the group of a random walk. The theoretical approach given therein has been developed by the authors since the early 1970s. By using Complex Function Theory, Boundary Value Problems, Riemann Surfaces, and Galois Theory, completely new methods are proposed for solving functional equations of two complex variables, which can also be applied to characterize the Transient Behavior of the walks, as well as to find explicit solutions to the one-dimensional Quantum Three-Body Problem, or to tackle a new class of Integrable Systems. Part II borrows spec...
A problem of atomic diffusion in a moving boundary
International Nuclear Information System (INIS)
Bezerra, M.C.C.
1985-01-01
It is analysed the convergence of a numerical scheme for calculating approximate solutions of a model used for evaluating concentration of atoms in a diffusion process in the walls of nuclear reactors. The ion trapping process is admitted to be reversible and the wall corrosion process is also considered in the model so that must deal with a moving boundary. Some conditions for the motion of the boundary are established in such a way that convergence can be assured in more general settings than those of previous papers. (Author) [pt
Symmetric Markov Processes, Time Change, and Boundary Theory (LMS-35)
Chen, Zhen-Qing
2011-01-01
This book gives a comprehensive and self-contained introduction to the theory of symmetric Markov processes and symmetric quasi-regular Dirichlet forms. In a detailed and accessible manner, Zhen-Qing Chen and Masatoshi Fukushima cover the essential elements and applications of the theory of symmetric Markov processes, including recurrence/transience criteria, probabilistic potential theory, additive functional theory, and time change theory. The authors develop the theory in a general framework of symmetric quasi-regular Dirichlet forms in a unified manner with that of regular Dirichlet forms
Entanglement spectrum and boundary theories with projected entangled-pair states
Energy Technology Data Exchange (ETDEWEB)
Cirac, Ignacio [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Poilblanc, Didier [Laboratoire de Physique Theorique, C.N.R.S. and Universite de Toulouse, Toulouse (France); Schuch, Norbert [California Institute of Technology, Pasadena, CA (United States); Verstraete, Frank [Vienna Univ. (Austria)
2012-07-01
In many physical scenarios, close relations between the bulk properties of quantum systems and theories associated to their boundaries have been observed. In this work, we provide an exact duality mapping between the bulk of a quantum spin system and its boundary using Projected Entangled Pair States (PEPS). This duality associates to every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds to the excitation spectrum of the boundary Hamiltonian. We study various models and find that a gapped bulk phase with local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered states yield non-local Hamiltonians. As our duality also associates a boundary operator to any operator in the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their boundary.
A free boundary problem for a reaction-diffusion system with nonlinear memory
DEFF Research Database (Denmark)
Lin, Zhigui; Ling, Zhi; Pedersen, Michael
2013-01-01
We consider a integro-partial differential equation with a free boundary which appears in the theory of the nuclear dynamics. First, local existence and uniqueness are obtained by using the contraction mapping theorem. Then, the behavior of the free boundary and the blow-up criteria are obtained...
Supersymmetric Chern–Simons theory in presence of a boundary in the light-like direction
Directory of Open Access Journals (Sweden)
Jiří Vohánka
2016-03-01
Full Text Available In this paper, we will analyze a three dimensional supersymmetric Chern–Simons theory on a manifold with a boundary. The boundary we will consider in this paper will be defined by n⋅x=0, where n is a light-like vector. It will be demonstrated that this boundary is preserved under the action of the SIM(1 subgroup of the Lorentz group. Furthermore, the presence of this boundary will break half of the supersymmetry of the original theory. As the original Chern–Simons theory had N=1 supersymmetry in absence of a boundary, it will only have N=1/2 supersymmetry in presence of this boundary. We will also observe that the Chern–Simons theory can be made gauge invariant by introducing new degrees of freedom on the boundary. The gauge transformation of these new degrees of freedom will exactly cancel the boundary term obtained from the gauge transformation of the Chern–Simons theory.
Nonlinear second-order multivalued boundary value problems
Indian Academy of Sciences (India)
In this paper we study nonlinear second-order differential inclusions involving the ordinary vector -Laplacian, a multivalued maximal monotone operator and nonlinear multivalued boundary conditions. Our framework is general and unifying and incorporates gradient systems, evolutionary variational inequalities and the ...
Numerical methods for stiff systems of two-point boundary value problems
Flaherty, J. E.; Omalley, R. E., Jr.
1983-01-01
Numerical procedures are developed for constructing asymptotic solutions of certain nonlinear singularly perturbed vector two-point boundary value problems having boundary layers at one or both endpoints. The asymptotic approximations are generated numerically and can either be used as is or to furnish a general purpose two-point boundary value code with an initial approximation and the nonuniform computational mesh needed for such problems. The procedures are applied to a model problem that has multiple solutions and to problems describing the deformation of thin nonlinear elastic beam that is resting on an elastic foundation.
Renormalization problem in a class of nonrenormalizable theories
International Nuclear Information System (INIS)
Symanzik, K.
1975-08-01
A possible way to approach the simplest nonrenormalizable theory - phi 4 theory in more than four space-time dimensions - is described. The problems of extension to other nonrenormalizable theories are discussed and the conclusions reached so far are compared with the corresponding ones for renormalizable theories. For more details, Comm. Math. Phys. or DESY 75/12 should be consulted. (BJ) [de
Numerical continuation methods for dynamical systems path following and boundary value problems
Krauskopf, Bernd; Galan-Vioque, Jorge
2007-01-01
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel''s 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects ...
Existence and boundary behavior of positive solutions for a Sturm-Liouville problem
Directory of Open Access Journals (Sweden)
Syrine Masmoudi
2016-01-01
Full Text Available In this paper, we discuss existence, uniqueness and boundary behavior of a positive solution to the following nonlinear Sturm-Liouville problem \\[\\begin{aligned}&\\frac{1}{A}(Au^{\\prime }^{\\prime }+a(tu^{\\sigma}=0\\;\\;\\text{in}\\;(0,1,\\\\ &\\lim\\limits_{t\\to 0}Au^{\\prime}(t=0,\\quad u(1=0,\\end{aligned}\\] where \\(\\sigma \\lt 1\\, \\(A\\ is a positive differentiable function on \\((0,1\\ and \\(a\\ is a positive measurable function in \\((0,1\\ satisfying some appropriate assumptions related to the Karamata class. Our main result is obtained by means of fixed point methods combined with Karamata regular variation theory.
Theory and applications of the problem of Euler elastica
International Nuclear Information System (INIS)
Zelikin, Mikhail I
2012-01-01
The paper is devoted to the theory of extremal problems on Euler elastica. The Riccati equation method is used to study sufficient optimality conditions for the associated problem of minimization of the energy of a physical pendulum. Numerous applications are described for the problem of Euler elastica, and its connections with the theory of completely integrable Hamiltonian systems are discussed. Bibliography: 10 titles.
On analytic continuability of the missing Cauchy datum for Helmholtz boundary problems
DEFF Research Database (Denmark)
Karamehmedovic, Mirza
2015-01-01
We relate the domains of analytic continuation of Dirichlet and Neumann boundary data for Helmholtz problems in two or more independent variables. The domains are related à priori, locally and explicitly in terms of complex polyrectangular neighbourhoods of planar pieces of the boundary. To this ......We relate the domains of analytic continuation of Dirichlet and Neumann boundary data for Helmholtz problems in two or more independent variables. The domains are related à priori, locally and explicitly in terms of complex polyrectangular neighbourhoods of planar pieces of the boundary...
The free-boundary equilibrium problem for helically symmetric plasmas
International Nuclear Information System (INIS)
Gardner, H.J.; Dewar, R.L.; Sy, W.N-C.
1987-05-01
An iterative technique for solving the ideal MHD equilibrium equations for a helically symmetric plasma with a free boundary is described. The method involves an application of Green's theorem and has been formulated for the geometry of a heliac. It is used to determine a stability diagram for the SHEILA heliac as a function of the plasma pressure and the current in one of the external coils
A novel boundary element method for nonuniform neutron diffusion problems
International Nuclear Information System (INIS)
Itagaki, Masafumi; Nisiyama, Shusuke; Tomioka, Satoshi; Enoto, Takeaki
1999-01-01
An advanced boundary element formulation has been proposed to solve the neutron diffusion equation (NDE) for a 'nonuniform' system. The continuous spatial distribution of a nuclear constant is assumed to be described using a polynomial function. Part of the constant term in the polynomial is left on the left-hand-side of the NDE, while the reminding is added to the fission source term on the right-hand-side to create a fictitious source. When the neutron flux is also expanded using a polynomial, the boundary integral equation corresponding to the NDE contains a domain integral related to the polynomial source. This domain integral is transformed into an infinite series of boundary integrals, by repeated application of the particular solution for a Poisson-type equation with the polynomial source. In two-dimensional, one-group test calculations for rectangular domains, the orthogonality of Legendre polynomials was used to determine the polynomial expansion coefficients. The results show good agreement with those obtained from finite difference computations in which the nonuniformity was approximated by a large number of material regions. (author)
Boundary integral equation methods in eigenvalue problems of elastodynamics and thin plates
Kitahara, M
1985-01-01
The boundary integral equation (BIE) method has been used more and more in the last 20 years for solving various engineering problems. It has important advantages over other techniques for numerical treatment of a wide class of boundary value problems and is now regarded as an indispensable tool for potential problems, electromagnetism problems, heat transfer, fluid flow, elastostatics, stress concentration and fracture problems, geomechanical problems, and steady-state and transient electrodynamics.In this book, the author gives a complete, thorough and detailed survey of the method. It pro
Boundary layer studies related to fusion theory. Final report
International Nuclear Information System (INIS)
1981-01-01
The described work studied the boundary between closed and open field lines in EBT geometry, with emphasis on the microstability properties. These properties were established primarily for drift waves in the lower hybrid range of frequencies. The transport due to these modes was evaluated by a self-consistent treatment, using quasilinear models in a plasma diffusion code. The model was benchmarked against the EDT experimental results from ORNL and the sensitivity to transport model established. Viscosity was estimated to be negligible compared with anomalous transport. Drift wave turbulence gave a boundary layer size much more consistent with experiment than either collisional transport or Bohm diffusion
Curved Space Quantum Field Theory of the 1970S Elucidates Boundary Casimir Energy Today
Fulling, S. A.
2017-03-01
Results of investigations of the divergent vacuum energy at reflecting boundaries in quantum field theory are summarized. The boundary is modeled by a soft rapidly increasing potential barrier such as a power wall. In the model without pressure anomaly and the principle of virtual work is fulfilled.
On the Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers
DEFF Research Database (Denmark)
Baklanov, Alexander A.; Grisogono, Branko; Bornstein, Robert
2011-01-01
The gap between our modern understanding of planetary boundary layer physics and its decades-old representations in current operational atmospheric models is widening, which has stimulated this review of the current state of the art and an analysis of the immediate needs in boundary layer theory,...
An analogue of Morse theory for planar linear networks and the generalized Steiner problem
International Nuclear Information System (INIS)
Karpunin, G A
2000-01-01
A study is made of the generalized Steiner problem: the problem of finding all the locally minimal networks spanning a given boundary set (terminal set). It is proposed to solve this problem by using an analogue of Morse theory developed here for planar linear networks. The space K of all planar linear networks spanning a given boundary set is constructed. The concept of a critical point and its index is defined for the length function l of a planar linear network. It is shown that locally minimal networks are local minima of l on K and are critical points of index 1. The theorem is proved that the sum of the indices of all the critical points is equal to χ(K)=1. This theorem is used to find estimates for the number of locally minimal networks spanning a given boundary set
The problem of applying information theory to efficient image transmission.
Sakrison, D. J.
1973-01-01
The main ideas of Shannon's (1948, 1960) theory of source encoding with a fidelity constraint, more commonly known as rate distortion theory, are summarized. The theory was specifically intended to provide a theoretical basis for efficient transmission of information such as images. What the theory has to contribute to the problem is demonstrated. Difficulties that impeded application of the theory to image transmission, and current efforts to solve these difficulties are discussed.
Energy Technology Data Exchange (ETDEWEB)
Zou, Li [Dalian Univ. of Technology, Dalian City (China). State Key Lab. of Structural Analysis for Industrial Equipment; Liang, Songxin; Li, Yawei [Dalian Univ. of Technology, Dalian City (China). School of Mathematical Sciences; Jeffrey, David J. [Univ. of Western Ontario, London (Canada). Dept. of Applied Mathematics
2017-06-01
Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.
Global existence and blowup for free boundary problems of coupled reaction-diffusion systems
Directory of Open Access Journals (Sweden)
Jianping Sun
2014-05-01
Full Text Available This article concerns a free boundary problem for a reaction-diffusion system modeling the cooperative interaction of two diffusion biological species in one space dimension. First we show the existence and uniqueness of a local classical solution, then we study the asymptotic behavior of the free boundary problem. Our results show that the free boundary problem admits a global solution if the inter-specific competitions are strong, while, if the inter-specific competitions are weak, there exist the blowup solution and a global fast solution.
Boundary value problems and the validity of the Post constraint in modern electromagnetism
Lakhtakia, Akhlesh
2005-01-01
When a (frequency-domain) boundary value problem involving a homogeneous linear material is solved to assess the validity of the Post constraint, a conflict arises between the fundamental differential equations of electromagnetism in the chosen material and a naive application of the usual boundary conditions. It is shown here that the conflict vanishes when the boundary conditions are properly derived from the fundamental equations, and the validity of the Post constraint in modern macroscop...
An approximate method for solving a melting problem with periodic boundary conditions
Directory of Open Access Journals (Sweden)
Qu Liang-Hui
2014-01-01
Full Text Available An effective thermal diffusivity method is used to solve one-dimensional melting problem with periodic boundary conditions in a semi-infinite domain. An approximate analytic solution showing the functional relation between the location of the moving boundary and time is obtained by using Laplace transform. The evolution of the moving boundary and the temperature field in the phase change domain are simulated numerically, and the numerical results are compared with previous results in open literature.
Laplace Boundary-Value Problem in Paraboloidal Coordinates
Duggen, L.; Willatzen, M.; Voon, L. C. Lew Yan
2012-01-01
This paper illustrates both a problem in mathematical physics, whereby the method of separation of variables, while applicable, leads to three ordinary differential equations that remain fully coupled via two separation constants and a five-term recurrence relation for series solutions, and an exactly solvable problem in electrostatics, as a…
Well-posedness of the free boundary problem in compressible elastodynamics
Trakhinin, Yuri
2018-02-01
We study the free boundary problem for the flow of a compressible isentropic inviscid elastic fluid. At the free boundary moving with the velocity of the fluid particles the columns of the deformation gradient are tangent to the boundary and the pressure vanishes outside the flow domain. We prove the local-in-time existence of a unique smooth solution of the free boundary problem provided that among three columns of the deformation gradient there are two which are non-collinear vectors at each point of the initial free boundary. If this non-collinearity condition fails, the local-in-time existence is proved under the classical Rayleigh-Taylor sign condition satisfied at the first moment. By constructing an Hadamard-type ill-posedness example for the frozen coefficients linearized problem we show that the simultaneous failure of the non-collinearity condition and the Rayleigh-Taylor sign condition leads to Rayleigh-Taylor instability.
Dujardin, G. M.
2009-08-12
This paper deals with the asymptotic behaviour of the solutions of linear initial boundary value problems with constant coefficients on the half-line and on finite intervals. We assume that the boundary data are periodic in time and we investigate whether the solution becomes time-periodic after sufficiently long time. Using Fokas\\' transformation method, we show that, for the linear Schrödinger equation, the linear heat equation and the linearized KdV equation on the half-line, the solutions indeed become periodic for large time. However, for the same linear Schrödinger equation on a finite interval, we show that the solution, in general, is not asymptotically periodic; actually, the asymptotic behaviour of the solution depends on the commensurability of the time period T of the boundary data with the square of the length of the interval over. © 2009 The Royal Society.
Existence results for non-autonomous elliptic boundary value problems
Directory of Open Access Journals (Sweden)
V. Anuradha
1994-07-01
Full Text Available $$-Delta u(x = lambda f(x, u;quad x in Omega$$ $$u(x + alpha(x frac{partial u(x}{partial n} = 0;quad x in partial Omega$$ where $lambda > 0$, $Omega$ is a bounded region in $Bbb{R}^N$; $N geq 1$ with smooth boundary $partial Omega$, $alpha(x geq 0$, $n$ is the outward unit normal, and $f$ is a smooth function such that it has either sublinear or restricted linear growth in $u$ at infinity, uniformly in $x$. We also consider $f$ such that $f(x, u u leq 0$ uniformly in $x$, when $|u|$ is large. Without requiring any sign condition on $f(x, 0$, thus allowing for both positone as well as semipositone structure, we discuss the existence of at least three solutions for given $lambda in (lambda_{n}, lambda_{n + 1}$ where $lambda_{k}$ is the $k$-th eigenvalue of $-Delta$ subject to the above boundary conditions. In particular, one of the solutions we obtain has non-zero positive part, while another has non-zero negative part. We also discuss the existence of three solutions where one of them is positive, while another is negative, for $lambda$ near $lambda_{1}$, and for $lambda$ large when $f$ is sublinear. We use the method of sub-super solutions to establish our existence results. We further discuss non-existence results for $lambda$ small.
Problems of linear electron (polaron) transport theory in semiconductors
Klinger, M I
1979-01-01
Problems of Linear Electron (Polaron) Transport Theory in Semiconductors summarizes and discusses the development of areas in electron transport theory in semiconductors, with emphasis on the fundamental aspects of the theory and the essential physical nature of the transport processes. The book is organized into three parts. Part I focuses on some general topics in the theory of transport phenomena: the general dynamical theory of linear transport in dissipative systems (Kubo formulae) and the phenomenological theory. Part II deals with the theory of polaron transport in a crystalline semicon
The linearization of boundary eigenvalue problems and reproducing kernel Hilbert spaces
Ćurgus, Branko; Dijksma, Aad; Read, Tom
2001-01-01
The boundary eigenvalue problems for the adjoint of a symmetric relation S in a Hilbert space with finite, not necessarily equal, defect numbers, which are related to the selfadjoint Hilbert space extensions of S are characterized in terms of boundary coefficients and the reproducing kernel Hilbert
Xin, Hua
2017-09-01
In this article, using the homotopy renormalization method, the asymptotic analysis to a nonlinear problem on domain boundaries in convection patterns are given. In particular, by taking a variable coefficient homotopy equation, the global asymptotic solutions satisfying boundary conditions are obtained. These results are better than the existing analytic approximation solutions.
Theory and Fluid Simulations of Boundary Plasma Fluctuations
Energy Technology Data Exchange (ETDEWEB)
Cohen, R H; LaBombard, B; LoDestro, L L; Rognlien, T D; Ryutov, D D; Terry, J L; Umansky, M V; Xu, X Q; Zweben, S
2007-01-09
Theoretical and computational investigations are presented of boundary plasma microturbulence that take into account important effects of the geometry of diverted tokamaks--in particular, the effect of x-point magnetic shear and the termination of field lines on divertor plates. We first generalize our previous 'heuristic boundary condition' which describes, in a lumped model, the closure of currents in the vicinity of the x-point region to encompass three current-closure mechanisms. We then use this boundary condition to derive the dispersion relation for low-beta flute-like modes in the divertor-leg region under the combined drives of curvature, sheath impedance, and divertor tilt effects. The results indicate the possibility of strongly growing instabilities, driven by sheath boundary conditions, and localized in either the private or common flux region of the divertor leg depending on the radial tilt of divertor plates. We re-visit the issue of x-point effects on blobs, examining the transition from blobs terminated by x-point shear to blobs that extend over both the main SOL and divertor legs. We find that, for a main-SOL blob, this transition occurs without a free-acceleration period as previously thought, with x-point termination conditions applying until the blob has expanded to reach the divertor plate. We also derive propagation speeds for divertor-leg blobs. Finally, we present fluid simulations of the C-Mod tokamak from the BOUT edge fluid turbulence code, which show main-SOL blob structures with similar spatial characteristics to those observed in the experiment, and also simulations which illustrate the possibility of fluctuations confined to divertor legs.
Singular perturbation for nonlinear boundary-value problems
Directory of Open Access Journals (Sweden)
Rina Ling
1979-01-01
studied. The problem is a model arising in nuclear energy distribution. For large values of the parameter, the differential equations are of the singular-perturbation type and approximations are constructed by the method of matched asymptotic expansions.
The boundary value problems for the scalar Oseen equation
Czech Academy of Sciences Publication Activity Database
Medková, Dagmar; Skopin, E.; Varnhorn, W.
2012-01-01
Roč. 285, 17-18 (2012), s. 2208-2221 ISSN 0025-584X R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : scalar Oseen equation * Dirichlet problem * Neumann problem Subject RIV: BA - General Mathematics Impact factor: 0.576, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/ mana .201100219/abstract
Semilinear Evolution Problems with Ventcel-Type Conditions on Fractal Boundaries
Directory of Open Access Journals (Sweden)
Maria Rosaria Lancia
2014-01-01
Full Text Available A semilinear parabolic transmission problem with Ventcel's boundary conditions on a fractal interface S or the corresponding prefractal interface Sh is studied. Regularity results for the solution in both cases are proved. The asymptotic behaviour of the solutions of the approximating problems to the solution of limit fractal problem is analyzed.
Positive solutions for a nonlocal boundary-value problem with vector-valued response
Directory of Open Access Journals (Sweden)
Andrzej Nowakowski
2002-05-01
Full Text Available Using variational methods, we study the existence of positive solutions for a nonlocal boundary-value problem with vector-valued response. We develop duality and variational principles for this problem and present a numerical version which enables the approximation of solutions and gives a measure of a duality gap between primal and dual functional for approximate solutions for this problem.
Variational methods for boundary value problems for systems of elliptic equations
Lavrent'ev, M A
2012-01-01
Famous monograph by a distinguished mathematician presents an innovative approach to classical boundary value problems. The treatment employs the basic scheme first suggested by Hilbert and developed by Tonnelli. 1963 edition.
On the Approximate Controllability of Some Semilinear Parabolic Boundary-Value Problems
International Nuclear Information System (INIS)
Diaz, J. I.; Henry, J.; Ramos, A. M.
1998-01-01
We prove the approximate controllability of several nonlinear parabolic boundary-value problems by means of two different methods: the first one can be called a Cancellation method and the second one uses the Kakutani fixed-point theorem
Directory of Open Access Journals (Sweden)
Benaouda Hedia
2015-07-01
Full Text Available In this paper we investigate the existence three positives solutions by using Leggett-Williams fixed point theorem in cones for three boundary value problem with fractional order and infinite delay.
The numerical solution of boundary value problems over an infinite domain
International Nuclear Information System (INIS)
Shepherd, M.; Skinner, R.
1976-01-01
A method is presented for the numerical solution of boundary value problems over infinite domains. An example that illustrates also the strength and accuracy of a numerical procedure for calculating Green's functions is described in detail
A fast direct solver for boundary value problems on locally perturbed geometries
Zhang, Yabin; Gillman, Adrianna
2018-03-01
Many applications including optimal design and adaptive discretization techniques involve solving several boundary value problems on geometries that are local perturbations of an original geometry. This manuscript presents a fast direct solver for boundary value problems that are recast as boundary integral equations. The idea is to write the discretized boundary integral equation on a new geometry as a low rank update to the discretized problem on the original geometry. Using the Sherman-Morrison formula, the inverse can be expressed in terms of the inverse of the original system applied to the low rank factors and the right hand side. Numerical results illustrate for problems where perturbation is localized the fast direct solver is three times faster than building a new solver from scratch.
Existence of Three Positive Solutions to Some p-Laplacian Boundary Value Problems
Directory of Open Access Journals (Sweden)
Moulay Rchid Sidi Ammi
2013-01-01
Full Text Available We obtain, by using the Leggett-Williams fixed point theorem, sufficient conditions that ensure the existence of at least three positive solutions to some p-Laplacian boundary value problems on time scales.
Solvability of Boundary Value Problem at Resonance for Third-Order ...
Indian Academy of Sciences (India)
Functional boundary value problem; topological degree; Carathéodory conditions; resonance. ... Department of Mathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang, Hebei Province 05003, People's Republic of China; School of Mathematical Science, Xuzhou Normal University, Xuzhou, Jiangsu ...
A combined analytic-numeric approach for some boundary-value problems
Directory of Open Access Journals (Sweden)
Mustafa Turkyilmazoglu
2016-02-01
Full Text Available A combined analytic-numeric approach is undertaken in the present work for the solution of boundary-value problems in the finite or semi-infinite domains. Equations to be treated arise specifically from the boundary layer analysis of some two and three-dimensional flows in fluid mechanics. The purpose is to find quick but accurate enough solutions. Taylor expansions at either boundary conditions are computed which are next matched to the other asymptotic or exact boundary conditions. The technique is applied to the well-known Blasius as well as Karman flows. Solutions obtained in terms of series compare favorably with the existing ones in the literature.
Conformal field theory of dipolar SLE with the Dirichlet boundary condition
Kang, Nam-Gyu; Tak, Hee-Joon
2013-12-01
We develop a version of dipolar conformal field theory based on the central charge modification of the Gaussian free field with the Dirichlet boundary condition and prove that correlators of certain family of fields in this theory are martingale-observables for dipolar SLE. We prove the restriction property of dipolar SLE(8/3) and Friedrich-Werner's formula in the dipolar case.
A numerical method for singular boundary value problem of ordinary differential equation
International Nuclear Information System (INIS)
He Qibing
1992-12-01
A numerical method, regularizing method, is suggested to treat the singular boundary problem of ordinary differential equation that is raised from controlled nuclear fusion science and other fields owing to their singular physical mechanism. This kind of singular boundary problem has been successfully solved by special treatment near the singular points and using difference method. This method overcomes difficulties in numerical calculation due to the singularity. The convergence results and numerical test are also given
A Boundary Element Solution to the Problem of Interacting AC Fields in Parallel Conductors
Directory of Open Access Journals (Sweden)
Einar M. Rønquist
1984-04-01
Full Text Available The ac fields in electrically insulated conductors will interact through the surrounding electromagnetic fields. The pertinent field equations reduce to the Helmholtz equation inside each conductor (interior problem, and to the Laplace equation outside the conductors (exterior problem. These equations are transformed to integral equations, with the magnetic vector potential and its normal derivative on the boundaries as unknowns. The integral equations are then approximated by sets of algebraic equations. The interior problem involves only unknowns on the boundary of each conductor, while the exterior problem couples unknowns from several conductors. The interior and the exterior problem are coupled through the field continuity conditions. The full set of equations is solved by standard Gaussian elimination. We also show how the total current and the dissipated power within each conductor can be expressed as boundary integrals. Finally, computational results for a sample problem are compared with a finite difference solution.
Belletête, J.; Gainutdinov, A. M.; Jacobsen, J. L.; Saleur, H.; Vasseur, R.
2017-12-01
The relationship between bulk and boundary properties is one of the founding features of (rational) conformal field theory (CFT). Our goal in this paper is to explore the possibility of having an equivalent relationship in the context of lattice models. We focus on models based on the Temperley-Lieb algebra, and use the concept of ‘braid translation’, which is a natural way, in physical terms, to ‘close’ an open spin chain by adding an interaction between the first and last spins using braiding to ‘bring’ them next to each other. The interaction thus obtained is in general non-local, but has the key feature that it is expressed solely in terms of the algebra for the open spin chain—the ‘ordinary’ Temperley-Lieb algebra and its blob algebra generalization. This is in contrast with the usual periodic spin chains which involve only local interactions, and are described by the periodic Temperley-Lieb algebra. We show that for the restricted solid-on-solid models, which are known to be described by minimal unitary CFTs (with central charge ccontent in terms of the irreducibles is the same, as well as the spectrum, but the detailed structure (like logarithmic coupling) is profoundly different. This carries over to the continuum limit. The situation is similar for the sl(2\\vert 1) case. The problem of relating bulk and boundary lattice models for LCFTs thus remains open.
Hydrodynamic theory of convective transport across a dynamically stabilized diffuse boundary layer
International Nuclear Information System (INIS)
Gerhauser, H.
1983-09-01
The diffuse boundary layer between miscible liquids is subject to Rayleigh-Taylor instabilities if the heavy fluid is supported by the light one. The resulting rapid interchange of the liquids can be suppressed by enforcing vertical oscillations on the whole system. This dynamic stabilization is incomplete and produces some peculiar novel transport phenomena such as decay off the density profile into several steps, periodic peeling of density sheets of the boundary layer and the appearance of steady vortex flow. The theory presented in this paper identifies the basic mechanism as formation of convective cells leading to enhanced diffusion, and explains previous experimental results with water and ZnJ 2 -solutions. A nonlinear treatment of the stationary convective flow problem gives the saturation amplitude of the ground mode and provides an upper bound for the maximum convective transport. The hydrodynamic model can be used for visualizing similar transport processes in the plasma of toroidal confinement devices such as sawtooth oscillations in soft disruptions of tokamak discharges and anomalous diffusion by excitation of convective cells. The latter process is investigated here in some detail, leading to the result that the maximum possible transport is of the order of Bohm diffusion. (orig.)
Some Problems with Neutrino Flavor Oscillation Theory
Williams, J M
2002-01-01
This poster session explains three theoretical shortcomings of the usual neutrino oscillation theory and illustrates that theory's empirical weakness. Heisenberg's uncertainty principle shows that a superposition of independent mass eigenstates can not be propagated as postulated to long distances. There is no justification for assuming that mass eigenstate phases may evolve independently during propagation while directions of propagation may not. A difference in masses among the propagating states, a hierarchy in masses among neutrinos, and a different mixture of states for different final flavors, is inconsistent with conservation of energy, momentum, or both. The uncertainty in mass state postulated to permit oscillation in flavor state is inadequate for flavor oscillation in any experiment yet performed. Even if viewed as a way of defining an arbitrary function to fit curves to the data, the usual oscillation theory may require four free parameters to fit five benchmark data points. An empirical fit is sh...
Open problems in Gaussian fluid queueing theory
Dȩbicki, K.; Mandjes, M.
2011-01-01
We present three challenging open problems that originate from the analysis of the asymptotic behavior of Gaussian fluid queueing models. In particular, we address the problem of characterizing the correlation structure of the stationary buffer content process, the speed of convergence to
Fostering Cultural Diversity: Problems of Access and Ethnic Boundary Maintenance
Maria T. Allison
1992-01-01
This presentation explores theoretical reasons for the underutilization of services, discusses types and problems of access which may be both inadvertent and institutionalized, and discusses policy implications of this work. Data suggest that individuals from distinct ethnic populations, particularly Hispanic, African-American, and Native American, tend to underutilize...
Sommerfeld's formula and uniqueness for the boundary value contact problems
Andronov, I V
1998-01-01
The expression of the acoustic field scattered on an infinite elastic plate with an arbitrary compact inhomogeneity in terms of the analytic continuation of its scattering diagram is found. This formula allows the uniqueness of the solution for the scattering problem to be proved. The connection of the formula with the Rayleigh hypothesis is discussed. (author). Letter-to-the-editor
Nonlinear second-order multivalued boundary value problems
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Very recently the periodic problem was revisited by Mawhin [26], who used the vector p-Laplacian differential operator. Our work here extends this recent paper of ...... 312. Leszek Gasinski and Nikolaos S Papageorgiou. We shall show that ̂A is maximal monotone. To this end, let ϕ : R. N −→ RN and. ̂ϕ : Lp([0,T ]; R.
Zieniuk, Eugeniusz; Kapturczak, Marta
2017-07-01
In recent studies of parametric integral equations system (PIES), the input data, necessary to define the shape of boundary, was defined in precise way. However, it is just assumption for further calculations. In practice even the most accurate measurement instruments generate errors. Therefore, in this paper we decide to propose the method for modelling and solving the boundary value problems with uncertainly defined shape of boundary. In view of advantages in precisely defined problems, we decide to generalize PIES method. To define the uncertainty of the input data we propose the modification of directed interval arithmetic.
On problems with displacement in boundary conditions for hyperbolic equation
Directory of Open Access Journals (Sweden)
Elena A. Utkina
2016-03-01
Full Text Available We consider three problems for hyperbolic equation on a plane in the characteristic domain. In these problems at least one of the conditions of the Goursat problem is replaced by nonlocal condition on the relevant characteristic. Non-local conditions are the linear combinations of the normal derivatives at points on opposite characteristics. In case of replacement of one condition we solve the problem by reduction to the Goursat problem for which it exists and is unique. To find the unknown Goursat condition author receives the integral equation, rewrite it in operational form and finds its unique solvability cases. To prove the unique solvability of the equation, the author shows the continuous linear operator and the fact, that some degree of the resulting operator is a contraction mapping. It is known that in this case the required Goursat condition can be written as Neumann series. We considered in detail only one of the tasks, but for both the unique solvability theorems are formulated. If the two conditions are changed, the uniqueness of the solution on the assumption that it exists, is proved by the method of a priori estimates. For this purpose, the inner product and the norm in $L_2$ are used. As a result, the conditions were obtained for the coefficients of a hyperbolic equation that ensure the uniqueness of the solution. An example is given, confirming that these conditions are essential. Namely, constructed an equation whose coefficients do not satisfy the conditions of the last theorem, given the conditions on the characteristics and nontrivial solution is built.
A modified quasi-boundary value method for an abstract ill-posed biparabolic problem
Directory of Open Access Journals (Sweden)
Besma Khelili
2017-12-01
Full Text Available In this paper, we are concerned with the problem of approximating a solution of an ill-posed biparabolic problem in the abstract setting. In order to overcome the instability of the original problem, we propose a modified quasi-boundary value method to construct approximate stable solutions for the original ill-posed boundary value problem. Finally, some other convergence results including some explicit convergence rates are also established under a priori bound assumptions on the exact solution. Moreover, numerical tests are presented to illustrate the accuracy and efficiency of this method.
On a boundary value problem in a strongly pseudoconvex domain
International Nuclear Information System (INIS)
Fadlalla, A.A.
1980-08-01
It has previously been shown that if G a subset of Csup(n) is a strongly pseudoconvex domain, then to every boundary point P an element of delta G there exists a function f(z) holomorphic in a neighbourhood of G-bar (the closure of G) such that |f(z)| assumes its maximum in G-bar at P and only at P. Now the following theorem is proved. Let G be a strongly pseudoconvex domain in Csup(n) and P, Q be elements of delta G, P not equal to Q. Then there exists a function f(z) holomorphic in a neighbourhood of G-bar, such that |f(P)|=|f(Q)|=Max|f(anti G)|=1, f(P) not equal to f(Q) and |f(T)|<1, for all T elements of G-bar - set (P,Q). This theorem is used to improve the results already obtained by the author concerning the Caratheodory metric and the Caratheodory limiting balls in G. Similar results do not exist if G is only pseudoconvex
Luo, Yuan; Tan, Meng-Chwan; Vasko, Petr; Zhao, Qin
2017-05-01
We perform a series of dimensional reductions of the 6d, \\mathcal{N} = (2, 0) SCFT on S 2 × Σ × I × S 1 down to 2d on Σ. The reductions are performed in three steps: (i) a reduction on S 1 (accompanied by a topological twist along Σ) leading to a supersymmetric Yang-Mills theory on S 2 × Σ × I, (ii) a further reduction on S 2 resulting in a complex Chern-Simons theory defined on Σ × I, with the real part of the complex Chern-Simons level being zero, and the imaginary part being proportional to the ratio of the radii of S 2 and S 1, and (iii) a final reduction to the boundary modes of complex Chern-Simons theory with the Nahm pole boundary condition at both ends of the interval I, which gives rise to a complex Toda CFT on the Riemann surface Σ. As the reduction of the 6d theory on Σ would give rise to an \\mathcal{N} = 2 supersymmetric theory on S 2 × I × S 1, our results imply a 4d-2d duality between four-dimensional \\mathcal{N} = 2 supersymmetric theory with boundary and two-dimensional complex Toda theory.
On Neumann boundary value problems for some quasilinear elliptic equations
Directory of Open Access Journals (Sweden)
Paul A. Binding
1997-01-01
Full Text Available function $a(x$ on the existence of positive solutions to the problem $$left{ eqalign{ -{ m div},(|abla u|^{p-2}abla u&= lambda a(x|u|^{p-2}u+b(x|u|^{gamma-2}u, quad xinOmega, cr x{partial u overpartial n}&=0, quad xinpartialOmega,,} ight. $$ where $Omega$ is a smooth bounded domain in $R^n$, $b$ changes sign, $1
problem has a positive solution. (ii if $int_Omega a(x, dx=0$, then the problem has a positive solution for small $lambda$ provided that $int_Omega b(x,dx<0$.
Valent, Tullio
1988-01-01
In this book I present, in a systematic form, some local theorems on existence, uniqueness, and analytic dependence on the load, which I have recently obtained for some types of boundary value problems of finite elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal generalization of three-dimensional elasticity. Such a generalization, be sides being quite spontaneous, allows us to consider a great many inter esting mathematical situations, and sometimes allows us to clarify certain aspects of the three-dimensional case. Part of the matter presented is unpublished; other arguments have been only partially published and in lesser generality. Note that I concentrate on simultaneous local existence and uniqueness; thus, I do not deal with the more general theory of exis tence. Moreover, I restrict my discussion to compressible elastic bodies and I do not treat unilateral problems. The clever use of the inverse function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 1957b]...
Theory of a curved planar waveguide with Robin boundary conditions.
Olendski, O; Mikhailovska, L
2010-03-01
A model of a thin straight strip with a uniformly curved section and with boundary requirements zeroing at the edges a linear superposition of the wave function and its normal derivative (Robin boundary condition) is analyzed theoretically within the framework of the linear Schrödinger equation and is applied to the study of the processes in the bent magnetic multilayers, superconducting films and metallic ferrite-filled waveguides. In particular, subband thresholds of the straight and curved parts of the film are calculated and analyzed as a function of the Robin parameter 1/Lambda , with Lambda being an extrapolation length entering Robin boundary condition. For the arbitrary Robin coefficients which are equal on the opposite interfaces of the strip and for all bend parameters the lowest-mode energy of the continuously curved duct is always smaller than its straight counterpart. Accordingly, the bound state below the fundamental propagation threshold of the straight arms always exists as a result of the bend. In terms of the superconductivity language it means an increased critical temperature of the curved film compared to its straight counterpart. Localized-level dependence on the parameters of the curve is investigated with its energy decreasing with increasing bend angle and decreasing bend radius. Conditions of the bound-state existence for the different Robin parameters on the opposite edges are analyzed too; in particular, it is shown that the bound state below the first transverse threshold of the straight arm always exists if the inner extrapolation length is not larger than the outer one. In the opposite case there is a range of the bend parameters where the curved film cannot trap the wave and form the localized mode; for example, for the fixed bend radius the bound state emerges from the continuum at some nonzero bend angle that depends on the difference of the two lengths Lambda at the opposite interfaces. Various transport properties of the film
RBF Multiscale Collocation for Second Order Elliptic Boundary Value Problems
Farrell, Patricio
2013-01-01
In this paper, we discuss multiscale radial basis function collocation methods for solving elliptic partial differential equations on bounded domains. The approximate solution is constructed in a multilevel fashion, each level using compactly supported radial basis functions of smaller scale on an increasingly fine mesh. On each level, standard symmetric collocation is employed. A convergence theory is given, which builds on recent theoretical advances for multiscale approximation using compactly supported radial basis functions. We are able to show that the convergence is linear in the number of levels. We also discuss the condition numbers of the arising systems and the effect of simple, diagonal preconditioners, now proving rigorously previous numerical observations. © 2013 Society for Industrial and Applied Mathematics.
A formulation with boundary integrals and solution optimization for a heat transfer inverse problem
International Nuclear Information System (INIS)
Honorio, Mario C.F.; Bezerra, Luciano M.
1997-01-01
This paper presents a boundary integral formulation in conjunction with optimization techniques for the solution of inverse thermal design problems. In this type of problems, sometimes it is necessary to determine the appropriate position and shape of an internal cooling/heating channel inside an object so that reference thermal boundary values could be obtained on the outer surface. An initial feasible position of the channel is first guessed by the user. The channel is defined in terms of design variables. The formulation tries to minimize an objective function which measures the difference between model and reference data. The program attempts to minimize the objective function in order to meet the over specified thermal boundary conditions on the outer surface. This minimization or optimization problem is a constrained problem since the cooling/heating channel must be inside the object. In the optimization process, the holes position is iteratively changed. Although more complex in terms of mathematical formulation. the boundary element method is particularly suited for this type of problem involving constant mesh updates. The Boundary Element Method formulation calculates the thermal response which is compared with reference data. The quasi-Newton search algorithm used for objective function optimization needs the response sensitivities with respect to the design variables. The sensitivities are calculated by finite differences and by implicit differentiation of the boundary element equations. Some numerical results are presented and discussed. (author). 10 refs., 8 figs., 2 tabs
Lau, Chun Sing
This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in
The large Reynolds number - Asymptotic theory of turbulent boundary layers.
Mellor, G. L.
1972-01-01
A self-consistent, asymptotic expansion of the one-point, mean turbulent equations of motion is obtained. Results such as the velocity defect law and the law of the wall evolve in a relatively rigorous manner, and a systematic ordering of the mean velocity boundary layer equations and their interaction with the main stream flow are obtained. The analysis is extended to the turbulent energy equation and to a treatment of the small scale equilibrium range of Kolmogoroff; in velocity correlation space the two-thirds power law is obtained. Thus, the two well-known 'laws' of turbulent flow are imbedded in an analysis which provides a great deal of other information.
Sayevand, K.; Pichaghchi, K.
2018-04-01
In this paper, we were concerned with the description of the singularly perturbed boundary value problems in the scope of fractional calculus. We should mention that, one of the main methods used to solve these problems in classical calculus is the so-called matched asymptotic expansion method. However we shall note that, this was not achievable via the existing classical definitions of fractional derivative, because they do not obey the chain rule which one of the key elements of the matched asymptotic expansion method. In order to accommodate this method to fractional derivative, we employ a relatively new derivative so-called the local fractional derivative. Using the properties of local fractional derivative, we extend the matched asymptotic expansion method to the scope of fractional calculus and introduce a reliable new algorithm to develop approximate solutions of the singularly perturbed boundary value problems of fractional order. In the new method, the original problem is partitioned into inner and outer solution equations. The reduced equation is solved with suitable boundary conditions which provide the terminal boundary conditions for the boundary layer correction. The inner solution problem is next solved as a solvable boundary value problem. The width of the boundary layer is approximated using appropriate resemblance function. Some theoretical results are established and proved. Some illustrating examples are solved and the results are compared with those of matched asymptotic expansion method and homotopy analysis method to demonstrate the accuracy and efficiency of the method. It can be observed that, the proposed method approximates the exact solution very well not only in the boundary layer, but also away from the layer.
The problem of the Grand Unification Theory
Treder, H.-J.
The evolution and fundamental questions of physical theories unifying the gravitational, electromagnetic, and quantum-mechanical interactions are explored, taking Pauli's aphorism as a motto: 'Let no man join what God has cast asunder.' The contributions of Faraday and Riemann, Lorentz, Einstein, and others are discussed, and the criterion of Pauli is applied to Grand Unification Theories (GUT) in general and to those seeking to link gravitation and electromagnetism in particular. Formal mathematical symmetry principles must be shown to have real physical relevance by predicting measurable phenomena not explainable without a GUT; these phenomena must be macroscopic because gravitational effects are to weak to be measured on the microscopic level. It is shown that empirical and theoretical studies of 'gravomagnetism', 'gravoelectricity', or possible links between gravoelectrity and the cosmic baryon assymmetry eventually lead back to basic questions which appear philosophical or purely mathematical but actually challenge physics to seek verifiable answers.
Two problems in thermal field theory
Indian Academy of Sciences (India)
F can be calculated perturbatively as a sum of vacuum ... F / F id eal d c b a. Figure 4. Results of the screened perturbative expansion for the free energy as a func- tion of the coupling constant in scalar field theory [8]. (a) and (b): first ... for the pressure of a SU(3) Yang–Mills gas just by introducing a mass in the propagator.
Psychoanalytic theory and the problem of creativity.
Fossi, G
1985-01-01
The current crisis of psychoanalysis also involves studies of various forms of creativity. After having pointed out the need for distinction between clinical-empirical theory and hypothetical theory (such as metapsychology) the author identifies and summarizes a number of trends of investigation as reported in our literature: libidinal-energetic, contenutistic (unconscious fantasies), anthropomorphic (of the ego), aggression-reparation, phenomenological, and object-relationship approaches. The role played by metapsychological concepts (the author, in agreement with those who consider them unacceptable, discusses some of the most well-known criticisms), and the confusion between theoretical levels are responsible for having made the psychoanalytical contribution entirely unsatisfactory at a higher explanatory level and for having hindered adequate reorganization of data of an empirical nature. After having examined several elements involved in creativity (symbolism, role of pathology and body experience, etc.), the author outlines a personal theoretical hypothesis of the structural type as a basis for the establishment of a clinical-empirical theory which, as regards research on creativity too, may constitute the chief field of investigation for psychoanalysis.
Boundary condition for Ginzburg-Landau theory of superconducting layers
Czech Academy of Sciences Publication Activity Database
Koláček, Jan; Lipavský, Pavel; Morawetz, K.; Brandt, E. H.
2009-01-01
Roč. 79, č. 17 (2009), 174510/1-174510/6 ISSN 1098-0121 R&D Projects: GA ČR GA202/08/0326; GA AV ČR IAA100100712 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * Ginzburg-Landau theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009
An arbitrary boundary with ghost particles incorporated in coupled FEM-SPH model for FSI problems
Long, Ting; Hu, Dean; Wan, Detao; Zhuang, Chen; Yang, Gang
2017-12-01
It is important to treat the arbitrary boundary of Fluid-Structure Interaction (FSI) problems in computational mechanics. In order to ensure complete support condition and restore the first-order consistency near the boundary of Smoothed Particle Hydrodynamics (SPH) method for coupling Finite Element Method (FEM) with SPH model, a new ghost particle method is proposed by dividing the interceptive area of kernel support domain into subareas corresponding to boundary segments of structure. The ghost particles are produced automatically for every fluid particle at each time step, and the properties of ghost particles, such as density, mass and velocity, are defined by using the subareas to satisfy the boundary condition. In the coupled FEM-SPH model, the normal and shear forces from a boundary segment of structure to a fluid particle are calculated through the corresponding ghost particles, and its opposite forces are exerted on the corresponding boundary segment, then the momentum of the present method is conservation and there is no matching requirements between the size of elements and the size of particles. The performance of the present method is discussed and validated by several FSI problems with complex geometry boundary and moving boundary.
Problems with the Younger Dryas Boundary (YDB) Impact Hypothesis
Boslough, M.
2009-12-01
One breakthrough of 20th-century Earth science was the recognition of impacts as an important geologic process. The most obvious result is a crater. There are more than 170 confirmed terrestrial impact structures with a non-uniform spatial distribution suggesting more to be found. Many have been erased by tectonics and erosion. Deep water impacts do not form craters, and craters in ice sheets disappear when the ice melts. There is growing speculation that such hidden impacts have caused frequent major environmental events of the Holocene, but this is inconsistent with the astronomically-constrained population of Earth-crossing asteroids. Impacts can have consequences much more significant than excavation of a crater. The K/T boundary mass extinction is attributed to the environmental effects of a major impact, and some researchers argue that other extinctions, abrupt climate changes, and even civilization collapses have resulted from impacts. Nuclear winter models suggest that 2-km diameter asteroids exceed a "global catastrophe threshold" by injecting sufficient dust into the stratosphere to cause short-term climate changes, but would not necessarily collapse most natural ecosystems or cause mass extinctions. Globally-catastrophic impacts recur on timescales of about one million years. The 1994 collision of Comet Shoemaker-Levy 9 with Jupiter led us recognize the significance of terrestrial airbursts caused by objects exploding violently in Earth’s atmosphere. We have invoked airbursts to explain rare forms of non-volcanic glasses and melts by using high-resolution computational models to improve our understanding of atmospheric explosions, and have suggested that multiple airbursts from fragmented impactors could be responsible for regional effects. Our models have been cited in support of the widely-publicized YDB impact hypothesis. Proponents claim that a broken comet exploded over North America, with some fragments cratering the Laurentide Ice Sheet. They
A Successful Senior Seminar: Unsolved Problems in Number Theory
Styer, Robert
2014-01-01
The "Unsolved Problems in Number Theory" book by Richard Guy provides nice problems suitable for a typical math major. We give examples of problems that have worked well in our senior seminar course and some nice results that senior math majors can obtain.
Applying Graph Theory to Problems in Air Traffic Management
Farrahi, Amir H.; Goldberg, Alan T.; Bagasol, Leonard N.; Jung, Jaewoo
2017-01-01
Graph theory is used to investigate three different problems arising in air traffic management. First, using a polynomial reduction from a graph partitioning problem, it isshown that both the airspace sectorization problem and its incremental counterpart, the sector combination problem are NP-hard, in general, under several simple workload models. Second, using a polynomial time reduction from maximum independent set in graphs, it is shown that for any fixed e, the problem of finding a solution to the minimum delay scheduling problem in traffic flow management that is guaranteed to be within n1-e of the optimal, where n is the number of aircraft in the problem instance, is NP-hard. Finally, a problem arising in precision arrival scheduling is formulated and solved using graph reachability. These results demonstrate that graph theory provides a powerful framework for modeling, reasoning about, and devising algorithmic solutions to diverse problems arising in air traffic management.
Behavior of boundary string field theory associated with integrable massless flow.
Fujii, A; Itoyama, H
2001-06-04
We put forward an idea that the boundary entropy associated with integrable massless flow of thermodynamic Bethe ansatz (TBA) is identified with tachyon action of boundary string field theory. We show that the temperature parametrizing a massless flow in the TBA formalism can be identified with tachyon energy for the classical action at least near the ultraviolet fixed point, i.e., the open string vacuum.
An extension of diffusion theory for thermal neutrons near boundaries
International Nuclear Information System (INIS)
Alvarez Rivas, J. L.
1963-01-01
The distribution of thermal neutron flux has been measured inside and outside copper rods of several diameters, immersed in water. It has been found that these distributions can be calculated by means of elemental diffusion theory if the value of the coefficient of diffusion is changed. this parameter is truly a diffusion coefficient, which now also depends on the diameter of the rod. Through a model an expression of this coefficient is introduced which takes account of the measurements of the author and of those reported in PIGC P/928 (1995), ANL-5872 (1959), DEGR 319 (D) (1961). This model could be extended also to plane geometry. (Author) 19 refs
A priori bounds for solutions of two-point boundary value problems using differential inequalities
International Nuclear Information System (INIS)
Vidossich, G.
1979-01-01
Two point boundary value problems for systems of differential equations are studied with a new approach based on differential inequalities of first order. This leads to the following results: (i) one-sided conditions are enough, in the sense that the inner product is substituted to the norm; (ii) the upper bound exists for practically any kind of equations and boundary value problem if the interval is sufficiently small since it depends on the Peano existence theorem; (iii) the bound seems convenient when the equation has some singularity in t as well as when sigular problems are considered. (author)
Azis, Moh. Ivan; Kasbawati; Haddade, Amiruddin; Astuti Thamrin, Sri
2018-03-01
A boundary element method (BEM) is obtained for solving a boundary value problem of homogeneous anisotropic media governed by diffusion-convection equation. The application of the BEM is shown for two particular pollutant transport problems of Tello river and Unhas lake in Makassar Indonesia. For the two particular problems a variety of the coefficients of diffusion and the velocity components are taken. The results show that the solutions vary as the parameters change. And this suggests that one has to be careful in measuring or determining the values of the parameters.
International Nuclear Information System (INIS)
Ziqi Sun
1993-01-01
During the past few years a considerable interest has been focused on the inverse boundary value problem for the Schroedinger operator with a scalar (electric) potential. The popularity gained by this subject seems to be due to its connection with the inverse scattering problem at fixed energy, the inverse conductivity problem and other important inverse problems. This paper deals with an inverse boundary value problem for the Schroedinger operator with vector (electric and magnetic) potentials. As in the case of the scalar potential, results of this study would have immediate consequences in the inverse scattering problem for magnetic field at fixed energy. On the other hand, inverse boundary value problems for elliptic operators are of independent interest. The study is partly devoted to the understanding of the inverse boundary value problem for a class of general elliptic operator of second order. Note that a self-adjoint elliptic operator of second order with Δ as its principal symbol can always be written as a Schroedinger operator with vector potentials
B-spline solution of a singularly perturbed boundary value problem arising in biology
International Nuclear Information System (INIS)
Lin Bin; Li Kaitai; Cheng Zhengxing
2009-01-01
We use B-spline functions to develop a numerical method for solving a singularly perturbed boundary value problem associated with biology science. We use B-spline collocation method, which leads to a tridiagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical result is found in good agreement with exact solution.
Yousef, Hamood Mohammed; Ismail, Ahmad Izani
2017-11-01
In this paper, Laplace Adomian decomposition method (LADM) was applied to solve Delay differential equations with Boundary Value Problems. The solution is in the form of a convergent series which is easy to compute. This approach is tested on two test problem. The findings obtained exhibit the reliability and efficiency of the proposed method.
Numerical analysis of fourth-order boundary value problems in fluid mechanics and mathematics
DEFF Research Database (Denmark)
Hosseinzadeh, Elham; Barari, Amin; Fouladi, Fama
2010-01-01
In this paper He's variational iteration method is used to solve some examples of linear and non-linear forth-order boundary value problems. The first problem compared with homotopy analysis method solution and the other ones with the exact solution. The results show the high accuracy and speed...
Numerical Analysis of Forth-Order Boundary Value Problems in Fluid Mechanics and Mathematics
DEFF Research Database (Denmark)
Hosseinzadeh, E.; Barari, Amin; Fouladi, F.
2011-01-01
In this paper He's variational iteration method is used to solve some examples of linear and non-linear forth-order boundary value problems. The first problem compared with homotopy analysis method solution and the other ones with the exact solution. The results show the high accuracy and speed...
Numerical solutions of a three-point boundary value problem with an ...
African Journals Online (AJOL)
Numerical solutions of a three-point boundary value problem with an integral condition for a third-order partial differential equation by using Laplace transform method Solutions numeriques d'un probleme pour une classe d'equations differentielles d'ordr.
Initial boundary value problems of nonlinear wave equations in an exterior domain
International Nuclear Information System (INIS)
Chen Yunmei.
1987-06-01
In this paper, we investigate the existence and uniqueness of the global solutions to the initial boundary value problems of nonlinear wave equations in an exterior domain. When the space dimension n >= 3, the unique global solution of the above problem is obtained for small initial data, even if the nonlinear term is fully nonlinear and contains the unknown function itself. (author). 10 refs
Trigonometric series adapted for the study of Neumann boundary-value problems of Lame systems
Directory of Open Access Journals (Sweden)
Boubakeur Merouani
2017-06-01
Full Text Available In this article, we study the solutions to Neumann boundary-value problems of Lame system in a sectorial domains. We study directly this problem, by using trigonometric series, without going through the Airy functions. Results using the Airy function are given in [11].
Assessment of a transitional boundary layer theory at low hypersonic Mach numbers
Shamroth, S. J.; Mcdonald, H.
1972-01-01
An investigation was carried out to assess the accuracy of a transitional boundary layer theory in the low hypersonic Mach number regime. The theory is based upon the simultaneous numerical solution of the boundary layer partial differential equations for the mean motion and an integral form of the turbulence kinetic energy equation which controls the magnitude and development of the Reynolds stress. Comparisions with experimental data show the theory is capable of accurately predicting heat transfer and velocity profiles through the transitional regime and correctly predicts the effects of Mach number and wall cooling on transition Reynolds number. The procedure shows promise of predicting the initiation of transition for given free stream disturbance levels. The effects on transition predictions of the pressure dilitation term and of direct absorption of acoustic energy by the boundary layer were evaluated.
Numerical solution of system of boundary value problems using B-spline with free parameter
Gupta, Yogesh
2017-01-01
This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.
Ensuring Well-Posedness by Analogy; Stokes Problem and Boundary Control for the Wave Equation
Glowinski, R.
1992-12-01
In this article we give a comparative discussion of the finite element approximation of two partial differential equation problems. These two problems which are apparantly quite unrelated are the Stokes problem for incompressible viscous flow and an exact boundary controllability problem for the wave equation. We show that straightforward discrete approximations to these problems yield approximate problems which are ill-posed. The analysis of the ill-posedness of the above problems shows an identical cause, namely the strong damping of the high frequency modes, beyond a critical wave number. From this analogy, a well-known cure for the discrete Stokes problem, i.e., using more accurate approximations for velocity than for pressure, provides a simple way to eliminate the ill-posedness of the discrete exact boundary controllability problem. Numerical examples concerning the control problem testify about the soundness of the new approach. To conclude this paper one takes advantage of the previous analysis to give a brief discussion of the wavelet approximation of the Stokes problem, for Dirichlet boundary conditions.
The Ritz Method for Boundary Problems with Essential Conditions as Constraints
Directory of Open Access Journals (Sweden)
Vojin Jovanovic
2016-01-01
Full Text Available We give an elementary derivation of an extension of the Ritz method to trial functions that do not satisfy essential boundary conditions. As in the Babuška-Brezzi approach boundary conditions are treated as variational constraints and Lagrange multipliers are used to remove them. However, we avoid the saddle point reformulation of the problem and therefore do not have to deal with the Babuška-Brezzi inf-sup condition. In higher dimensions boundary weights are used to approximate the boundary conditions, and the assumptions in our convergence proof are stated in terms of completeness of the trial functions and of the boundary weights. These assumptions are much more straightforward to verify than the Babuška-Brezzi condition. We also discuss limitations of the method and implementation issues that follow from our analysis and examine a number of examples, both analytic and numerical.
International Nuclear Information System (INIS)
Choi, Chang Yong
1999-01-01
This paper presents a study of the Dual Reciprocity Boundary Element Method (DRBEM) for the laminar heat convection problem in a concentric annulus with constant heat flux boundary condition. DRBEM is one of the most successful technique used to transform the domain integrals arising from the nonhomogeneous term of the poisson equation into equivalent boundary only integrals. This recently developed and highly efficient numerical method is tested for the solution accuracy of the fluid flow and heat transfer study in a concentric annulus. Since their exact solutions are available, DRBEM solutions are verified with different number of boundary element discretization and internal points. The results obtained in this study are discussed with the relative error percentage of velocity and temperature solutions, and potential applicability of the method for the more complicated heat convection problems with arbitrary duct geometries
A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems
Directory of Open Access Journals (Sweden)
S. S. Motsa
2013-01-01
Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.
Biophysics at the Boundaries: The Next Problem Sets
Skolnick, Malcolm
2009-03-01
The interface between physics and biology is one of the fastest growing subfields of physics. As knowledge of such topics as cellular processes and complex ecological systems advances, researchers have found that progress in understanding these and other systems requires application of more quantitative approaches. Today, there is a growing demand for quantitative and computational skills in biological research and the commercialization of that research. The fragmented teaching of science in our universities still leaves biology outside the quantitative and mathematical culture that is the foundation of physics. This is particularly inopportune at a time when the needs for quantitative thinking about biological systems are exploding. More physicists should be encouraged to become active in research and development in the growing application fields of biophysics including molecular genetics, biomedical imaging, tissue generation and regeneration, drug development, prosthetics, neural and brain function, kinetics of nonequilibrium open biological systems, metabolic networks, biological transport processes, large-scale biochemical networks and stochastic processes in biochemical systems to name a few. In addition to moving into basic research in these areas, there is increasing opportunity for physicists in industry beginning with entrepreneurial roles in taking research results out of the laboratory and in the industries who perfect and market the inventions and developments that physicists produce. In this talk we will identify and discuss emerging opportunities for physicists in biophysical and biotechnological pursuits ranging from basic research through development of applications and commercialization of results. This will include discussion of the roles of physicists in non-traditional areas apart from academia such as patent law, financial analysis and regulatory science and the problem sets assigned in education and training that will enable future
Classical open-string field theory: A∞-algebra, renormalization group and boundary states
International Nuclear Information System (INIS)
Nakatsu, Toshio
2002-01-01
We investigate classical bosonic open-string field theory from the perspective of the Wilson renormalization group of world-sheet theory. The microscopic action is identified with Witten's covariant cubic action and the short-distance cut-off scale is introduced by length of open-string strip which appears in the Schwinger representation of open-string propagator. Classical open-string field theory in the title means open-string field theory governed by a classical part of the low energy action. It is obtained by integrating out suitable tree interactions of open-strings and is of non-polynomial type. We study this theory by using the BV formalism. It turns out to be deeply related with deformation theory of A ∞ -algebra. We introduce renormalization group equation of this theory and discuss it from several aspects. It is also discussed that this theory is interpreted as a boundary open-string field theory. Closed-string BRST charge and boundary states of closed-string field theory in the presence of open-string field play important roles
Polynomial Solutions of the Boundary Value Problems for the Poisson Equation in a Layer
Directory of Open Access Journals (Sweden)
O. D. Algazin
2017-01-01
Full Text Available It is well known that the Dirichlet problem for the Laplace equation in a ball has a unique polynomial solution (harmonic polynomial in the case if the given boundary value is the trace of an arbitrary polynomial on the sphere. S.M.Nikol'skii generalized this result in the case of a boundary value problem of the first kind for a linear differential self-adjoint operator of the order 2l with constant coefficients (in particular polyharmonic and for a domain that is an ellipsoid in Rn. For a polyharmonic equation in a ball (homogeneous and inhomogeneous, V.V. Karachik proposed the Almansi formula-based algorithm to construct a polynomial solution of the Dirichlet problem.The paper considers the Poisson equation with the polynomial right-hand side in a multidimensional infinite layer bounded by two hyper-planes. Shows that the Dirichlet boundary value problem and the mixed Dirichlet-Neumann boundary value problem with polynomial boundary conditions have a unique solution in the class of functions of polynomial growth, and this solution is a polynomial. Gives an algorithm for constructing this polynomial solution and considers examples. In particular, presents formulas to give exact values of certain integrals (including multi-dimensional ones and sums of trigonometric series.
Boundary string field theory and an open string one-loop
International Nuclear Information System (INIS)
Lee, Tae Jin; Viswanathan, K. S.; Yang, Yi
2003-01-01
We discuss the open string one-loop partition function in the tachyon condensation background of an unstable D-brane system. We evaluate the partition function by using the boundary-state formulation and find that it is in complete agreement with the result obtained in the boundary string field theory. This suggests that the open string higher loop diagrams may be produced consistently by using a closed string field theory, where the D-brane plays the role of a source for the closed string field
Numerical Solution of Seventh-Order Boundary Value Problems by a Novel Method
Directory of Open Access Journals (Sweden)
Mustafa Inc
2014-01-01
Full Text Available We demonstrate the efficiency of reproducing kernel Hilbert space method on the seventh-order boundary value problems satisfying boundary conditions. These results have been compared with the results that are obtained by variational iteration method (VIM, homotopy perturbation method (HPM, Adomian decomposition method (ADM, variation of parameters method (VPM, and homotopy analysis method (HAM. Obtained results show that our method is very effective.
On nonlinear boundary value problems with deviating arguments and discontinuous right hand side
Directory of Open Access Journals (Sweden)
B. C. Dhage
1993-01-01
Full Text Available In this paper we shall study the existence of the extremal solutions of a nonlinear boundary value problem of a second order differential equation with general Dirichlet/Neumann form boundary conditions. The right hand side of the differential equation is assumed to contain a deviating argument, and it is allowed to possess discontinuities in all the variables. The proof is based on a generalized iteration method.
Chen, G.; Zheng, Q.; Coleman, M.; Weerakoon, S.
1983-01-01
This paper briefly reviews convergent finite difference schemes for hyperbolic initial boundary value problems and their applications to boundary control systems of hyperbolic type which arise in the modelling of vibrations. These difference schemes are combined with the primal and the dual approaches to compute the optimal control in the unconstrained case, as well as the case when the control is subject to inequality constraints. Some of the preliminary numerical results are also presented.
String theory and the dark glueball problem
Halverson, James; Nelson, Brent D.; Ruehle, Fabian
2017-02-01
We study cosmological constraints on dark pure Yang-Mills sectors. Dark glueballs are overproduced for large regions of ultraviolet parameter space. The problem may be alleviated in two ways: via a large preferential reheating into the visible sector, motivating certain inflation or modulus decay models, or via decays into axions or moduli, which are strongly constrained by nucleosynthesis and Δ Neff bounds. String models frequently have multiple hidden Yang-Mills sectors, which are subject to even stronger constraints due to the existence of multiple dark glueballs.
Problems in the theory of modular forms
Murty, M Ram; Graves, Hester
2016-01-01
This book introduces the reader to the fascinating world of modular forms through a problem-solving approach. As such, besides researchers, the book can be used by the undergraduate and graduate students for self-instruction. The topics covered include q-series, the modular group, the upper half-plane, modular forms of level one and higher level, the Ramanujan τ-function, the Petersson inner product, Hecke operators, Dirichlet series attached to modular forms and further special topics. It can be viewed as a gentle introduction for a deeper study of the subject. Thus, it is ideal for non-experts seeking an entry into the field. .
Boundary Value Problems for a Class of Sequential Integrodifferential Equations of Fractional Order
Directory of Open Access Journals (Sweden)
Bashir Ahmad
2013-01-01
Full Text Available We investigate the existence of solutions for a sequential integrodifferential equation of fractional order with some boundary conditions. The existence results are established by means of some standard tools of fixed point theory. An illustrative example is also presented.
Problems in particle theory. Technical report - 1993--1994
International Nuclear Information System (INIS)
Adler, S.L.; Wilczek, F.
1994-10-01
This report is a progress report on the work of two principal investigators in the broad area of particle physics theory, covering their personal work, that of their coworkers, and their proposed work for the future. One author has worked in the past on various topics in field theory and particle physics, among them current algebras, the physics of neutrino induced reactions, quantum electrodynamics (including strong magnetic field processes), the theory of the axial-vector current anomaly, topics in quantum gravity, and nonlinear models for quark confinement. While much of his work has been analytical, all of the projects listed above (except for the work on gravity) had phases which required considerable computer work as well. Over the next several years, he proposes to continue or initiate research on the following problems: (1) Acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, and more generally, new research in computational neuroscience and pattern recognition. (2) Construction of quaternionic generalizations of complex quantum mechanics and field theory, and their application to composite models of quarks and leptons, and to the problem of unifying quantum theories of matter with general relativity. One author has worked on problems in exotic quantum statistics and its applications to condensed matter systems. His work has also continued on the quantum theory of black holes. This has evolved toward understanding properties of quantum field theory and string theory in incomplete regions of flat space
Cadel, Daniel R.; Zhang, Di; Lowe, K. Todd; Paterson, Eric G.
2018-04-01
Wind turbines with thick blade profiles experience turbulent, periodic approach flow, leading to unsteady blade loading and large torque fluctuations on the turbine drive shaft. Presented here is an experimental study of a surrogate problem representing some key aspects of the wind turbine unsteady fluid mechanics. This experiment has been designed through joint consideration by experiment and computation, with the ultimate goal of numerical model development for aerodynamics in unsteady and turbulent flows. A cylinder at diameter Reynolds number of 65,000 and Strouhal number of 0.184 is placed 10.67 diameters upstream of a NACA 63215b airfoil with chord Reynolds number of 170,000 and chord-reduced frequency of k=2π fc/2/V=1.5. Extensive flow field measurements using particle image velocimetry provide a number of insights about this flow, as well as data for model validation and development. Velocity contours on the airfoil suction side in the presence of the upstream cylinder indicate a redistribution of turbulent normal stresses from transverse to streamwise, consistent with rapid distortion theory predictions. A study of the boundary layer over the suction side of the airfoil reveals very low Reynolds number turbulent mean streamwise velocity profiles. The dominance of the high amplitude large eddy passages results in a phase lag in streamwise velocity as a function of distance from the wall. The results and accompanying description provide a new test case incorporating moderate-reduced frequency inflow for computational model validation and development.
International Nuclear Information System (INIS)
Zhu, Changjiang; Duan, Renjun
2003-01-01
This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation
Reconsidering the boundary conditions for a dynamic, transient mode I crack problem
Leise, Tanya
2008-11-01
A careful examination of a dynamic mode I crack problem leads to the conclusion that the commonly used boundary conditions do not always hold in the case of an applied crack face loading, so that a modification is required to satisfy the equations. In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This does not occur in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem that is important during the time interval immediately following the application of crack face loading. We demonstrate why the usual boundary conditions lead to a prediction of crack face interpenetration, and then examine how to modify the boundary condition for a semi-infinite crack with a cohesive zone. Numerical simulations illustrate the resulting approach.
Towards quantum gravity via quantum field theory. Problems and perspectives
Energy Technology Data Exchange (ETDEWEB)
Fredenhagen, Klaus [II. Institut fuer Theoretische Physik, Universitaet Hamburg (Germany)
2016-07-01
General Relativity is a classical field theory; the standard methods for constructing a corresponding quantum field theory, however, meet severe difficulties, in particular perturbative non-renormalizability and the problem of background independence. Nevertheless, modern approaches to quantum field theory have significantly lowered these obstacles. On the side of non-renormalizability, this is the concept of effective theories, together with indications for better non-perturbative features of the renormalization group flow. On the side of background independence the main progress comes from an improved understanding of quantum field theories on generic curved spacetimes. Combining these informations, a promising approach to quantum gravity is an expansion around a classical solution which then is a quantum field theory on a given background, augmented by an identity which expresses independence against infinitesimal shifts of the background. The arising theory is expected to describe small corrections to classical general relativity. Inflationary cosmology is expected to arise as a lowest order approximation.
A mixed semilinear parabolic problem from combustion theory
Directory of Open Access Journals (Sweden)
Claudia Lederman
2001-01-01
Full Text Available We prove existence, uniqueness, and regularity of the solution to a mixed initial boundary-value problem. The equation is semilinear uniformly parabolic with principal part in divergence form, in a non-cylindrical space-time domain. Here we extend our results in cite{LVWmix} to a more general domain. As in cite{LVWmix}, we assume only mild regularity on the coefficients, on the non-cylindrical part of the lateral boundary (where the Dirichlet data are given, and on the Dirichlet data.
Theory of lepton scattering: Progress and problems
International Nuclear Information System (INIS)
Riska, D.O.
1995-01-01
The long sought goal of discriminating between different realistic nucleon-nucleon interaction models by studying their effects on the electromagnetic and weak reaction observables of the few-nucleon systems is being reached. For 2- and 3-nucleon systems open-quotes exactclose quotes wavefunctions for both the bound- and scattering states can be constructed with realistic interaction models. Modern efficient numerical algorithms permit the goal to be reached in the case of the α particle as well. The sensitivity of the observables to the interaction model appears both through the wavefunctions and the exchange current operators that have to be constructed to be consistent with the interaction. While the electromagnetic exchange current operators are dominated by pion exchange, the charge component of the axial current is significantly affected by short range exchange currents, which contribute strongly to pion production rates near threshold. Important open questions concern the form of three-nucleon interaction, the associated exchange currents and the calculation of lepton scattering observables in a covariant way with realistic interaction models. The conceptually most important open problem is the achievement of consistency between the constituent quark model description of the baryons and the meson exchange model of the nuclear forces and currents
Directory of Open Access Journals (Sweden)
Sherif Amirov
2017-08-01
Full Text Available The recent work on the solvability of the boundary value problem for the nonlinear analogue of the Boussinesq equation has been further extended to focus on the characteristics of the solution. Since this type of equation does not have a known analytical solution for arbitrary boundary conditions, the problem has been solved numerically. The stability of the solution and the effect of the input function on the stability have been investigated from the physics point of view. For the special case of a discontinuous function at the right hand side of the equation, the solution has been analyzed around the discontinuity points.
OpenMP for 3D potential boundary value problems solved by PIES
KuŻelewski, Andrzej; Zieniuk, Eugeniusz
2016-06-01
The main purpose of this paper is examination of an application of modern parallel computing technique OpenMP to speed up the calculation in the numerical solution of parametric integral equations systems (PIES). The authors noticed, that solving more complex boundary problems by PIES sometimes requires large computing time. This paper presents the use of OpenMP and fast C++ linear algebra library Armadillo for boundary value problems modelled by 3D Laplace's equation and solved using PIES. The testing example shows that the use of mentioned technologies significantly increases speed of calculations in PIES.
Boundary value problem for phase retrieval from unidirectional X-ray differential phase images.
Gasilov, Sergei; Mittone, Alberto; Horng, Annie; Bravin, Alberto; Baumbach, Tilo; Geith, Tobias; Reiser, Maximilian; Coan, Paola
2015-05-18
The phase retrieval problem can be reduced to the second order partial differential equation. In order to retrieve the absolute values of the X-ray phase and to minimize the reconstruction artifacts we defined the mixed inhomogeneous boundary condition using available a priori information about the sample. Finite element technique was used to solve the boundary value problem. The approach is validated on numerical and experimental phantoms. In order to demonstrate a possible application of the method, we have processed an entire tomographic set of differential phase images and estimated the magnitude of the refractive index decrement for some tissues inside complex biomedical samples.
A New technique of Initial Boundary Value Problems Using Homotopy Analysis Method
Wang, D. M.; Zhang, W.; Yao, M. H.; Liu, Y. L.
2017-10-01
In this paper, a new homotopy analysis technique which is applying to solve initial boundary value problems of partial differential equations by admitted both the initial and boundary conditions in the recursive relation to obtain a good approximate solution for the problem is proposed. The proposed iterative scheme finds the solution without any discretization, linearization, or restrictive assumptions. Furthermore, we can easily control and adjust the convergence domain and rate of series solutions by the convergence control parameter. The effectiveness of the approach is verified by several examples.
Algebraic structures in generalized Clifford analysis and applications to boundary value problems
Directory of Open Access Journals (Sweden)
José Játem
2015-12-01
Full Text Available The present article has a threefold purpose: First it is a survey of the algebraic structures of generalized Clifford-type algebras and shows the main results of the corresponding Clifford-type analysis and its application to boundary value problems known so far. Second it is aimed to implement algorithms to provide the fast and accurate computation of boundary value problems for inhomogeneous equations in the framework of the generalized Clifford analysis. Finally it is also aimed to encourage the development of a generalized discrete Clifford analysis.
POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS
Directory of Open Access Journals (Sweden)
FAOUZI HADDOUCHI
2015-11-01
Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.
Initial-boundary value problems associated with the Ablowitz-Ladik system
Xia, Baoqiang; Fokas, A. S.
2018-02-01
We employ the Ablowitz-Ladik system as an illustrative example in order to demonstrate how to analyze initial-boundary value problems for integrable nonlinear differential-difference equations via the unified transform (Fokas method). In particular, we express the solutions of the integrable discrete nonlinear Schrödinger and integrable discrete modified Korteweg-de Vries equations in terms of the solutions of appropriate matrix Riemann-Hilbert problems. We also discuss in detail, for both the above discrete integrable equations, the associated global relations and the process of eliminating of the unknown boundary values.
Schoenfeld's problem solving theory in a student controlled learning environment
Harskamp, E.; Suhre, C.
2007-01-01
This paper evaluates the effectiveness of a student controlled computer program for high school mathematics based on instruction principles derived from Schoenfeld's theory of problem solving. The computer program allows students to choose problems and to make use of hints during different episodes
Optimization of the solution of the problem of scheduling theory ...
African Journals Online (AJOL)
This article describes the genetic algorithm used to solve the problem related to the scheduling theory. A large number of different methods is described in the scientific literature. The main issue that faced the problem in question is that it is necessary to search the optimal solution in a large search space for the set of ...
Analyzing Traffic Problem Model With Graph Theory Algorithms
Tan, Yong
2014-01-01
This paper will contribute to a practical problem, Urban Traffic. We will investigate those features, try to simplify the complexity and formulize this dynamic system. These contents mainly contain how to analyze a decision problem with combinatorial method and graph theory algorithms; how to optimize our strategy to gain a feasible solution through employing other principles of Computer Science.
Eigenvalue Problems for Systems of Nonlinear Boundary Value Problems on Time Scales
Directory of Open Access Journals (Sweden)
Henderson J
2007-01-01
Full Text Available Values of λ are determined for which there exist positive solutions of the system of dynamic equations, , , for , satisfying the boundary conditions, , where is a time scale. A Guo-Krasnosel'skii fixed point-theorem is applied.
Stability of boundary layers with porous suction strips: Experiment and theory
Reynolds, G. A.; Saric, W. S.; Reed, H. L.; Nayfeh, A. H.
1982-01-01
Low turbulence tunnel experiments on the stability and transition of 2 D boundary layers on flat plates with and without suction are described. A number of general suction cases are discussed. Test results showed that the maximum stabilization occurred when the suction was moved toward the Branch I neutral point. An analytical study of the stability of two dimensional, incompressible boundary layer flows over plates with suction through porous strips was performed. The mean flow was calculated using linearized triple deck, closed form solutions. The stability results of the triple deck theory are shown to be in good agreement with those of the interacting boundary layers. An analytical optimization scheme for the suction configuration was developd. Numerical calculations were performed corresponding to the experimental configurations. In each case, the theory correctly predicts the experimental results.
Sataøen, Hogne Lerøy
2018-01-01
Higher education institutions (HEIs) in Norway have been subjected to several reforms in recent decades. There are transformed relationships between institutions and their environment, and higher educations' third mission is emphasized. To improve our understanding of HEIs' third mission, this paper employs boundary object theory, enabling us to…
Numerical model of a non-steady atmospheric planetary boundary layer, based on similarity theory
DEFF Research Database (Denmark)
Zilitinkevich, S.S.; Fedorovich, E.E.; Shabalova, M.V.
1992-01-01
A numerical model of a non-stationary atmospheric planetary boundary layer (PBL) over a horizontally homogeneous flat surface is derived on the basis of similarity theory. The two most typical turbulence regimes are reproduced: one corresponding to a convectively growing PBL and another correspon...
Fortuin, K.P.J.; Bush, S.R.
2010-01-01
Abstract: Purpose – The purpose of this paper is to evaluate and analyse the didactic model of a university course, which concerns an applied academic consultancy project and which focuses on skills related to crossing boundaries between disciplines and cultures, and between theory and practice.
A selection of problems in the theory of numbers popular lectures in mathematics
Sierpinski, Waclaw; Stark, M
1964-01-01
A Selection of Problems in the Theory of Numbers focuses on mathematical problems within the boundaries of geometry and arithmetic, including an introduction to prime numbers. This book discusses the conjecture of Goldbach; hypothesis of Gilbreath; decomposition of a natural number into prime factors; simple theorem of Fermat; and Lagrange's theorem. The decomposition of a prime number into the sum of two squares; quadratic residues; Mersenne numbers; solution of equations in prime numbers; and magic squares formed from prime numbers are also elaborated in this text. This publication is a good
Variational methods for problems from plasticity theory and for generalized Newtonian fluids
Fuchs, Martin
2000-01-01
Variational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of the stress tensor is emphasized by studying the dual variational problem in appropriate function spaces. The main results describe the analytic properties of weak solutions, e.g. differentiability of velocity fields and continuity of stresses. The monograph addresses researchers and graduate students interested in applications of variational and PDE methods in the mechanics of solids and fluids.
A Cp-theory problem book functional equivalencies
Tkachuk, Vladimir V
2016-01-01
This fourth volume in Vladimir Tkachuk's series on Cp-theory gives reasonably complete coverage of the theory of functional equivalencies through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory, the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research. The book presents complete and up-to-date information on the preservation of topological properties by homeomorphisms of function spaces. An exhaustive theory of t-equivalent, u-equivalent and l-equivalent spaces is developed from scratch. The reader will also find introductions to the theory of uniform spaces, the theory of locally convex spaces, as well as the theory of inverse systems and dimension theory. Moreover, the inclusion of Kolmogorov's solution of Hilbert's Problem 13 is included as it is needed for the presentation of the theory of l-equivalent spaces. This volume contains the most important classical re...
Simulation of Thermal Flow Problems via a Hybrid Immersed Boundary-Lattice Boltzmann Method
Directory of Open Access Journals (Sweden)
J. Wu
2012-01-01
Full Text Available A hybrid immersed boundary-lattice Boltzmann method (IB-LBM is presented in this work to simulate the thermal flow problems. In current approach, the flow field is resolved by using our recently developed boundary condition-enforced IB-LBM (Wu and Shu, (2009. The nonslip boundary condition on the solid boundary is enforced in simulation. At the same time, to capture the temperature development, the conventional energy equation is resolved. To model the effect of immersed boundary on temperature field, the heat source term is introduced. Different from previous studies, the heat source term is set as unknown rather than predetermined. Inspired by the idea in (Wu and Shu, (2009, the unknown is calculated in such a way that the temperature at the boundary interpolated from the corrected temperature field accurately satisfies the thermal boundary condition. In addition, based on the resolved temperature correction, an efficient way to compute the local and average Nusselt numbers is also proposed in this work. As compared with traditional implementation, no approximation for temperature gradients is required. To validate the present method, the numerical simulations of forced convection are carried out. The obtained results show good agreement with data in the literature.
What is Time in Some Modern Physics Theories: Interpretation Problems
Directory of Open Access Journals (Sweden)
Karpenko Ivan A.
2016-03-01
Full Text Available The article deals with the problem of time in the context of several theories of modem physics. This fundamental concept inevitably arises in physical theories, but so far there is no adequate description of it in the philosophy of science. In the theory of relativity, quantum field theory. Standard Model of particle physics, theory of loop quantum gravity, superstring theory and other most recent theories the idea of time is shown explicitly or not. Sometimes, such as in the special theory of relativity, it plays a significant role and sometimes it does not. But anyway it exists and is implied by the content of the theory, which in some cases directly includes its mathematical tools. Fundamental difference of space-time processes in microcosm and macrocosm is of particular importance for solving the problem. In this regard, a need to understand the time in the way it appears in modem physics, to describe it in the language of philosophy arises (satisfactory for time description mathematical tools also do not exist. This will give an opportunity to get closer to the answer on question of time characteristics. And even if we do not obtain the exact answer, we will still be able to formulate the right question about its nature. For this purpose, the present research carries out analysis of the key theories of modern physics with regard to historical and scientific, historical and philosophical perspectives, hi some cases, this gives an opportunity to detect the succession of the associated with time perception ideas, their development, as well as the origination of fundamentally new ones. During the analysis, the conect characteristics of time are formulated from the point of view of physical theory and the attempt to state the nature of time is made. On the ground of conducted research, the conclusions about current state of the problem and its future solution perspectives are drawn.
Through an activity theory lens: Conceptualizing service learning as 'boundary work'
Directory of Open Access Journals (Sweden)
Janice McMillan
2009-11-01
Full Text Available Michael Gibbons (2005 has spoken about the need to re-imagine the relationship between higher education and society and he calls for the emergence of a ‘new social contract’. In particular he highlights three elements of this new form of engagement: contextualization, boundary objects, and transaction spaces or boundary zones. It is here that my paper is located – in the conceptualization of the ‘boundary zone’ at the nexus of higher education and society, with a focus on service learning as practice. In the literature on higher education there appears to be little evidence describing ways of conceptualizing and understanding the boundary zone itself. Most of the service learning research literature for instance, looks either at the university side of the relationship or at the impact on the community (and even then only in very few cases. In order to better understand the ‘push and pull’ of service learning, we need to better understand better what happens in the transaction/boundary zone in the first instance. In order to do this, we need to develop conceptual tools to illuminate the complex practices that occur at this nexus. Drawing on situated learning, post Vygotskian theory and activity theory in particular, I develop a framework for service learning conceived as ‘boundary work’. This framework illuminates inherent contradictions in these trans-boundary practices, and the argument is therefore that unless we understand these practices better and in more nuanced ways, we are in no position to improve them and consequently our understandings of this form of educational practice remain unaltered. Finally, by raising a number of questions about boundary practices at the end of the paper, I provide some ways of taking this conceptualization project further.
The Laplace equation boundary value problems on bounded and unbounded Lipschitz domains
Medková, Dagmar
2018-01-01
This book is devoted to boundary value problems of the Laplace equation on bounded and unbounded Lipschitz domains. It studies the Dirichlet problem, the Neumann problem, the Robin problem, the derivative oblique problem, the transmission problem, the skip problem and mixed problems. It also examines different solutions - classical, in Sobolev spaces, in Besov spaces, in homogeneous Sobolev spaces and in the sense of non-tangential limit. It also explains relations between different solutions. The book has been written in a way that makes it as readable as possible for a wide mathematical audience, and includes all the fundamental definitions and propositions from other fields of mathematics. This book is of interest to research students, as well as experts in partial differential equations and numerical analysis.
Directory of Open Access Journals (Sweden)
Kyncl Martin
2017-01-01
Full Text Available We work with the system of partial differential equations describing the non-stationary compressible turbulent fluid flow. It is a characteristic feature of the hyperbolic equations, that there is a possible raise of discontinuities in solutions, even in the case when the initial conditions are smooth. The fundamental problem in this area is the solution of the so-called Riemann problem for the split Euler equations. It is the elementary problem of the one-dimensional conservation laws with the given initial conditions (LIC - left-hand side, and RIC - right-hand side. The solution of this problem is required in many numerical methods dealing with the 2D/3D fluid flow. The exact (entropy weak solution of this hyperbolical problem cannot be expressed in a closed form, and has to be computed by an iterative process (to given accuracy, therefore various approximations of this solution are being used. The complicated Riemann problem has to be further modified at the close vicinity of boundary, where the LIC is given, while the RIC is not known. Usually, this boundary problem is being linearized, or roughly approximated. The inaccuracies implied by these simplifications may be small, but these have a huge impact on the solution in the whole studied area, especially for the non-stationary flow. Using the thorough analysis of the Riemann problem we show, that the RIC for the local problem can be partially replaced by the suitable complementary conditions. We suggest such complementary conditions accordingly to the desired preference. This way it is possible to construct the boundary conditions by the preference of total values, by preference of pressure, velocity, mass flow, temperature. Further, using the suitable complementary conditions, it is possible to simulate the flow in the vicinity of the diffusible barrier. On the contrary to the initial-value Riemann problem, the solution of such modified problems can be written in the closed form for some
The boundary element method applied to 3D magneto-electro-elastic dynamic problems
Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.
2017-11-01
Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.
Bulk Renormalization Group Flows and Boundary States in Conformal Field Theories
Directory of Open Access Journals (Sweden)
John Cardy
2017-08-01
Full Text Available We propose using smeared boundary states $e^{-\\tau H}|\\cal B\\rangle$ as variational approximations to the ground state of a conformal field theory deformed by relevant bulk operators. This is motivated by recent studies of quantum quenches in CFTs and of the entanglement spectrum in massive theories. It gives a simple criterion for choosing which boundary state should correspond to which combination of bulk operators, and leads to a rudimentary phase diagram of the theory in the vicinity of the RG fixed point corresponding to the CFT, as well as rigorous upper bounds on the universal amplitude of the free energy. In the case of the 2d minimal models explicit formulae are available. As a side result we show that the matrix elements of bulk operators between smeared Ishibashi states are simply given by the fusion rules of the CFT.
Student Solutions Manual to Boundary Value Problems and Partial Differential Equations
Powers, David L
2005-01-01
This student solutions manual accompanies the text, Boundary Value Problems and Partial Differential Equations, 5e. The SSM is available in print via PDF or electronically, and provides the student with the detailed solutions of the odd-numbered problems contained throughout the book.Provides students with exercises that skillfully illustrate the techniques used in the text to solve science and engineering problemsNearly 900 exercises ranging in difficulty from basic drills to advanced problem-solving exercisesMany exercises based on current engineering applications
A.R. Ansari; B. Hossain; B. Koren (Barry); G.I. Shishkin (Gregori)
2007-01-01
textabstractWe investigate the model problem of flow of a viscous incompressible fluid past a symmetric curved surface when the flow is parallel to its axis. This problem is known to exhibit boundary layers. Also the problem does not have solutions in closed form, it is modelled by boundary-layer
Existence of three solutions for impulsive nonlinear fractional boundary value problems
Directory of Open Access Journals (Sweden)
Shapour Heidarkhani
2017-01-01
Full Text Available In this work we present new criteria on the existence of three solutions for a class of impulsive nonlinear fractional boundary-value problems depending on two parameters. We use variational methods for smooth functionals defined on reflexive Banach spaces in order to achieve our results.
Directory of Open Access Journals (Sweden)
A. Guezane-Lakoud
2012-01-01
Full Text Available This work is devoted to the existence of positive solutions for a fractional boundary value problem with fractional integral deviating argument. The proofs of the main results are based on Guo-Krasnoselskii fixed point theorem and Avery and Peterson fixed point theorem. Two examples are given to illustrate the obtained results, ending the paper.
L^p-continuity of solutions to parabolic free boundary problems
Directory of Open Access Journals (Sweden)
Abdeslem Lyaghfouri
2015-07-01
Full Text Available In this article, we consider a class of parabolic free boundary problems. We establish some properties of the solutions, including L^infinity-regularity in time and a monotonicity property, from which we deduce strong L^p-continuity in time.
Geopotential coefficient determination and the gravimetric boundary value problem: A new approach
Sjoeberg, Lars E.
1989-01-01
New integral formulas to determine geopotential coefficients from terrestrial gravity and satellite altimetry data are given. The formulas are based on the integration of data over the non-spherical surface of the Earth. The effect of the topography to low degrees and orders of coefficients is estimated numerically. Formulas for the solution of the gravimetric boundary value problem are derived.
The Method of Subsuper Solutions for Weighted p(r-Laplacian Equation Boundary Value Problems
Directory of Open Access Journals (Sweden)
Zhimei Qiu
2008-10-01
Full Text Available This paper investigates the existence of solutions for weighted p(r-Laplacian ordinary boundary value problems. Our method is based on Leray-Schauder degree. As an application, we give the existence of weak solutions for p(x-Laplacian partial differential equations.
Remark on periodic boundary-value problem for second-order linear ordinary differential equations
Czech Academy of Sciences Publication Activity Database
Dosoudilová, M.; Lomtatidze, Alexander
2018-01-01
Roč. 2018, č. 13 (2018), s. 1-7 ISSN 1072-6691 Institutional support: RVO:67985840 Keywords : second-order linear equation * periodic boundary value problem * unique solvability Subject RIV: BA - General Math ematics OBOR OECD: Applied math ematics Impact factor: 0.954, year: 2016 https://ejde. math .txstate.edu/Volumes/2018/13/abstr.html
A New Numerical Algorithm for Two-Point Boundary Value Problems
Guo, Lihua; Wu, Boying; Zhang, Dazhi
2014-01-01
We present a new numerical algorithm for two-point boundary value problems. We first present the exact solution in the form of series and then prove that the n-term numerical solution converges uniformly to the exact solution. Furthermore, we establish the numerical stability and error analysis. The numerical results show the effectiveness of the proposed algorithm.
Boundary-value problems for first and second order functional differential inclusions
Directory of Open Access Journals (Sweden)
Shihuang Hong
2003-03-01
Full Text Available This paper presents sufficient conditions for the existence of solutions to boundary-value problems of first and second order multi-valued differential equations in Banach spaces. Our results obtained using fixed point theorems, and lead to new existence principles.
On the Existence of Positive Solutions for a Fourth-Order Boundary Value Problem
Directory of Open Access Journals (Sweden)
Yumei Zou
2017-01-01
Full Text Available By using the method of order reduction and the fixed point index, the existence of positive solutions for a fourth-order boundary value problem is studied. We provide conditions under which the existence results hold. Such conditions are related to the first eigenvalue corresponding to the relevant linear differential equation with dependence on the derivatives of unknown function.
Kruyt, Nicolaas P.; Cuvelier, C.; Segal, A.; van der Zanden, J.
1988-01-01
In this paper a total linearization method is derived for solving steady viscous free boundary flow problems (including capillary effects) by the finite element method. It is shown that the influence of the geometrical unknown in the totally linearized weak formulation can be expressed in terms of
A free-boundary value problem related to auto ignition of ...
African Journals Online (AJOL)
We examine a free boundary value problem related to auto ignition of combustible fluid in insulation materials. The criteria for the existence of similarity solution of the model equations are established. The conditions for the existence of unique solution are also stated. The numerical results which show the influence of ...
Kot, V. A.
2017-11-01
The modern state of approximate integral methods used in applications, where the processes of heat conduction and heat and mass transfer are of first importance, is considered. Integral methods have found a wide utility in different fields of knowledge: problems of heat conduction with different heat-exchange conditions, simulation of thermal protection, Stefantype problems, microwave heating of a substance, problems on a boundary layer, simulation of a fluid flow in a channel, thermal explosion, laser and plasma treatment of materials, simulation of the formation and melting of ice, inverse heat problems, temperature and thermal definition of nanoparticles and nanoliquids, and others. Moreover, polynomial solutions are of interest because the determination of a temperature (concentration) field is an intermediate stage in the mathematical description of any other process. The following main methods were investigated on the basis of the error norms: the Tsoi and Postol’nik methods, the method of integral relations, the Gudman integral method of heat balance, the improved Volkov integral method, the matched integral method, the modified Hristov method, the Mayer integral method, the Kudinov method of additional boundary conditions, the Fedorov boundary method, the method of weighted temperature function, the integral method of boundary characteristics. It was established that the two last-mentioned methods are characterized by high convergence and frequently give solutions whose accuracy is not worse that the accuracy of numerical solutions.
Directory of Open Access Journals (Sweden)
Cornelis van der Mee
2005-01-01
Full Text Available We present the complete version including proofs of the results announced in [van der Mee C., Pivovarchik V.: A Sturm-Liouville spectral problem with boundary conditions depending on the spectral parameter. Funct. Anal. Appl. 36 (2002, 315–317 [Funkts. Anal. Prilozh. 36 (2002, 74–77 (Russian
Positive solutions of multi-point boundary value problem of fractional differential equation
Directory of Open Access Journals (Sweden)
De-xiang Ma
2015-07-01
Full Text Available By means of two fixed-point theorems on a cone in Banach spaces, some existence and multiplicity results of positive solutions of a nonlinear fractional differential equation boundary value problem are obtained. The proofs are based upon some properties of Green’s function, which are also the key of the paper.
Czech Academy of Sciences Publication Activity Database
Lomtatidze, Alexander
2016-01-01
Roč. 67, č. 1 (2016), s. 1-129 ISSN 1512-0015 Institutional support: RVO:67985840 Keywords : periodic boundary value problem * positive solution * singular equation Subject RIV: BA - General Mathematics http://rmi.tsu.ge/jeomj/memoirs/vol67/abs67-1.htm
BOUNDARY VALUE PROBLEM FOR A LOADED EQUATION ELLIPTIC-HYPERBOLIC TYPE IN A DOUBLY CONNECTED DOMAIN
Directory of Open Access Journals (Sweden)
O.Kh. Abdullaev
2014-06-01
Full Text Available We study the existence and uniqueness of the solution of one boundary value problem for the loaded elliptic-hyperbolic equation of the second order with two lines of change of type in double-connected domain. Similar results have been received by D.M.Kuryhazov, when investigated domain is one-connected.
Czech Academy of Sciences Publication Activity Database
Mukhigulashvili, Sulkhan; Půža, B.
2015-01-01
Roč. 2015, January (2015), s. 17 ISSN 1687-2770 Institutional support: RVO:67985840 Keywords : higher order nonlinear functional-differential equations * two-point right-focal boundary value problem * strong singularity Subject RIV: BA - General Mathematics Impact factor: 0.642, year: 2015 http://link.springer.com/article/10.1186%2Fs13661-014-0277-1
Directory of Open Access Journals (Sweden)
Samira Hamani
2010-01-01
Full Text Available In this article, the authors establish sufficient conditions for the existence of solutions for a class of boundary value problem for fractional differential inclusions involving the Caputo fractional derivative and nonlinear integral conditions. Both cases of convex and nonconvex valued right hand sides are considered. The topological structure of the set of solutions also examined.
L1-Solutions of Boundary Value Problems for Implicit Fractional Order Differential Equations
Directory of Open Access Journals (Sweden)
Mouffak Benchohra
2015-12-01
Full Text Available The aim of this paper is to present new results on the existence of solutions for a class of boundary value problem for fractional order implicit differential equations involving the Caputo fractional derivative. Our results are based on Schauder's fixed point theorem and the Banach contraction principle fixed point theorem.
Infinitely Many Solutions for a Boundary Value Problem with Discontinuous Nonlinearities
Directory of Open Access Journals (Sweden)
2009-03-01
Full Text Available The existence of infinitely many solutions for a Sturm-Liouville boundary value problem, under an appropriate oscillating behavior of the possibly discontinuous nonlinear term, is obtained. Several special cases and consequences are pointed out and some examples are presented. The technical approach is mainly based on a result of infinitely many critical points for locally Lipschitz functions.
Remark on periodic boundary-value problem for second-order linear ordinary differential equations
Czech Academy of Sciences Publication Activity Database
Dosoudilová, M.; Lomtatidze, Alexander
2018-01-01
Roč. 2018, č. 13 (2018), s. 1-7 ISSN 1072-6691 Institutional support: RVO:67985840 Keywords : second-order linear equation * periodic boundary value problem * unique solvability Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.954, year: 2016 https://ejde.math.txstate.edu/Volumes/2018/13/abstr.html
Directory of Open Access Journals (Sweden)
Archana Chauhan
2012-12-01
Full Text Available In this article, we establish a general framework for finding solutions for impulsive fractional integral boundary-value problems. Then, we prove the existence and uniqueness of solutions by applying well known fixed point theorems. The obtained results are illustrated with an example for their feasibility.
Czech Academy of Sciences Publication Activity Database
Mukhigulashvili, Sulkhan
-, č. 35 (2015), s. 23-50 ISSN 1126-8042 Institutional support: RVO:67985840 Keywords : higher order functional differential equations * Dirichlet boundary value problem * strong singularity Subject RIV: BA - General Mathematics http://ijpam.uniud.it/online_issue/201535/03-Mukhigulashvili.pdf
Initial boundary value problem for a system in elastodynamics with viscosity
Directory of Open Access Journals (Sweden)
Kayyunnapara Thomas Joseph
2005-12-01
Full Text Available In this paper we prove existence of global solutions to boundary-value problems for two systems with a small viscosity coefficient and derive estimates uniform in the viscosity parameter. We do not assume any smallness conditions on the data.
Directory of Open Access Journals (Sweden)
Jian Liu
2013-09-01
Full Text Available In this article, we consider the free boundary value problem for one-dimensional compressible bipolar Navier-Stokes-Possion (BNSP equations with density-dependent viscosities. For general initial data with finite energy and the density connecting with vacuum continuously, we prove the global existence of the weak solution. This extends the previous results for compressible NS [27] to NSP.
Existence of solutions for a boundary problem involving p(x-biharmonic operator
Directory of Open Access Journals (Sweden)
Abdel Rachid El Amrouss
2013-01-01
Full Text Available In this paper, we establish the existence of at least three solutions to a boundary problem involving the p(x-biharmonic operator. Our technical approach is based on theorem obtained by B. Ricceri's variational principale and local mountain pass theorem without (Palais.Smale condition.
Fourth-Order Four-Point Boundary Value Problem: A Solutions Funnel Approach
Directory of Open Access Journals (Sweden)
Panos K. Palamides
2012-01-01
Full Text Available We investigate the existence of positive or a negative solution of several classes of four-point boundary-value problems for fourth-order ordinary differential equations. Although these problems do not always admit a (positive Green's function, the obtained solution is still of definite sign. Furthermore, we prove the existence of an entire continuum of solutions. Our technique relies on the continuum property (connectedness and compactness of the solutions funnel (Kneser's Theorem, combined with the corresponding vector field.
Numerical solution of the right boundary condition inverse problem for the Black-Scholes equation
Georgiev, Slavi G.; Vulkov, Lubin G.
2017-12-01
In this work we report the development of an algorithm to solve inverse problems of determining the right boundary condition according to a measurement inside a truncated domain for the Black-Scholes equation. The difference schemes for the direct and inverse problems are derived on non-uniform Tavella-Randall grids. We propose and discuss results of computational experiments for several European options.
Boundary Value Problems for a Super-Sublinear Asymmetric Oscillator: The Exact Number of Solutions
Directory of Open Access Journals (Sweden)
Armands Gritsans
2013-01-01
Full Text Available Properties of asymmetric oscillator described by the equation (i, where and , are studied. A set of such that the problem (i, (ii, and (iii have a nontrivial solution, is called α-spectrum. We give full description of α-spectra in terms of solution sets and solution surfaces. The exact number of nontrivial solutions of the two-parameter Dirichlet boundary value problem (i, and (ii is given.
Existence and uniqueness for a two-point interface boundary value problem
Directory of Open Access Journals (Sweden)
Rakhim Aitbayev
2013-10-01
Full Text Available We obtain sufficient conditions, easily verifiable, for the existence and uniqueness of piecewise smooth solutions of a linear two-point boundary-value problem with general interface conditions. The coefficients of the differential equation may have jump discontinuities at the interface point. As an example, the conditions obtained are applied to a problem with typical interface such as perfect contact, non-perfect contact, and flux jump conditions.
Yan, Zhenya
2017-05-01
We extend the idea of the Fokas unified transform to investigate the initial-boundary value problem for the integrable spin-1 Gross-Pitaevskii equations with a 4 × 4 Lax pair on the half-line. The solution of this system can be expressed in terms of the solution of a 4 × 4 matrix Riemann-Hilbert (RH) problem formulated in the complex k-plane. The relevant jump matrices of the RH problem can be explicitly found using the two spectral functions s(k) and S(k), which can be defined by the initial data, the Dirichlet-Neumann boundary data at x = 0. The global relation is established between the two dependent spectral functions. The general mappings between Dirichlet and Neumann boundary values are analyzed in terms of the global relation. These results may be of the potential significance in both spinor Bose-Einstein condensates and the theory of multi-component integrable systems.
A General Theory of Markovian Time Inconsistent Stochastic Control Problems
DEFF Research Database (Denmark)
Björk, Tomas; Murgochi, Agatha
We develop a theory for stochastic control problems which, in various ways, are time inconsistent in the sense that they do not admit a Bellman optimality principle. We attach these problems by viewing them within a game theoretic framework, and we look for Nash subgame perfect equilibrium points....... For a general controlled Markov process and a fairly general objective functional we derive an extension of the standard Hamilton-Jacobi-Bellman equation, in the form of a system of on-linear equations, for the determination for the equilibrium strategy as well as the equilibrium value function. All known...... examples of time inconsistency in the literature are easily seen to be special cases of the present theory. We also prove that for every time inconsistent problem, there exists an associated time consistent problem such that the optimal control and the optimal value function for the consistent problem...
International Nuclear Information System (INIS)
Barucq, Helene; Bekkey, Chokri; Djellouli, Rabia
2004-01-01
We present a general procedure based on the pseudo-differential calculus for deriving artificial boundary conditions for an eigenvalue problem that characterizes the propagation of guided modes in optical waveguides. This new approach allows the construction of local conditions that (a) are independent of the frequency regime, (b) preserve the sparsity pattern of the finite element discretization, and (c) are applicable to arbitrarily shaped convex artificial boundaries. The last feature has the potential for reducing the size of the computational domain. Numerical results are presented to highlight the potential of conditions of order 1/2 and 1, for improving significantly the computational efficiency of finite element methods for the solution of optical waveguide problems
Directory of Open Access Journals (Sweden)
Yanmei Sun
2012-01-01
Full Text Available By using the Leggett-Williams fixed theorem, we establish the existence of multiple positive solutions for second-order nonhomogeneous Sturm-Liouville boundary value problems with linear functional boundary conditions. One explicit example with singularity is presented to demonstrate the application of our main results.
Square matrices of order 2 theory, applications, and problems
Pop, Vasile
2017-01-01
This unique and innovative book presents an exciting and complete detail of all the important topics related to the theory of square matrices of order 2. The readers exploring every detailed aspect of matrix theory are gently led toward understanding advanced topics. They will follow every notion of matrix theory with ease, accumulating a thorough understanding of algebraic and geometric aspects of matrices of order 2. The prime jewel of this book is its offering of an unusual collection of problems, theoretically motivated, most of which are new, original, and seeing the light of publication for the first time in the literature. Nearly all of the exercises are presented with detailed solutions and vary in difficulty from easy to more advanced. Many problems are particularly challenging. These, and not only these, invite the reader to unleash their creativity and research capabilities and to discover their own methods of attacking a problem. Matrices have a vast practical importance to mathematics, science, a...
Problems of the π meson-nucleus interaction theory
International Nuclear Information System (INIS)
Kopaleishvili, T.I.
1984-01-01
The theory of multiple scattering as applied to PI-meson scattering on nuclei is outlined on the base of optical potential method: first in neglecting the real absorption of a pion by a nucleus and then for the case when this effect is taken into account. The pion interaction with a deuteron is considered both neglecting the pion absorption channel (the relativisitic problem of three bodies) and with account of the absorption channels and pion emission (in this case the problem is solved within the frames of the channel coupling theory for the pion-two nucleus system and the system of two nucleons). Approximate or model solutions to the problem of elastic pion-nuclear scattering primarily in the range of (3.3)-resonance are presented. The formulated theory permits to uniquely describe the observed processes caused by the strong pion interaction with a two-nucleon system
Solvability of second-order boundary-value problems at resonance involving integral conditions
Directory of Open Access Journals (Sweden)
Yujun Cui
2012-03-01
Full Text Available This article concerns the second-order differential equation with integral boundary conditions $$displaylines{ x''(t=f(t,x(t,x'(t,quad tin (0,1,cr x(0=int_0^1x(sdalpha(s,quad x(1=int_0^1x(sdeta(s. }$$ Under the resonance conditions, we construct a projector and then applying coincidence degree theory to establish the existence of solutions.
Diagrammatics lectures on selected problems in condensed matter theory
Sadovskii, Michael V
2006-01-01
The introduction of quantum field theory methods has led to a kind of "revolution" in condensed matter theory. This resulted in the increased importance of Feynman diagrams or diagram technique. It has now become imperative for professionals in condensed matter theory to have a thorough knowledge of this method.There are many good books that cover the general aspects of diagrammatic methods. At the same time, there has been a rising need for books that describe calculations and methodical "know how" of specific problems for beginners in graduate and postgraduate courses. This unique collection
The finite section method and problems in frame theory
DEFF Research Database (Denmark)
Christensen, Ole; Strohmer, T.
2005-01-01
The finite section method is a convenient tool for approximation of the inverse of certain operators using finite-dimensional matrix techniques. In this paper we demonstrate that the method is very useful in frame theory: it leads to an efficient approximation of the inverse frame operator and also...... solves related computational problems in frame theory. In the case of a frame which is localized w.r.t. an orthonormal basis we are able to estimate the rate of approximation. The results are applied to the reproducing kernel frame appearing in the theory for shift-invariant spaces generated by a Riesz...
Theory of elasticity and thermal stresses explanations, problems and solutions
Eslami, M Reza; Ignaczak, Józef; Noda, Naotake; Sumi, Naobumi; Tanigawa, Yoshinobu
2013-01-01
This book contains the elements of the theory and the problems of Elasticity and Thermal Stresses with full solutions. The emphasis is placed on problems and solutions and the book consists of four parts: one part is on The Mathematical Theory of Elasticity, two parts are on Thermal Stresses and one part is on Numerical Methods. The book is addressed to higher level undergraduate students, graduate students and engineers and it is an indispensable companion to all who study any of the books published earlier by the authors. This book links the three previously published books by the authors into one comprehensive entity.
On the microeconomic problems studied by portfolio theory
Nikonov, Oleg; Medvedeva, Marina
2012-09-01
In the paper we consider economically motivated problems, which are treated with the help of methods of portfolio theory that goes back to the papers by H. Markowitz [1] and J. Tobin [2]. We show that the portfolio theory initially developed for risky securities (stocks) could be applied to other objects. In the present paper we consider several situations where such an application is reasonable and seems to be fruitful. Namely, we consider the problems of constructing the efficient portfolio of banking services and the portfolio of counteragents of a firm.
A Cp-theory problem book compactness in function spaces
Tkachuk, Vladimir V
2015-01-01
This third volume in Vladimir Tkachuk's series on Cp-theory problems applies all modern methods of Cp-theory to study compactness-like properties in function spaces and introduces the reader to the theory of compact spaces widely used in Functional Analysis. The text is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research covering a wide variety of topics in Cp-theory and general topology at the professional level. The first volume, Topological and Function Spaces © 2011, provided an introduction from scratch to Cp-theory and general topology, preparing the reader for a professional understanding of Cp-theory in the last section of its main text. The second volume, Special Features of Function Spaces © 2014, continued from the first, giving reasonably complete coverage of Cp-theory, systematically introducing each of the major topics and providing 500 carefully selected problems and exercises with complete solutions. This third volume is self-contained...
Bogan, Yu A.
2017-10-01
By means of a new approach, the general boundary value problem for a higher order elliptic equation with two independent variables, and a normal set of boundary conditions and simple complex characteristics is reduced to the Fredholm system of integral equations in a bounded region with a smooth boundary.
Some open problems in random matrix theory and the theory of integrable systems
Deift, Percy
2007-01-01
We describe a list of open problems in random matrix theory and integrable systems which was presented at the conference ``Integrable Systems, Random Matrices, and Applications'' at the Courant Institute in May 2006.
Directory of Open Access Journals (Sweden)
Alsaidi M. Altaher
2012-01-01
Full Text Available Classical wavelet thresholding methods suffer from boundary problems caused by the application of the wavelet transformations to a finite signal. As a result, large bias at the edges and artificial wiggles occur when the classical boundary assumptions are not satisfied. Although polynomial wavelet regression and local polynomial wavelet regression effectively reduce the risk of this problem, the estimates from these two methods can be easily affected by the presence of correlated noise and outliers, giving inaccurate estimates. This paper introduces two robust methods in which the effects of boundary problems, outliers, and correlated noise are simultaneously taken into account. The proposed methods combine thresholding estimator with either a local polynomial model or a polynomial model using the generalized least squares method instead of the ordinary one. A primary step that involves removing the outlying observations through a statistical function is considered as well. The practical performance of the proposed methods has been evaluated through simulation experiments and real data examples. The results are strong evidence that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating the effects of outliers and correlated noise.
A new approach to the solution of boundary value problems involving complex configurations
Rubbert, P. E.; Bussoletti, J. E.; Johnson, F. T.; Sidwell, K. W.; Rowe, W. S.; Samant, S. S.; Sengupta, G.; Weatherill, W. H.; Burkhart, R. H.; Woo, A. C.
1986-01-01
A new approach for solving certain types of boundary value problems about complex configurations is presented. Numerical algorithms from such diverse fields as finite elements, preconditioned Krylov subspace methods, discrete Fourier analysis, and integral equations are combined to take advantage of the memory, speed and architecture of current and emerging supercomputers. Although the approach has application to many branches of computational physics, the present effort is concentrated in areas of Computational Fluid Dynamics (CFD) such as steady nonlinear aerodynamics, time harmonic unsteady aerodynamics, and aeroacoustics. The most significant attribute of the approach is that it can handle truly arbitrary boundary geometries and eliminates the difficult task of generating surface fitted grids.
A coupled BEM-FEM method for finite strain magneto-elastic boundary-value problems
Nedjar, B.
2017-05-01
The first objective of this contribution is the formulation of nonlinear problems in magneto-elasticity involving finite geometry of the surrounding free space. More specifically for the magnetic part of the problem, the surrounding free space is described by means of a boundary integral equation for which boundary elements are used that are appropriately coupled with the finite element discretization used inside the material. The second objective is to develop a numerical strategy to solve the strongly coupled magneto-mechanics problem at hand. Herein we provide a staggered scheme consisting of a magnetostatic resolution employing the above coupled BEM-FEM procedure at fixed deformation, followed by a mechanical resolution at fixed magnetic fields. This decoupled method renders the whole solution strategy very appealing since, among others, the first BEM-FEM resolution is linear for some prototype models, and the remaining mechanical resolution is analogous to nowadays classical nonlinear elastostatic problems in the finite strain range. Some nonlinear boundary-value problems are simulated to demonstrate the applicability of the proposed framework.
Problem of the Moving Boundary in Continuous Casting Solved by The Analytic-Numerical Method
Directory of Open Access Journals (Sweden)
Grzymkowski R.
2013-03-01
Full Text Available Mathematical modeling of thermal processes combined with the reversible phase transitions of type: solid phase - liquid phase leads to formulation of the parabolic or elliptic moving boundary problem. Solution of such defined problem requires, most often, to use some sophisticated numerical techniques and far advanced mathematical tools. The paper presents an analytic-numerical method, especially attractive from the engineer’s point of view, applied for finding the approximate solutions of the selected class of problems which can be reduced to the one-phase solidification problem of a plate with the unknown a priori, varying in time boundary of the region in which the solution is sought. Proposed method is based on the known formalism of initial expansion of a sought function, describing the field of temperature, into the power series, some coefficients of which are determined with the aid of boundary conditions, and on the approximation of a function defining the freezing front location with the broken line, parameters of which are determined numerically. The method represents a combination of the analytical and numerical techniques and seems to be an effective and relatively easy in using tool for solving problems of considered kind.
Problem of the Moving Boundary in Continuous Casting Solved by the Analytic-Numerical Method
Directory of Open Access Journals (Sweden)
R. Grzymkowski
2013-01-01
Full Text Available Mathematical modeling of thermal processes combined with the reversible phase transitions of type: solid phase – liquid phase leads to formulation of the parabolic or elliptic moving boundary problem. Solution of such defined problem requires, most often, to use some sophisticated numerical techniques and far advanced mathematical tools. The paper presents an analytic-numerical method, especially attractive from the engineer’s point of view, applied for finding the approximate solutions of the selected class of problems which can be reduced to the one-phase solidification problem of a plate with the unknown a priori, varying in time boundary of the region in which the solution is sought. Proposed method is based on the known formalism of initial expansion of a sought function, describing the field of temperature, into the power series, some coefficients of which are determined with the aid of boundary conditions, and on the approximation of a function defining the freezing front location with the broken line, parameters of which are determined numerically. The method represents a combination of the analytical and numerical techniques and seems to be an effective and relatively easy in using tool for solving problems of considered kind.
New method for solving the bending problem of rectangular plates with mixed boundary conditions
Directory of Open Access Journals (Sweden)
Liu Xin Min
2016-01-01
Full Text Available A new method is used to solve the rectangular plate bending problem with mixed boundary conditions. The method overcomes the complicated derivation of the classical solution by Fourth-order differential problem into integrating question. Under uniform loading rectangular plate bending problem with one side fixed the opposite side half simply supported half fixed the other two sides free rectangular plate, one side simply supported the opposite side half simply supported half fixed the other two sides free rectangular plate is systematically solved. According to the actual boundary conditions of the rectangular plate, the corresponding characteristic equation can easily be set up. It is presented deflection curve equation and the numerical calculation. By compared the results of the equation to the finite element program, we are able to demonstrate the correctness of the method. So the method not only has certain theoretical value, but also can be directly applied to engineering practice.
Lakin, W. D.
1986-01-01
Integrating and differentiating matrices allow the numerical integration and differential of functions whose values are known at points of a discrete grid. Previous derivations of these matrices were restricted to one dimensional grids or to rectangular grids with uniform spacing in at least one direction. Integrating and differentiating matrices were developed for grids with nonuniform spacing in both directions. The use of these matrices as operators to reformulate boundary value problems on rectangular domains as matrix problems for a finite dimensional solution vector is considered. The method requires nonuniform grids which include near boundary points. An eigenvalue problem for the transverse vibrations of a simply supported rectangular plate is solved to illustrate the method.
Lakin, W. D.
1986-01-01
Integrating and differentiating matrices allow the numerical integration and differential of functions whose values are known at points of a discrete grid. Previous derivations of these matrices were restricted to one dimensional grids or to rectangular grids with uniform spacing in at least one direction. Integrating and differentiating matrices were developed for grids with nonuniform spacing in both directions. The use of these matrices as operators to reformulate boundary value problems on rectangular domains as matrix problems for a finite dimensional solution vector is considered. The method requires nonuniform grids which include near boundary points. An eigenvalue problem for the transverse vibrations of a simply supported rectangular plate is solved to illustrate the method.
Leise, Tanya L.
2009-08-19
We consider the problem of the dynamic, transient propagation of a semi-infinite, mode I crack in an infinite elastic body with a nonlinear, viscoelastic cohesize zone. Our problem formulation includes boundary conditions that preclude crack face interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation is preceeded by significant crazing in a thin region surrounding the crack tip. We present a combined analytical/numerical solution method that involves reducing the problem to a Dirichlet-to-Neumann map along the crack face plane, resulting in a differo-integral equation relating the displacement and stress along the crack faces and within the cohesive zone. © 2009 Springer Science+Business Media B.V.
Energy Technology Data Exchange (ETDEWEB)
Reinhardt, Hans-Juergen, E-mail: reinhardt@mathematik.uni-siegen.de [Department of Mathematics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Str. 3, D-57072 Siegen (Germany)
2011-04-01
In this paper singularly perturbed parabolic initial-boundary value problems are considered which, in addition, are illposed. The latter means that at one end of the 1-d spatial domain two conditions (for the solution and its spatial derivative) are given while on the other end the corresponding quantities are to be determined. It is well-known that such problems are illposed in the mathematical sense. Here, in addition, boundary layers may occur which make the problems more difficult. For relatively simple examples numerical experiments have been carried out and numerical results are shown. The Conjugate Gradient Methods is used to find the desired quantities iteratively. It will be explained what has to be done in any iteration step. A regularisation is performed by means of discretization and by determining an optimal final iteration step via a stopping rule.
Schoonhoven, Clausia Bird
1981-01-01
Discusses problems in contingency theory, which relates organizational structure to the tasks performed and the information needed. Analysis of data from 17 hospitals suggests that traditional contingency theory underrepresents the complexity of relations among technological uncertainty, structure, and organizational effectiveness. (Author/RW)
Simulation of unilateral contact problems departing from the classical boundary problems
International Nuclear Information System (INIS)
Frey, S.L.; Sampaio, R.; Gama, R.M.S. da.
1989-08-01
A numerical algorithm is proposed for simulating unilateral contact problems under the classical elasticity point of view. This simple algorithm may be employed by engineers with a minimum knowledge on classical elasticity. (A.C.A.S.) [pt
Few-Body Problem: Theory and Computer Simulations
Flynn, Chris
A conference held in honour of the 60th birthday of Professor Mauri Valtonen in Turku, Finland, 4th-9th July 2005. The conference's major themes were the few-body problem in celestial mechanics and its numerical study; the theory of few-body escape; dynamics of multiple stars; computer simulations versus observations; planetary systems and few-body dynamics, and chaos in the few-body problem.
Three-space problems in Banach space theory
Castillo, Jesús M F
1997-01-01
This book on Banach space theory focuses on what have been called three-space problems. It contains a fairly complete description of ideas, methods, results and counterexamples. It can be considered self-contained, beyond a course in functional analysis and some familiarity with modern Banach space methods. It will be of interest to researchers for its methods and open problems, and to students for the exposition of techniques and examples.
Eigenvalues and symmetric positive solutions for a three-point boundary-value problem
Directory of Open Access Journals (Sweden)
Yongping Sun
2005-11-01
Full Text Available In this paper, we consider the second-order three-point boundary-value problem $$displaylines{ u''(t+f(t,u,u',u''=0,quad 0leq tleq 1,cr u(0=u(1=alpha u(eta. }$$ Under suitable conditions and using Schauder fixed point theorem, we prove the existence of at least one symmetric positive solution. We also study the existence of positive eigenvalues for this problem. We emphasis the highest-order derivative occurs nonlinearly in our problem.
Eigenvalue Problems for Systems of Nonlinear Boundary Value Problems on Time Scales
Directory of Open Access Journals (Sweden)
S. K. Ntouyas
2008-01-01
Full Text Available Values of ÃŽÂ» are determined for which there exist positive solutions of the system of dynamic equations, uÃŽÂ”ÃŽÂ”(t+ÃŽÂ»a(tf(v(ÃÂƒ(t=0, vÃŽÂ”ÃŽÂ”(t+ÃŽÂ»b(tg(u(ÃÂƒ(t=0, for tÃ¢ÂˆÂˆ[0,1]T, satisfying the boundary conditions, u(0=0=u(ÃÂƒ2(1,Ã¢Â€Â…v(0=0=v(ÃÂƒ2(1, where T is a time scale. A Guo-Krasnosel'skii fixed point-theorem is applied.
Pinsky, Ross G
2014-01-01
The primary intent of the book is to introduce an array of beautiful problems in a variety of subjects quickly, pithily and completely rigorously to graduate students and advanced undergraduates. The book takes a number of specific problems and solves them, the needed tools developed along the way in the context of the particular problems. It treats a mélange of topics from combinatorial probability theory, number theory, random graph theory and combinatorics. The problems in this book involve the asymptotic analysis of a discrete construct as some natural parameter of the system tends to infinity. Besides bridging discrete mathematics and mathematical analysis, the book makes a modest attempt at bridging disciplines. The problems were selected with an eye toward accessibility to a wide audience, including advanced undergraduate students. The book could be used for a seminar course in which students present the lectures.
On Cauchy's problem: I. A variational Steklov Poincaré theory
Ben Belgacem, Faker; El Fekih, Henda
2005-12-01
In 1923 (Lectures on Cauchy's Problem in Linear PDEs (New York, 1953)), J Hadamard considered a particular example to illustrate the ill-posedness of the Cauchy problem for elliptic partial differential equations, which consists in recovering data on the whole boundary of the domain from partial but over-determined measures. He achieved explicit computations for the Laplace operator, due to the squared shape of the domain, to observe, in fine, that the solution does not depend continuously on the given boundary data. The primary subject of this contribution is to extend the result to general domains by proving that the Cauchy problem has a variational formulation that can be put under a (variational) pseudo-differential equation, set on the boundary where the data are missing, and defined by a compact Steklov-Poincaré-type operator. The construction of this operator is based on the Dirichlet-to-Neumann mapping, and its compactness is derived from the elliptic regularity theory. Next, using mathematical tools from the linear operator theory and the convex optimization, we provide a comprehensive analysis of the reduced problem which enables us to state that (i) the set of compatible data, for which existence and uniqueness are guaranteed, is dense in the admissible data space; (ii) when the existence fails, due to possible noisy data, the variational problem can be consistently approximated by the least-squares method, that is the incompatibility measure (the deviation indicator or the variational crime made on the Steklov-Poincaré equation) equals zero though all the minimizing sequences blow up.
Directory of Open Access Journals (Sweden)
Svatoslav Stanêk
2008-03-01
Full Text Available The paper presents an existence principle for solving a large class of nonlocal regular discrete boundary value problems with the ÃÂ†-Laplacian. Applications of the existence principle to singular discrete problems are given.
A new integrability theory for certain nonlinear physical problems
International Nuclear Information System (INIS)
Berger, M.S.
1993-01-01
A new mathematically sound integrability theory for certain nonlinear problems defined by ordinary or partial differential equations is defined. The new theory works in an arbitrary finite number of space dimensions. Moreover, if a system is integrable in the new sense described here, it has a remarkable stability property that distinguishes if from any previously known integrability ideas. The new theory proceeds by establishing a ''global normal form'' for the problem at hand. This normal form holds subject to canonical coordinate transformations, extending such classical ideas by using new nonlinear methods of infinite dimensional functional analysis. The global normal form in question is related to the mathematical theory of singularities of mappings of H. Whitney and R. Thom extended globally and form finite to infinite dimensions. Thus bifurcation phenomena are naturally included in the new integrability theory. Typical examples include the classically nonintegrable Riccati equation, certain non-Euclidean mean field theories, certain parabolic reaction diffusion equations and the hyperbolic nonlinear telegrapher's equation. (Author)
Some Unsolved Problems in Number Theory-Progress Made in ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 5. Some Unsolved Problems in Number Theory-Progress Made in Recent Times. K Ramachandra. Research News Volume 2 Issue 5 May 1997 pp 77-80. Fulltext. Click here to view fulltext PDF. Permanent link:
Promoting Number Theory in High Schools or Birthday Problem and Number Theory
Srinivasan, V. K.
2010-01-01
The author introduces the birthday problem in this article. This can amuse willing members of any birthday party. This problem can also be used as the motivational first day lecture in number theory for the gifted students in high schools or in community colleges or in undergraduate classes in colleges.
Belmiloudi , Aziz; Mahé , Fabrice
2014-01-01
International audience; The paper investigates boundary optimal controls and parameter estimates to the well-posedness nonlinear model of dehydration of thermic problems. We summarize the general formulations for the boundary control for initial-boundary value problem for nonlinear partial differential equations modeling the heat transfer and derive necessary optimality conditions, including the adjoint equation, for the optimal set of parameters minimizing objective functions J. Numerical si...
Solving inverse two-point boundary value problems using collage coding
Kunze, H.; Murdock, S.
2006-08-01
The method of collage coding, with its roots in fractal imaging, is the central tool in a recently established rigorous framework for solving inverse initial value problems for ordinary differential equations (Kunze and Vrscay 1999 Inverse Problems 15 745-70). We extend these ideas to solve the following inverse problem: given a function u(x) on [A, B] (which may be the interpolation of data points), determine a two-point boundary value problem on [A, B] which admits u(x) as a solution as closely as desired. The solution of such inverse problems may be useful in parameter estimation or determination of potential functional forms of the underlying differential equation. We discuss ways to improve results, including the development of a partitioning scheme. Several examples are considered.
The Weyl-Cartan Space Problem in Purely Affine Theory
von Borzeszkowski, Horst-Heino; Treder, Hans-Jürgen
1997-04-01
According to Poincaré, only the ``epistemological sum of geometry and physics is measurable". Of course, there are requirements of measurement to be imposed on geometry because otherwise the theory resting on this geometry cannot be physically interpreted. In particular, the Weyl--Cartan space problem must be solved, i.e., it must be guaranteed that the comparison of distances is compatible with the Levi-Civita transport. In the present paper, we discuss these requirements of measurement and show that in the (purely affine) Einstein-Schrödinger unified field theory the solution of the Weyl-Cartan space problem simultaneously determines the matter via Einstein's equations. Here the affine field $\\Gamma^ikl$ represents Poincaré's sum, and the solution of the space problem means its splitting in a metrical space and in matter fields, where the latter are given by the torsion tensor $\\Gamma^i_{[kl]}$.
On a boundary layer problem related to the gas flow in shales
Barenblatt, G. I.
2013-01-16
The development of gas deposits in shales has become a significant energy resource. Despite the already active exploitation of such deposits, a mathematical model for gas flow in shales does not exist. Such a model is crucial for optimizing the technology of gas recovery. In the present article, a boundary layer problem is formulated and investigated with respect to gas recovery from porous low-permeability inclusions in shales, which are the basic source of gas. Milton Van Dyke was a great master in the field of boundary layer problems. Dedicating this work to his memory, we want to express our belief that Van Dyke\\'s profound ideas and fundamental book Perturbation Methods in Fluid Mechanics (Parabolic Press, 1975) will live on-also in fields very far from the subjects for which they were originally invented. © 2013 US Government.
Mathematical and numerical study of nonlinear boundary problems related to plasma physics
International Nuclear Information System (INIS)
Sermange, M.
1982-06-01
After the study of some equations based on the Hodgkin-Huxley model, the work presented here is concerned with nonlinear boundary problems in MHD. They are gathered in two subjects: equilibrium equations and stability equations. The axisymmetric MHD equilibrium equations with free boundary have been studied by different authors, particularly the existence, regularity, unicity and non-unicity. Here, bifurcation, convergence of calculation methods existence of solutions in a discontinuous frame are studied. MHD stability can be determined by the principle of Bernstein et al; the mathematical work concerned here bears on the equivalence, in the case of two-dimensional or axisymmetric stability, between this model and a scalar eigenvalue problem which is introduced. At last, modules for computing MHD equilibrium for the simulation of plasma confinement in a tokamak are described [fr
Directory of Open Access Journals (Sweden)
Chen Yuming
2011-01-01
Full Text Available Though boundary value problems for fractional differential equations have been extensively studied, most of the studies focus on scalar equations and the fractional order between 1 and 2. On the other hand, delay is natural in practical systems. However, not much has been done for fractional differential equations with delays. Therefore, in this paper, we consider a boundary value problem of a general delayed nonlinear fractional system. With the help of some fixed point theorems and the properties of the Green function, we establish several sets of sufficient conditions on the existence of positive solutions. The obtained results extend and include some existing ones and are illustrated with some examples for their feasibility.
Turnpike theory of continuous-time linear optimal control problems
Zaslavski, Alexander J
2015-01-01
Individual turnpike results are of great interest due to their numerous applications in engineering and in economic theory; in this book the study is focused on new results of turnpike phenomenon in linear optimal control problems. The book is intended for engineers as well as for mathematicians interested in the calculus of variations, optimal control, and in applied functional analysis. Two large classes of problems are studied in more depth. The first class studied in Chapter 2 consists of linear control problems with periodic nonsmooth convex integrands. Chapters 3-5 consist of linear control problems with autonomous nonconvex and nonsmooth integrands. Chapter 6 discusses a turnpike property for dynamic zero-sum games with linear constraints. Chapter 7 examines genericity results. In Chapter 8, the description of structure of variational problems with extended-valued integrands is obtained. Chapter 9 ends the exposition with a study of turnpike phenomenon for dynamic games with extended value integran...
An improved spectral homotopy analysis method for solving boundary layer problems
Directory of Open Access Journals (Sweden)
Sibanda Precious
2011-01-01
Full Text Available Abstract This article presents an improved spectral-homotopy analysis method (ISHAM for solving nonlinear differential equations. The implementation of this new technique is shown by solving the Falkner-Skan and magnetohydrodynamic boundary layer problems. The results obtained are compared to numerical solutions in the literature and MATLAB's bvp4c solver. The results show that the ISHAM converges faster and gives accurate results.
Multi-point boundary value problems for linear functional-differential equations
Czech Academy of Sciences Publication Activity Database
Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich
2017-01-01
Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional-differential equations * functional-differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076. xml
Directory of Open Access Journals (Sweden)
Domoshnitsky Alexander
2009-01-01
Full Text Available We obtain the maximum principles for the first-order neutral functional differential equation where , and are linear continuous operators, and are positive operators, is the space of continuous functions, and is the space of essentially bounded functions defined on . New tests on positivity of the Cauchy function and its derivative are proposed. Results on existence and uniqueness of solutions for various boundary value problems are obtained on the basis of the maximum principles.
Monotone methods for solving a boundary value problem of second order discrete system
Directory of Open Access Journals (Sweden)
Wang Yuan-Ming
1999-01-01
Full Text Available A new concept of a pair of upper and lower solutions is introduced for a boundary value problem of second order discrete system. A comparison result is given. An existence theorem for a solution is established in terms of upper and lower solutions. A monotone iterative scheme is proposed, and the monotone convergence rate of the iteration is compared and analyzed. The numerical results are given.
Moving-boundary problems for the time-fractional diffusion equation
Directory of Open Access Journals (Sweden)
Sabrina D. Roscani
2017-02-01
Full Text Available We consider a one-dimensional moving-boundary problem for the time-fractional diffusion equation. The time-fractional derivative of order $\\alpha\\in (0,1$ is taken in the sense of Caputo. We study the asymptotic behaivor, as t tends to infinity, of a general solution by using a fractional weak maximum principle. Also, we give some particular exact solutions in terms of Wright functions.
The existence of solutions for boundary value problem of fractional hybrid differential equations
Sun, Shurong; Zhao, Yige; Han, Zhenlai; Li, Yanan
2012-12-01
In this paper, we study the existence of solutions for the boundary value problem of fractional hybrid differential equations D0+α{x(t)}/{f(t,x(t))}+g(t,x(t))=0,0Dhage, an existence theorem for fractional hybrid differential equations is proved under mixed Lipschitz and Carathéodory conditions. As an application, examples are presented to illustrate the main results.
Labecca, William; Guimarães, Osvaldo; Piqueira, José Roberto C.
2014-08-01
Approximations of functions in terms of orthogonal polynomials have been used to develop and implement numerical approaches to solve spectrally initial and boundary value problems. The main idea behind these approaches is to express differential and integral operators by using matrices, and this, in turn, makes the numerical implementation easier to be expressed in computational algebraic languages. In this paper, the application of the methodology is enlarged by using Dirac's formalism, combined with complex Fourier series.
Multi-point boundary value problems for linear functional-differential equations
Czech Academy of Sciences Publication Activity Database
Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich
2017-01-01
Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional-differential equations * functional-differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076.xml
Plestenjak, Bor; Gheorghiu, Călin I.; Hochstenbach, Michiel E.
2015-10-01
In numerous science and engineering applications a partial differential equation has to be solved on some fairly regular domain that allows the use of the method of separation of variables. In several orthogonal coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu's system, Lamé's system, and a system of spheroidal wave functions. Although multiparameter approaches are exploited occasionally to solve such equations numerically, MEPs remain less well known, and the variety of available numerical methods is not wide. The classical approach of discretizing the equations using standard finite differences leads to algebraic MEPs with large matrices, which are difficult to solve efficiently. The aim of this paper is to change this perspective. We show that by combining spectral collocation methods and new efficient numerical methods for algebraic MEPs it is possible to solve such problems both very efficiently and accurately. We improve on several previous results available in the literature, and also present a MATLAB toolbox for solving a wide range of problems.
Directory of Open Access Journals (Sweden)
D. A. Eliseev
2015-01-01
Full Text Available The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.
International Nuclear Information System (INIS)
Ji, X.; Chen, Y.M.
1989-01-01
The boundary element method (BEM) is developed from the boundary integral equation method and the discretization techniques. Compared with other numerical method, BEM has been shown to be a versatile and efficient method for a wide variety of engineering problems, including the wave propagation in elastic media. The first formulation and solution of the transient elastodynamic problem by combining BEM and Laplace transform is due to Cruse. Further improvement was achieved by introducing Durbin's method instead of Papoulis method of numerical Laplace inverse transform. However, a great deal of computer time is still needed for the inverse transformation. The alternative integral transform approach is BEM combining with Fourier transform. The numerical Fourier inverse transformation is also computer time consuming, even if the fast Fourier transform is used. In the present paper, the authors use BEM combining with Fourier transform and Fourier eigen transform (FET). The new approach is very attractive in saving on computer time. This paper illustrates the application of FET to BEM of 2-dimensional transient elastodynamic problem. The example of a half plane subjected to a discontinuous boundary load is solved on ELXSI 6400 computer. The CPU time is less than one minute. If Laplace or Fourier transform is adopted, the CPU time will be more than 10 minutes
Abraham Pais Prize Lecture: Shifting Problems and Boundaries in the History of Modern Physics
Nye, Mary-Jo
A long established category of study in the history of science is the ``history of physical sciences.'' It is a category that immediately begs the question of disciplinary boundaries for the problems and subjects addressed in historical inquiry. As a historian of the physical sciences, I often have puzzled over disciplinary boundaries and the means used to create or justify them. Scientists most often have been professionally identified with specific institutionalized fields since the late 19th century, but the questions they ask and the problems they solve are not neatly carved up by disciplinary perimeters. Like institutional departments or professorships, the Nobel Prizes in the 20th century often have delineated the scope of ``Physics'' or ``Chemistry'' (and ``Physiology or Medicine''), but the Prizes do not reflect disciplinary rigidity, despite some standard core subjects. In this paper I examine trends in Nobel Prize awards that indicate shifts in problem solving and in boundaries in twentieth century physics, tying those developments to changing themes in the history of physics and physical science in recent decades.
Complete hierarchies of efficient approximations to problems in entanglement theory
International Nuclear Information System (INIS)
Eisert, Jens; Hyllus, Philipp; Guehne, Otfried; Curty, Marcos
2004-01-01
We investigate several problems in entanglement theory from the perspective of convex optimization. This list of problems comprises (A) the decision whether a state is multiparty entangled, (B) the minimization of expectation values of entanglement witnesses with respect to pure product states, (C) the closely related evaluation of the geometric measure of entanglement to quantify pure multiparty entanglement, (D) the test whether states are multiparty entangled on the basis of witnesses based on second moments and on the basis of linear entropic criteria, and (E) the evaluation of instances of maximal output purities of quantum channels. We show that these problems can be formulated as certain optimization problems: as polynomially constrained problems employing polynomials of degree 3 or less. We then apply very recently established known methods from the theory of semidefinite relaxations to the formulated optimization problems. By this construction we arrive at a hierarchy of efficiently solvable approximations to the solution, approximating the exact solution as closely as desired, in a way that is asymptotically complete. For example, this results in a hierarchy of efficiently decidable sufficient criteria for multiparticle entanglement, such that every entangled state will necessarily be detected in some step of the hierarchy. Finally, we present numerical examples to demonstrate the practical accessibility of this approach
Lie symmetries and reductions of multi-dimensional boundary value problems of the Stefan type
Cherniha, Roman; Kovalenko, Sergii
2011-12-01
A new definition of Lie invariance for nonlinear multi-dimensional boundary value problems (BVPs) is proposed by the generalization of known definitions to much wider classes of BVPs. The class of (1+3)-dimensional nonlinear BVPs of the Stefan type, modeling the process of melting and evaporation of metals, is studied in detail. Using the definition proposed, the group classification problem for this class of BVPs is solved and some reductions (with physical meaning) to BVPs of lower dimensionality are made. Examples of how to construct exact solutions of the (1+3)-dimensional nonlinear BVP with the correctly specified coefficients are presented.
Numerical solution of sixth-order boundary-value problems using Legendre wavelet collocation method
Sohaib, Muhammad; Haq, Sirajul; Mukhtar, Safyan; Khan, Imad
2018-03-01
An efficient method is proposed to approximate sixth order boundary value problems. The proposed method is based on Legendre wavelet in which Legendre polynomial is used. The mechanism of the method is to use collocation points that converts the differential equation into a system of algebraic equations. For validation two test problems are discussed. The results obtained from proposed method are quite accurate, also close to exact solution, and other different methods. The proposed method is computationally more effective and leads to more accurate results as compared to other methods from literature.
On solutions of boundary value problems for model of axially symmetric quantum dots
International Nuclear Information System (INIS)
Gusev, A.A.; Chvluunbaatar, O.; Vinitsky, S.I.; Dvoyan, K.G.; Kazaryan, E.M.; Sarkisyan, H.A.
2010-01-01
Full text: (author)In the framework of effective mass approximation we have considered solutions of boundary value problems with separated and nonseparated variables for models of quantum dots with axial-symmetric potentials of harmonic oscillators and confinement potentials with infinite and finite walls. For considered problems we have made comparisons of levels with low energy of discrete spectra and eigenfunctions nodes by using exact and adiabatic classification of states. Critical values of the spheroidal aspect ratio, at which the discrete spectrum of models with finite-wall potentials is transformed into a continuous one in strong dimensional quantization regime, were revealed
Regularization theory for ill-posed problems selected topics
Lu, Shuai
2013-01-01
Thismonograph is a valuable contribution to thehighly topical and extremly productive field ofregularisationmethods for inverse and ill-posed problems. The author is an internationally outstanding and acceptedmathematicianin this field. In his book he offers a well-balanced mixtureof basic and innovative aspects.He demonstrates new,differentiatedviewpoints, and important examples for applications. The bookdemontrates thecurrent developments inthe field of regularization theory,such as multiparameter regularization and regularization in learning theory. The book is written for graduate and PhDs
Casimir effect due to a single boundary as a manifestation of the Weyl problem
Kolomeisky, Eugene B.; Straley, Joseph P.; Langsjoen, Luke S.; Zaidi, Hussain
2010-09-01
The Casimir self-energy of a boundary is ultraviolet-divergent. In many cases, the divergences can be eliminated by methods such as zeta-function regularization or through physical arguments (ultraviolet transparency of the boundary would provide a cutoff). Using the example of a massless scalar field theory with a single Dirichlet boundary, we explore the relationship between such approaches, with the goal of better understanding of the origin of the divergences. We are guided by the insight due to Dowker and Kennedy (1978 J. Phys. A: Math. Gen. 11 895) and Deutsch and Candelas (1979 Phys. Rev. D 20 3063) that the divergences represent measurable effects that can be interpreted with the aid of the theory of the asymptotic distribution of eigenvalues of the Laplacian discussed by Weyl. In many cases, the Casimir self-energy is the sum of cutoff-dependent (Weyl) terms having a geometrical origin, and an 'intrinsic' term that is independent of the cutoff. The Weyl terms make a measurable contribution to the physical situation even when regularization methods succeed in isolating the intrinsic part. Regularization methods fail when the Weyl terms and intrinsic parts of the Casimir effect cannot be clearly separated. Specifically, we demonstrate that the Casimir self-energy of a smooth boundary in two dimensions is a sum of two Weyl terms (exhibiting quadratic and logarithmic cutoff dependence), a geometrical term that is independent of cutoff and a non-geometrical intrinsic term. As by-products, we resolve the puzzle of the divergent Casimir force on a ring and correct the sign of the coefficient of linear tension of the Dirichlet line predicted in earlier treatments.
A universal nonlinear relation among boundary states in closed string field theory
International Nuclear Information System (INIS)
Kishimoto, Isao; Matsuo, Yutaka; Watanabe, Eitoku
2004-01-01
We show that the boundary states satisfy a nonlinear relation (the idempotency equation) with respect to the star product of closed string field theory. This relation is universal in the sense that various D-branes, including the infinitesimally deformed ones, satisfy the same equation, including the coefficient. This paper generalizes our analysis [hep-th/0306189] in the following senses. (1) We present a background-independent formulation based on conformal field theory. It illuminates the geometric nature of the relation and allows us to more systematically analyze the variations around the D-brane background. (2) We show that the Witten-type star product satisfies a similar relation but with a more divergent coefficient. (3) We determine the coefficient of the relation analytically. The result shows that the α parameter can be formally factored out, and the relation becomes universal. We present a conjecture on vacuum theory based on this computation. (author)
Directory of Open Access Journals (Sweden)
Guo Chun Wen
2009-05-01
Full Text Available This article concerns the oblique derivative problems for second-order quasilinear degenerate equations of mixed type with several characteristic boundaries, which include the Tricomi problem as a special case. First we formulate the problem and obtain estimates of its solutions, then we show the existence of solutions by the successive iterations and the Leray-Schauder theorem. We use a complex analytic method: elliptic complex functions are used in the elliptic domain, and hyperbolic complex functions in the hyperbolic domain, such that second-order equations of mixed type with degenerate curve are reduced to the first order mixed complex equations with singular coefficients. An application of the complex analytic method, solves (1.1 below with $m=n=1$, $a=b=0$, which was posed as an open problem by Rassias.
Li, ShanDe; Gao, GuiBing; Huang, QiBai; Liu, WeiQi; Chen, Jun
2011-08-01
We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements are solved efficiently. This is an extension of the fast multipole BEM for two-dimensional (2D) acoustic problems developed by authors recently. Some new improvements are obtained. In this new technique, the improved Burton-Miller formulation is employed to overcome non-uniqueness difficulties in the conventional BEM for exterior acoustic problems. The computational efficiency is further improved by adopting the FMM and the block diagonal preconditioner used in the generalized minimum residual method (GMRES) iterative solver to solve the system matrix equation. Numerical results clearly demonstrate the complete reliability and efficiency of the proposed algorithm. It is potentially useful for solving large-scale engineering acoustic scattering problems.
High order methods for incompressible fluid flow: Application to moving boundary problems
Energy Technology Data Exchange (ETDEWEB)
Bjoentegaard, Tormod
2008-04-15
Fluid flows with moving boundaries are encountered in a large number of real life situations, with two such types being fluid-structure interaction and free-surface flows. Fluid-structure phenomena are for instance apparent in many hydrodynamic applications; wave effects on offshore structures, sloshing and fluid induced vibrations, and aeroelasticity; flutter and dynamic response. Free-surface flows can be considered as a special case of a fluid-fluid interaction where one of the fluids are practically inviscid, such as air. This type of flows arise in many disciplines such as marine hydrodynamics, chemical engineering, material processing, and geophysics. The driving forces for free-surface flows may be of large scale such as gravity or inertial forces, or forces due to surface tension which operate on a much smaller scale. Free-surface flows with surface tension as a driving mechanism include the flow of bubbles and droplets, and the evolution of capillary waves. In this work we consider incompressible fluid flow, which are governed by the incompressible Navier-Stokes equations. There are several challenges when simulating moving boundary problems numerically, and these include - Spatial discretization - Temporal discretization - Imposition of boundary conditions - Solution strategy for the linear equations. These are some of the issues which will be addressed in this introduction. We will first formulate the problem in the arbitrary Lagrangian-Eulerian framework, and introduce the weak formulation of the problem. Next, we discuss the spatial and temporal discretization before we move to the imposition of surface tension boundary conditions. In the final section we discuss the solution of the resulting linear system of equations. (Author). refs., figs., tabs
Elliptic differential operators on Lipschitz domains and abstract boundary value problems.
Behrndt, Jussi; Micheler, Till
2014-11-15
This paper consists of two parts. In the first part, which is of more abstract nature, the notion of quasi-boundary triples and associated Weyl functions is developed further in such a way that it can be applied to elliptic boundary value problems on non-smooth domains. A key feature is the extension of the boundary maps by continuity to the duals of certain range spaces, which directly leads to a description of all self-adjoint extensions of the underlying symmetric operator with the help of abstract boundary values. In the second part of the paper a complete description is obtained of all self-adjoint realizations of the Laplacian on bounded Lipschitz domains, as well as Kreĭn type resolvent formulas and a spectral characterization in terms of energy dependent Dirichlet-to-Neumann maps. These results can be viewed as the natural generalization of recent results by Gesztesy and Mitrea for quasi-convex domains. In this connection we also characterize the maximal range spaces of the Dirichlet and Neumann trace operators on a bounded Lipschitz domain in terms of the Dirichlet-to-Neumann map. The general results from the first part of the paper are also applied to higher order elliptic operators on smooth domains, and particular attention is paid to the second order case which is illustrated with various examples.
On the inverse problem of dissipative scattering theory. 3
International Nuclear Information System (INIS)
Neidhardt, H.
1988-01-01
Considering a scattering theory in the class of contractions on Hilbert spaces one solves the inverse problem in an operaor-theoretical manner. The solution is obtained underthe very general assumptions that the free evolutions are different for different time directions that not only the perturbed or full evolutions but also the free evolutions are given by contractions. It is shown that the class of contractive Hankel operators can be viewed as a set of scattering operators. This implies the possibility that the scattering operator can be compact. Moreover, the result is applied to the so-called Lax-Phillips scattering theory with losses restoring a result of B.S. Pavlov on the completion of this theory in a quite different manner. 15 refs
8th International Conference on Hyperbolic Problems : Theory, Numerics, Applications
Warnecke, Gerald
2001-01-01
The Eighth International Conference on Hyperbolic Problems - Theory, Nu merics, Applications, was held in Magdeburg, Germany, from February 27 to March 3, 2000. It was attended by over 220 participants from many European countries as well as Brazil, Canada, China, Georgia, India, Israel, Japan, Taiwan, und the USA. There were 12 plenary lectures, 22 further invited talks, and around 150 con tributed talks in parallel sessions as well as posters. The speakers in the parallel sessions were invited to provide a poster in order to enhance the dissemination of information. Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. Despite considerable progress, the mathematical theory is still strug gling with fundamental open problems concerning systems of such equations in multiple space dimensions. For various applications the development of accurate and efficient numerical schemes for computat...
Engineering surveying theory and examination problems for students
Schofield, W
2013-01-01
Engineering Surveying: Theory and Examination Problems for Students, Volume 1, Third Edition discusses topics concerning engineering surveying techniques and instrumentations. The book is comprised of eight chapters that cover several concerns in engineering survey. Chapter 1 discusses the basic concepts of surveying. Chapter 2 deals with simple and precise leveling, while Chapter 3 covers earthworks. The book also talks about the theodolite and its applications, and then discusses optical distance measurement. Curves, underground and hydrographic surveying, and aspects of dimensional control
Ruggeri, Fabrizio
2016-05-12
In this work we develop a Bayesian setting to infer unknown parameters in initial-boundary value problems related to linear parabolic partial differential equations. We realistically assume that the boundary data are noisy, for a given prescribed initial condition. We show how to derive the joint likelihood function for the forward problem, given some measurements of the solution field subject to Gaussian noise. Given Gaussian priors for the time-dependent Dirichlet boundary values, we analytically marginalize the joint likelihood using the linearity of the equation. Our hierarchical Bayesian approach is fully implemented in an example that involves the heat equation. In this example, the thermal diffusivity is the unknown parameter. We assume that the thermal diffusivity parameter can be modeled a priori through a lognormal random variable or by means of a space-dependent stationary lognormal random field. Synthetic data are used to test the inference. We exploit the behavior of the non-normalized log posterior distribution of the thermal diffusivity. Then, we use the Laplace method to obtain an approximated Gaussian posterior and therefore avoid costly Markov Chain Monte Carlo computations. Expected information gains and predictive posterior densities for observable quantities are numerically estimated using Laplace approximation for different experimental setups.
What do we actually mean by 'sociotechnical'? On values, boundaries and the problems of language.
Klein, Lisl
2014-03-01
The term 'sociotechnical' was first coined in the context of industrial democracy. In comparing two projects on shipping in Esso to help define the concept, the essential categories were found to be where systems boundaries were set, and what factors were considered to be relevant 'human' characteristics. This is often discussed in terms of values. During the nineteen-sixties and seventies sociotechnical theory related to the shop-floor work system, and contingency theory to the organisation as a whole, the two levels being distinct. With the coming of information technology, this distinction became blurred; the term 'socio-structural' is proposed to describe the whole system. IT sometimes is the operating technology, it sometimes supports the operating technology, or it may sometimes be mistaken for the operating technology. This is discussed with reference to recent air accidents. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
A simple finite element method for boundary value problems with a Riemann–Liouville derivative
Jin, Bangti
2016-02-01
© 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-^{1} in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and ^{L2}(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.
Wang, Wei; Zhang, Xin; Meng, Qingyu; Zheng, Yuetao
2017-10-16
Phase-induced amplitude apodization (PIAA) is a promising technique in high contrast coronagraphs due to the characteristics of high efficiency and small inner working angle. In this letter, we present a new method for calculating the diffraction effects in PIAA coronagraphs based on boundary wave diffraction theory. We propose a numerical propagator in an azimuth boundary integral form, and then delve into its analytical propagator using stationary phase approximation. This propagator has straightforward physical meaning and obvious advantage on calculating efficiency, compared with former methods based on numerical integral or angular spectrum propagation method. Using this propagator, we can make a more direct explanation to the significant impact of pre-apodizer. This propagator can also be used to calculate the aberration propagation properties of PIAA optics. The calculating is also simplified since the decomposing procedure is not needed regardless of the form of the aberration.
Feehan, Paul M. N.
2017-09-01
We prove existence of solutions to boundary value problems and obstacle problems for degenerate-elliptic, linear, second-order partial differential operators with partial Dirichlet boundary conditions using a new version of the Perron method. The elliptic operators considered have a degeneracy along a portion of the domain boundary which is similar to the degeneracy of a model linear operator identified by Daskalopoulos and Hamilton [9] in their study of the porous medium equation or the degeneracy of the Heston operator [21] in mathematical finance. Existence of a solution to the partial Dirichlet problem on a half-ball, where the operator becomes degenerate on the flat boundary and a Dirichlet condition is only imposed on the spherical boundary, provides the key additional ingredient required for our Perron method. Surprisingly, proving existence of a solution to this partial Dirichlet problem with ;mixed; boundary conditions on a half-ball is more challenging than one might expect. Due to the difficulty in developing a global Schauder estimate and due to compatibility conditions arising where the ;degenerate; and ;non-degenerate boundaries; touch, one cannot directly apply the continuity or approximate solution methods. However, in dimension two, there is a holomorphic map from the half-disk onto the infinite strip in the complex plane and one can extend this definition to higher dimensions to give a diffeomorphism from the half-ball onto the infinite ;slab;. The solution to the partial Dirichlet problem on the half-ball can thus be converted to a partial Dirichlet problem on the slab, albeit for an operator which now has exponentially growing coefficients. The required Schauder regularity theory and existence of a solution to the partial Dirichlet problem on the slab can nevertheless be obtained using previous work of the author and C. Pop [16]. Our Perron method relies on weak and strong maximum principles for degenerate-elliptic operators, concepts of
Axions and the strong CP problem in M theory
International Nuclear Information System (INIS)
Choi, K.
1997-01-01
We examine the possibility that the strong CP problem is solved by string-theoretic axions in the strong-coupling limit of the E 8 xE 8 ' heterotic string theory (M theory). We first discuss some generic features of gauge kinetic functions in compactified M theory, and examine in detail the axion potential induced by the explicit breakings other than the QCD anomaly of the nonlinear U(1) PQ symmetries of string-theoretic axions. It is argued based on supersymmetry and discrete gauge symmetries that if the compactification radius is large enough, there can be a U(1) PQ symmetry whose breaking other than the QCD anomaly, whatever its microscopic origin is, is suppressed enough for the axion mechanism to work. Phenomenological viability of such a large radius crucially depends upon the quantized coefficients in gauge kinetic functions. We note that the large radius required for the axion mechanism is viable only in a limited class of models. For instance, for compactifications on a smooth Calabi-Yau manifold with a vanishing E 8 ' field strength, it is viable only when the quantized flux of the antisymmetric tensor field in M theory has a minimal nonzero value. It is also stressed that this large compactification radius allows the QCD axion in M theory to be cosmologically viable in the presence of a late time entropy production. copyright 1997 The American Physical Society
Reflected forward-backward SDEs and obstacle problems with boundary conditions
Directory of Open Access Journals (Sweden)
Jin Ma
2001-01-01
Full Text Available In this paper we study a class of forward-backward stochastic differential equations with reflecting boundary conditions (FBSDER for short. More precisely, we consider the case in which the forward component of the FBSDER is restricted to a fixed, convex region, and the backward component will stay, at each fixed time, in a convex region that may depend on time and is possibly random. The solvability of such FBSDER is studied in a fairly general way. We also prove that if the coefficients are all deterministic and the backward equation is one-dimensional, then the adapted solution of such FBSDER will give the viscosity solution of a quasilinear variational inequality (obstacle problem with a Neumann boundary condition. As an application, we study how the solvability of FBSDERs is related to the solvability of an American game option.
Multi-boundary entanglement in Chern-Simons theory and link invariants
Energy Technology Data Exchange (ETDEWEB)
Balasubramanian, Vijay [David Rittenhouse Laboratory, University of Pennsylvania,209 S.33rd Street, Philadelphia, PA 19104 (United States); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB) andInternational Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Fliss, Jackson R.; Leigh, Robert G. [Department of Physics, University of Illinois,1110 W. Green Street, Urbana, IL 61801 (United States); Parrikar, Onkar [David Rittenhouse Laboratory, University of Pennsylvania,209 S.33rd Street, Philadelphia, PA 19104 (United States)
2017-04-11
We consider Chern-Simons theory for gauge group G at level k on 3-manifolds M{sub n} with boundary consisting of n topologically linked tori. The Euclidean path integral on M{sub n} defines a quantum state on the boundary, in the n-fold tensor product of the torus Hilbert space. We focus on the case where M{sub n} is the link-complement of some n-component link inside the three-sphere S{sup 3}. The entanglement entropies of the resulting states define framing-independent link invariants which are sensitive to the topology of the chosen link. For the Abelian theory at level k (G=U(1){sub k}) we give a general formula for the entanglement entropy associated to an arbitrary (m|n−m) partition of a generic n-component link into sub-links. The formula involves the number of solutions to certain Diophantine equations with coefficients related to the Gauss linking numbers (mod k) between the two sublinks. This formula connects simple concepts in quantum information theory, knot theory, and number theory, and shows that entanglement entropy between sublinks vanishes if and only if they have zero Gauss linking (mod k). For G=SU(2){sub k}, we study various two and three component links. We show that the 2-component Hopf link is maximally entangled, and hence analogous to a Bell pair, and that the Whitehead link, which has zero Gauss linking, nevertheless has entanglement entropy. Finally, we show that the Borromean rings have a “W-like' entanglement structure (i.e., tracing out one torus does not lead to a separable state), and give examples of other 3-component links which have “GHZ-like” entanglement (i.e., tracing out one torus does lead to a separable state).
Variational Iteration Method for Fifth-Order Boundary Value Problems Using He's Polynomials
Directory of Open Access Journals (Sweden)
Muhammad Aslam Noor
2008-01-01
Full Text Available We apply the variational iteration method using He's polynomials (VIMHP for solving the fifth-order boundary value problems. The proposed method is an elegant combination of variational iteration and the homotopy perturbation methods and is mainly due to Ghorbani (2007. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discritization, linearization, or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed technique solves nonlinear problems without using Adomian's polynomials can be considered as a clear advantage of this algorithm over the decomposition method.
On some problems of descriptive set theory in topological spaces
International Nuclear Information System (INIS)
Choban, M M
2005-01-01
Problems concerning the structure of Borel sets, their classification, and invariance of certain properties of sets under maps of given types arose in the first half of the previous century in the works of A. Lebesgue, R. Baire, N. N. Luzin, P. S. Alexandroff, P. S. Urysohn, P. S. Novikov, L. V. Keldysh, and A. A. Lyapunov and gave rise to many investigations. In this paper some results related to questions of F. Hausdorff, Luzin, Alexandroff, Urysohn, M. Katetov, and A. H. Stone are obtained. In 1934 Hausdorff posed the problem of invariance of the property of being an absolute B-set (that is, a Borel set in some complete separable metric space) under open continuous maps. By a theorem of Keldysh, the answer to this question is negative in general. The present paper gives additional conditions under which the answer to Hausdorff's question is positive. Some general problems of the theory of operations on sets are also treated
On some problems of descriptive set theory in topological spaces
Energy Technology Data Exchange (ETDEWEB)
Choban, M M [Tiraspol State University, Chisinau (Moldova, Republic of)
2005-08-31
Problems concerning the structure of Borel sets, their classification, and invariance of certain properties of sets under maps of given types arose in the first half of the previous century in the works of A. Lebesgue, R. Baire, N. N. Luzin, P. S. Alexandroff, P. S. Urysohn, P. S. Novikov, L. V. Keldysh, and A. A. Lyapunov and gave rise to many investigations. In this paper some results related to questions of F. Hausdorff, Luzin, Alexandroff, Urysohn, M. Katetov, and A. H. Stone are obtained. In 1934 Hausdorff posed the problem of invariance of the property of being an absolute B-set (that is, a Borel set in some complete separable metric space) under open continuous maps. By a theorem of Keldysh, the answer to this question is negative in general. The present paper gives additional conditions under which the answer to Hausdorff's question is positive. Some general problems of the theory of operations on sets are also treated.
Fifth international conference on hyperbolic problems -- theory, numerics, applications: Abstracts
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-12-31
The conference demonstrated that hyperbolic problems and conservation laws play an important role in many areas including industrial applications and the studying of elasto-plastic materials. Among the various topics covered in the conference, the authors mention: the big bang theory, general relativity, critical phenomena, deformation and fracture of solids, shock wave interactions, numerical simulation in three dimensions, the level set method, multidimensional Riemann problem, application of the front tracking in petroleum reservoir simulations, global solution of the Navier-Stokes equations in high dimensions, recent progress in granular flow, and the study of elastic plastic materials. The authors believe that the new ideas, tools, methods, problems, theoretical results, numerical solutions and computational algorithms presented or discussed at the conference will benefit the participants in their current and future research.
Application of Neutrosophic Set Theory in Generalized Assignment Problem
Directory of Open Access Journals (Sweden)
Supriya Kar
2015-09-01
Full Text Available This paper presents the application of Neutrosophic Set Theory (NST in solving Generalized Assignment Problem (GAP. GAP has been solved earlier under fuzzy environment. NST is a generalization of the concept of classical set, fuzzy set, interval-valued fuzzy set, intuitionistic fuzzy set. Elements of Neutrosophic set are characterized by a truth-membership function, falsity and also indeterminacy which is a more realistic way of expressing the parameters in real life problem. Here the elements of the cost matrix for the GAP are considered as neutrosophic elements which have not been considered earlier by any other author. The problem has been solved by evaluating score function matrix and then solving it by Extremum Difference Method (EDM [1] to get the optimal assignment. The method has been demonstrated by a suitable numerical example.
Solved and unsolved problems of chemical graph theory
International Nuclear Information System (INIS)
Trinajstic, N.; Klein, D.J.; Randic, M.
1986-01-01
The development of several novel graph theoretical concepts and their applications in different branches of chemistry are reviewed. After a few introductory remarks they follow with an outline of selected important graph theoretical invariants, introducing some new results and indicating some open problems. They continue with discussing the problem of graph characterization and construction of graphs of chemical interest, with a particular emphasis on large systems. Finally they consider various problems and difficulties associated with special subgraphs, including subgraphs representing Kekule valence structures. The paper ends with a brief review of structure-property and structure-activity correlations, the topic which is one of prime motivations for application of graph theory to chemistry
Yan, Yan
2015-01-01
We study a new optimization scheme that generates smooth and robust solutions for Dirichlet velocity boundary control (DVBC) of conjugate heat transfer (CHT) processes. The solutions to the DVBC of the incompressible Navier-Stokes equations are typically nonsmooth, due to the regularity degradation of the boundary stress in the adjoint Navier-Stokes equations. This nonsmoothness is inherited by the solutions to the DVBC of CHT processes, since the CHT process couples the Navier-Stokes equations of fluid motion with the convection-diffusion equations of fluid-solid thermal interaction. Our objective in the CHT boundary control problem is to select optimally the fluid inflow profile that minimizes an objective function that involves the sum of the mismatch between the temperature distribution in the fluid system and a prescribed temperature profile and the cost of the control.Our strategy to resolve the nonsmoothness of the boundary control solution is based on two features, namely, the objective function with a regularization term on the gradient of the control profile on both the continuous and the discrete levels, and the optimization scheme with either explicit or implicit smoothing effects, such as the smoothed Steepest Descent and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) methods. Our strategy to achieve the robustness of the solution process is based on combining the smoothed optimization scheme with the numerical continuation technique on the regularization parameters in the objective function. In the section of numerical studies, we present two suites of experiments. In the first one, we demonstrate the feasibility and effectiveness of our numerical schemes in recovering the boundary control profile of the standard case of a Poiseuille flow. In the second one, we illustrate the robustness of our optimization schemes via solving more challenging DVBC problems for both the channel flow and the flow past a square cylinder, which use initial
Time-dependent density functional theory with twist-averaged boundary conditions
Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.
2016-05-01
Background: Time-dependent density functional theory is widely used to describe excitations of many-fermion systems. In its many applications, three-dimensional (3D) coordinate-space representation is used, and infinite-domain calculations are limited to a finite volume represented by a spatial box. For finite quantum systems (atoms, molecules, nuclei, hadrons), the commonly used periodic or reflecting boundary conditions introduce spurious quantization of the continuum states and artificial reflections from boundary; hence, an incorrect treatment of evaporated particles. Purpose: The finite-volume artifacts for finite systems can be practically cured by invoking an absorbing potential in a certain boundary region sufficiently far from the described system. However, such absorption cannot be applied in the calculations of infinite matter (crystal electrons, quantum fluids, neutron star crust), which suffer from unphysical effects stemming from a finite computational box used. Here, twist-averaged boundary conditions (TABC) have been used successfully to diminish the finite-volume effects. In this work, we extend TABC to time-dependent modes. Method: We use the 3D time-dependent density functional framework with the Skyrme energy density functional. The practical calculations are carried out for small- and large-amplitude electric dipole and quadrupole oscillations of 16O. We apply and compare three kinds of boundary conditions: periodic, absorbing, and twist-averaged. Results: Calculations employing absorbing boundary conditions (ABC) and TABC are superior to those based on periodic boundary conditions. For low-energy excitations, TABC and ABC variants yield very similar results. With only four twist phases per spatial direction in TABC, one obtains an excellent reduction of spurious fluctuations. In the nonlinear regime, one has to deal with evaporated particles. In TABC, the floating nucleon gas remains in the box; the amount of nucleons in the gas is found to be
Boundary charges and integral identities for solitons in (d+1-dimensional field theories
Directory of Open Access Journals (Sweden)
Sven Bjarke Gudnason
2017-12-01
Full Text Available We establish a 3-parameter family of integral identities to be used on a class of theories possessing solitons with spherical symmetry in d spatial dimensions. The construction provides five boundary charges that are related to certain integrals of the profile functions of the solitons in question. The framework is quite generic and we give examples of both topological defects (like vortices and monopoles and topological textures (like Skyrmions in 2 and 3 dimensions. The class of theories considered here is based on a kinetic term and three functionals often encountered in reduced Lagrangians for solitons. One particularly interesting case provides a generalization of the well-known Pohozaev identity. Our construction, however, is fundamentally different from scaling arguments behind Derrick's theorem and virial relations. For BPS vortices, we find interestingly an infinity of integrals simply related to the topological winding number.
Boundary charges and integral identities for solitons in (d + 1)-dimensional field theories
Gudnason, Sven Bjarke; Gao, Zhifeng; Yang, Yisong
2017-12-01
We establish a 3-parameter family of integral identities to be used on a class of theories possessing solitons with spherical symmetry in d spatial dimensions. The construction provides five boundary charges that are related to certain integrals of the profile functions of the solitons in question. The framework is quite generic and we give examples of both topological defects (like vortices and monopoles) and topological textures (like Skyrmions) in 2 and 3 dimensions. The class of theories considered here is based on a kinetic term and three functionals often encountered in reduced Lagrangians for solitons. One particularly interesting case provides a generalization of the well-known Pohozaev identity. Our construction, however, is fundamentally different from scaling arguments behind Derrick's theorem and virial relations. For BPS vortices, we find interestingly an infinity of integrals simply related to the topological winding number.
Directory of Open Access Journals (Sweden)
Marwan Abukhaled
2013-01-01
Full Text Available The variational iteration method is applied to solve a class of nonlinear singular boundary value problems that arise in physiology. The process of the method, which produces solutions in terms of convergent series, is explained. The Lagrange multipliers needed to construct the correctional functional are found in terms of the exponential integral and Whittaker functions. The method easily overcomes the obstacle of singularities. Examples will be presented to test the method and compare it to other existing methods in order to confirm fast convergence and significant accuracy.
Iterative Method for Solving the Second Boundary Value Problem for Biharmonic-Type Equation
Directory of Open Access Journals (Sweden)
Dang Quang A.
2012-01-01
Full Text Available Solving boundary value problems (BVPs for the fourth-order differential equations by the reduction of them to BVPs for the second-order equations with the aim to use the achievements for the latter ones attracts attention from many researchers. In this paper, using the technique developed by ourselves in recent works, we construct iterative method for the second BVP for biharmonic-type equation, which describes the deflection of a plate resting on a biparametric elastic foundation. The convergence rate of the method is established. The optimal value of the iterative parameter is found. Several numerical examples confirm the efficiency of the proposed method.
Investigation of solutions of state-dependent multi-impulsive boundary value problems
Czech Academy of Sciences Publication Activity Database
Rontó, András; Rachůnková, I.; Rontó, M.; Rachůnek, L.
2017-01-01
Roč. 24, č. 2 (2017), s. 287-312 ISSN 1072-947X R&D Projects: GA ČR(CZ) GA14-06958S Institutional support: RVO:67985840 Keywords : state-dependent multi-impulsive systems * non-linear boundary value problem * parametrization technique Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0084/gmj-2016-0084. xml
Directory of Open Access Journals (Sweden)
Ishfaq Ahmad Ganaie
2014-01-01
Full Text Available Cubic Hermite collocation method is proposed to solve two point linear and nonlinear boundary value problems subject to Dirichlet, Neumann, and Robin conditions. Using several examples, it is shown that the scheme achieves the order of convergence as four, which is superior to various well known methods like finite difference method, finite volume method, orthogonal collocation method, and polynomial and nonpolynomial splines and B-spline method. Numerical results for both linear and nonlinear cases are presented to demonstrate the effectiveness of the scheme.
Existence and Stability of the Solution of a Nonlinear Boundary Value Problem
Directory of Open Access Journals (Sweden)
Agneta M. Balint
2012-01-01
Full Text Available The purpose is to find conditions assuring the existence of solutions for a nonlinear, boundary value problem in case of the axis-symmetric Young-Laplace differential equation. The equation describes the capillary surface between two static fluids. Necessary or sufficient conditions are found for the existence of a solution. The static stability of the obtained solution is also analyzed and stability or instability results are revealed. For the NdYAG microfiber growth, by the pulling-down method, numerical illustrations are given.
Two-point boundary value and Cauchy formulations in an axisymmetrical MHD equilibrium problem
International Nuclear Information System (INIS)
Atanasiu, C.V.; Subbotin, A.A.
1999-01-01
In this paper we present two equilibrium solvers for axisymmetrical toroidal configurations, both based on the expansion in poloidal angle method. The first one has been conceived as a two-point boundary value solver in a system of coordinates with straight field lines, while the second one uses a well-conditioned Cauchy formulation of the problem in a general curvilinear coordinate system. In order to check the capability of our moment methods to describe equilibrium accurately, a comparison of the moment solutions with analytical solutions obtained for a Solov'ev equilibrium has been performed. (author)
Investigation of solutions of state-dependent multi-impulsive boundary value problems
Czech Academy of Sciences Publication Activity Database
Rontó, András; Rachůnková, I.; Rontó, M.; Rachůnek, L.
2017-01-01
Roč. 24, č. 2 (2017), s. 287-312 ISSN 1072-947X R&D Projects: GA ČR(CZ) GA14-06958S Institutional support: RVO:67985840 Keywords : state-dependent multi-impulsive systems * non-linear boundary value problem * parametrization technique Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0084/gmj-2016-0084.xml
Directory of Open Access Journals (Sweden)
V. Rukavishnikov
2014-01-01
Full Text Available The existence and uniqueness of the Rv-generalized solution for the first boundary value problem and a second order elliptic equation with coordinated and uncoordinated degeneracy of input data and with strong singularity solution on all boundary of a two-dimensional domain are established.
Energy Technology Data Exchange (ETDEWEB)
R. Axford
2002-08-02
New methods are developed to construct exact difference equations from which numerical solutions of both initial value problems and two-point boundary value problems involving first and second order ordinary differential equations can be computed. These methods are based upon the transformation theory of differential equations and require the identification of symmetry properties of the differential equations. The concept of the divergence-invariance of a variational principle is also applied to the construction of difference equations. It is shown how first and second order ordinary differential equations that admit groups of point transformations can be integrated numerically by constructing any number of exact difference equations.
Some free boundary problems in potential flow regime usinga based level set method
Energy Technology Data Exchange (ETDEWEB)
Garzon, M.; Bobillo-Ares, N.; Sethian, J.A.
2008-12-09
Recent advances in the field of fluid mechanics with moving fronts are linked to the use of Level Set Methods, a versatile mathematical technique to follow free boundaries which undergo topological changes. A challenging class of problems in this context are those related to the solution of a partial differential equation posed on a moving domain, in which the boundary condition for the PDE solver has to be obtained from a partial differential equation defined on the front. This is the case of potential flow models with moving boundaries. Moreover the fluid front will possibly be carrying some material substance which will diffuse in the front and be advected by the front velocity, as for example the use of surfactants to lower surface tension. We present a Level Set based methodology to embed this partial differential equations defined on the front in a complete Eulerian framework, fully avoiding the tracking of fluid particles and its known limitations. To show the advantages of this approach in the field of Fluid Mechanics we present in this work one particular application: the numerical approximation of a potential flow model to simulate the evolution and breaking of a solitary wave propagating over a slopping bottom and compare the level set based algorithm with previous front tracking models.
Problem of colour confinement in non-Abelian gauge theories
International Nuclear Information System (INIS)
Gribov, V.N.
1978-01-01
The problem of the colour confinement in the non-abelian gauge theories is studied. A more rigorous treatment of the Fadeev-Popov procedure for the quantization of the non-abelian gauge theories is presented. In the improved procedure one has to introduce additional bounds on the region of integration in the functional space of non-abelian fields. The integration is to be performed over the fields with positive-definite Faddeev-Popov determinant. This limitation has little influence on oscillations with high frequencies, but reduces drastically the amplitudes of low-frequency oscillations. This implies, that interaction of two colour charges does not go into infinity at finite distances, rather it is linearly rising with distance
Extension of O-theory to problems of logical inferencing
Energy Technology Data Exchange (ETDEWEB)
Oblow, E.M.
1987-03-01
This paper extends Operator-Uncertainty Theory (OT) to the problem of uncertainty propagation in logical inferencing systems. The OT algebra and propositional interpretations presented in previous papers are applied here to derive operators for logical inferencing in the presence of conflict and undecidability. Operators for propagating uncertainties through the logical operations of disjunction and conjunction are defined. In addition, new OT operators for implication, modus ponens and modus tollens are also proposed. The operators derived using the OT methodology are found to give rise to a four-valued logic similar to that used in computer circuit design. This framework allows uncertainty in inferencing to be represented in the form of rules convenient for use in expert systems as well as logical networks. The theory is general enough to deal with questions of conflict and undecidability, and to propagate their effects through the most widely used inference operations.
Directory of Open Access Journals (Sweden)
Amar Chidouh
2018-01-01
Full Text Available We prove existence of positive solutions to a boundary value problem depending on discrete fractional operators. Then, corresponding discrete fractional Lyapunov-type inequalities are obtained.
Kantor, M. M.; Nikabadze, M. U.; Ulukhanyan, A. R.
2013-05-01
Nowadays, microcontinuous mechanics (mechanics of media with microstructure) is being developed very intensively, which is testified by recently published papers [1-14] and by many others, as well as by the symposiumdedicated to the hundredth anniversary of the brothers Cosserat monograph [15], held inParis in 2009. A survey of foreign papers is given in [16], and a special place is occupied by earlier publications of Soviet scientists on micropolar theory of elasticity [17-24]. A brief survey of Cosserat theory of elasticity and an analysis and prospects of such theories in mechanics of rigid deformable bodies is given in [21]. It should be noted that, in a majority of cases, the structure strength calculations are based on the classical theory of elasticity. But there are materials such as animal bones, graphite, several polymers, polyurethane films, porous materials (pumice), various synthetic materials, and materials with inclusions which, under certain conditions, exhibit micropolar properties. There are effects which cannot be prescribed by the classical theory. In statics, nonclassical behavior can be observed in bending of thin films and cantilevers, in torsion of thin and thin-walled rods, and in the case of stress concentration near holes, corner points, cracks, and inclusions. For example, thin specimens are more rigid in bending and torsion as is prescribed by the classical theory [25-27]. The stress concentration near holes decreases, and the concentration factor depends on the radius [28]. The stress concentration near cracks also becomes lower. Conversely, the stress concentration near inclusions is higher than predicted by the classical theory [29-31]. If the material has no center of symmetry of elastic properties, then calculations according to the micropolar theory shows that the specimen is twisted in tension [32]. In dynamical problems, several phenomena also differ from the classical concepts. For example, shear waves propagate with dispersion
Application of the heuristically based GPT theory to termohydraulic problems
International Nuclear Information System (INIS)
Alvim, A.C.M.
1988-01-01
Application of heuristically based generalized perturbation theory (GPT) to the thermohydraulic (generally nonlinear) field is here illustrated. After a short description of the general methodology, the (linear) equations governing the importance function relevant to a generic multichannel problem are derived, within the physical model adopted in the COBRA IV-I Code. These equations are put in a form which should benefit of the calculational scheme of the original COBRA Code in the sense that only minor changes of it (mostly implying physical constants and source terms redefinitions) should be necessary for their solutions. (author) [pt
Cubic B-spline solution for two-point boundary value problem with AOR iterative method
Suardi, M. N.; Radzuan, N. Z. F. M.; Sulaiman, J.
2017-09-01
In this study, the cubic B-spline approximation equation has been derived by using the cubic B-spline discretization scheme to solve two-point boundary value problems. In addition to that, system of cubic B-spline approximation equations is generated from this spline approximation equation in order to get the numerical solutions. To do this, the Accelerated Over Relaxation (AOR) iterative method has been used to solve the generated linear system. For the purpose of comparison, the GS iterative method is designated as a control method to compare between SOR and AOR iterative methods. There are two examples of proposed problems that have been considered to examine the efficiency of these proposed iterative methods via three parameters such as their number of iterations, computational time and maximum absolute error. The numerical results are obtained from these iterative methods, it can be concluded that the AOR iterative method is slightly efficient as compared with SOR iterative method.
DEFF Research Database (Denmark)
Mariegaard, Jesper Sandvig
equation: a linear finite element method (L-FEM) and a discontinuous Galerkin-FEM (DG-FEM). The controllability operator is discretized with both L-FEM and DG-FEM to obtain a HUM matrix. We show that formulating HUM in a sine basis is beneficial for several reasons: (i) separation of low and high frequency......We consider a control problem for the wave equation: Given the initial state, find a specific boundary condition, called a control, that steers the system to a desired final state. The Hilbert uniqueness method (HUM) is a mathematical method for the solution of such control problems. It builds...... on the duality between the control system and its adjoint system, and these systems are connected via a so-called controllability operator. In this project, we are concerned with the numerical approximation of HUM control for the one-dimensional wave equation. We study two semi-discretizations of the wave...
Local non-similarity method through the Crocco's transformation in boundary layer problem
International Nuclear Information System (INIS)
Jardim, R.G.M.
1981-04-01
The coordinate transformation developed by L. Crocco to obtain the solution of the compressible fluid flows over isotermal flat plates is originally employed in the present work, with the purpose of adding its inherent advantage to the Non-Similarity Method idealized by E.M. Sparrow, in the solution of the incompressible non-similar boundary layers. The Crocco's transformation is applied to the conservation equation for forced convection, laminar, constant properties and two-dimensional flows over solids. Two non-similar problems arisen from freestream velocity distribution, the cylinder in crossflow and the Howarth's retarded flow, are solved with a view to illustrating the new procedure. In those solutions the effect of frictional heat is also considered. The results of hydrodynamic and thermal problems are compared with available published information and good agreement was observed. (Author) [pt
The boundaries of instance-based learning theory for explaining decisions from experience.
Gonzalez, Cleotilde
2013-01-01
Most demonstrations of how people make decisions in risky situations rely on decisions from description, where outcomes and their probabilities are explicitly stated. But recently, more attention has been given to decisions from experience where people discover these outcomes and probabilities through exploration. More importantly, risky behavior depends on how decisions are made (from description or experience), and although prospect theory explains decisions from description, a comprehensive model of decisions from experience is yet to be found. Instance-based learning theory (IBLT) explains how decisions are made from experience through interactions with dynamic environments (Gonzalez et al., 2003). The theory has shown robust explanations of behavior across multiple tasks and contexts, but it is becoming unclear what the theory is able to explain and what it does not. The goal of this chapter is to start addressing this problem. I will introduce IBLT and a recent cognitive model based on this theory: the IBL model of repeated binary choice; then I will discuss the phenomena that the IBL model explains and those that the model does not. The argument is for the theory's robustness but also for clarity in terms of concrete effects that the theory can or cannot account for. Copyright © 2013 Elsevier B.V. All rights reserved.
A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems
Pan, Kejia; He, Dongdong; Hu, Hongling; Ren, Zhengyong
2017-09-01
In this paper, we develop a new extrapolation cascadic multigrid method, which makes it possible to solve three dimensional elliptic boundary value problems with over 100 million unknowns on a desktop computer in half a minute. First, by combining Richardson extrapolation and quadratic finite element (FE) interpolation for the numerical solutions on two-level of grids (current and previous grids), we provide a quite good initial guess for the iterative solution on the next finer grid, which is a third-order approximation to the FE solution. And the resulting large linear system from the FE discretization is then solved by the Jacobi-preconditioned conjugate gradient (JCG) method with the obtained initial guess. Additionally, instead of performing a fixed number of iterations as used in existing cascadic multigrid methods, a relative residual tolerance is introduced in the JCG solver, which enables us to obtain conveniently the numerical solution with the desired accuracy. Moreover, a simple method based on the midpoint extrapolation formula is proposed to achieve higher-order accuracy on the finest grid cheaply and directly. Test results from four examples including two smooth problems with both constant and variable coefficients, an H3-regular problem as well as an anisotropic problem are reported to show that the proposed method has much better efficiency compared to the classical V-cycle and W-cycle multigrid methods. Finally, we present the reason why our method is highly efficient for solving these elliptic problems.
Directory of Open Access Journals (Sweden)
Xuemei Zhang
2014-01-01
Full Text Available This paper investigates the expression and properties of Green’s function for a second-order singular boundary value problem with integral boundary conditions and delayed argument -x′′t-atx′t+btxt=ωtft, xαt, t∈0, 1; x′0=0, x1-∫01htxtdt=0, where a∈0, 1, 0, +∞, b∈C0, 1, 0, +∞ and, ω may be singular at t=0 or/and at t=1. Furthermore, several new and more general results are obtained for the existence of positive solutions for the above problem by using Krasnosel’skii’s fixed point theorem. We discuss our problems with a delayed argument, which may concern optimization issues of some technical problems. Moreover, the approach to express the integral equation of the above problem is different from earlier approaches. Our results cover a second-order boundary value problem without deviating arguments and are compared with some recent results.
International Nuclear Information System (INIS)
Zeng, Huihui
2015-01-01
In this paper we establish the global existence of smooth solutions to vacuum free boundary problems of the one-dimensional compressible isentropic Navier–Stokes equations for which the smoothness extends all the way to the boundaries. The results obtained in this work include the physical vacuum for which the sound speed is C 1/2 -Hölder continuous near the vacuum boundaries when 1 < γ < 3. The novelty of this result is its global-in-time regularity which is in contrast to the previous main results of global weak solutions in the literature. Moreover, in previous studies of the one-dimensional free boundary problems of compressible Navier–Stokes equations, the Lagrangian mass coordinates method has often been used, but in the present work the particle path (flow trajectory) method is adopted, which has the advantage that the particle paths and, in particular, the free boundaries can be traced. (paper)
Sensitivity theory applied to a transient thermal-hydraulics problem
International Nuclear Information System (INIS)
Weber, C.F.; Oblow, E.M.
1979-10-01
A new method for sensitivity analysis of transient nonlinear problems is developed and applied to a reactor thermal-hydraulics problem. The method resembles the differential sensitivity methods currently used in the linear problems of reactor physics, but it is applicable to nonlinear systems as well. The equations governing heat transfer and fluid flow in a fuel pin and surrounding coolant are given and used to derive a second set of equations (commonly known as the adjoint equations) used in the sensitivity analysis. Both systems contain one second-order parabolic and one first-order hyperbolic partial differential equation. Difference equations are derived to approximate both systems and the convergence properties of these discrete systems are evaluated, yielding a useful analysis of the numerical solution. The solution functions are used to derive sensitivity coefficients for any desired integral response. These sensitivity coefficients are used in a first-order perturbation theory to predict changes in a response resulting from changes in parameter values. The results of a test problem are shown, verifying that this procedure is indeed useful for a wide variety of sensitivity calculations
Graph theory favorite conjectures and open problems 1
Hedetniemi, Stephen; Larson, Craig
2016-01-01
This is the first in a series of volumes, which provide an extensive overview of conjectures and open problems in graph theory. The readership of each volume is geared toward graduate students who may be searching for research ideas. However, the well-established mathematician will find the overall exposition engaging and enlightening. Each chapter, presented in a story-telling style, includes more than a simple collection of results on a particular topic. Each contribution conveys the history, evolution, and techniques used to solve the authors’ favorite conjectures and open problems, enhancing the reader’s overall comprehension and enthusiasm. The editors were inspired to create these volumes by the popular and well attended special sessions, entitled “My Favorite Graph Theory Conjectures," which were held at the winter AMS/MAA Joint Meeting in Boston (January, 2012), the SIAM Conference on Discrete Mathematics in Halifax (June,2012) and the winter AMS/MAA Joint meeting in Baltimore(January, 2014). In...
International Nuclear Information System (INIS)
Akalin-Acar, Zeynep; Gencer, Nevzat G
2004-01-01
The forward problem of electromagnetic source imaging has two components: a numerical model to solve the related integral equations and a model of the head geometry. This study is on the boundary element method (BEM) implementation for numerical solutions and realistic head modelling. The use of second-order (quadratic) isoparametric elements and the recursive integration technique increase the accuracy in the solutions. Two new formulations are developed for the calculation of the transfer matrices to obtain the potential and magnetic field patterns using realistic head models. The formulations incorporate the use of the isolated problem approach for increased accuracy in solutions. If a personal computer is used for computations, each transfer matrix is calculated in 2.2 h. After this pre-computation period, solutions for arbitrary source configurations can be obtained in milliseconds for a realistic head model. A hybrid algorithm that uses snakes, morphological operations, region growing and thresholding is used for segmentation. The scalp, skull, grey matter, white matter and eyes are segmented from the multimodal magnetic resonance images and meshes for the corresponding surfaces are created. A mesh generation algorithm is developed for modelling the intersecting tissue compartments, such as eyes. To obtain more accurate results quadratic elements are used in the realistic meshes. The resultant BEM implementation provides more accurate forward problem solutions and more efficient calculations. Thus it can be the firm basis of the future inverse problem solutions
Memory allocation and computations for Laplace’s equation of 3-D arbitrary boundary problems
Directory of Open Access Journals (Sweden)
Tsay Tswn-Syau
2017-01-01
Full Text Available Computation iteration schemes and memory allocation technique for finite difference method were presented in this paper. The transformed form of a groundwater flow problem in the generalized curvilinear coordinates was taken to be the illustrating example and a 3-dimensional second order accurate 19-point scheme was presented. Traditional element-by-element methods (e.g. SOR are preferred since it is simple and memory efficient but time consuming in computation. For efficient memory allocation, an index method was presented to store the sparse non-symmetric matrix of the problem. For computations, conjugate-gradient-like methods were reported to be computationally efficient. Among them, using incomplete Choleski decomposition as preconditioner was reported to be good method for iteration convergence. In general, the developed index method in this paper has the following advantages: (1 adaptable to various governing and boundary conditions, (2 flexible for higher order approximation, (3 independence of problem dimension, (4 efficient for complex problems when global matrix is not symmetric, (5 convenience for general sparse matrices, (6 computationally efficient in the most time consuming procedure of matrix multiplication, and (7 applicable to any developed matrix solver.
Directory of Open Access Journals (Sweden)
Dang Quang A
2013-02-01
Full Text Available In this paper we consider a mixed boundary value problem for biharmonic equation of the Airy stress function which models a crack problem of a solid elastic plate. An iterative method for reducing the problem to a sequence of mixed problems for Poisson equations is proposed and investigated. The convergence of the method is established theoretically and illustrated on many numerical experiments.
Initial-Boundary Value Problem Solution of the Nonlinear Shallow-water Wave Equations
Kanoglu, U.; Aydin, B.
2014-12-01
The hodograph transformation solutions of the one-dimensional nonlinear shallow-water wave (NSW) equations are usually obtained through integral transform techniques such as Fourier-Bessel transforms. However, the original formulation of Carrier and Greenspan (1958 J Fluid Mech) and its variant Carrier et al. (2003 J Fluid Mech) involve evaluation integrals. Since elliptic integrals are highly singular as discussed in Carrier et al. (2003), this solution methodology requires either approximation of the associated integrands by smooth functions or selection of regular initial/boundary data. It should be noted that Kanoglu (2004 J Fluid Mech) partly resolves this issue by simplifying the resulting integrals in closed form. Here, the hodograph transform approach is coupled with the classical eigenfunction expansion method rather than integral transform techniques and a new analytical model for nonlinear long wave propagation over a plane beach is derived. This approach is based on the solution methodology used in Aydın & Kanoglu (2007 CMES-Comp Model Eng) for wind set-down relaxation problem. In contrast to classical initial- or boundary-value problem solutions, here, the NSW equations are formulated to yield an initial-boundary value problem (IBVP) solution. In general, initial wave profile with nonzero initial velocity distribution is assumed and the flow variables are given in the form of Fourier-Bessel series. The results reveal that the developed method allows accurate estimation of the spatial and temporal variation of the flow quantities, i.e., free-surface height and depth-averaged velocity, with much less computational effort compared to the integral transform techniques such as Carrier et al. (2003), Kanoglu (2004), Tinti & Tonini (2005 J Fluid Mech), and Kanoglu & Synolakis (2006 Phys Rev Lett). Acknowledgments: This work is funded by project ASTARTE- Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV
Directory of Open Access Journals (Sweden)
Laraqi Najib
2017-01-01
Full Text Available Heat conduction in solids subjected to non-homogenous boundary conditions leads to singularities in terms of heat flux density. That kind of issues can be also encountered in various scientists’ fields as electromagnetism, electrostatic, electrochemistry and mechanics. These problems are difficult to solve by using the classical methods such as integral transforms or separation of variables. These methods lead to solving of dual integral equations or Fredholm integral equations, which are not easy to use. The present work addresses the calculation of thermal resistance of a finite medium submitted to conjugate surface Neumann and Dirichlet conditions, which are defined by a band-shape heat source and a uniform temperature. The opposite surface is subjected to a homogeneous boundary condition such uniform temperature, or insulation. The proposed solving process is based on simple and accurate correlations that provide the thermal resistance as a function of the ratio of the size of heat source and the depth of the medium. A judicious scale analysis is performed in order to fix the asymptotic behaviour at the limits of the value of the geometric parameter. The developed correlations are very simple to use and are valid regardless of the values of the defined geometrical parameter. The performed validations by comparison with numerical modelling demonstrate the relevant agreement of the solutions to address singularity calculation issues.
Interior and exterior solutions for boundary value problems in composite elastic and viscous media
Directory of Open Access Journals (Sweden)
D. L. Jain
1985-01-01
Full Text Available We present the solutions for the boundary value problems of elasticity when a homogeneous and isotropic solid of an arbitrary shape is embedded in an infinite homogeneous isotropic medium of different properties. The solutions are obtained inside both the guest and host media by an integral equation technique. The boundaries considered are an oblong, a triaxial ellipsoid and an elliptic cyclinder of a finite height and their limiting configurations in two and three dimensions. The exact interior and exterior solutions for an ellipsoidal inclusion and its limiting configurations are presented when the infinite host medium is subjected to a uniform strain. In the case of an oblong or an elliptic cylinder of finite height the solutions are approximate. Next, we present the formula for the energy stored in the infinite host medium due to the presence of an arbitrary symmetrical void in it. This formula is evaluated for the special case of a spherical void. Finally, we analyse the change of shape of a viscous incompressible ellipsoidal region embedded in a slowly deforming fluid of a different viscosity. Two interesting limiting cases are discussed in detail.
Bulk and boundary invariants for complex topological insulators from K-theory to physics
Prodan, Emil
2016-01-01
This monograph offers an overview of rigorous results on fermionic topological insulators from the complex classes, namely, those without symmetries or with just a chiral symmetry. Particular focus is on the stability of the topological invariants in the presence of strong disorder, on the interplay between the bulk and boundary invariants and on their dependence on magnetic fields. The first part presents motivating examples and the conjectures put forward by the physics community, together with a brief review of the experimental achievements. The second part develops an operator algebraic approach for the study of disordered topological insulators. This leads naturally to use analysis tools from K-theory and non-commutative geometry, such as cyclic cohomology, quantized calculus with Fredholm modules and index pairings. New results include a generalized Streda formula and a proof of the delocalized nature of surface states in topological insulators with non-trivial invariants. The concluding chapter connect...