WorldWideScience

Sample records for boundary layer turbulence

  1. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    1974-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  2. Measurements of a Separating Turbulent Boundary Layer.

    Science.gov (United States)

    1980-04-01

    the uncertainties of most of the dominant terms are less than 30% 40% at many points. In general, the terms involving derivatives with re spect to y...34 DISA Information, no. 13, pp. 29-33. Perry, A.E. and Schofield, W.H. 1973 "Mean Velocity and Shear Stress Distribu- tions in Turbulent Boundary Layers

  3. Flow Visualization in Supersonic Turbulent Boundary Layers.

    Science.gov (United States)

    Smith, Michael Wayne

    This thesis is a collection of novel flow visualizations of two different flat-plate, zero pressure gradient, supersonic, turbulent boundary layers (M = 2.8, Re _theta ~ 82,000, and M = 2.5, Re_ theta ~ 25,000, respectively). The physics of supersonic shear flows has recently drawn increasing attention with the renewed interest in flight at super and hypersonic speeds. This work was driven by the belief that the study of organized, Reynolds -stress producing turbulence structures will lead to improved techniques for the modelling and control of high-speed boundary layers. Although flow-visualization is often thought of as a tool for providing qualitative information about complex flow fields, in this thesis an emphasis is placed on deriving quantitative results from image data whenever possible. Three visualization techniques were applied--'selective cut-off' schlieren, droplet seeding, and Rayleigh scattering. Two experiments employed 'selective cut-off' schlieren. In the first, high-speed movies (40,000 fps) were made of strong density gradient fronts leaning downstream at between 30^circ and 60^ circ and travelling at about 0.9U _infty. In the second experiment, the same fronts were detected with hot-wires and imaged in real time, thus allowing the examination of the density gradient fronts and their associated single-point mass -flux signals. Two experiments employed droplet seeding. In both experiments, the boundary layer was seeded by injecting a stream of acetone through a single point in the wall. The acetone is atomized by the high shear at the wall into a 'fog' of tiny (~3.5mu m) droplets. In the first droplet experiment, the fog was illuminated with copper-vapor laser sheets of various orientations. The copper vapor laser pulses 'froze' the fog motion, revealing a variety of organized turbulence structures, some with characteristic downstream inclinations, others with large-scale roll-up on the scale of delta. In the second droplet experiment, high

  4. Effect of externally generated turbulence on wave boundary layer

    DEFF Research Database (Denmark)

    Fredsøe, Jørgen; Sumer, B. Mutlu; Kozakiewicz, A.

    2003-01-01

    This experimental study deals with the effect of externally generated turbulence on the oscillatory boundary layer to simulate the turbulence in the wave boundary layer under broken waves in the swash zone. The subject has been investigated experimentally in a U-shaped, oscillating water tunnel...... results. The mean and turbulence quantities in the outer flow region are increased substantially with the introduction of the grids. It is shown that the externally generated turbulence is able to penetrate the bed boundary layer, resulting in an increase in the bed shear stress, and therefore...

  5. Vortex properties in turbulent boundary layers

    Science.gov (United States)

    Gao, Qi; Saikrishnan, Neelakantan; Ortiz-Duenas, Cecilia; Longmire, Ellen

    2008-11-01

    Swirl strength was used to identify vortices in turbulent boundary layers. Dual-plane PIV data at Reτ 1100 with coarser (Ganapathisubramani et al., 2006) and finer resolution (Saikrishnan et al., 2007) as well as DNS data at Reτ=590 (Moser et al., 1999) and Reτ=934 (del álamo et al., 2004) were analyzed. A new core-combination algorithm was developed to improve identification of in- and out-of-plane vortices. Core orientation was determined by the eigenvector of the velocity gradient tensor, and core radii were characterized. The effects of wall normal location, Reynolds number, and spatial resolution were studied. In general, the PDF of swirl magnitude is affected by both in- and out-of-plane spatial resolution as well as the wall normal location. Scaling of swirl will be discussed in the presentation. The results show that, in the logarithmic region, the mean angle between the eigenvector and the vorticity vector decreases and the mean core radius increases with wall normal distance. Joint PDFs show linear increases in circulation with core radius, as well as correlations between core inclination angle and circulation. Convection velocities of strong cores are typically smaller than the local mean velocity.

  6. Definition of Turbulent Boundary-Layer with Entropy Concept

    Directory of Open Access Journals (Sweden)

    Zhao Rui

    2016-01-01

    Full Text Available The relationship between the entropy increment and the viscosity dissipation in turbulent boundary-layer is systematically investigated. Through theoretical analysis and direct numerical simulation (DNS, an entropy function fs is proposed to distinguish the turbulent boundary-layer from the external flow. This approach is proved to be reliable after comparing its performance in the following complex flows, namely, low-speed airfoil flows with different wall temperature, supersonic cavity-ramp flow dominated by the combination of free-shear layer, larger recirculation and shocks, and the hypersonic flow past an aeroplane configuration. Moreover, fs is deduced from the point of energy, independent of any particular turbulent quantities. That is, this entropy concept could be utilized by other engineering applications related with turbulent boundary-layer, such as turbulence modelling transition prediction and engineering thermal protection.

  7. Effects of compressibility on boundary-layer turbulence

    Science.gov (United States)

    Acharya, M.

    1976-01-01

    A series of turbulence measurements in a subsonic compressible turbulent boundary-layer flow in the Mach number range of 0.1 to 0.7 is described. Measurements include detailed surveys of the turbulence intensities and Reynolds shear stresses, and other quantities such as the turbulent kinetic energy. These data are examined to bring out the effects of compressibility and show that the stream-wise and transverse fluctuations and the turbulent shear stress follow a universal scaling law. A preliminary attempt is made to examine some of the assumptions made in turbulence models commonly used in numerical codes for the calculation of compressible flows.

  8. Turbulent boundary layer in high Rayleigh number convection in air.

    Science.gov (United States)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  9. A numerical simulation of longitudinal vortex in turbulent boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.S.; Lee, K.B. [Pusan National University, Pusan (Korea)

    2000-06-01

    This paper represents numerical computations of the interaction between the longitudinal vortex and a flat plate 3-D turbulent boundary layer. In the present study, the main interest is in the behavior of longitudinal vortices introduced in turbulent boundary layers. The flow field behind vortex generator is modeled by the information that is available from studies on the delta winglet. Also, the Reynolds-averaged Navier-Stoke equations for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, is solved by the method of pseudo compressibility. The present results show that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall, and have a good agreement with the experimental data. (author). 12 refs., 12 figs.

  10. Turbulence Models: Data from Other Experiments: Shock Wave / Turbulent Boundary Layer Flows at High Mach Numbers

    Data.gov (United States)

    National Aeronautics and Space Administration — Shock Wave / Turbulent Boundary Layer Flows at High Mach Numbers. This web page provides data from experiments that may be useful for the validation of turbulence...

  11. Turbulent Boundary Layer at Large Re

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2016-03-01

    Full Text Available The fluids as deformable bodies without own shape, when starting from rest, experience interactions between the flowing fluid and the physical surfaces marking the bounds of flow. These interactions are a kind of impact process where there is a momentum exchange between two colliding bodies, i.e. the flow and its boundary surfaces. Within a short time of contact a post-impact shear flow occurs where two main effects are triggered off by the flow-induced collision: dramatic redistribution of the momentum and the boundary vorticity followed by the shear stress/viscosity change in the microstructure of the fluid which at the beginning behaves as linear reactive medium and latter as nonlinear dispersive medium. The disturbance of the starting flow induces the entanglement of the wall-bounded flow in the form of point-vortices or concentrated vorticity balls whence waves are emitted and propagated through flow field. The paper develops a wave mechanism for the transport of the concentrated boundary vorticity, directly related to the fascinating turbulence phenomenon, using the torsion concept of vorticity filaments associated with the hypothesis of thixotropic/nonlinear viscous fluid.

  12. Stochastic Theory of Turbulence Mixing by Finite Eddies in the Turbulent Boundary Layer

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    Turbulence mixing is treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic hypothesis. The theory simplifies for mixing by exchange (strong-eddies) and is then applied to the boundary layer (involving scaling). This maps boundary layer turbulence onto

  13. DNS of Turbulent Boundary Layers under Highenthalpy Conditions

    Science.gov (United States)

    Duan, Lian; Martín, Pino

    2010-11-01

    To study real-gas effects and turbulence-chemistry interaction, direct numerical simulations (DNS) of hypersonic boundary layers are conducted under typical hypersonic conditions. We consider the boundary layer on a lifting-body consisting of a flat plate at an angle of attack, which flies at altitude 30km with a Mach number 21. Two different inclined angles, 35^o and 8^o, are considered,representing blunt and slender bodies. Both noncatalytic and supercatalytic wall conditions are considered. The DNS data are studied to assess the validity of Morkovin's hypothesis, the strong Reynolds analogy, as well as the behaviors of turbulence structures under high-enthalpy conditions.Relative to low-enthalpy conditions [1], significant differences in typical scalings are observed. [4pt] [1] L. Duan and I. Beekman and M. P. Mart'in, Direct numerical simulation of hypersonic turbulent boundary layers. Part 2: Effect of temperature, J. Fluid Mech. 655 (2010), 419-445.

  14. Turbulence structures in a strongly decelerated boundary layer

    Science.gov (United States)

    Gungor, Ayse G.; Maciel, Yvan; Simens, Mark P.

    2014-11-01

    The characteristics of three-dimensional intense Reynolds shear stress structures (Qs) are presented from a direct numerical simulation of an adverse pressure gradient boundary layer at Reθ = 1500 -2175. The intense Q2 (ejections) and Q4 (sweeps) structures separate into two groups: wall-attached and wall-detached structures. In the region where turbulent activity is maximal, between 0 . 2 δ and 0 . 6 δ , 94 % of the structures are detached structures. In comparison to canonical wall flows, the large velocity defect turbulent boundary layers are less efficient in extracting turbulent energy from the mean flow. There is, furthermore, much less turbulence activity and less velocity coherence near the wall. Additionally, the wall-detached structures are more frequent and carry a much larger amount of Reynolds shear stress. Funded in part by ITU, NSERC of Canada, and Multiflow program of the ERC.

  15. Effects of coastal forcing on turbulence and boundary- layer structure

    Science.gov (United States)

    Strom, Linda Maria Viktoria

    Coastal mountains of significant elevation impose constraints for the surrounding flow. The aim of this study is to describe the modifications of the marine atmospheric boundary layer that occur offshore of the west coast of the United States. Aircraft measurements, up to 1000 km off the coast from two experiments, are used. This boundary layer is capped by a subsidence inversion, which slopes down toward the coast and produces large thermal winds. Low-level wind maxima (i.e. jets) are typical for these conditions, commonly a 40-50% increase relative to the 30 m wind speed. The effects of coastal forcing on low-level winds cancel in average when no regard is taken for position relative a cape or point. The variability of the low-level wind speed increases nevertheless significantly toward the coast, the standard deviation is +/-40% of the offshore value. The scale of the adjustment downstream of a cape or point is specifically addressed. Some measurements support a formulation of the coastal extent based on an inviscid shallow-water concept; mean variables (i.e. 30 m wind speed and boundary-layer depth) and turbulent parameters (i.e. dissipation and shear production of turbulent kinetic energy) vary in a uniform, predicted manner. The effects of coastal forcing on winds result in cold sea surface temperatures at the coast, due to upwelling. Stability becomes a function of offshore distance. Surface-layer turbulence statistics and spectra (and cospectra) of turbulence variables are presented. Across- and along-wind sampled spectra (and cospectra) show that large wind shear and shallow boundary layer affect the scales of the turbulence eddies. The relation between the standard deviations of wind components are affected. The turbulence appears to be non-local in some aspects, entrainment fluxes are proposed to be important due to a shallow boundary layer with a sharp, sloping inversion and a low-level jet.

  16. Scaling laws and turbulence closures for stable boundary layers

    Science.gov (United States)

    Zilitinkevich, S.; Esau, I.; Baklanov, A.; Djolov, G.

    2003-04-01

    This paper presents a recently developed theory of non-local turbulence in the stably stratified planetary boundary layers (PBLs): basic theoretical results, new LES code specifically designed for LES of stably stratified flows, and comparison of theoretical predictions with LES and experimental data. The paper includes improved formulations for the PBL depth and resistance laws and outlines an advanced turbulence closure accounting for the transport properties of internal gravity waves.

  17. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    OpenAIRE

    Teleman, Elena-Carmen; Silion, Radu; Axinte, Elena; Pescaru, Radu

    2008-01-01

    The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence sca...

  18. Page 1 Shock-wave-turbulent-boundary-layer interaction & its ...

    Indian Academy of Sciences (India)

    shock .. rehabilitation shock with a turbulent boundary phase asºn: phase layer: M., + 1.47 (from Seddon. p x / So 1960). al 1977). Figures 16 and 17 show some of the important features of the separated flow and the surface pressure distributions as observed by Seddon (1960). The strong normal shock wave bifurcates near ...

  19. Turbulent Boundary Layers - Experiments, Theory and Modelling

    Science.gov (United States)

    1980-01-01

    ecoulement exterieur uniforme, le passage du regime laminaire au regime turbulent est carac - terise par le phenomene d’intermittence...inferieures aux plus grandes altitudes. La carac - teristique la plus remarquable des spectres est 1’existence d’un maximum pour une frequence

  20. Secondary flows in turbulent boundary layers over longitudinal surface roughness

    Science.gov (United States)

    Hwang, Hyeon Gyu; Lee, Jae Hwa

    2018-01-01

    Direct numerical simulations of turbulent boundary layers over longitudinal surface roughness are performed to investigate the impact of the surface roughness on the mean flow characteristics related to counter-rotating large-scale secondary flows. By systematically changing the two parameters of the pitch (P) and width (S) for roughness elements in the ranges of 0.57 ≤P /δ ≤2.39 and 0.15 ≤S /δ ≤1.12 , where δ is the boundary layer thickness, we find that the size of the secondary flow in each case is mostly determined by the value of P - S, i.e., the valley width, over the ridge-type roughness. However, the strength of the secondary flows on the cross-stream plane relative to the flow is increased when the value of P increases or when the value of S decreases. In addition to the secondary flows, additional tertiary and quaternary flows are observed both above the roughness crest and in the valley as the values of P and S increase further. Based on an analysis using the turbulent kinetic energy transport equation, it is shown that the secondary flow over the ridge-type roughness is both driven and sustained by the anisotropy of turbulence, consistent with previous observations of a turbulent boundary layer over strip-type roughness [Anderson et al., J. Fluid Mech. 768, 316 (2015), 10.1017/jfm.2015.91]. Careful inspection of the turbulent kinetic energy budget reveals that the opposite rotational sense of the secondary flow between the ridge- and strip-type roughness elements is primarily attributed to the local imbalance of energy budget created by the strong turbulent transport term over the ridge-type roughness. The active transport of the kinetic energy over the ridge-type roughness is closely associated with the upward deflection of spanwise motions in the valley, mostly due to the roughness edge.

  1. Modeling and computation of boundary-layer flows laminar, turbulent and transitional boundary layers in incompressible and compressible flows

    CERN Document Server

    Cebeci, Tuncer

    2005-01-01

    This second edition of our book extends the modeling and calculation of boundary-layer flows to include compressible flows. The subjects cover laminar, transitional and turbulent boundary layers for two- and three-dimensional incompressible and compressible flows. The viscous-inviscid coupling between the boundary layer and the inviscid flow is also addressed. The book has a large number of homework problems.

  2. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    Science.gov (United States)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  3. Coherence of simulated atmospheric boundary-layer turbulence

    Science.gov (United States)

    Jiadong, Zeng; Zhiguo, Li; Mingshui, Li

    2017-12-01

    The coherences in a plane perpendicular to incoming flow are measured in wind tunnel simulations of atmospheric turbulent flow. The measured coherences are compared with analytical expressions tailored to field measurements and with theoretical coherence models which assume homogeneous turbulence and the von Kármán’s spectrum. The comparison indicates that the simulated atmospheric boundary layer flow is approximately horizontally homogeneous turbulence. Based on the above assumption and the systematic analysis of lateral coherence, it can be concluded that the lateral coherences of simulated atmospheric boundary turbulence can be determined accurately using the von Kármán spectrum and the turbulence parameters measured by a few measurement points. The measured results also show that the spatial characteristics of vertical coherences are closely related to the dimensionless parameter {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The vertical coherence at two heights can be roughly estimated by the ratio to {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The relationship between the phase angles of u-, v- and w-components and the vertical separation distance and the height from the ground is further analyzed. Finally, the roles of the type of land surface roughness, the height from the ground, the turbulence intensity and the integral length scale in lateral and vertical coherences are also discussed in this study.

  4. Boundary-layer turbulence as a kangaroo process

    Science.gov (United States)

    Dekker, H.; de Leeuw, G.; Maassen van den Brink, A.

    1995-09-01

    A nonlocal mixing-length theory of turbulence transport by finite size eddies is developed by means of a novel evaluation of the Reynolds stress. The analysis involves the contruct of a sample path space and a stochastic closure hypothesis. The simplifying property of exhange (strong eddies) is satisfied by an analytical sampling rate model. A nonlinear scaling relation maps the path space onto the semi-infinite boundary layer. The underlying near-wall behavior of fluctuating velocities perfectly agrees with recent direct numerical simulations. The resulting integro-differential equation for the mixing of scalar densities represents fully developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type of stochastic process. The model involves a scaling exponent ɛ (with ɛ-->∞ in the diffusion limit). For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields ɛ~=0.58.

  5. Rough-wall turbulent boundary layers with constant skin friction

    KAUST Repository

    Sridhar, A.

    2017-03-28

    A semi-empirical model is presented that describes the development of a fully developed turbulent boundary layer in the presence of surface roughness with length scale ks that varies with streamwise distance x . Interest is centred on flows for which all terms of the von Kármán integral relation, including the ratio of outer velocity to friction velocity U+∞≡U∞/uτ , are streamwise constant. For Rex assumed large, use is made of a simple log-wake model of the local turbulent mean-velocity profile that contains a standard mean-velocity correction for the asymptotic fully rough regime and with assumed constant parameter values. It is then shown that, for a general power-law external velocity variation U∞∼xm , all measures of the boundary-layer thickness must be proportional to x and that the surface sand-grain roughness scale variation must be the linear form ks(x)=αx , where x is the distance from the boundary layer of zero thickness and α is a dimensionless constant. This is shown to give a two-parameter (m,α) family of solutions, for which U+∞ (or equivalently Cf ) and boundary-layer thicknesses can be simply calculated. These correspond to perfectly self-similar boundary-layer growth in the streamwise direction with similarity variable z/(αx) , where z is the wall-normal coordinate. Results from this model over a range of α are discussed for several cases, including the zero-pressure-gradient ( m=0 ) and sink-flow ( m=−1 ) boundary layers. Trends observed in the model are supported by wall-modelled large-eddy simulation of the zero-pressure-gradient case for Rex in the range 108−1010 and for four values of α . Linear streamwise growth of the displacement, momentum and nominal boundary-layer thicknesses is confirmed, while, for each α , the mean-velocity profiles and streamwise turbulent variances are found to collapse reasonably well onto z/(αx) . For given α , calculations of U+∞ obtained from large-eddy simulations are streamwise

  6. Characteristics of turbulent boundary layer flow over algal biofilm

    Science.gov (United States)

    Murphy, Elizabeth; Barros, Julio; Schultz, Michael; Steppe, Cecily; Flack, Karen; Reidenbach, Matthew

    2015-11-01

    Algal biofilms are an important fouling community on ship hulls, with severe economic consequences due to drag-induced increases in fuel use and cleaning costs. Here, we characterize the boundary layer flow structure in turbulent flow over diatomaceous slime, a type of biofilm. Diatomaceous slime composed of three species of diatoms commonly found on ship hulls was grown on acrylic test plates under shear stress. The slime averages 1.6 mm in thickness and has a high density of streamers, which are flexible elongated growths with a length on the order of 1- 2 mm located at the top of the biofilm that interact with the flow. Fouled acrylic plates were placed in a water tunnel facility specialized for detailed turbulent boundary layer measurements. High resolution Particle Image Velocimetry (PIV) data are analyzed for mean velocity profile as well as local turbulent stresses and turbulent kinetic energy (TKE) production, dissipation and transport. Quadrant analysis is used to characterize the impact of the instantaneous events of Reynolds shear stress (RSS) in the flow. To investigate the coherence of the large-scale motion in the flow two-point correlation analysis is employed. Funding provided by the Office of Naval Research and the National Science Foundation.

  7. Modelling Unsteady Wall Pressures Beneath Turbulent Boundary Layers

    Science.gov (United States)

    Ahn, B-K.; Graham, W. R.; Rizzi, S. A.

    2004-01-01

    As a structural entity of turbulence, hairpin vortices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work we focus on fully developed typical hairpin vortices and estimate the associated surface pressure distributions and their corresponding spectra. On the basis of the attached eddy model, we develop a representation of the overall surface pressure spectra in terms of the eddy size distribution. Instantaneous wavenumber spectra and spatial correlations are readily derivable from this representation. The model is validated by comparison of predicted wavenumber spectra and cross-correlations with existing emperical models and experimental data.

  8. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    Directory of Open Access Journals (Sweden)

    Elena-Carmen Teleman

    2008-01-01

    Full Text Available The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence scales of the wind action in urban environment were conducted. The data obtained were processed and analyzed and interpreted with specific software. The results are used for a synthesis regarding the scales of turbulence of the model of flow and the actual accuracy of measurements. The paper presents some of the important elements of this synthesis.

  9. The large Reynolds number - Asymptotic theory of turbulent boundary layers.

    Science.gov (United States)

    Mellor, G. L.

    1972-01-01

    A self-consistent, asymptotic expansion of the one-point, mean turbulent equations of motion is obtained. Results such as the velocity defect law and the law of the wall evolve in a relatively rigorous manner, and a systematic ordering of the mean velocity boundary layer equations and their interaction with the main stream flow are obtained. The analysis is extended to the turbulent energy equation and to a treatment of the small scale equilibrium range of Kolmogoroff; in velocity correlation space the two-thirds power law is obtained. Thus, the two well-known 'laws' of turbulent flow are imbedded in an analysis which provides a great deal of other information.

  10. Unsteady turbulent boundary layers in swimming rainbow trout.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2015-05-01

    The boundary layers of rainbow trout, Oncorhynchus mykiss, swimming at 1.02±0.09 L s(-1) (mean±s.d., N=4), were measured by the particle image velocimetry (PIV) technique at a Reynolds number of 4×10(5). The boundary layer profile showed unsteadiness, oscillating above and beneath the classical logarithmic law of the wall with body motion. Across the entire surface regions that were measured, local Reynolds numbers based on momentum thickness, which is the distance that is perpendicular to the fish surface through which the boundary layer momentum flows at free-stream velocity, were greater than the critical value of 320 for the laminar-to-turbulent transition. The skin friction was dampened on the convex surface while the surface was moving towards a free-stream flow and increased on the concave surface while retreating. These observations contradict the result of a previous study using different species swimming by different methods. Boundary layer compression accompanied by an increase in local skin friction was not observed. Thus, the overall results may not support absolutely the Bone-Lighthill boundary layer thinning hypothesis that the undulatory motions of swimming fish cause a large increase in their friction drag because of the compression of the boundary layer. In some cases, marginal flow separation occurred on the convex surface in the relatively anterior surface region, but the separated flow reattached to the fish surface immediately downstream. Therefore, we believe that a severe impact due to induced drag components (i.e. pressure drag) on the swimming performance, an inevitable consequence of flow separation, was avoided. © 2015. Published by The Company of Biologists Ltd.

  11. Effect of free-stream turbulence on boundary layer transition.

    Science.gov (United States)

    Goldstein, M E

    2014-07-28

    This paper is concerned with the transition to turbulence in flat plate boundary layers due to moderately high levels of free-stream turbulence. The turbulence is assumed to be generated by an (idealized) grid and matched asymptotic expansions are used to analyse the resulting flow over a finite thickness flat plate located in the downstream region. The characteristic Reynolds number Rλ based on the mesh size λ and free-stream velocity is assumed to be large, and the turbulence intensity ε is assumed to be small. The asymptotic flow structure is discussed for the generic case where the turbulence Reynolds number εRλ and the plate thickness and are held fixed (at O(1) and O(λ), respectively) in the limit as [Formula: see text] and ε→0. But various limiting cases are considered in order to explain the relevant transition mechanisms. It is argued that there are two types of streak-like structures that can play a role in the transition process: (i) those that appear in the downstream region and are generated by streamwise vorticity in upstream flow and (ii) those that are concentrated near the leading edge and are generated by plate normal vorticity in upstream flow. The former are relatively unaffected by leading edge geometry and are usually referred to as Klebanoff modes while the latter are strongly affected by leading edge geometry and are more streamwise vortex-like in appearance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. The collapse of turbulence in the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wiel, B J H; Clercx, H J H [Department of Physics, Eindhoven University of Technology (Netherlands); Moene, A F [Department of Meteorology and Air Quality, Wageningen University and Research Centre (Netherlands); Jonker, H J J, E-mail: b.j.h.v.d.wiel@tue.nl [Department of Multi-scale Pysics, Delft University of Technology (Netherlands)

    2011-12-22

    A well-known phenomenon in the atmospheric boundary layer is the fact that winds may become very weak in the evening after a clear sunny day. In these quiet conditions usually hardly any turbulence is present. Consequently this type of boundary layer is referred to as the quasi-laminar boundary layer. In spite of its relevance, the appearance of laminar boundary layers is poorly understood and forms a long standing problem in meteorological research. Here we investigate an analogue problem in the form of a stably stratified channel flow. The flow is studied with a simplified atmospheric model as well as with Direct Numerical Simulations. Both models show remarkably similar behaviour with respect to the mean variables such as temperature and wind speed. The similarity between both models opens new way for understanding and predicting the laminarization process. Mathematical analysis on the simplified model shows that relaminarization can be understood from the existence of a definite limit in the maximum sustainable heat flux under stably stratified conditions. This fascinating aspect will be elaborated in future work.

  13. Temperature boundary layer profiles in turbulent Rayleigh-Benard convection

    Science.gov (United States)

    Ching, Emily S. C.; Emran, Mohammad S.; Horn, Susanne; Shishkina, Olga

    2017-11-01

    Classical boundary-layer theory for steady flows cannot adequately describe the boundary layer profiles in turbulent Rayleigh-Benard convection. We have developed a thermal boundary layer equation which takes into account fluctuations in terms of an eddy thermal diffusivity. Based on Prandtl's mixing length ideas, we relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal boundary layer equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters: θ(ξ) =1/b∫0b ξ [ 1 +3a3/b3(η - arctan(η)) ] - c dη , where ξ is the similarity variable and the parameters a, b, and c are related by the condition θ(∞) = 1 . With a proper choice of the parameters, our predictions of the temperature profile are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers (Pr), from Pr=0.01 to Pr=2547.9. OS, ME and SH acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grants Sh405/4-2 (Heisenberg fellowship), Sh405/3-2 and Ho 5890/1-1, respectively.

  14. Turbulent boundary layer under the control of different schemes

    Science.gov (United States)

    Qiao, Z. X.; Zhou, Y.; Wu, Z.

    2017-06-01

    This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed.

  15. Optimal control of wind turbines in a turbulent boundary layer

    Science.gov (United States)

    Yilmaz, Ali Emre; Meyers, Johan

    2016-11-01

    In recent years, optimal control theory was combined with large-eddy simulations to study the optimal control of wind farms and their interaction with the atmospheric boundary layer. The individual turbine's induction factors were dynamically controlled in time with the aim of increasing overall power extraction. In these studies, wind turbines were represented using an actuator disk method. In the current work, we focus on optimal control on a much finer mesh (and a smaller computational domain), representing turbines with an actuator line method. Similar to Refs., optimization is performed using a gradient-based method, and gradients are obtained employing an adjoint formulation. Different cases are investigated, that include a single and a double turbine case both with uniform inflow, and with turbulent-boundary-layer inflow. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  16. Turbulent boundary layer under the control of different schemes.

    Science.gov (United States)

    Qiao, Z X; Zhou, Y; Wu, Z

    2017-06-01

    This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed.

  17. Injection-induced turbulence in stagnation-point boundary layers

    Science.gov (United States)

    Park, C.

    1984-01-01

    A theory is developed for the stagnation point boundary layer with injection under the hypothesis that turbulence is produced at the wall by injection. From the existing experimental heat transfer rate data obtained in wind tunnels, the wall mixing length is deduced to be a product of a time constant and an injection velocity. The theory reproduces the observed increase in heat transfer rates at high injection rates. For graphite and carbon-carbon composite, the time constant is determined to be 0.0002 sec from the existing ablation data taken in an arc-jet tunnel and a balistic range.

  18. Thermographic analysis of turbulent non-isothermal water boundary layer

    CERN Document Server

    Znamenskaya, Irina A

    2015-01-01

    The paper is devoted to the investigation of the turbulent water boundary layer in the jet mixing flows using high-speed infrared (IR) thermography. Two turbulent mixing processes were studied: a submerged water jet impinging on a flat surface and two intersecting jets in a round disc-shaped vessel. An infrared camera (FLIR Systems SC7700) was focused on the window transparent for IR radiation; it provided high-speed recordings of heat fluxes from a thin water layer close to the window. Temperature versus time curves at different points of water boundary layer near the wall surface were acquired using the IR camera with the recording frequency of 100 Hz. The time of recording varied from 3 till 20 min. The power spectra for the temperature fluctuations at different points on the hot-cold water mixing zone were calculated using the Fast Fourier Transform algorithm. The obtained spectral behavior was compared to the Kolmogorov "-5/3 spectrum" (a direct energy cascade) and the dual-cascade scenario predicted for...

  19. Small particle transport across turbulent nonisothermal boundary layers

    Science.gov (United States)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  20. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  1. Evaluating Langmuir turbulence parameterizations in the ocean surface boundary layer

    Science.gov (United States)

    Sutherland, G.; Christensen, K. H.; Ward, B.

    2014-03-01

    It is expected that surface gravity waves play an important role in the dynamics of the ocean surface boundary layer (OSBL), quantified with the turbulent Langmuir number (La=u*/us0, where u* and us0 are the friction velocity and surface Stokes drift, respectively). However, simultaneous measurements of the OSBL dynamics along with accurate measurements of the wave and atmospheric forcing are lacking. Measurements of the turbulent dissipation rate ɛ were collected using the Air-Sea Interaction Profiler (ASIP), a freely rising microstructure profiler. Two definitions for the OSBL depth are used: the mixed layer derived from measurements of density >(hρ>), and the mixing layer >(hɛ>) determined from direct measurements of ɛ. When surface buoyancy forces are relatively small, ɛ∝La-2 only near the surface with no dependency on La at mid-depths of the OSBL when using hρ as the turbulent length scale. However, if hɛ is used then the dependence of ɛ with La-2 is more uniform throughout the OSBL. For relatively high destabilizing surface buoyancy forces, ɛ is proportional to the ratio of the OSBL depth against the Langmuir stability length LL. During destabilizing conditions, the mixed and mixing layer depths are nearly identical, but we have relatively few measurements under these conditions, rather than any physical implications. Observations of epsilon are compared with the OSBL regime diagram of Belcher et al. (2012) and are generally within an order of magnitude, but there is an improved agreement if hɛ is used as the turbulent length scale rather than hρ.

  2. Boundary-layer turbulence modeling and vorticity dynamics: I. A kangaroo-process mixing model of boundary-layer turbulence

    Science.gov (United States)

    Dekker, H.; de Leeuw, G.; van den Brink, A. Maassen

    A nonlocal turbulence transport theory is presented by means of a novel analysis of the Reynolds stress, inter alia involving the construct of a sample path space and a stochastic hypothesis. An analytical sampling rate model (satisfying exchange) and a nonlinear scaling relation (mapping the path space onto the boundary layer) lead to an integro-differential equation for the mixing of scalar densities, which represents fully-developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type stochastic process. The underlying near-wall behavior (i.e. for y +→0) of fluctuating velocities fully agrees with recent direct numerical simulations. The model involves a scaling exponent ɛ, with ɛ→∞ in the diffusion limit. For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields ɛ≈0.58. The significance of ɛ as a turbulence Cantor set dimension (in the logarithmic profile region, i.e. for y +→∞) is discussed.

  3. Orientation and circulation of vortices in a turbulent boundary layer

    Science.gov (United States)

    Gao, Qi; Ortiz-Dueñas, Cecilia; Longmire, Ellen

    2007-11-01

    The strengths of individual vortices are important in determining the generation and development of surrounding vortices in turbulent boundary layers. The dual-plane PIV data at z^+ = 110 and z/δ = 0.53 in a turbulent boundary layer at Reτ=1160 obtained by Ganapathisubramani et al. (2006) were investigated. 3D swirl strength was used to identify vortex cores. The eigenvector of the velocity gradient tensor was used to determine the orientation of each core, and the resulting eigenvector direction was compared with the average vorticity direction. Circulation of the cores was calculated using the vorticity vector only and using the vorticity vector projected onto the eigenvector. The probability distribution of the angle between the eigenvector and the vorticity vector indicated a peak at 15-20 degrees. The eigenvector angle distributions indicate that at z^+=110, more hairpin legs cross the measurement plane while at z/δ = 0.53, more heads are evident. Details of the orientation and circulation distributions will be discussed in the presentation.

  4. Heterogeneous evaporation across a turbulent internal boundary layer

    Science.gov (United States)

    Shahraeeni, Ebrahim; Vanderborght, Jan; Vereecken, Harry

    2014-05-01

    In local evaporation from sufficiently uniform and large surfaces, horizontal advection close to the changes in surface condition is not significant. Under natural condition, this assumption is often invalid and horizontal inhomogeneity is important. When partially saturated air flows from a uniform dry land surface over a wet surface, all lower boundary conditions of transport equations change abruptly. Also surface humidity and roughness are likely to be different from their upwind values. Due to these changes, the velocity profile and turbulence structure of the airflow must readjust. The vertical profiles are no longer in equilibrium and the horizontal gradients do not equal to zero. When there is more than one of these changes in the domain of interest, the interaction between different patches with a contrast in roughness, temperature or surface water content is also important. Rigorous experimental and numerical analysis of turbulent transfer of mass and momentum in the so-called internal boundary layer (the region affected by such step changes in surface condition) is the aim of this work. A combination of numerical simulations using in-house codes and commercial softwares and experimental measurements in the environmental wind tunnel is performed. We are specifically interested in correct depiction of roughness, in a more accurate representation of the turbulent velocity profile and in a better description of turbulent diffusion close to the interface. A series of simplifying assumptions in the classical representation of this problem are investigated and a sensitivity analysis is performed to identify the contribution of neglected terms. We are also interested in the parameterization of the heat and mass exchange processes for the case with different wet patches in a background of dry soil, which is of interest in several field scale applications.

  5. Modelling wall pressure fluctuations under a turbulent boundary layer

    Science.gov (United States)

    Doisy, Yves

    2017-07-01

    The derivation of the wave vector-frequency (w-f) spectrum of wall pressure fluctuations below a turbulent boundary layer developed over a rigid flat plate is re-considered. The Lighthill's equation for pressure fluctuations is derived in a frame of reference fix with respect to the plate, at low Mach numbers, and transformed into the convected frame moving with the flow. To model the source terms of the Lighthill equation, it is assumed that in the inertial range, the turbulence is locally isotropic in the convected frame. The w-f spectrum of isotropic turbulence is obtained from symmetry considerations by extending the isotropy to space time, based on the concept of sweeping velocity. The resulting solution for the pressure w-f spectrum contains a term (the mean shear-turbulence term) which does not fulfill the Kraichnan Philipps theorem, due to the form of the selected turbulent velocity spectrum. The viscous effects are accounted for by a cut-off depending on wall distance; this procedure allows extending the model beyond the inertial range contribution. The w-f pressure spectrum is derived and compared to the experimental low wavenumber data of Farabee and Geib (1991) [8] and Bonness et al. (2010) [5], for which a good agreement is obtained. The derived expression is also compared to Chase theoretical model Chase (1987) [6] and found to agree well in the vicinity of the convective ridge of the subsonic domain and to differ significantly both in supersonic and subsonic low wavenumber limits. The pressure spectrum derived from the model and its scaling are discussed and compared to experimental data and to the empirical model of Goody (2002) [23], which results from the compilation of a large set of experimental data. Very good agreement is obtained, except at vanishing frequencies where it is claimed that the experimental results lack of significance due to the limited size of the experimental facilities. This hypothesis supported by the results obtained from

  6. Turbulent dispersion in cloud-topped boundary layers

    NARCIS (Netherlands)

    Verzijlbergh, R.A.; Jonker, H.J.J.; Heus, T.; Vilà-Guerau de Arellano, J.

    2009-01-01

    Compared to dry boundary layers, dispersion in cloud-topped boundary layers has received less attention. In this LES based numerical study we investigate the dispersion of a passive tracer in the form of Lagrangian particles for four kinds of atmospheric boundary layers: 1) a dry convective boundary

  7. Subgrid-scale turbulence in shock-boundary layer flows

    Science.gov (United States)

    Jammalamadaka, Avinash; Jaberi, Farhad

    2015-04-01

    Data generated by direct numerical simulation (DNS) for a Mach 2.75 zero-pressure gradient turbulent boundary layer interacting with shocks of different intensities are used for a priori analysis of subgrid-scale (SGS) turbulence and various terms in the compressible filtered Navier-Stokes equations. The numerical method used for DNS is based on a hybrid scheme that uses a non-dissipative central scheme in the shock-free turbulent regions and a robust monotonicity-preserving scheme in the shock regions. The behavior of SGS stresses and their components, namely Leonard, Cross and Reynolds components, is examined in various regions of the flow for different shock intensities and filter widths. The backscatter in various regions of the flow is found to be significant only instantaneously, while the ensemble-averaged statistics indicate no significant backscatter. The budgets for the SGS kinetic energy equation are examined for a better understanding of shock-tubulence interactions at the subgrid level and also with the aim of providing useful information for one-equation LES models. A term-by-term analysis of SGS terms in the filtered total energy equation indicate that while each term in this equation is significant by itself, the net contribution by all of them is relatively small. This observation is consistent with our a posteriori analysis.

  8. Shock Wave Turbulent Boundary Layer Interaction in Hypersonic Flow

    Science.gov (United States)

    1975-06-01

    WORDS (Conllnum on rtvmf tldm II nocfmry Td Idmnllly by block number) Turbulent boundary layers Skin friction, heat transfer and pressure High... tD t{> • y rp < J -o ill ... |i| ;| ilh |I ti i llii ffPtffin i ini I ! til. ;■ ; ’ ! ’ : in •■•: \\1’. T ill j i i i...III [lii 5 ft" t H "H— im BJITT i’i 1 i Mt- B ianj ii ( !l!l Mi IF Ii ig| M»-H J , ■*« J J j 1JJ J 4^ Ul CD S D Z V) D -I O z > Ul QC

  9. Characteristics of vortex packets in turbulent boundary layers

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen K.; Marusic, Ivan

    2003-03-01

    Stereoscopic particle image velocimetry (PIV) was used to measure all three instantaneous components of the velocity field in streamwise spanwise planes of a turbulent boundary layer at Re[tau]=1060 (Re[theta]=2500). Datasets were obtained in the logarithmic layer and beyond. The vector fields in the log layer (z+=92 and 150) revealed signatures of vortex packets similar to those proposed by Adrian and co-workers in their PIV experiments. Groups of legs of hairpin vortices appeared to be coherently arranged in the streamwise direction. These regions also generated substantial Reynolds shear stress, sometimes as high as 40 times [minus sign]uw. A feature extraction algorithm was developed to automate the identification and characterization of these packets of hairpin vortices. Identified patches contributed 28% to [minus sign]uw while occupying only 4% of the total area at z+=92. At z+=150, these patches occupied 4.5% of the total area while contributing 25% to [minus sign]uw. Beyond the log layer (z+=198 and 530), the spatial organization into packets is seen to break down.

  10. Recovery of vortex packet organization in perturbed turbulent boundary layers

    Science.gov (United States)

    Tan, Yan Ming; Longmire, Ellen K.

    2017-10-01

    Turbulent boundary layers with R eτ=2500 were perturbed by an array of cylinders projecting outward from the wall, and the flow organization downstream was investigated at multiple measurement heights in the logarithmic region. Two array heights were considered: H =0.2 δ , extending through the log region and H =δ , extending to the top of the boundary layer. Results from instantaneous PIV in wall-parallel planes and a vortex packet identification algorithm clearly showed a bottom-up mechanism for packet recovery downstream of the H =δ array, even though streamwise velocity statistics remained strongly perturbed. In contrast, some indications of top-down recovery were observed for the flow perturbed by the shorter H =0.2 δ (H+=500 ) array. In this case, however, packet structures closer to the wall at z+=125 remained altered beyond the end of the measurement domain 7δ downstream of the cylinders even though streamwise velocity statistics relaxed nearly to the unperturbed values.

  11. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    Science.gov (United States)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  12. Surface Temperature and Surface-Layer Turbulence in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Pardyjak, E.; Steeneveld, G.J.; Kleissl, J.

    2013-01-01

    Previous laboratory and atmospheric experiments have shown that turbulence influences the surface temperature in a convective boundary layer. The main objective of this study is to examine land-atmosphere coupled heat transport mechanism for different stability conditions. High frequency infrared

  13. Numerical modeling of the boundary layer Ekman using explicit algebraic turbulence model

    Science.gov (United States)

    Kurbatskii, Albert; Kurbatskaya, Lyudmila

    2017-10-01

    Modeling turbulence is an important object of environmental sciences for describing an essential turbulent transport of heat and momentum in the boundary layer of the atmosphere. The many turbulence model used in the simulation of flows in the environment, based on the concept of eddy viscosity, and buoyancy effects are often included in the expression for the turbulent fluxes through empirical functions, based on the similarity theory of Monin-Obukhov, fair, strictly speaking, only in the surface layer. Furthermore, significant progress has been made in recent years in the development broader than standard hypothesis turbulent viscosity models for the eddy diffusivity momentum and heat, as a result of the recording of differential equations for the Reynolds stresses and vector turbulent heat flux in a weakly-equilibrium approximation, which neglects advection and the diffusion of certain dimensionless quantities. Explicit algebraic model turbulent Reynolds stresses and heat flux vector for the planetary boundary layer is tested in the neutral atmospheric boundary layer over the homogeneous rough surface. The present algebraic model of turbulence built on physical principles RANS (Reynolds Average Navier Stokes) approach for stratified turbulence uses three prognostic equations and shows correct reproduction of the main characteristics of the Ekman neutral planetary boundary layer (PBL): the components average of wind velocity, the angle of wind turn, turbulence statistics. Test calculations shows that this turbulence model can be used for the purposeful researches of the atmospheric boundary layer for solving of various problems of the environment.

  14. Investigation of turbulent boundary layer structures using Tomographic PIV

    Science.gov (United States)

    Saikrishnan, Neelakantan; Longmire, Ellen; Wieneke, Bernd

    2008-11-01

    Tomographic particle image velocimetry (TPIV) data were acquired in the logarithmic region of a zero pressure gradient turbulent boundary layer flow at friction Reynolds number Reτ = 1160. Experiments were conducted in a suction type wind tunnel seeded with olive oil particles of diameter ˜ 1μm. The volume of interest was illuminated by two Nd:YAG laser beams expanded with appropriate optics into sheets of 8mm thickness in the wall-normal direction (z). Images were acquired by four 2k x 2k pixel cameras, and correlation of reconstructed fields provided the full velocity gradient tensor in a volume of 0.7δ x 0.7δ x 0.07δ, which resolved the region z^+ = 70-150 in the log layer. Various vortex identification techniques, such as Galilean decomposition and iso-surfaces of two- and three-dimensional swirl, were utilized to visualize and analyze the eddy structures present in instantaneous fields. The results of the present study will be compared to results from earlier experimental studies that relied on planar PIV data only to identify vortices and vortex packets as well as from a direct numerical simulation of fully developed channel flow at comparable Reτ.

  15. Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schröder, A.; Geisler, R.; Elsinga, G.E.; Scarano, F.; Dierksheide, U.

    2007-01-01

    In this feasibility study the tomographic PIV technique has been applied to time resolved PIV recordings for the study of the growth of a turbulent spot in a laminar flat plate boundary layer and to visualize the topology of coherent flow structures within a tripped turbulent flat plate boundary

  16. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent

    2016-01-04

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  17. Properties of the turbulent/non-turbulent interface in boundary layers

    CERN Document Server

    Borrell, Guillem

    2016-01-01

    The turbulent/non-turbulent interface is analysed in a direct numerical simulation of a boundary layer in the range $Re_\\theta=2800-6600$, with emphasis on the behaviour of the relatively large-scale fractal intermittent region. This requires the introduction of a new definition of the distance between a point and a general surface, which is compared with the more usual vertical distance to the top of the layer. Interfaces are obtained by thresholding the enstrophy field and the magnitude of the rate-of-strain tensor, and it is concluded that, while the former are physically relevant features, the latter are not. By varying the threshold, a topological transition is identified as the interface moves from the free stream into the turbulent core. A vorticity scale is defined that collapses that transition for different Reynolds numbers, roughly equivalent to the root-mean-squared vorticity at the edge of the boundary layer. Conditionally averaged flow variables are analysed as functions of the new distance, bot...

  18. Intermittent turbulence and oscillations in the stable boundary layer: a system dynamics approach

    NARCIS (Netherlands)

    Wiel, van de B.J.H.; Moene, A.F.; Hartogensis, O.K.; Ronda, R.J.; DeBruin, H.A.R.; Holtslag, A.A.M.

    2002-01-01

    The stable boundary layer (SBL) is often characterised by turbulence which is not continuous in space and time. This socalled intermittent turbulence may affect the whole depth of the SBL. In this study intermittent turbulence is studied from both theoretical and experimental point of view. The

  19. Experimental investigation of vortex properties in a turbulent boundary layer

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen K.; Marusic, Ivan

    2006-05-01

    Dual-plane particle image velocimetry experiments were performed in a turbulent boundary layer with Reτ=1160 to obtain all components of the velocity gradient tensor. Wall-normal locations in the logarithmic and wake region were examined. The availability of the complete gradient tensor facilitates improved identification of vortex cores and determination of their orientation and size. Inclination angles of vortex cores were computed using statistical tools such as two-point correlations and joint probability density functions. Also, a vortex identification technique was employed to identify individual cores and to compute inclination angles directly from instantaneous fields. The results reveal broad distributions of inclination angles at both locations. The results are consistent with the presence of many hairpin vortices which are most frequently inclined downstream at an angle of 45∘ with the wall. According to the probability density functions, a relatively small percentage of cores are inclined upstream. The number density of forward leaning cores decreases from the logarithmic to the outer region while the number density of backward-leaning cores remains relatively constant. These trends, together with the correlation statistics, suggest that the backward-leaning cores are part of smaller, weaker structures that have been distorted and convected by larger, predominantly forward-leaning eddies associated with the local shear.

  20. Study of turbulent boundary layer structures using Tomographic PIV

    Science.gov (United States)

    Gao, Qi; Longmire, Ellen; Ortiz-Duenas, Cecilia

    2009-11-01

    Tomographic-PIV was applied to investigate vortical structures in the logarithmic region of turbulent boundary layers. Measurements were performed in a water channel facility with δ 110 mm for Reτ 2400 and 2900. Laser sheets with thickness up to 7mm were aligned parallel to the bounding surface. Four cameras with 2k x 2k pixels were placed in a rectangular array facing the measurement volume with tilt angle ˜30 to the wall normal direction. Magnification was ˜0.05 mm/pixel. The resulting measurement volumes were 0.8δ x 0.8δ in the streamwise and spanwise directions and 0.065δ or 120 viscous units in the wall-normal direction. Correlations were performed on 64^3 voxel volumes with 75% overlap yielding a vector spacing of 25^3 viscous units. The data were probed using swirl strength and direction as well as convection velocity to identify and characterize relatively large scale eddies and structures within the volumes. The results will be discussed and compared with results at similar wall-normal locations in lower Reynolds number DNS channel (Reτ=590, 934 of Moser et al., 1999 and del 'Alamo et al., 2004) and wind tunnel (Reτ=1160) flows.

  1. Study of the blowing impact on a hot turbulent boundary layer using Thermal Large Eddy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, G. [CEA/Grenoble DEN/DER/SSTH/LMDL, 17 rue des Martyrs 38054, Grenoble Cedex 9 (France); INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France); Husson, S. [INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France); Bataille, F. [INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France)], E-mail: Francoise.Daumas-Bataille@univ-perp.fr; Ducros, F. [CEA/Grenoble DEN/DER/SSTH/LMDL, 17 rue des Martyrs 38054, Grenoble Cedex 9 (France)

    2008-12-15

    We investigate Thermal Large Eddy Simulation in a complex case using Trio U. We develop a thermal turbulent inflow condition based on parallel flows in order to simulate a turbulent thermal boundary layer. This inflow condition is tested with a turbulent channel flow. We show that it produces fine profiles for velocity and temperature. Later, this inlet condition is used in the case of blowing through a porous plate. Two different blowing regimes are studied: the classical turbulent boundary layer and the blown off boundary layer. Comparisons show that we obtain similar experimental and numerical profiles (Brillant, G., Husson, S., Bataille, F., 2008. Experimental study of the blowing impact on a hot turbulent boundary layer. International Journal of Heat and Mass Transfer 51 (7-8), 1996-2005.). We finish with additional results obtained only through numerical simulations.

  2. The turbulent plasmasphere boundary layer and the outer radiation belt boundary

    Science.gov (United States)

    Mishin, Evgeny; Sotnikov, Vladimir

    2017-12-01

    We report on observations of enhanced plasma turbulence and hot particle distributions in the plasmasphere boundary layer formed by reconnection-injected hot plasma jets entering the plasmasphere. The data confirm that the electron pressure peak is formed just outward of the plasmapause in the premidnight sector. Free energy for plasma wave excitation comes from diamagnetic ion currents near the inner edge of the boundary layer due to the ion pressure gradient, electron diamagnetic currents in the entry layer near the electron plasma sheet boundary, and anisotropic (sometimes ring-like) ion distributions revealed inside, and further inward of, the inner boundary. We also show that nonlinear parametric coupling between lower oblique resonance and fast magnetosonic waves significantly contributes to the VLF whistler wave spectrum in the plasmasphere boundary layer. These emissions represent a distinctive subset of substorm/storm-related VLF activity in the region devoid of substorm injected tens keV electrons and could be responsible for the alteration of the outer radiation belt boundary during (sub)storms.

  3. Integral method for the calculation of three-dimensional, laminar and turbulent boundary layers

    Science.gov (United States)

    Stock, H. W.

    1978-01-01

    The method for turbulent flows is a further development of an existing method; profile families with two parameters and a lag entrainment method replace the simple entrainment method and power profiles with one parameter. The method for laminar flows is a new development. Moment of momentum equations were used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings were calculated. The influence of wing tapering on the boundary layer development was shown. The turbulent boundary layer for a revolution ellipsoid is calculated for 0 deg and 10 deg incidence angles.

  4. Turbulence Models: Shock Boundary Layer Interaction at M=2.05

    Data.gov (United States)

    National Aeronautics and Space Administration — Exp: Shock Boundary Layer Interaction at M=2.05. This web page provides data from experiments that may be useful for the validation of turbulence models. This...

  5. Budget of Turbulent Kinetic Energy in a Shock Wave Boundary-Layer Interaction

    Science.gov (United States)

    Vyas, Manan A.; Waindim, Mbu; Gaitonde, Datta V.

    2016-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Quantities present in the exact equation of the turbulent kinetic energy transport were accumulated and used to calculate terms like production, dissipation, molecular diffusion, and turbulent transport. The present results for a turbulent boundary layer were validated by comparison with direct numerical simulation data. It was found that a longer development domain was necessary for the boundary layer to reach an equilibrium state and a finer mesh resolution would improve the predictions. In spite of these findings, trends of the present budget match closely with that of the direct numerical simulation. Budgets for the SBLI region are presented at key axial stations. These budgets showed interesting dynamics as the incoming boundary layer transforms and the terms of the turbulent kinetic energy budget change behavior within the interaction region.

  6. The Modelling of Particle Resuspension in a Turbulent Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan

    2011-10-20

    uncorrelated curve-fitted model. In view of recent numerical data for lift and drag forces in turbulent boundary layers, the lift and drag we have con sidered and the impact of these data on predictions made by the non-Gaussian R'n'R model are compared with those based on O'Neill formula. The results indicate that, in terms of the long-term resuspension fraction, the difference is minor. It is concluded that as the particle size decreases the L and B method will lead to less-and-less long-term resuspension. Finally the ultimate model that has been developed in this work is a hybrid version of the R'n'R model adapted for application to multilayer deposits based on the Friess and Yadigaroglu multilayer approach. The deposit is modelled in several overlying layers where the coverage effect (masking) of the deposit layers has been studied; in the first instance a monodisperse deposit with a coverage ratio factor was modelled where this was subsequently replaced by the more general case of a polydisperse deposit with a particle size distribution.

  7. Direct Numerical Simulation of Supersonic Turbulent Boundary Layer with Spanwise Wall Oscillation

    Directory of Open Access Journals (Sweden)

    Weidan Ni

    2016-03-01

    Full Text Available Direct numerical simulations (DNS of Mach = 2.9 supersonic turbulent boundary layers with spanwise wall oscillation (SWO are conducted to investigate the turbulent heat transport mechanism and its relation with the turbulent momentum transport. The turbulent coherent structures are suppressed by SWO and the drag is reduced. Although the velocity and temperature statistics are disturbed by SWO differently, the turbulence transports of momentum and heat are simultaneously suppressed. The Reynolds analogy and the strong Reynolds analogy are also preserved in all the controlled flows, proving the consistent mechanisms of momentum transport and heat transport in the turbulent boundary layer with SWO. Despite the extra dissipation and heat induced by SWO, a net wall heat flux reduction can be achieved with the proper selected SWO parameters. The consistent mechanism of momentum and heat transports supports the application of turbulent drag reduction technologies to wall heat flux controls in high-speed vehicles.

  8. Micro-actuators for Turbulent Boundary Layer Control

    Science.gov (United States)

    Lee, Conrad; Colmenero, Gerardo; Goldstein, David; Wu, Kevin; Breuer, Kenneth

    2003-11-01

    We present direct numerical simulations and experiments on micro-jet control of a turbulent channel flow. The simulation code is pseudo-spectral and uses a virtual surface approach (immersed boundaries created with body forces) to model arrays of individually controlled rectangular slots in a doubly-periodic domain. Flush-mounted sensors are positioned either upstream (to detect gradients of streamwise vorticity) or directly over the actuators (to detect wall-normal velocity). The results emphasize the differences between earlier simulations using continuously variable blowing and suction and what is physically attainable using discrete actuators and sensors. Results show small drag reductions occur with the discrete actuators. Comparisons are made with physical experiments designed to closely match the simulations. Here, arrays of flush-mounted actuators force a low-Reynolds number turbulent channel flow in response to upstream-mounted shear sensors. The response of the flow is measured using PIV.

  9. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows

    Directory of Open Access Journals (Sweden)

    Kazutaka Yanase

    2016-12-01

    Full Text Available The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L (mean±s.d.; N=6], swimming at 1.6±0.09 L s−1 (N=6 in an experimental flow channel (Reynolds number, Re=4×105 with medium turbulence (5.6% intensity were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, lx=71±8 mm, N=3, and lx=110±13 mm, N=4, respectively were approximated by a laminar boundary layer model, the Falkner−Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (lx=163±22 mm, N=3. The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment.

  10. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2016-12-15

    The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L) (mean±s.d.); N=6], swimming at 1.6±0.09 L s -1 (N=6) in an experimental flow channel (Reynolds number, Re=4×10 5 ) with medium turbulence (5.6% intensity) were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, l x =71±8 mm, N=3, and l x =110±13 mm, N=4, respectively) were approximated by a laminar boundary layer model, the Falkner-Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (l x =163±22 mm, N=3). The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment. © 2016. Published by The Company of Biologists Ltd.

  11. Turbulent Boundary Layer on a Cylinder in Axial Flow

    Science.gov (United States)

    1988-09-29

    wall- norma 6caling or Rao’s wall-normal scaling. Other measurements of the mean velocity in a cylindrical boundary layer should be mentioned for...located near the wall at three azimuthal locations that w𔃽re 900 apa ,-t and at several streamwise spacings for flow conditions resulting in 8/a=8

  12. Workshop on Coherent Structure of Turbulent Boundary Layers.

    Science.gov (United States)

    1978-11-01

    trying to investigate what you can visually determine within the boundary layer. In regard to the first of your questions, I am familiae with your work at...experiment like a nuclear physicist would do or you can do it in a more general fluid mechanical way. I just think I’ll leave it at that, interacting spots

  13. A Further Compilation of Compressible Boundary Layer Data with a Survey of Turbulence Data,

    Science.gov (United States)

    1981-11-01

    of compressible flow Preston tube calibrations. J. Fluid Engrg. 99, 197. Ardonceau P., Lee D.H., Alziary de Roquefort T., Goethals R. 1979 Turbulence...turbulent boundary layer. AIAA J. 17, 929-930. Sonnet J.P., Alizary do Roquefort T. 1980 Determination and optimization of frequency response of constant

  14. Intermittent turbulence and oscillations in the stable boundary layer over land

    NARCIS (Netherlands)

    Wiel, van de B.

    2002-01-01

    As the title of this thesis indicates, our main subject of interest is: "Intermittent turbulence and oscillation in the stable boundary layer over land". As such, this theme connects the different chapters. Here, intermittent turbulence is defined as a sequence of events were 'burst' of

  15. The Cessation of Continuous Turbulence as Precursor of the Very Stable Nocturnal Boundary Layer

    NARCIS (Netherlands)

    Wiel, van de B.J.H.; Moene, A.F.; Jonker, H.J.J.

    2012-01-01

    The mechanism behind the collapse of turbulence in the evening as a precursor to the onset of the very stable boundary layer is investigated. To this end a cooled, pressure-driven flow is investigated by means of a local similarity model. Simulations reveal a temporary collapse of turbulence

  16. Estimating of turbulent velocity fluctuations in boundary layer with pressure gradient by Smoke Image Velocimetry

    Science.gov (United States)

    Mikheev, N. I.; Goltsman, A. E.; Saushin, I. I.

    2017-11-01

    The results of the experimental estimating of the velocity profiles and turbulent pulsations in the boundary layer for adverse and favorable pressure gradients are presented. The profiles of characteristics based on the dynamics of two-component instantaneous velocity vector fields measured by the field optical method of Smoke Image Velocimetry are estimated. The measurements are performed with a large spatial and temporal resolution, the measurement results are relevant for estimating the terms of the conservation equation of turbulent energy in the boundary layer and for improving semiempirical turbulence models.

  17. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence.

    Science.gov (United States)

    Duvvuri, Subrahmanyam; McKeon, Beverley

    2017-03-13

    Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  18. Attenuation of turbulence by the passive control of sweep events in a turbulent boundary layer using micro-cavities

    Science.gov (United States)

    Silvestri, Anton; Ghanadi, Farzin; Arjomandi, Maziar; Chin, Rey; Cazzolato, Benjamin; Zander, Anthony

    2017-11-01

    Cavity arrays have been previously identified to disrupt the sweep events and consequently the bursting cycle in the boundary layer by capturing the structures responsible for the Reynolds stresses. In the present study, the sensitivity of a flushed-surface cavity array in reducing the turbulent energy production has been investigated. Two plates of varying thicknesses and four different backing cavity volumes were considered, at three different Reynolds numbers. The volume of the backing cavity was shown to be the most important characteristic in determining the attenuation of streamwise velocity fluctuations within the logarithmic region of the turbulent boundary layer. However, the results also demonstrated that the orifice length of the cavity array had negligible effect in modifying the reduction of the turbulent energy by the cavity array in this investigation. The results show that the maximum reduction in turbulence generation achieved for this study occurs when the backing volume is 3.1 × 106 times greater than the viscous length scale at Reθ = 3771. The reduction in turbulence intensity, sweep intensity, and energy spectrum were shown to be 5.6%, 6.3%, and 13.4%, respectively. By decreasing the cavity volume to zero, no change in the turbulent boundary layer turbulence statistics was found. The results suggest a larger reduction in turbulence intensity, sweep intensity, and energy spectrum that can be achieved with a larger backing volume.

  19. β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp

    Science.gov (United States)

    Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu

    2017-12-01

    A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.

  20. Geostrophic convective turbulence: The effect of boundary layers

    CERN Document Server

    Ostilla-Mónico, Rodolfo; Kunnen, Rudie P J; Verzicco, Roberto; Lohse, Detlef

    2014-01-01

    This Letter presents results of the first direct numerical simulations of rotating Rayleigh--B\\'enard convection in the so-called geostrophic regime, (hence very small Ekman numbers $\\mathcal{O}(10^{-7})$ and high Rayleigh numbers~$Ra=10^{10}$ and~$5\\cdot 10^{10}$), employing the \\emph{full} Navier--Stokes equations. In the geostrophic regime the criteria of very strong rotation and large supercriticality are met simultaneously, which is true for many geophysical and astrophysical flows. Until now, numerical approaches of this regime have been based on \\emph{reduced} versions of the Navier--Stokes equations (cf. Sprague \\emph{et al.} J. Fluid Mech., \\textbf{551}, 141 (2006)), omitting the effect of the viscous (Ekman) boundary layers. By using different velocity boundary conditions at the plates, we study the effect of these Ekman layers. We find that the formation of large-scale structures (Rubio \\emph{et al.} (Phys. Rev. Lett. \\textbf{112} (2014)), which indicates the presence of an inverse energy cascade, ...

  1. Accuracy and convergence of a finite element algorithm for turbulent boundary layer flow

    Science.gov (United States)

    Soliman, M. O.; Baker, A. J.

    1981-08-01

    The Galerkin-Weighted Residuals formulation is employed to derive an implicit finite element solution algorithm for the nonlinear parabolic partial differential equation system governing turbulent boundary layer flow. Solution accuracy and convergence with discretization refinement are quantized in several error norms using linear and quadratic basis functions. Richardson extrapolation is used to isolate integration truncation error in all norms, and Newton iteration is employed for all equation solutions performed in double-precision. The mathematical theory supporting accuracy and convergence concepts for linear elliptic equations appears extensible to the nonlinear equations characteristic of turbulent boundary layer flow.

  2. DENSITY AND VELOCITY MEASUREMENTS IN TURBULENT HE-AIR BOUNDARY LAYERS

    Directory of Open Access Journals (Sweden)

    A SOUDANI

    2003-06-01

    Full Text Available A turbulent  boundary layer with large density variations has been generated by tangential injection of air or helium Into a boundary layer of air-helium mixture. Instrumentation based on thermo- anemometry has been successfully developed for the investigation of this flow  Analysis or the mean and fluctuating density fields shows that the flow is mainly governed by the ratio of the injection to the external velocity and that the density ratio plays a secondary role in the mixing processes. However, a sight enhancement of turbulent activity is observed when helium is injected.

  3. Implicit Large-Eddy Simulations of Zero-Pressure Gradient, Turbulent Boundary Layer

    Science.gov (United States)

    Sekhar, Susheel; Mansour, Nagi N.

    2015-01-01

    A set of direct simulations of zero-pressure gradient, turbulent boundary layer flows are conducted using various span widths (62-630 wall units), to document their influence on the generated turbulence. The FDL3DI code that solves compressible Navier-Stokes equations using high-order compact-difference scheme and filter, with the standard recycling/rescaling method of turbulence generation, is used. Results are analyzed at two different Re values (500 and 1,400), and compared with spectral DNS data. They show that a minimum span width is required for the mere initiation of numerical turbulence. Narrower domains ((is) less than 100 w.u.) result in relaminarization. Wider spans ((is) greater than 600 w.u.) are required for the turbulent statistics to match reference DNS. The upper-wall boundary condition for this setup spawns marginal deviations in the mean velocity and Reynolds stress profiles, particularly in the buffer region.

  4. On the dynamic behavior of composite panels under turbulent boundary layer excitations

    Science.gov (United States)

    Ciappi, E.; De Rosa, S.; Franco, F.; Vitiello, P.; Miozzi, M.

    2016-03-01

    In this work high Mach number aerodynamic and structural measurements acquired in the CIRA (Italian Aerospace Research Center) transonic wind tunnel and the models used to analyze the response of composite panels to turbulent boundary layer excitation are presented. The two investigated panels are CFRP (Carbon Fiber-Reinforced Polymer) composite plates and their lay-up is similar to configurations used in aeronautical structures. They differ only for the presence of an embedded viscoelastic layer. The experimental set-up has been designed to reproduce a pressure fluctuations field beneath a turbulent boundary layer as close as possible to those in flight. A tripping system, specifically conceived to this aim for this facility, has been used to generate thick turbulent boundary layers at Mach number values ranging between 0.4 and 0.8. It is shown that the designed setup provides a realistic representation of full scale size pressure spectra in the frequency range of interest for the noise component inside the fuselage, generated by turbulent boundary layer. The significant role of the viscoelastic layer at reducing panel's response is detailed and discussed. Finally, it is demonstrated that at high Mach number the aeroelastic effect cannot be neglected when analyzing the panel response, especially when composite materials are considered.

  5. A high-resolution code for large eddy simulation of incompressible turbulent boundary layer flows

    KAUST Repository

    Cheng, Wan

    2014-03-01

    We describe a framework for large eddy simulation (LES) of incompressible turbulent boundary layers over a flat plate. This framework uses a fractional-step method with fourth-order finite difference on a staggered mesh. We present several laminar examples to establish the fourth-order accuracy and energy conservation property of the code. Furthermore, we implement a recycling method to generate turbulent inflow. We use the stretched spiral vortex subgrid-scale model and virtual wall model to simulate the turbulent boundary layer flow. We find that the case with Reθ ≈ 2.5 × 105 agrees well with available experimental measurements of wall friction, streamwise velocity profiles and turbulent intensities. We demonstrate that for cases with extremely large Reynolds numbers (Reθ = 1012), the present LES can reasonably predict the flow with a coarse mesh. The parallel implementation of the LES code demonstrates reasonable scaling on O(103) cores. © 2013 Elsevier Ltd.

  6. DNS of transcritical turbulent boundary layers at supercritical pressures under abrupt variations in thermodynamic properties

    Science.gov (United States)

    Kawai, Soshi

    2014-11-01

    In this talk, we first propose a numerical strategy that is robust and high-order accurate for enabling to simulate transcritical flows at supercritical pressures under abrupt variations in thermodynamic properties due to the real fluid effects. The method is based on introducing artificial density diffusion in a physically-consistent manner in order to capture the steep variation of thermodynamic properties in transcritical conditions robustly, while solving a pressure evolution equation to achieve pressure equilibrium at the transcritical interfaces. We then discuss the direct numerical simulation (DNS) of transcritical heated turbulent boundary layers on a zero-pressure-gradient flat plate at supercritical pressures. To the best of my knowledge, the present DNS is the first DNS of zero-pressure-gradient flat-plate transcritical turbulent boundary layer. The turbulent kinetic budget indicates that the compressibility effects (especially, pressure-dilatation correlation) are not negligible at the transcritical conditions even if the flow is subsonic. The unique and interesting interactions between the real fluid effects and wall turbulence, and their turbulence statistics, which have never been seen in the ideal-fluid turbulent boundary layers, are also discussed. This work was supported in part by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Young Scientists (A) KAKENHI 26709066 and the JAXA International Top Young Fellowship Program.

  7. Reynolds shear stress near its maxima, turbulent bursting process and associated velocity profle in a turbulent boundary layer

    Science.gov (United States)

    Afzal, Noor

    2014-11-01

    The Reynolds shear stress around maxima, turbulent bursting process and associate velocity profile in ZGP turbulent boundary layer is considered in the intermediate layer/mesolayer proposed by Afzal (1982 Ing. Arch. 53, 355-277), in addition to inner and outer layers. The intermediate length scale δm = δRτ- 1 / 2 having velocity Um = mUe with 1 / 2 proposed critical layer / mesolayer, cited/adopted work Long and Chen and McKeon, B.J. & Sharma, A. 2010 JFM 658, page 370 stated ``retaining the assumption that the critical layer occurs when U (y) = (2 / 3) UCL (i.e. that the critical layer scales with y+ ~Rτ+ 2 / 3),'' both untenable assumptions, but ignored citation of papers Afzal 1982 onwards on pipe flow. The present turbulent boundary layer work shows that Reynolds shear maxima, shape factor and turbulent bursting time scale with mesolayer variables and Taylor length/time scale. Residence, Embassy Hotel Rasal Gang Aligarh 202001 UP India.

  8. Universality of local dissipation scales in turbulent boundary layer flows with and without free-stream turbulence

    Science.gov (United States)

    Alhamdi, Sabah F. H.; Bailey, Sean C. C.

    2017-11-01

    Measurements of the small-scale dissipation statistics of turbulent boundary layer flows with and without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈ 2000). The scaling of the dissipation scale distribution is examined in these two boundary conditions. Results demonstrated that the local large-scale Reynolds number based on the measured longitudinal integral length scale fails to properly normalize the dissipation scale distribution near the wall in these two free-stream conditions due to the imperfect characterization of the upper bound of the inertial cascade by the integral length scale. A surrogate found from turbulent kinetic energy and mean dissipation rate only moderately improved the scaling of the dissipation scales, relative to the measured integral length scale. When a length scale based on the distance from the wall [as suggested by Bailey and Witte, "On the universality of local dissipation scales in turbulent channel flow," J. Fluid Mech. 786, 234-252 (2015)] was utilized to scale the dissipation scale distribution, in the region near the wall, there was a noticeable improvement in the collapse of the normalized distribution of dissipation scales. In addition, unlike in channel flows, in the outer layer of the turbulent boundary layer, the normalized distributions of the local dissipation scales were observed to be dependent on the wall-normal position. This was found to be attributable to the presence of external intermittency in the outer layer as the presence of free-stream turbulence was found to restore the scaling behavior by replacing the intermittent laminar flow with turbulent flow.

  9. Effects of turbulence and heterogeneous emissions on photochemically active species in the convective boundary layer

    NARCIS (Netherlands)

    Krol, M.C.; Molemaker, M.J.; Vilu-Guerau, de J.

    2000-01-01

    Photochemistry is studied in a convective atmospheric boundary layer. The essential reactions that account for the ozone formation and depletion are included in the chemical mechanism which, as a consequence, contains a wide range of timescales. The turbulent reacting flow is modeled with a

  10. Effects of shear in the convective boundary layer: analysis of the turbulent kinetic energy budget

    NARCIS (Netherlands)

    Pino, D.; Vilà-Guerau de Arellano, J.

    2008-01-01

    Effects of convective and mechanical turbulence at the entrainment zone are studied through the use of systematic Large-Eddy Simulation (LES) experiments. Five LES experiments with different shear characteristics in the quasi-steady barotropic boundary layer were conducted by increasing the value of

  11. Investigation of turbulent boundary layer flow over 2D bump using highly resolved large eddy simulation

    DEFF Research Database (Denmark)

    Cavar, Dalibor; Meyer, Knud Erik

    2011-01-01

    not provide a direct possibility for wall-damping of, e.g., the Smagorinsky constant in the near-wall region. The grid utilized in the main calculation consisted of approximately 9.4 × 106 grid points and the boundary layer flow results obtained, regarding both mean flow profiles and turbulence quantities...

  12. Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun

    2014-01-01

    The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient a...

  13. Embedded-LES and experiment of turbulent boundary layer flow around a floor-mounted cube

    DEFF Research Database (Denmark)

    Jørgensen, Nina Gall; Koss, Holger; Bennetsen, Jens Chr.

    An Embedded LES approach is used to numerically simulate fluctuating surface pressures on a floor-mounted cube in a turbulent boundary layer flow and compared to wind tunnel experiments. The computation were performed with the CFD software ANSYS FLUENT at a Reynolds number at cube height of Reh = 1...

  14. Multiple Regimes of Flow, Stratification, and Turbulence in the Stable Boundary Layer

    Science.gov (United States)

    Monahan, A. H.; Rees, T.

    2014-12-01

    It is well established that the atmospheric Stable Boundary Layer (SBL) can display distinct regimes of flow. In the weakly stable boundary layer, turbulence is weak but continuous and the surface flow is coupled to that aloft. In the very stable boundary layer, turbulence collapses and the surface flow becomes decoupled from the flow above.This study demonstrates the clear presence of two distinct SBL regimes in a long record of observations from the 213m tower in Cabauw, Netherlands. These regimes are found in the joint distribution of near-surface stratification, shear, and vertically-averaged wind speed. Hidden Markov model (HMM) analysis is used to distinguish these regimes and objectively classify states as being in one regime or the other. This classification allows for a detailed diagnosis of the flow, stratification, and turbulence structures within each of the two regimes, as well as their relation to large-scale forcing through the geostrophic wind and cloud cover. Observational evidence is presented that the very stable boundary layer is produced by a previously-discussed positive feedback associated with a maximum sustainable turbulent heat flux.

  15. A TURBULENT BOUNDARY-LAYER CALCULATION METHOD BASED ON THE LAW OF THE WALL AND THE LAW OF THE WAKE

    Science.gov (United States)

    The report presents the theoretical development of a method for calculating the incompressible turbulent boundary layer based on the ’ law of the wall...8217 and the ’ law of the wake.’ This development was carried out to provide a more rigorous solution of the boundary-layer equations for turbulent flow

  16. Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study

    Science.gov (United States)

    Englberger, Antonia; Dörnbrack, Andreas

    2017-03-01

    The wake characteristics of a wind turbine in a turbulent boundary layer under neutral stratification are investigated systematically by means of large-eddy simulations. A methodology to maintain the turbulence of the background flow for simulations with open horizontal boundaries, without the necessity of the permanent import of turbulence data from a precursor simulation, was implemented in the geophysical flow solver EULAG. These requirements are fulfilled by applying the spectral energy distribution of a neutral boundary layer in the wind-turbine simulations. A detailed analysis of the wake response towards different turbulence levels of the background flow results in a more rapid recovery of the wake for a higher level of turbulence. A modified version of the Rankine-Froude actuator disc model and the blade element momentum method are tested as wind-turbine parametrizations resulting in a strong dependence of the near-wake wind field on the parametrization, whereas the far-wake flow is fairly insensitive to it. The wake characteristics are influenced by the two considered airfoils in the blade element momentum method up to a streamwise distance of 14 D ( D = rotor diameter). In addition, the swirl induced by the rotation has an impact on the velocity field of the wind turbine even in the far wake. Further, a wake response study reveals a considerable effect of different subgrid-scale closure models on the streamwise turbulent intensity.

  17. Investigation of large-scale structures in turbulent boundary layers using PIV in multiple planes

    Science.gov (United States)

    Marusic, Ivan; Hutchins, Nick; Ganapathisubramani, Bharathram; Hambleton, Will; Longmire, Ellen

    2004-11-01

    Stereo-PIV measurements were made on multiple planes in a turbulent boundary layer, including inclined cross-stream planes at ±45^rc to the streamwise direction, together with streamwise-wall-normal and streamwise-spanwise planes. The results show clear evidence of large-scale organization with long streamwise low-momentum zones consistent with the scenario of spatially coherent packets of hairpin vortices in the logarithmic region of the flow. Statistical correlation analysis across the boundary layer indicates the occurrence of a distinct two-regime behavior, in which streamwise-velocity-fluctuation correlation contours either appear to be coupled to the buffer region, or decoupled from it. The demarkation between these two regimes is found to scale well with outer variables. The results are consistent with a coherent structure that becomes increasingly uncoupled (or decorrelated) from the wall as it grows beyond the logarithmic region, providing additional support for a wall-wake description of turbulent boundary layers.

  18. RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Schløer, Signe; Sterner, Johanna

    2013-01-01

    A numerical model coupling the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equationswith two-equation k−ω turbulence closure is presented and used to simulate a variety of turbulent wave boundary layer processes. The hydrodynamic model is additionally coupled...... of a number of local factors important within cross-shore wave boundary layer and sediment transport dynamics. The hydrodynamic model is validated for both hydraulically smooth and rough conditions, based on wave friction factor diagrams and boundary layer streaming profiles, with the results in excellent...... agreement with experimental and/or previous numerical work. The sediment transport model is likewise validated against oscillatory tunnel experiments involving both velocity-skewed and acceleration-skewed flows, as well as against measurements beneath real progressive waves.Model capabilities are exploited...

  19. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  20. Boundary-layer turbulence as a kangaroo process

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    A nonlocal mixing-length theory of turbulence transport by finite size eddies is developed by means of a novel evaluation of the Reynolds stress. The analysis involves the contruct of a sample path space and a stochastic closure hypothesis. The simplifying property of exhange (strong eddies) is

  1. Turbulent boundary layer approaches to resistance coefficient in ...

    African Journals Online (AJOL)

    A logarithmic velocity profile has been used, in conjunction with a formulation for the origin of the profile, to study the nature of wall roughness and influence of roughness elements on turbulent flow through circular pipes with part smooth, part rough walls. Experimental data on velocity distribution and frictional head loss ...

  2. RANS Modeling of Stably Stratified Turbulent Boundary Layer Flows in OpenFOAM®

    Directory of Open Access Journals (Sweden)

    Wilson Jordan M.

    2015-01-01

    Full Text Available Quantifying mixing processes relating to the transport of heat, momentum, and scalar quantities of stably stratified turbulent geophysical flows remains a substantial task. In a stably stratified flow, such as the stable atmospheric boundary layer (SABL, buoyancy forces have a significant impact on the flow characteristics. This study investigates constant and stability-dependent turbulent Prandtl number (Prt formulations linking the turbulent viscosity (νt and diffusivity (κt for modeling applications of boundary layer flows. Numerical simulations of plane Couette flow and pressure-driven channel flow are performed using the Reynolds-averaged Navier-Stokes (RANS framework with the standard k-ε turbulence model. Results are compared with DNS data to evaluate model efficacy for predicting mean velocity and density fields. In channel flow simulations, a Prandtl number formulation for wall-bounded flows is introduced to alleviate overmixing of the mean density field. This research reveals that appropriate specification of Prt can improve predictions of stably stratified turbulent boundary layer flows.

  3. Laser beam propagation through an atmospheric transitional and turbulent boundary layer

    Science.gov (United States)

    Katz, Richard A.; Manzur, Tariq

    2015-05-01

    This study investigates laser beam propagation through an atmospheric boundary layer near the ocean surface. Objectives of this research are to ascertain feasibility limits for achieving maximum energy efficiency at extended ranges in the face of atmospheric and other distortions as the laser beam penetrates through transitional (anisotropic) and turbulent (isotropic) boundary layer regimes. Various aspects of turbulence modeling of laser beam propagation near the ocean surface are discussed including: Kolmogorov's model of atmospheric turbulence, parameterized structure functions (e.g., velocity and temperature gradients, gradients in refractive index) and other important factors affecting near surface propagation such as humidity, aerosols, and wave slap. Various preliminary modeled propagation results are shown, and a new methodology is proposed for improving existing model estimates with new time domain measurement procedures.

  4. Numerical simulation of fluid-structure interaction of turbulent boundary layer with an elastic plate

    Science.gov (United States)

    Anantharamu, Sreevatsa; Mahesh, Krishnan

    2017-11-01

    Understanding the influence of turbulent boundary layer wall-pressure fluctuations on elastic structures is essential to understand the acoustic radiation to far-field due to their vibration. A parallel unsteady structural solver is being developed to solve linear/nonlinear elasticity problems using Finite Element Method. Several wall-pressure cross-spectral density models have been proposed in literature for turbulent boundary layers. A methodology will be discussed to synthetically generate space-time wall-pressure fluctuations given its cross-spectral density. The cross-spectral density of plate displacement from Poisson-Kirchhoff theory will be compared to the results obtained numerically using the synthetically generated pressure fluctuations. Pressure fluctuations from a DNS of turbulent channel flow will then be used to excite the plate. Unsteady stresses inside the plate and the resulting deformation will be discussed. Supported by NSWCCD.

  5. Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows

    Science.gov (United States)

    Scheel, Janet D.; Schumacher, Jörg

    2017-12-01

    We discuss two aspects of turbulent Rayleigh-Bénard convection (RBC) on the basis of high-resolution direct numerical simulations in a unique setting: a closed cylindrical cell of aspect ratio of one. First, we present a comprehensive comparison of statistical quantities such as energy dissipation rates and boundary layer thickness scales. Data are used from three simulation run series at Prandtl numbers Pr that cover two orders of magnitude. In contrast to most previous studies in RBC the focus of the present work is on convective turbulence at very low Prandtl numbers including Pr=0.021 for liquid mercury or gallium and Pr=0.005 for liquid sodium. In this parameter range of RBC, inertial effects cause a dominating turbulent momentum transport that is in line with highly intermittent fluid turbulence both in the bulk and in the boundary layers and thus should be able to trigger a transition to the fully turbulent boundary layers of the ultimate regime of convection for higher Rayleigh number. Second, we predict the ranges of Rayleigh numbers for which the viscous boundary layer will transition to turbulence and the flow as a whole will cross over into the ultimate regime. These transition ranges are obtained by extrapolation from our simulation data. The extrapolation methods are based on the large-scale properties of the velocity profile. Two of the three methods predict similar ranges for the transition to ultimate convection when their uncertainties are taken into account. All three extrapolation methods indicate that the range of critical Rayleigh numbers Rac is shifted to smaller magnitudes as the Prandtl number becomes smaller.

  6. LOLAS: an optical turbulence profiler in the atmospheric boundary layer with extreme altitude-resolution

    OpenAIRE

    Avila, R.; Aviles, J. L.; Wilson, R. W.; Chun, M.; Butterley, T.; Carrasco, E.

    2008-01-01

    We report the development and first results of an instrument called Low Layer Scidar (LOLAS) which is aimed at the measurement of optical-turbulence profiles in the atmospheric boundary layer with high altitude-resolution. The method is based on the Generalized Scidar (GS) concept, but unlike the GS instruments which need a 1- m or larger telescope, LOLAS is implemented on a dedicated 40-cm telescope, making it an independent instrument. The system is designed for widely separated double-star...

  7. Turbulence structure of the boundary layer below marine clouds in the SOFIA experiment

    Directory of Open Access Journals (Sweden)

    A. Réchou

    Full Text Available The SOFIA (Surface of the Ocean: Flux and Interaction with the Atmosphere experiment, included in the ASTEX (Atlantic Stratocumulus Transition Experiment field program, was conducted in June 1992 in the Azores region in order to investigate air-sea exchanges, as well as the structure of the atmospheric boundary layer and its capping low-level cloud cover. We present an analysis of the vertical structure of the marine atmospheric boundary layer (MABL, and especially of its turbulence characteristics, deduced from the aircraft missions performed during SOFIA. The meteorological situations were characteristic of a temperate latitude under anticyclonic conditions, i.e., with weak to moderate winds, weak surface sensible heat flux, and broken capping low-altitude cloud cover topped by a strong trade inversion. We show that the mixed layer, driven by the surface fluxes, is decoupled from the above cloud layer. Although weak, the surface buoyancy flux, and the convective velocity scale deduced from it, are relevant for scaling the turbulence moments. The mixed layer then follows the behaviour of a continental convective boundary layer, with the exception of the entrainment process, which is weak in the SOFIA data. These results are confirmed by conditional sampling analysis, which shows that the major turbulence source lies in the buoyant moist updrafts at the surface.

  8. Turbulence structure of the boundary layer below marine clouds in the SOFIA experiment

    Directory of Open Access Journals (Sweden)

    A. Réchou

    1995-10-01

    Full Text Available The SOFIA (Surface of the Ocean: Flux and Interaction with the Atmosphere experiment, included in the ASTEX (Atlantic Stratocumulus Transition Experiment field program, was conducted in June 1992 in the Azores region in order to investigate air-sea exchanges, as well as the structure of the atmospheric boundary layer and its capping low-level cloud cover. We present an analysis of the vertical structure of the marine atmospheric boundary layer (MABL, and especially of its turbulence characteristics, deduced from the aircraft missions performed during SOFIA. The meteorological situations were characteristic of a temperate latitude under anticyclonic conditions, i.e., with weak to moderate winds, weak surface sensible heat flux, and broken capping low-altitude cloud cover topped by a strong trade inversion. We show that the mixed layer, driven by the surface fluxes, is decoupled from the above cloud layer. Although weak, the surface buoyancy flux, and the convective velocity scale deduced from it, are relevant for scaling the turbulence moments. The mixed layer then follows the behaviour of a continental convective boundary layer, with the exception of the entrainment process, which is weak in the SOFIA data. These results are confirmed by conditional sampling analysis, which shows that the major turbulence source lies in the buoyant moist updrafts at the surface.

  9. An experimental study on laminar-turbulent transition at high free-stream turbulence in boundary layers with pressure gradients

    Directory of Open Access Journals (Sweden)

    Chernoray Valery

    2012-04-01

    Full Text Available We report here the results of a study on measurements and prediction of laminar-turbulent transition at high free-stream turbulence in boundary layers of the airfoil-like geometries with presence of the external pressure gradient changeover. The experiments are performed for a number of flow cases with different flow Reynolds number, turbulence intensity and pressure gradient distributions. The results were then compared to numerical calculations for same geometries and flow conditions. The experiments and computations are performed for the flow parameters which are typical for turbomachinery applications and the major idea of the current study is the validation of the turbulence model which can be used for such engineering applications.

  10. Robust Controller for Turbulent and Convective Boundary Layers

    National Research Council Canada - National Science Library

    Speyer, Jason L; Kim, J. John

    2006-01-01

    Linear feedback controllers and estimators have been designed from the governing equations of a channel flow, linearized about the laminar mean flow, and a layer of heated fluid, linearized about the no-motion state...

  11. Wall-attached structures of streamwise velocity fluctuations in turbulent boundary layer

    Science.gov (United States)

    Hwang, Jinyul; Sung, Hyung Jin

    2017-11-01

    The wall-attached structures of streamwise velocity fluctuations (u) are explored using direct numerical simulation data of turbulent boundary layer at Reτ = 1000 . We identify the structures of u, which are extended close to the wall. Their height (ly) ranges from the near-wall region to the edge of turbulent boundary layer. They are geometrically self-similar in a sense that the length and width of the structures are proportional to the distance from the wall. The population density of the attached structures shows that the tall attached structures (290 attached eddies addressed by Perry and coworkers. The streamwise turbulent intensity of these tall attached structures follows the logarithmic distribution with the distance from the wall. The wall-attached structures of u identified in the present work are a proper candidate for Townsend's attached eddy hypothesis and these structures exist in the low Reynolds number turbulent boundary layer. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP) and supported by the Supercomputing Center (KISTI).

  12. An Inverse Boundary-Layer Method for Compressible Laminar and Turbulent Flows

    Science.gov (United States)

    1975-04-08

    Comparison of calculated and expo.rimental results for the flow 5300. (a) Velocity profiles and externa ~l velocity distribution. 294 3.0 H 2.0 1.00 INVERSE ...TR-75-1le 4 TITLE Te’ YtPuI Q REPCIRT e, PF!OO C V fL AN INVERSE BOUNDARY-LAYER METHOD FOR Final Technical Report COMPR~ESSIBLE LAMINAR AND TURBULENT...19 KEY WORDS (Conhin. on r-.e8e aide It neceober) md identify by block -. 51 Inverse boundary layers Lamiulnar flows NATIONAL TECHN’ICAL Turbuent fows

  13. Coherent structures of a self-similar adverse pressure gradient turbulent boundary layer

    Science.gov (United States)

    Sekimoto, Atsushi; Kitsios, Vassili; Atkinson, Callum; Jiménez, Javier; Soria, Julio

    2016-11-01

    The turbulence statistics and structures are studied in direct numerical simulation (DNS) of a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL). The self-similar APG-TBL at the verged of separation is achieved by a modification of the far-field boundary condition to produce the desired pressure gradient. The turbulence statistics in the self-similar region collapse by using the scaling of the external velocity and the displacement thickness. The coherent structures of the APG-TBL are investigated and compared to those of zero-pressure gradient case and homogeneous shear flow. The support of the ARC, NCI and Pawsey SCC funded by the Australian and Western Australian governments as well as the support of PRACE funded by the European Union are gratefully acknowledged.

  14. Comparison of spatial and temporal characteristics of a turbulent boundary layer in the presence of free-stream turbulence

    Science.gov (United States)

    Dogan, Eda; Hearst, R. Jason; Hanson, Ronald E.; Ganapathisubramani, Bharathram

    2016-11-01

    Free-stream turbulence (FST) has previously been shown to enhance the scale interactions occurring within a turbulent boundary layer (TBL). This is investigated further by generating FST with an active grid over a zero-pressure gradient TBL that developed on a smooth flat plate. Simultaneous measurements were performed using four hot-wires mounted to a rake that traversed the boundary layer height. Planar PIV measurements were also performed. Hot-wire measurements indicate that on average large-scale structures occurring in the free-stream penetrate the boundary layer and increase the streamwise velocity fluctuations throughout. Two-point correlations of the streamwise velocity fluctuations from the hot-wires enable determination of the inclination angle of the wall-structures in the boundary layer using Taylor's hypothesis. This angle is observed to be invariant around 11-15 degrees in the near-wall region in agreement with the literature for canonical TBLs. This presentation will compare the planar PIV data to these hot-wire measurements to determine if these phenomena that appear in the statistics using Taylor's hypothesis can be tracked to instantaneous spatial features in the TBL subjected to FST. We acknowledge the financial support from the European Research Council (ERC Grant Agreement No. 277472), EPSRC (Grant ref no: EP/I037717/1).

  15. Performance of Renormalization Group Algebraic Turbulence Model on Boundary Layer Transition Simulation

    Science.gov (United States)

    Ahn, Kyung H.

    1994-01-01

    The RNG-based algebraic turbulence model, with a new method of solving the cubic equation and applying new length scales, is introduced. An analysis is made of the RNG length scale which was previously reported and the resulting eddy viscosity is compared with those from other algebraic turbulence models. Subsequently, a new length scale is introduced which actually uses the two previous RNG length scales in a systematic way to improve the model performance. The performance of the present RNG model is demonstrated by simulating the boundary layer flow over a flat plate and the flow over an airfoil.

  16. Effect of Pressure Gradients on Plate Response and Radiation in a Supersonic Turbulent Boundary Layer

    Science.gov (United States)

    Frendi, Abdelkader

    1997-01-01

    Using the model developed by the author for zero-pressure gradient turbulent boundary layers, results are obtained for adverse and favorable pressure gradients. It is shown that when a flexible plate is located in an adverse pressure gradient area, it vibrates more than if it were in a favorable pressure gradient one. Therefore the noise generated by the plate in an adverse pressure gradient is much greater than that due to the plate in a favorable pressure gradient. The effects of Reynolds number and boundary layer thickness are also analyzed and found to have the same effect in both adverse and favorable pressure gradient cases. Increasing the Reynolds number is found to increase the loading on the plate and therefore acoustic radiation. An increase in boundary layer thickness is found to decrease the level of the high frequencies and therefore the response and radiation at these frequencies. The results are in good qualitative agreement with experimental measurements.

  17. Statistical structure and scaling behaviors of spanwise vorticity in smooth-wall turbulent boundary layers

    Science.gov (United States)

    Klewicki, Joseph; Morrill-Winter, Caleb; Marusic, Ivan

    2014-11-01

    Within the canonical turbulent boundary layer the spanwise component of vorticity, ωz, is the only component that has a non-negligible mean value. For this and other reasons, the motions bearing ωz play a central role in boundary layer dynamics. A compact four element (`Foss-style') hotwire probe was used to acquire well-resolved ωz fluctuation time series over an unprecedented Reynolds number range, 1 , 500 behaviors of the statistical moments and frequency spectra of the ωz fluctuations, and further explores the self-similarity between the mean and rms profiles seen at low Reynolds number. The observed ωz behaviors are discussed relative to mean dynamical structure and the asymptotic properties of the boundary layer vorticity field. The support of the Australian Research Council and the National Science Foundation are gratefully acknowledged.

  18. Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle

    Science.gov (United States)

    Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.

  19. Fluctuating wall shear stress and velocity measurements in a turbulent boundary layer

    Science.gov (United States)

    Pabon, Rommel; Ukeiley, Lawrence; Barnard, Casey; Sheplak, Mark

    2014-11-01

    Knowledge of mean wall shear stress on a surface can shed light on important performance parameters, but the fluctuating shear, even in simple flows, has not been as easily measured, and can be of interest in fundamental boundary layer research. Experiments on a flat plate model were performed to investigate the relationship between the wall shear stress and large scale events in the turbulent boundary layer. A MEMS based differential capacitance shear stress system with 1 mm × 1 mm floating element which can measure the fluctuating and static components of shear simultaneously, coupled with a hot wire anemometer were used for characterizing the turbulent boundary layer. Velocity profiles and turbulence statistics approaching the wall characterized the two dimensionality of the flat plate, and a trailing edge flap was used to impose a zero pressure gradient. The mean streamwise velocity profile was scaled by the friction velocity using the measured shear stress and independently compared to classical fits. Correlations between the fluctuating shear and measured velocities were used to elucidate the large scale events and to compare with previous fluctuating shear measurements for validation.

  20. Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer

    Science.gov (United States)

    Zhang, Wei; Markfort, Corey D.; Porté-Agel, Fernando

    2012-05-01

    Wind turbines operate in the surface layer of the atmospheric boundary layer, where they are subjected to strong wind shear and relatively high turbulence levels. These incoming boundary layer flow characteristics are expected to affect the structure of wind turbine wakes. The near-wake region is characterized by a complex coupled vortex system (including helicoidal tip vortices), unsteadiness and strong turbulence heterogeneity. Limited information about the spatial distribution of turbulence in the near wake, the vortex behavior and their influence on the downwind development of the far wake hinders our capability to predict wind turbine power production and fatigue loads in wind farms. This calls for a better understanding of the spatial distribution of the 3D flow and coherent turbulence structures in the near wake. Systematic wind-tunnel experiments were designed and carried out to characterize the structure of the near-wake flow downwind of a model wind turbine placed in a neutral boundary layer flow. A horizontal-axis, three-blade wind turbine model, with a rotor diameter of 13 cm and the hub height at 10.5 cm, occupied the lowest one-third of the boundary layer. High-resolution particle image velocimetry (PIV) was used to measure velocities in multiple vertical stream-wise planes ( x- z) and vertical span-wise planes ( y- z). In particular, we identified localized regions of strong vorticity and swirling strength, which are the signature of helicoidal tip vortices. These vortices are most pronounced at the top-tip level and persist up to a distance of two to three rotor diameters downwind. The measurements also reveal strong flow rotation and a highly non-axisymmetric distribution of the mean flow and turbulence structure in the near wake. The results provide new insight into the physical mechanisms that govern the development of the near wake of a wind turbine immersed in a neutral boundary layer. They also serve as important data for the development and

  1. Derivation of Zagarola-Smits scaling in zero-pressure-gradient turbulent boundary layers

    Science.gov (United States)

    Wei, Tie; Maciel, Yvan

    2018-01-01

    This Rapid Communication derives the Zagarola-Smits scaling directly from the governing equations for zero-pressure-gradient turbulent boundary layers (ZPG TBLs). It has long been observed that the scaling of the mean streamwise velocity in turbulent boundary layer flows differs in the near surface region and in the outer layer. In the inner region of small-velocity-defect boundary layers, it is generally accepted that the proper velocity scale is the friction velocity, uτ, and the proper length scale is the viscous length scale, ν /uτ . In the outer region, the most generally used length scale is the boundary layer thickness, δ . However, there is no consensus on velocity scales in the outer layer. Zagarola and Smits [ASME Paper No. FEDSM98-4950 (1998)] proposed a velocity scale, U ZS=(δ1/δ ) U∞ , where δ1 is the displacement thickness and U∞ is the freestream velocity. However, there are some concerns about Zagarola-Smits scaling due to the lack of a theoretical base. In this paper, the Zagarola-Smits scaling is derived directly from a combination of integral, similarity, and order-of-magnitude analysis of the mean continuity equation. The analysis also reveals that V∞, the mean wall-normal velocity at the edge of the boundary layer, is a proper scale for the mean wall-normal velocity V . Extending the analysis to the streamwise mean momentum equation, we find that the Reynolds shear stress in ZPG TBLs scales as U∞V∞ in the outer region. This paper also provides a detailed analysis of the mass and mean momentum balance in the outer region of ZPG TBLs.

  2. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  3. Boundary layer and fundamental problems of hydrodynamics (compatibility of a logarithmic velocity profile in a turbulent boundary layer with the experience values)

    Science.gov (United States)

    Zaryankin, A. E.

    2017-11-01

    The compatibility of the semiempirical turbulence theory of L. Prandtl with the actual flow pattern in a turbulent boundary layer is considered in this article, and the final calculation results of the boundary layer is analyzed based on the mentioned theory. It shows that accepted additional conditions and relationships, which integrate the differential equation of L. Prandtl, associating the turbulent stresses in the boundary layer with the transverse velocity gradient, are fulfilled only in the near-wall region where the mentioned equation loses meaning and are inconsistent with the physical meaning on the main part of integration. It is noted that an introduced concept about the presence of a laminar sublayer between the wall and the turbulent boundary layer is the way of making of a physical meaning to the logarithmic velocity profile, and can be defined as adjustment of the actual flow to the formula that is inconsistent with the actual boundary conditions. It shows that coincidence of the experimental data with the actual logarithmic profile is obtained as a result of the use of not particular physical value, as an argument, but function of this value.

  4. Large eddy simulation of zero-pressure-gradient turbulent boundary layer based on different scaling laws

    Science.gov (United States)

    Cheng, Wan; Samtaney, Ravi

    2013-11-01

    We present results of large eddy simulation (LES) for a smooth-wall, zero-pressure-gradient turbulent boundary layer. We employ the stretched vortex sub-grid-scale model in the simulations augmented by a wall model. Our wall model is based on the virtual-wall model introduced by Chung & Pullin (J. Fluid Mech 2009). An essential component of their wall model is an ODE governing the local wall-normal velocity gradient obtained using inner-scaling ansatz. We test two variants of the wall model based on different similarity laws: one is based on a log-law and the other on a power-law. The specific form of the power law scaling utilized is that proposed by George & Castillo (Appl. Mech. Rev. 1997), dubbed the ``GC Law''. Turbulent inflow conditions are generated by a recycling method, and applying scaling laws corresponding to the two variants of the wall model, and a uniform way to determine the inlet friction velocity. For Reynolds number based on momentum thickness, Reθ , ranging from 104 to 1012 it is found that the velocity profiles generally follow the log law form rather than the power law. For large Reynolds number asymptotic behavior, LES based on different scaling laws the boundary layer thickness and turbulent intensities do not show much difference. Supported by a KAUST funded project on large eddy simulation of turbulent flows. The IBM Blue Gene P Shaheen at KAUST was utilized for the simulations.

  5. Log-law and compressibility effects in transcritical turbulent boundary layers at supercritical pressure

    Science.gov (United States)

    Kawai, Soshi

    2015-11-01

    In this talk, we discuss the log-law and effects of compressibility in transcritical heated turbulent boundary layers on a zero-pressure-gradient flat plate at supercritical pressure conditions by solving the compressible Navier-Stokes equations using direct numerical simulation. In the supercritical fluids (especially at transcritical conditions), due to the strong real fluid effects thermodynamic properties vary abruptly within a narrow temperature range through the pseudo-critical temperature and significantly deviate from the ideal fluid. Peculiar interactions between the strongly non-linear real fluid effects and wall turbulence, and its resultant log-law and turbulence statistics are discussed, which have never been seen in the ideal-fluid turbulent boundary layers. We also show non-negligible compressibility effects in the flow even in the low-Mach number regime considered in this study. This work was supported by Japan Society for the Promotion of Science KAKENHI Grant Number 26709066. Computer time was provided by the K computer at the RIKEN Advanced Institute for Computational Science through the HPCI System Research project hp150035.

  6. A consistent turbulence formulation for the dynamic wake meandering model in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Veldkamp, Dick; Wedel-Heinen, Jens Jakob

    evolution 4. atmospheric stability effects on wake deficit evolution and meandering The conducted research is to a large extent based on detailed wake investigations and reference data generated through computational fluid dynamics simulations, where the wind turbine rotor has been represented...... as a standalone flow-solver for the velocity and turbulence distribution, and power production in a wind farm. The performance of the standalone implementation is validated against field data, higher-order computational fluid dynamics models, as well as the most common engineering wake models in the wind industry....... 2. The EllipSys3D actuator line model, including the synthetic methods used to model atmospheric boundary layer shear and turbulence, is verified for modelling the evolution of wind turbine wake turbulence by comparison to field data and wind tunnel experiments. 3. A two-dimensional eddy viscosity...

  7. High Frequency Measurements in Shock-Wave/Turbulent Boundary-Layer Interaction at Duplicated Flight Conditions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...

  8. The effect of boundary layer and surface characteristics on non-Gaussian turbulent fluctuations of temperature

    Science.gov (United States)

    Graf, A.; Schüttemeyer, D.; Geiß, H.; Knaps, A.; Möllmann-Coers, M.; Schween, J. H.; Kollet, S.; Neininger, B.; Herbst, M.; Vereecken, H.

    2009-04-01

    We use simultaneously measured near-ground micrometeorological and boundary layer data to examine the relation between the probability density function (PDF) of a turbulent scalar such as temperature and its vertical profile. Turbulent temperature time series of 10 to 20 s-1 resolution are taken from eddy covariance stations measuring at 1.45 to 120 m above ground level, and vertical profiles of potential temperature were composed of tower and aircraft measurements. The relation between skewness and kurtosis of the turbulent near-ground data was evaluated using the Pearson system of distributions, and indicates that a part of their non-Gaussianity is due to the existence of a well-defined lower limit to fluctuations. To a lesser extend, an upper limit is also indicated. During unstable situations, the lower limit could be related to the minimum of potential temperature available in the boundary layer. During stable situations, it was related to the effective surface temperature at the measurement site estimated from outgoing longwave radiation. The upper limit could be related with considerably less rigidity and a systematic underestimation, which we attribute to well mixing by small-scale turbulence, to the surface temperature during unstable situations. Two types of theoretical PDFs are compared to the turbulent histograms. The first type, the beta distribution was empirically chosen from classical statistics based on matching the first four sample moments and has already been used to empirically model scalar concentrations in plumes. The second type was theoretically derived from simplified assumptions on atmospheric dispersion. Both support the assumption that turbulent scalar PDFs in horizontally homogeneous conditions have finite tails.

  9. RESEARCH AND MATHEMATICAL MODELING OF TURBULENT BOUNDARY LAYER AT POSITIVE PRESSURE GRADIENT

    Directory of Open Access Journals (Sweden)

    Vitaliy Mamchuk

    2016-06-01

    Full Text Available Purpose: Mathematical modeling of complex turbulent near-wall flows, that occur during the flow of airfoils, is impossible without understanding the nature of the flow in boundary layer. From a mathematical point of view, the calculation of such flows, because in practical problems they regarded as turbulent, and the characteristics of turbulence are largely dependent on the geometry of the profile of the longitudinal component of the average velocity of the near-wall flow. Based on this, the purpose of this work is studying and mathematical modeling of turbulent near-wall flows in the interaction with the real streamlined surface, that has certain features, such as the curvature, roughness, etc., as well as the study and research of the influence of the pressure gradient on the empirical coefficients, parameters of the flow, velocity profiles and friction stress. Methods: We performed the calculations using numerical finite-difference marching method with algebraic model of turbulent viscosity coefficient. Results: In this paper we present some results of the numerical study of the effect of the positive pressure gradient on the empirical coefficients of the transition zone and the law of the near-wall and the outer-wall areas. Discussion: Comparison of the calculated results with the experimental data shows that the proposed approaches provide an opportunity to simulate the flow as close as possible to their physical properties. Presented mathematical model for the calculation of turbulent boundary layers and near-wall flows makes it possible to calculate such a complex and valuable from a practical point of view type of the flow as the aerodynamic trail behind the streamlined body.

  10. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  11. Compressibility Considerations for kappa-omega Turbulence Models in Hypersonic Boundary Layer Applications

    Science.gov (United States)

    Rumsey, C. L.

    2009-01-01

    The ability of kappa-omega models to predict compressible turbulent skin friction in hypersonic boundary layers is investigated. Although uncorrected two-equation models can agree well with correlations for hot-wall cases, they tend to perform progressively worse - particularly for cold walls - as the Mach number is increased in the hypersonic regime. Simple algebraic models such as Baldwin-Lomax perform better compared to experiments and correlations in these circumstances. Many of the compressibility corrections described in the literature are summarized here. These include corrections that have only a small influence for kappa-omega models, or that apply only in specific circumstances. The most widely-used general corrections were designed for use with jet or mixing-layer free shear flows. A less well-known dilatation-dissipation correction intended for boundary layer flows is also tested, and is shown to agree reasonably well with the Baldwin-Lomax model at cold-wall conditions. It exhibits a less dramatic influence than the free shear type of correction. There is clearly a need for improved understanding and better overall physical modeling for turbulence models applied to hypersonic boundary layer flows.

  12. An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent fluid-structure interaction problems

    Science.gov (United States)

    Farhat, Charbel; Lakshminarayan, Vinod K.

    2014-04-01

    Embedded Boundary Methods (EBMs) for Computational Fluid Dynamics (CFD) are usually constructed in the Eulerian setting. They are particularly attractive for complex Fluid-Structure Interaction (FSI) problems characterized by large structural motions and deformations. They are also critical for flow problems with topological changes and FSI problems with cracking. For all of these problems, the alternative Arbitrary Lagrangian-Eulerian (ALE) methods are often unfeasible because of the issue of mesh crossovers. However for viscous flows, Eulerian EBMs for CFD do not track the boundary layers around dynamic rigid or flexible bodies. Consequently, the application of these methods to viscous FSI problems requires either a high mesh resolution in a large part of the computational fluid domain, or adaptive mesh refinement. Unfortunately, the first option is computationally inefficient, and the second one is labor intensive. For these reasons, an alternative approach is proposed in this paper for maintaining all moving boundary layers resolved during the simulation of a turbulent FSI problem using an EBM for CFD. In this approach, which is simple and computationally reasonable, the underlying non-body-fitted mesh is rigidly translated and/or rotated in order to track the rigid component of the motion of the dynamic obstacle. Then, the flow computations away from the embedded surface are performed using the ALE framework, and the wall boundary conditions are treated by the chosen Eulerian EBM for CFD. Hence, the solution of the boundary layer tracking problem proposed in this paper can be described as an ALE implementation of a given EBM for CFD. Its basic features are illustrated with the Large Eddy Simulation using a non-body-fitted mesh of a turbulent flow past an airfoil in heaving motion. Its strong potential for the solution of challenging FSI problems at reasonable computational costs is also demonstrated with the simulation of turbulent flows past a family of

  13. An Estimation of Turbulent Kinetic Energy and Energy Dissipation Rate Based on Atmospheric Boundary Layer Similarity Theory

    Science.gov (United States)

    Han, Jongil; Arya, S. Pal; Shaohua, Shen; Lin, Yuh-Lang; Proctor, Fred H. (Technical Monitor)

    2000-01-01

    Algorithms are developed to extract atmospheric boundary layer profiles for turbulence kinetic energy (TKE) and energy dissipation rate (EDR), with data from a meteorological tower as input. The profiles are based on similarity theory and scalings for the atmospheric boundary layer. The calculated profiles of EDR and TKE are required to match the observed values at 5 and 40 m. The algorithms are coded for operational use and yield plausible profiles over the diurnal variation of the atmospheric boundary layer.

  14. Decomposition of multi-scale coherent structures in a turbulent boundary layer by variational mode decomposition

    Science.gov (United States)

    Wang, Wenkang; Pan, Chong; Wang, Jinjun

    2016-11-01

    Turbulent boundary layer (TBL) is believed to contain a wide spectrum of coherent structures, from near-wall low-speed streaks characterized by inner scale to log-layer large-scale coherent motions (LSM and VLSM) characterized by outer scale. Recent studies have evidenced the interaction between these multi-scale structures via either bottom-up or top-down mechanisms, which implies the possibility of identifying the coexistence of their footprints at medium flow layer. Here, we propose a Quasi-Bivariate Variational Mode Decomposition method (QB-VMD), which is an update of the traditional Empirical Mode Decomposition (EMD) with bandwidth limitation, for the decomposition of the PIV measured 2D flow fields with large ROI (Δx × Δz 4 δ × 1 . 5 δ) at specified wall-normal heights (y / δ = 0 . 05 0 . 2) of a turbulent boundary layer with Reτ = 3460 . The empirical modes identified by QB-VMD well capture the characteristics of log-layer LSMs as well as that of near-wall streak-like structures. The lateral scales of these structures are analyzed and their respective energy contribution are evaluated. Supported by both the National Natural Science Foundation of China (Grant Nos. 11372001 and 11490552) and the Fundamental Research Funds for the Central Universities of China (No. YWF-16-JCTD-A-05).

  15. The decay of forced rescaling modes in a Mach 3 turbulent boundary layer

    Science.gov (United States)

    Kan, Yin-Chiu; Beekman, Izaak; Priebe, Stephan; Martin, Pino

    2010-11-01

    We introduce a new, Mach 3, compressible, turbulent boundary layer (TBL) spatial direct numerical simulation (SDNS), with a streamwise length of 50δinlet. The simulation has an inlet Reθ of 2500, increasing to 4000 at the outlet, with the boundary layer thickness, δ, nearly doubling from the inlet to the outlet. The inflow is computed using an auxiliary DNS with a rescaling length of 8δ. We examine the evolution of turbulence statistics as the boundary layer grows. In particular, we scrutinize the effects of rescaling and the non-stationarity of the flow. We wish to determine how far downstream the flow must travel to sufficiently "forget" the effects of rescaling. The effect of rescaling is of particular interest when investigating low frequency and large scale phenomena, such as coherent flow structures. These large coherent structures are on the order of 10δ in streamwise extent, and have been found at similar conditions to the present study.ootnotetextRinguette, Wu & Mart'in J. Fluid Mech., 594:59-69, 2008. With this data set we will address and quantify the role of rescaling and the rate at which the flow will forget this artificial forcing.

  16. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction.

    Science.gov (United States)

    Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren

    2017-05-01

    In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors' knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St + = 24 and the particle Reynolds number Re p = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y + = 60 and 2/3 of the boundary-layer thickness are the most influenced.

  17. Experimental investigation on aero-optics of supersonic turbulent boundary layers.

    Science.gov (United States)

    Ding, Haolin; Yi, Shihe; Zhu, Yangzhu; He, Lin

    2017-09-20

    Nanoparticle-based planar laser scattering was used to measure the density distribution of the supersonic (Ma=3.0) turbulent boundary layer and the optical path difference (OPD), which is quite crucial for aero-optics study. Results were obtained using ray tracing. The influences of different layers in the boundary layer, turbulence scales, and light incident angle on aero-optics were examined, and the underlying flow physics were analyzed. The inner layer plays a dominant role, followed by the outer layer. One hundred OPD rms of the outer layer at different times satisfy the normal distribution better than that of the inner layer. Aero-optics induced by the outer layer is sensitive to the filter scale. When induced by the inner layer, it is not sensitive to the filter scale. The vortices with scales less than the Kolmogorov scale (=46.0  μm) have little influence on the aero-optics and could be ignored; the validity of the smallest optically active scale (=88.1  μm) proposed by Mani is verified, and vortices with scales less than that are ignored, resulting in a 1.62% decay of aero-optics; the filter with a width of 16-grid spacing (=182.4  μm) decreases OPD rms by 7.04%. With the increase of the angle between the wall-normal direction and the light-incident direction, the aero-optics becomes more serious, and the difference between the distribution of the OPD rms and the normal distribution increases. The difficulty of aero-optics correction is increased. Light tilted toward downstream experiences more distortions than when tilted toward upstream at the same angle relative to the wall-normal direction.

  18. Skin-friction measurements in a turbulent boundary layer under the influence of free-stream turbulence

    Science.gov (United States)

    Esteban, Luis Blay; Dogan, Eda; Rodríguez-López, Eduardo; Ganapathisubramani, Bharathram

    2017-09-01

    This experimental investigation deals with the influence of free-stream turbulence (FST) produced by an active grid on the skin friction of a zero-pressure-gradient turbulent boundary layer. Wall shear stress is obtained by oil-film interferometry. In addition, hot-wire anemometry was performed to obtain wall-normal profiles of streamwise velocity. This enables the skin friction to be deduced from the mean profile. Both methods show remarkable agreement for every test case. Although skin friction is shown to increase with FST, the trend with Reynolds number is found to be similar to cases without FST. Furthermore, once the change in the friction velocity is accounted for, the self-similarity of the logarithmic region and below (i.e. law of the wall) appears to hold for all FST cases investigated.

  19. Temporal and Spatial Response of a Turbulent Boundary Layer to Forcing by Synthetic Jets

    Science.gov (United States)

    Hanson, Ronald; Ganapathisubramani, Bharathram; Lavoie, Philippe

    2016-11-01

    In this experimental study we examine the spatial and temporal response of a turbulent boundary layer affected by a single, and pair of, synthetic jet actuator(s). The spatial signature of the boundary layer mean-flow has been previously shown to result from large vortical motions caused by the interaction between the synthetic jets and the cross flow. By means of hot-wire measurements, phase-locked to the synthetic jet input, the propagation of the unsteady disturbance can be quantified over the actuation cycle of a synthetic jet. Using long samples both the phase-locked variation of the periodic (actuation cycle) and turbulent fluctuations are examined. It is shown that both the mean flow and turbulence characteristics are markedly different across the span, owing to the three dimensionality of the upstream input. Further, the disturbance shape and phase of the phase-locked disturbance varies significantly with forcing level, in part owing to the disruption of the mean velocity. Particular focus is given to the interaction occurring between the near-wall and outer region scales, which vary across the span, with respect to various forcing conditions. The financial support of Airbus is gratefully acknowledged.

  20. Large-eddy simulation of a solid-particles suspension in a turbulent boundary layer

    Science.gov (United States)

    Rahman, Mustafa; Samtaney, Ravi

    2014-11-01

    We decribe a framework for the large-eddy simulation of solid particles suspended and transported within an incompressible turbulent boundary layer. The underlying approach to simulate the solid-particle laden flow is Eulerian-Eulerian in which the particles are characterized by statistical descriptors. For the fluid phase, the large-eddy simulation (LES) of incompressible turbulent boundary layer employs stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work of Inoue & Pullin (J. Fluid Mech. 2011). Furthermore, a recycling method to generate turbulent inflow is implemented. For the particle phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The numerical method in this framework is based on a fractional-step method with an energy-conservative fourth-order finite difference scheme on a staggered mesh. It is proposed to utilize this framework to examine transport of sand in desert sandstorms. Supported by KAUST OCRF funded CRG project on simulation of sandstorms.

  1. Representation of the grey zone of turbulence in the atmospheric boundary layer

    Science.gov (United States)

    Honnert, Rachel

    2016-04-01

    Numerical weather prediction model forecasts at horizontal grid lengths in the range of 100 to 1 km are now possible. This range of scales is the "grey zone of turbulence". Previous studies, based on large-eddy simulation (LES) analysis from the MésoNH model, showed that some assumptions of some turbulence schemes on boundary-layer structures are not valid. Indeed, boundary-layer thermals are now partly resolved, and the subgrid remaining part of the thermals is possibly largely or completely absent from the model columns. First, some modifications of the equations of the shallow convection scheme have been tested in the MésoNH model and in an idealized version of the operational AROME model at resolutions coarser than 500 m. Secondly, although the turbulence is mainly vertical at mesoscale (> 2 km resolution), it is isotropic in LES (AROME, which needs mixing lengths in the formulation. Vertical and horizontal mixing lengths have been calculated from LES of neutral and convective cases at resolutions in the grey zone.

  2. Modeling and analysis of large-eddy simulations of particle-laden turbulent boundary layer flows

    KAUST Repository

    Rahman, Mustafa M.

    2017-01-05

    We describe a framework for the large-eddy simulation of solid particles suspended and transported within an incompressible turbulent boundary layer (TBL). For the fluid phase, the large-eddy simulation (LES) of incompressible turbulent boundary layer employs stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work of Cheng, Pullin & Samtaney (J. Fluid Mech., 2015). This LES model is virtually parameter free and involves no active filtering of the computed velocity field. Furthermore, a recycling method to generate turbulent inflow is implemented. For the particle phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The numerical method in this framework is based on a fractional-step method with an energy-conservative fourth-order finite difference scheme on a staggered mesh. This code is parallelized based on standard message passing interface (MPI) protocol and is designed for distributed-memory machines. It is proposed to utilize this framework to examine transport of particles in very large-scale simulations. The solver is validated using the well know result of Taylor-Green vortex case. A large-scale sandstorm case is simulated and the altitude variations of number density along with its fluctuations are quantified.

  3. Inertial Effects on the Vertical Transport of Suspended Particles in a Turbulent Boundary Layer

    Science.gov (United States)

    Richter, David; Chamecki, Marcelo

    2017-11-01

    In many atmospheric flows, a dispersed phase is actively suspended by turbulence, whose competition with gravitational settling ultimately dictates its vertical distribution. Examples of dispersed phases include snow, sea-spray droplets, dust, or sand, where individual elements of much larger density than the surrounding air are carried by turbulent motions after emission from the surface. In cases where the particle is assumed to deviate from local fluid motions only by its gravitational settling (i.e., they are inertialess), traditional flux balances predict a power-law dependence of particle concentration with height. It is unclear, however, how particle inertia influences this relationship, and this question is the focus of this work. Direct numerical simulations are conducted of turbulent open-channel flow, laden with Lagrangian particles of specified inertia; in this way the study focuses on the turbulent transport which occurs in the lowest few meters of the planetary boundary layer, in regions critical for connecting emission fluxes to the fluxes felt by the full-scale boundary layer. Simulations over a wide range of particle Stokes number, while holding the dimensionless settling velocity constant, are performed to understand the role of particle inertia on vertical dispersion. It is found that particles deviate from their inertialess behaviour in ways that are not easily captured by traditional theory; concentrations are reduced with increasing Stokes number. Furthermore, a similarity-based eddy diffusivity for particle concentration fails as particles experience inertial acceleration, precluding a closed-form solution for particle concentration as in the case of inertialess particles. The primary consequence of this result is that typical flux parametrizations connecting surface emission models (e.g., saltation models or sea-spray generation functions) to elevated boundary conditions may overestimate particle concentrations due to the reduced vertical

  4. Plasma-based actuators for turbulent boundary layer control in transonic flow

    Science.gov (United States)

    Budovsky, A. D.; Polivanov, P. A.; Vishnyakov, O. I.; Sidorenko, A. A.

    2017-10-01

    The study is devoted to development of methods for active control of flow structure typical for the aircraft wings in transonic flow with turbulent boundary layer. The control strategy accepted in the study was based on using of the effects of plasma discharges interaction with miniature geometrical obstacles of various shapes. The conceptions were studied computationally using 3D RANS, URANS approaches. The results of the computations have shown that energy deposition can significantly change the flow pattern over the obstacles increasing their influence on the flow in boundary layer region. Namely, one of the most interesting and promising data were obtained for actuators basing on combination of vertical wedge with asymmetrical plasma discharge. The wedge considered is aligned with the local streamlines and protruding in the flow by 0.4-0.8 of local boundary layer thickness. The actuator produces negligible distortion of the flow at the absence of energy deposition. Energy deposition along the one side of the wedge results in longitudinal vortex formation in the wake of the actuator providing momentum exchange in the boundary layer. The actuator was manufactured and tested in wind tunnel experiments at Mach number 1.5 using the model of flat plate. The experimental data obtained by PIV proved the availability of the actuator.

  5. Turbulent Control Of The Ocean Surface Boundary Layer During The Onset Of Seasonal Stratification

    Science.gov (United States)

    Palmer, M.; Hopkins, J.; Wihsgott, J. U.

    2016-02-01

    To provide accurate predictions of global carbon cycles we must first understand the mechanistic control of ocean surface boundary layer (OSBL) temperature and the timing and depth of ocean thermal stratification, which are critical controls on oceanic carbon sequestration via the solubility and biological pumps. Here we present an exciting new series of measurements of the fine-scale physical structure and dynamics of the OSBL that provide fresh insight into the turbulent control of upper ocean structure. This study was made in the centre of the Celtic Sea, a broad section of the NW European continental shelf, and represents one of only a handful of measurements of near-surface turbulence in our shelf seas. Data are provided by an ocean microstructure glider (OMG) that delivers estimates of turbulent dissipation rates and mixing from 100m depth to within 2-3m of the sea surface, approximately every 10 minutes and continually for 21 days during April 2015. The OMG successfully captures the onset of spring stratification as solar radiation finally overcomes the destabilising effects of turbulent surface processes. Using coincident meteorological and wave observations from a nearby mooring, and full water column current velocity data we are able to close the near surface energy budget and provide a valuable test for proposed parameterisations of OSBL turbulence based on wind, wave and buoyancy inputs. We verify recent hypotheses that even very subtle thermal stratification, below often assumed limits of 0.1°C, are sufficient to establish sustained stratification even during active surface forcing. We also find that while buoyant production (convection) is not an efficient mechanism for mixing beyond the base of the mixed layer it does play an important role in modification of surface structure, acting to precondition the OSBL for enhanced (deeper) impacts from wind and wave driven turbulence.

  6. Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp

    Science.gov (United States)

    Tong, Fulin; Li, Xinliang; Duan, Yanhui; Yu, Changping

    2017-12-01

    Numerical investigations on a supersonic turbulent boundary layer over a longitudinal curved compression ramp are conducted using direct numerical simulation for a free stream Mach number M∞ = 2.9 and Reynolds number Reθ = 2300. The total turning angle is 24°, and the concave curvature radius is 15 times the thickness of the incoming turbulent boundary layer. Under the selected conditions, the shock foot is transferred to a fan of the compression wave because of the weaker adverse pressure gradient. The time-averaged flow-field in the curved ramp is statistically attached where the instantaneous flow-field is close to the intermittent transitory detachment state. Studies on coherent vortex structures have shown that large-scale vortex packets are enhanced significantly when the concave curvature is aligned in the spanwise direction. Consistent with findings of previous experiments, the effect of the concave curvature on the logarithmic region of the mean velocity profiles is found to be small. The intensity of the turbulent fluctuations is amplified across the curved ramp. Based on the analysis of the Reynolds stress anisotropy tensor, the evolutions of the turbulence state in the inner and outer layers of the boundary layer are considerably different. The curvature effect on the transport mechanism of the turbulent kinetic energy is studied using the balance analysis of the contributing terms in the transport equation. Furthermore, the Görtler instability in the curved ramp is quantitatively analyzed using a stability criterion. The instantaneous streamwise vorticity confirms the existence of the Görtler-like structures. These structures are characterized by an unsteady motion. In addition, the dynamic mode decomposition analysis of the instantaneous flow field at the spanwise/wall-normal plane reveals that four dynamical relevant modes with performance loss of 16% provide an optimal low-order representation of the essential characteristics of the numerical

  7. Turbulent boundary layer measurements over flat surfaces coated by nanostructured marine antifoulings

    Science.gov (United States)

    Ünal, Uğur Oral; Ünal, Burcu; Atlar, Mehmet

    2012-06-01

    Whilst recent developments of nanotechnology are being exploited by chemists and marine biologists to understand how the completely environmentally friendly foul release coatings can control marine biofouling and how they can be developed further, the understanding of the hydrodynamic performances of these new generation coatings is being overlooked. This paper aims to investigate the relative boundary layer, roughness and drag characteristics of some novel nanostructured coatings, which were developed through a multi-European and multi-disciplined collaborative research project AMBIO (2010), within the framework of turbulent flows over rough surfaces. Zero-pressure-gradient, turbulent boundary layer flow measurements were conducted over flat surfaces coated with several newly developed nanostructured antifouling paints, along with some classic reference surfaces and a state-of-the-art commercial coating, in the Emerson Cavitation Tunnel (ECT) of Newcastle University. A large flat plane test bed that included interchangeable flat test sections was used for the experiments. The boundary layer data were collected with the aid of a two-dimensional DANTEC Laser Doppler Velocimetry (LDV) system. These measurements provided the main hydrodynamic properties of the newly developed nanostructured coatings including local skin friction coefficients, roughness functions and Reynolds stresses. The tests and subsequent analysis indicated the exceptionally good frictional properties of all coatings tested, in particular, the drag benefit of some new nanostructured coatings in the Reynolds number range investigated. The rapidly decreasing roughness function trends of AKZO19 and AKZO20 as the ks^{ + } increases were remarkable along with the dissimilar roughness function character of all tested coatings to the well-known correlation curves warranting further research at higher Reynolds numbers. The wall similarity concept for the Reynolds stresses was only validated for the

  8. LOLAS: an optical turbulence profiler in the atmospheric boundary layer with extreme altitude resolution

    Science.gov (United States)

    Avila, R.; Avilés, J. L.; Wilson, R. W.; Chun, M.; Butterley, T.; Carrasco, E.

    2008-07-01

    We report the development and first results of an instrument called Low Layer SCIDAR (Scintillation Detection and Ranging) (LOLAS) which is aimed at the measurement of optical-turbulence profiles in the atmospheric boundary layer with high altitude resolution. The method is based on the Generalized SCIDAR (GS) concept, but unlike the GS instruments which need a 1-m or larger telescope, LOLAS is implemented on a dedicated 40-cm telescope, making it an independent instrument. The system is designed for widely separated double-star targets, which enables the high altitude resolution. Using a 200-arcsec-separation double star, we have obtained turbulence profiles with unprecedented 12-m resolution. The system incorporates necessary novel algorithms for autoguiding, autofocus and image stabilization. The results presented here were obtained at Mauna Kea Observatory. They show LOLAS capabilities but cannot be considered as representative of the site. A forthcoming paper will be devoted to the site characterization. The instrument was built as part of the Ground Layer Turbulence Monitoring Campaign on Mauna Kea for Gemini Observatory.

  9. Non-Gaussian PDF Modeling of Turbulent Boundary Layer Fluctuating Pressure Excitation

    Science.gov (United States)

    Steinwolf, Alexander; Rizzi, Stephen A.

    2003-01-01

    The purpose of the study is to investigate properties of the probability density function (PDF) of turbulent boundary layer fluctuating pressures measured on the exterior of a supersonic transport aircraft. It is shown that fluctuating pressure PDFs differ from the Gaussian distribution even for surface conditions having no significant discontinuities. The PDF tails are wider and longer than those of the Gaussian model. For pressure fluctuations upstream of forward-facing step discontinuities and downstream of aft-facing step discontinuities, deviations from the Gaussian model are more significant and the PDFs become asymmetrical. Various analytical PDF distributions are used and further developed to model this behavior.

  10. An Experimental Study of Turbulence Production Mechanisms in Boundary Layer Flows.

    Science.gov (United States)

    1982-08-01

    dimiaies betebm Vell mad sewlos Mlid soid be MDs. lb" end is Weeeu .16. ais 81"moes~ #0 o dilo ~ mafs nws 0bt. Sobgges sllrned .tsma diemID&AMISO so...defect-law profile varies with Reynolds number. 1. Introduction The usual analysis for the velocity defect in a turbulent boundary layer in zero... analysis assumes that the apparent effect of the parameter uT/Ue a ((cf/2), or equivalently diw/dx, is negligible. It is possible that the effect of

  11. A Critical Commentary on Mean Flow Data for Two-Dimensional Compressible Turbulent Boundary Layers,

    Science.gov (United States)

    1980-05-01

    a0205 6 a 0305 50 _ 0401 U;-u"CAT 5502 U;U * " 04054l : °U oo 3 -1 3CAT 6506 2 12 (adiabatic and isothermal wall, zero pressure gradient, deined...experiment ( TD 15 CAT 7304-A-3) showing that heat-transfer from the flow occurred in the nozzle region. As we have seen while discussing the ZPG cases of...Comparison of prediction methods and studies of relaxation in hypersonic turbulent nozzle-wall boundary layers. NASA Td D-5433. Bushnell L).M

  12. Skin friction measurements by laser interferometry in swept shock wave/turbulent boundary-layer interactions

    Science.gov (United States)

    Kim, Kwang-Soo; Settles, Gary S.

    1988-01-01

    The laser interferometric skin friction meter was used to measure wall shear stress distributions in two interactions of fin-generated swept shock waves with turbulent boundary layers. The basic research configuration was an unswept sharp-leading-edge fin of variable angle mounted on a flatplate. The results indicate that such measurements are practical in high-speed interacting flows, and that a repeatability of + or - 6 percent or better is possible. Marked increases in wall shear were observed in both swept interactions tested.

  13. Turbulence radiation coupling in boundary layers of heavy-duty diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-05

    The lack of accurate submodels for in-cylinder radiation and heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Recent measurements of wall layers in engines show discrepancies of up to 100% with respect to standard CFD boundary-layer models. And recent analysis of in-cylinder radiation based on the most recent spectral property databases and high-fidelity radiative transfer equation (RTE) solvers has shown that at operating pressures and exhaust-gas recirculation levels typical of modern heavy-duty compression-ignition engines, radiative emission can be as high as 40% of the wall heat losses, that molecular gas radiation (mainly CO2 and H2O) can be more important than soot radiation, and that a significant fraction of the emitted radiation can be reabsorbed before reaching the walls. That is, radiation not only contributes to heat losses, but also changes the in-cylinder temperature distribution, which in turn affects combustion and emissions. The goal of this research is to develop models that explicitly account for the potentially strong coupling between radiative and turbulent boundary layer heat transfer. For example, for optically thick conditions, a simple diffusion model might be formulated in terms of an absorption-coefficient-dependent turbulent Prandtl number.

  14. An Experimental Investigation of Forced Mixing of a Turbulent Boundary Layer in an Annular Diffuser. Ph.D. Thesis - Ohio State Univ.; [for boundary layer control

    Science.gov (United States)

    Shaw, R. J.

    1979-01-01

    The forced mixing process of a turbulent boundary layer in an axisymmetric annular diffuser using conventional wing-like vortex generators was studied. Flow field measurements were made at four axial locations downstream of the vortex generators. At each axial location, a total of 25 equally spaced profiles were measured behind three consecutive vortex generators which formed two pairs of vortex generators. Hot film anemometry probes measured the boundary layer turbulence structure at the same locations where pressure measurements were made. Both single and cross film probes were used. The diffuser turbulence data was teken only for a nominal inlet Mach number of 0.3. Three vortex generator configurations were tested. The differences between configurations involved changes in size and relative vortex generator positions. All three vortex generator configurations tested provided increases in diffuser performance. Distinct differences in the boundary layer integral properties and skin friction levels were noted between configurations. The axial turbulence intensity and Reynolds stress profiles measured displayed similarities in trends but differences in levels for the three configurations.

  15. Structuring of turbulence and its impact on basic features of Ekman boundary layers

    Directory of Open Access Journals (Sweden)

    I. Esau

    2013-08-01

    Full Text Available The turbulent Ekman boundary layer (EBL has been studied in a large number of theoretical, laboratory and modeling works since F. Nansen's observations during the Norwegian Polar Expedition 1893–1896. Nevertheless, the proposed analytical models, analysis of the EBL instabilities, and turbulence-resolving numerical simulations are not fully consistent. In particular, the role of turbulence self-organization into longitudinal roll vortices in the EBL and its dependence on the meridional component of the Coriolis force remain unclear. A new set of large-eddy simulations (LES are presented in this study. LES were performed for eight different latitudes (from 1° N to 90° N in the domain spanning 144 km in the meridional direction. Geostrophic winds from the west and from the east were used to drive the development of EBL turbulence. The emergence and growth of longitudinal rolls in the EBL was simulated. The simulated rolls are in good agreement with EBL stability analysis given in Dubos et al. (2008. The destruction of rolls in the westerly flow at low latitude was observed in simulations, which agrees well with the action of secondary instability on the rolls in the EBL. This study quantifies the effect of the meridional component of the Coriolis force and the effect of rolls in the EBL on the internal EBL parameters such as friction velocity, cross-isobaric angle, parameters of the EBL depth and resistance laws. A large impact of the roll development or destruction is found. The depth of the EBL in the westerly flow is about five times less than it is in the easterly flow at low latitudes. The EBL parameters, which depend on the depth, also exhibit large difference in these two types of the EBL. Thus, this study supports the need to include the horizontal component of the Coriolis force into theoretical constructions and parameterizations of the boundary layer in models.

  16. Flow field analysis of a turbulent boundary layer over a riblet surface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lee, S.H. [Pohang Univ. of Science and Technology (Korea). Dept. of Mechanical Engineering

    2001-02-01

    The near-wall flow structures of a turbulent boundary layer over a riblet surface with semi-circular grooves were investigated experimentally for the cases of drag decreasing (s{sup +}=25.2) and drag increasing (s{sup +}=40.6). One thousand instantaneous velocity fields over riblets were measured using the velocity field measurement technique and compared with those above a smooth flat plate. The field of view was 6.75 x 6.75 mm{sup 2} in physical dimension, containing two grooves. Those instantaneous velocity fields were ensemble averaged to get turbulent statistics including turbulent intensities and turbulent kinetic energy. To see the global flow structure qualitatively, flow visualization was also carried out using the synchronized smoke-wire technique under the same experimental conditions. For the case of drag decreasing (s{sup +}=25.2), most of the streamwise vortices stay above the riblets, interacting with the riblet tips frequently. The riblet tips impede the spanwise movement of the streamwise vortices and induce secondary vortices. The normalized rms velocity fluctuations and turbulent kinetic energy are small near the riblet surface, compared with those over a smooth flat plate. Inside the riblet valleys, these are sufficiently small that the increased wetted surface area of the riblets can be compensated. In addition, in the outer region (y{sup +} > 30), these values are almost equal to or slightly smaller than those for the smooth plate. For the case of drag increasing (s{sup +}=40.6), however, most of the streamwise vortices stay inside the riblet valleys and contact directly with the riblet surface. The high-speed down-wash flow penetrating into the riblet valley interacts actively with the wetted riblet surface and increases the skin friction. The rms velocity fluctuations and turbulent kinetic energy have larger values compared with those over a smooth flat plate. (orig.)

  17. Space-time measurements in a shock wave/turbulent boundary layer interaction

    Science.gov (United States)

    Schreyer, Anne-Marie; Dupont, Pierre

    2014-11-01

    We study a reflected shock interaction with separation at Mach 2, contributing to a better understanding of rocket engine nozzle flows. The flow field contains a wide range of characteristic frequencies between O (100) Hz for the oscillation of the reflected shock and O (100) kHz for the turbulent microscales. To explain the origin and interdependence of the physical phenomena in the interaction, we need access to the spatio-temporal links. We thus require a measurement technique allowing the resolution of the entire frequency range while also providing sufficient spatial resolution and a large field of view. Our newly developed Dual-PIV system satisfies these requirements. First measurements with this system in an interaction flow field were performed in the continuous hypo-turbulent wind-tunnel at IUSTI at a momentum thickness Reynolds number of Reθ = 5024 and a deflection angle of θ = 8 .75° . We present a detailed characterization of the flow field including turbulence measurements. From measurements at a range of temporal delays, we determined autocorrelations at crucial points in the flow field (incoming boundary layer, mixing layer, relaxation zone). From these, spatio-temporal information like the integral scales and the convection velocity are deduced. This work received financial support by the CNES within the research program ATAC and also the ANR within the program DECOMOS. This support is gratefully acknowledged.

  18. The response of the Ocean Surface Boundary Layer and Langmuir turbulence to tropical cyclones

    Science.gov (United States)

    Wang, Dong; Kukulka, Tobias; Reichl, Brandon; Hara, Tetsu; Ginis, Isaac

    2016-11-01

    The interaction of turbulent ocean surface boundary layer (OSBL) currents and the surface waves' Stokes drift generates Langmuir turbulence (LT), which enhances OSBL mixing. This study investigates the response of LT to extreme wind and complex wave forcing under tropical cyclones (TCs), using a large eddy simulation (LES) approach based on the wave-averaged Navier-Stokes equations. We simulate the OSBL response to TC systems by imposing the wind forcing of an idealized TC storm model, covering the entire horizontal extent of the storm systems. The Stokes drift vector that drives the wave forcing in the LES is determined from realistic spectral wave simulations forced by the same wind fields. We find that the orientations of Langmuir cells are vertically uniform and aligned with the wind in most regions despite substantial wind-wave misalignment in TC conditions. LT's penetration depth is related to Stokes drift depth and limited by OSBL depth. A wind-projected surface layer Langmuir number is proposed and successfully applied to scale turbulent vertical velocity variance in extreme TC conditions. Current affiliation: Princeton University/NOAA GFDL.

  19. Observations of Turbulent Fluxes and Turbulence Dynamics in the Ocean Surface Boundary Layer

    Science.gov (United States)

    2008-06-01

    91 [-iwocosh(k(z + h)) Aik-w] where Ak is the spectral amplitude of the wave at each wavenumber, k. Following Mei (1989) and Dean and Dalrymple (1984...James A. Yoder MIT Director of Joint Program WHOI Dean of Graduate Studies Observations of Turbulent Fluxes and Turbulence Dynamics in the Ocean Surface...values of m, and Jm is the Bessel function of the first kind, of order m. The potential associated with the reflected component is (Mei 1989; Dean and

  20. DNS of Laminar-Turbulent Transition in Swept-Wing Boundary Layers

    Science.gov (United States)

    Duan, L.; Choudhari, M.; Li, F.

    2014-01-01

    Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing and the mode selected for forcing corresponds to the most amplified secondary instability mode that, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. An inlet boundary condition is carefully designed to allow for accurate injection of instability wave modes and minimize acoustic reflections at numerical boundaries. Nonlinear parabolized stability equation (PSE) predictions compare well with the DNS in terms of modal amplitudes and modal shape during the strongly nonlinear phase of the secondary instability mode. During the transition process, the skin friction coefficient rises rather rapidly and the wall-shear distribution shows a sawtooth pattern that is analogous to the previously documented surface flow visualizations of transition due to stationary crossflow instability. Fully turbulent features are observed in the downstream region of the flow.

  1. Reynolds number effects on scale energy analysis of turbulent boundary layers

    Science.gov (United States)

    Saikrishnan, Neelakantan; Longmire, Ellen; Marusic, Ivan

    2009-11-01

    Scale energy analysis combines two approaches of studying wall- bounded turbulent flows - analysis in physical space and analysis in scale space. Previously, scale energy analysis has been performed on DNS channel flow data for a range of friction Reynolds numbers Reτ= 180-934 and dual plane PIV boundary layer data at Reτ= 1100. The dual plane technique allows determination of the full velocity gradient tensor in the measurement plane. Dual Plane PIV data were acquired in streamwise-spanwise planes in the logarithmic region of a water channel boundary layer at two higher Reynolds numbers - Reτ= 2400 and 3000. The results of this study will be described and compared with the lower Re data. It is observed that in general, the production and scale transfer terms of the turbulent kinetic energy increase with increasing Reynolds number. The cross-over scale, which divides the range of scales into a transfer-dominated region and a production- dominated region, increases with increasing Reynolds numbers, resulting in a larger range of transfer-dominated scales at higher Reynolds numbers.

  2. High speed PIV measurements in the logarithmic region of a turbulent boundary layer

    Science.gov (United States)

    Singh, Anurag; Longmire, Ellen; Marusic, Ivan

    2006-11-01

    The existence of long low speed regions in the logarithmic region of turbulent boundary layers has been studied previously; most recently using spanwise arrays of hot-wires. Currently, we are using high speed PIV to characterize these low speed regions. Experiments were conducted in the logarithmic region of the turbulent boundary layer in a zero pressure gradient flow at friction Reynolds number Reτ=1160 with a streamwise-spanwise field of view of dimension 1.2δ. A high speed camera and laser were used to obtain velocity fields at repetition rates ranging from 250 Hz to 1000 Hz. Sets of these fields were used to compute ensemble averaged statistics. Also, sections of consecutive fields were stitched end-to-end to form longer vector fields. This allows us to test, in part, the validity of using Taylor's hypothesis in this flow. Within the field of view, low speed regions of up to 14δ in length have been observed. In general, these low speed regions meander and some go out of the field of view in the spanwise direction. An algorithm is being developed to identify these regions automatically from the PIV results and to characterize their length scales.

  3. Effect of wall-mounted cylinders on a turbulent boundary layer: hot wire measurements

    Science.gov (United States)

    Ortiz-Dueñas, Cecilia; Ryan, Mitchell; Longmire, Ellen

    2010-11-01

    Wall-mounted cylinders with height-to-diameter ratio H/D = 2 and large enough to protrude into the logarithmic region, H^+= 200, are used to alter a turbulent boundary layer with Reτ=1150 in an attempt to affect the organization of the coherent vortical structures. Hot-wire measurements, including velocity profiles and frequency spectra, were acquired downstream of a single cylinder and spanwise arrays of cylinders. The single cylinder yielded a momentum deficit that extended from z^+=20 to 200, and a redistribution of the streamwise rms velocity towards the half cylinder height with a corresponding increase in the power spectral density over a broad frequency range. Cylinder arrays with 3D spanwise spacing yielded significant wake interactions. The largest mean streamwise velocity deficits and rms values occurred in the log region at mid-span between cylinders. More detail on the effect of cylinder spacing will be provided in the talk. The results suggest that turbulence within the boundary layer leads to broader spanwise interactions than those occurring in wakes of cylinder arrays in uniform cross flow.

  4. Influence of Evaporating Droplets in the Turbulent Marine Atmospheric Boundary Layer

    Science.gov (United States)

    Peng, Tianze; Richter, David

    2017-08-01

    Sea-spray droplets ejected into the marine atmospheric boundary layer take part in a series of complex transport processes. By capturing the air-droplet coupling and feedback, we focus on how droplets modify the total heat transfer across a turbulent boundary layer. We implement a high-resolution Eulerian-Lagrangian algorithm with varied droplet size and mass loading in a turbulent open-channel flow, revealing that the influence from evaporating droplets varies for different dynamic and thermodynamic characteristics of droplets. Droplets that both respond rapidly to the ambient environment and have long suspension times are able to modify the latent and sensible heat fluxes individually, however the competing signs of this modification lead to an overall weak effect on the total heat flux. On the other hand, droplets with a slower thermodynamic response to the environment are less subjected to this compensating effect. This indicates a potential to enhance the total heat flux, but the enhancement is highly dependent on the concentration and suspension time.

  5. Confinement effects in shock/turbulent-boundary-layer interaction through wall-modeled LES

    Science.gov (United States)

    Bermejo-Moreno, Ivan; Campo, Laura; Larsson, Johan; Bodart, Julien; Helmer, David; Eaton, John

    2016-11-01

    Wall-modeled large-eddy simulations (WMLES) are used to investigate three-dimensional effects imposed by lateral confinement on the interaction of oblique shock waves impinging on turbulent boundary layers (TBLs) developed along the walls of a nearly-square duct. A constant Mach number, M = 2 . 05 , of the incoming air stream is considered, with a Reynolds number based on the incoming turbulent boundary layer momentum thickness Reθ 14 , 000 . The strength of the impinging shock is varied by increasing the height of a compression wedge located at a constant streamwise location that spans the top wall of the duct at a 20° angle. Simulation results are first validated with particle image velocimetry (PIV) experimental data obtained at several vertical planes. Emphasis is placed on the study of the instantaneous and time-averaged structure of the flow for the stronger-interaction case, which shows mean flow reversal. By performing additional spanwise-periodic simulations, it is found that the structure and location of the shock system and separation bubble are significantly modified by the lateral confinement. Low-frequency unsteadiness and downstream evolution of corner flows are also investigated. Financial support from the United States Department of Energy under the PSAAP program is gratefully acknowledged.

  6. Direct Numerical Simulation of an Adverse Pressure Gradient Turbulent Boundary Layer at the Verge of Separation

    Science.gov (United States)

    Kitsios, Vassili; Atkinson, Callum; Sillero, Juan; Guillem, Borrell; Gungor, Ayse; Jimenéz, Javier; Soria, Julio

    2014-11-01

    We investigate the structure of an adverse pressure gradient (APG) turbulent boundary layer (TBL) at the verge of separation. The intended flow is generated via direct numerical simulation (DNS). The adopted DNS code was previously developed for a zero pressure gradient TBL. Here the farfield boundary condition (BC) is modified to generate the desired APG flow. The input parameters required for the APG BC are initially estimated from a series of Reynolds Averaged Navier-Stokes simulations. The BC is implemented into the DNS code with further refinement of the BC performed. The behaviour of the large scale dynamics is illustrated via the extraction of coherent structures from the DNS using analysis of the velocity gradient tensor and vortex clustering techniques. The authors acknowledge the research funding from the Australian Research Council and European Research Council, and the computational resources provided by NCI and PRACE.

  7. Separation control in a hypersonic shock wave / turbulent boundary-layer interaction

    Science.gov (United States)

    Schreyer, Anne-Marie; Bermejo-Moreno, Ivan; Kim, Jeonglae; Urzay, Javier

    2016-11-01

    Hypersonic vehicles play a key role for affordable access to space. The associated flow fields are strongly affected by shock wave/turbulent boundary-layer interactions, and the inherent separation causes flow distortion and low-frequency unsteadiness. Microramp sub-boundary layer vortex generators are a promising means to control separation and diminish associated detrimental effects. We investigate the effect of a microramp on the low-frequency unsteadiness in a fully separated interaction. A large eddy simulation of a 33 ∘ -compression-ramp interaction was performed for an inflow Mach number of 7.2 and a Reynolds number based on momentum thickness of Reθ = 3500 , matching the experiment of Schreyer et al. (2011). For the control case, we introduced a counter-rotating vortex pair, as induced by a single microramp, into the boundary layer through the inflow conditions. We applied a dynamic mode decomposition (DMD) on both cases to identify coherent structures that are responsible for the dynamic behavior. Based on the DMD, we discuss the reduction of the separation zone and the stabilization of the shock motion achieved by the microramp, and contribute to the description of the governing mechanisms. Pursued during the 2016 CTR Summer Program at Stanford University.

  8. Near-Surface Boundary Layer Turbulence Along a Horizontally-Moving, Surface-Piercing Vertical Wall

    CERN Document Server

    Washuta, Nathan; Duncan, James H

    2016-01-01

    The complex interaction between turbulence and the free surface in boundary layer shear flow created by a vertical surface-piercing wall is considered. A laboratory-scale device was built that utilizes a surface-piercing stainless steel belt that travels in a loop around two vertical rollers, with one length of the belt between the rollers acting as a horizontally-moving flat wall. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally-evolving boundary layer analogous to the spatially-evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface profiles are measured with a cinematic laser-induced fluorescence system and sub-surface velocity fields are recorded using a high-speed planar particle image velocimetry system. It is found that the belt initially travels through the water without creating any significant waves, before the free surface bursts with activity close to the belt surface. These free surface ripples travel away...

  9. Air Entrainment and Surface Ripples in a Turbulent Ship Hull Boundary Layer

    Science.gov (United States)

    Masnadi, Naeem; Erinin, Martin; Duncan, James H.

    2017-11-01

    The air entrainment and free-surface fluctuations caused by the interaction of a free surface and the turbulent boundary layer of a vertical surface-piercing plate is studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally evolving boundary layer analogous to the spatially evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface ripples are measured using a cinematic laser-induced fluorescence technique with the laser sheet oriented parallel or normal to the belt surface. Air entrainment events and bubble motions are recorded from underneath the water surface using a stereo imaging system. Measurements of small bubbles, that tend to stay submerged for a longer time, are planned via a high-speed digital in-line holographic system. The support of the Office of Naval Research is gratefully acknowledged.

  10. CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer

    Science.gov (United States)

    Gorlé, C.; van Beeck, J.; Rambaud, P.; Van Tendeloo, G.

    When considering the modelling of small particle dispersion in the lower part of the Atmospheric Boundary Layer (ABL) using Reynolds Averaged Navier Stokes simulations, the particle paths depend on the velocity profile and on the turbulence kinetic energy, from which the fluctuating velocity components are derived to predict turbulent dispersion. It is therefore important to correctly reproduce the ABL, both for the velocity profile and the turbulence kinetic energy profile. For RANS simulations with the standard k- ɛ model, Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k-ɛ turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46-47, 145-153.) proposed a set of boundary conditions which result in horizontally homogeneous profiles. The drawback of this method is that it assumes a constant profile of turbulence kinetic energy, which is not always consistent with field or wind tunnel measurements. Therefore, a method was developed which allows the modelling of a horizontally homogeneous turbulence kinetic energy profile that is varying with height. By comparing simulations performed with the proposed method to simulations performed with the boundary conditions described by Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k-ɛ turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46-47, 145-153.), the influence of the turbulence kinetic energy on the dispersion of small particles over flat terrain is quantified.

  11. Understanding and representing the effect of wind shear on the turbulent transfer in the convective boundary layer

    NARCIS (Netherlands)

    Ronda, R.J.; Vilà-Guerau de Arellano, J.; Pino, D.

    2012-01-01

    Goal of this study is to quantify the effect of wind shear on the turbulent transport in the dry Convective Boundary Layer (CBL). Questions addressed include the effect of wind shear on the depth of the mixed layer, the effect of wind shear on the depth and structure of the capping inversion, and

  12. Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations

    Science.gov (United States)

    Lee, Jae Hwa; Sung, Hyung Jin

    2013-04-01

    A direct numerical simulation of a fully developed turbulent pipe flow was performed to investigate the similarities and differences of very-large-scale motions (VLSMs) to those of turbulent boundary layer (TBL) flows. The Reynolds number was set to ReD = 35 000, and the computational domain was 30 pipe radii in length. Inspection of instantaneous fields, streamwise two-point correlations, and population trends of the momentum regions showed that the streamwise length of the structures in the pipe flow grew continuously beyond the log layer (y/δ 3δ), and the maximum length of the VLSMs increased up to ˜30δ. Such differences between the TBL and pipe flows arose due to the entrainment of large plumes of the intermittent potential flow in the TBL, creating break-down of the streamwise coherence of the structures above the log layer with the strong swirling strength and Reynolds shear stress. The average streamwise length scale of the pipe flow was approximately 1.5-3.0 times larger than that of the TBL through the log and wake regions. The maximum contribution of the structures to the Reynolds shear stress was observed at approximately 6δ in length, whereas that of the TBL was at 1δ-2δ, indicating a higher contribution of the VLSMs to the Reynolds shear stress in the pipe flow than in the TBL flow.

  13. The formation of snow streamers in the turbulent atmosphere boundary layer

    Science.gov (United States)

    Huang, Ning; Wang, Zheng-Shi

    2016-12-01

    The drifting snow in the turbulent atmosphere boundary layer is an important type of aeolian multi-phase flow. Current theoretical and numerical studies of drifting snow mostly consider the flow field as steady wind velocity. Whereas, little is known about the effects of turbulent wind structures on saltating snow particles. In this paper, a 3-D drifting snow model based on Large Eddy Simulation is established, in which the trajectory of every snow grain is calculated and the coupling effect between wind field and snow particles is considered. The results indicate that the saltating snow particles are re-organized by the suction effect of high-speed rotating vortexes, which results in the local convergence of particle concentration, known as snow streamers. The turbulent wind leads to the spatial non-uniform of snow particles lifted by aerodynamic entrainment, but this does not affect the formation of snow streamers. Whereas the stochastic grain-bed interactions make a great contribution to the final shapes of snow streamers. Generally, snow streamers display a characteristic length about 0.5 m and a characteristic width of approximately 0.16 m, and their characteristic sizes are not sensitive to the wind speed. Compared to the typical sand streamer, snow streamer is slightly narrower and the occurrence of other complex streamer patterns is later than that of sand streamers due to the better follow performance of snow grains with air flow.

  14. Large-eddy simulation of zero-pressure-gradient turbulent boundary layer with solid particle suspension

    Science.gov (United States)

    Rahman, Mustafa; Samtaney, Ravi

    2015-11-01

    We present results of solid particles suspension and transport in a fully-developed turbulent boundary layer flow using large-eddy simulation of the incompressible Navier-Stokes equations. We adopt the Eulerian-Eulerian approach to simulating particle laden flow with a large number of particles, in which the particles are characterized by statistical descriptors. For the particulate phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The underlying approach in modeling the turbulence of fluid phase utilizes the stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work proposed by Inoue & Pullin (J. Fluid Mech. 2011). The solver is verified against simple analytical solutions and the computational results are found to be in a good agreement with these. The capability of the new numerical solver will be exercised to investigate turbulent transport of sand in sandstorms. Finally, the adequacy and limitations of the solver will be discussed. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1704-01.

  15. Effects of local high-frequency perturbation on a turbulent boundary layer by synthetic jet injection

    Science.gov (United States)

    Guo, Hao; Huang, Qian-Min; Liu, Pei-qing; Qu, Qiu-Lin

    2015-08-01

    An experimental study is performed to investigate the local high-frequency perturbation effects of a synthetic jet injection on a flat-plate turbulent boundary layer. Parameters of the synthetic jet are designed to force a high-frequency perturbation from a thin spanwise slot in the wall. In the test locations downstream of the slot, it is found that skin-friction is reduced by the perturbation, which is languishingly evolved downstream of the slot with corresponding influence on the near-wall regeneration mechanism of turbulent structures. The downstream slot region is divided into two regions due to the influence strength of the movement of spanwise vortices generated by the high-frequency perturbation. Interestingly, the variable interval time average technique is found to be disturbed by the existence of the spanwise vortices’ motion, especially in the region close to the slot. Similar results are obtained from the analysis of the probability density functions of the velocity fluctuation time derivatives, which is another indirect technique for detecting the enhancement or attenuation of streamwise vortices. However, both methods have shown consistent results with the skin-friction reduction mechanism in the far-away slot region. The main purpose of this paper is to remind researchers to be aware of the probable influence of spanwise vortices’ motion in wall-bounded turbulence control.

  16. Further insight into physics of rough-wall turbulent boundary layer

    Science.gov (United States)

    Bhaganagar, Kiran; Juttijudata, Vejapong; Sen, Mehmet

    2008-11-01

    To get a good understanding of the effect of surface-roughness in altering the flow in a turbulent boundary layer it is important to understand the alterations in the dynamical activity of the flow. For this purpose direct proper orthogonal decomposition (POD) has been used as a tool. The data used for the POD has been obtained from direct numerical simulation of flow in a channel with egg-carton roughness elements. In this talk the effects of surface-roughness on the temporal flow dynamics such as bursting frequency of the energetic structures in the flow will be discussed. VITA detection technique has been used to obtain the bursting frequency. It has confirmed that rough-wall has a shorter bursting period and a higher turbulence activity compared to the smooth-wall. The results have confirmed the existence of roll and propagating modes for flow over rough-wall. In addition to the turbulent kinetic energy, the concept of entropy that has been introduced in this study within the context of degree of distribution of energy over range of scales, is a useful metric to categorize the rough-wall flow dynamics.

  17. Influence of the angle between the wind and the isothermal surfaces on the boundary layer structures in turbulent thermal convection.

    Science.gov (United States)

    Shishkina, Olga; Wagner, Sebastian; Horn, Susanne

    2014-03-01

    We derive the asymptotes for the ratio of the thermal to viscous boundary layer thicknesses for infinite and infinitesimal Prandtl numbers Pr as functions of the angle β between the large-scale circulation and an isothermal heated or cooled surface for the case of turbulent thermal convection with laminar-like boundary layers. For this purpose, we apply the Falkner-Skan ansatz, which is a generalization of the Prandtl-Blasius one to a nonhorizontal free-stream flow above the viscous boundary layer. Based on our direct numerical simulations (DNS) of turbulent Rayleigh-Bénard convection for Pr=0.1, 1, and 10 and moderate Rayleigh numbers up to 108 we evaluate the value of β that is found to be around 0.7π for all investigated cases. Our theoretical predictions for the boundary layer thicknesses for this β and the considered Pr are in good agreement with the DNS results.

  18. Correlation and prediction of thermophoretic and inertial effects on particle deposition from non-isothermal turbulent boundary layers

    Science.gov (United States)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The problem of small particle deposition which can cause hot stage corrosion and/or fouling in combustion turbines operating on fuels containing ash or inorganic salts is investigated. Two boundary layer transport phenomena are shown to assume importance in these cases: particle thermophoresis (migration down a temperature gradient) and particle inertia. Thermophoretic and eddy transport across turbulent boundary layers without and with particle inertia effects are quantitatively analyzed. The effects of streamwise blade curvature on particle transport across turbulent boundary layers are determined. It is shown that these phenomena destroy the analogy between mass and heat transfer or mass and momentum transfer. Also studied are the effects on particle deposition of distributed or localized wall blowing, surface roughness, and mainstream turbulence.

  19. Spatial characteristics of secondary flow in a turbulent boundary layer over longitudinal surface roughness

    Science.gov (United States)

    Hwang, Hyeon Gyu; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulations of turbulent boundary layers (TBLs) over spanwise heterogeneous surface roughness are performed to investigate the characteristics of secondary flow. The longitudinal surface roughness, which features lateral change in bed elevation, is described by immersed boundary method. The Reynolds number based on the momentum thickness is varied in the range of Reθ = 300-900. As the TBLs over the roughness elements spatially develop in the streamwise direction, a secondary flow emerges in a form of counter-rotating vortex pair. As the spanwise spacing between the roughness elements and roughness width vary, it is shown that the size of the secondary flow is determined by the valley width between the roughness elements. In addition, the strength of the secondary flow is mostly affected by the spanwise distance between the cores of the secondary flow. Analysis of the Reynolds-averaged turbulent kinetic energy transport equation reveals that the energy redistribution terms in the TBLs over-the ridge type roughness play an important role to derive low-momentum pathways with upward motion over the roughness crest, contrary to the previous observation with the strip-type roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  20. Study on drag reduction of turbulent boundary layer over semi-circular riblets using PIV measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lee, S.H. [Pohang Institute of Science and Technology, Pohang (Korea)

    1999-04-01

    The near-wall flow structures of turbulent boundary layer over riblets having semi-circular grooves were investigated experimentally for the drag reduction (s{sup +}=25.2) and drag increasing (s{sup +}=40.6) cases. The field of view used for the velocity field measurement was 6.75 x 6.75 mm{sup 2} in physical dimension, containing two grooves. One thousand instantaneous velocity fields over the riblets were extracted for the both cases of drag increase and decrease. For comparison, five hundreds instantaneous velocity fields over a smooth flat plate were also extracted under the same flow conditions. For the drag decreasing case (s{sup +}=25.2), most of the streamwise vortices stay above the riblets, interacting with the riblet tips. The high-speed in-rush flow toward the riblet surface rarely influences the flow inside the riblet valleys submerged in the viscous sublayer. The riblet tips seem to impede the spanwise movement of the longitudinal vortices, causing the secondary vortices to restrict the growth of the streamwise vortices. The turbulent kinetic energy in the riblet valley is sufficiently small to compensate the increased wetted surface area of the riblets. In addition, in the log region, the turbulent energy are small or almost equal to that of a smooth flat plate. For the drag increasing case (s{sup +}=40.6), however, the streamwise vortices move into the riblet valley freely, interacting directly with the riblet inner surface. The penetration of the high-speed in-rush flow on the riblets increases the skin-friction. The turbulent kinetic energy is increased in the riblet valleys and in the outer region compared to that over a flat plate. (author). 7 refs., 10 figs.

  1. Study on flow structure of turbulent boundary layer over semi-circular riblets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Lee, S.J. [Pohang University of Science and Technology, Pohang (Korea)

    1999-07-01

    The near-wall flow structures of turbulent boundary layer over riblets having semi-circular grooves were investigated experimentally for the drag decreasing (s{sup +}=25.2) and drag increasing (s{sup +}=40.6) cases. The field of view used for the velocity field measurement was 6.75 X 6.75mm{sup 2} in physical dimension, containing two grooves. One thousand instantaneous velocity fields over the riblets were extracted for each case of drag increase and decrease. For comparison, five hundreds instantaneous velocity fields over a smooth flat plate were also obtained under the same flow conditions. To see the global flow structure qualitatively, the flow visualization was also performed using the synchronized smoke-wire technique. For the drag decreasing case (s{sup +}=25.2), most of the streamwise vortices stay above the riblets, interacting with the riblet tips. The high-speed in-rush flow toward the riblet surface rarely influences the flow inside the riblet valleys submerged in the viscous sublayer. The riblet tips seem to impede the spanwise movement of the longitudinal vortices and induce secondary vortices. The turbulent kinetic energy in the riblet valley is sufficiently small to compensate the increased wetted area of the riblets. In addition, in the logarithmic region, the turbulent kinetic energy are small or almost equal to that of a smooth flat plate. For the drag increasing case (S + = 40.6), however, the streamwise vortices more into the riblet valley freely, interacting directly with the riblet inner surface. The penetration of the high-speed in-rush flow on the riblets increases the skin-friction. The turbulent kinetic energy is increased in the riblet valleys and even in the outer region compared to that over a flat plate. (author). 10 refs., 16 figs., 1 tab.

  2. The Bottom Boundary Layer.

    Science.gov (United States)

    Trowbridge, John H; Lentz, Steven J

    2018-01-03

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  3. Sub-Gaussian behavior of the Townsend-Perry constants in turbulent boundary layers.

    Science.gov (United States)

    Birnir, Björn; Chen, Xi

    2016-01-01

    A theory is developed to explain the sub-Gaussian behavior of the Townsend-Perry constants (A_{p}) recently measured for high-order fluctuation moments in turbulent boundary layers. It yields the generalized logarithmic law for high-order moments and A_{p}/A_{1}=(ℓ^{*})^{ζ_{p}/p-ζ_{1}}C_{p}^{1/p}/C_{1}, where ζ_{p} are the Kolmogorov-Obukhov-She-Leveque scaling characterizing intermittence effects; ℓ^{*}=1/225 is the only free parameter describing a specific ratio between inertial and energy-containing eddy sizes; C_{p} are raw moments of a Gaussian with unity mean and variance. The predicted A_{p}/A_{1} are in good agreement with experimental data.

  4. The structure and development of streamwise vortex arrays embedded in a turbulent boundary layer

    Science.gov (United States)

    Wendt, Bruce J.; Greber, Isaac; Hingst, Warren R.

    1992-01-01

    The results of an experimental investigation of the structure and development of streamwise vortices embedded in a turbulent boundary layer are presented. Measurements of secondary velocity in the crossplane are used to characterize the vortex array structure. Measurements in the crossplane at two streamwise locations characterize the influence of interactions among the vortices on the array structure when the initial spacing between vortices is varied. Evidence of the merging of counter-rotating cores is found in embedded arrays of closely spaced vortices. A model of vortex interaction and development is constructed from the experimental results. This model is based on the structure of the two dimensional Ossen vortex. The decay of vortex circulation due to the merging of the cores is correlated with the crossplane gradient in streamwise vorticity occurring between an embedded vortex and its adjacent counter-rotating neighbors.

  5. Analysis of Numerical Simulation Database for Pressure Fluctuations Induced by High-Speed Turbulent Boundary Layers

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.

    2014-01-01

    Direct numerical simulations (DNS) of Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub T) approximately 460 are conducted at two wall temperatures (Tw/Tr = 0.25, 0.76) to investigate the generated pressure fluctuations and their dependence on wall temperature. Simulations indicate that the influence of wall temperature on pressure fluctuations is largely limited to the near-wall region, with the characteristics of wall-pressure fluctuations showing a strong temperature dependence. Wall temperature has little influence on the propagation speed of the freestream pressure signal. The freestream radiation intensity compares well between wall-temperature cases when normalized by the local wall shear; the propagation speed of the freestream pressure signal and the orientation of the radiation wave front show little dependence on the wall temperature.

  6. The turbulent boundary layer on a porous plate: An experimental study of the heat transfer behavior with adverse pressure gradients

    Science.gov (United States)

    Blackwell, B. F.; Kays, W. M.; Moffat, R. J.

    1972-01-01

    An experimental investigation of the heat transfer behavior of the near equilibrium transpired turbulent boundary layer with adverse pressure gradient has been carried out. Stanton numbers were measured by an energy balance on electrically heated plates that form the bottom wall of the wind tunnel. Two adverse pressure gradients were studied. Two types of transpiration boundary conditions were investigated. The concept of an equilibrium thermal boundary layer was introduced. It was found that Stanton number as a function of enthalpy thickness Reynolds number is essentially unaffected by adverse pressure gradient with no transpiration. Shear stress, heat flux, and turbulent Prandtl number profiles were computed from mean temperature and velocity profiles. It was concluded that the turbulent Prandtl number is greater than unity in near the wall and decreases continuously to approximately 0.5 at the free stream.

  7. Dispersion of a Passive Scalar Fluctuating Plume in a Turbulent Boundary Layer. Part III: Stochastic Modelling

    Science.gov (United States)

    Marro, Massimo; Salizzoni, Pietro; Soulhac, Lionel; Cassiani, Massimo

    2018-01-01

    We analyze the reliability of the Lagrangian stochastic micromixing method in predicting higher-order statistics of the passive scalar concentration induced by an elevated source (of varying diameter) placed in a turbulent boundary layer. To that purpose we analyze two different modelling approaches by testing their results against the wind-tunnel measurements discussed in Part I (Nironi et al., Boundary-Layer Meteorology, 2015, Vol. 156, 415-446). The first is a probability density function (PDF) micromixing model that simulates the effects of the molecular diffusivity on the concentration fluctuations by taking into account the background particles. The second is a new model, named VPΓ, conceived in order to minimize the computational costs. This is based on the volumetric particle approach providing estimates of the first two concentration moments with no need for the simulation of the background particles. In this second approach, higher-order moments are computed based on the estimates of these two moments and under the assumption that the concentration PDF is a Gamma distribution. The comparisons concern the spatial distribution of the first four moments of the concentration and the evolution of the PDF along the plume centreline. The novelty of this work is twofold: (i) we perform a systematic comparison of the results of micro-mixing Lagrangian models against experiments providing profiles of the first four moments of the concentration within an inhomogeneous and anisotropic turbulent flow, and (ii) we show the reliability of the VPΓ model as an operational tool for the prediction of the PDF of the concentration.

  8. Turbulent transport and production/destruction of ozone in a boundary layer over complex terrain

    Science.gov (United States)

    Greenhut, Gary K.; Jochum, Anne M.; Neininger, Bruno

    1994-01-01

    The first Intensive Observation Period (IOP) of the Swiss air pollution experiment POLLUMET took place in 1990 in the Aare River Valley between Bern and Zurich. During the IOP, fast response measurements of meteorological variables and ozone concentration were made within the boundary layer aboard a motorglider. In addition, mean values of meteorological variables and the concentrations of ozone and other trace species were measured using other aircraft, pilot balloons, tethersondes, and ground stations. Turbulent flux profiles of latent and sensible heat and ozone are calculated from the fast response data. Terms in the ozone mean concentration budget (time rate of change of mean concentration, horizontal advection, and flux divergence) are calculated for stationary time periods both before and after the passage of a cold front. The source/sink term is calculated as a residual in the budget, and its sign and magnitude are related to the measured concentrations of reactive trace species within the boundary layer. Relationships between concentration ratios of trace species and ozone concentration are determined in order to understand the influence of complex terrain on the processes that produce and destroy ozone.

  9. Cylinder array height effects on evolution of tracked vortex packets within a turbulent boundary layer

    Science.gov (United States)

    Tan, Yan Ming; Longmire, Ellen

    2014-11-01

    A zero pressure gradient turbulent boundary layer with Reτ = 2480 was perturbed by a spanwise array of cylinders. When a narrowly spaced array extended to the top of the log region, perturbed packets appeared to reorganize via a top-down mechanism, suggesting that packet organization can originate from above. We test this hypothesis by extending the array height to the edge of the boundary layer to completely disrupt the packet organization. On the other hand, previous measurements showed that the downstream packet organization was reinforced by an array spacing matching the dominant spanwise spacing of unperturbed packets. A shorter array with reduced blockage was tested to see whether the same effect is achievable. To compare the flow organization in the different cases, fixed and flying PIV measurements were obtained in streamwise-spanwise planes at multiple wall normal locations. The flying PIV system allows tracking and quantification of packet evolution through the array and over a distance of 7 δ downstream.

  10. Vortex packet recovery in a turbulent boundary layer perturbed by an array of cylinders

    Science.gov (United States)

    Tan, Yan Ming; Longmire, Ellen

    2015-11-01

    PIV measurements were acquired in a zero pressure gradient turbulent boundary layer (Reτ = 2500) perturbed by a narrowly spaced (0.2 δ) array of cylinders. Two array heights were considered with one extending to the top of the log region and the other to the top of the boundary layer. Wall-parallel measurements were obtained at three locations in the log region by fixed and flying PIV. The measurement system for flying PIV moves with the flow to track the evolution of structures upstream and downstream of the array. Initially, both arrays disrupt the packets such that none are apparent. Then, packets appear either to recover or re-initiate at some distance downstream. A packet signature was denoted by a low momentum region bounded by counter rotating swirling structures. A low momentum region identification algorithm was applied to both fixed and flying PIV data to quantify packet recovery downstream of the array. The results indicate that packets reappear sooner further from the wall and later closer to the wall for the shorter array supporting the top down notion of packet reorganization proposed by Zheng & Longmire (JFM, 2014). The opposite trend was observed for the taller array whereby packets recovered earlier closer to the wall and later further from the wall.

  11. Two-point velocity correlations in turbulent boundary layers and channel flow

    Science.gov (United States)

    Longmire, E. K.; Khalitov, D.; Ganapathisubramani, B.; Marusic, I.

    2002-11-01

    Fully developed channel flow and a turbulent boundary layer were investigated with planar and stereo PIV. Two point correlations were computed from vector fields in planes parallel to the wall. Near the wall, correlations (u, v and w are the streamwise, spanwise, and wall-normal components) are elongated in the streamwise direction and narrow in the spanwise direction in both flows due to the presence of dominant streamwise streaks. The correlation is stronger downstream than upstream. The streamwise asymmetry is caused by inward spanwise motion of fluid beneath hairpin legs and necks that feeds low speed zones upstream. In the boundary layer, shows dominant lobes indicating that inward spanwise motion is correlated also to upwash of fluid upstream. The lengths of the lobes are consistent with the existence of packets of hairpins inclined at an angle to and convecting fluid away from the wall. Further from the wall, the correlations become shorter and more symmetric in the streamwise direction in both flows. Details will be given in the presentation. Supported by NSF (ACI-9982774, CTS-9983933)

  12. Effect of Immersed Wall-Bounded Cylinders on Turbulent Boundary Layer Structure

    Science.gov (United States)

    Zheng, Shaokai; Longmire, Ellen; Hallberg, Michael; Ryan, Mitchell

    2012-11-01

    Single spanwise arrays of wall-mounted cylinders with H/ δ <= 0.2, where H is the cylinder height and δ is the boundary layer thickness, were used to modify turbulent boundary layers (Reτ=2500) in an attempt to affect the organization of the coherent structures in the logarithmic and outer regions. Flow downstream of several array spacings was investigated and compared against an unperturbed case. Instantaneous and averaged velocity fields in streamwise-spanwise planes were obtained by stereo PIV. The PIV cameras and laser sheet optics could be traversed at the local mean flow speed in order to track the evolution of larger structures in the flow. The results are analyzed to determine the streamwise evolution of dominant spanwise modes. Different array spacings are shown to either inhibit or reinforce the organization of vortex packet structures over streamwise distances up to 8 δ. The flying stereo PIV measurements suggest also that dominant structures upstream of the arrays can strongly affect the organization and location of structures downstream. supported by NSF CBET-0933341.

  13. Heat transfer measurements in swept shock wave/turbulent boundary-layer interactions

    Science.gov (United States)

    Lee, Yeol

    An experimental research program providing basic knowledge and establishing a database on the heat transfer in three-dimensional shock wave/boundary-layer interaction is described. High thermal loading in such interactions constitutes a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary-layer on a flat plate is subjected to interactions with swept planar shock waves generated by a sharp fin. Fin angles from 10 deg to 20 deg at freestream Mach numbers 3.0 and 4.0 produce a variety of interaction strengths from weak to very strong. A foil heater generates a uniform heat flux over the surface of interest and thin-film resistance thermometers mounted on it are used to measure the local surface temperature. The heat convection equation is then used to calculate the local heat transfer coefficients. The present heat transfer technique is applied to measure heat transfer distributions for 5 different interaction cases. The experimental data are compared with numerical Navier-Stokes solutions. The estimation of total uncertainty of the present measurements is about plus or minus 10 percent, which makes them suitable for CFD code validation purposes. The measured peak heat transfer data are correlated with the normal Mach number based on the concept of the quasi-conical nature of such interactions, and the results show good agreement with other experimental data.

  14. Comparison of Measured and Numerically Simulated Turbulence Statistics in a Convective Boundary Layer Over Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Raj K.; Berg, Larry K.; Kosović, Branko; Mirocha, Jeffrey D.; Pekour, Mikhail S.; Shaw, William J.

    2016-11-25

    High resolution numerical simulation can provide insight into important physical processes that occur within the planetary boundary layer (PBL). The present work employs large eddy simulation (LES) using the Weather Forecasting and Research (WRF) model, with the LES domain nested within mesoscale simulation, to simulate real conditions in the convective PBL over an area of complex terrain. A multiple nesting approach has been used to downsize the grid spacing from 12.15 km (mesoscale) to 0.03 km (LES). A careful selection of grid spacing in the WRF Meso domain has been conducted to minimize artifacts in the WRF-LES solutions. The WRF-LES results have been evaluated with in situ and remote sensing observations collected during the US Department of Energy-supported Columbia BasinWind Energy Study (CBWES). Comparison of the first- and second-order moments, turbulence spectrum, and probability density function (PDF) of wind speed shows good agreement between the simulations and data. Furthermore, the WRF-LES variables show a great deal of variability in space and time caused by the complex topography in the LES domain. The WRF-LES results show that the flow structures, such as roll vortices and convective cells, vary depending on both the location and time of day. In addition to basic studies related to boundary-layer meteorology, results from these simulations can be used in other applications, such as studying wind energy resources, atmospheric dispersion, fire weather etc.

  15. Structure of high and low shear-stress events in a turbulent boundary layer

    Science.gov (United States)

    Gomit, G.; de Kat, R.; Ganapathisubramani, B.

    2018-01-01

    Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.

  16. Coherent structures in a boundary layer and shear layer of a turbulent backward-facing step flow

    Science.gov (United States)

    Jovic, Srba; Browne, L. W. B.

    1989-01-01

    A wind tunnel experiment has been carried out at the NASA Ames Research Center to analyze the evolution of coherent structures from a boundary layer to a shear layer in a turbulent, backward-facing, step flow. A miniature X-wire/cold-wire probe has been used in conjunction with two arrays of cold wires, one aligned in the plane of main shear and the other in the spanwise direction of the flow, to detect and characterize delta-scale organized structures in the outer regions of the flow and to provide detailed information concerning these structures. Kinematic features of the events associated with the large scale structures were analyzed and topological pictures of the evolving flow, as well as the contributions to the Reynolds shear stress components are presented.

  17. Active control of turbulent boundary layer sound transmission into a vehicle interior

    Science.gov (United States)

    Caiazzo, A.; Alujević, N.; Pluymers, B.; Desmet, W.

    2016-09-01

    In high speed automotive, aerospace, and railway transportation, the turbulent boundary layer (TBL) is one of the most important sources of interior noise. The stochastic pressure distribution associated with the turbulence is able to excite significantly structural vibration of vehicle exterior panels. They radiate sound into the vehicle through the interior panels. Therefore, the air flow noise becomes very influential when it comes to the noise vibration and harshness assessment of a vehicle, in particular at low frequencies. Normally, passive solutions, such as sound absorbing materials, are used for reducing the TBL-induced noise transmission into a vehicle interior, which generally improve the structure sound isolation performance. These can achieve excellent isolation performance at higher frequencies, but are unable to deal with the low-frequency interior noise components. In this paper, active control of TBL noise transmission through an acoustically coupled double panel system into a rectangular cavity is examined theoretically. The Corcos model of the TBL pressure distribution is used to model the disturbance. The disturbance is rejected by an active vibration isolation unit reacting between the exterior and the interior panels. Significant reductions of the low-frequency vibrations of the interior panel and the sound pressure in the cavity are observed.

  18. High-Reynolds-number flat-plate turbulent boundary layer measurements

    Science.gov (United States)

    Winkel, Eric S.; Cutbirth, James M.; Perlin, Marc; Ceccio, Steven L.; Dowling, David R.

    2006-11-01

    A set of experiments was conducted in the U.S. Navy's Large Cavitation Channel (LCC) into the characteristics of a liquid turbulent boundary layer at nearly zero-pressure-gradient. The hydraulically smooth, k^+ centered in the LCC test section. Data was gathered at flow speeds up to 20 m/s to achieve downstream-distance-based Reynolds numbers up to 220 million. Static pressure, skin-friction, and laser-Doppler velocimetry (LDV) measurements are presented. Static pressure measurements along the plate surface show a mild favorable pressure gradient, less than 2.5% flow acceleration over the model. Skin-friction was measured at six stream-wise positions with 15-cm-diameter, flush-mounted drag-balances. Flow profiles of the mean and second-order turbulence statistics of stream-wise and wall-normal velocity components were measured using two-component LDV. When normalized with the measured skin-friction, mean velocity profiles agree with the accepted law-of-the-wall constants and the total near-wall shear stress approaches unity.

  19. Aerodynamic wake study: oscillating model wind turbine within a turbulent boundary layer

    Science.gov (United States)

    Feist, Christopher J.

    An experimental investigation on the aerodynamic wake behind a pitching and/or heaving model wind turbine was performed. The study was split into two quasi-coupled phases; the first phase characterized the motion of an offshore floating wind turbine subjected to linear wave forcing, the second phase replicated specific motion cases, which were driven by results from phase I, on a model wind turbine within a turbulent boundary layer. Wake measurements were made in an effort to quantify fluctuations in the flow associated with the motion of the turbine. Weak differences were observed in the mean, streamwise velocity and turbulent fluctuations between the static and oscillating turbine cases. These weak differences were a result of opposing trends in the velocity quantities based on turbine motion phases. The wake oscillations created by the turbine motion was characteristic of a 2D wave (with convection in the x plane and amplitude in the z plane) with a relatively small amplitude as compared to urms..

  20. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H

    2014-06-16

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.

  1. Laser interferometer skin-friction measurements of crossing-shock-wave/turbulent-boundary-layer interactions

    Science.gov (United States)

    Garrison, T. J.; Settles, G. S.; Narayanswami, N.; Knight, D. D.

    1994-01-01

    Wall shear stress measurements beneath crossing-shock-wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 deg at Mach 3 and 15 deg at Mach 3.85. The measurements were made using a laser interferometer skin-friction meter, a device that determines the wall shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin-friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction center line. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k-epsilon model, are compared with the experimental results for the Mach 3.85, 15-deg interaction case. Although the k-epsilon model did a reasonable job of predicting the overall trend in portions of the skin-friction distribution, neither computation fully captured the physics of the near-surface flow in this complex interaction.

  2. Methods for estimating pressure and thermal loads induced by elevon deflections on hypersonic-vehicle surfaces with turbulent boundary layers

    Science.gov (United States)

    Kaufman, L. G., II; Johnson, C. B.

    1981-09-01

    Empirical anaytic methods are presented for calculating thermal and pressure distributions in three-dimensional, shock-wave turbulent-boundary-layer, interaction-flow regions on the surface of controllable hypersonic aircraft and missiles. The methods, based on several experimental investigations, are useful and reliable for estimating both the extent and magnitude of the increased thermal and pressure loads on the vehicle surfaces.

  3. Comparison of Measured and Numerically Simulated Turbulence Statistics in a Convective Boundary Layer Over Complex Terrain

    Science.gov (United States)

    Rai, Raj K.; Berg, Larry K.; Kosović, Branko; Mirocha, Jeffrey D.; Pekour, Mikhail S.; Shaw, William J.

    2017-04-01

    The Weather Research and Forecasting (WRF) model can be used to simulate atmospheric processes ranging from quasi-global to tens of m in scale. Here we employ large-eddy simulation (LES) using the WRF model, with the LES-domain nested within a mesoscale WRF model domain with grid spacing decreasing from 12.15 km (mesoscale) to 0.03 km (LES). We simulate real-world conditions in the convective planetary boundary layer over an area of complex terrain. The WRF-LES model results are evaluated against observations collected during the US Department of Energy-supported Columbia Basin Wind Energy Study. Comparison of the first- and second-order moments, turbulence spectrum, and probability density function of wind speed shows good agreement between the simulations and observations. One key result is to demonstrate that a systematic methodology needs to be applied to select the grid spacing and refinement ratio used between domains, to avoid having a grid resolution that falls in the grey zone and to minimize artefacts in the WRF-LES model solutions. Furthermore, the WRF-LES model variables show large variability in space and time caused by the complex topography in the LES domain. Analyses of WRF-LES model results show that the flow structures, such as roll vortices and convective cells, vary depending on both the location and time of day as well as the distance from the inflow boundaries.

  4. Inner-outer interactions in a turbulent boundary layer overlying complex roughness

    Science.gov (United States)

    Pathikonda, Gokul; Christensen, Kenneth T.

    2017-04-01

    Hot-wire measurements were performed in a zero-pressure-gradient turbulent boundary layer overlying both a smooth and a rough wall for the purpose of investigating the details of inner-outer flow interactions. The roughness considered embodies a broad range of topographical scales arranged in an irregular manner and reflects the topographical complexity often encountered in practical flow systems. Single-probe point-wise measurements with a traversing probe were made at two different regions of the rough-wall flow, which was previously shown to be heterogeneous in the spanwise direction, to investigate the distribution of streamwise turbulent kinetic energy and large scale-small scale interactions. In addition, two-probe simultaneous measurements were conducted enabling investigation of inner-outer interactions, wherein the large scales were independently sampled in the outer layer. Roughness-induced changes to the near-wall behavior were investigated, particularly by contrasting the amplitude and frequency modulation effects of inner-outer interactions in the rough-wall flow with well-established smooth-wall flow phenomena. It was observed that the rough-wall flow exhibits both amplitude and frequency modulation features close to the wall in a manner very similar to smooth-wall flow, though the correlated nature of these effects was found to be more intense in the rough-wall flow. In particular, frequency modulation was found to illuminate these enhanced modulation effects in the rough-wall flow. The two-probe measurements helped in evaluating the suitability of the interaction-schematic recently proposed by Baars et al., Exp. Fluids 56, 1 (2015), 10.1007/s00348-014-1876-4 for rough-wall flows. This model was found to be suitable for the rough-wall flow considered herein, and it was found that frequency modulation is a "cleaner" measure of the inner-outer modulation interactions for this rough-wall flow.

  5. An intercomparison of mesoscale simulations during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) experimental field campaign

    Science.gov (United States)

    Jimenez, Maria A.; Angevine, Wayne M.; Bazile, Eric; Couvreux, Fleur; Cuxart, Joan; Pino, David; Sastre, Mariano

    2014-05-01

    The Convective (diurnal, CBL) and Stably stratified (nocturnal, SBL) Boundary Layers over land have been extensively observed and relatively successfully modeled. But the early morning transition, when the CBL emerges from the nocturnal boundary layer, and the late afternoon transition, when the CBL decays to an intermittently turbulent residual layer overlying a SBL, are difficult to observe and model due to the intermittency and anisotropy of turbulence, horizontal heterogeneity and rapid changes in time. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) experimental field campaign took place in Lannemezan, a plateau located at the foothills of the Pyrenees, during June and July 2011. The aim of this project is to have more and better observations of the late afternoon and morning transitions and to further explore the mechanisms that control it. In this work, different mesoscale models (WRF, MesoNH, AROME, ARPEGE) are run under the same conditions during 24 hours (from 0000 UTC 25th June 2011 to the next day) to evaluate their performance during both transitions. Particular effort has been made to analyze the surface conditions. For this reason, the WRF simulations include a novel technique to spin-up soil conditions to obtain a better representation of surface fluxes. The model outputs are compared to the observations (soundings, UAV, radar and surface stations). It is found that the results depend on the initial conditions but also on the parameterizations of the boundary layer and the surface.

  6. Low dimensional models of the wall region in a turbulent boundary layer: New results

    Science.gov (United States)

    Berkooz, Gal; Holmes, Philip; Lumley, John L.

    1992-09-01

    Using an optimally convergent representation, a low dimensional model is constructed, which embodies in a streamwise-invariant form the effects of streamwise structure. Results of Stone show that the model is capable of mimicking the stability change due to favorable and unfavorable pressure gradients. Results of Aubry et al. suggest that polymer drag reduction is associated with stabilization of the secondary instabilities, as has been speculated. Results of Bloch and Marsden indicate that drag can be reduced by feedback, and that this is mathematically equivalent to polymer drag reduction. The authors showed that dynamical systems based on the Proper Orthogonal Decomposition have, on the average, the best short term tracking time (the time that a model tracks the true system accurately; essential for control) for a given number of modes. In recent work, the authors have shown that several assumptions made on an intuitive basis in the work of Aubry et al. may be justified formally. Berkooz has made rigorous estimates using the proper orthogonal decomposition showing that a structured turbulent flow, such as the wall layer, has a phase space representation that remains within a thin slab centered on the most energetic modes for most of the time. Campbell and Holmes have shown several results in connection with symmetry breaking in systems with structurally stable heteroclinic cycles. This work is relevant to our models of interacting coherent structures in boundary layers with discrete spanwise symmetry, such as that caused by riblets, which are known to produce drag reduction.

  7. An observational investigation of transitory turbulence in the atmospheric boundary layer

    Science.gov (United States)

    Jensen, Derek D.

    Within the atmospheric boundary layer (ABL), atmospheric fluid flow is in a constant state of transition in both time and space. Under calm conditions through the mid-daytime hours and over quasi-uniform terrain, the temporal and spatial evolution of the atmosphere is gradual. The structure and governing equations are well understood, allowing for numerical models to accurately forecast the evolution of the ABL. Under nocturnal conditions, the atmospheric processes are more complicated, yet numerical models still perform reasonably well. When changes in the state of the atmosphere occur abruptly, whether in time or space, the fidelity of most numerical weather models diminishes appreciably. This occurs because many of the simplifying assumptions intrinsic in most numerical models are no longer valid. The objective of this dissertation is to use observational data collected within such transitions to gain more insight into the mechanisms responsible for the evolution of the rapidly evolving ABL. First, near-surface turbulence data are used to study countergradient heat fluxes that occur through the evening transition. The countergradient heat flux may be produced by the sign change of the sensible heat flux preceding the sign change of the local temperature gradient and vice versa. The phenomenon is studied by considering the budget equations of both temperature and sensible heat flux. The behaviour of the countergradient heat flux is governed by the surface and subsurface characteristics. The duration of the countergradient flux may be prognosed by considering a ratio of terms in the heat flux budget equation evaluated during the mid- to late afternoon. Next, data collected over an arid shallow slope (2-4°) are used to study the structure and onset of katabatic flow through the evening transition. The katabatic onset, jet velocity and jet height all show a large degree of interdiurnal variability. The slope-aligned budgets of momentum and potential temperature are

  8. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer

    Science.gov (United States)

    Smalikho, Igor N.; Banakh, Viktor A.

    2017-11-01

    The method and results of lidar studies of spatiotemporal variability of wind turbulence in the atmospheric boundary layer are reported. The measurements were conducted by a Stream Line pulsed coherent Doppler lidar (PCDL) with the use of conical scanning by a probing beam around the vertical axis. Lidar data are used to estimate the kinetic energy of turbulence, turbulent energy dissipation rate, integral scale of turbulence, and momentum fluxes. The dissipation rate was determined from the azimuth structure function of radial velocity within the inertial subrange of turbulence. When estimating the kinetic energy of turbulence from lidar data, we took into account the averaging of radial velocity over the sensing volume. The integral scale of turbulence was determined on the assumption that the structure of random irregularities of the wind field is described by the von Kármán model. The domain of applicability of the used method and the accuracy of the estimation of turbulence parameters were determined. Turbulence parameters estimated from Stream Line lidar measurement data and from data of a sonic anemometer were compared.

  9. Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer.

    Science.gov (United States)

    Wilcox, Eric M; Thomas, Rick M; Praveen, Puppala S; Pistone, Kristina; Bender, Frida A-M; Ramanathan, Veerabhadran

    2016-10-18

    The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events.

  10. Modeling and large-eddy simulation (LES) of a turbulent boundary layer over linearly-varying surface roughness

    Science.gov (United States)

    Sridhar, A.; Pullin, D. I.; Cheng, W.

    2016-11-01

    An empirical model is presented, after Rotta (1962), that describes the development of a fully-developed turbulent boundary layer in the presence of surface roughness with nominal roughness length-scale ks that varies with stream-wise distance x. For Rex =Ue (x) x / ν large, use is made of the log-wake model of the local turbulent mean-velocity profile that contains the Hama roughness correction ΔU+ (ks+) for the asymptotic, fully rough regime. It is shown that the skin friction coefficient Cf is constant in x only for ks = αx , where α is a dimensionless number. For Ue (x) = Axm , this then gives a two-parameter (α , m) family of solutions for boundary-layer flows that are self similar in the variable z / (α x) where z is the wall-normal co-ordinate. Trends observed in this model are supported by wall-modeled LES of the zero-pressure-gradient turbulent boundary layer (m = 0) at very large Rex . It is argued that the present results suggest that, in the sense that Cf is spatially constant and independent of Rex , this class of flows can be interpreted as providing the asymptotically-rough equivalent of Moody-like diagrams for boundary layers in the presence of small-scale roughness. Supported partially by KAUST OCRF Award No. URF/1/1394-01 and partially by NSF award CBET 1235605.

  11. Modeling of Sound Transmission through Shell Structures with Turbulent Boundary Layer Excitation

    Science.gov (United States)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    The turbulent boundary layer (TBL) pressure field is an important source of cabin noise during cruise of high subsonic and supersonic commercial aircraft. The broadband character of this excitation field results in an interior noise spectrum that dominates the overall sound pressure level (SPL) and speech interference metrics in the forward and midcabins of many aircraft. In the authors' previous study, sound transmission through an aircraft fuselage, modeled by two concentric cylindrical sandwich shells and excited by a TBL statistical model was investigated analytically. An assessment of point and global structural vibration levels and resulting interior noise levels was obtained for different TBL models, flight conditions and fuselage structural designs. However, due to the complication of the shell structure, the important noise transmission mechanisms were difficult to discern. Previous experience has demonstrated that a fundamental understanding of the range of modes (or wavenumbers) generated by the TBL source both in the structure and the acoustic cavity is key to the development of both active and passive control technologies. In an initial effort to provide this insight, the objective of this paper is to develop an analytical model of sound transmission through a simple unstiffened cylindrical aluminum shell excited by a TBL pressure field. The description of the turbulent pressure field is based on the Corcos formulation for the cross-spectral density (CSD) of the pressure fluctuations. The coupled shell and interior and exterior acoustic equations are solved for the structural displacement and the interior acoustic response using a Galerkin approach to obtain analytical solutions. Specifically, this study compares the real part of the normalized CSD of the TBL excitation field, the structural displacement and the interior acoustic field. Further the modal compositions of the structural and cavity response are examined and some inference of the dominant

  12. Boundary-layer turbulent processes and mesoscale variability represented by numerical weather prediction models during the BLLAST campaign

    Science.gov (United States)

    Couvreux, Fleur; Bazile, Eric; Canut, Guylaine; Seity, Yann; Lothon, Marie; Lohou, Fabienne; Guichard, Françoise; Nilsson, Erik

    2016-07-01

    This study evaluates the ability of three operational models, with resolution varying from 2.5 to 16 km, to predict the boundary-layer turbulent processes and mesoscale variability observed during the Boundary Layer Late-Afternoon and Sunset Turbulence (BLLAST) field campaign. We analyse the representation of the vertical profiles of temperature and humidity and the time evolution of near-surface atmospheric variables and the radiative and turbulent fluxes over a total of 12 intensive observing periods (IOPs), each lasting 24 h. Special attention is paid to the evolution of the turbulent kinetic energy (TKE), which was sampled by a combination of independent instruments. For the first time, this variable, a central one in the turbulence scheme used in AROME and ARPEGE, is evaluated with observations.In general, the 24 h forecasts succeed in reproducing the variability from one day to another in terms of cloud cover, temperature and boundary-layer depth. However, they exhibit some systematic biases, in particular a cold bias within the daytime boundary layer for all models. An overestimation of the sensible heat flux is noted for two points in ARPEGE and is found to be partly related to an inaccurate simplification of surface characteristics. AROME shows a moist bias within the daytime boundary layer, which is consistent with overestimated latent heat fluxes. ECMWF presents a dry bias at 2 m above the surface and also overestimates the sensible heat flux. The high-resolution model AROME resolves the vertical structures better, in particular the strong daytime inversion and the thin evening stable boundary layer. This model is also able to capture some specific observed features, such as the orographically driven subsidence and a well-defined maximum that arises during the evening of the water vapour mixing ratio in the upper part of the residual layer due to fine-scale advection. The model reproduces the order of magnitude of spatial variability observed at

  13. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

    KAUST Repository

    Cheng, W.

    2015-11-11

    © 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number Reθ based on the momentum boundary-layer thickness θ. Comparison with data from the first case at demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, Reθ, the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger Reθ = 11000 of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.

  14. Free-stream turbulence effects on the boundary layer of a high-lift low-pressure-turbine blade

    Science.gov (United States)

    Simoni, D.; Ubaldi, M.; Zunino, P.; Ampellio, E.

    2016-06-01

    The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally investigated at low and high free-stream turbulence intensity conditions. Measurements have been carried out in order to analyze the boundary layer transition and separation processes at a low Reynolds number, under both steady and unsteady inflows. Static pressure distributions along the blade surfaces as well as total pressure distributions in a downstream tangential plane have been measured to evaluate the overall aerodynamic efficiency of the blade for the different conditions. Particle Image Velocimetry has been adopted to analyze the time-mean and time-varying velocity fields. The flow field has been surveyed in two orthogonal planes (a blade-to-blade plane and a wall-parallel one). These measurements allow the identification of the Kelvin-Helmholtz large scale coherent structures shed as a consequence of the boundary layer laminar separation under steady inflow, as well as the investigation of the three-dimensional effects induced by the intermittent passage of low and high speed streaks. A close inspection of the time-mean velocity profiles as well as of the boundary layer integral parameters helps to characterize the suction side boundary layer state, thus justifying the influence of free-stream turbulence intensity on the blade aerodynamic losses measured under steady and unsteady inflows.

  15. Stability and turbulence in the atmospheric boundary layer: A comparison of remote sensing and tower observations

    Science.gov (United States)

    Friedrich, Katja; Lundquist, Julie K.; Aitken, Matthew; Kalina, Evan A.; Marshall, Robert F.

    2012-02-01

    When monitoring winds and atmospheric stability for wind energy applications, remote sensing instruments present some advantages to in-situ instrumentation such as larger vertical extent, in some cases easy installation and maintenance, measurements of vertical humidity profiles throughout the boundary layer, and no restrictions on prevailing wind directions. In this study, we compare remote sensing devices, Windcube lidar and microwave radiometer, to meteorological in-situ tower measurements to demonstrate the accuracy of these measurements and to assess the utility of the remote sensing instruments in overcoming tower limitations. We compare temperature and wind observations, as well as calculations of Brunt-Väisälä frequency and Richardson numbers for the instrument deployment period in May-June 2011 at the U.S. Department of Energy National Renewable Energy Laboratory's National Wind Technology Center near Boulder, Colorado. The study reveals that a lidar and radiometer measure wind and temperature with the same accuracy as tower instruments, while also providing advantages for monitoring stability and turbulence. We demonstrate that the atmospheric stability is determined more accurately when the liquid-water mixing ratio derived from the vertical humidity profile is considered under moist-adiabatic conditions.

  16. Effect of wall-mounted cylinders on a turbulent boundary layer: V3V measurements

    Science.gov (United States)

    Ryan, Mitchell; Ortiz-Dueñas, Cecilia; Longmire, Ellen; Troolin, Dan

    2010-11-01

    Volumetric 3-Component Velocimetry (V3V) was used to examine the flow structure downstream of arrays of wall mounted-cylinders in a turbulent boundary layer with Reτ=2460. The cylinders, which had height-to-diameter ratio H/D = 4 and H^+= 455, extended through the logarithmic region. Measurements were acquired in fields that extended over a range 16 to 34 cylinder-diameters downstream of spanwise arrays of cylinders with a spacing of four and eight cylinder diameters (0.2δ and 0.4δ). The cylinder array with 4D spacing yielded significant wake interactions: the streamwise velocity deficit was greater at the mid-spacing than directly behind a cylinder; the distinction between the downwash regions (behind a cylinder) and the upwash regions (at the mid-spacing) diminishes with increasing downstream distance; and the rms velocity in all components is highest at the half-cylinder-height. These effects occur to a much lesser degree in the case of the array with 8D spacing. Details on parametric effects as well as the instantaneous three-dimensional structure will be provided in the talk.

  17. Analysis of vortex populations in turbulent boundary layers based on tomographic PIV

    Science.gov (United States)

    Gao, Qi; Ortiz-Duenas, Cecilia; Longmire, Ellen

    2010-11-01

    Vortex populations in the logarithmic region of turbulent boundary layers were investigated using results from tomographic PIV. The experiments were carried out in a water channel facility with δ 125 mm and Reτ 2500 (Reθ 6200). Measurement volumes were about 90 x 80 x 9mm^3 (1650 x 1470 x 130 viscous units) spanning a wall-normal range from z^+ = 150 to 280. Four 2K x 2K cameras were mounted above the channel and aimed at the measurement volume with tilt angle about 30 degrees to the wall normal direction. The magnification was 0.07 mm/pixel. Correlations were performed on 48 x 48 x 48 voxel volumes with 75% overlap yielding a vector spacing of 17 x 17 x 17 viscous units. Swirl strength and swirl direction were used to identify and characterize vortices in terms of orientation, circulation, size, and convection velocity. The results showed that swirl direction was a better indicator than vorticity of eddy orientation. Eddy circulation was found to increase approximately quadratically with eddy radius. The advantages and limitations of tomographic PIV vs. dual plane PIV will be discussed.

  18. Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions

    CERN Document Server

    Bernardini, Matteo; Pirozzoli, Sergio; Grasso, Francesco

    2016-01-01

    Direct numerical simulations are carried out to investigate the effect of the wall temperature on the behavior of oblique shock-wave/turbulent boundary layer interactions at freestream Mach number $2.28$ and shock angle of the wedge generator $\\varphi = 8^{\\circ}$. Five values of the wall-to-recovery-temperature ratio ($T_w/T_r$) are considered, corresponding to cold, adiabatic and hot wall thermal conditions. We show that the main effect of cooling is to decrease the characteristic scales of the interaction in terms of upstream influence and extent of the separation bubble. The opposite behavior is observed in the case of heating, that produces a marked dilatation of the interaction region. The distribution of the Stanton number shows that a strong amplification of the heat transfer occurs across the interaction, and the maximum values of thermal and dynamic loads are found in the case of cold wall. The analysis reveals that the fluctuating heat flux exhibits a strong intermittent behavior, characterized by ...

  19. Generalized higher order two-point moments in turbulent boundary layers.

    Science.gov (United States)

    Yang, Xiang; Marusic, Ivan; Meneveau, Charles

    2015-11-01

    Generalized higher order two-point moments such as uz'm (x) uz'n(x + r > 2 / (m + n) and uz'2 (x) -uz'2 (x + r) ] n > 1 / n (where z is the distance from the wall, r is the distance in the flow direction, and m and n are arbitrary integers) are examined using high Reynolds number experimental data in turbulent boundary layer flow. Logarithmic behaviors with respect to both s and z in such statistics are observed. Certain predictions for such generalized log laws can be made in the context of the attached eddy hypothesis. Particularly simple results can be obtained for the scaling if one considers the velocity fluctuations at some point x and height z being the outcome of a random additive process, e.g. uN' =∑i= 1 Nai , where Ndepends on the wall normal distance zas N ~log (δ / z) , and the ai's are identical independent random additives. Predictions can be made of the slopes in the generalized log laws and these can be compared to the experimental data. For instance, already for single point higher-order moments it was known that the model overpredicts some slopes, indicating a sub-Gaussian behavior in the statistics. Gaussian behavior is rooted in the assumption of independency in ai's. We discuss some variants that introduce correlations, and provide evidence that the generalized higher order two-point moments can help discriminate among various possible models.

  20. Analysis of turbulent flow properties and energy fluxes in optimally controlled wind-farm boundary layers

    Science.gov (United States)

    Goit, Jay P.; Meyers, Johan

    2014-06-01

    In the present work our focus is to improve the performance of a wind farm by coordinated control of all turbines with the aim to increase the overall energy extraction by the farm. To this end, we couple flow simulations performed using Large Eddy Simulations (LES) with gradient based optimization to control individual turbines in a farm. The control parameters are the disk-based thrust coefficient of individual turbines as a function of time. They indirectly represent the effect of control actions that would correspond to blade-pitching of the turbines. We employ a receding-horizon predictive control setting and solve the optimization problem iteratively at each time horizon based on the gradient information obtained from the evolution of the flow field and the adjoint computation. We find that the extracted farm power increases by approximately 16% for a cost functional that is based on total energy extraction. However, this energy is gained from a slow deceleration of the boundary layer which is sustained for approximately 1 hour. We further analyze the turbulent stresses and compare to wind farms without optimal control.

  1. Convection of wall shear stress events in a turbulent boundary layer

    Science.gov (United States)

    Pabon, Rommel; Mills, David; Ukeiley, Lawrence; Sheplak, Mark

    2017-11-01

    The fluctuating wall shear stress is measured in a zero pressure gradient turbulent boundary layer of Reτ 1700 simultaneously with velocity measurements using either hot-wire anemometry or particle image velocimetry. These experiments elucidate the patterns of large scale structures in a single point measurement of the wall shear stress, as well as their convection velocity at the wall. The wall shear stress sensor is a CS-A05 one-dimensional capacitice floating element from Interdisciplinary Consulting Corp. It has a nominal bandwidth from DC to 5 kHz and a floating element size of 1 mm in the principal sensing direction (streamwise) and 0.2 mm in the cross direction (spanwise), allowing the large scales to be well resolved in the current experimental conditions. In addition, a two sensor array of CS-A05 aligned in the spanwise direction with streamwise separations O (δ) is utilized to capture the convection velocity of specific scales of the shear stress through a bandpass filter and peaks in the correlation. Thus, an average wall normal position for the corresponding convecting event can be inferred at least as high as the equivalent local streamwise velocity. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  2. Non-Gaussian Analysis of Turbulent Boundary Layer Fluctuating Pressure on Aircraft Skin Panels

    Science.gov (United States)

    Rizzi, Stephen A.; Steinwolf, Alexander

    2005-01-01

    The purpose of the study is to investigate the probability density function (PDF) of turbulent boundary layer fluctuating pressures measured on the outer sidewall of a supersonic transport aircraft and to approximate these PDFs by analytical models. Experimental flight results show that the fluctuating pressure PDFs differ from the Gaussian distribution even for standard smooth surface conditions. The PDF tails are wider and longer than those of the Gaussian model. For pressure fluctuations in front of forward-facing step discontinuities, deviations from the Gaussian model are more significant and the PDFs become asymmetrical. There is a certain spatial pattern of the skewness and kurtosis behavior depending on the distance upstream from the step. All characteristics related to non-Gaussian behavior are highly dependent upon the distance from the step and the step height, less dependent on aircraft speed, and not dependent on the fuselage location. A Hermite polynomial transform model and a piecewise-Gaussian model fit the flight data well both for the smooth and stepped conditions. The piecewise-Gaussian approximation can be additionally regarded for convenience in usage after the model is constructed.

  3. Numerical method for calculating sound radiation characteristics of plate structure excited by turbulent boundary layer

    Directory of Open Access Journals (Sweden)

    LI Zuhui

    2017-08-01

    Full Text Available As the turbulent boundary layer (TBL is one of the most important sources of vibration and noise in underwater vehicles, there is an important significance in studying the numerical method for the calculation of flow-induced noise. In this paper, the methods of Principal Component Analysis (PCA and Vibro-Acoustic Transfer Vectors (VATV based on LMS Virtual Lab software are used to calculate the sound characteristics of a plate structure excited by TBL. The Corcos model of the wave number-frequency spectrum of the wall pressure field beneath the TBL is used to describe random excitation. By comparing the calculating time and sound pressure auto power spectra curves of the two methods, the following conclusions are obtained: both the VATV method and PCA method can be used effectively for the calculation of the flow-induced noise of structures excited by the TBL, and the results of the two methods match; the VATV method can quickly forecast the structure of flow-induced noise and takes up fewer computing resources than the PCA method; the PCA method can also obtain the structure vibration response in comparison with the VATV method. The current work can serve as a reference for the rapid prediction of the flow-induced noise of underwater structures.

  4. Reversing flow causes passive shark scale actuation in a separating turbulent boundary layer

    Science.gov (United States)

    Lang, Amy; Gemmell, Bradford; Motta, Phil; Habegger, Laura; Du Clos, Kevin; Devey, Sean; Stanley, Caleb; Santos, Leo

    2017-11-01

    Control of flow separation by shortfin mako skin in experiments has been demonstrated, but the mechanism is still poorly understood yet must be to some extent Re independent. The hypothesized mechanisms inherent in the shark skin for controlling flow separation are: (1) the scales, which are capable of being bristled only by reversing flow, inhibit flow reversal events from further development into larger-scale separation and (2) the cavities formed when scales bristle induces mixing of high momentum flow towards the wall thus energizing the flow close to the surface. Two studies were carried out to measure passive scale actuation caused by reversing flow. A small flow channel induced an unsteady, wake flow over the scales prompting reversing flow events and scale actuation. To resolve the flow and scale movements simultaneously we used specialized optics at high magnification (1 mm field of view) at 50,000 fps. In another study, 3D printed models of shark scales, or microflaps (bristling capability up to 50 degrees), were set into a flat plate. Using a tripped, turbulent boundary layer grown over the long flat plate and a localized adverse pressure gradient, a separation bubble was generated within which the microflaps were placed. Passive flow actuation of both shark scales and microflaps by reversing flow was observed. Funding from Army Research Office and NSF REU site Grant.

  5. Random vibration analysis of axially compressed cylindrical shells under turbulent boundary layer in a symplectic system

    Science.gov (United States)

    Li, Yuyin; Zhang, Yahui; Kennedy, David

    2017-10-01

    A random vibration analysis of an axially compressed cylindrical shell under a turbulent boundary layer (TBL) is presented in the symplectic duality system. By expressing the cross power spectral density (PSD) of the TBL as a Fourier series in the axial and circumferential directions, the problem of structures excited by a random distributed pressure due to the TBL is reduced to solving the harmonic response function, which is the response of structures to a spatial and temporal harmonic pressure of unit magnitude. The governing differential equations of the axially compressed cylindrical shell are derived in the symplectic duality system, and then a symplectic eigenproblem is formed by using the method of separation of variables. Expanding the excitation vector and unknown state vector in symplectic space, decoupled governing equations are derived, and then the analytical solution can be obtained. In contrast to the modal decomposition method (MDM), the present method is formulated in the symplectic duality system and does not need modal truncation, and hence the computations are of high precision and efficiency. In numerical examples, harmonic response functions for the axially compressed cylindrical shell are studied, and a comparison is made with the MDM to verify the present method. Then, the random responses of the shell to the TBL are obtained by the present method, and the convergence problems induced by Fourier series expansion are discussed. Finally, influences of the axial compression on random responses are investigated.

  6. Experimental Investigation of Subsonic Turbulent Boundary Layer Flow Over a Wall-Mounted Axisymmetric Hill

    Science.gov (United States)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2016-01-01

    An important goal for modern fluid mechanics experiments is to provide datasets which present a challenge for Computational Fluid Dynamics simulations to reproduce. Such "CFD validation experiments" should be well-characterized and well-documented, and should investigate flows which are difficult for CFD to calculate. It is also often convenient for the experiment to be challenging for CFD in some aspects while simple in others. This report is part of the continuing documentation of a series of experiments conducted to characterize the flow around an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Computation of this flow is easy in some ways - subsonic flow over a simple shape - while being complex in others - separated flow and boundary layer interactions. The primary set of experiments were performed on a 15.2 cm high, 45.7 cm base diameter machined aluminum model that was tested at mean speeds of 50 m/s (Reynolds Number based on height = 500,000). The ratio of model height to boundary later height was approximately 3. The flow was characterized using surface oil flow visualization, Cobra probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction magnitude and direction. A set of pathfinder experiments were also performed in a water channel on a smaller scale (5.1 cm high, 15.2 cm base diameter) sintered nylon model. The water channel test was conducted at a mean test section speed of 3 cm/s (Reynolds Number of 1500), but at the same ratio of model height to boundary layer thickness. Dye injection from both the model and an upstream rake was used to visualize the flow. This report summarizes the experimental set-up, techniques used, and data

  7. Coastal Boundary Layer Characteristics of Wind, Turbulence, and Surface Roughness Parameter over the Thumba Equatorial Rocket Launching Station, India

    Directory of Open Access Journals (Sweden)

    K. V. S. Namboodiri

    2014-01-01

    Full Text Available The study discusses the features of wind, turbulence, and surface roughness parameter over the coastal boundary layer of the Peninsular Indian Station, Thumba Equatorial Rocket Launching Station (TERLS. Every 5 min measurements from an ultrasonic anemometer at 3.3 m agl from May 2007 to December 2012 are used for this work. Symmetries in mesoscale turbulence, stress off-wind angle computations, structure of scalar wind, resultant wind direction, momentum flux (M, Obukhov length (L, frictional velocity (u*, w-component, turbulent heat flux (H, drag coefficient (CD, turbulent intensities, standard deviation of wind directions (σθ, wind steadiness factor-σθ relationship, bivariate normal distribution (BND wind model, surface roughness parameter (z0, z0 and wind direction (θ relationship, and variation of z0 with the Indian South West monsoon activity are discussed.

  8. A Physically Based Horizontal Subgrid-scale Turbulent Mixing Parameterization for the Convective Boundary Layer in Mesoscale Models

    Science.gov (United States)

    Zhou, Bowen; Xue, Ming; Zhu, Kefeng

    2017-04-01

    Compared to the representation of vertical turbulent mixing through various PBL schemes, the treatment of horizontal turbulence mixing in the boundary layer within mesoscale models, with O(10) km horizontal grid spacing, has received much less attention. In mesoscale models, subgrid-scale horizontal fluxes most often adopt the gradient-diffusion assumption. The horizontal mixing coefficients are usually set to a constant, or through the 2D Smagorinsky formulation, or in some cases based on the 1.5-order turbulence kinetic energy (TKE) closure. In this work, horizontal turbulent mixing parameterizations using physically based characteristic velocity and length scales are proposed for the convective boundary layer based on analysis of a well-resolved, wide-domain large-eddy simulation (LES). The proposed schemes involve different levels of sophistication. The first two schemes can be used together with first-order PBL schemes, while the third uses TKE to define its characteristic velocity scale and can be used together with TKE-based higher-order PBL schemes. The current horizontal mixing formulations are also assessed a priori through the filtered LES results to illustrate their limitations. The proposed parameterizations are tested a posteriori in idealized simulations of turbulent dispersion of a passive scalar. Comparisons show improved horizontal dispersion by the proposed schemes, and further demonstrate the weakness of the current schemes.

  9. Influence of the turbulent boundary layer pressure fluctuation on the sound intensity measurement in a mean flow

    DEFF Research Database (Denmark)

    SHI, Xiao-jun; Jacobsen, Finn

    2010-01-01

    overwhelm the true source pressure in some cases. In this paper, the model of the sound intensity caused by the TBL pressure fluctuation is described firstly. Based upon the developed model, the sound intensity caused by the TBL pressure fluctuation is calculated using the available models of the wave......The influence of turbulent boundary layer pressure fluctuation on the sound intensity measurement in a flow is a subject of practical concern, because the sound intensity probe is generally exposed to the airflow and is sensed the turbulent boundary layer (TBL) pressure fluctuation which may even...... spatial response function of the microphone. Also, the characteristics of the measured sound intensity are consistent with that of the calculated sound intensity....

  10. Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without SparkJet control

    Directory of Open Access Journals (Sweden)

    Yang Guang

    2016-06-01

    Full Text Available The efficiency and mechanism of an active control device “SparkJet” and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The numerical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were systematically validated against the available wind tunnel particle image velocimetry (PIV measurements of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator “SparkJet” was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resistant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted.

  11. Numerical and experimental investigation of multiple shock wave/turbulent boundary layer interactions in a rectangular duct

    Science.gov (United States)

    Dutton, J. C.; Carroll, B. F.

    1988-01-01

    Multiple shock wave/turbulent boundary layer interactions in constant or nearly constant area supersonic duct flows occur in a variety of devices including scramjet inlets, gas ejectors, and supersonic wind tunnels. For sufficiently high duct exit pressures, a multiple shock wave/turbulent boundary layer interaction or shock train may form in the duct and cause a highly nonuniform, and possibly unsteady, flow at the duct exit. In this report, the mean flow characteristics of two shock train interactions, one with an initial Mach number of 2.5 the other at Mach 1.6, are investigated using spark Schlieren photography, surface oil flow visualization, and mean wall pressure measurements. The Mach 2.5 interaction was oblique and asymmetric in nature. A large separation occurs after the first oblique shock. The top and bottom wall boundary layer separation has been investigated, revealing that the shape of the reattachment lines and surface flow patterns for the two separation regions are quite different. This oblique shock flow pattern occurs in a neurally stable fashion with each type of opposing separation region alternately existing on either the top or bottom wall during the course of a run. A small scale unsteadiness in the shock train location, with movement on the order of a boundary layer thickness, is also observed.

  12. Validation of the k- ω turbulence model for the thermal boundary layer profile of effusive cooled walls

    Science.gov (United States)

    Hink, R.

    2015-09-01

    The choice of materials for rocket chamber walls is limited by its thermal resistance. The thermal loads can be reduced substantially by the blowing out of gases through a porous surface. The k- ω-based turbulence models for computational fluid dynamic simulations are designed for smooth, non-permeable walls and have to be adjusted to account for the influence of injected fluids. Wilcox proposed therefore an extension for the k- ω turbulence model for the correct prediction of turbulent boundary layer velocity profiles. In this study, this extension is validated against experimental thermal boundary layer data from the Thermosciences Division of the Department of Mechanical Engineering from the Stanford University. All simulations are performed with a finite volume-based in-house code of the German Aerospace Center. Several simulations with different blowing settings were conducted and discussed in comparison to the results of the original model and in comparison to an additional roughness implementation. This study has permitted to understand that velocity profile corrections are necessary in contrast to additional roughness corrections to predict the correct thermal boundary layer profile of effusive cooled walls. Finally, this approach is applied to a two-dimensional simulation of an effusive cooled rocket chamber wall.

  13. Closed-loop control of boundary layer streaks induced by free-stream turbulence

    Science.gov (United States)

    Papadakis, George; Lu, Liang; Ricco, Pierre

    2016-08-01

    The central aim of the paper is to carry out a theoretical and numerical study of active wall transpiration control of streaks generated within an incompressible boundary layer by free-stream turbulence. The disturbance flow model is based on the linearized unsteady boundary-region (LUBR) equations, studied by Leib, Wundrow, and Goldstein [J. Fluid Mech. 380, 169 (1999), 10.1017/S0022112098003504], which are the rigorous asymptotic limit of the Navier-Stokes equations for low-frequency and long-streamwise wavelength. The mathematical formulation of the problem directly incorporates the random forcing into the equations in a consistent way. Due to linearity, this forcing is factored out and appears as a multiplicative factor. It is shown that the cost function (integral of kinetic energy in the domain) is properly defined as the expectation of a random quadratic function only after integration in wave number space. This operation naturally introduces the free-stream turbulence spectral tensor into the cost function. The controller gains for each wave number are independent of the spectral tensor and, in that sense, universal. Asymptotic matching of the LUBR equations with the free-stream conditions results in an additional forcing term in the state-space system whose presence necessitates the reformulation of the control problem and the rederivation of its solution. It is proved that the solution can be obtained analytically using an extension of the sweep method used in control theory to obtain the standard Riccati equation. The control signal consists of two components, a feedback part and a feed-forward part (that depends explicitly on the forcing term). Explicit recursive equations that provide these two components are derived. It is shown that the feed-forward part makes a negligible contribution to the control signal. We also derive an explicit expression that a priori (i.e., before solving the control problem) leads to the minimum of the objective cost

  14. Wall parallel cross-correlations of volumetric PTV measurements in a perturbed turbulent boundary layer

    Science.gov (United States)

    Tan, Yan Ming; Longmire, Ellen

    2016-11-01

    A canonical turbulent boundary layer (Reτ = 2500) was perturbed by a narrowly spaced (0.2 δ) array of cylinders extending normal to the wall. Two array heights were considered, H = 0.2 δ and H = δ . Volumetric PTV measurements were acquired to understand 3-D variations in large scale structures within the log region of the unperturbed and perturbed flow. The recovery in the streamwise velocity coherence across the depth of the log region was analyzed using cross correlations between wall parallel planes. Conditional cross correlations are analyzed to examine the recovery in coherence specific to low momentum regions (LMRs), which can be signatures of vortex packets. The measurement volume was 0.70 δ (streamwise,x), 0.90 δ (spanwise,y), 0.12 δ (wall-normal,z). In the unperturbed flow, LMRs frequently extended through the entire depth (155 <=z+ <= 465). The cross correlations between planes at z+ = 155 and z+ = 465 exhibited strong skewness indicative of forward leaning structures. By comparison, downstream of the H = δ array, the wall normal extent of individual LMRs was frequently limited to the lower part of the measurement volume. The cross correlation magnitude and skewness remained suppressed relative to unperturbed flow up to 4.7 δ downstream. These observations suggest reduced coherence of LMRs and high momentum regions across the log region. This result was consistent with previous planar PIV measurements at z+ = 500 that showed hardly any long LMRs over distances up to 7 δ downstream of the H = δ array.

  15. Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations

    Science.gov (United States)

    Ganapathisubramani, B.; Hutchins, N.; Hambleton, W. T.; Longmire, E. K.; Marusic, I.

    2005-02-01

    Stereoscopic particle image velocimetry (PIV) measurements are made in streamwise-spanwise and inclined cross-stream planes (inclined at 45° and 135° to the principal flow direction) of a turbulent boundary layer at moderate Reynolds number (Reτ˜ 1100). Two-point spatial velocity correlations computed using the PIV data reveal results that are consistent with an earlier study in which packets of hairpin vortices were identified by a feature-detection algorithm in the log region, but not in the outer wake region. Both streamwise-streamwise (Ruu) and streamwise-wall-normal (R_{uw}) correlations are significant for streamwise displacements of more than 1500 wall units. Zero crossing data for the streamwise fluctuating component u reveal that streamwise strips between zero crossings of 1500 wall units or longer occur more frequently for negative u than positive u, suggesting that long streamwise correlations in Ruu are dominated by slower streamwise structures. Additional analysis of R_{ww} correlations suggests that the long streamwise slow-moving regions contain discrete zones of strong upwash over extended streamwise distances, as might occur within packets of angled hairpin vortices. At a wall-normal location outside of the log region (z/δ = 0.5), the correlations are shorter in the streamwise direction and broader in the spanwise direction. Correlations in the inclined cross-stream plane data reveal good agreement with the streamwise-spanwise plane. Ruu in the 45° plane is more elongated along the in-plane wall-normal direction than in the 135° plane, which is consistent with the presence of hairpin packets with a low-speed region lifting away from the wall.

  16. Key vortical structure causing laminar-turbulent transition in a boundary layer disturbed by a short-duration jet

    Science.gov (United States)

    Yoshikawa, Joe; Nishio, Yu; Izawa, Seiichiro; Fukunishi, Yu

    2018-01-01

    Numerical simulations are carried out to discover the flow structure that plays an important role in the laminar-turbulent transition process of a boundary layer on a flat plate. The boundary layer is destabilized by ejecting a short-duration jet from a hole in the surface. When the jet velocity is set to 20% of the uniform-flow velocity, a laminar-turbulent transition takes place, whereas in the 18% case, the disturbances created by the jet decay downstream. It is found that in both cases, hairpin vortices are generated; however, these first-generation hairpins do not directly cause the transition. Only in the 20% case does a new hairpin vortex of a different shape with wider distance between the legs appear. The new hairpin grows with time and evokes the generation of vortical structures one after another around it, turning the flow turbulent. It is found that the difference between the two cases is whether or not one of the first-generation hairpin vortices gets connected with the nearby longitudinal vortices. Only when the connection is successful is the new hairpin vortex with wider distance between the legs created. For each of several cases tested with changing jet-ejecting conditions, no difference is found in the importance of the role of the hairpin structure. Therefore, we conclude that the hairpin vortex with widespread legs is a key structure in the transition to turbulence.

  17. Characterization of wake turbulence in a wind turbine array submerged in atmospheric boundary layer flow

    Science.gov (United States)

    Jha, Pankaj Kumar

    Wind energy is becoming one of the most significant sources of renewable energy. With its growing use, and social and political awareness, efforts are being made to harness it in the most efficient manner. However, a number of challenges preclude efficient and optimum operation of wind farms. Wind resource forecasting over a long operation window of a wind farm, development of wind farms over a complex terrain on-shore, and air/wave interaction off-shore all pose difficulties in materializing the goal of the efficient harnessing of wind energy. These difficulties are further amplified when wind turbine wakes interact directly with turbines located downstream and in adjacent rows in a turbulent atmospheric boundary layer (ABL). In the present study, an ABL solver is used to simulate different atmospheric stability states over a diurnal cycle. The effect of the turbines is modeled by using actuator methods, in particular the state-of-the-art actuator line method (ALM) and an improved ALM are used for the simulation of the turbine arrays. The two ALM approaches are used either with uniform inflow or are coupled with the ABL solver. In the latter case, a precursor simulation is first obtained and data saved at the inflow planes for the duration the turbines are anticipated to be simulated. The coupled ABL-ALM solver is then used to simulate the turbine arrays operating in atmospheric turbulence. A detailed accuracy assessment of the state-of-the-art ALM is performed by applying it to different rotors. A discrepancy regarding over-prediction of tip loads and an artificial tip correction is identified. A new proposed ALM* is developed and validated for the NREL Phase VI rotor. This is also applied to the NREL 5-MW turbine, and guidelines to obtain consistent results with ALM* are developed. Both the ALM approaches are then applied to study a turbine-turbine interaction problem consisting of two NREL 5-MW turbines. The simulations are performed for two ABL stability

  18. Effects of compressibility and free-stream turbulence on boundary layer transition in high-subsonic and transonic flows

    Science.gov (United States)

    Murthy, S. V.; Steinle, F. W.

    1986-01-01

    Based on the existing boundary layer transition data, the effects of compressibility, pressure fluctuations, and free-stream turbulence have been reexamined for subsonic and transonic flow speeds. It is confirmed that the compressibility effects may be adequately expressed in terms of a simple correlation with free-stream Mach number. Pressure fluctuations, especially at low levels, do not seem to significantly affect the transition phenomenon. Effects of free-stream turbulence in high-subsonic and transonic flows are similar to the trends observed for low-speed flows and the transition process is hastened. The trends, as seen from slender cone flow data, seem to suggest power law correlations between transition Reynolds number and free-stream turbulence.

  19. One Year of Doppler Lidar Observations Characterizing Boundary Layer Wind, Turbulence, and Aerosol Structure During the Indianapolis Flux Experiment

    Science.gov (United States)

    Hardesty, R. M.; Brewer, A.; Shepson, P. B.; Cambaliza, M. O. L.; Salmon, O. E.; Heimburger, A. M. F.; Davis, K. J.; Lauvaux, T.; McGowan, L. E.; Miles, N. L.; Richardson, S.; Sarmiento, D. P.; Karion, A.; Sweeney, C.; Iraci, L. T.; Hillyard, P. W.; Podolske, J. R.; Gurney, K. R.; Razlivanov, I. N.; Song, Y.; Turnbull, J. C.; Whetstone, J. R.; Possolo, A.; Prasad, K.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) is aimed at improving methods for estimation of greenhouse gas emissions at urban scales. INFLUX observational components include several-times-per-month aircraft measurements of gas concentrations and meteorological parameters, as well as a number of towers observing CO2, CH4, and CO and a single continuously operating Doppler lidar to estimate wind, turbulence and aerosol structure in the boundary layer. The observations are used to develop top-down emissions estimates from the aircraft measurements and as input to inversion models. The Doppler lidar provides information on boundary layer structure for both the aircraft and inversion studies. A commercial Doppler lidar characterized by low pulse energy and high pulse repetition rate has operated for well over a year at a site NE of downtown Indianapolis. The lidar produces profiles of horizontal wind speed, vertical velocity variance, and aerosol structure two to three times per hour. These data are then used to investigate boundary layer mixing and thickness and horizontal transport as inputs for the flux calculations. During its one year deployment the lidar generally operated reliably with few outages. Comparisons with aircraft spirals over the site and with the NOAA High Resolution research Doppler lidar deployed to Indianapolis for one month during May, 2014, were used to assess the performance of the INFLUX lidar. Measurements agreed quite well when aerosol loading was sufficient for lidar observations throughout the boundary layer. However, low aerosol loading during some periods limited the range of the lidar and precluded characterization of the full boundary layer. We present an overall assessment of the commercial Doppler lidar for providing the needed information on boundary layer structure for emission estimations, and show variability of the boundary layer observations over diurnal, seasonal, and annual cycles. Recommendations on system design changes to

  20. The turbulent boundary layer on a porous plate: An experimental study of the fluid mechanics for adverse free stream pressure gradients

    Science.gov (United States)

    Anderson, P. S.; Kays, W. M.; Moffat, R. J.

    1972-01-01

    An experimental investigation of transpired turbulent boundary layers in zero and adverse pressure gradients has been carried out. Profiles of: (1) the mean velocity, (2) the three intensities of the turbulent fluctuations, and (3) the Reynolds stress were obtained by hot-wire anemometry. The friction coefficients were measured by using an integrated form of the boundary layer equation to extrapolate the measured shear stress profiles to the wall.

  1. Marine boundary layer and turbulent fluxes over the Baltic Sea: Measurements and modelling

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.

    2002-01-01

    km x 2 km) model, and the operational numerical weather prediction model HIRLAM (grid resolution of 22.5 km x 22.5 km). For southwesterly winds it was found that a relatively large island (Bornholm) lying 20-km upwind of the measuring site influences the boundary-layer height. In this situation...... of the grid resolution of the HIRLAM model and therefore poorly resolved. For northerly winds, the water fetch to the measuring site is about 100 km. Both models reproduce the characteristics of the height of the marine boundary layer. This suggests that the HIRLAM model adequately resolves a water fetch...... of 100 km with respect to predictions of the height of the marine boundary layer....

  2. The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice

    NARCIS (Netherlands)

    Sterk, H.A.M.; Steeneveld, G.J.; Holtslag, A.A.M.

    2013-01-01

    To enhance the understanding of the impact of small-scale processes in the polar climate, this study focuses on the relative role of snow-surface coupling, radiation and turbulent mixing in an Arctic stable boundary layer. We extend the GABLS1 (GEWEX Atmospheric Boundary-Layer Study 1) model

  3. Thermo-fluid-dynamics of turbulent boundary layer over a moving continuous flat sheet in a parallel free stream

    Science.gov (United States)

    Afzal, Bushra; Noor Afzal Team; Bushra Afzal Team

    2014-11-01

    The momentum and thermal turbulent boundary layers over a continuous moving sheet subjected to a free stream have been analyzed in two layers (inner wall and outer wake) theory at large Reynolds number. The present work is based on open Reynolds equations of momentum and heat transfer without any closure model say, like eddy viscosity or mixing length etc. The matching of inner and outer layers has been carried out by Izakson-Millikan-Kolmogorov hypothesis. The matching for velocity and temperature profiles yields the logarithmic laws and power laws in overlap region of inner and outer layers, along with friction factor and heat transfer laws. The uniformly valid solution for velocity, Reynolds shear stress, temperature and thermal Reynolds heat flux have been proposed by introducing the outer wake functions due to momentum and thermal boundary layers. The comparison with experimental data for velocity profile, temperature profile, skin friction and heat transfer are presented. In outer non-linear layers, the lowest order momentum and thermal boundary layer equations have also been analyses by using eddy viscosity closure model, and results are compared with experimental data. Retired Professor, Embassy Hotel, Rasal Ganj, Aligarh 202001 India.

  4. Calculation of turbulent boundary layers with heat transfer and pressure gradient utilizing a compressibility transformation. Part 2: Constant property turbulent boundary layer flow with simultaneous mass transfer and pressure gradient

    Science.gov (United States)

    Boccio, J.; Economos, C.

    1972-01-01

    An analysis of the incompressible turbulent boundary layer, developing under the combined effects of mass transfer and pressure gradient, is presented in this paper. A strip-integral method is employed whereby two of the three governing equations are obtained by integrating the combined momentum and continuity equation to 50 percent and 100 percent, respectively, of the boundary-layer height. The latter equation is the usual momentum-integral equation; the former equation requires specification of shear. Accordingly, Clauser's equilibrium eddy-viscosity law is assumed valid at this point. The third and final equation is obtained by specifying that Stevenson's velocity profiles apply throughout the domain of interest, from which a skin-friction law can be derived. Comparisons of the numerical results with the experiments of McQuaid, which include combined effects of variable pressure gradient and mass transfer, show good agreement.

  5. Turbulent exchange of energy, momentum, and reactive gases between high vegetation and the atmospheric boundary layer

    NARCIS (Netherlands)

    Shapkalijevski, M.M.

    2017-01-01

    This thesis deals with the representation of the exchange of energy, momentum and chemically reactive compounds between the land, covered by high vegetation, and the lowest part of the atmosphere, named as atmospheric boundary layer (ABL). The study presented in this thesis introduces the roughness

  6. On the laminar-turbulent transition in the boundary layer of streamwise corner

    Science.gov (United States)

    Kirilovskiy, S. V.; Boiko, A. V.; Poplavskaya, T. V.

    2017-10-01

    The work is aimed at developing methods of numerical simulation of incompressible non-symmetric flow in streamwise corner by solving the Navier-Stokes equations with ANSYS Fluent and the self-similar equations of boundary-layer type. A comparison of the computations with each other and experimental data is provided.

  7. The Thermal And Hydrodynamic Behavior of Thick, Rough-Wall, Turbulent Boundary Layers,

    Science.gov (United States)

    1979-08-01

    34match point") and then extrap - olating to x = 0, the virtual origin of the hydrodynamic flow field. The values of L for the artificially thickened...boundary layers developing over rough sur- faces is important for the design of many engineering components, including reentry vehicles, nuclear reactors

  8. Micro Ramps in Supersonic Turbulent Boundary Layers : An experimental and numerical study

    NARCIS (Netherlands)

    Sun, Z.

    2014-01-01

    The micro vortex generator (MVG) is used extensively in low speed aerodynamic problems and is now extended into the supersonic flow regime to solve undesired flow features that are associated with shock wave boundary layer interactions (SWBLI) such as flow separation and associated unsteadiness of

  9. Prediction of transitional boundary layers and fully turbulent free shear flows, using Reynolds averaged Navier-Stokes models

    Science.gov (United States)

    Lopez Varilla, Maurin Alberto

    One of the biggest unsolved problems of modern physics is the turbulence phenomena in fluid flow. The appearance of turbulence in a flow system is regularly determined by velocity and length scales of the system. If those scales are small the motion of the fluid is laminar, but at larger scales, disturbances appear and grow, leading the flow field to transition to a fully turbulent state. The prediction of transitional flow is critical for many complex fluid flow applications, such as aeronautical, aerospace, biomedical, automotive, chemical processing, heating and cooling systems, and meteorology. For example, in some cases the flow may remain laminar throughout a significant portion of a given domain, and fully turbulent simulations may produce results that can lead to inaccurate conclusions or inefficient design, due to an inability to resolve the details of the transition process. This work aims to develop, implement, and test a new model concept for the prediction of transitional flows using a linear eddy-viscosity RANS approach. The effects of transition are included through one additional transport equation for upsilon 2 as an alternative to the Laminar Kinetic Energy (LKE) framework. Here upsilon2 is interpreted as the energy of fully turbulent, three-dimensional velocity fluctuations. The concept is based on a description of the transition process previously discussed by Walters. This dissertation presents two new single-point, physics-based turbulence models based on the transitional methodology mentioned above. The first one uses an existing transitional model as a baseline which is modified to accurately capture the physics of fully turbulent free shear flows. The model formulation was tested over several boundary layer and free shear flow test cases. The simulations show accurate results, qualitatively equal to the baseline model on transitional boundary layer test cases, and substantially improved over the baseline model for free shear flows. The

  10. Full Coverage Shaped Hole Film Cooling in an Accelerating Boundary Layer with High Free-Stream Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest E. [University of North Dakota; Kingery, Joseph E. [University of North Dakota

    2015-06-17

    Full coverage shaped-hole film cooling and downstream heat transfer measurements have been acquired in the accelerating flows over a large cylindrical leading edge test surface. The shaped holes had an 8° lateral expansion angled at 30° to the surface with spanwise and streamwise spacings of 3 diameters. Measurements were conducted at four blowing ratios, two Reynolds numbers and six well documented turbulence conditions. Film cooling measurements were acquired over a four to one range in blowing ratio at the lower Reynolds number and at the two lower blowing ratios for the higher Reynolds number. The film cooling measurements were acquired at a coolant to free-stream density ratio of approximately 1.04. The flows were subjected to a low turbulence condition (Tu = 0.7%), two levels of turbulence for a smaller sized grid (Tu = 3.5%, and 7.9%), one turbulence level for a larger grid (8.1%), and two levels of turbulence generated using a mock aero-combustor (Tu = 9.3% and 13.7%). Turbulence level is shown to have a significant influence in mixing away film cooling coverage progressively as the flow develops in the streamwise direction. Effectiveness levels for the aero-combustor turbulence condition are reduced to as low as 20% of low turbulence values by the furthest downstream region. The film cooling discharge is located close to the leading edge with very thin and accelerating upstream boundary layers. Film cooling data at the lower Reynolds number, show that transitional flows have significantly improved effectiveness levels compared with turbulent flows. Downstream effectiveness levels are very similar to slot film cooling data taken at the same coolant flow rates over the same cylindrical test surface. However, slots perform significantly better in the near discharge region. These data are expected to be very useful in grounding computational predictions of full coverage shaped hole film cooling with elevated turbulence levels and acceleration. IR

  11. Non-steady dynamics of atmospheric turbulence interaction with wind turbine loadings through blade-boundary-layer-resolved CFD

    Science.gov (United States)

    Vijayakumar, Ganesh

    Modern commercial megawatt-scale wind turbines occupy the lower 15-20% of the atmospheric boundary layer (ABL), the atmospheric surface layer (ASL). The current trend of increasing wind turbine diameter and hub height increases the interaction of the wind turbines with the upper ASL which contains spatio-temporal velocity variations over a wide range of length and time scales. Our interest is the interaction of the wind turbine with the energetic integral-scale eddies, since these cause the largest temporal variations in blade loadings. The rotation of a wind turbine blade through the ABL causes fluctuations in the local velocity magnitude and angle of attack at different sections along the blade. The blade boundary layer responds to these fluctuations and in turn causes temporal transients in local sectional loads and integrated blade and shaft bending moments. While the integral scales of the atmospheric boundary layer are ˜ O(10--100m) in the horizontal with advection time scales of order tens of seconds, the viscous surface layer of the blade boundary layer is ˜ O(10 -- 100 mum) with time scales of order milliseconds. Thus, the response of wind turbine blade loadings to atmospheric turbulence is the result of the interaction between two turbulence dynamical systems at extremely disparate ranges of length and time scales. A deeper understanding of this interaction can impact future approaches to improve the reliability of wind turbines in wind farms, and can underlie future improvements. My thesis centers on the development of a computational framework to simulate the interaction between the atmospheric and wind turbine blade turbulence dynamical systems using a two step one-way coupled approach. Pseudo-spectral large eddy simulation (LES) is used to generate a true (equilibrium) atmospheric boundary layer over a flat land with specified surface roughness and heating consistent with the stability state of the daytime lower troposphere. Using the data from the

  12. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan

    2015-06-30

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.

  13. Fluctuating pressures measured beneath a high-temperature, turbulent boundary layer on a flat plate at Mach number of 5

    Science.gov (United States)

    Parrott, Tony L.; Jones, Michael G.; Albertson, Cindy W.

    1989-01-01

    Fluctuating pressures were measured beneath a Mach 5, turbulent boundary layer on a flat plate with an array of piezoresistive sensors. The data were obtained with a digital signal acquisition system during a test run of 4 seconds. Data sampling rate was such that frequency analysis up to 62.5 kHz could be performed. To assess in situ frequency response of the sensors, a specially designed waveguide calibration system was employed to measure transfer functions of all sensors and related instrumentation. Pressure time histories were approximated well by a Gaussian prohibiting distribution. Pressure spectra were very repeatable over the array span of 76 mm. Total rms pressures ranged from 0.0017 to 0.0046 of the freestream dynamic pressure. Streamwise, space-time correlations exhibited expected decaying behavior of a turbulence generated pressure field. Average convection speed was 0.87 of freestream velocity. The trendless behavior with sensor separation indicated possible systematic errors.

  14. Drag Reduction for Turbulent Boundary Layer Flows Using an Oscillating Wall

    National Research Council Canada - National Science Library

    Bogard, David

    2000-01-01

    This research program used experimental measurements and computational simulations to study the drag reduction, and the resulting effects on turbulence structure, for a turbulent wall flow subjected...

  15. Bed slope effects on turbulent wave boundary layers: 2. Comparison with skewness, asymmetry, and other effects

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2009-01-01

    contributions believed to play a prominent role in cross-shore boundary layer and sediment transport processes: (1) converging-diverging effects from bed slope, (2) wave skewness, (3) wave asymmetry, and (4) waves combined with superposed negative currents (intended to loosely represent, for example, return...... from beach slope may make a significant onshore bed load contribution. Generally, however, the results suggest wave skewness (in addition to conventional steady streaming) as the most important onshore contribution outside the surf zone. Streaming induced within the wave boundary layer is also...... investigated for each component, and skewness and asymmetry are demonstrated to promote largely negative streaming velocities, consistent with earlier work. For hydraulically smooth cases, however, a thin region of positive streaming is revealed in the viscous sublayer which is effectively absent...

  16. Modifications of the law of the wall and algebraic turbulence modelling for separated boundary layers

    Science.gov (United States)

    Baldwin, B. S.; Maccormack, R. W.

    1976-01-01

    Various modifications of the conventional algebraic eddy viscosity turbulence model are investigated for application to separated flows. Friction velocity is defined in a way that avoids singular behavior at separation and reattachment but reverts to the conventional definition for flows with small pressure gradients. This leads to a modified law of the wall for separated flows. The effect on the calculated flow field of changes in the model that affect the eddy viscosity at various distances from the wall are determined by (1) switching from Prandtl's form to an inner layer formula due to Clauser at various distances from the wall, (2) varying the constant in the Van Driest damping factor, (3) using Clauser's inner layer formula all the way to the wall, and (4) applying a relaxation procedure in the evaluation of the constant in Clauser's inner layer formula. Numerical solutions of the compressible Navier-Stokes equations are used to determine the effects of the modifications. Experimental results from shock-induced separated flows at Mach numbers 2.93 and 8.45 are used for comparison. For these cases improved predictions of wall pressure distribution and positions of separation and reattachment are obtained from the relaxation version of the Clauser inner layer eddy viscosity formula.

  17. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sandip, E-mail: sup252@PSU.EDU

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. - Highlights: • Lidar based study for CBL turbulence features • Water vapor and aerosol turbulence profiles • Processes governing boundary layer turbulence profiles using lidars.

  18. Wall shear stress fluctuations: Mixed scaling and their effects on velocity fluctuations in a turbulent boundary layer

    Science.gov (United States)

    Diaz-Daniel, Carlos; Laizet, Sylvain; Vassilicos, J. Christos

    2017-05-01

    The present work investigates numerically the statistics of the wall shear stress fluctuations in a turbulent boundary layer (TBL) and their relation to the velocity fluctuations outside of the near-wall region. The flow data are obtained from a Direct Numerical Simulation (DNS) of a zero pressure-gradient TBL using the high-order flow solver Incompact3D [S. Laizet and E. Lamballais, "High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy," J. Comput. Phys. 228(16), 5989 (2009)]. The maximum Reynolds number of the simulation is R e𝜃≈2000 , based on the free-stream velocity and the momentum thickness of the boundary layer. The simulation data suggest that the root-mean-squared fluctuations of the streamwise and spanwise wall shear-stress components τx and τz follow a logarithmic dependence on the Reynolds number, consistent with the empirical correlation of Örlü and Schlatter [R. Örlü and P. Schlatter, "On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows," Phys. Fluids 23, 021704 (2011)]. These functional dependencies can be used to estimate the Reynolds number dependence of the wall turbulence dissipation rate in good agreement with reference DNS data. Our results suggest that the rare negative events of τx can be associated with the extreme values of τz and are related to the presence of coherent structures in the buffer layer, mainly quasi-streamwise vortices. We also develop a theoretical model, based on a generalisation of the Townsend-Perry hypothesis of wall-attached eddies, to link the statistical moments of the filtered wall shear stress fluctuations and the second order structure function of fluctuating velocities at a distance y from the wall. This model suggests that the wall shear stress fluctuations may induce a higher slope in the turbulence energy spectra of streamwise velocities than the one predicted by the Townsend-Perry attached

  19. Dual-plane PIV technique to determine the complete velocity gradient tensor in a turbulent boundary layer

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen K.; Marusic, Ivan; Pothos, Stamatios

    2005-08-01

    Simultaneous dual-plane PIV experiments, which utilized three cameras to measure velocity components in two differentially separated planes, were performed in streamwise-spanwise planes in the log region of a turbulent boundary layer at a moderate Reynolds number (Reτ ˜ 1100). Stereoscopic data were obtained in one plane with two cameras, and standard PIV data were obtained in the other with a single camera. The scattered light from the two planes was separated onto respective cameras by using orthogonal polarizations. The acquired datasets were used in tandem with continuity to compute all 9 velocity gradients, the complete vorticity vector and other invariant quantities. These derived quantities were employed to analyze and interpret the structural characteristics and features of the boundary layer. Sample results of the vorticity vector are consistent with the presence of hairpin-shaped vortices inclined downstream along the streamwise direction. These vortices envelop low speed zones and generate Reynolds shear stress that enhances turbulence production. Computation of inclination angles of individual eddy cores using the vorticity vector suggests that the most probable inclination angle is 35° to the streamwise-spanwise plane with a resulting projected eddy inclination of 43° in the streamwise-wall-normal plane.

  20. Dual-plane PIV technique to determine the complete velocity gradient tensor in a turbulent boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathisubramani, Bharathram; Longmire, Ellen K.; Marusic, Ivan [University of Minnesota, Department of Aerospace Engineering and Mechanics, Minneapolis, MN (United States); Pothos, Stamatios [TSI Incorporated, Shoreview, MN (United States)

    2005-08-01

    Simultaneous dual-plane PIV experiments, which utilized three cameras to measure velocity components in two differentially separated planes, were performed in streamwise-spanwise planes in the log region of a turbulent boundary layer at a moderate Reynolds number (Re{sub {tau}} {proportional_to} 1100). Stereoscopic data were obtained in one plane with two cameras, and standard PIV data were obtained in the other with a single camera. The scattered light from the two planes was separated onto respective cameras by using orthogonal polarizations. The acquired datasets were used in tandem with continuity to compute all 9 velocity gradients, the complete vorticity vector and other invariant quantities. These derived quantities were employed to analyze and interpret the structural characteristics and features of the boundary layer. Sample results of the vorticity vector are consistent with the presence of hairpin-shaped vortices inclined downstream along the streamwise direction. These vortices envelop low speed zones and generate Reynolds shear stress that enhances turbulence production. Computation of inclination angles of individual eddy cores using the vorticity vector suggests that the most probable inclination angle is 35 to the streamwise-spanwise plane with a resulting projected eddy inclination of 43 in the streamwise-wall-normal plane. (orig.)

  1. Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer modelling approaches.

    Science.gov (United States)

    Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan

    2010-08-26

    This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports. 2010 Elsevier Ltd. All rights reserved.

  2. Superfluid Boundary Layer.

    Science.gov (United States)

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  3. Drag Reduction of a Turbulent Boundary Layer over an Oscillating Wall and Its Variation with Reynolds Number

    Directory of Open Access Journals (Sweden)

    Martin Skote

    2015-01-01

    Full Text Available Spanwise oscillation applied on the wall under a spatially developing turbulent boundary layer flow is investigated using direct numerical simulation. The temporal wall forcing produces a considerable drag reduction over the region where oscillation occurs. Downstream development of drag reduction is investigated from Reynolds number dependency perspective. An alternative to the previously suggested power-law relation between Reynolds number and peak drag reduction values, which is valid for channel flow as well, is proposed. Considerable deviation in the variation of drag reduction with Reynolds number between different previous investigations of channel flow is found. The shift in velocity profile, which has been used in the past for explaining the diminishing drag reduction at higher Reynolds number for riblets, is investigated. A new predictive formula is derived, replacing the ones found in the literature. Furthermore, unlike for the case of riblets, the shift is varying downstream in the case of wall oscillations, which is a manifestation of the fact that the boundary layer has not reached a new equilibrium over the limited downstream distance in the simulations. Taking this into account, the predictive model agrees well with DNS data. On the other hand, the growth of the boundary layer does not influence the drag reduction prediction.

  4. Statistical characteristics of the tilts of the aero-optical aberration caused by the supersonic turbulent boundary layer.

    Science.gov (United States)

    Gao, Qiong; Jiang, Zongfu; Yi, Shihe; Wang, Xiaohu

    2013-03-01

    The tilt of the aero-optical aberration caused by the supersonic turbulent boundary layer is obtained by analyzing the center wandering of the far-field optical pattern, and its characteristics are examined from the viewpoint of statistics. When the diameter of the beam propagating through the flow is small compared with the boundary layer thickness, the probability density function (PDF) of the tilt coefficient is centered and can be approximated with a Gaussian distribution. For a larger beam diameter, the PDF of the tilt in the spanwise direction can still be regarded as centered and Gaussian, but the tilt in the streamwise direction clearly deviates from a Gaussian distribution. The correlation of the tilts in the two directions is investigated by computing the correlation coefficient, and the results indicate that the correlation is negative and strong for a small beam diameter and becomes positive and weak for a large beam diameter. These characteristics are explained by the hairpin vortex structures in the boundary layer, which prevail and meander for a very long distance streamwise.

  5. Simulation and modeling of the turbulent katabatic flow along a hyperbolic tangent slope for stably stratified atmospheric boundary layer

    Science.gov (United States)

    Brun, Ch.; Chollet, J. P.

    2009-04-01

    The behaviour of the Atmospheric Boundary layer (ABL) along alpine valleys is strongly dependent on the day-night thermodynamic cycle and might impact meteorology and air pollution prediction. At night, the ABL is stably stratified and the radiative cooling of the surface yields the development of a katabatic flow (Doran and Horst 1983, Monti et al. 2002). This flow consists of a downslope wall-jet which has the structure of both wall turbulence in the inner-layer zone and shear layer turbulence in the outer-layer zone and enhances a relative mixing eventhough stable stratification is considered (Baines 2005). A full 3D description of such flow by mean of Large Eddy Simulation of turbulence (LES) has not yet been achieved, except recently on relatively simple slopes (Skyllingstad 2003, Smith and Skyllingstad 2005) or including geostrophic wind forcing (Cuxart et al. 2006, Cuxart and Jimenez 2006). This is the purpose of the present study to accurately describe the ABL on a hyperbolic tangent slope with stable stratification. The numerical code used, Meso-NH, has been developed in CNRM/Meteo-France and Laboratoire d'Aérologie Toulouse, and consists of an anelastic non-hydrostatic model solving the pseudo-incompressible Navier-Stokes equations with a Boussinesq approximation. About 5 million grid points are necessary to afford a relatively precise description of the flow in the vicinity of the surface, with a special refinement in the vertical direction to capture the wall-jet developing along the slope. The setting of initial and boundary conditions is crucial for the simulation of stable ABL. Initial conditions consist of air at rest following a stable temperature profile with a constant Brunt-Väisälä frequency N=0.013. At the surface two sets of boundary conditions have been considered, first a rough surface condition, second an ideal case with slip conditions. A constant surface cooling q_w=-30 W/m2 is applied on the stably stratified fluid initially at rest

  6. The effects of forest canopy shading and turbulence on boundary layer ozone

    Science.gov (United States)

    Makar, P. A.; Staebler, R. M.; Akingunola, A.; Zhang, J.; McLinden, C.; Kharol, S. K.; Pabla, B.; Cheung, P.; Zheng, Q.

    2017-05-01

    The chemistry of the Earth's atmosphere close to the surface is known to be strongly influenced by vegetation. However, two critical aspects of the forest environment have been neglected in the description of the large-scale influence of forests on air pollution: the reduction of photolysis reaction rates and the modification of vertical transport due to the presence of foliage. Here we show that foliage shading and foliage-modified vertical diffusion have a profound influence on atmospheric chemistry, both at the Earth's surface and extending throughout the atmospheric boundary layer. The absence of these processes in three-dimensional models may account for 59-72% of the positive bias in North American surface ozone forecasts, and up to 97% of the bias in forested regions within the continent. These processes are shown to have similar or greater influence on surface ozone levels as climate change and current emissions policy scenario simulations.

  7. Turbulent kinetic energy budget in the boundary layer developing over an urban-like rough wall using PIV

    Science.gov (United States)

    Blackman, Karin; Perret, Laurent; Calmet, Isabelle; Rivet, Cédric

    2017-08-01

    In the present work, a boundary layer developing over a rough-wall consisting of staggered cubes with a plan area packing density λp = 25% is studied within the wind tunnel using Particle Image Velocimetry (PIV) to investigate the Turbulent Kinetic Energy (TKE) budget. To access the full TKE budget, an estimation of the dissipation (ɛ) using both the transport equation of the resolved-scale kinetic energy and Large-Eddy (LE) PIV models based on the use of a subgrid-scale model following the methodology used in large-eddy simulations is employed. A low-pass filter, larger than the Taylor microscale, is applied to the data prior to the computation of the velocity gradients ensuring a clear cutoff in the inertial range where the models are valid. The presence of the cube roughness elements has a significant influence on the TKE budget due to the region of strong shear that develops over the cubes. The shear layer is shown to produce and dissipate energy, as well as transport energy through advection, turbulent transport, and pressure transport. The recirculation region that forms through the interaction of the shear layer and the canopy layer, which is the region below the height of the cube roughness, creates rapid longitudinal evolution of the mean flow thereby inducing weak production. Finally, through stochastic estimation of the conditional average, it is shown that localized regions of backscatter (energy transfer from unresolved to resolved scales) and forward scatter (energy transfer from resolved to unresolved scales) occur as a result of coherent vortical structures.

  8. Polar spacecraft observations of the turbulent outer cusp/magnetopause boundary layer of Earth

    Directory of Open Access Journals (Sweden)

    J. S. Pickett

    1999-01-01

    Full Text Available The orbit of the Polar spacecraft has been ideally suited for studying the turbulent region of the cusp that is located near or just outside the magnetopause current sheet at 7-9 RE. The wave data obtained in this region show that electromagnetic turbulence is dominant in the frequency range 1-10 Hz. The waves responsible for this turbulence usually propagate perpendicular to the local magnetic field and have an index of refraction that generally falls between the estimated cold plasma theoretical values of the electromagnetic lower hybrid and whistler modes and may be composed of both modes in concert with kinetic Alfvén waves and/or fast magnetosonic waves. Fourier spectra of the higher frequency wave data also show the electromagnetic turbulence at frequencies up to and near the electron cyclotron frequency. This higher frequency electromagnetic turbulence is most likely associated with whistler mode waves. The lower hybrid drift and current gradient instabilities are suggested as possible mechanisms for producing the turbulence. The plasma and field environment of this turbulent region is examined and found to be extremely complex. Some of the wave activity is associated with processes occurring locally, such as changes in the DC magnetic field, while others are associated with solar wind and interplanetary magnetic field changes.

  9. An Experimental and Analytical Study of Boundary Layers in Highly Turbulent Free-streams.

    Science.gov (United States)

    1981-03-01

    facility was constructed during 1977 and underwent a series of f-low cualit -.; evaluation tests during 1978. The UTRC Un-iform Heat Flux Flt I odc&’ -.,;as...the measurement anid analysis of tnenea trns~r cst cu:ons cunaa’ loer :orofil!e and t.urbulence data "’iscusse’ 4n recort .rE -erimental and Anl:ia td...ra acquisition and analysis techrniques empice (3 mlt comoonEnt res_’- turbule-nce fiensitv di Stdibut ions and !onrC 4 udiaal ntecrai frionccffo~~ts

  10. Calculation of compressible nonadiabatic boundary layers in laminar, transitional and turbulent flow by the method of integral relations

    Science.gov (United States)

    Kuhn, G. D.

    1971-01-01

    A computer program was developed to do the calculations for two-dimensional or axisymmetric configurations from low speeds to hypersonic speeds with arbitrary streamwise pressure, temperature, and Mach number distributions. Options are provided for obtaining initial conditions either from experimental information or from a theoretical similarity solution. The transition region can be described either by an arbitrary distribution of intermittency or by a function based on Emmons' probability theory. Correlations were developed for use in estimating the parameters of the theoretical intermittency function. Correlations obtained from other sources are used for estimating the transition point. Comparisons were made between calculated and measured boundary layer quantities for laminar, transitional, and turbulent flows on flat plates, cones, cone flares, and a waisted body of revolution. Excellent agreement was obtained between the present theory and two other theories based on the method of finite differences. The intermittency required to reproduce some experimental heat transfer results in hypersonic flow was found to be quite different from the theoretical function. It is suggested that the simple probability theory of Emmons may not be valid for representing the intermittency of hypersonic transitional boundary layers and that the program could be useful as a tool for detailed study of the intermittency of the transition region.

  11. HIFiRE-1 Turbulent Shock Boundary Layer Interaction - Flight Data and Computations

    Science.gov (United States)

    Kimmel, Roger L.; Prabhu, Dinesh

    2015-01-01

    The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratory (AFRL) and Australian Defence Science and Technology Organisation (DSTO). This flight contained a cylinder-flare induced shock boundary layer interaction (SBLI). Computations of the interaction were conducted for a number of times during the ascent. The DPLR code used for predictions was calibrated against ground test data prior to exercising the code at flight conditions. Generally, the computations predicted the upstream influence and interaction pressures very well. Plateau pressures on the cylinder were predicted well at all conditions. Although the experimental heat transfer showed a large amount of scatter, especially at low heating levels, the measured heat transfer agreed well with computations. The primary discrepancy between the experiment and computation occurred in the pressures measured on the flare during second stage burn. Measured pressures exhibited large overshoots late in the second stage burn, the mechanism of which is unknown. The good agreement between flight measurements and CFD helps validate the philosophy of calibrating CFD against ground test, prior to exercising it at flight conditions.

  12. Laser Interferometer Skin-Friction measurements of crossing-shock wave/turbulent boundary-layer interactions

    Science.gov (United States)

    Garrison, T. J.; Settles, G. S.

    1993-01-01

    Wall shear stress measurements beneath crossingshock wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symmetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 degrees at Mach 3 and 15 degrees at Mach 4. The measurements were made using a Laser Interferometer Skin Friction (LISF) meter; a device which determines the wail shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction centerline. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k- model, are compared to the experimental results for the Mach 4, 15 degree interaction case. While the k- model did a reasonable job of predicting the overall trend in portions of the skin friction distribution, neither computation fully captured the physics of the near surface flow in this complex interaction.

  13. Turbulent Boundary Layer Driven Acoustic Radiation of a Solid Body of Revolution.

    Science.gov (United States)

    Corriveau, Pierre Joseph

    The flow induced radiated noise from a body of revolution was measured in a large acoustic tank. Two solid bodies were constructed without appendages to minimize structural reradiation and eliminate other flow noise sources. One body remained uncoated and the other was clad with an acoustic decoupler. The bodies were propelled at several initial velocities using a pneumatic launcher. A retrieval mechanism decelerated the bodies and returned them to a starting position. To maintain a vertical flight path, the vehicles traveled downward concentric with a guide wire. Direct radiation measurements were achieved by placing hydrophones near the flight path, but away from tank boundaries. Analog data were acquired on multiple runs, and at each initial velocity, using a multi-track tape recorder. The data were digitized into 10 msec record lengths then Fourier transformed into 25 KHz spectra. One-third octave bands were used for frequency averaging. Equations of motion were developed to determine body position at any point throughout the trajectory. Acoustic sources were observed at two locations on the body: at the nose and tail. Slant ranges to the hydrophones were computed, and the acoustic source level was estimated at each source location for 1/3 octave bands from 1-20 KHZ. Only data determined to be spherically spreading were ensemble averaged by class and within run. Nose and tail 1/3 O.B. source level spectra at each speed, including confidence intervals, were computed. The averaged spectra were collapsed to a common speed (7.6 m/s) using standard scaling techniques. The coated body nose radiation is 9 dB lower than the uncoated case. Up to 8.4 m/s, similar tail radiation is measured on each vehicle. At 9.4 m/s the tail radiation is atypical and coating effects are observed. Radiation up to 8.4 m/s is governed by the trailing edge geometry while radiation at 9.4 m/s is the result of boundary layer separation. A simple acoustic model adequately predicts the measured

  14. The Characterization of Atmospheric Boundary Layer Depth and Turbulence in a Mixed Rural and Urban Convective Environment

    Science.gov (United States)

    Hicks, Micheal M.

    A comprehensive analysis of surface-atmosphere flux exchanges over a mixed rural and urban convective environment is conducted at Howard University Beltsville, MD Research Campus. This heterogeneous site consists of rural, suburban and industrial surface covers to its south, east and west, within a 2 km radius of a flux sensor. The eddy covariance method is utilized to estimate surface-atmosphere flux exchanges of momentum, heat and moisture. The attributes of these surface flux exchanges are contrasted to those of classical homogeneous sites and assessed for accuracy, to evaluate the following: (I) their similarity to conventional convective boundary layer (CBL) processes and (II) their representativeness of the surrounding environment's turbulent properties. Both evaluations are performed as a function of upwind surface conditions. In particular, the flux estimates' obedience to spectrum power laws and similarity theory relationships is used for performing the first evaluation, and their ability to close the surface energy balance and accurately model CBL heights is used for the latter. An algorithm that estimates atmospheric boundary layer heights from observed lidar extinction backscatter was developed, tested and applied in this study. The derived lidar based CBL heights compared well with those derived from balloon borne soundings, with an overall Pearson correlation coefficient and standard deviation of 0.85 and 223 m, respectively. This algorithm assisted in the evaluation of the response of CBL processes to surface heterogeneity, by deriving high temporal CBL heights and using them as independent references of the surrounding area averaged sensible heat fluxes. This study found that the heterogeneous site under evaluation was rougher than classical homogeneous sites, with slower dissipation rates of turbulent kinetic energy. Flux measurements downwind of the industrial complexes exhibited enhanced efficiency in surface-atmosphere momentum, heat, and

  15. Effect of geometry on the downstream flow topology of a micro ramp in a supersonic turbulent boundary layer : An experimental study

    NARCIS (Netherlands)

    Tambe, S.S.; Schrijer, F.F.J.; van Oudheusden, B.W.

    2017-01-01

    The physical relation between the geometry and the flow topology of the wake of a micro ramp is investigated by means of a parametric study. Various micro ramp geometries are placed in a supersonic turbulent boundary layer at a free-stream Mach number of 2. The flow field is measured with schlieren

  16. Wind-tunnel experiments of turbulent flow over a surface-mounted 2-D block in a thermally-stratified boundary layer

    Science.gov (United States)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-11-01

    Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).

  17. Assessment of surface turbulent fluxes using geostationary satellite surface skin temperatures and a mixed layer planetary boundary layer scheme

    Science.gov (United States)

    Diak, George R.; Stewart, Tod R.

    1989-01-01

    A method is presented for evaluating the fluxes of sensible and latent heating at the land surface, using satellite-measured surface temperature changes in a composite surface layer-mixed layer representation of the planetary boundary layer. The basic prognostic model is tested by comparison with synoptic station information at sites where surface evaporation climatology is well known. The remote sensing version of the model, using satellite-measured surface temperature changes, is then used to quantify the sharp spatial gradient in surface heating/evaporation across the central United States. An error analysis indicates that perhaps five levels of evaporation are recognizable by these methods and that the chief cause of error is the interaction of errors in the measurement of surface temperature change with errors in the assigment of surface roughness character. Finally, two new potential methods for remote sensing of the land-surface energy balance are suggested which will relay on space-borne instrumentation planned for the 1990s.

  18. Nonlocal stochastic mixing-length theory and the velocity profile in the turbulent boundary layer

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    Turbulence mixing by finite size eddies will be treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic closure hypothesis, which implies a well defined recipe for the calculation of sampling and transition rates. The connection with the general theory

  19. PIV measurements in two hypersonic shock wave / turbulent boundary layer interactions

    Science.gov (United States)

    Schreyer, Anne-Marie; Williams, Owen; Smits, Alexander J.

    2017-11-01

    Particle Image Velocimetry measurements were performed to study two compression corner interactions in hypersonic flow. The experiments, carried out at Mach 7.2 and at a Reynolds number based on momentum thickness of 3500, included mean flow surveys as well as turbulence measurements in the near-field of the interaction. For the 8° compression corner, the flow remained attached, and for the 33° compression corner a large separation bubble formed. For the attached case, the influence of the shock wave on the streamwise turbulence intensities is weak, but the wall-normal component and the Reynolds shear stress show considerable amplification. In the fully separated case, both the streamwise and wall normal velocity fluctuations, as well as the Reynolds shear stresses, show strong amplification across the interaction. In contrast with the behavior in the attached case, equilibrium flow is approached much more rapidly in the separated case. Turbulence measurements in such complex hypersonic flows are far from trivial, with particle frequency response limitations often significantly reducing the measured wall-normal turbulence. We will therefore discuss these influences on overall data quality as well as the interpretation of flow physics based on these results.

  20. Turbulent Spot/Separation Bubble Interactions in a Spatially Evolving Supersonic Boundary-Layer Flow

    National Research Council Canada - National Science Library

    Krishnan, L; Sandham, N. D

    2004-01-01

    ...., is capable of advancing the transition process). A substantial increase in the lateral spreading of the spot was observed due to the spot/bubble interaction. Locally averaged profiles of the flow quantities within the spot showed behavior similar to developed turbulent flows.

  1. Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data over smooth and rough surfaces in pipe flow

    Science.gov (United States)

    Evans, Neal D.; Capone, Dean E.; Bonness, William K.

    2013-07-01

    The vibration response of a thin cylindrical shell excited by fully developed turbulent pipe flow is measured and used to extract the fluctuating pressure levels generated by the boundary layer. Parameters used to extract the turbulent fluctuating pressure levels are determined via experimental modal analyses of the water-filled pipe and measured vibration levels from flow through the pipe at 5.8 m/s. Measurements are reported for hydraulically smooth and fully rough surface conditions. Smooth wall-pressure levels are compared to the turbulent boundary layer pressure model of Chase [The character of the turbulent wall pressure at subconvective wavenumbers and a suggested comprehensive model. Journal of Sound and Vibration112 (1) (1987) 125-147] and the measurements of Bonness et al. [Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow. Journal of Sound and Vibration329 (2010) 4166-4180]. Results for the smooth pipe match the predicted smooth wall-pressure spectrum and correspond to a normalized low wavenumber-white level which is -41 dB below the maximum level at the convective peak. Pressure levels from the fully rough condition display a low-wavenumber-white level which is 28 dB below the convective peak level. This suggests an increase of 13 dB in low-wavenumber wall pressure for the uniformly distributed roughness elements in this study over a hydraulically smooth surface.

  2. Universal dependences between turbulent and mean flow parameters instably and neutrally stratified Planetary Boundary Layers

    Directory of Open Access Journals (Sweden)

    I. N. Esau

    2006-01-01

    Full Text Available We consider the resistance law for the planetary boundary layer (PBL from the point of view of the similarity theory. In other words, we select the set of the PBL governing parameters and search for an optimal way to express through these parameters the geostrophic drag coefficient Cg=u* /Ug and the cross isobaric angle α (where u* is the friction velocity and Ug is the geostrophic wind speed. By this example, we demonstrate how to determine the 'parameter space' in the most convenient way, so that make independent the dimensionless numbers representing co-ordinates in the parameter space, and to avoid (or at least minimise artificial self-correlations caused by the appearance of the same factors (such as u* in the examined dimensionless combinations (e.g. in Cg=u* /Ug and in dimensionless numbers composed of the governing parameters. We also discuss the 'completeness' of the parameter space from the point of view of large-eddy simulation (LES modeller creating a database for a specific physical problem. As recognised recently, very large scatter of data in prior empirical dependencies of Cg and α on the surface Rossby number Ro=Ug| fz0|-1 (where z0 is the roughness length and the stratification characterised by µ was to a large extent caused by incompactness of the set of the governing parameters. The most important parameter overlooked in the traditional approach is the typical value of the Brunt-Väisälä frequency N in the free atmosphere (immediately above the PBL, which involves, besides Ro and µ, one more dimensionless number: µN=N/ | f |. Accordingly, we consider Cg and α as dependent on the three (rather then two basic dimensionless numbers (including µN using LES database DATABASE64. By these means we determine the form of the dependencies under consideration in the part of the parameter space representing typical atmospheric PBLs, and provide analytical expressions for Cg and α.

  3. Experiments on the turbulent boundary layer on a thin cylinder rotating in an axial flow. 1st Report. Properties of mean flow and turbulence; Jikuryuchu no hosonaga kaiten entojo no ranryu kyokaiso no jikken. 1. Heikinryu to nagare no tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yano, H. [Daido Institute of Technology, Nagoya (Japan); Yamashita, S.; Naruse, Y.; Kondo, K. [Gifu University, Gifu (Japan). Faculty of Engineering

    1996-09-25

    The mean velocity and turbulent field in a three-dimensional turbulent boundary layer on a thin cylinder rotating in a uniform stream are examined experimentally. Measurements of mean velocity and all Reynolds stresses are made by means of a single rotatable hot-wire method. Mean velocity distribution is well represented in the relative main flow direction with respect to the rotating cylinder by a logarithmic law deduced in an earlier study. Johnston`s logarithmic law for 3-D turbulent boundary layers also accurately describes the present flow. Although turbulent intensities and Reynolds stresses all increased with rotation speed of the cylinder, their distributions are well represented by non-dimensionalization using the resultant velocity of the main flow and the peripheral velocity of the cylinder. Both eddy viscosities and mixing lengths increase with the rotation speed, and there is no evidence of isotropic eddy viscosity. 21 refs., 15 figs., 1 tab.

  4. Reducing turbulent boundary layer drag by a sustainable thin-air film

    Science.gov (United States)

    Wang, Cong; Jeon, David; Gharib, Morteza

    2017-11-01

    Reduction of hydrodynamic frictional drag through introduction of air bubbles or films at the wall regions has been tried by several groups in the past. The main challenge for these approaches has been to sustain the air bubble or film under high turbulent velocity fluctuations. We will report a novel technique that allows maintaining stable oscillating air films over solid surface in order to obtain large drag reduction effect. Based on our DPIV results, we will present a potential mechanism for the Reynolds stress suppression in the near wall region. This work is supported by the Office of Naval Research under Grant No. N00014-15-1-2479.

  5. Evaluation of PBL Parameterizations in WRF at Sub-Kilometer Resolution: Turbulence Statistics in the Convective Boundary Layer

    Science.gov (United States)

    Hailey Shin, Hyeyum; Dudhia, Jimy

    2015-04-01

    Evaluation of the planetary boundary layer (PBL) parameterization up to the present time has focused on profiles of mean and parameterized vertical flux, since the parameterization has been developed for horizontal resolution that cannot resolve any turbulence in the PBL. Meanwhile, recent increase in computing power has been allowing numerical weather prediction at horizontal resolution finer than 1 km, at which kilometer-scale large eddies in the PBL are partly resolvable. In this study, the performance of five PBL parameterizations in the Weather Research and Forecasting (WRF) model is evaluated at sub-kilometer resolution. The evaluation focuses on resolved high-order turbulence statistics, given that modeling at the high resolution is aimed at improving the simulation of resolved fields. The five parameterizations include four nonlocal PBL schemes - the Yonsei University (YSU), Asymmetric Convective Model 2 (ACM2), Eddy Diffusivity Mass Flux (EDMF), and Total Energy Mass Flux (TEMF) schemes, and one local scheme - Mellor-Yamada-Nakanishi-Niino (MYNN) level 2.5 model. Key findings are as follows. 1) None of the PBL schemes are scale-aware. Instead, each PBL scheme has its own best performing resolution in parameterizing subgrid-scale (SGS) vertical transport and resolving eddies, and the resolution appears to be different between heat and momentum. 2) All the selected PBL schemes reproduce total vertical heat transport well, as resolved transport compensates defects of SGS transport. This interaction between the resolved and SGS transports is not found in momentum transport. 3) The local PBL scheme maintains a weakly stable temperature profile in the upper PBL, which was not accomplished by coarser-resolution simulations. 4) The best schemes in simulating mean, energy spectrum, and vertical-velocity histogram, i.e., the first-, second- and third-order statistics, do not coincide.

  6. Vertical profiles of selected mean and turbulent characteristics of the boundary layer within and above a large banana screenhouse

    Science.gov (United States)

    Tanny, Josef; Lukyanov, Victor; Neiman, Michael; Cohen, Shabtai; Teitel, Meir

    2017-04-01

    The area of agricultural crops covered by screens is constantly increasing worldwide. While irrigation requirements for open canopies are well documented, corresponding information for covered crops is scarce. Therefore much effort in recent years has focused on measuring and modeling evapotranspiration of screen-covered crops. One model that can be utilized for such estimations is the mixing length model. As a first step towards future application of this model, selected mean and turbulent properties of the boundary layer above and below a shading screen were measured and analyzed. Experiments were carried out in a large banana plantation, covered by a light-weight horizontal shading screen deployed 5.5 m high. During the measurement period, plant height increased from 2.5 to 4.1 m. A 3D ultrasonic anemometer and temperature and humidity sensors were mounted on a lifting tower with a manual crank that could measure between 2.8 and 10.2 m height, i.e., both below and above the screen. In each profile, the sensors measured at different heights during consecutive time intervals of about 15 min each. Vertical profiles were measured around noon when external meteorological conditions were relatively stable. An additional stationary tower installed within the screenhouse about 20 m to the north of the lifting tower, continuously measured corresponding reference values at 4.5 m height. Footprint analysis shows that out of the 62 measured time intervals, only in 4 cases the 90% flux contribution originated from outside the screenhouse. Both horizontal air velocity, Uh, and normalized horizontal air velocity increased with height. Air temperature generally decreased with height, indicating that the boundary layer was statically unstable. Specific humidity decreased with height, as is typical for a well irrigated crop. Friction velocity, u∗, was higher above than below the screen, illustrating the role of the screen as a momentum sink. The mean ratio between friction

  7. Evaluating weather research and forecasting (WRF) model predictions of turbulent flow parameters in a dry convective boundary layer

    NARCIS (Netherlands)

    Gibbs, J.A.; Fedorovich, E.; Eijk, A.M.J. van

    2011-01-01

    Weather Research and Forecasting (WRF) model predictions using different boundary layer schemes and horizontal grid spacings were compared with observational and numerical large-eddy simulation data for conditions corresponding to a dry atmospheric convective boundary layer (CBL) over the southern

  8. Turbulent Flow and Large Surface Wave Events in the Marine Boundary Layers

    Science.gov (United States)

    2013-08-22

    during the High Resolution Air-Sea Interaction (Hi-Res) field campaign carried out in June 2010. Notice the extensive white capping generated by large...Wilde, J. Adams, J. Bianchi, P. Sullivan, and E. Patton, 2003: Lamar low-level jet project interim report, Techni- cal Report NREL/TP-500-34593...shaped hill blends into the flat bottom boundary) is approximately indicated by the circular white line. The hill summit h = 50 m is located at (xc,yc

  9. Evaluation of simulated climatological diurnal temperature range in CMIP5 models from the perspective of planetary boundary layer turbulent mixing

    Science.gov (United States)

    Wei, Nan; Zhou, Liming; Dai, Yongjiu

    2017-07-01

    This study examines the effects of modeled planetary boundary layer (PBL) mixing on the simulated temperature diurnal cycle climatology over land in 20 CMIP5 models with AMIP simulations. When compared with observations, the magnitude of diurnal temperature range (DTR) is systematically underestimated over almost all land areas due to a widespread warm bias of daily minimum temperature (Tmin) and mostly a cold bias of daily maximum temperature (Tmax). Analyses of the CMIP5 multi-model ensemble means suggest that the biases of the simulated PBL mixing could very likely contribute to the temperature biases. For the regions with the cold bias in Tmax, the daytime PBL mixing is generally underestimated. The consequent more dry air entrainment from the free atmosphere could help maintain the surface humidity gradient, and thus produce more surface evaporation and potentially lower the Tmax. The opposite situation holds true for the regions with the warm bias of Tmax. This mechanism could be particularly applicable to the regions with moderate and wet climate conditions where surface evaporation depends more on the surface humidity gradient, but less on the available soil moisture. For the widespread warm bias of Tmin, the widely-recognized overestimated PBL mixing at nighttime should play a dominant role by transferring more heat from the atmosphere to the near-surface to warm the Tmin. Further analyses using the high resolution CFMIP2 output also support the CMIP5 results about the connections of the biases between the simulated turbulent mixing and the temperature diurnal cycle. The large inter-model variations of the simulated temperature diurnal cycle primarily appear over the arid and semi-arid regions and boreal arctic regions where the model differences in the PBL turbulence mixing could make equally significant contributions to the inter-model variations of DTR, Tmax and Tmin compared to the model differences in surface radiative processes. These results

  10. Arrangement of scale-interaction and large-scale modulation in high Reynolds number turbulent boundary layers

    Science.gov (United States)

    Baars, Woutijn J.; Hutchins, Nicholas; Marusic, Ivan

    2015-11-01

    Interactions between small- and large-scale motions are inherent in the near-wall dynamics of wall-bounded flows. We here examine the scale-interaction embedded within the streamwise velocity component. Data were acquired using hot-wire anemometry in ZPG turbulent boundary layers, for Reynolds numbers ranging from Reτ ≡ δUτ / ν ~ 2800 to 22800. After first decomposing velocity signals into contributions from small- and large-scales, we then represent the time-varying small-scale energy with time series of its instantaneous amplitude and instantaneous frequency, via a wavelet-based method. Features of the scale-interaction are inferred from isocorrelation maps, formed by correlating the large-scale velocity with its concurrent small-scale amplitude and frequency. Below the onset of the log-region, the physics constitutes aspects of amplitude modulation and frequency modulation. Time shifts, associated with the correlation extrema--representing the lead/lag of the small-scale signatures relative to the large-scales--are shown to be governed by inner-scaling. Wall-normal trends of time shifts are explained by considering the arrangement of scales in the log- and intermittent-regions, and how they relate to stochastic top-down and bottom-up processes.

  11. Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow

    Science.gov (United States)

    Bonness, William K.; Capone, Dean E.; Hambric, Stephen A.

    2010-09-01

    The response of a structure to turbulent boundary layer (TBL) excitation has been an area of research for roughly 50 years, although uncertainties persist surrounding the low-wavenumber levels of the TBL surface pressure spectrum. In this experimental investigation, a cylindrical shell with a smooth internal surface is subjected to TBL excitation from water in fully developed pipe flow. The cylinder's vibration response to this excitation is used to determine low-wavenumber TBL surface pressure levels at lower streamwise wavenumbers than previously reported ( k1/ k cJournal of Sound and Vibration 112(1) (1987) 125-147] and is roughly 23 dB lower than an early TBL model by Corcos [ Journal of the Acoustical Society of America 35(2) (1963) 192-198]. The current data is a few decibels below the lower bound of related measurements in air by Farabee and Geib [ ICIASF '75 Record, 1975, pp. 311-319] and Martin and Leehey [ Journal of Sound and Vibration 52(1) (1977) 95-120]. A simple wavenumber white form for the TBL surface pressure spectrum at low-wavenumber is suggested.

  12. Turbulent diffusion downstream of a linear heat source installed in a turbulent boundary layer; Diffusion turbulente en aval d`une source lineaire de chaleur placee dans une couche limite turbulente

    Energy Technology Data Exchange (ETDEWEB)

    El Kabiri, M.; Paranthoen, P.; Rosset, L.; Lecordier, J.C. [Rouen Univ., 76 - Mont-Saint-Aignan (France)

    1997-12-31

    An experimental study of heat transport downstream of a linear source installed in a turbulent boundary layer is performed. Second and third order momenta of velocity and temperature fields are presented and compared to gradient-type modeling. (J.S.) 7 refs.

  13. A computer program for two-dimensional and axisymmetric nonreacting perfect gas and equilibrium chemically reacting laminar, transitional and-or turbulent boundary layer flows

    Science.gov (United States)

    Miner, E. W.; Anderson, E. C.; Lewis, C. H.

    1971-01-01

    A computer program is described in detail for laminar, transitional, and/or turbulent boundary-layer flows of non-reacting (perfect gas) and reacting gas mixtures in chemical equilibrium. An implicit finite difference scheme was developed for both two dimensional and axisymmetric flows over bodies, and in rocket nozzles and hypervelocity wind tunnel nozzles. The program, program subroutines, variables, and input and output data are described. Also included is the output from a sample calculation of fully developed turbulent, perfect gas flow over a flat plate. Input data coding forms and a FORTRAN source listing of the program are included. A method is discussed for obtaining thermodynamic and transport property data which are required to perform boundary-layer calculations for reacting gases in chemical equilibrium.

  14. Periodic bedforms generated by sublimation on terrestrial and martian ice sheets under the influence of the turbulent atmospheric boundary layer

    Science.gov (United States)

    Bordiec, Maï; Carpy, Sabrina; Perret, Laurent; Bourgeois, Olivier; Massé, Marion

    2017-04-01

    The redistribution of surface ice induced the wind flow may lead to the development and migration of periodic bedforms, or "ice ripples", at the surface of ice sheets. In certain cold and dry environments, this redistribution need not involve solid particle transport but may be dominated by sublimation and condensation, inducing mass transfers between the ice surface and the overlying steady boundary layer turbulent flow. These mass transfers diffuse the water vapour sublimated from the ice into the atmosphere and become responsible for the amplification and propagation of ripples in a direction perpendicular to their crests. Such ice ripples, 24 cm in wavelength, have been described in the so-called Blue Ice Areas of Antarctica. In order to understand the mechanisms that generate and develop these periodic bedforms on terrestrial glaciers and to evaluate the plausibility that similar bedforms may develop on Mars, we performed a linear stability analysis applied to a turbulent boundary layer flow perturbed by a wavy ice surface. The model is developed as follow. We first solve the flow dynamics using numerical methods analogous to those used in sand wave models assuming that the airflow is similar in both problems. We then add the transport/diffusion equation of water vapour following the same scheme. We use the Reynolds-averaged description of the equation with a Prandtl-like closure. We insert a damping term in the exponential formula of the Van Driest mixing length, depending on the pressure gradient felt by the flow and related to the thickness of the viscous sublayer at the ice-atmosphere interface. This formulation is an efficient way to properly represent the transitional regime under which the ripples grow. Once the mass flux of water vapour is solved, the phase shift between the ripples crests and the maximum of the flux can be deduced for different environments. The temporal evolution of the ice surface can be expressed from these quantities to infer the

  15. RETRACTED ARTICLE: Validation of mean and turbulent parameters measured from the aircraft in the marine atmospheric boundary layer

    Science.gov (United States)

    Kwon, Byung Hyuk; Lee, Gyuwon

    2010-11-01

    The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés Océaniques/ Recherche Expérimentale) experiment, which took place between 04 Oct. and 17 Nov. 1993, was conducted over the oceanic Azores current located in the Azores basin. The SST (Sea Surface Temperature) field was characterized in the SEMAPHORE area (31°-38°N; 21°-28°W) by a large meander with a SST gradient of about 1°C per 100 km. In order to study the evolution of the MABL (Marine Atmospheric Boundary Layer) over the ocean, the mean and the turbulent data were evaluated by the measurement with two aircraft and a ship in different meteorological conditions. Three cases of low pressure and three cases of high pressure are mainly presented here. For the six cases, the satellite images (NOAA) did not show any relation between the SST field and the cloud cover. At each flight level, the decrease of the SST with the altitude due to the divergence of the infrared radiation flux from the ocean is 0.25°C per 100 m. For the comparison between the two aircraft, the mean thermodynamic and dynamic parameters show a good agreement except for the temperature. The dispersion of the sensible heat flux is larger than that of the latent heat flux due to the weak sensible heat flux over the ocean both in the intercomparison between two aircraft and in the comparison between the aircraft and the ship.

  16. On Parametric Sensitivity of Reynolds-Averaged Navier-Stokes SST Turbulence Model: 2D Hypersonic Shock-Wave Boundary Layer Interactions

    Science.gov (United States)

    Brown, James L.

    2014-01-01

    Examined is sensitivity of separation extent, wall pressure and heating to variation of primary input flow parameters, such as Mach and Reynolds numbers and shock strength, for 2D and Axisymmetric Hypersonic Shock Wave Turbulent Boundary Layer interactions obtained by Navier-Stokes methods using the SST turbulence model. Baseline parametric sensitivity response is provided in part by comparison with vetted experiments, and in part through updated correlations based on free interaction theory concepts. A recent database compilation of hypersonic 2D shock-wave/turbulent boundary layer experiments extensively used in a prior related uncertainty analysis provides the foundation for this updated correlation approach, as well as for more conventional validation. The primary CFD method for this work is DPLR, one of NASA's real-gas aerothermodynamic production RANS codes. Comparisons are also made with CFL3D, one of NASA's mature perfect-gas RANS codes. Deficiencies in predicted separation response of RANS/SST solutions to parametric variations of test conditions are summarized, along with recommendations as to future turbulence approach.

  17. Proceedings of the 17th and 18th NAL Workshops on Investigation and Control of Boundary-Layer Transition

    OpenAIRE

    National Aerospace Laboratory; 航空宇宙技術研究所

    1996-01-01

    The following topics were discussed: vortex shedding, laminar boundary layer measurement, vortex ring, turbulent flow measurement, high Reynolds number turbulence, pulsed flow, boundary layer instability, Ekman boundary layer, sound receptivity, Tollmien-Schlichting wave in supersonic boundary layer, flow field instability, turbulent flow pattern, vorticity distribution in shear flow, turbulence wedge, streamwise vortex mixing, thermal convection, oblique wave generation in boundary layer, in...

  18. Boundary Plasma Turbulence Simulations for Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X; Umansky, M; Dudson, B; Snyder, P

    2008-05-15

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  19. Understanding and representing the effect of wind shear on the turbulent transfer in the convective boundary layer

    NARCIS (Netherlands)

    Ronda, R.J.; Steeneveld, G.J.; Holtslag, A.A.M.

    2012-01-01

    The proper forecasting of the occurrence of radiation fog is still one of the challenging topics in boundary-layer meteorology, despite its high societal importance like for aviation and road traffic. In fact radiation fog depends on many processes that all critically interact on relatively short

  20. Effects of Blade Boundary Layer Transition and Daytime Atmospheric Turbulence on Wind Turbine Performance Analyzed with Blade-Resolved Simulation and Field Data

    Science.gov (United States)

    Nandi, Tarak Nath

    Relevant to utility scale wind turbine functioning and reliability, the present work focuses on enhancing our understanding of wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and rotating blades of a GE 1.5 MW wind turbine using a unique data set from a GE field experiment and computer simulations at two levels of fidelity. Previous studies have shown that the stability state of the lower troposphere has a major impact on the coherent structure of the turbulence eddies, with corresponding differences in wind turbine loading response. In this study, time-resolved aerodynamic data measured locally at the leading edge and trailing edge of three outer blade sections on a GE 1.5 MW wind turbine blade and high-frequency SCADA generator power data from a daytime field campaign are combined with computer simulations that mimic the GE wind turbine within a numerically generated atmospheric boundary layer (ABL) flow field which is a close approximation of the atmospheric turbulence experienced by the wind turbine in the field campaign. By combining the experimental and numerical data sets, this study describes the time-response characteristics of the local loadings on the blade sections in response to nonsteady nonuniform energetic atmospheric turbulence eddies within a daytime ABL which have spatial scale commensurate with that of the turbine blade length. This study is the first of its kind where actuator line and blade boundary layer resolved CFD studies of a wind turbine field campaign are performed with the motivation to validate the numerical predictions with the experimental data set, and emphasis is given on understanding the influence of the laminar to turbulent transition process on the blade loadings. The experimental and actuator line method data sets identify three important response time scales quantified at the blade location: advective passage of energy-dominant eddies (≈25 - 50 s), blade rotation (1P

  1. The effect of roughness of blunted nose of cone on the development of disturbances and laminar-turbulent transition in a hypersonic boundary layer

    Science.gov (United States)

    Gromyko, Yu.; Bountin, D.; Polivanov, P.; Sidorenko, A.; Maslov, A.

    2017-10-01

    The paper presents data on the effect of a distributed roughness of the blunted nose of the cone on the position of the laminar-turbulent transition. The studies were carried out at Mach number 5.95. It is found that the position of the roughness plays an important role in the transition process, it is obtained that the roughness has the greatest effect on the transition when applied to an angle Θ ≈ 90 °. It was found that the presence of a roughness on the nose of the model, even at subcritical Reynolds numbers, affects the pulsation processes in the boundary layer.

  2. Plasma Waves Observed in the Cusp Turbulent Boundary Layer: An Analysis of High Time Resolution Wave and Particle Measurements from the Polar Spacecraft

    Science.gov (United States)

    Pickett, J. S.; Franz, J. R.; Scudder, J. D.; Menietti, J. D.; Gurnett, D. A.; Hospodarsky, G. B.; Braunger, R. M.; Kintner, P. M.; Kurth, W. S.

    2001-01-01

    The boundary layer located in the cusp and adjacent to the magnetopause is a region that is quite turbulent and abundant with waves. The Polar spacecraft's orbit and sophisticated instrumentation are ideal for studying this region of space. Our analysis of the waveform data obtained in this turbulent boundary layer shows broadband magnetic noise extending up to a few kilohertz (but less than the electron cyclotron frequency); sinusoidal bursts (a few tenths of a second) of whistler mode waves at around a few tens of hertz, a few hundreds of hertz, and just below the electron cyclotron frequency; and bipolar pulses, interpreted as electron phase-space holes. In addition, bursts of electron cyclotron harmonic waves are occasionally observed with magnetic components. We show evidence of broadband electrostatic bursts covering a range of approx. 3 to approx. 25 kHz (near but less than the plasma frequency) occurring in packets modulated at the frequency of some of the whistler mode waves. On the basis of high time resolution particle data from the Polar HYDRA instrument, we show that these bursts are consistent with generation by the resistive medium instability. The most likely source of the whistler mode waves is the magnetic reconnection site closest to the spacecraft, since the waves are observed propagating both toward and away from the Earth, are bursty, which is often the case with reconnection, and do not fit on the theoretical cold plasma dispersion relation curve.

  3. Experiments on the turbulent boundary layer on a thin cylinder rotating in an axial flow. 3rd Report. Turbulent energy budget for each velocity component and cross-spectrum; Jikuryuchu no saicho kaiten entojo no ranryu kyokaiso no jikken. 3. Hendo seibun energy no shushi to cross supekutoru

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, S.; Inoue, Y. [Gifu University, Gifu (Japan). Faculty of Engineering; Yano, H. [Daido Institute of Technology, Nagoya (Japan)

    1998-10-25

    This study is concerned with the turbulent structure of three-dimensional boundary layer on a thin cylinder rotating in a uniform stream. A ratio of the turbulent shear-stress to the turbulent intensity, that is, a structure parameter, is significantly larger than the turbulent boundary layer on a stationary cylinder which has nearly the same value as in two-dimensional turbulent boundary layer. Terms appearing in the equations for the turbulent energy of each component of fluctuating velocities are estimated, and their roles in the energy budgets in this boundary layer are clarified. Particularly, the importance of redistribution terms and exchange terms between v- and w-energy is reconfirmed. Cross-spectra between u*- and w-fluctuating velocities are examined across the boundary layer. The distribution of co-spectra and quad-spectra (i.e., the real and imaginary parts of the cross-spectra respectively) shows the existence of large-scale organized structure in this turbulent boundary layer. 12 refs., 8 figs.

  4. LES of Scalar transport in a turbulent katabatic flow along a curved slope in the context of stably stratified atmospheric boundary layer.

    Science.gov (United States)

    Brun, Christophe; Chollet, Jean Pierre

    2010-05-01

    The behaviour of the Atmospheric Boundary layer (ABL) along alpine valleys is strongly dependent on the day-night thermodynamic cycle and might impact meteorology and air pollution prediction. At night, the ABL is stably stratified and the radiative cooling of the surface yields the development of a katabatic flow. This flow consists of a downslope wall-jet which has the structure of both wall turbulence in the inner-layer zone and shear layer turbulence in the outer-layer zone and enhances a relative mixing eventhough stable stratification is considered. A full 3D description of such flow by mean of Large Eddy Simulation of turbulence (LES) has not yet been achieved, except recently on relatively simple slopes (Skyllingstad 2003, Fedorovith and Shapiro 2009) or including geostrophic wind forcing (Cuxart et al. 2006, Cuxart and Jimenez 2006). This is the purpose of the present study to accurately describe the ABL on a curved slope with stable stratification, including passive scalar transport. The numerical code used, Meso-NH, has been developed in CNRM/Meteo-France and Laboratoire d'Aérologie Toulouse, and consists of an anelastic non-hydrostatic model solving the pseudo-incompressible Navier-Stokes equations. About 5 million grid points are necessary to afford a relatively precise description of the flow in the vicinity of the ground surface, with a special refinement down to 1 m in the vertical direction to capture the wall-jet developing along the slope. The setting of initial and boundary conditions is crucial for the simulation of stable ABL. Initial conditions consist of air at rest following a stable temperature profile with a constant Brunt-Väisälä frequency 0.01boundary condition with a roughness length of r=35 cm is applied as no-slip condition. A constant surface cooling -30 W/m2 < qw < -10 W/m2 is applied on the stably stratified fluid initially at rest, which generates a katabatic downslope flow along the bottom surface

  5. Experimental investigation of wave boundary layer

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2003-01-01

    A review is presented of experimental investigation of wave boundary layer. The review is organized in six main sections. The first section describes the wave boundary layer in a real-life environment and its simulation in the laboratory in an oscillating water tunnel and in a water tank...... with an oscillating seabed. A brief account is given of measured quantities, measurement techniques (LDA, PIV, flow visualization) and limitations/constraints in the experimental investigation of the wave boundary layer in the laboratory. The second section concentrates on uniform oscillating boundary layers...... with a smooth bed. The boundary layer process is described over the entire range of the Reynolds number (Re from practically nil to Re = O(107)), from the laminar regime to the transitional regime and to the fully developed turbulent regime. The third section focuses on the effect of the boundary roughness...

  6. Investigation of Turbulence Parametrization Schemes with Reference to the Atmospheric Boundary Layer Over the Aegean Sea During Etesian Winds

    Science.gov (United States)

    Dandou, A.; Tombrou, M.; Kalogiros, J.; Bossioli, E.; Biskos, G.; Mihalopoulos, N.; Coe, H.

    2017-08-01

    The spatial structure of the marine atmospheric boundary layer (MABL) over the Aegean Sea is investigated using the Weather Research and Forecasting (WRF) mesoscale model. Two `first-order' non-local and five `1.5-order' local planetary boundary-layer (PBL) parametrization schemes are used. The predictions from the WRF model are evaluated against airborne observations obtained by the UK Facility for Airborne Atmospheric Measurements BAe-14 research aircraft during the Aegean-GAME field campaign. Statistical analysis shows good agreement between measurements and simulations especially at low altitude. Despite the differences between the predicted and measured wind speeds, they reach an agreement index of 0.76. The simulated wind-speed fields close to the surface differ substantially among the schemes (maximum values range from 13 to 18 m s^{-1} at 150-m height), but the differences become marginal at higher levels. In contrast, all schemes show similar spatial variation patterns in potential temperature fields. A warmer (1-2 K) and drier (2-3 g kg^{-1}) layer than is observed, is predicted by almost all schemes under stable conditions (eastern Aegean Sea), whereas a cooler (up to 2 K) and moister (1-2 g kg^{-1}) layer is simulated under near-neutral to nearly unstable conditions (western Aegean Sea). Almost all schemes reproduce the vertical structure of the PBL and the shallow MABL (up to 300 m) well, including the low-level jet in the eastern Aegean Sea, with non-local schemes being closer to observations. The simulated PBL depths diverge (up to 500 m) due to the different criteria applied by the schemes for their calculation. Under stable conditions, the observed MABL depth corresponds to the height above the sea surface where the simulated eddy viscosity reaches a minimum; under neutral to slightly unstable conditions this is close to the top of the simulated entrainment layer. The observed sensible heat fluxes vary from -40 to 25 W m^{-2}, while the simulated

  7. The Statistical Distribution of Turbulence Driven Velocity Extremes in the Atmosperic Boundary Layer cartwright/Longuet-Higgins Revised

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    2007-01-01

    " distribution, Cartwright and Longuet-Higgens [1] derived an asymptotic expression for the distribution of the largest excursion from the mean level during an arbitrary recurrence period. From its inception, this celebrated expression has been widely used in wind engineering (as well as in off-shore engineering...... excursions by more than one decade, which is obviously unfortunate in relation to modelling of an asymptotic extreme distribution based on a Gaussian "mother" distribution. The potential problems with applying the Cartwright/Longuet-Higgens distribution to describe extreme gust events, related to wind speeds...... as simple functions of the basic parameters characterizing the stochastic wind speed process in the atmospheric boundary layer. Finally, model predictions of the derived model are compared to predictions from the Cartwright/Longuet-Higgens model as well as to results derived from full-scale measurements...

  8. A barotropic planetary boundary layer

    Science.gov (United States)

    Yordanov, D.; Syrakov, D.; Djolov, G.

    1983-04-01

    The temperature and wind profiles in the planetary boundary layer (PBL) are investigated. Assuming stationary and homogeneous conditions, the turbulent state in the PBL is uniquely determined by the external Rossby number and the stratification parameters. In this study, a simple two-layer barotropic model is proposed. It consists of a surface (SL) and overlying Ekman-type layer. The system of dynamic and heat transfer equations is closed using K theory. In the SL, the turbulent exchange coefficient is consistent with the results of similarity theory while in the Ekman layer, it is constant. Analytical solutions for the wind and temperature profiles in the PBL are obtained. The SL and thermal PBL heights are properly chosen functions of the stratification so that from the solutions for wind and temperature, the PBL resistance laws can be easily deduced. The internal PBL characteristics necessary for the calculation (friction velocity, angle between surface and geostrophic winds and internal stratification parameter) are presented in terms of the external parameters. Favorable agreement with experimental data and model results is demonstrated. The simplicity of the model allows it to be incorporated in large-scale weather prediction models as well as in the solution of various other meteorological problems.

  9. The Ocean Boundary Layer beneath Hurricane Frances

    Science.gov (United States)

    Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.

    2006-12-01

    The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.

  10. A Coordinate Transformation for Unsteady Boundary Layer Equations

    Directory of Open Access Journals (Sweden)

    Paul G. A. CIZMAS

    2011-12-01

    Full Text Available This paper presents a new coordinate transformation for unsteady, incompressible boundary layer equations that applies to both laminar and turbulent flows. A generalization of this coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently derived. In addition, the boundary layer equations are derived using a time linearization approach and assuming harmonically varying small disturbances.

  11. Thermophoretically enhanced mass transport rates to solid and transpiration-cooled walls across turbulent (law-of-the-wall) boundary layers

    Science.gov (United States)

    Gokoglu, Suleyman A.; Rosner, Daniel E.

    1985-01-01

    Convective-diffusion mass transfer rate predictions are made for both solid wall and transpiration-cooled 'law-of-the-wall' nonisothermal turbulent boundary layers (TBLs), including the mechanism of thermophoresis, i.e., small particle mass transport 'down a temperature gradient'. The present calculations are confined to low mass-loading situations but span the entire particle size range from vapor molecules to particles near the onset of inertial ('eddy') impaction. It is shown that, when Sc is much greater than 1, thermophoresis greatly increases particle deposition rates to internally cooled solid walls, but only partially offsets the appreciable reduction in deposition rates associated with dust-free gas-transpiration-cooled surfaces. Thus, efficient particle sampling from hot dusty gases can be carried out using transpiration 'shielded' probe surfaces.

  12. Turbulence kinetic energy budget during the afternoon transition - Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days

    Science.gov (United States)

    Nilsson, Erik; Lohou, Fabienne; Lothon, Marie; Pardyjak, Eric; Mahrt, Larry; Darbieu, Clara

    2016-07-01

    The decay of turbulence kinetic energy (TKE) and its budget in the afternoon period from midday until zero-buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign for 10 intensive observation period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and mesoscale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near-surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near-surface production of TKE is compensated for by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of -0.69 was found for the afternoon period. For comparison with previous results, the TKE budget terms are normalized with

  13. The effect of small angle of attack on the laminar-turbulent transition in boundary layer on swept wing at Mach number M=2

    Science.gov (United States)

    Semionov, N. V.; Yermolaev, Yu. G.; Kosinov, A. D.; Semenov, A. N.; Smorodsky, B. V.; Yatskikh, A. A.

    2017-10-01

    The paper is devoted to an experimental and theoretical study of effect of small angle of attack on disturbances evolution and laminar-turbulent transition in a supersonic boundary layer on swept wing at Mach number M=2. The experiments are conducted at the low nose supersonic wind tunnel T-325 of ITAM. Model is a symmetrical wing with a 45° sweep angle, a 3 percent-thick circular-arc airfoil. The transition location is determined using a hot-wire anemometer. Confirmed monotonous growth of the transition Reynolds numbers with increasing of angle of attack from -2° to 2.5°. The experimental data on the influence of the angle of attack on the disturbances evolution in the supersonic boundary layer on the swept wing model are obtained. Calculations on the effect of small angles of attack on the development of perturbations are made in the framework of the linear theory of stability. A good qualitative correspondence of theoretical and experimental data are obtained.

  14. Role of residual layer and large-scale phenomena on the evolution of the boundary layer

    NARCIS (Netherlands)

    Blay, E.; Pino, D.; Vilà-Guerau de Arellano, J.; Boer, van de A.; Coster, de O.; Faloona, I.; Garrouste, O.; Hartogensis, O.K.

    2012-01-01

    Mixed-layer theory and large-eddy simulations are used to analyze the dynamics of the boundary layer on two intensive operational periods during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign: 1st and 2nd of July 2011, when convective boundary layers (CBLs) were observed.

  15. Viscous drag reduction in boundary layers

    Science.gov (United States)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  16. Modelling turbulent boundary layer flow over fractal-like multiscale terrain using large-eddy simulations and analytical tools

    Science.gov (United States)

    Yang, X. I. A.; Meneveau, C.

    2017-03-01

    In recent years, there has been growing interest in large-eddy simulation (LES) modelling of atmospheric boundary layers interacting with arrays of wind turbines on complex terrain. However, such terrain typically contains geometric features and roughness elements reaching down to small scales that typically cannot be resolved numerically. Thus subgrid-scale models for the unresolved features of the bottom roughness are needed for LES. Such knowledge is also required to model the effects of the ground surface `underneath' a wind farm. Here we adapt a dynamic approach to determine subgrid-scale roughness parametrizations and apply it for the case of rough surfaces composed of cuboidal elements with broad size distributions, containing many scales. We first investigate the flow response to ground roughness of a few scales. LES with the dynamic roughness model which accounts for the drag of unresolved roughness is shown to provide resolution-independent results for the mean velocity distribution. Moreover, we develop an analytical roughness model that accounts for the sheltering effects of large-scale on small-scale roughness elements. Taking into account the shading effect, constraints from fundamental conservation laws, and assumptions of geometric self-similarity, the analytical roughness model is shown to provide analytical predictions that agree well with roughness parameters determined from LES. This article is part of the themed issue 'Wind energy in complex terrains'.

  17. Modelling turbulent boundary layer flow over fractal-like multiscale terrain using large-eddy simulations and analytical tools.

    Science.gov (United States)

    Yang, X I A; Meneveau, C

    2017-04-13

    In recent years, there has been growing interest in large-eddy simulation (LES) modelling of atmospheric boundary layers interacting with arrays of wind turbines on complex terrain. However, such terrain typically contains geometric features and roughness elements reaching down to small scales that typically cannot be resolved numerically. Thus subgrid-scale models for the unresolved features of the bottom roughness are needed for LES. Such knowledge is also required to model the effects of the ground surface 'underneath' a wind farm. Here we adapt a dynamic approach to determine subgrid-scale roughness parametrizations and apply it for the case of rough surfaces composed of cuboidal elements with broad size distributions, containing many scales. We first investigate the flow response to ground roughness of a few scales. LES with the dynamic roughness model which accounts for the drag of unresolved roughness is shown to provide resolution-independent results for the mean velocity distribution. Moreover, we develop an analytical roughness model that accounts for the sheltering effects of large-scale on small-scale roughness elements. Taking into account the shading effect, constraints from fundamental conservation laws, and assumptions of geometric self-similarity, the analytical roughness model is shown to provide analytical predictions that agree well with roughness parameters determined from LES.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  18. Boundary-layer theory

    CERN Document Server

    Schlichting (Deceased), Hermann

    2017-01-01

    This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

  19. Instabilities and transition in boundary layers

    Indian Academy of Sciences (India)

    Abstract. Some recent developments in boundary layer instabilities and transition are reviewed. Background disturbance levels determine the instability mechanism that ulti- mately leads to turbulence. At low noise levels, the traditional Tollmien–Schlichting route is followed, while at high levels, a 'by-pass' route is more ...

  20. Experimental study of gas propagation in turbulent plate boundary layers with neutral and stable stratification for different surface roughness patterns. Experimentelle Untersuchung des Ausbreitungsverhaltens eines gasfoermigen Stoffes in neutral- und stabil-geschichteten turbulenten Plattengrenzschichten bei unterschiedlicher Bodenrauhigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Kerruth, M.

    1988-07-15

    The study investigates into the influence of stability and soil roughness on the dispersion of a gaseous substance in thermally stratified, turbulent balanced-pressure boundary layers. The simulation of atmospheric boundary layers in wind tunnels is tested and assessed critically with the help of a comparison of data on wind tunnels with atmospheric data. The transfer of impulses, heat and material in an atmospheric boundary layer flow is adequately reproduced in its structures in a wind tunnel. The wind tunnel experiment thus simulates turbulent transfer reliably. With this simulation system it is also possible to reproduce dispersion in the proximity of complicated geometrical structures. Specifically, material dispersion near buildings or building complexes which cannot be represented accurately by means of computer simulation can be studied reliably in the wind tunnel experiment, depending on soil roughness, stability and building geometry. (orig./KW).

  1. Vertical variations in the turbulent structure of the surface boundary layer over vineyards under unstable atmospheric conditions

    Science.gov (United States)

    Due to their highly-structured canopy, turbulent characteristics within and above vineyards, may not conform to those typically exhibited by other agricultural and natural ecosystems. Using data collected as a part of the Grape Remote sensing and Atmospheric Profiling and Evapotranspiration Experime...

  2. Influences on the Height of the Stable Boundary Layer as seen in LES

    Energy Technology Data Exchange (ETDEWEB)

    Kosovic, B; Lundquist, J

    2004-06-15

    Climate models, numerical weather prediction (NWP) models, and atmospheric dispersion models often rely on parameterizations of planetary boundary layer height. In the case of a stable boundary layer, errors in boundary layer height estimation can result in gross errors in boundary-layer evolution and in prediction of turbulent mixing within the boundary layer.

  3. CONVECTIVE HEAT AND MASS TRANSFER IN THE COMBUSTION OF CHEMICALLY ACTIVE SUBSTANCES IN THE BOUNDARY LAYER ON A POROUS SURFACE.

    Science.gov (United States)

    COOLING, *POROUS MATERIALS), (*HEAT TRANSFER, *COMBUSTION), (* MASS TRANSFER , COMBUSTION), CONVECTION(HEAT TRANSFER), GAS FLOW, INJECTION, CHEMICAL REACTIONS, LAMINAR BOUNDARY LAYER, TURBULENT BOUNDARY LAYER, THERMAL INSULATION, USSR

  4. Improving Boundary-layer Turbulence and Cloud Processes in CAM with a Higher-order Turbulence Closure Scheme and ASR Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kuan-Man [NASA Langley Research Center, Hampton, VA (United States); Cheng, Anning [NASA Langley Research Center, Hampton, VA (United States); Science Systems and Applications, Inc., Hampton, VA (United States)

    2015-11-24

    The intermediately-prognostic higher-order turbulence closure (IPHOC) introduces a joint double-Gaussian distribution of liquid water potential temperature (θl ), total water mixing ratio (qt), and vertical velocity (w) to represent any skewed turbulence circulation. The distribution is inferred from the first-, second-, and third-order moments of the variables given above, and is used to diagnose cloud fraction and gridmean liquid water mixing ratio, as well as the buoyancy term and fourth-order terms in the equations describing the evolution of the second- and third-order moments. Only three third-order moments, i.e., the triple moments of θl, qt, and w, are predicted in IPHOC.

  5. MST radar observations of turbulent altocumulus layers

    National Research Council Canada - National Science Library

    Worthington, R. M

    2015-01-01

    .... This study examines another type of turbulent layer, common but rarely studied. Aberystwyth Meso‐Strato‐Troposphere ( MST ) radar shows layers of turbulence where there is no unusual wind shear or breaking gravity waves...

  6. Spatiotemporal Variability of Turbulence Kinetic Energy Budgets in the Convective Boundary Layer over Both Simple and Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Raj K. [Pacific Northwest National Laboratory, Richland, Washington; Berg, Larry K. [Pacific Northwest National Laboratory, Richland, Washington; Pekour, Mikhail [Pacific Northwest National Laboratory, Richland, Washington; Shaw, William J. [Pacific Northwest National Laboratory, Richland, Washington; Kosovic, Branko [National Center for Atmospheric Research, Boulder, Colorado; Mirocha, Jeffrey D. [Lawrence Livermore National Laboratory, Livermore, California; Ennis, Brandon L. [Sandia National Laboratories, Albuquerque, New Mexico

    2017-12-01

    The assumption of sub-grid scale (SGS) horizontal homogeneity within a model grid cell, which forms the basis of SGS turbulence closures used by mesoscale models, becomes increasingly tenuous as grid spacing is reduced to a few kilometers or less, such as in many emerging high-resolution applications. Herein, we use the turbulence kinetic energy (TKE) budget equation to study the spatio-temporal variability in two types of terrain—complex (Columbia Basin Wind Energy Study [CBWES] site, north-eastern Oregon) and flat (ScaledWind Farm Technologies [SWiFT] site, west Texas) using the Weather Research and Forecasting (WRF) model. In each case six-nested domains (three domains each for mesoscale and large-eddy simulation [LES]) are used to downscale the horizontal grid spacing from 10 km to 10 m using the WRF model framework. The model output was used to calculate the values of the TKE budget terms in vertical and horizontal planes as well as the averages of grid cells contained in the four quadrants (a quarter area) of the LES domain. The budget terms calculated along the planes and the mean profile of budget terms show larger spatial variability at CBWES site than at the SWiFT site. The contribution of the horizontal derivative of the shear production term to the total production shear was found to be 45% and 15% of the total shear, at the CBWES and SWiFT sites, respectively, indicating that the horizontal derivatives applied in the budget equation should not be ignored in mesoscale model parameterizations, especially for cases with complex terrain with <10 km scale.

  7. The structure and development of streamwise vortex arrays embedded in a turbulent boundary layer. Ph.D. Thesis - Case Western Reserve Univ.

    Science.gov (United States)

    Wendt, Bruce J.; Greber, Isaac; Hingst, Warren R.

    1991-01-01

    An investigation of the structure and development of streamwise vortices embedded in a turbulent boundary layer was conducted. The vortices were generated by a single spanwise row of rectangular vortex generator blades. A single embedded vortex was examined, as well as arrays of embedded counter rotating vortices produced by equally spaced vortex generators. Measurements of the secondary velocity field in the crossplane provided the basis for characterization of vortex structure. Vortex structure was characterized by four descriptors. The center of each vortex core was located at the spanwise and normal position of peak streamwise vorticity. Vortex concentration was characterized by the magnitude of the peak streamwise vorticity, and the vortex strength by its circulation. Measurements of the secondary velocity field were conducted at two crossplane locations to examine the streamwise development of the vortex arrays. Large initial spacings of the vortex generators produced pairs of strong vortices which tended to move away from the wall region while smaller spacings produced tight arrays of weak vortices close to the wall. A model of vortex interaction and development is constructed using the experimental results. The model is based on the structure of the Oseen Vortex. Vortex trajectories are modelled by including the convective effects of neighbors.

  8. Simulations of Boundary Turbulence in Tokamak Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nevins, W M; Xu, X Q; Carlstrom, T N; Cohen, R H; Groebner, R; Jennings, T; LaBombard, B; Maqueda, R A; Mazurenko, A; McKee, G R; Moyer, R; Mossessian, D; Porkolab, M; Porter, G D; Rensink, M E; Rhodes, T L; Rognlien, T D; Rost, C; Snipes, J; Stotler, D P; Terry, J; Zweben, S

    2002-10-11

    Comparisons between the boundary plasma turbulence observed in the BOUT code and experiments on C-Mod, NSTX, and DIII-D are presented. BOUT is a 3D non-local electromagnetic turbulence simulation code which models boundary-plasma turbulence in a realistic divertor geometry using the modified Braginskii equations for plasma vorticity, density, the electron and ion temperatures and parallel momenta. Many features of the Quasi-Coherent (QC) mode, observed at high densities during enhanced D-alpha (EDA) H-Mode in Alcator C-Mod, are reproduced in BOUT simulations. The spatial structure of boundary plasma turbulence as observed by gas puff imaging (GPI) from discharges on NSTX and C-Mod are in general (NSTX) to good (CMod) agreement with BOUT simulations. Finally, BOUT simulations of DIII-D L-mode experiments near the Hmode transition threshold are in broad agreement with the experimental results.

  9. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  10. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere.

    Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  11. A `shoelace' antenna system for direct excitation of C-Mod's quasi-coherent mode and boundary layer turbulence

    Science.gov (United States)

    Labombard, B.; Golfinopoulos, T.; Parker, R.; Burke, W.; Leccacorvi, R.; Vieira, R.; Zaks, J.; Granetz, R.; Greenwald, M.; Marmar, E.; Porkolab, M.; Wolfe, S.; Woskov, P.; Wuktich, S.

    2011-10-01

    Experiments indicate that short wavelength, drift-Alfvenic turbulence largely sets the transport levels in the plasma edge: pressure gradients in L and H-mode are `clamped' at canonical values of the MHD parameter (αMHD) ; broadband and coherent fluctuations have strong magnetic signatures, with k⊥ρs ~ 0.1 being prominent. A quasi-coherent mode (50 kHz < f < 150 kHz, 1 < k⊥ < 2 cm-1) drives particle transport in C-Mod's EDA H-modes, making them steady-state without ELMs. With the idea of exciting, controlling or otherwise exploiting this transport behavior, we are developing a novel, high k⊥ antenna system to drive drift-Alfvenic modes at the outer midplane with k⊥ ~ 1.5 cm-1. A `shoelace' style winding is placed in close proximity to the last-closed flux surface. In principle, this scheme inductively drives parallel current fluctuations that mimic intrinsic plasma fluctuations but at larger amplitude. Details of the antenna system design, its planned modes of operation and initial results will be presented. Supported by USDoE award DE-FC02-99ER54512.

  12. Intermittent Turbulence in the Very Stable Ekman Layer

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, James C [Univ. of Washington, Seattle, WA (United States)

    2001-01-01

    This study describes a Direct Numerical Simulation (DNS) of a very stable Ekman layer in which a constant downward heat flux is applied at the lower boundary, thus cooling the fluid above. Numerical experiments were performed in which the strength of the imposed heat flux was varied. For downward heat fluxes above a certain critical value the turbulence becomes intermittent and, as the heat flux increases beyond this value, the flow tends to relaminarize because of the very strong ambient stratification. We adopt Mahrt?s (1999) definition of the very stable boundary layer as a boundary layer in which intermittent, rather than continuous turbulence, is observed. Numerical experiments were used to test various hypothesis of where in ?stability parameter space? the very stable boundary layer is found. These experiments support the findings of Howell and Sun (1999) that the boundary layer will exhibit intermittency and therefore be categorized as ?very stable?, when the stability parameter, z/L, exceeds unity. Another marker for the very stable boundary layer, Derbyshire?s (1990) maximum heat flux criterion, was also examined. Using a case study drawn from the simulations where turbulence intermittency was observed, the mechanism that causes the intermittence was investigated. It was found that patchy turbulence originates from a vigorous inflectional, Ekman-like instability -- a roll cell -- that lifts colder air over warmer air. The resulting convective instability causes an intense burst of turbulence. This turbulence is short-lived because the lifting motion of the roll cell, as well as the roll cell itself, is partially destroyed after the patchy turbulence is generated. Examples of intermittent turbulence obtained from the simulations appear to be consistent with observations of intermittency even though the Reynolds number of the DNS is relatively low (400).

  13. Observations and modeling of the effects of waves and rotors on submeso and turbulence variability within the stable boundary layer over central Pennsylvania

    Science.gov (United States)

    Suarez Mullins, Astrid

    Terrain-induced gravity waves and rotor circulations have been hypothesized to enhance the generation of submeso motions (i.e., nonstationary shear events with spatial and temporal scales greater than the turbulence scale and smaller than the meso-gamma scale) and to modulate low-level intermittency in the stable boundary layer (SBL). Intermittent turbulence, generated by submeso motions and/or the waves, can affect the atmospheric transport and dispersion of pollutants and hazardous materials. Thus, the study of these motions and the mechanisms through which they impact the weakly to very stable SBL is crucial for improving air quality modeling and hazard predictions. In this thesis, the effects of waves and rotor circulations on submeso and turbulence variability within the SBL is investigated over the moderate terrain of central Pennsylvania using special observations from a network deployed at Rock Springs, PA and high-resolution Weather Research and Forecasting (WRF) model forecasts. The investigation of waves and rotors over central PA is important because 1) the moderate topography of this region is common to most of the eastern US and thus the knowledge acquired from this study can be of significance to a large population, 2) there have been little evidence of complex wave structures and rotors reported for this region, and 3) little is known about the waves and rotors generated by smaller and more moderate topographies. Six case studies exhibiting an array of wave and rotor structures are analyzed. Observational evidence of the presence of complex wave structures, resembling nonstationary trapped gravity waves and downslope windstorms, and complex rotor circulations, resembling trapped and jump-type rotors, is presented. These motions and the mechanisms through which they modulate the SBL are further investigated using high-resolution WRF forecasts. First, the efficacy of the 0.444-km horizontal grid spacing WRF model to reproduce submeso and meso

  14. A global climatology of boundary layer ventilation

    Science.gov (United States)

    McNamara, David; Plant, Robert; Belcher, Stephen

    2013-04-01

    The general circulation pattern of the Earth's atmosphere is well known, however there has been relatively little effort to quantify the climatological effects of the buffer zone known as the atmospheric boundary layer. Turbulent motions in the atmospheric boundary layer act to mix the layer along with its constituent pollutants, below a temperature inversion which separates it from the free troposphere. Exchanges between the boundary layer and free troposphere can occur through the mechanisms of convection, isentropic uplift, and coastal and orographic venting. In particular the rate at which pollutants are removed from the atmosphere can be different depending on whether or not they are resident within the boundary layer or the free troposphere. Thus the limiting factor on the concentrations of, for example, certain eg NOx, pollutants in the free troposphere will be the rate at which they are vented from the boundary layer. A global climatology (spanning 10 years between 1995 and 2005) of boundary layer venting is presented here using the ERA-interim dataset which has a grid scale resolution of 0.7 degrees x 0.7 degrees. The boundary layer height is first calculated using a bulk Richardson number method and then an associated vertical velocity is found by linearly interpolating between the two model levels either side of the boundary layer height. This value along with the change in height of the boundary layer over a 3 hour period is used to give an estimate of the rate of venting. The climatology of this rate allows us to describe and quantify the areas of the globe that are responsible for boundary layer entrainment and boundary layer venting, which could be used as a basis for further comparisons with other suitable datasets. We will also present results for the climatology of the boundary layer height itself. [possibly? That could be attractive for a BL audience anyway] Furthermore we will present and discuss results from a method designed to isolate the

  15. Boundary-Layer & health

    Science.gov (United States)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  16. Hundred years of the boundary layer – Some aspects

    Indian Academy of Sciences (India)

    2005-08-02

    Aug 2, 2005 ... at the Third International Congress of Mathematics held in Heidelberg and published in the. Proceedings of the Congress ..... Work on boundary layers is going on in many organizations in India. The above ... Rao G N V 1967 The law of the wall in thick axisymmetric turbulent boundary layers. J. Appl. Mech.

  17. Coherent structures in wave boundary layers. Part 2. Solitary motion

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Jensen, Palle Martin; Sørensen, Lone B.

    2010-01-01

    This study continues the investigation of wave boundary layers reported by Carstensen, Sumer & Fredsøe (J. Fluid Mech., 2010, part 1 of this paper). The present paper summarizes the results of an experimental investigation of turbulent solitary wave boundary layers, simulated by solitary motion...

  18. Nature, theory and modelling of geophysical convective planetary boundary layers

    Science.gov (United States)

    Zilitinkevich, Sergej

    2015-04-01

    Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in

  19. Turbulence Fine Structure, Intermittency, and Large-Scale Interactions in the Stable Boundary Layer and Residual Layer: Correlative High-Resolution Measurements and Direct Numerical Simulations

    Science.gov (United States)

    2014-12-06

    with Numerical Modeling , Journal of the Atmospheric Sciences (10 2014) David C. Fritts, Ling Wang, Kam Wan, Marvin A. Geller , Dale A. Lawrence, Joe...Numerical modeling of multi-scale interactions, instabilities, and turbulence, J. Atmos. Sci., submitted. Wang, L., D. C. Fritts, and M. A. Geller ...intrusions. Comparisons of measurements and modeling revealed many similarities and enabled an 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13

  20. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  1. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    and its role in the fully turbulent boundary layer. The pressure in the flow is obtained from the flow fields of the oscillatory boundary layer. What differs, the vertical pressure gradient, from other turbulent quantities, like e.g. velocity fluctuations is that it can detect newly generated turbulence....... The experiment is conducted in a oscillating water tunnel, for both smooth bed and rough bed. The particle motion is determined by utilizing particle tracking base on a video recording of the particle motion in the flow. In the oscillatory flow, in contrast to steady current, the particle motion is a function...

  2. Turbulence and intermittent transport at the boundary of magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2005-01-01

    Numerical fluid simulations of interchange turbulence for geometry and parameters relevant to the boundary region of magnetically confined plasmas are shown to result in intermittent transport qualitatively similar to recent experimental measurements. The two-dimensional simulation domain features...... a forcing region with spatially localized sources of particles and heat outside which losses due to the motion along open magnetic-field lines dominate, corresponding to the edge region and the scrape-off layer, respectively. Turbulent states reveal intermittent eruptions of hot plasma from the edge region...

  3. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    Science.gov (United States)

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  4. Boundary Layer Control on Airfoils.

    Science.gov (United States)

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  5. The laminar boundary layer equations

    CERN Document Server

    Curle, N

    2017-01-01

    Thorough introduction to boundary layer problems offers an ordered, logical presentation accessible to undergraduates. The text's careful expositions of the limitations and accuracy of various methods will also benefit professionals. 1962 edition.

  6. Statistical analysis of high order moments is a turbulent boundary layer with strong density differences; Analyse statistique des moments d'ordre eleve dans une couche limite turbulente en presence de differences de densite importantes

    Energy Technology Data Exchange (ETDEWEB)

    Soudani, A. [Batna Univ., Dept. de Physique, Faculte des Sciences (Algeria); Bessaih, R. [Mentouri-Constantine Univ., Dept. de Genie Mecanique, Faculte des Sciences de l' Ingenieur (Algeria)

    2004-12-01

    The study of turbulent boundary layer with strong differences of density is important for the understanding of practical situations occurring for example in the cooling of turbine blades through the tangential injection of a different gas or in combustion. In order to study the fine structure of wall turbulence in the presence of significant variations of density, a statistical analysis of the experimental data, obtained in a wind tunnel, is carried out. The results show that the relaxation of the skewness factor of u'(S{sub u'}) is carried out more quickly in the external layer than close to the wall, as well for the air injection as for the helium injection. S{sub u'} grows close to the injection slot in an appreciable way and this increase is accentuated for the air injection than for the helium injection. This growth of the skewness factor close to the injection slot can be explained by the increase in the longitudinal convective flux of turbulent energy in this zone. The results show for the distribution of the flatness factor F{sub u'} that there is no significant effect of the density gradient on the intermittent structure of the instantaneous longitudinal velocity in the developed zone, x/{delta} {>=} 5. The statistical analysis carried out in this study shows that the helium injection in the boundary layer generates more violent ejections than in the case of air injection. This result is confirmed by the significant contribution of the ejections to turbulent mass flux.

  7. Orbiter Boundary Layer Transition Prediction Tool Enhancements

    Science.gov (United States)

    Berry, Scott A.; King, Rudolph A.; Kegerise, Michael A.; Wood, William A.; McGinley, Catherine B.; Berger, Karen T.; Anderson, Brian P.

    2010-01-01

    Updates to an analytic tool developed for Shuttle support to predict the onset of boundary layer transition resulting from thermal protection system damage or repair are presented. The boundary layer transition tool is part of a suite of tools that analyze the local aerothermodynamic environment to enable informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each d agmea site or repair, the expected time (and thus Mach number) of transition onset is predicted to help define proper environments for use in subsequent thermal and stress analysis of the thermal protection system and structure. The boundary layer transition criteria utilized within the tool were updated based on new local boundary layer properties obtained from high fidelity computational solutions. Also, new ground-based measurements were obtained to allow for a wider parametric variation with both protuberances and cavities and then the resulting correlations were calibrated against updated flight data. The end result is to provide correlations that allow increased confidence with the resulting transition predictions. Recently, a new approach was adopted to remove conservatism in terms of sustained turbulence along the wing leading edge. Finally, some of the newer flight data are also discussed in terms of how these results reflect back on the updated correlations.

  8. Active control of ionized boundary layers

    CERN Document Server

    Mendes, R V

    1997-01-01

    The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.

  9. A global boundary-layer height climatology

    Energy Technology Data Exchange (ETDEWEB)

    Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)

    1997-10-01

    In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)

  10. 3D critical layers in fully-developed turbulent flows

    Science.gov (United States)

    Saxton-Fox, Theresa; McKeon, Beverley

    2016-11-01

    Recent work has shown that 3D critical layers drive self-sustaining behavior of exact coherent solutions of the Navier-Stokes equations (Wang et al. 2007; Hall and Sherwin 2010; Park and Graham 2015). This study investigates the role of 3D critical layers in fully-developed turbulent flows. 3D critical layer effects are identified in instantaneous snapshots of turbulent boundary layers in both experimental and DNS data (Wu et al. 2014). Additionally, a 3D critical layer effect is demonstrated to appear using only a few resolvent response modes from the resolvent analysis of McKeon and Sharma 2010, with phase relationships appropriately chosen. Connections are sought to the thin shear layers observed in turbulent boundary layers (Klewicki and Hirschi 2004; Eisma et al. 2015) and to amplitude modulation observations (Mathis et al. 2009; Duvvuri and McKeon 2014). This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060. The support of the Center for Turbulence Research (CTR) summer program at Stanford is gratefully acknowledged.

  11. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  12. Helicity in the atmospheric boundary layer

    Science.gov (United States)

    Kurgansky, Michael; Koprov, Boris; Koprov, Victor; Chkhetiani, Otto

    2017-04-01

    An overview is presented of recent direct field measurements at the Tsimlyansk Scientific Station of A.M. Obukhov Institute of Atmospheric Physics in Moscow of turbulent helicity (and potential vorticity) using four acoustic anemometers positioned, within the atmospheric surface-adjacent boundary layer, in the vertices of a rectangular tetrahedron, with an approximate 5 m distance between the anemometers and a 5.5 m elevation of the tetrahedron base above the ground surface (Koprov, Koprov, Kurgansky and Chkhetiani. Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol.51, 565-575). The same ideology was applied in a later field experiment in Tsimlyansk with the tetrahedron's size of 0.7 m and variable elevation over the ground from 3.5 to 25 m. It is illustrated with examples of the statistical distribution of instantaneous (both positive and negative) turbulent helicity values. A theory is proposed that explains the measured mean turbulent helicity sign, including the sign of contribution to helicity from the horizontal and vertical velocity & vorticity components, respectively, and the sign of helicity buoyant production term. By considering a superposition of the classic Ekman spiral solution and a jet-like wind profile that mimics a shallow breeze circulation over a non-uniformly heated Earth surface, a possible explanation is provided, why the measured mean turbulent helicity sign is negative. The pronounced breeze circulation over the Tsimlyansk polygon which is located nearby the Tsimlyansk Reservoir was, indeed, observed during the measurements period. Whereas, essentially positive helicity is injected into the boundary layer from the free atmosphere in the Northern Hemisphere.

  13. Tropical cyclone boundary layer shocks

    OpenAIRE

    Slocum, Christopher J.; Williams, Gabriel J.; Taft, Richard K.; Wayne H. Schubert

    2014-01-01

    This paper presents numerical solutions and idealized analytical solutions of axisymmetric, $f$-plane models of the tropical cyclone boundary layer. In the numerical model, the boundary layer radial and tangential flow is forced by a specified pressure field, which can also be interpreted as a specified gradient balanced tangential wind field $v_{\\rm gr}(r)$ or vorticity field $\\zeta_{\\rm gr}(r)$. When the specified $\\zeta_{\\rm gr}(r)$ field is changed from one that is radially concentrated i...

  14. Characteristics of turbulent structures in the unstable atmospheric surface layer

    Science.gov (United States)

    Schols, J. L. J.; Jansen, A. E.; Krom, J. G.

    1985-10-01

    An atmospheric surface-layer (ASL) experiment conducted at a meteorological site in the Oostelijk-Flevoland polder of the Netherlands is described. Turbulent fluctuations of wind velocity, air temperature and static pressure were measured, using three 10 m towers. Simultaneous turbulent signals at several heights on the towers were used to investigate the properties of the turbulent structures which contribute most significantly to the turbulent vertical transports in the unstable ASL. These turbulent structures produce between 30 and 50% of the mean turbulent vertical transport of horizontal alongwind momentum and they contribute to between 40 and 50% of the mean turbulent vertical heat transport; in both cases this occurs during 15 to 20% of the total observation time. The translation speed of the turbulent structures equals the wind speed averaged over the depth of the ASL, which scales on the surface friction velocity. The inclination angle of the temperature interface at the upstream edge of the turbulent structures to the surface is significantly smaller than that of the internal shear layer, which is associated with the temperature interface. The turbulent structures in the unstable ASL are determined by a large-scale temperature field: Convective motions, which encompass the whole depth of the planetary boundary layer (PBL), penetrate into the ASL. The curvature of the vertical profile of mean horizontal alongwind velocity forces the alignment of the convective cells in the flow direction (Kuettner, 1971), which have an average length of several hundreds of metres and an average width of a few tens of metres. This mechanism leads to the formation of turbulent structures, which extend throughout the depth of the ASL.

  15. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime...

  16. Large Eddy Simulation of the ventilated wave boundary layer

    DEFF Research Database (Denmark)

    Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2006-01-01

    A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean bed shear stress...

  17. Prediction and rational correlation of thermophoretically reduced particle mass transfer to hot surfaces across laminar or turbulent forced-convection gas boundary layers

    Science.gov (United States)

    Gokoglu, Suleyman A.; Rosner, Daniel E.

    1986-01-01

    A formulation previously developed to predict and correlate the thermophoretically-augmented submicron particle mass transfer rate to cold surfaces is found to account for the thermophoretically reduced particle mass transfer rate to overheated surfaces such that thermophoresis brings about a 10-decade reduction below the convective mass transfer rate expected by pure Brownian diffusion and convection alone. Thermophoretic blowing is shown to produce effects on particle concentration boundary-layer (BL) structure and wall mass transfer rates similar to those produced by real blowing through a porous wall. The applicability of the correlations to developing BL-situations is demonstrated by a numerical example relevant to wet-steam technology.

  18. Turbulence

    CERN Document Server

    Bailly, Christophe

    2015-01-01

    This book covers the major problems of turbulence and turbulent processes, including  physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...

  19. Investigation of a reattaching turbulent shear layer Flow over a backward-facing step

    Science.gov (United States)

    Kim, J.; Kline, S. J.; Johnston, J. P.

    1979-01-01

    The paper studies incompressible flow over a backward-facing step in order to investigate the flow characteristics in the separated shear layer, the reattachment zone, and the redeveloping boundary layer after reattachment. It is shown that turbulent intensities and shear stress reach maxima in the reattachment zone, followed by rapid decay near the surface after reattachment. In addition, it is found that downstream of reattachment, the flow returns very slowly to the structure of an ordinary turbulent boundary layer.

  20. Effects of Local Circulations, Turbulent Internal Boundary Layers, and Elevated Industrial Plumes on Coastal Ozone Pollution in the Downwind Kaohsiung Urban-Industrial Complex

    Directory of Open Access Journals (Sweden)

    Yee-Lin Wu

    2010-01-01

    Full Text Available Linyuan (LY is a coastal station located down wind of the industrial city of Kaohsiung in southern Taiwan. This station is often affected by severe ozone pollution during sea breeze events. Intensive tethered ozone soundings were per formed at this station during a 4-day ozone episode in November, 2005. Back air trajectories were also calculated to track the origins of air masses arriving at the station during the experiment. The investigation revealed complicated ozone pro files in the lower at mo sphere (be low 1300 m both day and night. At night, industrial plumes forming no-ozone air layers were frequently distributed at 400 - 800 m. Mixing layers rapidly decreased from 800 - 1100 m down to 200 - 350 m in the late morning hours when sea breezes and thermal internal boundary layers (TIBLs developed. Recirculation of polluted in land air masses over the sea, the development of TIBLs, and the late development of sea-breeze events all are likely responsible for severe ozone pollution at the LY station. Elevated industrial plumes or ozone aloft above TIBLs revealed only aminor contribution to ozone pollution via a downward mixing process. Elevated ozone levels (140 - 170 ppb were of ten trapped within transitional layers of sea-breeze circulations at 600 - 800 m and were accompanied by ambient northerly flows parallel to the coast line, suggesting that an ozone pollution core likely formed over the west coast of Taiwan on ozone-episodic days when sea-breeze circulations developed.

  1. Modeling turbulent flows in the atmospheric boundary layer of Mars: application to Gale crater, Mars, landing site of the Curiosity rover

    Science.gov (United States)

    Anderson, William

    2017-04-01

    Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving).

  2. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    Science.gov (United States)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-inch diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a nominally-laminar boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a Blasius-like mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  3. Exploring Isothermal Layers in the Stable Atmospheric Boundary Layer

    Science.gov (United States)

    Wilkins, Joseph

    2011-03-01

    Simulating the stable atmospheric boundary-layer presents a significant challenge to numerical models due to the interactions of several processes with widely varying scales. The goal of this project is to more clearly define the cause of isothermal layers observed during the Meteorological Experiment in Arizona's Meteor Crater and to test the National Taiwan University/Purdue University (NTU/P) model in stable environments with complex terrain. The NTU/P model is able to utilize the actual terrain data with minimal smoothing for stability. We have found that isothermal profiles can be generated by the standing wave that develops due to weak wind flowing over the crater. However, the horizontal heterogeneity is greater than observed. Continued effort will explore enhancing horizontal mixing due to turbulence and radiative transfer. Louis Stokes Alliances for Minority Participation Program, Summer Research Opportunities Program.

  4. Fluid Mechanics and Heat Transfer in Transitional Boundary Layers

    Science.gov (United States)

    Wang, Ting

    2007-01-01

    Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.

  5. Pressure measurements in a rapidly sheared turbulent wall layer

    Science.gov (United States)

    Diwan, Sourabh; Morrison, Jonathan

    2014-11-01

    The aim of the present work is to improve understanding of the role of pressure fluctuations in the generation of coherent structures in wall-bounded turbulent flows, with particular regard to the rapid and slow source terms. The work is in part motivated by the recent numerical simulations of Sharma et al. (Phy. Fluids, 23, 2011), which showed the importance of pressure fluctuations (and their spatial gradients) in the dynamics of large-scale turbulent motions. Our experimental design consists of first generating a shearless boundary layer in a wind tunnel by passing a grid-generated turbulent flow over a moving floor whose speed is matched to the freestream velocity, and then shearing it rapidly by passing it over a stationary floor further downstream. Close to the leading edge of the stationary floor, the resulting flow is expected to satisfy the approximations of the Rapid Distortion Theory and therefore would be an ideal candidate for studying linear processes in wall turbulence. We carry out pressure measurements on the wall as well as within the flow - the former using surface mounted pressure transducers and the latter using a static pressure probe similar in design to that used by Tsuji et al. (J. Fluid. Mech. 585, 2007). We also present a comparison between the rapidly sheared flow and a more conventional boundary layer subjected to a turbulent free stream. We acknowledge the financial support from EPSRC (Grant No. EP/I037938).

  6. Entropy Generation in Steady Laminar Boundary Layers with Pressure Gradients

    Directory of Open Access Journals (Sweden)

    Donald M. McEligot

    2014-07-01

    Full Text Available In an earlier paper in Entropy [1] we hypothesized that the entropy generation rate is the driving force for boundary layer transition from laminar to turbulent flow. Subsequently, with our colleagues we have examined the prediction of entropy generation during such transitions [2,3]. We found that reasonable predictions for engineering purposes could be obtained for flows with negligible streamwise pressure gradients by adapting the linear combination model of Emmons [4]. A question then arises—will the Emmons approach be useful for boundary layer transition with significant streamwise pressure gradients as by Nolan and Zaki [5]. In our implementation the intermittency is calculated by comparison to skin friction correlations for laminar and turbulent boundary layers and is then applied with comparable correlations for the energy dissipation coefficient (i.e., non-dimensional integral entropy generation rate. In the case of negligible pressure gradients the Blasius theory provides the necessary laminar correlations.

  7. Turbulent entrainment in a strongly stratified barrier layer

    Science.gov (United States)

    Pham, H. T.; Sarkar, S.

    2017-06-01

    Large-eddy simulation (LES) is used to investigate how turbulence in the wind-driven ocean mixed layer erodes the stratification of barrier layers. The model consists of a stratified Ekman layer that is driven by a surface wind. Simulations at a wide range of N0/f are performed to quantify the effect of turbulence and stratification on the entrainment rate. Here, N0 is the buoyancy frequency in the barrier layer and f is the Coriolis parameter. The evolution of the mixed layer follows two stages: a rapid initial deepening and a late-time growth at a considerably slower rate. During the first stage, the mixed layer thickens to the depth that is proportional to u∗/fN0 where u∗ is the frictional velocity. During the second stage, the turbulence in the mixed layer continues to deepen further into the barrier layer, and the turbulent length scale is shown to scale with u∗/N0, independent of f. The late-time entrainment rate E follows the law of E=0.035Ri∗-1/2 where Ri∗ is the Richardson number. The exponent of -1/2 is identical but the coefficient of 0.035 is much smaller relative to the value of 2-3/2 for the nonrotating boundary layer. Simulations using the KPP model (version applicable to this simple case without additional effects of Langmuir turbulence or surface buoyancy flux) also yield the entrainment scaling of E∝Ri∗-1/2; however, the proportionality coefficient varies with the stratification. The structure of the Ekman current is examined to illustrate the strong effect of stratification in the limit of large N0/f.

  8. Turbulent Shear Layers in Supersonic Flow

    CERN Document Server

    Smits, Alexander J

    2006-01-01

    A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.

  9. Simulation of Boundary-Layer Cumulus and Stratocumulus Clouds using a Cloud-Resolving Model With Low- and Third-Order Turbulence Closures

    Science.gov (United States)

    Xu, Kuan-Man; Cheng, Anning

    2007-01-01

    The effects of subgrid-scale condensation and transport become more important as the grid spacings increase from those typically used in large-eddy simulation (LES) to those typically used in cloud-resolving models (CRMs). Incorporation of these effects can be achieved by a joint probability density function approach that utilizes higher-order moments of thermodynamic and dynamic variables. This study examines how well shallow cumulus and stratocumulus clouds are simulated by two versions of a CRM that is implemented with low-order and third-order turbulence closures (LOC and TOC) when a typical CRM horizontal resolution is used and what roles the subgrid-scale and resolved-scale processes play as the horizontal grid spacing of the CRM becomes finer. Cumulus clouds were mostly produced through subgrid-scale transport processes while stratocumulus clouds were produced through both subgrid-scale and resolved-scale processes in the TOC version of the CRM when a typical CRM grid spacing is used. The LOC version of the CRM relied upon resolved-scale circulations to produce both cumulus and stratocumulus clouds, due to small subgrid-scale transports. The mean profiles of thermodynamic variables, cloud fraction and liquid water content exhibit significant differences between the two versions of the CRM, with the TOC results agreeing better with the LES than the LOC results. The characteristics, temporal evolution and mean profiles of shallow cumulus and stratocumulus clouds are weakly dependent upon the horizontal grid spacing used in the TOC CRM. However, the ratio of the subgrid-scale to resolved-scale fluxes becomes smaller as the horizontal grid spacing decreases. The subcloud-layer fluxes are mostly due to the resolved scales when a grid spacing less than or equal to 1 km is used. The overall results of the TOC simulations suggest that a 1-km grid spacing is a good choice for CRM simulation of shallow cumulus and stratocumulus.

  10. A Note on the bottom shear stress in oscillatory planetary boundary layer flow

    Directory of Open Access Journals (Sweden)

    Dag Myrhaug

    1988-07-01

    Full Text Available A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974 measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.

  11. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar.

    Science.gov (United States)

    Banakh, V A; Smalikho, I N; Falits, A V

    2017-09-18

    The accuracy of the method of azimuth structure function for estimation of the dissipation rate of the kinetic energy of turbulence from an array of radial velocities measured by low-energy micropulse coherent Doppler lidars with conical scanning by a probing beam around the vertical axis has been studied numerically. The applicability of the method in dependence on the turbulence intensity and the signal-to-noise ratio has been determined. The method of azimuth structure function was applied for estimation of the turbulent energy dissipation rate from radial velocities measured by the lidar in the experiments on the coast of Lake Baikal. Two dimensional time-height patterns of the wind turbulence energy dissipation rate were obtained. Part of them were obtained in presence of the atmospheric internal waves (AIWs) and low-level jet streams. It is observed that the wind turbulence in the area occupied by jet streams is very weak. In the process of dissipation of AIWs the wind turbulence strength increases.

  12. Baroclinic Planetary Boundary Layer Model: Neutral and Stable Stratification Conditions

    Science.gov (United States)

    Yordanov, D.; Djolov, G.; Syrakov, D.

    1998-01-01

    The temperature and wind profiles in a baroclinic Planetary Boundary Layer (PBL) are investigated. Assuming stationarity, the turbulent state in the PBL at stable and neutral conditions is uniquely determined by the Rossby number, the external stratification parameter and two external baroclinic parameters. A simple two-layer baroclinic model is developed. It consists of a Surface Layer (SL) and overlying Ekman type layer. The system of dynamic and heat transfer equations is close using the K-theory. In SL the turbulent exchange coefficient is consistent with the results of similarity theory while in the Ekman layer it is constant. The universal functions in the resistance, heat and humidity transfer laws can be deduced from the model. The internal PBL characteristics, necessary for the model calculations, are presented in terms of the external parameters. Favourable agreement of model results with experimental data is demonstrated.

  13. Early Warning Signals for Regime Transition in the Stable Boundary Layer: A Model Study

    Science.gov (United States)

    van Hooijdonk, I. G. S.; Moene, A. F.; Scheffer, M.; Clercx, H. J. H.; van de Wiel, B. J. H.

    2017-02-01

    The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically lead to weakly stable, turbulent nights; clear-sky and weak-wind conditions, on the other hand, lead to very stable, weakly turbulent conditions. Previously, the dynamical behaviour near the transition between these regimes was investigated in an idealized setting, relying on Monin-Obukhov (MO) similarity to describe turbulent transport. Here, we investigate a similar set-up, using direct numerical simulation; in contrast to MO-based models, this type of simulation does not need to rely on turbulence closure assumptions. We show that previous predictions are verified, but now independent of turbulence parametrizations. Also, it appears that a regime shift to the very stable state is signaled in advance by specific changes in the dynamics of the turbulent boundary layer. Here, we show how these changes may be used to infer a quantitative estimate of the transition point from the weakly stable boundary layer to the very stable boundary layer. In addition, it is shown that the idealized, nocturnal boundary-layer system shares important similarities with generic non-linear dynamical systems that exhibit critical transitions. Therefore, the presence of other, generic early warning signals is tested as well. Indeed, indications are found that such signals are present in stably stratified turbulent flows.

  14. The Calculation of Compressible Transitional, Turbulent, and Relaminarizational Boundary Layers over Smooth and Rough Surfaces Using an Extended Mixing-Length Hypothesis

    Science.gov (United States)

    1978-02-01

    Squire . . . . . . . 73 JiK r 2 c 32. B and [~/~ E r Squi e’s M = .5 ’ ; a s e ..... 74 TABLES I Turbulence Model Empirical Constants...and (36) r educes to , ( 05 c - 3 (o ,2aJ ; ,2 ( . , , y )3 . , and which yields CO " (2at )2 /C u = 0.3777 ’~:~"c :~~.~b(~9~ which is in

  15. A Thermal Plume Model for the Martian Convective Boundary Layer

    CERN Document Server

    Colaïtis, Arnaud; Hourdin, Frédéric; Rio, Catherine; Forget, François; Millour, Ehouarn

    2013-01-01

    The Martian Planetary Boundary Layer [PBL] is a crucial component of the Martian climate system. Global Climate Models [GCMs] and Mesoscale Models [MMs] lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically-based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in Large-Eddy Simulations [LESs]. We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking ...

  16. Boundary layer thickness effect on boattail drag

    Science.gov (United States)

    Blaha, B. J.; Chamberlain, R.; Bober, L. J.

    1976-01-01

    A combined experimental and analytical program was conducted to investigate the effects of boundary layer changes on the flow over high angle boattail nozzles. The tests were run on an isolated axisymmetric sting mounted model. Various boattail geometries were investigated at high subsonic speeds over a range of boundary layer thicknesses. In general, boundary layer effects were small at speeds up to Mach 0.8. However, at higher speeds significant regions of separated flow were present on the boattail. When separation was present large reductions in boattail drag resulted with increasing boundary layer thickness. The analysis predicts both of these trends.

  17. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    duration, bottom roughness, and associated Reynolds numbers. For this purpose, three different “synthetic” (idealised) tsunami wave descriptions are considered i.e., invoking: (1) single wave (solitary-like, but with independent period and wave height),(2) sinusoidal, and (3) N-wave descriptions. The flow......, is newly extended to incorporate a transitional variant of the standard two-equation k–ω turbulence closure. The developed numerical model is successfully validated against recent experimental measurements involving transient solitary wave boundary layers as well as for oscillatory flows, collectively...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...

  18. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2012-01-01

    Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear...... viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where......, as expected in boundary layers, the angular frequency increases with radius. In order to shed light on physically viable mechanisms for angular momentum transport in this inner disk region, we examine the generation of hydromagnetic stresses and energy density in differentially rotating backgrounds...

  19. Development and Testing of a New Optimum Design Code for Hypersonic Wind Tunnel Nozzles, Including Boundary Layer, Turbulence, and Real Gas Effects

    Science.gov (United States)

    1995-11-01

    Mach 12 Wind Tunnel Nozzle Profile .......... 165 7. SAIC CFD Mach 12 Nozzle Exit Pitot Pressure and Mach No. Profiles...Centerline Mach Number Distribution for Hypersonic Nozzle 0.30- 0.25’ ,0.20’ 0.10- 𔃽 0.06 -0 1 . Axt~el ODtotence (m) Fig. 6 AF WL Mach 12 Wind Tunnel Nozzle ... Profile 171 15.0 ... Laminar Turbulent a Oat& t0.0 1.0 " ami nar -. --- - - - 2..,. -0 as 0.0 0.0 6.0 400 1.0 204 0.0 500 300.0 Mach mumer Fig. 7 SAIC

  20. Measurements and Modeling of the Mean and Turbulent Flow Structure in High-Speed Rough-Wall Non-Equilibrium Boundary Layers

    Science.gov (United States)

    2010-01-25

    notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display...CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Rodney Bowersox a. REPORT U b...and Blin , E., “Turbulence amplification by a shock-wave and rapid distortion theory,” Physics of Fluids A, Vol. 5, 1993, pp. 2539-2550. Jimenez, J

  1. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scalewaves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...... duration, bottom roughness, and associated Reynolds numbers. For this purpose, three different “synthetic” (idealised) tsunami wave descriptions are considered i.e., invoking: (1) single wave (solitary-like, but with independent period and wave height),(2) sinusoidal, and (3) N-wave descriptions. The flow...

  2. RANS Modeling of Benchmark Shockwave / Boundary Layer Interaction Experiments

    Science.gov (United States)

    Georgiadis, Nick; Vyas, Manan; Yoder, Dennis

    2010-01-01

    This presentation summarizes the computations of a set of shock wave / turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock / boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Three turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Shear Stress Transport wavenumber-angular frequency two-equation model, and an explicit algebraic stress wavenumber-angular frequency formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.!

  3. Improving Wind-Ramp Forecasts in the Stable Boundary Layer

    Science.gov (United States)

    Jahn, David E.; Takle, Eugene S.; Gallus, William A.

    2017-06-01

    The viability of wind-energy generation is dependent on highly accurate numerical wind forecasts, which are impeded by inaccuracies in model representation of boundary-layer processes. This study revisits the basic theory of the Mellor, Yamada, Nakanishi, and Niino (MYNN) planetary boundary-layer parametrization scheme, focusing on the onset of wind-ramp events related to nocturnal low-level jets. Modifications to the MYNN scheme include: (1) calculation of new closure parameters that determine the relative effects of turbulent energy production, dissipation, and redistribution; (2) enhanced mixing in the stable boundary layer when the mean wind speed exceeds a specified threshold; (3) explicit accounting of turbulent potential energy in the energy budget. A mesoscale model is used to generate short-term (24 h) wind forecasts for a set of 15 cases from both the U.S.A. and Germany. Results show that the new set of closure parameters provides a marked forecast improvement only when used in conjunction with the new mixing length formulation and only for cases that are originally under- or over-forecast (10 of the 15 cases). For these cases, the mean absolute error (MAE) of wind forecasts at turbine-hub height is reduced on average by 17%. A reduction in MAE values on average by 26% is realized for these same cases when accounting for the turbulent potential energy together with the new mixing length. This last method results in an average reduction by at least 13% in MAE values across all 15 cases.

  4. Turbulent transport in the atmospheric surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)

    2012-04-15

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to {approx}3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect

  5. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar

  6. BUBBLE - an urban boundary layer meteorology project

    DEFF Research Database (Denmark)

    Rotach, M.W.; Vogt, R.; Bernhofer, C.

    2005-01-01

    The Basel urban Boundary Layer Experiment (BUBBLE) was a year-long experimental effort to investigate in detail the boundary layer structure in the City of Basel, Switzerland. At several sites over different surface types (urban, sub-urban and rural reference) towers up to at least twice the main...

  7. Magnetohydrodynamic cross-field boundary layer flow

    Directory of Open Access Journals (Sweden)

    D. B. Ingham

    1982-01-01

    Full Text Available The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.

  8. Boundary-layer height detection with a ceilometer at a coastal site in western Denmark

    DEFF Research Database (Denmark)

    Hannesdóttir, Ásta; Hansen, Aksel Walle

    with those from turbulence measurements of a wind lidar and the two methods are in good agreement. It is found that detecting the boundary-layer height from turbulence kinetic energy considerations with the wind lidar is not recommendable for detecting the boundary layer height during the presence of clouds......One year of data from ceilometer measurements is used to estimate the atmospheric boundary-layer height at the coastal site Høvsøre in western Denmark. The atmospheric boundary-layer height is a fundamental parameter for the evaluation of the wind speed profile, and an essential parameter...... in atmospheric transport- and dispersion models. A new method of filtering clouds from the ceilometer data is presented. This allows for the inclusion of more than half of the data in the subsequent analysis, as the presence of clouds would otherwise complicate the boundary-layer height estimations. The boundary...

  9. Experimental study of boundary layer transition on an airfoil induced by periodically passing wake (II)

    Energy Technology Data Exchange (ETDEWEB)

    Park, T.C. [Seoul National University Graduate School, Seoul (Korea); Jeon, W.P.; Kang, S.H. [Seoul National University, Seoul (Korea)

    2001-06-01

    This paper describes the phenomena of wake-induced transition of the boundary layers on a NACA0012 airfoil using measured phase-averaged data. Especially, the phase-averaged wall shear stresses are reasonably evaluated using the principle of Computational Preston Tube Method. Due to the passing wake, the turbulent patch is generated in the laminar boundary layer on the airfoil and the boundary layer becomes temporarily transitional. The patches propagate downstream with less speed than free-stream velocity and merge with each other at further downstream station, and the boundary layer becomes more transitional. The generation of turbulent patch at the leading edge of the airfoil mainly depends on velocity defects and turbulent intensity profiles of passing wakes. However, the growth and merging of turbulent patches depend on local streamwise pressure gradients as well as characteristics of turbulent patches. In this transition process, the present experimental data show very similar features to the previous numerical and experimental studies. It is confirmed that the two phase-averaged mean velocity dips appear in the outer region of transitional boundary layer for each passing cycle. Relatively high values of the phase-averaged turbulent fluctuations in the outer region indicate the possibility that breakdown occurs in the outer layer not near the wall. (author). 21 refs., 12 figs.

  10. The Temporal Behavior of the Atmospheric Boundary Layer in Israel.

    Science.gov (United States)

    Dayan, Uri; Rodnizki, Jacob

    1999-06-01

    Upper-air measurements collected for three consecutive years (1987-89) from the Israel Meteorological Service permanent sounding site, in Beit-Dagan, Israel, enabled the temporal behavior of the atmospheric boundary layer over Israel to be characterized. Data analyzed consisted of the layer depth, the thermal gradient within the layer, and occurrence frequency of radiative and elevated inversions. To adequately represent the multiyear seasonal and diurnal behavior, the 3-yr databases were merged based on the tested hypothesis that the month sample in each individual year comes from the same population. The analysis shows that the depth of the radiative ground-based inversion, its frequency, as well as its thermal profile are maximal during spring and early summer. The upper-inversion layer is well defined during the summer, its lowest base (0.5-1 km MSL) indicating a sharp interface layer formed between the marine turbulent boundary layer at the shallow layer of the atmosphere and the subsiding downward motion caused by the subtropical high pressure system. During the other three seasons a significant temporal variation of the upper-inversion base is observed as a result of the frequent larger-scale synoptic weather systems. The diurnal variation of the mixed-layer depth is most evident during the summer because it is mainly governed by heat fluxes and the daily sea-breeze cycle that are most intensive then. Henceforth, the layer minimal depth, along the coast, usually occurs during late afternoon hours when the wind speed of the cool sea breeze reaches its minimal rate and heat fluxes dissipate rapidly, leading to a decrease of the marine turbulent boundary layer.

  11. Investigation of turbulence models with compressibility corrections for hypersonic boundary flows

    Directory of Open Access Journals (Sweden)

    Han Tang

    2015-12-01

    Full Text Available The applications of pressure work, pressure-dilatation, and dilatation-dissipation (Sarkar, Zeman, and Wilcox models to hypersonic boundary flows are investigated. The flat plate boundary layer flows of Mach number 5–11 and shock wave/boundary layer interactions of compression corners are simulated numerically. For the flat plate boundary layer flows, original turbulence models overestimate the heat flux with Mach number high up to 10, and compressibility corrections applied to turbulence models lead to a decrease in friction coefficients and heating rates. The pressure work and pressure-dilatation models yield the better results. Among the three dilatation-dissipation models, Sarkar and Wilcox corrections present larger deviations from the experiment measurement, while Zeman correction can achieve acceptable results. For hypersonic compression corner flows, due to the evident increase of turbulence Mach number in separation zone, compressibility corrections make the separation areas larger, thus cannot improve the accuracy of calculated results. It is unreasonable that compressibility corrections take effect in separation zone. Density-corrected model by Catris and Aupoix is suitable for shock wave/boundary layer interaction flows which can improve the simulation accuracy of the peak heating and have a little influence on separation zone.

  12. Analytical investigation of boundary layer growth and swirl intensity decay rate in a pipe

    Energy Technology Data Exchange (ETDEWEB)

    Maddahian, Reza; Kebriaee, Azadeh; Farhanieh, Bijan; Firoozabadi, Bahar [Sharif University of Technology, School of Mechanical Engineering, Tehran (Iran, Islamic Republic of)

    2011-04-15

    In this research, the developing turbulent swirling flow in the entrance region of a pipe is investigated analytically by using the boundary layer integral method. The governing equations are integrated through the boundary layer and obtained differential equations are solved with forth-order Adams predictor-corrector method. The general tangential velocity is applied at the inlet region to consider both free and forced vortex velocity profiles. The comparison between present model and available experimental data demonstrates the capability of the model in predicting boundary layer parameters (e.g. boundary layer growth, shear rate and swirl intensity decay rate). Analytical results showed that the free vortex velocity profile can better predict the boundary layer parameters in the entrance region than in the forced one. Also, effects of pressure gradient inside the boundary layer is investigated and showed that if pressure gradient is ignored inside the boundary layer, results deviate greatly from the experimental data. (orig.)

  13. Current Challenges in Understanding and Forecasting Stable Boundary Layers over Land and Ice

    Directory of Open Access Journals (Sweden)

    Gert-Jan eSteeneveld

    2014-10-01

    Full Text Available Understanding and prediction of the stable atmospheric boundary layer is challenging. Many physical processes come into play in the stable boundary layer, i.e. turbulence, radiation, land surface coupling and heterogeneity, orographic turbulent and gravity wave drag. The development of robust stable boundary-layer parameterizations for weather and climate models is difficult because of the multiplicity of processes and their complex interactions. As a result, these models suffer from biases in key variables, such as the 2-m temperature, boundary-layer depth and wind speed. This short paper briefly summarizes the state-of-the-art of stable boundary layer research, and highlights physical processes that received only limited attention so far, in particular orographically-induced gravity wave drag, longwave radiation divergence, and the land-atmosphere coupling over a snow-covered surface. Finally, a conceptual framework with relevant processes and particularly their interactions is proposed.

  14. Simulation and optimal control of wind-farm boundary layers

    Science.gov (United States)

    Meyers, Johan; Goit, Jay

    2014-05-01

    In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a

  15. On the modeling of electrical boundary layer (electrode layer) and ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 1. On the modeling of electrical boundary layer (electrode layer) and derivation of atmospheric electrical profiles, eddy diffusion coeffcient and scales of electrode layer. Madhuri N Kulkarni. Volume 119 Issue 1 February 2010 pp 75-86 ...

  16. Wave boundary layer over a stone-covered bed

    DEFF Research Database (Denmark)

    Dixen, Martin; Hatipoglu, Figen; Sumer, B. Mutlu

    2008-01-01

    This paper summarizes the results of an experimental investigation on wave boundary layers over a bed with large roughness, simulating stone/rock/armour block cover on the sea bottom. The roughness elements used in the experiments were stones the size of 1.4cm and 3.85cm in one group of experiments...... and regular ping-pong balls the size 3.6cm in the other. The orbital-motion-amplitude-to-roughness ratio at the bed was rather small, in the range a/ks=0.6-3. The mean and turbulence properties of the boundary-layer flow were measured. Various configurations of the roughness elements were used in the ping...... for small values of a/ks. The results further show that the phase lead of the bed friction velocity over the surface elevation does not seem to change radically with a/ks, and found to be in the range 12°-23°. Furthermore the results show that the boundary-layer turbulence also is not extremely sensitive...

  17. The determination of turbulent structures in the atmospheric surface layer

    NARCIS (Netherlands)

    Schols, J.L.J.

    1984-01-01

    The turbulent flow in the atmospheric surface layer (ASL) contains turbulent structures, which are defined as spatially coherent, organized flow motions. 'Organized' means that characteristic patterns, observed at a point in space, occur almost simultaneously in more than one turbulence signal and

  18. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    Science.gov (United States)

    Sarlak, H.; Sørensen, J. N.; Mikkelsen, R.

    2012-09-01

    Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically required for such problems.

  19. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM......) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation...... and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically...

  20. Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ = 250

    KAUST Repository

    Attili, Antonio

    2012-03-21

    The turbulent flow originating from the interaction between two parallel streams with different velocities is studied by means of direct numerical simulation. Rather than the more common temporal evolving layer, a spatially evolving configuration, with perturbed laminar inlet conditions is considered. The streamwise evolution and the self-similar state of turbulence statistics are reported and compared to results available in the literature. The characteristics of the transitional region agree with those observed in other simulations and experiments of mixing layers originating from laminar inlets. The present results indicate that the transitional region depends strongly on the inlet flow. Conversely, the self-similar state of turbulent kinetic energy and dissipation agrees quantitatively with those in a temporal mixing layer developing from turbulent initial conditions [M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar turbulent mixing layer,” Phys. Fluids6, 903 (1994)]. The statistical features of turbulence in the self-similar region have been analysed in terms of longitudinal velocity structure functions, and scaling exponents are estimated by applying the extended self-similarity concept. In the small scale range (60 < r/η < 250), the scaling exponents display the universal anomalous scaling observed in homogeneous isotropic turbulence. The hypothesis of isotropy recovery holds in the turbulent mixing layer despite the presence of strong shear and large-scale structures, independently of the means of turbulence generation. At larger scales (r/η > 400), the mean shear and large coherent structures result in a significant deviation from predictions based on homogeneous isotropic turbulence theory. In this second scaling range, the numerical values of the exponents agree quantitatively with those reported for a variety of other flows characterized by strong shear, such as boundary layers, as well as channel and wake flows.

  1. A preliminary investigation of boundary-layer transition along a flat plate with adverse pressure gradient

    Science.gov (United States)

    Von Doenhoff, Albert E

    1938-01-01

    Boundary-layer surveys were made throughout the transition region along a smooth flat plate placed in an airstream of practically zero turbulence and with an adverse pressure gradient. The boundary-layer Reynolds number at the laminar separation point was varied from 1,800 to 2,600. The test data, when considered in the light of certain theoretical deductions, indicated that transition probably began with separation of the laminar boundary layer. The extent of the transition region, defined as the distance from a calculated laminar separation point to the position of the first fully developed turbulent boundary-layer profile, could be expressed as a constant Reynolds number run of approximately 70,000. Some speculations are presented concerning the application of the foregoing concepts, after certain assumptions have been made, to the problem of the connection between transition on the upper surface of an airfoil at high angles of attack and the maximum lift.

  2. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  3. Experimental study on the effect of unsteadiness on boundary layer development on a linear turbine cascade

    Energy Technology Data Exchange (ETDEWEB)

    Schobeiri, M.T. [Texas A and M Univ., College Station (United States). Turbomachinery Performance Lab.; Pappu, K. [Texas A and M Univ., College Station (United States). Turbomachinery Performance Lab.

    1997-08-01

    The results from an experimental investigation of unsteady boundary layer behavior on a linear turbine cascade are presented in this paper. To perform a detailed study on unsteady cascade aerodynamics and heat transfer, a new large-scale, high-subsonic research facility for simulating the periodic unsteady flow has been developed. It is capable of sequentially generating up to four different unsteady inlet flow conditions that lead to four different passing frequencies, wake structures, and freestream turbulence intensities. For a given Reynolds number, two different unsteady wake formations are utilized. Detailed unsteady boundary layer velocity. turbulence intensity, and pressure measurements are performed along the suction and pressure surfaces of one blade. The results display the transition and development of the boundary layer, ensemble-averaged velocity, and turbulence intensity. (orig.). With 11 figs., 1 tab.

  4. Internal wave energy radiated from a turbulent mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

  5. A Study of stable Atmospheric Boundary Layer over highveld South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Luhunga, P; Djolov, G [University of Pretoria (South Africa); Esau, I, E-mail: george.djolov@up.ac.z

    2010-08-15

    The study is part of the South African - Norwegian Programme for Research and Co-operation Phase II 'Analysis and Possibility for Control of Atmospheric Boundary Layer Processes to Facilitate Adaptation to Environmental Changes'. The research strategy of the project is based on 4 legged approach. 1) Application and further development of contemporary atmospheric boundary layer theory. 2) Use of modeling based on large eddy simulation techniques. 3) Experimental investigation of turbulent fluxes. 4) Training and developing academics capable of dealing with the present and new challenges. The paper presents some preliminary results on the micrometeorological variability of the basic meteorological parameters and turbulent fluxes.

  6. A Study of stable Atmospheric Boundary Layer over highveld South Africa

    Science.gov (United States)

    Luhunga, P.; Esau, I.; Djolov, G.

    2010-08-01

    The study is part of the South African - Norwegian Programme for Research and Co-operation Phase II "Analysis and Possibility for Control of Atmospheric Boundary Layer Processes to Facilitate Adaptation to Environmental Changes". The research strategy of the project is based on 4 legged approach. 1) Application and further development of contemporary atmospheric boundary layer theory. 2) Use of modeling based on large eddy simulation techniques. 3) Experimental investigation of turbulent fluxes. 4) Training and developing academics capable of dealing with the present and new challenges. The paper presents some preliminary results on the micrometeorological variability of the basic meteorological parameters and turbulent fluxes.

  7. Significant Atmospheric Boundary Layer Change Observed above an Agulhas Current Warm Cored Eddy

    Directory of Open Access Journals (Sweden)

    C. Messager

    2016-01-01

    Full Text Available The air-sea impact of a warm cored eddy ejected from the Agulhas Retroflection region south of Africa was assessed through both ocean and atmospheric profiling measurements during the austral summer. The presence of the eddy causes dramatic atmospheric boundary layer deepening, exceeding what was measured previously over such a feature in the region. This deepening seems mainly due to the turbulent heat flux anomaly above the warm eddy inducing extensive deep and persistent changes in the atmospheric boundary layer thermodynamics. The loss of heat by turbulent processes suggests that this kind of oceanic feature is an important and persistent source of heat for the atmosphere.

  8. Research of the boundary layer with an adverse pressure gradient by the Smoke Image Velocimetry method

    Science.gov (United States)

    Mikheev, N. I.; Saushin, I. I.; Goltsman, A. E.

    2017-09-01

    The results of an experimental evaluation of velocity profiles, turbulent pulsations, generation and dissipation of turbulent energy in a nonequilibrium boundary layer under the adverse pressure gradient are presented. The profiles of characteristics are estimated by means of the field dynamics of the two-component instantaneous velocity vectors measured by the optical method Smoke Image Velocimetry. The opportunities of using the field measurement method SIV to study the spatial evolution of small-scale characteristics in a boundary layer with a pressure gradient have been showed.

  9. Nonlinear Transient Growth and Boundary Layer Transition

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  10. Diagnosis of boundary-layer circulations.

    Science.gov (United States)

    Beare, Robert J; Cullen, Michael J P

    2013-05-28

    Diagnoses of circulations in the vertical plane provide valuable insights into aspects of the dynamics of the climate system. Dynamical theories based on geostrophic balance have proved useful in deriving diagnostic equations for these circulations. For example, semi-geostrophic theory gives rise to the Sawyer-Eliassen equation (SEE) that predicts, among other things, circulations around mid-latitude fronts. A limitation of the SEE is the absence of a realistic boundary layer. However, the coupling provided by the boundary layer between the atmosphere and the surface is fundamental to the climate system. Here, we use a theory based on Ekman momentum balance to derive an SEE that includes a boundary layer (SEEBL). We consider a case study of a baroclinic low-level jet. The SEEBL solution shows significant benefits over Ekman pumping, including accommodating a boundary-layer depth that varies in space and structure, which accounts for buoyancy and momentum advection. The diagnosed low-level jet is stronger than that determined by Ekman balance. This is due to the inclusion of momentum advection. Momentum advection provides an additional mechanism for enhancement of the low-level jet that is distinct from inertial oscillations.

  11. Numerical methods for hypersonic boundary layer stability

    Science.gov (United States)

    Malik, M. R.

    1990-01-01

    Four different schemes for solving compressible boundary layer stability equations are developed and compared, considering both the temporal and spatial stability for a global eigenvalue spectrum and a local eigenvalue search. The discretizations considered encompass: (1) a second-order-staggered finite-difference scheme; (2) a fourth-order accurate, two-point compact scheme; (3) a single-domain Chebychev spectral collocation scheme; and (4) a multidomain spectral collocation scheme. As Mach number increases, the performance of the single-domain collocation scheme deteriorates due to the outward movement of the critical layer; a multidomain spectral method is accordingly designed to furnish superior resolution of the critical layer.

  12. Statistical-mechanical approach to study the hydrodynamic stability of the stably stratified atmospheric boundary layer

    Science.gov (United States)

    Nevo, G.; Vercauteren, N.; Kaiser, A.; Dubrulle, B.; Faranda, D.

    2017-08-01

    We study the hydrodynamic equilibrium properties of the stably stratified atmospheric boundary layer from measurements obtained in the Snow-Horizontal Array Turbulence Study campaign at the Plaine Morte Glacier in the Swiss Alps. Our approach is based on a combination of dynamical systems techniques and statistical analysis. The main idea is to measure the deviations from the behavior expected by a turbulent observable when it is close to a transition between different metastable states. We first assess the performance of our method on the Lorenz attractor, then on a turbulent flow. The results show that the method recognizes subtle differences among different stable boundary layer turbulence regimes and may be used to help characterize their transitions.

  13. Decomposition Methods For a Piv Data Analysis with Application to a Boundary Layer Separation Dynamics

    Directory of Open Access Journals (Sweden)

    Václav URUBA

    2010-12-01

    Full Text Available Separation of the turbulent boundary layer (BL on a flat plate under adverse pressure gradient was studied experimentally using Time-Resolved PIV technique. The results of spatio-temporal analysis of flow-field in the separation zone are presented. For this purpose, the POD (Proper Orthogonal Decomposition and its extension BOD (Bi-Orthogonal Decomposition techniques are applied as well as dynamical approach based on POPs (Principal Oscillation Patterns method. The study contributes to understanding physical mechanisms of a boundary layer separation process. The acquired information could be used to improve strategies of a boundary layer separation control.

  14. Marine boundary layer wind structure over the Bay of Bengal during MONEX79

    Energy Technology Data Exchange (ETDEWEB)

    SethuRaman, S.

    1981-01-01

    A marine boundary layer experiment was conducted at Digha, West Bengal, India, to determine the role of the atmospheric boundary layer on the Bay of Bengal cyclogenesis. The boundary layer experiment at Digha consisted of three main components: (1) a 10 m micrometeorological tower at the beach with instruments to observe turbulent fluxes of heat and momentum over the ocean; (2) a weather station that continuously recorded mean parameters; and (3) pilot balloon observations to a height of about 1000 m. The purpose of this paper is to discuss some of the preliminary results obtained through the analysis of the data.

  15. Spontaneous generation of inertial waves from boundary turbulence in a librating sphere

    CERN Document Server

    Sauret, Alban; Bars, Michael Le

    2013-01-01

    In this work, we report the excitation of inertial waves in a librating sphere even for libration frequencies where these waves are not directly forced. This spontaneous generation comes from the localized turbulence induced by the centrifugal instabilities in the Ekman boundary layer near the equator and does not depend on the libration frequency. We characterize the key features of these inertial waves in analogy with previous studies of the generation of internal waves in stratified flows from localized turbulent patterns. In particular, the temporal spectrum exhibits preferred values of excited frequency. This first-order phenomenon is generic to any rotating flow in the presence of localized turbulence and is fully relevant for planetary applications.

  16. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    Science.gov (United States)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  17. A New Parallel Boundary Condition for Turbulence Simulations in Stellarators

    Science.gov (United States)

    Martin, Mike F.; Landreman, Matt; Dorland, William; Xanthopoulos, Pavlos

    2017-10-01

    For gyrokinetic simulations of core turbulence, the ``twist-and-shift'' parallel boundary condition (Beer et al., PoP, 1995), which involves a shift in radial wavenumber proportional to the global shear and a quantization of the simulation domain's aspect ratio, is the standard choice. But as this condition was derived under the assumption of axisymmetry, ``twist-and-shift'' as it stands is formally incorrect for turbulence simulations in stellarators. Moreover, for low-shear stellarators like W7X and HSX, the use of a global shear in the traditional boundary condition places an inflexible constraint on the aspect ratio of the domain, requiring more grid points to fully resolve its extent. Here, we present a parallel boundary condition for ``stellarator-symmetric'' simulations that relies on the local shear along a field line. This boundary condition is similar to ``twist-and-shift'', but has an added flexibility in choosing the parallel length of the domain based on local shear consideration in order to optimize certain parameters such as the aspect ratio of the simulation domain.

  18. 2007 Program of Study: Boundary Layers

    Science.gov (United States)

    2008-06-01

    zero. The stream function multiplied by the boundary layer thickness is negligible close to the right hand side. This gives, for we = we(y), 0 = xewe ...δsψx(0)− δ3mψ (0). (2) The first derivative of ψ is zero at the left boundary due to the no slip condition. This gives 0 = xewe + δ3mψ (0), (3...which means that the vorticity inserted by the Ekman pumping must be dissipated by the sublayer. We verify that (1.20) is a solution to Eq. 3 xewe

  19. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers

    Science.gov (United States)

    Choudhari, Meelan; Streett, Craig L.

    1990-01-01

    The process by which the boundary layer internalizes the environmental disturbances in the form of instability waves is known as the boundary-layer receptivity. The paper discusses the importance of receptivity in transition research. The receptivity scenario for three-dimensional and high-speed boundary layers is examined. It is found that, while receptivity mechanisms present in the low-speed case are also operative in these complex flows, certain uniquely 'compressible' receptivity mechanisms may come into play as well. Both numerical, and where convenient, asymptotic procedures are utilized to develop quantitative predictions of the localized generation of a variety of instability types (Tollmien-Schlichting, inflectional, higher modes, crossflow vortices) in boundary layer flows relevant to the National Aero-Space Plane (NASP).

  20. Shallow marine cloud topped boundary layer in atmospheric models

    Science.gov (United States)

    Janjic, Zavisa

    2017-04-01

    A common problem in many atmospheric models is excessive expansion over cold water of shallow marine planetary boundary layer (PBL) topped by a thin cloud layer. This phenomenon is often accompanied by spurious light precipitation. The "Cloud Top Entrainment Instability" (CTEI) was proposed as an explanation of the mechanism controlling this process in reality thereby preventing spurious enlargement of the cloudy area and widely spread light precipitation observed in the models. A key element of this hypothesis is evaporative cooling at the PBL top. However, the CTEI hypothesis remains controversial. For example, a recent direct simulation experiment indicated that the evaporative cooling couldn't explain the break-up of the cloudiness as hypothesized by the CTEI. Here, it is shown that the cloud break-up can be achieved in numerical models by a further modification of the nonsingular implementation of the Mellor-Yamada Level 2.5 turbulence closure model (MYJ) developed at the National Centers for Environmental Prediction (NCEP) Washington. Namely, the impact of moist convective instability is included into the turbulent energy production/dissipation equation if (a) the stratification is stable, (b) the lifting condensation level (LCL) for a particle starting at a model level is below the next upper model level, and (c) there is enough turbulent kinetic energy so that, due to random vertical turbulent motions, a particle starting from a model level can reach its LCL. The criterion (c) should be sufficiently restrictive because otherwise the cloud cover can be completely removed. A real data example will be shown demonstrating the ability of the method to break the spurious cloud cover during the day, but also to allow its recovery over night.

  1. Long-term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, A S; Kollias, P; Giangrande, S E; Klein, S A

    2009-08-20

    A long-term study of the turbulent structure of the convective boundary layer (CBL) at the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility is presented. Doppler velocity measurements from insects occupying the lowest 2 km of the boundary layer during summer months are used to map the vertical velocity component in the CBL. The observations cover four summer periods (2004-08) and are classified into cloudy and clear boundary layer conditions. Profiles of vertical velocity variance, skewness, and mass flux are estimated to study the daytime evolution of the convective boundary layer during these conditions. A conditional sampling method is applied to the original Doppler velocity dataset to extract coherent vertical velocity structures and to examine plume dimension and contribution to the turbulent transport. Overall, the derived turbulent statistics are consistent with previous aircraft and lidar observations. The observations provide unique insight into the daytime evolution of the convective boundary layer and the role of increased cloudiness in the turbulent budget of the subcloud layer. Coherent structures (plumes-thermals) are found to be responsible for more than 80% of the total turbulent transport resolved by the cloud radar system. The extended dataset is suitable for evaluating boundary layer parameterizations and testing large-eddy simulations (LESs) for a variety of surface and cloud conditions.

  2. Experimental studies on transitional separated boundary layers

    OpenAIRE

    Serna Serrano, José

    2013-01-01

    Separated transitional boundary layers appear on key aeronautical processes such as the flow around wings or turbomachinery blades. The aim of this thesis is the study of these flows in representative scenarios of technological applications, gaining knowledge about phenomenology and physical processes that occur there and, developing a simple model for scaling them. To achieve this goal, experimental measurements have been carried out in a low speed facility, ensuring the flow homogeneity and...

  3. Boundary Layer Transition Results From STS-114

    Science.gov (United States)

    Berry, Scott A.; Horvath, Thomas J.; Cassady, Amy M.; Kirk, Benjamin S.; Wang, K. C.; Hyatt, Andrew J.

    2006-01-01

    The tool for predicting the onset of boundary layer transition from damage to and/or repair of the thermal protection system developed in support of Shuttle Return to Flight is compared to the STS-114 flight results. The Boundary Layer Transition (BLT) Tool is part of a suite of tools that analyze the aerothermodynamic environment of the local thermal protection system to allow informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each damage site or repair, the expected time of transition onset is predicted to help determine the proper aerothermodynamic environment to use in the subsequent thermal and stress analysis of the local structure. The boundary layer transition criteria utilized for the tool was developed from ground-based measurements to account for the effect of both protuberances and cavities and has been calibrated against flight data. Computed local boundary layer edge conditions provided the means to correlate the experimental results and then to extrapolate to flight. During STS-114, the BLT Tool was utilized and was part of the decision making process to perform an extravehicular activity to remove the large gap fillers. The role of the BLT Tool during this mission, along with the supporting information that was acquired for the on-orbit analysis, is reviewed. Once the large gap fillers were removed, all remaining damage sites were cleared for reentry as is. Post-flight analysis of the transition onset time revealed excellent agreement with BLT Tool predictions.

  4. Clidar Mountain Boundary Layer Case Studies

    Directory of Open Access Journals (Sweden)

    Sharma Nimmi C. P.

    2016-01-01

    Full Text Available A CCD Camera Lidar system called the CLidar system images a vertically pointing laser from the side with a spatially separated CCD camera and wide angle optics. The system has been used to investigate case studies of aerosols in mountain boundary layers in in the times following sunset. The aerosols detected by the system demonstrate the wide variation of near ground aerosol structure and capabilities of the CLidar system.

  5. Boundary-layer theory. 9. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Schlichting, Hermann [Technische Univ. Braunschweig (Germany). Inst. fuer Stroemungsmechanik; Gersten, Klaus [Bochum Univ. (Germany). Lehrstuhl fuer Thermodynamik und Stroemungsmechanik

    2017-03-01

    This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

  6. Coupled wake boundary layer model of windfarms

    Science.gov (United States)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  7. Single Column Modeling of Atmospheric Boundary Layers and the Complex Interactions with the Land Surface

    NARCIS (Netherlands)

    Holtslag, A.A.M.; Steeneveld, G.J.

    2009-01-01

    In this paper a summary is given of the basic approaches for the modeling and parameterization of turbulence in the atmospheric boundary layer. The treated approaches are in current use in regional and global-scale models for the forecasting and study of weather, climate and air quality. Here we

  8. Stable Stratification Effects on Flow and Pollutant Dispersion in Boundary Layers Entering a Generic Urban Environment

    NARCIS (Netherlands)

    Tomas, J.M.; Pourquie, M.J.B.M.; Jonker, H.J.J.

    2016-01-01

    Large-eddy simulations (LES) are used to investigate the effect of stable stratification on rural-to-urban roughness transitions. Smooth-wall turbulent boundary layers are subjected to a generic urban roughness consisting of cubes in an in-line arrangement. Two line sources of pollutant are added to

  9. Dispersion of a passive tracer in buoyancy- and shear-driven boundary layers

    NARCIS (Netherlands)

    Dosio, A.; Vilà-Guerau de Arellano, J.; Holtslag, A.A.M.; Builtjes, P.J.H.

    2003-01-01

    By means of finescale modeling [large-eddy simulation (LES)], the combined effect of thermal and mechanical forcing on the dispersion of a plume in a convective boundary layer is investigated. Dispersion of a passive tracer is studied in various atmospheric turbulent flows, from pure convective to

  10. Net currents in the wave bottom boundary layer: on waveshape streaming and progressive wave streaming

    NARCIS (Netherlands)

    Kranenburg, Wouter; Ribberink, Jan S.; Uittenbogaard, R.E.; Hulscher, Suzanne J.M.H.

    2012-01-01

    The net current (streaming) in a turbulent bottom boundary layer under waves above a flat bed, identified as potentially relevant for sediment transport, is mainly determined by two competing mechanisms: an onshore streaming resulting from the horizontal non-uniformity of the velocity field under

  11. Numerical model of a non-steady atmospheric planetary boundary layer, based on similarity theory

    DEFF Research Database (Denmark)

    Zilitinkevich, S.S.; Fedorovich, E.E.; Shabalova, M.V.

    1992-01-01

    A numerical model of a non-stationary atmospheric planetary boundary layer (PBL) over a horizontally homogeneous flat surface is derived on the basis of similarity theory. The two most typical turbulence regimes are reproduced: one corresponding to a convectively growing PBL and another correspon...

  12. A Simple Model for the Vertical Transport of Reactive Species in the Convective Atmospheric Boundary Layer

    DEFF Research Database (Denmark)

    Kristensen, Leif; Lenschow, Donald H.; Gurarie, David

    2010-01-01

    We have developed a simple, steady-state, one-dimensional second-order closure model to obtain continuous profiles of turbulent fluxes and mean concentrations of non-conserved scalars in a convective boundary layer without shear. As a basic tool we first set up a model for conserved species with ...

  13. Numerical simulation of convective boundary layer above polynyas and leads.

    Science.gov (United States)

    Debolskiy, Andrey; Stepanenko, Victor

    2013-04-01

    Arctic region is very important as one of drivers for global atmosphere circulation. Meanwhile, results of modern global atmospheric models, both climatic and weather forecasting differs significantly from each other and observations in this region. One of the reasons for these uncertainties can be inaccurate simulation of ice and snow cover distribution, which accuracy depends in turn on variety of factors. Among others, appropriate parameterizations of atmospheric boundary layer over inhomogeneous surface, not explicitly resolved at the atmospheric model grid, can decrease these inaccuracies. The main objective of these parameterizations is to calculate surface heat and water vapor fluxes, averaged over the whole model cell. However, due to great differences in structure of boundary layers formed over cold ice and relatively warm open water, which cause nonlinear dependencies,the parameterizations suggested to the moment can hardly be regarded as applicable for "complete" set of synoptic scenarios . The present paper attempts to improve standard mosaic method of flux aggregation, which is still common in climate models [1]. The main idea is to derive heat fluxes using data from numerical experiments, explicitly reproducing most of sub grid (for global models) turbulence motions spectra, and compare with fluxes calculated using mosaic method implying the part of model domain to be a global model cell. The study is based on idealized high resolution (~10 m) experiments with typically observed surface parameters (temperature and roughness), ice-open water distribution, initial temperature and wind profiles distribution included in Large Eddy Simulation model of Insitute of Numerical Mathematics RAS [2],[3]. Analysis of other boundary layer characteristics such as its height, eddy diffusivity profiles, kinetic energy is presented. The modeling results are compared with field experiments' data gathered at White Sea. References: 1. V.M. Stepanenko, P.M. Miranda, V

  14. Characteristics of vortex packets in a boundary layer

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen; Marusic, Ivan

    2002-11-01

    Stereo PIV was used to measure all three velocity components in streamwise-spanwise (x-y) planes of a turbulent boundary layer at Re_τ = 1060. Datasets were obtained in the log layer and beyond. The vector fields in the log layer (z^+ = 92 and 150, z - wall normal direction) revealed signatures of vortex packets similar to those found by Adrian and co-workers in their PIV experiments. Groups of legs of hairpin vortices appeared to be coherently arranged along the x direction. These regions also generated substantial Reynolds shear stress (-uw), sometimes as high as 40U_τ^2. A feature extraction algorithm was developed to automate the identification and characterization of these packets of hairpin vortices. Identified patches contributed 28% to the total -uw while occupying less than 5% of the total area in the log layer. Beyond the log layer (z^+ = 198, 530), the spatial organization into packets breaks down. Instead, large individual vortex cores and spanwise strips of positive and negative wall-normal velocity were observed. Supported by NSF (ACI-9982774, CTS-9983933).

  15. Spectral structure and linear mechanisms in a 'rapidly' distorted boundary layer

    Science.gov (United States)

    Diwan, Sourabh; Morrison, Jonathan

    2016-11-01

    A characteristic feature of a turbulent boundary layer (TBL) at high Reynolds numbers is the presence of coherent motions such as the 'large scale motions' and 'superstructures'. In this work we attempt to mimic such coherent motions and their spectral structure using a simplified experimental arrangement of a boundary layer flow over a flat plate subjected to grid-generated turbulence and/or localized patch of surface roughness. The velocity measurements done downstream of a grit roughness patch (in absence of grid turbulence) show that over a certain distance the energy spectrum of streamwise velocity fluctuations shows a bi-modal shape which resembles that found in a high-Re TBL. We also carry out experiments with both grid turbulence and grit roughness present and show that it is possible to 'synthesize' the structure of a TBL in the wall-normal direction, in the limited context of streamwise coherent motions, using the present experimental design. These results indicate that the predictions of the Rapid Distortion Theory (RDT) can be applied to the present case in a region close to the plate leading edge, and we examine the linearized effects of 'blocking' and 'shear' on turbulent fluctuations near the edge of the boundary layer and close to the wall in the framework of the RDT. We acknowledge financial support from EPSRC (Grant No. EP/1037938).

  16. Oscillating viscous boundary layer at high Reynolds number: Experiments and numerical calculations

    Science.gov (United States)

    Reyt, I.; Bailliet, H.; Foucault, E.; Valière, J.-Ch.

    2015-10-01

    Transition to turbulence for an acoustically oscillating flow (without any mean motion) in a resonant wave guide is considered. Departure from the laminar behaviour of the Stokes boundary layer formed in the near wall region is studied both experimentally and numerically for increasing acoustic levels. Laser Doppler Velocimetry is used to measure velocity profiles at different phases along the acoustic period and the experimental profile distortion is interpreted as the consequence of the development of a turbulent boundary layer. On the other hand, the oscillating flow is investigated numerically with a high order resolution one dimensional scheme for comparison with experimental results. The effective viscosity that models transition to turbulence is included and the velocity profile is integrated along the radial coordinate. Results from experiments and from numerical calculation are in very good agreement.

  17. Human convective boundary layer and its impact on personal exposure

    DEFF Research Database (Denmark)

    Licina, Dusan

    in inaccurate exposure prediction. This highlights the importance of a detailed understanding of the complex air movements that take place in the vicinity of the human body and their impact on personal exposure. The two objectives of the present work are: (i) to examine the extent to which the room air...... temperature, ventilation flow, body posture, clothing insulation/design, table positioning and chair design affect the airflow characteristics (velocity, turbulence and temperature) around the human body; and (ii) to examine the pollution distribution within the human convective boundary layer (CBL....../s in front of the seated manikin. Dressing the nude manikin in a thin-tight clothing ensemble reduced the peak velocity in the breathing zone by 17%, and by 40% for a thick-loose ensemble. A lack of hair on the head increased the peak velocity from 0.17 to 0.187 m/s. Apart from their thermal insulation...

  18. Heat transfer and fluid mechanics measurements in transitional boundary layer flows

    Science.gov (United States)

    Wang, T.; Simon, T. W.; Buddhavarapu, J.

    1985-01-01

    Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68 percent and 2.0 percent free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.

  19. Effect of riblets on the streaky structures excited by free stream tip vortices in boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Boiko, Andrey V. [Siberian Branch of the Russian Academy of Science, Novosibirsk (Russian Federation); Jung, Kwang Hyo; Chun, Ho Hwan; Lee, Inwon [Pusan National University, Busan (Korea, Republic of)

    2007-03-15

    In this study, experimental investigations were made regarding the effect of riblets on the streak instability in boundary layer. The streak instability is now regarded as a major source of the self-regeneration mechanism for the hairpin type coherent structures in turbulent boundary layer flow. Thus, it is important to control the instability to suppress the drag-inducing vortical structure in terms of drag reduction. Toward enhancing the measurement accuracy and spatial resolution, an enlarged version of riblets was applied to a streak which was artificially induced by a microwing in a laminar boundary layer. It is found that the riblets have attenuation effect on the streak instability, i.e., to reduce the spanwise velocity gradient of the quasi-streamwise streak in boundary layer.

  20. Effect of riblets on the streaky structures excited by free stream tip vortices in boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Boiko, Andrey V. [Siberian Branch of the Russian Academy of Science, Novosibirsk (Russian Federation); Jung, Kwang Hyo; Chun, Ho Hwan; Lee, In Won [Pusan National University, Busan (Korea, Republic of)

    2007-01-15

    In this study, experimental investigations were made regarding the effect of riblets on the streak instability in boundary layer. The streak instability is now regarded as a major source of the self-regeneration mechanism for the hairpin type coherent structures in turbulent boundary layer flow. Thus, it is important to control the instability to suppress the drag-inducing vortical structure in terms of drag reduction. Toward enhancing the measurement accuracy and spatial resolution, an enlarged version of riblets was applied to a streak which was artificially induced by a microwing in a laminar boundary layer. It is found that the riblets have attenuation effect on the streak instability, i.e., to reduce the spanwise velocity gradient of the quasi-streamwise streak in boundary layer

  1. Modelling wave-boundary layer interaction for wind power applications

    Science.gov (United States)

    Jenkins, A. D.; Barstad, I.; Gupta, A.; Adakudlu, M.

    2012-04-01

    Marine wind power production facilities are subjected to direct and indirect effects of ocean waves. Direct effects include forces due to wave orbital motions and slamming of the water surface under breaking wave conditions, corrosion and icing due to sea spray, and the effects of wave-generated air bubbles. Indirect effects include include the influence of waves on the aerodynamic sea-surface roughness, air turbulence, the wind velocity profile, and air velocity oscillations, wave-induced currents and sediment transport. Field observations within the boundary layers from floating measurement may have to be corrected to account for biases induced as a result of wave-induced platform motions. To estimate the effect of waves on the atmospheric boundary layer we employ the WRF non-hydrostatic mesoscale atmosphere model, using the default YSU planetary boundary layer (PBL) scheme and the WAM spectral wave model, running simultaneously and coupled using the open-source coupler MCEL which can interpolate between different model grids and timesteps. The model is driven by the WRF wind velocity at 10 m above the surface. The WRF model receives from WAM updated air-sea stress fields computed from the wind input source term, and computes new fields for the Charnock parameter and marine surface aerodynamic roughness. Results from a North Atlantic and Nordic Seas simulation indicate that the two-way coupling scheme alters the 10 metre wind predicted by WRF by up to 10 per cent in comparison with a simulation using a constant Charnock parameter. The changes are greatest in developing situations with passages of fronts, moving depressions and squalls. This may be directly due to roughness length changes, or may be due to changes in the timing of front/depression/squall passages. Ongoing work includes investigating the effect of grid refinement/nesting, employing different PBL schemes, and allowing the wave field to change the direction of the total air-sea stress.

  2. Direct Numerical Simulations of Boundary Layer Transition on a Flat Plate

    Science.gov (United States)

    Rai, Man Mohan

    1998-01-01

    In recent years the techniques of computational fluid dynamics (CFD) have been used to compute flows associated with geometrically complex configurations. However, success in terms of accuracy and reliability has been limited to cases where the effects of turbulence and transition could be modeled in a straightforward manner. Even in simple flows, the accurate computation of skin friction and heat transfer using existing turbulence models has proved to be a difficult task, one that has required extensive fine-tuning of the turbulence models used. In more complex flows (for example, in turbomachinery flows in which vortices and wakes impinge on airfoil surfaces causing periodic transitions from laminar to turbulent flow) the development of a model that accounts for all scales of turbulence and predicts the onset of transition is an extremely difficult task. Fortunately, current trends in computing suggest that it may be possible to perform direct simulations of turbulence and transition at moderate Reynolds numbers in some complex cases in the near future. This presentation will focus on direct simulations of transition and turbulence using high-order accurate finite-difference methods. The advantage of the finite-difference approach over spectral methods is that complex geometries can be treated in a straightforward manner. Additionally, finite-difference techniques are the prevailing methods in existing application codes. An application of high-order-accurate finite-difference methods to direct simulations of transition and turbulence in a spatially evolving boundary layer subjected to high levels of freestream turbulence will be presented.

  3. Turbulent mixing layers in supersonic protostellar outflows, with application to DG Tauri

    Science.gov (United States)

    White, M. C.; Bicknell, G. V.; Sutherland, R. S.; Salmeron, R.; McGregor, P. J.

    2016-01-01

    Turbulent entrainment processes may play an important role in the outflows from young stellar objects at all stages of their evolution. In particular, lateral entrainment of ambient material by high-velocity, well-collimated protostellar jets may be the cause of the multiple emission-line velocity components observed in the microjet-scale outflows driven by classical T Tauri stars. Intermediate-velocity outflow components may be emitted by a turbulent, shock-excited mixing layer along the boundaries of the jet. We present a formalism for describing such a mixing layer based on Reynolds decomposition of quantities measuring fundamental properties of the gas. In this model, the molecular wind from large disc radii provides a continual supply of material for entrainment. We calculate the total stress profile in the mixing layer, which allows us to estimate the dissipation of turbulent energy, and hence the luminosity of the layer. We utilize MAPPINGS IV shock models to determine the fraction of total emission that occurs in [Fe II] 1.644 μm line emission in order to facilitate comparison to previous observations of the young stellar object DG Tauri. Our model accurately estimates the luminosity and changes in mass outflow rate of the intermediate-velocity component of the DG Tau approaching outflow. Therefore, we propose that this component represents a turbulent mixing layer surrounding the well-collimated jet in this object. Finally, we compare and contrast our model to previous work in the field.

  4. FOREWORD: International Conference on Planetary Boundary Layer and Climate Change

    Science.gov (United States)

    Djolov, G.; Esau, I.

    2010-05-01

    One of the greatest achievements of climate science has been the establisment of the concept of climate change on a multitude of time scales. The Earth's complex climate system does not allow a straightforward interpretation of dependences between the external parameter perturbation, internal stochastic system dynamics and the long-term system response. The latter is usually referred to as climate change in a narrow sense (IPCC, 2007). The focused international conference "Planetary Boundary Layers and Climate Change" has addressed only time scales and dynamical aspects of climate change with possible links to the turbulent processes in the Planetary Boundary Layer (PBL). Although limited, the conference topic is by no means singular. One should clearly understand that the PBL is the layer where 99% of biosphere and human activity are concentrated. The PBL is the layer where the energy fluxes, which are followed by changes in cryosphere and other known feedbacks, are maximized. At the same time, the PBL processes are of a naturally small scale. What is the averaged long-term effect of the small-scale processes on the long-term climate dynamics? Can this effect be recognized in existing long-term paleo-climate data records? Can it be modeled? What is the current status of our theoretical understanding of this effect? What is the sensitivity of the climate model projections to the representation of small-scale processes? Are there significant indirect effects, e.g. through transport of chemical components, of the PBL processes on climate? These and other linked questions have been addressed during the conference. The Earth's climate has changed many times during the planet's history, with events ranging from ice ages to long periods of warmth. Historically, natural factors such as the amount of energy released from the Sun, volcanic eruptions and changes in the Earth's orbit have affected the Earth's climate. Beginning late in the 18th century, human activities

  5. Optimal Growth in Hypersonic Boundary Layers

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous- inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow.

  6. Computational modeling of unsteady loads in tidal boundary layers

    Science.gov (United States)

    Alexander, Spencer R.

    As ocean current turbines move from the design stage into production and installation, a better understanding of oceanic turbulent flows and localized loading is required to more accurately predict turbine performance and durability. In the present study, large eddy simulations (LES) are used to measure the unsteady loads and bending moments that would be experienced by an ocean current turbine placed in a tidal channel. The LES model captures currents due to winds, waves, thermal convection, and tides, thereby providing a high degree of physical realism. Probability density functions, means, and variances of unsteady loads are calculated, and further statistical measures of the turbulent environment are also examined, including vertical profiles of Reynolds stresses, two-point correlations, and velocity structure functions. The simulations show that waves and tidal velocity had the largest impact on the strength of off-axis turbine loads. By contrast, boundary layer stability and wind speeds were shown to have minimal impact on the strength of off- axis turbine loads. It is shown both analytically and using simulation results that either transverse velocity structure functions or two-point transverse velocity spatial correlations are good predictors of unsteady loading in tidal channels.

  7. HIFiRE-5 Boundary Layer Transition and HIFiRE-1 Shock Boundary Layer Interaction

    Science.gov (United States)

    2015-10-01

    ballistic trajectory , with no active attitude control. The elliptic cone test article remained attached to the second stage booster at all times...Page Figure 1 Rollup of Boundary-layer into Streamwise Vortex on 2:1 Sharp Elliptic Cone, Similar to HIFiRE-5 (from Ref...Bulge of 2:1 Elliptic Cone13 ..............6 Figure 4 Photograph of Model

  8. A numerical study of the turbulent Ekman layer

    Science.gov (United States)

    Coleman, G. N.; Ferziger, J. H.; Spalart, P. R.

    1990-01-01

    The three-dimensional time-dependent turbulent flow in a neutrally stratified Ekman layer over a smooth flat surface was numerically simulated by directly solving the Navier-Stokes equations. Issues addressed using the direct numerical simulation (DNS) fields include the presence or absence of large-scale coherent structures ('longitudinal' or 'roll' vortices) in neutrally stratified Ekman-layer turbulence, the effects of the horizontal component of the angular velocity vector (i.e., latitude), and implications for models of the PBL. Experimental and DNS profiles are compared.

  9. Structure Identification Within a Transitioning Swept-Wing Boundary Layer

    Science.gov (United States)

    Chapman, Keith; Glauser, Mark

    1996-01-01

    Extensive measurements are made in a transitioning swept-wing boundary layer using hot-film, hot-wire and cross-wire anemometry. The crossflow-dominated flow contains stationary vortices that breakdown near mid-chord. The most amplified vortex wavelength is forced by the use of artificial roughness elements near the leading edge. Two-component velocity and spanwise surface shear-stress correlation measurements are made at two constant chord locations, before and after transition. Streamwise surface shear stresses are also measured through the entire transition region. Correlation techniques are used to identify stationary structures in the laminar regime and coherent structures in the turbulent regime. Basic techniques include observation of the spatial correlations and the spatially distributed auto-spectra. The primary and secondary instability mechanisms are identified in the spectra in all measured fields. The primary mechanism is seen to grow, cause transition and produce large-scale turbulence. The secondary mechanism grows through the entire transition region and produces the small-scale turbulence. Advanced techniques use Linear Stochastic Estimation (LSE) and Proper Orthogonal Decomposition (POD) to identify the spatio-temporal evolutions of structures in the boundary layer. LSE is used to estimate the instantaneous velocity fields using temporal data from just two spatial locations and the spatial correlations. Reference locations are selected using maximum RMS values to provide the best available estimates. POD is used to objectively determine modes characteristic of the measured flow based on energy. The stationary vortices are identified in the first laminar modes of each velocity component and shear component. Experimental evidence suggests that neighboring vortices interact and produce large coherent structures with spanwise periodicity at double the stationary vortex wavelength. An objective transition region detection method is developed using

  10. Experimental study of boundary layer transition on an airfoil induced by periodically passing wake (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, T.C. [Seoul National University Graduate School, Seoul (Korea); Jeon, W.P.; Kang, S.H. [Seoul National University, Seoul (Korea)

    2001-06-01

    Hot-wire measurements are performed in boundary layers developing on a NACA0012 airfoil over which wakes pass periodically. The Reynolds number based on chord length of the airfoil is 2X10{sup 5} and the wakes are generated by circular cylinders rotating clockwise and counterclockwise around the airfoil. This paper and its companion Part II describe the phenomena of wake-induced transition of the boundary layers on the airfoil using measured data; phase- and time-averaged streamwise mean velocities, turbulent fluctuations, integral parameters and wall skin frictions. This paper describes the background and facility together with results of time-averaged quantities. Due to the passing wake with mean velocity defects and high turbulence intensities, the laminar boundary layer is periodically disturbed at the upstream station and becomes steady-state transitional boundary layer at the downstream station. The velocity defect in the passing wake changes the local pressure at the leading of the airfoil, significantly affects the time-mean pressure distribution on the airfoil and eventually, has influence on the transition process of the boundary layer. (author). 22 refs., 9 figs.

  11. Buoyant production and consumption of turbulence kinetic energy in cloud-topped mixed layers

    Science.gov (United States)

    Randall, D. A.

    1984-01-01

    It is pointed out that studies of the entraining planetary boundary layer (PBL) have generally emphasized the role of buoyancy fluxes in driving entrainment. The buoyancy flux is proportional to the rate of conversion of the potential energy of the mean flow into the kinetic energy of the turbulence. It is not unusual for conversion to proceed in both directions simultaneously. This occurs, for instance, in both clear and cloudy convective mixed layers which are capped by inversions. A partitioning of the net conversion into positive parts, generating turbulence kinetic energy (TKE), and negative parts (TKE-consuming), would make it possible to include the positive part in the gross production rate, and closure would be achieved. Three different approaches to partitioning have been proposed. The present investigation is concerned with a comparison of the three partitioning theories. Particular attention is given to the cloud-topped mixed layer because in this case the differences between two partitioning approaches are most apparent.

  12. Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition

    Science.gov (United States)

    LaGraff, John E. (Editor)

    2007-01-01

    This volume contains materials presented at the Minnowbrook I-1993 Workshop on End-Stage Boundary Layer Transition, held at the Syracuse University Minnowbrook Conference Center, New York, from August 15 to 18, 1993. This volume was previously published as a Syracuse University report edited by John E. LaGraff. The workshop organizers were John E. LaGraff (Syracuse University), Terry V. Jones (Oxford University), and J. Paul Gostelow (University of Technology, Sydney). The workshop focused on physical understanding of the late stages of transition from laminar to turbulent flows, with the specific goal of contributing to improving engineering design of turbomachinery and wing airfoils. The workshop participants included academic researchers from the United States and abroad, and representatives from the gas-turbine industry and U.S. government laboratories. To improve interaction and discussions among the participants, no formal papers were required. The physical mechanisms discussed were related to natural and bypass transition, wake-induced transition, effects of freestream turbulence, turbulent spots, hairpin vortices, nonlinear instabilities and breakdown, instability wave interactions, intermittency, turbulence, numerical simulation and modeling of transition, heat transfer in boundary-layer transition, transition in separated flows, laminarization, transition in turbomachinery compressors and turbines, hypersonic boundary-layer transition, and other related topics. This volume contains abstracts and copies of the viewgraphs presented, organized according to the workshop sessions. The workshop summary and the plenary discussion transcript clearly outline future research needs.

  13. Baroclinic Planetary Boundary-Layer Model for Neutral and Stable Stratification Conditions

    Science.gov (United States)

    Djolov, G. D.; Yordanov, D. L.; Syrakov, D. E.

    The temperature and wind profiles in abaroclinic atmospheric boundary layer (ABL) are investigated.Assuming stationary conditions, the turbulent state in the ABL forstable and neutral conditions is uniquely determined by the Rossbynumber, the external stratification parameter and two externalbaroclinic parameters. A simple two-layer baroclinic model isdeveloped. It consists of a surface layer (SL) and overlyingEkman-type layer. The system of dynamic and heat transfer equations isclosed using K-theory. In the SL the turbulent exchangecoefficient is consistent with the results of similarity theorywhile in the Ekman layer it is assumed constant. The universalfunctions in the resistance, heat and humidity transfer laws arededuced from the analytical solutions for the wind and temperatureprofiles. The solutions of the ABL resistance laws for theinternal ABL parameters, necessary for the calculations of the ABLprofiles, are approximated in terms of the external ABLparameters. Favourable agreement of model results with theavailable experimental data is demonstrated.

  14. CFD simulation of neutral ABL flows; Atmospheric Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong Zhang

    2009-04-15

    This work is to evaluate the CFD prediction of Atmospheric Boundary Layer flow field over different terrains employing Fluent 6.3 software. How accurate the simulation could achieve depend on following aspects: viscous model, wall functions, agreement of CFD model with inlet wind velocity profile and top boundary condition. Fluent employ wall function roughness modifications based on data from experiments with sand grain roughened pipes and channels, describe wall adjacent zone with Roughness Height (Ks) instead of Roughness Length (z{sub 0}). In a CFD simulation of ABL flow, the mean wind velocity profile is generally described with either a logarithmic equation by the presence of aerodynamic roughness length z{sub 0} or an exponential equation by the presence of exponent. As indicated by some former researchers, the disagreement between wall function model and ABL velocity profile description will result in some undesirable gradient along flow direction. There are some methods to improve the simulation model in literatures, some of them are discussed in this report, but none of those remedial methods are perfect to eliminate the streamwise gradients in mean wind speed and turbulence, as EllipSys3D could do. In this paper, a new near wall treatment function is designed, which, in some degree, can correct the horizontal gradients problem. Based on the corrected model constants and near wall treatment function, a simulation of Askervein Hill is carried out. The wind condition is neutrally stratified ABL and the measurements are best documented until now. Comparison with measured data shows that the CFD model can well predict the velocity field and relative turbulence kinetic energy field. Furthermore, a series of artificial complex terrains are designed, and some of the main simulation results are reported. (au)

  15. Measuring turbulent cascades in Jupiter's weather layer

    Science.gov (United States)

    Young, Roland M. B.; Read, Peter L.

    2017-10-01

    Jupiter's atmosphere has often been compared with a classical quasi-two-dimensional, geostrophically turbulent fluid, in which kinetic energy is transferred upscale, with zonal jets emerging due to the spherical curvature of the planet. In a new analysis of 2D wind fields obtained from Cassini cloud images taken during closest approach to Jupiter at the time of the December 2000 fly-by, we have determined 2nd and 3rd order structure functions and spectral transfers of kinetic energy and enstrophy (squared vorticity) across scales ranging from ~1000 km to the scale of the planet itself. These confirm the upscale transfer of kinetic energy from eddies on scales ≥ 3000 km up to the scales of the zonal jets, with ~90% of the energy being transferred into the jets themselves, accompanied by downscale transfer of enstrophy from all scales. For scales ≤ 3000 km or so, however, kinetic energy is transferred downscale, indicating a strong source of kinetic energy at a scale ~2000-3000 km, comparable with the internal Rossby deformation radius. This suggests an important role for baroclinic instability in energising Jupiter's turbulent atmosphere.

  16. Transition Prediction for the Boundary Layer of Yawed Circular Cylinder with e^N Method

    OpenAIRE

    跡部, 隆; 山本, 稀義; 伊藤, 信毅; Takashi, ATOBE; Kiyoshi, YAMAMOTO; Nobutake, ITOH; 航技研; 航技研; 航技研; National Aerospace Laboratory; National Aerospace Laboratory; National Aerospace Laboratory

    2000-01-01

    A numerical code for prediction of laminar-turbulent transition of boundary layer is developed with e^N method, and applied to the flow around a yawed circular cylinder. The velocity profile of the boundary layer is obtained by Navier-Stokes code, and stability analysis is done by Orr-Sommerfeld equation. In this code the integral path, which arises in the calculation of N factor, is determined by the use of complex characteristic equations. The accuracy of this code is examined by comparison...

  17. Longitudinal dispersion of heavy particles in an oscillating tunnel and application to wave boundary layers

    DEFF Research Database (Denmark)

    Kirca, V. S. Ozgur; Sumer, B. Mutlu; Steffensen, Michael

    2016-01-01

    is studied numerically, using a random-walk particle model with the input data for the mean and turbulence characteristics of the wave boundary layer picked up from a transitional two-equation k–ω Reynolds averaged Navier–Stokes model and plugged in the random-walk model. First, the flowmodel is validated...... are found to be in general agreement both qualitatively and quantitatively. In the last part of the study, an example application of the present model for fine sand dispersing in a wave boundary layer under storm conditions is given....

  18. Boundary Layer Measurements of the NACA0015 and Implications for Noise Modeling

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    to measure the velocity profiles and turbulence characteristics in the boundary layer near the trailing edge of the airfoil. The measured boundary layer data are presented in this report and compared with CFD results. A relative good agreement is observed, though a few discrepancies also appear. Comparisons...... of surface pressure fluctuations spectra are used to analyze and improve trailing edge noise modeling by the so-called TNO model. Finally, a pair of hot-wires were placed on each side of the trailing edge in order to measure the radiated trailing edge noise. However, there is no strong evidence...

  19. Angular momentum transport in accretion disk boundary layers around weakly magnetized stars

    DEFF Research Database (Denmark)

    Pessah, M.E.; Chan, C.-K.

    2013-01-01

    , in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI......) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves...

  20. Dry Deposition, Surface Production and Dynamics of Aerosols in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Fairall, C.W.; Larsen, Søren Ejling

    1984-01-01

    A model of downward aerosol panicle flux characterized by dry deposition velocity, Vd, due to Slinn and Slinn (1980) is generalized to the case of nonzero surface concentration (absorbing surface with a surface source). A more general expression for the flux at some reference height is developed...... which includes Vd and an effective surface source strength, Si, which is a function of the true surface source strength, Si, and the particle transport properties below the reference height. The general expression for the surface flux is incorporated into a dynamic mixed layer model of the type...... developed by Davidson et al. (1983). This three layer model (diffusion sublayer, turbulent surface layer and mixed layer) is applied to an open ocean marine regime where boundary layer advection is ignored. The aerosol concentration in the boundary layer is considered to consist of sea salt particles...

  1. Detached eddy simulation for turbulent fluid-structure interaction of moving bodies using the constraint-based immersed boundary method

    Science.gov (United States)

    Nangia, Nishant; Bhalla, Amneet P. S.; Griffith, Boyce E.; Patankar, Neelesh A.

    2016-11-01

    Flows over bodies of industrial importance often contain both an attached boundary layer region near the structure and a region of massively separated flow near its trailing edge. When simulating these flows with turbulence modeling, the Reynolds-averaged Navier-Stokes (RANS) approach is more efficient in the former, whereas large-eddy simulation (LES) is more accurate in the latter. Detached-eddy simulation (DES), based on the Spalart-Allmaras model, is a hybrid method that switches from RANS mode of solution in attached boundary layers to LES in detached flow regions. Simulations of turbulent flows over moving structures on a body-fitted mesh incur an enormous remeshing cost every time step. The constraint-based immersed boundary (cIB) method eliminates this operation by placing the structure on a Cartesian mesh and enforcing a rigidity constraint as an additional forcing in the Navier-Stokes momentum equation. We outline the formulation and development of a parallel DES-cIB method using adaptive mesh refinement. We show preliminary validation results for flows past stationary bodies with both attached and separated boundary layers along with results for turbulent flows past moving bodies. This work is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1324585.

  2. Dynamics, thermodynamics, radiation, and cloudiness associated with cumulus-topped marine boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, Virendra P. [Argonne National Lab. (ANL), Argonne, IL (United States); Miller, Mark [Rutgers Univ., New Brunswick, NJ (United States)

    2016-11-01

    The overall goal of this project was to improve the understanding of marine boundary clouds by using data collected at the Atmospheric Radiation Measurement (ARM) sites, so that they can be better represented in global climate models (GCMs). Marine boundary clouds are observed regularly over the tropical and subtropical oceans. They are an important element of the Earth’s climate system because they have substantial impact on the radiation budget together with the boundary layer moisture, and energy transports. These clouds also have an impact on large-scale precipitation features like the Inter Tropical Convergence Zone (ITCZ). Because these clouds occur at temporal and spatial scales much smaller than those relevant to GCMs, their effects and the associated processes need to be parameterized in GCM simulations aimed at predicting future climate and energy needs. Specifically, this project’s objectives were to (1) characterize the surface turbulent fluxes, boundary layer thermodynamics, radiation field, and cloudiness associated with cumulus-topped marine boundary layers; (2) explore the similarities and differences in cloudiness and boundary layer conditions observed in the tropical and trade-wind regions; and (3) understand similarities and differences by using a simple bulk boundary layer model. In addition to working toward achieving the project’s three objectives, we also worked on understanding the role played by different forcing mechanisms in maintaining turbulence within cloud-topped boundary layers We focused our research on stratocumulus clouds during the first phase of the project, and cumulus clouds during the rest of the project. Below is a brief description of manuscripts published in peer-reviewed journals that describe results from our analyses.

  3. Aspects of atmospheric turbulence related to scintillometry

    NARCIS (Netherlands)

    Braam, M.

    2014-01-01

    Aspects of atmospheric turbulence related to scintillometry Atmospheric turbulence is the main vertical transport mechanism in the atmospheric boundary layer. The surface fluxes related to this turbulent transport are the sensible (

  4. A Hybrid Numerical Method for Turbulent Mixing Layers. Degree awarded by Case Western Reserve Univ.

    Science.gov (United States)

    Georgiadis, Nicholas J.

    2001-01-01

    A hybrid method has been developed for simulations of compressible turbulent mixing layers. Such mixing layers dominate the flows in exhaust systems of modern day aircraft and also those of hypersonic vehicles currently under development. The method configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall bounded regions entering a mixing section, and a Large Eddy Simulation (LES) procedure to calculate the mixing dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. Closure for the RANS equations was obtained using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The wall-function approach enabled a continuous computational grid from the RANS regions to the LES region. The LES equations were closed using the Smagorinsky subgrid scale model. The hybrid RANS-LES method is applied to a benchmark compressible mixing layer experiment. Preliminary two dimensional calculations are used to investigate the effects of axial grid density and boundary conditions. Vortex shedding from the base region of a splitter plate separating the upstream flows was observed to eventually transition to turbulence. The location of the transition, however, was much further downstream than indicated by experiments. Actual LES calculations, performed in three spatial directions, also indicated vortex shedding, but the transition to turbulence was found to occur much closer to the beginning of the mixing section. which is in agreement with experimental observations. These calculations demonstrated that LES simulations must be performed in three dimensions. Comparisons of time-averaged axial velocities and turbulence intensities indicated reasonable agreement with experimental

  5. Analytical solution for the convectively-mixed atmospheric boundary layer

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.

    2013-01-01

    Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation

  6. Investigations of boundary layer structure, cloud characteristics and vertical mixing of aerosols at Barbados with large eddy simulations

    Directory of Open Access Journals (Sweden)

    M. Jähn

    2016-01-01

    Full Text Available Large eddy simulations (LESs are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. Due to the presence of a topographically structured island surface in the domain center, the model setup has to be designed with open lateral boundaries. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, we use the cell perturbation method based on finite amplitude potential temperature perturbations. In this work, this method is for the first time tested and validated for moist boundary layer simulations with open lateral boundary conditions. Observational data obtained from the SALTRACE field campaign is used for both model initialization and a comparison with Doppler wind and Raman lidar data. Several numerical sensitivity tests are carried out to demonstrate the problems related to “gray zone modeling” when using coarser spatial grid spacings beyond the inertial subrange of three-dimensional turbulence or when the turbulent marine boundary layer flow is replaced by laminar winds. Especially cloud properties in the downwind area west of Barbados are markedly affected in these kinds of simulations. Results of an additional simulation with a strong trade-wind inversion reveal its effect on cloud layer depth and location. Saharan dust layers that reach Barbados via long-range transport over the North Atlantic are included as passive tracers in the model. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom at z ≈ 1800 m become apparent. The exact position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability (especially inversion strength and wind shear. Comparisons of LES model output with wind lidar data show similarities in the downwind vertical wind structure. Additionally, the model results

  7. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  8. Simulation of Wind turbines in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    Large eddy simulation of an arbitrary wind farm is studied in the neutral and thermally stratified atmospheric boundary Layer. Large eddy simulations of industrial flows usually requires full resolution of the flow near the wall and this is believed to be one of the main deficiencies of LES because...... layer. In the current study, another approach has been implemented to simulate the flow in a fully developed wind farm boundary layer. The approach is based on Immersed Boundary Method and involves implementation of an arbitrary prescribed initial boundary layer. An initial boundary layer is enforced...... through the whole domain, without wind turbines included, while the body forces that are required to maintain that flow field is calculated. The body forces are then stored and applied on the domain through the simulation of wind turbine and the boundary layer shape will be modified based on the turbine...

  9. Numerical investigation of the boundary layer separation in chemical oxygen iodine laser

    Science.gov (United States)

    Huai, Ying; Jia, Shuqin; Wu, Kenan; Jin, Yuqi; Sang, Fengting

    2017-11-01

    Large eddy simulation is carried out to model the flow process in a supersonic chemical oxygen iodine laser. Unlike the common approaches relying on the tensor representation theory only, the model in the present work is an explicit anisotropy-resolving algebraic Subgrid-scale scalar flux formulation. With an accuracy in capturing the unsteady flow behaviours in the laser. Boundary layer separation initiated by the adverse pressure gradient is identified using Large Eddy Simulation. To quantify the influences of flow boundary layer on the laser performance, the fluid computations coupled with a physical optics loaded cavity model is developed. It has been found that boundary layer separation has a profound effect on the laser outputs due to the introduced shock waves. The F factor of the output beam decreases to 10% of the original one when the boundary transit into turbulence for the setup depicted in the paper. Because the pressure is always greater on the downstream of the boundary layer, there will always be a tendency of boundary separation in the laser. The results inspire designs of the laser to apply positive/passive control methods avoiding the boundary layer perturbation.

  10. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    Science.gov (United States)

    2016-12-16

    AFRL-AFOSR-UK-TR-2017-0007 Boundary - layer bypass transition over large-scale bodies Pierre Ricco UNIVERSITY OF SHEFFIELD, DEPARTMENT OF PSYCHOLOGY...REPORT TYPE Final 3. DATES COVERED (From - To) 01 Sep 2013 to 31 Aug 2016 4. TITLE AND SUBTITLE Boundary - layer bypass transition over large-scale...shape of the streamwise velocity profile compared to the flat-plate boundary layer . The research showed that the streamwise wavenumber plays a key role

  11. Methods and results of boundary layer measurements on a glider

    Science.gov (United States)

    Nes, W. V.

    1978-01-01

    Boundary layer measurements were carried out on a glider under natural conditions. Two effects are investigated: the effect of inconstancy of the development of static pressure within the boundary layer and the effect of the negative pressure difference in a sublaminar boundary layer. The results obtained by means of an ion probe in parallel connection confirm those results obtained by means of a pressure probe. Additional effects which have occurred during these measurements are briefly dealt with.

  12. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  13. Reynolds-Stress Budgets in an Impinging Shock Wave/Boundary-Layer Interaction

    Science.gov (United States)

    Vyas, Manan A.; Yoder, Dennis A.; Gaitonde, Datta V.

    2018-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Comparisons with experimental data showed a sensitivity of the current prediction to the modeling of the sidewalls. This was found to be common among various computational studies in the literature where periodic boundary conditions were used in the spanwise direction, as was the case in the present work. Thus, although the experiment was quasi-two-dimensional, the present simulation was determined to be two-dimensional. Quantities present in the exact equation of the Reynolds-stress transport, i.e., production, molecular diffusion, turbulent transport, pressure diffusion, pressure strain, dissipation, and turbulent mass flux were calculated. Reynolds-stress budgets were compared with past large-eddy simulation and direct numerical simulation datasets in the undisturbed portion of the turbulent boundary layer to validate the current approach. The budgets in SBLI showed the growth in the production term for the primary normal stress and energy transfer mechanism was led by the pressure strain term in the secondary normal stresses. The pressure diffusion term, commonly assumed as negligible by turbulence model developers, was shown to be small but non-zero in the normal stress budgets, however it played a key role in the primary shear stress budget.

  14. Direct simulation of the stably stratified turbulent Ekman layer

    Science.gov (United States)

    Coleman, G. N.; Ferziger, J. H.; Spalart, P. R.

    1992-01-01

    The Navier-Stokes equations and the Boussinesq approximation were used to compute a 3D time-dependent turbulent flow in the stably stratified Ekman layer over a smooth surface. The simulation data are found to be in very good agreement with atmospheric measurements when nondimensionalized according to Nieuwstadt's local scaling scheme. Results suggest that, when Reynolds number effects are taken into account, the 'constant Froud number' stable layer model (Brost and Wyngaard, 1978) and the 'shearing length' stable layer model (Hunt, 1985) for the dissipitation rate of turbulent kinetic energy are both valid. It is concluded that there is good agreement between the direct numerical simulation results and large-eddy simulation results obtained by Mason and Derbyshire (1990).

  15. Heat transfer and fluid mechanics measurements in transitional boundary layers on convex-curved surfaces

    Science.gov (United States)

    Wang, T.; Simon, T. W.

    1987-01-01

    The test section of the present experiment to ascertain the effects of convex curvature and freestream turbulence on boundary layer momentum and heat transfer during natural transition provided a two-dimensional boundary layer flow on a uniformly heated curved surface, with bending to various curvature radii, R. Attention is given to results for the cases of R = infinity, 180 cm, and 90 cm, each with two freestream turbulence intensity levels. While the mild convex curvature of R = 180 cm delays transition, further bending to R = 90 cm leads to no signifucant further delay of transition. Cases with both curvature and higher freestream disturbance effects exhibit the latter's pronounced dominance. These data are pertinent to the development of transition prediction models for gas turbine blade design.

  16. Application of a transitional boundary-layer theory in the low hypersonic Mach number regime

    Science.gov (United States)

    Shamroth, S. J.; Mcdonald, H.

    1975-01-01

    An investigation is made to assess the capability of a finite-difference boundary-layer procedure to predict the mean profile development across a transition from laminar to turbulent flow in the low hypersonic Mach-number regime. The boundary-layer procedure uses an integral form of the turbulence kinetic-energy equation to govern the development of the Reynolds apparent shear stress. The present investigation shows the ability of this procedure to predict Stanton number, velocity profiles, and density profiles through the transition region and, in addition, to predict the effect of wall cooling and Mach number on transition Reynolds number. The contribution of the pressure-dilatation term to the energy balance is examined and it is suggested that transition can be initiated by the direct absorption of acoustic energy even if only a small amount (1 per cent) of the incident acoustic energy is absorbed.

  17. Understanding Transition to Turbulence in Shear Layers.

    Science.gov (United States)

    1983-05-01

    state of shear-layer systems by state variables appropriate for phase- space approach. (See Section A.19 for illustration of simple two-dimensional and...three-dimensional phase spaces .) The broad learning process concludes in Chapter 3 with otherwise * inaccessible conceptualization of disturbances in...scales, they represent a plausible model for the occurrence of fine- scale intermittency which led Kolmogoroff to reconsider his universal similarity

  18. Pre-LBA Rondonia Boundary Layer Experiment (RBLE) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The atmospheric boundary layer (ABL) is the layer of air closest to the ground which is directly influenced on a daily basis by the heating and cooling of the...

  19. Pre-LBA Rondonia Boundary Layer Experiment (RBLE) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The atmospheric boundary layer (ABL) is the layer of air closest to the ground which is directly influenced on a daily basis by the heating and cooling of...

  20. Effects of Periodic Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition Along the Concave Surface of a Curved Plate. Part 3

    Science.gov (United States)

    Schobeiri, M. T.; Radke, R. E.

    1996-01-01

    Boundary layer transition and development on a turbomachinery blade is subjected to highly periodic unsteady turbulent flow, pressure gradient in longitudinal as well as lateral direction, and surface curvature. To study the effects of periodic unsteady wakes on the concave surface of a turbine blade, a curved plate was utilized. On the concave surface of this plate, detailed experimental investigations were carried out under zero and negative pressure gradient. The measurements were performed in an unsteady flow research facility using a rotating cascade of rods positioned upstream of the curved plate. Boundary layer measurements using a hot-wire probe were analyzed by the ensemble-averaging technique. The results presented in the temporal-spatial domain display the transition and further development of the boundary layer, specifically the ensemble-averaged velocity and turbulence intensity. As the results show, the turbulent patches generated by the wakes have different leading and trailing edge velocities and merge with the boundary layer resulting in a strong deformation and generation of a high turbulence intensity core. After the turbulent patch has totally penetrated into the boundary layer, pronounced becalmed regions were formed behind the turbulent patch and were extended far beyond the point they would occur in the corresponding undisturbed steady boundary layer.

  1. On the parametrization of the planetary boundary layer of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, D. [Bulgarian Academy of Sciences, Geophysical Inst., Sofia (Bulgaria); Syrakov, D.; Kolarova, M. [Bulgarian Academy of Sciences, National Inst. of Meteorology and Hydrology, Sofia (United Kingdom)

    1997-10-01

    The investigation of the dynamic processes in the planetary boundary layer presents a definite theoretical challenge and plays a growing role for the solution of a number of practical tasks. The improvement of large-scale atmospheric weather forecast depends, to a certain degree, on the proper inclusion of the planetary boundary layer dynamics in the numerical models. The modeling of the transport and the diffusion of air pollutants is connected with estimation of the different processes in the Planetary Boundary Layer (PBL) and needs also a proper PBL parametrization. For the solution of these practical tasks the following PBL models;(i) a baroclinic PBL model with its barotropic version, and (ii) a convective PBL model were developed. Both models are one dimensional and are based on the similarity theory and the resistance lows extended for the whole PBL. Two different PBL parametrizations under stable and under convective conditions are proposed, on the basis of which the turbulent surface heat and momentum fluxes are estimated using generalized similarity theory. By the proposed parametrizations the internal parameters are calculated from the synoptic scale parameters as geostrophyc wind, potential temperature and humidity given at two levels (ground level and at 850 hPa) and from them - the PBL profiles. The models consists of two layers: a surface layer (SL) with a variable height and a second (Ekman layer) over it with a constant with height turbulent exchange coefficient. (au) 14 refs.

  2. Boundary layers at a dynamic interface: Air-sea exchange of heat and mass

    Science.gov (United States)

    Szeri, Andrew J.

    2017-04-01

    Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in air-sea transfer of natural and anthropogenic gases involved in the study of climate. The goal in this research area is to determine the gas flux from air to sea or vice versa. For sparingly soluble nonreactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity w' and gas concentration c' are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither w' nor c' can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from measurements that can be taken by an infrared (IR) camera. An equation is derived with inputs being the surface temperature and heat flux, and a solution method developed for the surface-normal strain experienced over time by boundary layers at the interface. Because the thermal and concentration boundary layers experience the same near-surface fluid motions, the solution for the surface-normal strain determines the gas flux or gas transfer velocity. Examples illustrate the approach in the cases of complete surface renewal, partial surface renewal, and insolation. The prospects for use of the approach in flows characterized by sheared interfaces or rapid boundary layer straining are explored.

  3. CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave/Boundary-Layer Interaction

    Science.gov (United States)

    Davis, David Owen

    2015-01-01

    Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/ boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. These results will serve to define the region of interest where more detailed mean and turbulence measurements will be made.

  4. Boundary-layer effects in droplet splashing.

    Science.gov (United States)

    Riboux, Guillaume; Gordillo, José Manuel

    2017-07-01

    A drop falling onto a solid substrate will disintegrate into smaller parts when its impact velocity V exceeds the so-called critical velocity for splashing, i.e., when V>V^{*}. Under these circumstances, the very thin liquid sheet, which is ejected tangentially to the solid after the drop touches the substrate, lifts off as a consequence of the aerodynamic forces exerted on it. Subsequently, the growth of capillary instabilities breaks the toroidal rim bordering the ejecta into smaller droplets, violently ejected radially outward, provoking the splash [G. Riboux and J. M. Gordillo, Phys. Rev. Lett. 113, 024507 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.024507. In this contribution, the effect of the growth of the boundary layer is included in the splash model presented in Phys. Rev. Lett. 113, 024507 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.024507, obtaining very good agreement between the measured and the predicted values of V^{*} for wide ranges of liquid and gas material properties, atmospheric pressures, and substrate wettabilities. Our description also modifies the way at when the liquid sheet is first ejected, which can now be determined in a much more straightforward manner than that proposed in Phys. Rev. Lett. 113, 024507 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.024507.

  5. Assessment of a transitional boundary layer theory at low hypersonic Mach numbers

    Science.gov (United States)

    Shamroth, S. J.; Mcdonald, H.

    1972-01-01

    An investigation was carried out to assess the accuracy of a transitional boundary layer theory in the low hypersonic Mach number regime. The theory is based upon the simultaneous numerical solution of the boundary layer partial differential equations for the mean motion and an integral form of the turbulence kinetic energy equation which controls the magnitude and development of the Reynolds stress. Comparisions with experimental data show the theory is capable of accurately predicting heat transfer and velocity profiles through the transitional regime and correctly predicts the effects of Mach number and wall cooling on transition Reynolds number. The procedure shows promise of predicting the initiation of transition for given free stream disturbance levels. The effects on transition predictions of the pressure dilitation term and of direct absorption of acoustic energy by the boundary layer were evaluated.

  6. Infrared imaging and tufts studies of boundary layer flow regimes on a NACA 0012 airfoil

    Science.gov (United States)

    Gartenberg, Ehud; Roberts, A. Sidney, Jr.; Mcree, Griffith J.

    1989-01-01

    A study of boundary-layer flow regimes on a NACA 0012 airfoil from zero angle of attack up to separation is presented. The boundary-layer transition from the laminar to the turbulent regime and the onset of the separation were detected by surface thermography of the airfoil performed with an infrared imaging system. The findings were compared with observations of aluminum-foil tufts visible with the infrared imaging system. This arrangement allows the infrared imaging system to assume the dual role of flow regime detection through surface thermography and flow visualization through the observation of the aluminum-foil tufts. Ultimately the temperature history on an uncontaminated surface could provide an interpretation of the state of boundary-layer flow. Separation studies performed on the NACA 0012 airfoil showed that aluminum foil tufts can be observed with infrared imaging systems.

  7. An Experimental Study of Polymer Drag Reduction and Boundary Layer Diffusion Characteristics for Incompressible Flow Over a Flat Plate.

    Science.gov (United States)

    1979-08-15

    Macromolecular Solutions," Hendon College of Technology, London, 1966. ___, "Turbulence and Drag Reduction With Polymer Additives," Research Bulletin...no. 4, Hendon College of Technology, London, January 1967. White, F. N., "An Analysis of Flat-Plate Drag With Polymer Additives," Journal of... Christoph , G. H., "A Simple Theory for the Two-Diensional Compressible Turbulent Boundary Layer," Transactions of the ASHE, September 1972. White, F. M

  8. Wind-Ramp-Forecast Sensitivity to Closure Parameters in a Boundary-Layer Parametrization Scheme

    Science.gov (United States)

    Jahn, David E.; Takle, Eugene S.; Gallus, William A.

    2017-09-01

    Wind ramps are relatively large changes in wind speed over a period of a few hours and present a challenge for electric utilities to balance power generation and load. Failures of boundary-layer parametrization schemes to represent physical processes limit the ability of numerical models to forecast wind ramps, especially in a stable boundary layer. Herein, the eight "closure parameters" of a widely used boundary-layer parameterization scheme are subject to sensitivity tests for a set of wind-ramp cases. A marked sensitivity of forecast wind speed to closure-parameter values is observed primarily for three parameters that influence in the closure equations the depth of turbulent mixing, dissipation, and the transfer of kinetic energy from the mean to the turbulent flow. Reducing the value of these parameters independently by 25% or by 50% reduces the overall average in forecast wind-speed errors by at least 24% for the first two parameters and increases average forecast error by at least 63% for the third parameter. Doubling any of these three parameters increases average forecast error by at least 67%. Such forecast sensitivity to closure parameter values provides motivation to explore alternative values in the context of a stable boundary layer.

  9. Minnowbrook III: 2000 Workshop on Boundary Layer Transition and Unsteady Aspects of Turbomachinery Flows

    Science.gov (United States)

    LaGraff, John E. (Editor); Ashpis, David E. (Editor)

    2002-01-01

    This volume and its accompanying CD-ROM contain materials presented at the Minnowbrook III-2000 Workshop on Boundary Layer Transition and Unsteady Aspects of Turbomachinery Flows held at the Syracuse University Minnowbrook Conference Center, Blue Mountain Lake, New York, August 20-23, 2000. Workshop organizers were John E. LaGraff (Syracuse University), Terry V Jones (Oxford University), and J. Paul Gostelow (University of Leicester). The workshop followed the theme, venue, and informal format of two earlier workshops: Minnowbrook I (1993) and Minnowbrook II (1997). The workshop was focused on physical understanding the late stage (final breakdown) boundary layer transition, separation, and effects of unsteady wakes with the specific goal of contributing to engineering application of improving design codes for turbomachinery. The workshop participants included academic researchers from the USA and abroad, and representatives from the gas-turbine industry and government laboratories. The physical mechanisms discussed included turbulence disturbance environment in turbomachinery, flow instabilities, bypass and natural transition, turbulent spots and calmed regions, wake interactions with attached and separated boundary layers, turbulence and transition modeling and CFD, and DNS. This volume contains abstracts and copies of the viewgraphs presented, organized according to the workshop sessions. The viewgraphs are included on the CD-ROM only. The workshop summary and the plenary-discussion transcripts clearly highlight the need for continued vigorous research in the technologically important area of transition, separated and unsteady flows in turbomachines.

  10. Wind-US Code Contributions to the First AIAA Shock Boundary Layer Interaction Prediction Workshop

    Science.gov (United States)

    Georgiadis, Nicholas J.; Vyas, Manan A.; Yoder, Dennis A.

    2013-01-01

    This report discusses the computations of a set of shock wave/turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock/boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Four turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Baseline and Shear Stress Transport k-omega two-equation models, and an explicit algebraic stress k-omega formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.

  11. Fluctuations of a passive scalar in a turbulent mixing layer

    KAUST Repository

    Attili, Antonio

    2013-09-19

    The turbulent flow originating downstream of the Kelvin-Helmholtz instability in a mixing layer has great relevance in many applications, ranging from atmospheric physics to combustion in technical devices. The mixing of a substance by the turbulent velocity field is usually involved. In this paper, a detailed statistical analysis of fluctuations of a passive scalar in the fully developed region of a turbulent mixing layer from a direct numerical simulation is presented. Passive scalar spectra show inertial ranges characterized by scaling exponents −4/3 and −3/2 in the streamwise and spanwise directions, in agreement with a recent theoretical analysis of passive scalar scaling in shear flows [Celani et al., J. Fluid Mech. 523, 99 (2005)]. Scaling exponents of high-order structure functions in the streamwise direction show saturation of intermittency with an asymptotic exponent ζ∞=0.4 at large orders. Saturation of intermittency is confirmed by the self-similarity of the tails of the probability density functions of the scalar increments at different scales r with the scaling factor r−ζ∞ and by the analysis of the cumulative probability of large fluctuations. Conversely, intermittency saturation is not observed for the spanwise increments and the relative scaling exponents agree with recent results for homogeneous isotropic turbulence with mean scalar gradient. Probability density functions of the scalar increments in the three directions are compared to assess anisotropy.

  12. Airfoils in Turbulent Inflow

    DEFF Research Database (Denmark)

    Gilling, Lasse

    . However, it turns out that the velocities in the inner part of the boundary layer only increase slightly, and there is no effect on the obtained surface pressures or lift coefficients. It appears that the resolved turbulence has a too large length scale to cause the effect as seen in experiments...... that is formed in attached boundary layers, but the freestream turbulence can penetrate the boundary layer. The idea is that the resolved turbulence from the freestream should mix high momentum flow into the boundary layer and thereby increase the resistance against separation and increase the maximum lift...

  13. Motion of particles in a thermal boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Agrawal, Y.; Cheng, R.K.; Robben, F.; Talbot, L.

    1978-06-15

    In the course of using laser Doppler velocimetry to study combustion in a thermal boundary layer, the particle count rate was found to decrease abruptly to zero inside the boundary layer. Experimental and theoretical investigation of this phenomenon was carried out. The motion of the particles may be due to the combined effects of thermophoresis and radiative heating.

  14. Numerical Simulation of tsunami-scale wave boundary layers

    NARCIS (Netherlands)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scale waves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations,

  15. Characterization of the atmospheric boundary layer from radiosonde ...

    Indian Academy of Sciences (India)

    moisture) or substances originating from the sur- face. It is usually flatter than the boundary layer, but fills the whole ABL in the deep convective boundary layers ..... Wea. Rev. 92 235–242. Holzworth G C 1967 Mixing depths, wind speeds and air pollution potential for selected locations in the United. States; J. Appl. Meteorol.

  16. Coupled wake boundary layer model of wind-farms

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Gayme, Dennice F.; Meneveau, Charles

    2015-01-01

    We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. This model couples the traditional, industry-standard wake model approach with a “top-down” model for the overall wind-farm boundary layer structure. The wake model

  17. The turning of the wind in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... winds underpredict the turning of the wind and the boundary-layer winds in general....

  18. Marine boundary layer simulation and verification during BOBMEX ...

    Indian Academy of Sciences (India)

    Abstract. A global spectral model (T80L18) that is operational at NCMRWF is utilized to study the structure of the marine boundary layer over the Bay of Bengal during the BOBMEX-Pilot period. The vertical profiles of various meteorological parameters within the boundary layer are studied and verified against the available ...

  19. Numerical simulation of the marine boundary layer characteristics ...

    Indian Academy of Sciences (India)

    A one-dimensional multi- level atmospheric boundary layer with TKE- closure scheme is employed to study the marine boundary layer characteristics. In this study two synoptic situations are chosen: one represents an active convection case and the other a suppressed convection. In the present article the marine ...

  20. Modeling the Effects of Buoyancy on the Evolution of Geophysical Boundary Layers

    Science.gov (United States)

    Baum, Eric; Caponi, Enrique A.

    1992-10-01

    A simple modeling based on the Imperial College k-ɛ turbulence description is shown to be capable of describing the highly anisotropic phenomena associated with the strong buoyancy effects encountered in upper ocean (and atmospheric boundary layer) environments. Both diurnal stratification and transition to buoyant mixing (from that driven by wind shear) are described in considerable detail, provided that the modeling of the turbulent Prandtl number and of the buoyant generation term in the ɛ model equation are evaluated in a suitably realistic and consistent way. The resulting model equations are suitable for simulating the evolution of the ensemble-averaged properties of the oceanic mixed layer in response to a specified history of interfacial shear stress and heat flux. The model is tested by comparing the predicted mixed layer evolution with the dissipation rate measurements of Shay and Gregg.