Analysis of turbulent boundary layers
Cebeci, Tuncer
1974-01-01
Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati
Cyclone separator having boundary layer turbulence control
Krishna, Coimbatore R.; Milau, Julius S.
1985-01-01
A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.
Calculation methods for compressible turbulent boundary layers
Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.
1976-01-01
Calculation procedures for non-reacting compressible two- and three-dimensional turbulent boundary layers were reviewed. Integral, transformation and correlation methods, as well as finite difference solutions of the complete boundary layer equations summarized. Alternative numerical solution procedures were examined, and both mean field and mean turbulence field closure models were considered. Physics and related calculation problems peculiar to compressible turbulent boundary layers are described. A catalog of available solution procedures of the finite difference, finite element, and method of weighted residuals genre is included. Influence of compressibility, low Reynolds number, wall blowing, and pressure gradient upon mean field closure constants are reported.
Calculation methods for compressible turbulent boundary layers, 1976
Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.
1977-01-01
Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.
Pressure gradient influence in turbulent boundary layers
Reuther, Nico; Kaehler, Christian J.
2015-11-01
Understanding wall-bounded turbulence is still an ongoing process. Although remarkable progress has been made in the last decades, many challenges still remain. Mean flow statistics are well understood in case of zero pressure gradient flows. However, almost all turbulent boundary layers in technical applications, such as aircrafts, are subjected to a streamwise pressure gradient. When subjecting turbulent boundary layers to adverse pressure gradients, significant changes in the statistical behavior of the near-wall flow have been observed in experimental studies conducted however the details dynamics and characteristics of these flows has not been fully resolved. The sensitivity to Reynolds number and the dependency on several parameters, including the dependence on the pressure gradient parameter, is still under debate and very little information exists about statistically averaged quantities such as the mean velocity profile or Reynolds stresses. In order to improve the understanding of wall-bounded turbulence, this work experimentally investigates turbulent boundary layer subjected to favorable and adverse pressure gradients by means of Particle Image Velocimetry over a wide range of Reynolds numbers, 4200 statistics was found to increase significantly for a flow subjected to an adverse pressure gradient.
Geometric invariance of compressible turbulent boundary layers
Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle
2015-11-01
A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.
Turbulent Plasmaspheric Boundary Layer: Observables and Consequences
Mishin, Evgeny
2014-10-01
In situ satellite observations reveal strong lower hybrid/fast magnetosonic turbulence and broadband hiss-like VLF waves in the substorm subauroral geospace at and earthward of the electron plasmasheet boundary. These coincide with subauroral ion drifts/polarization streams (SAID/SAPS) in the plasmasphere and topside ionosphere. SAID/SAPS appear in ~10 min after the substorm onset consistent with the fast propagation of substorm injection fronts. The SAID channel follows the dispersionless cutoff of the energetic electron flux at the plasmapause. This indicates that the cold plasma maintains charge neutrality within the channel, thereby short-circuiting the injected plasma jet (injection fronts over the plasmasphere. Plasma turbulence leads to the circuit resistivity and magnetic diffusion as well as significant electron heating and acceleration. As a result, a turbulent boundary layer forms between the inner edge of the electron plasmasheet and plasmasphere. The SAID/SAPS-related VLF emissions appear to constitute a distinctive subset of substorm/storm-related VLF activity in the region co-located with freshly injected energetic ions inside the plasmasphere. Significant pitch-angle diffusion coefficients suggest that substorm SAID/SAPS-related VLF waves could be responsible for the alteration of the outer radiation belt boundary during (sub)storms. Supported by the Air Force Office of Scientific Research.
Turbulent boundary layer over a chine.
Panchapakesan, N. R.; Joubert, P. N.
1999-11-01
The flow over an edge aligned with the streamwise direction is studied as a representative of the turbulent boundary layers developing over hard chines found on the hulls of ships and catamarans. We present results of a traditional experimental investigation of this geometry in a wind tunnel with pitot tubes and hot-wires. The chine model consisted of two surfaces made of varnished fibre boards with leading edges of airfoil sections and a 90 degree corner. The boundary layer was tripped with wires close to the leading edge. The model was housed in a test section of length 6.5 m in a closed circuit wind tunnel. The experiments were conducted at a unit Reynolds number of 680,000 /m corresponding to a nominal free stream velocity of 10 m/s. The mean velocity field and the associated integral parameters obtained with pitot tube measurements are presented for different streamwise locations from 0.2 to 4.7 m from the trip wire. The flow at the two farthest locations were also studied with single and 'x' hot-wires. The secondary mean flow and the turbulence field in the corner region are described with these measurements.
Compressibility Effects in Turbulent Boundary Layers
Institute of Scientific and Technical Information of China (English)
CAO Yu-Hui; PEI Jie; CHEN Jun; SHE Zhen-Su
2008-01-01
Local cascade (LC) scheme and space-time correlations are used to study turbulent structures and their convection behaviour in the near-wall region of compressible boundary layers at Ma = 0.8 and 1.3. The convection velocities of fluctuating velocity components u (streamwise) and v (vertical) are investigated by statistically analysing scale-dependent ensembles of LC structures. The results suggest that u is convected with entropy perturbations while v with an isentropic process. An abnormal thin layer distinct from the conventional viscous sub-layer is discovered in the immediate vicinity of the wall (y+≤1) in supersonic flows. While in the region 1 ＜ y+ ＜ 30,streamwise streaks dominate velocity, density and temperature fluctuations, the abnormal thin layer is dominated by spanwise streaks in vertical velocity and density fluctuations, where pressure and density fluctuations are strongly correlated. The LC scheme is proven to be effective in studying the nature of supersonic flows and compressibility effects on wall-bounded motions.
Definition of Turbulent Boundary-Layer with Entropy Concept
Directory of Open Access Journals (Sweden)
Zhao Rui
2016-01-01
Full Text Available The relationship between the entropy increment and the viscosity dissipation in turbulent boundary-layer is systematically investigated. Through theoretical analysis and direct numerical simulation (DNS, an entropy function fs is proposed to distinguish the turbulent boundary-layer from the external flow. This approach is proved to be reliable after comparing its performance in the following complex flows, namely, low-speed airfoil flows with different wall temperature, supersonic cavity-ramp flow dominated by the combination of free-shear layer, larger recirculation and shocks, and the hypersonic flow past an aeroplane configuration. Moreover, fs is deduced from the point of energy, independent of any particular turbulent quantities. That is, this entropy concept could be utilized by other engineering applications related with turbulent boundary-layer, such as turbulence modelling transition prediction and engineering thermal protection.
Local boundary layer scales in turbulent Rayleigh-Benard convection
Scheel, Janet D
2014-01-01
We compute fully local boundary layer scales in three-dimensional turbulent Rayleigh-Benard convection. These scales are directly connected to the highly intermittent fluctuations of the fluxes of momentum and heat at the isothermal top and bottom walls and are statistically distributed around the corresponding mean thickness scales. The local boundary layer scales also reflect the strong spatial inhomogeneities of both boundary layers due to the large-scale, but complex and intermittent, circulation that builds up in closed convection cells. Similar to turbulent boundary layers, we define inner scales based on local shear stress which can be consistently extended to the classical viscous scales in bulk turbulence, e.g. the Kolmogorov scale, and outer scales based on slopes at the wall. We discuss the consequences of our generalization, in particular the scaling of our inner and outer boundary layer thicknesses and the resulting shear Reynolds number with respect to Rayleigh number. The mean outer thickness s...
Numerical simulation of turbulent atmospheric boundary layer flows
Energy Technology Data Exchange (ETDEWEB)
Bennes, L.; Bodnar, T.; Kozel, K.; Sladek, I. [Czech Technical Univ., Prague (Czech Republic). Dept. of Technical Mathematics; Fraunie, P. [Universite Toulon et du Var, La Garde (France). Lab. de Sondages Electromagnetiques de l' Environment Terrestre
2001-07-01
The work deals with the numerical solution of viscous turbulent steady flows in the atmospheric boundary layer including pollution propagation. For its description we use two different mathematical models: - a model based on the Reynolds averaged Navier-Stokes equations for incompressible flows - a model based on a system of boundary layer equations. These systems are completed by two transport equations for the concentration of passive pollutants and the potential temperature in conservative form, respectively, and by an algebraic turbulence model. (orig.)
On the interaction between turbulence grids and boundary layers
Directory of Open Access Journals (Sweden)
Irps Thomas
2016-01-01
Full Text Available Turbulence grids are widely used in wind tunnels to produce representative turbulence levels when testing aerodynamic phenomena around models. Although the purpose of the grid is to introduce a desired turbulence level in the freestream flow, the wall boundary layers of the tunnel are subjected to modification due to the presence of such grids. This could have major implications to the flow around the models to be tested and hence there is a need to further understand this interaction. The study described in this paper examines wind tunnel wall boundary layer modification by turbulence grids of different mesh sizes and porosities to understand the effect of these parameters on such interaction. Experimental results are presented in the form of pressure loss coefficients, boundary layer velocity profiles and the statistics of turbulence modification.
STUDIES ON RETRIEVAL OF THE TURBULIVITY OF ATMOSPHERIC BOUNDARY LAYER
Institute of Scientific and Technical Information of China (English)
WANG Ting-fang; HUANG Si-xun; XIANG Jie
2006-01-01
The variational adjoint method was applied to retrieving the turbulivity of the atmospheric Ekman boundary layer along with the regularization principle. The validity of the method was verified by using the idealized data, and then the turbulivity profile and the geostrophic wind profile were retrieved through it for real observational wind filed data.
Turbulent Boundary Layer at Large Re
Directory of Open Access Journals (Sweden)
Horia DUMITRESCU
2016-03-01
Full Text Available The fluids as deformable bodies without own shape, when starting from rest, experience interactions between the flowing fluid and the physical surfaces marking the bounds of flow. These interactions are a kind of impact process where there is a momentum exchange between two colliding bodies, i.e. the flow and its boundary surfaces. Within a short time of contact a post-impact shear flow occurs where two main effects are triggered off by the flow-induced collision: dramatic redistribution of the momentum and the boundary vorticity followed by the shear stress/viscosity change in the microstructure of the fluid which at the beginning behaves as linear reactive medium and latter as nonlinear dispersive medium. The disturbance of the starting flow induces the entanglement of the wall-bounded flow in the form of point-vortices or concentrated vorticity balls whence waves are emitted and propagated through flow field. The paper develops a wave mechanism for the transport of the concentrated boundary vorticity, directly related to the fascinating turbulence phenomenon, using the torsion concept of vorticity filaments associated with the hypothesis of thixotropic/nonlinear viscous fluid.
Effects of large-scale free stream turbulence on a turbulent boundary layer
Sharp, N. S.; Neuscamman, S.; Warhaft, Z.
2009-09-01
Results of a wind tunnel experiment in which there are systematic variations of free stream turbulence above a flat-plate boundary layer are presented. Upstream of the plate, an active grid generates free stream turbulence varying in intensity from 0.25% to 10.5%. The momentum thickness Reynolds number of the boundary layer varies from 550 to nearly 3000. In all cases, the ratio of the free stream turbulence length scale to the boundary layer depth is greater than unity. Hotwire measurements show that, at high turbulence intensities, the effects of the free stream turbulence extend deep into the boundary layer, affecting the wall stress as well as the small-scale (derivative) statistics. Premultiplied energy spectra show a double peak. At very low free stream turbulence intensities these peaks are associated with the inner and outer scales of the turbulent boundary layer, but at high turbulence intensities the free stream energy peak dominates over the boundary layer's outer scale. The implications of the effect of the large free stream turbulence scales on the small, near-wall scales is discussed with reference to recent high Reynolds number experiments in a turbulent boundary layer without free stream turbulence [Hutchins and Marusic, Philos. Trans. R. Soc. London, Ser. A 365, 647 (2007)].
DNS of compressible turbulent boundary layer around a sharp cone
Institute of Scientific and Technical Information of China (English)
2008-01-01
Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20° cone angle (or 10° half-cone angle) is performed by using the mixed seventh- order up-wind biased finite difference scheme and sixth-order central difference scheme. The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch. The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer. Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow. The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations. The turbulent energy equation in the cylindrical coordinate is given and turbulent en-ergy budget is studied. The computed results show that the effect of circumferen-tial curvature on turbulence characteristics is not obvious.
On the growth of turbulent regions in laminar boundary layers
Gad-El-hak, M.; Riley, J. J.; Blackwelder, R. F.
1981-01-01
Turbulent spots evolving in a laminar boundary layer on a nominally zero pressure gradient flat plate are investigated. The plate is towed through an 18 m water channel, using a carriage that rides on a continuously replenished oil film giving a vibrationless tow. Turbulent spots are initiated using a solenoid valve that ejects a small amount of fluid through a minute hole on the working surface. A novel visualization technique that utilizes fluorescent dye excited by a sheet of laser light is employed. Some new aspects of the growth and entrainment of turbulent spots, especially with regard to lateral growth, are inferred from the present experiments. To supplement the information on lateral spreading, a turbulent wedge created by placing a roughness element in the laminar boundary layer is also studied both visually and with probe measurements. The present results show that, in addition to entrainment, another mechanism is needed to explain the lateral growth characteristics of a turbulent region in a laminar boundary layer. This mechanism, termed growth by destabilization, appears to be a result of the turbulence destabilizing the unstable laminar boundary layer in its vicinity. To further understand the growth mechanisms, the turbulence in the spot is modulated using drag-reducing additives and salinity stratification.
DNS of compressible turbulent boundary layer around a sharp cone
Institute of Scientific and Technical Information of China (English)
LI XinLiang; FU DeXun; MA YanWen
2008-01-01
Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20° cone angle (or 10° half-cone angle) is performed by using the mixed seventh-order up-wind biased finite difference scheme and sixth-order central difference scheme.The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch.The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer,Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow.The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations,The turbulent energy equation in the cylindrical coordinate is given and turbulent en-ergy budget is studied.The computed results show that the effect of circumferen-tial curvature on turbulence characteristics is not obvious.
Non-Equilibrium Effects on Hypersonic Turbulent Boundary Layers
Kim, Pilbum
Understanding non-equilibrium effects of hypersonic turbulent boundary layers is essential in order to build cost efficient and reliable hypersonic vehicles. It is well known that non-equilibrium effects on the boundary layers are notable, but our understanding of the effects are limited. The overall goal of this study is to improve the understanding of non-equilibrium effects on hypersonic turbulent boundary layers. A new code has been developed for direct numerical simulations of spatially developing hypersonic turbulent boundary layers over a flat plate with finite-rate reactions. A fifth-order hybrid weighted essentially non-oscillatory scheme with a low dissipation finite-difference scheme is utilized in order to capture stiff gradients while resolving small motions in turbulent boundary layers. The code has been validated by qualitative and quantitative comparisons of two different simulations of a non-equilibrium flow and a spatially developing turbulent boundary layer. With the validated code, direct numerical simulations of four different hypersonic turbulent boundary layers, perfect gas and non-equilibrium flows of pure oxygen and nitrogen, have been performed. In order to rule out uncertainties in comparisons, the same inlet conditions are imposed for each species, and then mean and turbulence statistics as well as near-wall turbulence structures are compared at a downstream location. Based on those comparisons, it is shown that there is no direct energy exchanges between internal and turbulent kinetic energies due to thermal and chemical non-equilibrium processes in the flow field. Instead, these non-equilibria affect turbulent boundary layers by changing the temperature without changing the main characteristics of near-wall turbulence structures. This change in the temperature induces the changes in the density and viscosity and the mean flow fields are then adjusted to satisfy the conservation laws. The perturbation fields are modified according to
Turbulent dispersion in cloud-topped boundary layers
Verzijlbergh, R. A.; Jonker, H. J. J.; Heus, T.; Vilöguerau de Arellano, J.
2009-02-01
Compared to dry boundary layers, dispersion in cloud-topped boundary layers has received less attention. In this LES based numerical study we investigate the dispersion of a passive tracer in the form of Lagrangian particles for four kinds of atmospheric boundary layers: 1) a dry convective boundary layer (for reference), 2) a "smoke" cloud boundary layer in which the turbulence is driven by radiative cooling, 3) a stratocumulus topped boundary layer and 4) a shallow cumulus topped boundary layer. We show that the dispersion characteristics of the smoke cloud boundary layer as well as the stratocumulus situation can be well understood by borrowing concepts from previous studies of dispersion in the dry convective boundary layer. A general result is that the presence of clouds enhances mixing and dispersion - a notion that is not always reflected well in traditional parameterization models, in which clouds usually suppress dispersion by diminishing solar irradiance. The dispersion characteristics of a cumulus cloud layer turn out to be markedly different from the other three cases and the results can not be explained by only considering the well-known top-hat velocity distribution. To understand the surprising characteristics in the shallow cumulus layer, this case has been examined in more detail by 1) determining the velocity distribution conditioned on the distance to the nearest cloud and 2) accounting for the wavelike behaviour associated with the stratified dry environment.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept-wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses.
Effect of externally generated turbulence on wave boundary layer
DEFF Research Database (Denmark)
Fredsøe, Jørgen; Sumer, B. Mutlu; Kozakiewicz, A.;
2003-01-01
This experimental study deals with the effect of externally generated turbulence on the oscillatory boundary layer to simulate the turbulence in the wave boundary layer under broken waves in the swash zone. The subject has been investigated experimentally in a U-shaped, oscillating water tunnel w...... the friction coefficient. Other features related to the bed shear stress, such as transition, the friction factor and phase lead are discussed. The range of the Reynolds number studied is 10.000 - 2.000.000...
Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels
Elena-Carmen Teleman; Radu Silion; Elena Axinte; Radu Pescaru
2008-01-01
The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence sca...
New Theories on Boundary Layer Transition and Turbulence Formation
Directory of Open Access Journals (Sweden)
Chaoqun Liu
2012-01-01
Full Text Available This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.
Acoustic Radiation From a Mach 14 Turbulent Boundary Layer
Zhang, Chao; Duan, Lian; Choudhari, Meelan M.
2016-01-01
Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.
Drizzle and Turbulence Variability in Stratocumulus-topped Boundary Layers
Kollias, P.; Luke, E. P.; Szyrmer, W.
2015-12-01
Marine stratocumulus clouds frequently produce light precipitation in the form of drizzle. The drizzle rate at the cloud base (RCB) dictates the impact of drizzle on the boundary layer turbulence and cloud organization. Here, synergistic observations from the US Department of Energy Atmospheric Radiation Measurement (ARM) program Eastern North Atlantic (ENA) site located on Graciosa Island in the Azores are used to investigate the relationship between RCB, and boundary layer turbulence and dynamics. The ARM ENA site is a heavily instrumented ground-based facility that offers new measurement capabilities in stratocumulus-topped boundary layers (STBL). The RCB is retrieved using a radar-lidar algorithm. The STBL turbulent structure is characterized using the Doppler lidar and radar observations. The profiling radar/lidar/radiometer observations are used to describe the cloud fraction and morphology. Finally, surface-based aerosol number concentration measurements are used to investigate the connection between the boundary layer turbulence, cloud morphology and aerosol loading. Preliminary correlative relationships between the aforementioned variables will be shown.
Two Phases of Coherent Structure Motions in Turbulent Boundary Layer
Institute of Scientific and Technical Information of China (English)
LIU Jian-Hua; JIANG Nan
2007-01-01
Two phases of coherent structure motion are acquired after obtaining conditional phase-averaged waveforms for longitudinal velocity of coherent structures in turbulent boundary layer based on Harr wavelet transfer. The correspondences of the two phases to the two processes (i.e. ejection and sweep) during a burst are determined.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The engineering computation of turbulent flows is mainly based on turbulence modeling,however,accurate aerothermal computation of hypersonic turbulent boundary layers is still a not well-solved problem. Aerothermal computation for turbulent boundary layers on a supersonic or hypersonic blunt cone with small bluntness is done firstly by using both direct numerical simulation and BL model,and seven different cases are investigated. Then the results obtained by the two methods are compared,and the reason causing the differences is found to be the incorrect assumption in the turbulence modeling that the ratio between eddy heat conductivity and eddy viscosity is constant throughout the whole boundary layer. Based on certain theoretical arguments,a method of modifying the expression of eddy heat conductivity in the region surrounding the peak location of the turbulent kinetic energy is proposed,which is verified to be effective,at least for the seven cases investigated.
Second Law Analysis of the Turbulent Flat Plate Boundary Layer
Directory of Open Access Journals (Sweden)
Dragos Isvoranu
2000-09-01
Full Text Available
Until now the second law analysis of turbulent flow relied only on the irreversibilities performed by the mean velocity and mean temperature gradients. Using the Reynolds decomposition of the volumetric entropy generation rate expression we found that the dissipation rates of both, turbulent kinetic energy and fluctuating temperature variance, also represent the irreversibilities of the flow. Applying the above results, the second law analysis of the turbulent boundary layer shows that the maximum values of the "mean motion irreversibilities" (generated by the mean velocity and mean temperature gradient are located at the wall, while the maximum values of the "turbulent irreversibilities" (performed by the dissipation rate of turbulent kinetic energy and fluctuating temperature variance are located in the buffer sublayer. As a consequence, for a given location on the plate, the integral values of the "mean motion irreversibilities" are approximately constant and the "turbulent irreversibilities" grow up with the boundary layer thickness.
A parametric study of adverse pressure gradient turbulent boundary layers
International Nuclear Information System (INIS)
There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure gradients and this is confounded by the large parameter space that may affect these flows. While there have been many valuable investigations conducted within this parameter space, there are still insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gradient parameter, β, the Reynolds number and the acceleration parameter, K. The statistics analyzed are limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there appears to be no measurable logarithmic region in these cases. It is also found that the large-scale motions scaling with outer variables are energised by the pressure gradient. These increasingly strong large-scale motions are found to be the dominant contributor to the increase in turbulence intensity (scaled with friction velocity) with increasing pressure gradient across the boundary layer.
Spatially developing turbulent boundary layer on a flat plate
Lee, J H; Hutchins, N; Monty, J P
2012-01-01
This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as it would form over the hull of a ship or fuselage of an aircraft. The towed plate permits visualisation of the zero-pressure-gradient turbulent boundary layer as it develops from the trip to a high Reynolds number state ($Re_\\tau \\approx 3000$). An evolving large-scale coherent structure will appear almost stationary in this frame of reference. The visualisations provide an unique view of the evolution of fundamental processes in the boundary layer (such as interfacial bulging, entrainment, vortical motions, etc.). In the more traditional laboratory frame of reference, in which fluid passes over a stationary body, it is difficult to observe the full evolution and lifetime of turbulent coherent structures. An equivalent experiment in a wind/water-tunnel would requ...
A Cautionary Note on the Thermal Boundary Layer Similarity Scaling for the Turbulent Boundary Layer
Weyburne, David
2016-01-01
Wang and Castillo have developed empirical parameters for scaling the temperature profile of the turbulent boundary layer flowing over a heated wall in the paper X. Wang and L. Castillo, J. Turbul., 4, 1(2003). They presented experimental data plots that showed similarity type behavior when scaled with their new scaling parameters. However, what was actually plotted, and what actually showed similarity type behavior, was not the temperature profile but the defect profile formed by subtracting the temperature in the boundary layer from the temperature in the bulk flow. We show that if the same data and same scaling is replotted as just the scaled temperature profile, similarity is no longer prevalent. This failure to show both defect profile similarity and temperature profile similarity is indicative of false similarity. The nature of this false similarity problem is discussed in detail.
Turbulence spectra of the FIRE stratocumulus-topped boundary layers
Young, G. S.; Nucciarone, J. J.; Albrecht, Bruce A.
1990-01-01
There are at least four physical phenomena which contribute to the FIRE boundary layer turbulence spectra: boundary layer spanning eddies resulting from buoyant and mechanical production of turbulent kinetic energy (the microscale subrange); inertial subrange turbulence which cascades this energy to smaller scales; quasi-two dimensional mesoscale variations; and gravity waves. The relative contributions of these four phenomena to the spectra depend on the altitude of observation and variable involved (vertical velocity, temperature and moisture spectra are discussed). The physical origins of these variations in relative contribution are discussed. As expected from the theory (Kaimal et al., 1976), mixed layer scaling of the spectra (i.e., nondimensionalizing wavelength by Z(sub i) and spectral density by Z(sub i) and the dissipation rates) is successful for the microscale subrange and inertial subrange but not for the mesoscale subrange. The most striking feature of the normalized vertical velocity spectra is the lack of any significant mesoscale contribution. The spectral peak results from buoyant and mechanical production on scales similar to the boundary layer depth. The decrease in spectral density at larger scales results from the suppression of vertical velocity perturbations with large horizontal scales by the shallowness of the atmosphere. The spectral density also decreases towards smaller scales following the well known inertial subrange slope. There is a significant variation in the shape of the normalized spectra with height.
Direct numerical simulation of turbulent thermal boundary layers
Kong, Hojin; Choi, Haecheon; Lee, Joon Sik
2000-10-01
In this paper, a method of generating realistic turbulent temperature fluctuations at a computational inlet is proposed and direct numerical simulations of turbulent thermal boundary layers developing on a flat plate with isothermal and isoflux wall boundary conditions are carried out. Governing equations are integrated using a fully implicit fractional-step method with 352×64×128 grids for the Reynolds number of 300, based on the free-stream velocity and the inlet momentum thickness, and the Prandtl number of 0.71. The computed Stanton numbers for the isothermal and isoflux walls are in good agreement with power-law relations without transient region from the inlet. The mean statistical quantities including root-mean-square temperature fluctuations, turbulent heat fluxes, turbulent Prandtl number, and skewness and flatness of temperature fluctuations agree well with existing experimental and numerical data. A quadrant analysis is performed to investigate the coherence between the velocity and temperature fluctuations. It is shown that the behavior of the wall-normal heat flux is similar to that of the Reynolds shear stress, indicating close correlation between the streamwise velocity and temperature. The effect of different thermal boundary conditions at the wall on the near-wall turbulence statistics is also discussed.
Cebeci, Tuncer
2005-01-01
This second edition of our book extends the modeling and calculation of boundary-layer flows to include compressible flows. The subjects cover laminar, transitional and turbulent boundary layers for two- and three-dimensional incompressible and compressible flows. The viscous-inviscid coupling between the boundary layer and the inviscid flow is also addressed. The book has a large number of homework problems.
DNS of stratified spatially-developing turbulent thermal boundary layers
Araya, Guillermo; Castillo, Luciano; Jansen, Kenneth
2012-11-01
Direct numerical simulations (DNS) of spatially-developing turbulent thermal boundary layers under stratification are performed. It is well known that the transport phenomena of the flow is significantly affected by buoyancy, particularly in urban environments where stable and unstable atmospheric boundary layers are encountered. In the present investigation, the Dynamic Multi-scale approach by Araya et al. (JFM, 670, 2011) for turbulent inflow generation is extended to thermally stratified boundary layers. Furthermore, the proposed Dynamic Multi-scale approach is based on the original rescaling-recycling method by Lund et al. (1998). The two major improvements are: (i) the utilization of two different scaling laws in the inner and outer parts of the boundary layer to better absorb external conditions such as inlet Reynolds numbers, streamwise pressure gradients, buoyancy effects, etc., (ii) the implementation of a Dynamic approach to compute scaling parameters from the flow solution without the need of empirical correlations as in Lund et al. (1998). Numerical results are shown for ZPG flows at high momentum thickness Reynolds numbers (~ 3,000) and a comparison with experimental data is also carried out.
Characteristics of turbulent boundary layer flow over algal biofilm
Murphy, Elizabeth; Barros, Julio; Schultz, Michael; Steppe, Cecily; Flack, Karen; Reidenbach, Matthew
2015-11-01
Algal biofilms are an important fouling community on ship hulls, with severe economic consequences due to drag-induced increases in fuel use and cleaning costs. Here, we characterize the boundary layer flow structure in turbulent flow over diatomaceous slime, a type of biofilm. Diatomaceous slime composed of three species of diatoms commonly found on ship hulls was grown on acrylic test plates under shear stress. The slime averages 1.6 mm in thickness and has a high density of streamers, which are flexible elongated growths with a length on the order of 1- 2 mm located at the top of the biofilm that interact with the flow. Fouled acrylic plates were placed in a water tunnel facility specialized for detailed turbulent boundary layer measurements. High resolution Particle Image Velocimetry (PIV) data are analyzed for mean velocity profile as well as local turbulent stresses and turbulent kinetic energy (TKE) production, dissipation and transport. Quadrant analysis is used to characterize the impact of the instantaneous events of Reynolds shear stress (RSS) in the flow. To investigate the coherence of the large-scale motion in the flow two-point correlation analysis is employed. Funding provided by the Office of Naval Research and the National Science Foundation.
Turbulent boundary-layer structure of flows over freshwater biofilms
Walker, J. M.; Sargison, J. E.; Henderson, A. D.
2013-12-01
The structure of the turbulent boundary-layer for flows over freshwater biofilms dominated by the diatom Tabellaria flocculosa was investigated. Biofilms were grown on large test plates under flow conditions in an Australian hydropower canal for periods up to 12 months. Velocity-profile measurements were obtained using LDV in a recirculating water tunnel for biofouled, smooth and artificially sandgrain roughened surfaces over a momentum thickness Reynolds number range of 3,000-8,000. Significant increases in skin friction coefficient of up to 160 % were measured over smooth-wall values. The effective roughnesses of the biofilms, k s, were significantly higher than their physical roughness measured using novel photogrammetry techniques and consisted of the physical roughness and a component due to the vibration of the biofilm mat. The biofilms displayed a k-type roughness function, and a logarithmic relationship was found between the roughness function and roughness Reynolds number based on the maximum peak-to-valley height of the biofilm, R t. The structure of the boundary layer adhered to Townsend's wall-similarity hypothesis even though the scale separation between the effective roughness height and the boundary-layer thickness was small. The biofouled velocity-defect profiles collapsed with smooth and sandgrain profiles in the outer region of the boundary layer. The Reynolds stresses and quadrant analysis also collapsed in the outer region of the boundary layer.
Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels
Directory of Open Access Journals (Sweden)
Elena-Carmen Teleman
2008-01-01
Full Text Available The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence scales of the wind action in urban environment were conducted. The data obtained were processed and analyzed and interpreted with specific software. The results are used for a synthesis regarding the scales of turbulence of the model of flow and the actual accuracy of measurements. The paper presents some of the important elements of this synthesis.
The large Reynolds number - Asymptotic theory of turbulent boundary layers.
Mellor, G. L.
1972-01-01
A self-consistent, asymptotic expansion of the one-point, mean turbulent equations of motion is obtained. Results such as the velocity defect law and the law of the wall evolve in a relatively rigorous manner, and a systematic ordering of the mean velocity boundary layer equations and their interaction with the main stream flow are obtained. The analysis is extended to the turbulent energy equation and to a treatment of the small scale equilibrium range of Kolmogoroff; in velocity correlation space the two-thirds power law is obtained. Thus, the two well-known 'laws' of turbulent flow are imbedded in an analysis which provides a great deal of other information.
Aeroelectric structures and turbulence in the atmospheric boundary layer
Directory of Open Access Journals (Sweden)
S. V. Anisimov
2013-10-01
Full Text Available Complex electrical measurements with the use of sodar data show that electric field pulsation analysis is useful for electrodynamics/turbulence monitoring under different conditions. In particular, the number of aeroelectric structures (AES generated per hour is a convenient measure of the turbulence intensity. During convectively unstable periods, as many as 5–10 AES form per hour. Under stable conditions, AES occasionally form as well, indicating the appearance of occasional mixing events reflected in the electric field perturbations. AES magnitudes under stable conditions are relatively small, except in special cases such as high humidity and fog. The analysis of electric field (EF spectra gives additional useful information on the parameters of the atmospheric boundary layer and its turbulence. A rather sharp change in the spectrum slope takes place in the vicinity of 0.02 Hz under stable conditions. The characteristic slope of the spectrum and its change are reproduced in a simple model of EF formation.
Turbulent thermal boundary layers with temperature-dependent viscosity
International Nuclear Information System (INIS)
Highlights: • Turbulent thermal boundary layers with temperature-dependent viscosity are simulated. • Effect of temperature-dependent viscosity on the statistics of the scalar field. • An identity for the Stanton number is derived and analyzed. • Effect of temperature-dependent viscosity on the statistics of scalar transfer rate. • Modification of turbulent flow field leads to an enhanced scalar transfer rate. - Abstract: Direct numerical simulations (DNS) of turbulent boundary layers (TBLs) over isothermally heated walls were performed, and the influence of the wall-heating on the thermal boundary layers was investigated. The DNS adopt an empirical relation for the temperature-dependent viscosity of water. The Prandtl number therefore changes with temperature, while the Péclet number is constant. Two wall temperatures (Tw = 70 °C and 99 °C) were considered relative to T∞ = 30 °C, and a reference simulation of TBL with constant viscosity was also performed for comparison. In the variable viscosity flow, the mean and variance of the scalar, when normalized by the friction temperature deficit, decrease relative to the constant viscosity flow. A relation for the mean scalar which takes into account the variable viscosity is proposed. Appropriate scalings for the scalar fluctuations and the scalar flux are also introduced, and are shown to be applicable for both variable and constant viscosity flows. Due to the modification of the near-wall turbulence, the Stanton number and the Reynolds analogy factor are augmented by 10% and 44%, respectively, in the variable viscosity flow. An identity for the Stanton number is derived and shows that the mean wall-normal velocity and wall-normal scalar flux cause the increase in the heat transfer coefficient. Finally, the augmented near-wall velocity fluctuations lead to an increase of the wall-normal scalar flux, which contributes favorably to the enhanced heat transfer at the wall
Manipulation of Turbulent Boundary Layers Using Synthetic Jets
Berger, Zachary; Gomit, Guillaume; Lavoie, Philippe; Ganapathisubramani, Bharath
2015-11-01
This work focuses on the application of active flow control, in the form of synthetic jet actuators, of turbulent boundary layers. An array of 2 synthetic jets are oriented in the spanwise direction and located approximately 2.7 meters downstream from the leading edge of a flat plate. Actuation is applied perpendicular to the surface of the flat plate with varying blowing ratios and reduced frequencies (open-loop). Two-component large window particle image velocimetry (PIV) was performed at the University of Southampton, in the streamwise-wall-normal plane. Complementary stereo PIV measurements were performed at the University of Toronto Institute for Aerospace Studies (UTIAS), in the spanwise-wall-normal plane. The freestream Reynolds number is 3x104, based on the boundary layer thickness. The skin friction Reynolds number is 1,200 based on the skin friction velocity. The experiments at Southampton allow for the observation of the control effects as the flow propagates downstream. The experiments at UTIAS allow for the observation of the streamwise vorticity induced from the actuation. Overall the two experiments provide a 3D representation of the flow field with respect to actuation effects. The current work focuses on the comparison of the two experiments, as well as the effects of varying blowing ratios and reduced frequencies on the turbulent boundary layer. Funded Supported by Airbus.
Identification of Lagrangian coherent structures in the turbulent boundary layer
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Using Finite-Time Lyapunov Exponents (FTLE) method, Lagrangian coherent structures (LCSs) in a fully developed flat-plate turbulent boundary layer are successfully identified from a two-dimensional (2D) velocity field obtained by time-resolved 2D PIV measurement. The typical LCSs in the turbulent boundary layer are hairpin-like structures, which are characterized as legs of quasi-streamwise vor- tices extending deep into the near wall region with an inclination angle θ to the wall, and heads of the transverse vortex tube located in the outer region. Statistical analysis on the characteristic shape of typical LCS reveals that the probability density distribution of θ accords well with t-distribution in the near wall region, but presents a bimodal distribution with two peaks in the outer region, corresponding to the hairpin head and the hairpin neck, respectively. Spatial correlation analysis of FTLE field is im- plemented to get the ensemble-averaged inclination angle θ R of typical LCS. θ R first increases and then decreases along the wall-normal direction, similar to that of the mean value of θ. Moreover, the most probable value of θ saturates at y+=100 with the maximum value of about 24°, suggesting that the most likely position where hairpins transit from the neck to the head is located around y+=100. The ensem- ble-averaged convection velocity Uc of typical LCS is finally calculated from temporal-spatial correla- tion analysis of FTLE field. It is found that the wall-normal profile of the convection velocity Uc(y) ac- cords well with the local mean velocity profile U(y) beyond the buffer layer, evidencing that the down- stream convection of hairpins determines the transportation properties of the turbulent boundary layer in the log-region and beyond.
Identification of Lagrangian coherent structures in the turbulent boundary layer
Institute of Scientific and Technical Information of China (English)
PAN Chong; WANG JinJun; ZHANG Cao
2009-01-01
Using Finite-Time Lyapunov Exponents (FTLE) method, Lagrangian coherent structures (LCSs) in a fully developed flat-plate turbulent boundary layer are successfully identified from a two-dimensional (2D) velocity field obtained by time-resolved 2D PIV measurement. The typical LCSs in the turbulent boundary layer are hairpin-like structures, which are characterized as legs of quasi-streamwise vor-tices extending deep into the near wall region with an inclination angle θto the wall, and heads of the transverse vortex tube located in the outer region. Statistical analysis on the characteristic shape of typical LCS reveals that the probability density distribution of # accords well with t-distribution in the near wall region, but presents a bimodal distribution with two peaks in the outer region, corresponding to the hairpin head and the hairpin neck, respectively. Spatial correlation analysis of FTLE field is im-plemented to get the ensemble-averaged inclination angle θR of typical LCS. θR first increases and then decreases along the wall-normal direction, similar to that of the mean value of θ. Moreover, the most probable value of 8 saturates at Y+=100 with the maximum value of about 24°, suggesting that the most likely position where hairpins transit from the neck to the head is located around Y+=100. The ensem-ble-averaged convection velocity Uc of typical LCS is finally calculated from temporal-spatial correla-tion analysis of FTLE field. It is found that the wall-normal profile of the convection velocity Uc(Y) ac-cords well with the local mean velocity profile U(y) beyond the buffer layer, evidencing that the down-stream convection of hairpins determines the transportation properties of the turbulent boundary layer in the log-region and beyond.
Direct simulation of the turbulent boundary layer on a plate
Krupa, V. G.
2016-08-01
A numerical method for the integration of three-dimensional Navier-Stokes equations for compressible fluid as applied to direct numerical simulation is proposed. By way of example, the boundary layer on a plate is simulated. The computations were carried out for Reθ = 1500. The computational grid consisted of a half billion nodes. The flow region includes the laminar, transitional, and turbulent zones. The numerically obtained distributions of average velocity, friction, and pulsations are compared with experimental data and available numerical solutions.
Injection-induced turbulence in stagnation-point boundary layers
Park, C.
1984-02-01
A theory is developed for the stagnation point boundary layer with injection under the hypothesis that turbulence is produced at the wall by injection. From the existing experimental heat transfer rate data obtained in wind tunnels, the wall mixing length is deduced to be a product of a time constant and an injection velocity. The theory reproduces the observed increase in heat transfer rates at high injection rates. For graphite and carbon-carbon composite, the time constant is determined to be 0.0002 sec from the existing ablation data taken in an arc-jet tunnel and a balistic range.
Compressible Turbulent Boundary Layers on a Strongly Heated Wall
Institute of Scientific and Technical Information of China (English)
无
1993-01-01
This paper concerns the theoretical and experimental modelling of the flat wall,highly heated,compressible turbulent boundary layer.Its final objective is to develop a numerical Navier-Stokes solver and to conclude on its capability to correctly represent complex aerothermic viscous flows near the wall.The paper presents a constructed numerical method with particular attention given to the turbulence modelling at low Reynolds number and comparisons with supersonic and transonic experimental data.For the transonic experiment,very high wall temperature(Tw=1100K)is realized.The method of this difficult experimental set up is discussed.The comparison between experimental and computational data conducts to the first conclusion and gives some indications for the future work.
Turbulence transition in the asymptotic suction boundary layer
Kreilos, Tobias; Schneider, Tobias M; Veble, Gregor; Duguet, Yohann; Schlatter, Philipp; Henningson, Dan S; Eckhardt, Bruno
2015-01-01
We study the transition to turbulence in the asymptotic suction boundary layer (ASBL) by direct numerical simulation. Tracking the motion of trajectories intermediate between laminar and turbulent states we can identify the invariant object inside the laminar-turbulent boundary, the edge state. In small domains, the flow behaves like a travelling wave over short time intervals. On longer times one notes that the energy shows strong bursts at regular time intervals. During the bursts the streak structure is lost, but it reforms, translated in the spanwise direction by half the domain size. Varying the suction velocity allows to embed the flow into a family of flows that interpolate between plane Couette flow and the ASBL. Near the plane Couette limit, the edge state is a travelling wave. Increasing the suction, the travelling wave and a symmetry-related copy of it undergo a saddle-node infinite-period (SNIPER) bifurcation that leads to bursting and discrete-symmetry shifts. In wider domains, the structures loc...
Coupling between roughness and freestream acceleration in turbulent boundary layers
Yuan, Junlin; Piomelli, Ugo
2015-11-01
To explain various rough-wall flow responses to different types of free-stream conditions previously observed, we carried out a direct numerical simulation of a spatially developing turbulent boundary layer with freestream acceleration. Unlike the equilibrium (self-similar) accelerating scenario, where a strong acceleration leads to complete laminarization and lower friction, in the present non-equilibrium case the friction coefficient increases with acceleration, due to the faster near-wall acceleration than that of the freestream. At the same time, roughness reduces the near-wall time scale of the turbulence, preventing the acceleration from linearly stretching the near-wall eddies and freezing the turbulence intensity as in the smooth case. In addition, acceleration leads to similar decrease of mean-velocity logarithmic slope on rough and smooth walls; this allows a clear definition of the roughness function in a local sense. Interestingly, this roughness function correlates with the roughness Reynolds number in the same way as in self-similar or non-accelerating flows. This study may also help develop benchmark cases for evaluating rough-wall treatments for industrial turbulence models.
Hierarchical similarity in the atmospheric boundary layer turbulence
Institute of Scientific and Technical Information of China (English)
LIU Gang; LI Xin; JIANG Weimei; LI Min
2005-01-01
The S-L (She and Leveque) scaling law, also named the hierarchical similarity theory, has been extensively tested for the turbulence made in the laboratory, but seldom been tested for the turbulence in the atmospheric boundary layer (ABL). In this paper,the S-L scaling law is applied to the turbulence in the ABL observed under unstably stratified conditions and over different types of underlying surfaces. The results of analyses show that over this type of homogeneous and flat underlying surface, such as the underlying surface in HUBEX (Huaihe River Basin Energy and Water Cycle Experiment), vertical speed and temperature fields well satisfy the S-L scaling law. For the turbulence over the homogeneous but rather rough underlying surface of forest and under unstably stratified conditions in PFRD (Park Falls Ranger District of the Chequamegon National Forest, Wisconsin, USA), the analyses show that the vertical speed and temperature fields sometimes conform sometimes do not conform to the S-L scaling law. However, at a time, either both of the vertical speed and temperature fields conform to the S-L scaling law, or both of them do not. Horizontal speed fields in both of the field experiments do not satisfy the S-L scaling law. The new explanation of the above-mentioned phenomena is given.
Heterogeneous evaporation across a turbulent internal boundary layer
Shahraeeni, Ebrahim; Vanderborght, Jan; Vereecken, Harry
2014-05-01
In local evaporation from sufficiently uniform and large surfaces, horizontal advection close to the changes in surface condition is not significant. Under natural condition, this assumption is often invalid and horizontal inhomogeneity is important. When partially saturated air flows from a uniform dry land surface over a wet surface, all lower boundary conditions of transport equations change abruptly. Also surface humidity and roughness are likely to be different from their upwind values. Due to these changes, the velocity profile and turbulence structure of the airflow must readjust. The vertical profiles are no longer in equilibrium and the horizontal gradients do not equal to zero. When there is more than one of these changes in the domain of interest, the interaction between different patches with a contrast in roughness, temperature or surface water content is also important. Rigorous experimental and numerical analysis of turbulent transfer of mass and momentum in the so-called internal boundary layer (the region affected by such step changes in surface condition) is the aim of this work. A combination of numerical simulations using in-house codes and commercial softwares and experimental measurements in the environmental wind tunnel is performed. We are specifically interested in correct depiction of roughness, in a more accurate representation of the turbulent velocity profile and in a better description of turbulent diffusion close to the interface. A series of simplifying assumptions in the classical representation of this problem are investigated and a sensitivity analysis is performed to identify the contribution of neglected terms. We are also interested in the parameterization of the heat and mass exchange processes for the case with different wet patches in a background of dry soil, which is of interest in several field scale applications.
Turbulent boundary layer over a convergent and divergent superhydrophobic surface
Nadeem, Muhammad; Hwang, Jinyul; Sung, Hyung Jin
2015-11-01
Direct numerical simulation (DNS) of spatially developing turbulent boundary layer (TBL) over a convergent and divergent superhydrophobic surface (SHS) was performed. The convergent and divergent SHS was aligned in the streamwise direction. The SHS was modeled as a pattern of slip and no-slip surfaces. For comparison, DNS of TBL over a straight SHS was also carried out. The momentum thickness Reynolds number was varied from 800 to 1400. The gas fraction of the convergent and divergent SHS was the same as that of the straight SHS, keeping the slip area constant. The slip velocity in the convergent SHS was higher than that of the straight SHS. An optimal streamwise length of the convergent and divergent SHS was obtained. The convergent and divergent SHS gave more drag reduction than the straight SHS. The convergent and divergent SHS led to the modification of near wall-turbulent structures, resembling the narrowing and widening streaky structures near the wall. The convergent and divergent SHS had a relatively larger damping effect on near-wall turbulence than the straight SHS. These observations will be further analyzed statistically to demonstrate the effect of the convergent and divergent SHS on the interaction of inner and outer regions of TBL.
PIV-based pressure fluctuations in the turbulent boundary layer
Ghaemi, Sina; Ragni, Daniele; Scarano, Fulvio
2012-12-01
The unsteady pressure field is obtained from time-resolved tomographic particle image velocimetry (Tomo-PIV) measurement within a fully developed turbulent boundary layer at free stream velocity of U ∞ = 9.3 m/s and Reθ = 2,400. The pressure field is evaluated from the velocity fields measured by Tomo-PIV at 10 kHz invoking the momentum equation for unsteady incompressible flows. The spatial integration of the pressure gradient is conducted by solving the Poisson pressure equation with fixed boundary conditions at the outer edge of the boundary layer. The PIV-based evaluation of the pressure field is validated against simultaneous surface pressure measurement using calibrated condenser microphones mounted behind a pinhole orifice. The comparison shows agreement between the two pressure signals obtained from the Tomo-PIV and the microphones with a cross-correlation coefficient of 0.6 while their power spectral densities (PSD) overlap up to 3 kHz. The impact of several parameters governing the pressure evaluation from the PIV data is evaluated. The use of the Tomo-PIV system with the application of three-dimensional momentum equation shows higher accuracy compared to the planar version of the technique. The results show that the evaluation of the wall pressure can be conducted using a domain as small as half the boundary layer thickness (0.5δ99) in both the streamwise and the wall normal directions. The combination of a correlation sliding-average technique, the Lagrangian approach to the evaluation of the material derivative and the planar integration of the Poisson pressure equation results in the best agreement with the pressure measurement of the surface microphones.
Logarithmic boundary layers in highly turbulent Taylor-Couette flow
Huisman, Sander G; Cierpka, Christian; Kahler, Christian J; Lohse, Detlef; Sun, Chao
2013-01-01
We provide direct measurements of the boundary layer properties in highly turbulent Taylor-Couette flow up to $\\text{Ta}=6.2 \\times 10^{12}$ using high-resolution particle image velocimetry (PIV). We find that the mean azimuthal velocity profile at the inner and outer cylinder can be fitted by the von K\\'arm\\'an log law $u^+ = \\frac 1\\kappa \\ln y^+ +B$. The von K\\'arm\\'an constant $\\kappa$ is found to depend on the driving strength $\\text{Ta}$ and for large $\\text{Ta}$ asymptotically approaches $\\kappa \\approx 0.40$. The variance profiles of the local azimuthal velocity have a universal peak around $y^+ \\approx 12$ and collapse when rescaled with the driving velocity (and not with the friction velocity), displaying a log-dependence of $y^+$ as also found for channel and pipe flows [1,2].
EXPERIMENTAL STUDY ON TURBULENT BOUNDARY LAYER CHARACTERISTICS OVER STREAMWISE RIBLETS
Institute of Scientific and Technical Information of China (English)
ZHAO Zhi-yong; DONG Shou-ping; DU Ya-nan
2004-01-01
Measurements of characteristics by means of a two-component Laser Doppler Velocimeter (LDV) were carried out in turbulent boundary layers over both a symmetric V-shaped ribbed plate and a smooth one in a low speed wind tunnel. The present results clearly indicate that the logarithmic velocity profile over the riblets surface is shifted upward with a 30.9% increase in the thickness of the viscous sublayer. Also a change in the log-law region is found. And the maximum value of streamwise velocity fluctuations is reduced by approximately 17%. The skewness and flatness factors do not show any change besides those in the region of y+＜0.6. It is evident that the Reynolds shear stress over the riblets is reduced. Further more, in log-law region, the Reynolds shear stress has a larger reduction of up to 18%.
Coherent vorticity extraction in turbulent boundary layers using orthogonal wavelets
Energy Technology Data Exchange (ETDEWEB)
Khujadze, George; Oberlack, Martin [Chair of Fluid Dynamics, Technische Universitaet Darmstadt (Germany); Yen, Romain Nguyen van [Institut fuer Mathematik, Freie Universitaet Berlin (Germany); Schneider, Kai [M2P2-CNRS and CMI, Universite de Provence, Marseille (France); Farge, Marie, E-mail: khujadze@fdy.tu-darmstadt.de [LMD-IPSL-CNRS, Ecole Normale Superieure, Paris (France)
2011-12-22
Turbulent boundary layer data computed by direct numerical simulation are analyzed using orthogonal anisotropic wavelets. The flow fields, originally given on a Chebychev grid, are first interpolated on a locally refined dyadic grid. Then, they are decomposed using a wavelet basis, which accounts for the anisotropy of the flow by using different scales in the wall-normal direction and in the planes parallel to the wall. Thus the vorticity field is decomposed into coherent and incoherent contributions using thresholding of the wavelet coefficients. It is shown that less than 1% of the coefficients retain the coherent structures of the flow, while the majority of the coefficients corresponds to a structureless, i.e., noise-like background flow. Scale-and direction-dependent statistics in wavelet space quantify the flow properties at different wall distances.
Eisma, J.; Westerweel, J.; Elsinga, G.E.
2015-01-01
Experimental research is presented on the characteristics of interfaces and internal layers that are present in a turbulent boundary layer (TBL). Both the turbulent non-turbulent interface (T/NT) and internal shear layers are detected in snapshots of the stereo-PIV data. It turns out that the intern
The Boundary Layer Late Afternoon and Sunset Turbulence 2011 field experiment
Lothon, M.; Lohou, F.; Durand, P.; Couvreux, F.; Hartogensis, O.K.; Legain, D.; Pardyjak, E.; Pino, D.; Vilà-Guerau de Arellano, J.; Boer, van de A.; Moene, A.F.; Steeneveld, G.J.
2012-01-01
BLLAST (Boundary Layer Late Afternoon and Sunset Turbulence) aims at better understanding the thermodynamical processes that occur during the late afternoon in the lower troposphere. In direct contact with the Earth surface, the atmospheric boundary layer is governed by buoyant and mechanical turbul
Tetervin, Neal; Lin, Chia Chiao
1951-01-01
A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.
Surface Temperature and Surface-Layer Turbulence in a Convective Boundary Layer
Garai, A.; Pardyjak, E.; Steeneveld, G.J.; Kleissl, J.
2013-01-01
Previous laboratory and atmospheric experiments have shown that turbulence influences the surface temperature in a convective boundary layer. The main objective of this study is to examine land-atmosphere coupled heat transport mechanism for different stability conditions. High frequency infrared im
A model for turbulent dissipation rate in a constant pressure boundary layer
Indian Academy of Sciences (India)
J DEY; P PHANI KUMAR
2016-04-01
Estimation of the turbulent dissipation rate in a boundary layer is a very involved process.Experimental determination of either the dissipation rate or the Taylor microscale, even in isotropic turbulence,which may occur in a portion of the turbulent boundary layer, is known to be a difficult task. For constant pressure boundary layers, a model for the turbulent dissipation rate is proposed here in terms of the local mean flow quantities. Comparable agreement between the estimated Taylor microscale and Kolmogorov length scale with other data in the logarithmic region suggests usefulness of this model in obtaining these quantitiesexperimentally
Volino, Ralph John
1995-01-01
Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong (K = {nuover U_sp{infty} {2}}{dUinftyover dx} as high as 9times 10^{ -6}) acceleration. The high FSTI experiments are the main focus of the work. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. The high FSTI boundary layers undergo transition from a strongly disturbed non-turbulent state to a fully-turbulent state. Due to the stabilizing effect of strong acceleration, the transition zones are of extended length in spite of the high FSTI. Transitional values of skin friction coefficients and Stanton numbers drop below flat-plate, low FSTI, turbulent flow correlations, but remain well above laminar flow values. Mean velocity and temperature profiles exhibit clear changes in shape as the flow passes through transition. Turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. Turbulent transport is strongly suppressed below values in unaccelerated turbulent boundary layers. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Octant analysis shows a fundamental difference between transitional and fully-turbulent boundary layers. Transitional boundary layers are characterized by incomplete mixing compared to fully-turbulent boundary layers. Similar octant analysis results are observed in both low and high FSTI cases. Spectral analysis suggests that the non-turbulent zone of the high FSTI flow is dominated by large scale
Schröder, A.; Geisler, R.; Elsinga, G.E.; Scarano, F.; Dierksheide, U.
2007-01-01
In this feasibility study the tomographic PIV technique has been applied to time resolved PIV recordings for the study of the growth of a turbulent spot in a laminar flat plate boundary layer and to visualize the topology of coherent flow structures within a tripped turbulent flat plate boundary lay
Properties of the turbulent/non-turbulent interface in boundary layers
Borrell, Guillem
2016-01-01
The turbulent/non-turbulent interface is analysed in a direct numerical simulation of a boundary layer in the range $Re_\\theta=2800-6600$, with emphasis on the behaviour of the relatively large-scale fractal intermittent region. This requires the introduction of a new definition of the distance between a point and a general surface, which is compared with the more usual vertical distance to the top of the layer. Interfaces are obtained by thresholding the enstrophy field and the magnitude of the rate-of-strain tensor, and it is concluded that, while the former are physically relevant features, the latter are not. By varying the threshold, a topological transition is identified as the interface moves from the free stream into the turbulent core. A vorticity scale is defined that collapses that transition for different Reynolds numbers, roughly equivalent to the root-mean-squared vorticity at the edge of the boundary layer. Conditionally averaged flow variables are analysed as functions of the new distance, bot...
Integral method for the calculation of three-dimensional, laminar and turbulent boundary layers
Stock, H. W.
1978-01-01
The method for turbulent flows is a further development of an existing method; profile families with two parameters and a lag entrainment method replace the simple entrainment method and power profiles with one parameter. The method for laminar flows is a new development. Moment of momentum equations were used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings were calculated. The influence of wing tapering on the boundary layer development was shown. The turbulent boundary layer for a revolution ellipsoid is calculated for 0 deg and 10 deg incidence angles.
Direct Numerical Simulation of Supersonic Turbulent Boundary Layer with Spanwise Wall Oscillation
Directory of Open Access Journals (Sweden)
Weidan Ni
2016-03-01
Full Text Available Direct numerical simulations (DNS of Mach = 2.9 supersonic turbulent boundary layers with spanwise wall oscillation (SWO are conducted to investigate the turbulent heat transport mechanism and its relation with the turbulent momentum transport. The turbulent coherent structures are suppressed by SWO and the drag is reduced. Although the velocity and temperature statistics are disturbed by SWO differently, the turbulence transports of momentum and heat are simultaneously suppressed. The Reynolds analogy and the strong Reynolds analogy are also preserved in all the controlled flows, proving the consistent mechanisms of momentum transport and heat transport in the turbulent boundary layer with SWO. Despite the extra dissipation and heat induced by SWO, a net wall heat flux reduction can be achieved with the proper selected SWO parameters. The consistent mechanism of momentum and heat transports supports the application of turbulent drag reduction technologies to wall heat flux controls in high-speed vehicles.
DEFF Research Database (Denmark)
Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu
2009-01-01
A numerical model solving incompressible Reynolds-averaged Navier-Stokes equations, combined with a two-equation k-omega turbulence closure, is used to study converging-diverging effects from a sloping bed on turbulent (oscillatory) wave boundary layers. Bed shear stresses from the numerical model...
The Modelling of Particle Resuspension in a Turbulent Boundary Layer
International Nuclear Information System (INIS)
lift and drag forces in turbulent boundary layers, the lift and drag we have con sidered a
Wave-Particle Interactions in the Turbulent Plasmaspheric Boundary Layer
Mishin, Evgeny
2012-10-01
We present in situ satellite observations of plasmaspheric lower hybrid/fast magnetosonic turbulence and broadband hiss-like VLF emissions related with substorm subauroral ion drifts/polarization streams (SAID/SAPS) in the magnetosphere and topside ionosphere. SAID/SAPS appear in ˜10 min after the substorm onset consistent with the fast propagation of substorm injection fronts. The SAID channel follows the dispersionless cutoff of the energetic electron flux at the plasmapause. This indicates that the cold plasma maintains charge neutrality within the channel, thereby short-circuiting the injected plasmoid (injection front) over the plasmasphere. As with the well-documented plasmoid-magnetic barrier problem, plasma turbulence ensures the circuit resistivity and magnetic diffusion as well as significant electron heating and acceleration. The SAID/SAPS-related VLF emissions were used to simulate interactions with the outer zone electrons. These emissions appear to constitute a distinctive subset of substorm/storm-related VLF activity in the region co-located with freshly injected energetic ions equatorward of the plasma sheet boundary. Significant pitch-angle diffusion coefficients suggest that substorm SAID/SAPS-related VLF waves could be responsible for the alteration of the outer radiation belt boundary during (sub)storms.
Intermittent turbulence and oscillations in the stable boundary layer over land
Wiel, van de B.J.H.
2002-01-01
As the title of this thesis indicates, our main subject of interest is: "Intermittent turbulence and oscillation in the stable boundary layer over land". As such, this theme connects the different chapters. Here, intermittent turbulence is defined as a sequence of events were 'burst' of increased tu
Large Eddy Simulation of Stable Boundary Layer Turbulent Processes in Complex Terrain
Energy Technology Data Exchange (ETDEWEB)
Eric D. Skyllingstad
2005-01-26
Research was performed using a turbulence boundary layer model to study the behavior of cold, dense flows in regions of complex terrain. Results show that flows develop a balance between turbulent entrainment of warm ambient air and dense, cold air created by surface cooling. Flow depth and strength is a function of downslope distance, slope angle and angle changes, and the ambient air temperature.
Boundary-layer turbulence in experiments of quasi-Keplerian flows
Lopez, Jose M
2016-01-01
Most flows in nature and engineering are turbulent because of their large velocities and spatial scales. Laboratory experiments of rotating quasi-Keplerian flows, for which the angular velocity decreases radially but the angular momentum increases, are however laminar at Reynolds numbers exceeding one million. This is in apparent contradiction to direct numerical simulations showing that in these experiments turbulence transition is triggered by the axial boundaries. We here show numerically that as the Reynolds number increases turbulence becomes progressively confined to the boundary layers and the flow in the bulk fully relaminarizes. Our findings support that hydrodynamic turbulence cannot drive accretion in astrophysical disks.
Turbulent Statistics of the Turbulent Boundary Layer over a Cube-Roughened Wall
International Nuclear Information System (INIS)
Direct numerical simulation (DNS) of a spatially developing turbulent boundary layer (TBL) with regularly arrayed cubical roughness elements was performed to investigate the effects of three-dimensional (3D) surface elements. The staggered cubes downstream were periodically arranged in the streamwise and spanwise directions with pitches of ρx/κ=8 and ρz/κ=2, where ρx and ρz are the streamwise and spanwise spacings of the cubes; the roughness height (κ) was κ=1.5θin, where θin is the momentum thickness at the inlet. Spatially developing characteristics over the 3D cubical roughness were compared with the data obtained from the DNS over the two-dimensional (2D) rod roughened wall and smooth wall. Introduction of the cubical roughness on the TBL affected the turbulent Reynolds stresses not only in the roughness sublayer but also in the outer layer; and these effects are consistent with those observed over the 2D rough wall
A turbulent burst model for boundary layer flows with pressure gradient
Thomas, L. C.; Benton, D. J.
The object of this paper is to develop a surface renewal model of the turbulent burst phenomenon for momentum and energy transfer in the wall region for turbulent boundary layer flows with pressure gradient. In addition to obtaining inner laws for the distributions in velocity and temperature, predictions are obtained for the effect of pressure gradient on the mean burst frequency and on the turbulent Prandtl number within the wall region for slight favorable and mild adverse pressure gradients.
A turbulence model for steady and unsteady boundary layers in strong pressure gradients
Hytopoulos, Evangelos
1994-01-01
A new turbulence model designed for two-dimensional, steady and unsteady boundary layers in strong adverse pressure gradients is described. The model is developed in a rational way based on an understanding of the flow physics obtained from recent experimental observations. The turbulent shear stress is given by a mixing length model, but the variation of the mixing length in the outer region is not constant; it varies according to an integral form of the turbulence kinetic-energy equation. T...
Diaz Daniel, Carlos; Laizet, Sylvain; Vassilicos, John Christos
2015-11-01
The Townsend-Perry hypothesis of wall-attached eddies relates the friction velocity uτ at the wall to velocity fluctuations at a position y from the wall, resulting in a wavenumber range where the streamwise fluctuating velocity spectrum scales as E (k) ~k-1 and the corresponding structure function scales as uτ2 in the corresponding length-scale range. However, this model does not take in account the fluctuations of the skin friction velocity, which are in fact strongly intermittent. A DNS of zero-pressure gradient turbulent boundary layer suggests a 10 to 15 degree angle from the lag of the peak in the cross-correlations between the fluctuations of the shear stress and streamwise fluctuating velocities at different heights in the boundary layer. Using this result, it is possible to refine the definition of the attached eddy range of scales, and our DNS suggests that, in this range, the second order structure function depends on filtered skin friction fluctuations in a way which is about the same at different distances from the wall and different local Reynolds numbers.
Calculation of Turbulent Boundary Layers Using the Dissipation Integral Method
Institute of Scientific and Technical Information of China (English)
MatthiasBuschmann
1999-01-01
This paper gives an introduction into the dissipation integral method.The general integral equations for the three-dimensional case are derved.It is found that for a practical calculation algorithm the integral monentum equation and the integral energy equation are msot useful.Using Two different sets of mean velocity profiles the hyperbolical character of a dissipation integral method is shown.Test cases for two-and three-dimensional boundary layers are analysed and discussed.The paper concludes with a discussion of the advantages and limits of dissipation integral methods.
Statistics of the turbulent boundary layers over 3D cube-roughened walls
International Nuclear Information System (INIS)
Highlights: • To simulate turbulent boundary layers over 3D cube-roughened walls and to see turbulence in the inner and outer fluid layers. • To compare turbulence statistics with those affected by different wall conditions. • To propose a suitable geometrical parameter for estimation of turbulence statistics in the inner and outer layers. -- Abstract: Direct numerical simulations (DNSs) of turbulent boundary layers (TBLs) over three-dimensional (3D) cube-roughened walls were performed and the turbulent characteristics in the inner and outer layers were statistically analyzed. The spanwise spacing was varied over pz/k = 2, 3, 4, and 6 (pz is the spanwise spacing between cubes and k is the height of the roughness) to examine the effects of the roughness spacing on the TBLs. The form drag (Cp) reached a maximum at pz/k = 3, whereas the skin-friction drag (Cf) reached a minimum at the same extent. The Reynolds stresses in the outer region were shown to increase with increasing pz/k, and similar behavior was observed in the wall-normal velocity fluctuations at the roughness crest (vw+). The properties of the turbulence in the inner and outer layers were found to be well represented by the roughness density (λp)
Geostrophic convective turbulence: The effect of boundary layers
Ostilla-Mónico, Rodolfo; Kunnen, Rudie P J; Verzicco, Roberto; Lohse, Detlef
2014-01-01
This Letter presents results of the first direct numerical simulations of rotating Rayleigh--B\\'enard convection in the so-called geostrophic regime, (hence very small Ekman numbers $\\mathcal{O}(10^{-7})$ and high Rayleigh numbers~$Ra=10^{10}$ and~$5\\cdot 10^{10}$), employing the \\emph{full} Navier--Stokes equations. In the geostrophic regime the criteria of very strong rotation and large supercriticality are met simultaneously, which is true for many geophysical and astrophysical flows. Until now, numerical approaches of this regime have been based on \\emph{reduced} versions of the Navier--Stokes equations (cf. Sprague \\emph{et al.} J. Fluid Mech., \\textbf{551}, 141 (2006)), omitting the effect of the viscous (Ekman) boundary layers. By using different velocity boundary conditions at the plates, we study the effect of these Ekman layers. We find that the formation of large-scale structures (Rubio \\emph{et al.} (Phys. Rev. Lett. \\textbf{112} (2014)), which indicates the presence of an inverse energy cascade, ...
Numerical simulations of two-fluid boundary layers beneath free-stream turbulence
Jung, Seo Yoon; Zaki, Tamer
2011-11-01
In two-fluid boundary layers, a wall-film is sheared by an external stream with different density and viscosity. As a result, the flow becomes prone to both shear and interfacial instabilities. In this study, the evolution of two-fluid boundary layers beneath free-stream vortical forcing is investigated using DNS. The simulations employ a conservative level-set technique in conjunction with a ghost fluid approach in order to capture a sharp interface. The wall film is less viscous than the outer flow, and its thickness is 10 % of that of the boundary layer at the inlet. The choice of viscosity ratio influences the spatial development of disturbances within the boundary layer. The spatial growth of instabilities is examined into the non-linear regime, which includes the region of breakdown to turbulence. We demonstrate that, at moderate levels of free-stream turbulence intensities, appropriate choice of the viscosity ratio can yield considerable transition delay.
Is Ultra-High Reynolds Number Necessary for Comprehensive Log Scaling in a Turbulent Boundary Layer?
Dixit, Shivsai Ajit
2015-01-01
Experiments in an extraordinary turbulent boundary layer called the sink flow, displaying a perfect streamwise invariance, show a wide extent of logarithmic scaling for moments of streamwise velocity up to order 12, even at moderate Reynolds numbers. This is in striking contrast to canonical constant-pressure turbulent boundary layers that show such comprehensive log scaling only at ultra-high Reynolds numbers. This suggests that for comprehensive log scaling, ultra-high-Reynolds-number is not a necessary condition; while specific details of the sink flow are special, the relevance to general turbulent boundary layers is that the sink flow underscores the importance of the streamwise invariance condition that needs to be met in a general flow for obtaining log scaling. Indeed, a simple theory shows that, for log scaling in the inertial sublayer, the invariance of dimensionless mean velocity and higher-order moments along a mean streamline is a necessary and sufficient condition. Ultra-high Reynolds number pri...
A Generic Length-scale Equation For Second-order Turbulence Models of Oceanic Boundary Layers
Umlauf, L.; Burchard, H.
A generic transport equation for a generalized length-scale in second-order turbulence closure models for geophysical boundary layers is suggested. This variable consists of the products of powers of the turbulent kinetic energy, k, and the integral length-scale, l. The new approach generalizes traditional second-order models used in geophysical boundary layer modelling, e.g. the Mellor-Yamada model and the k- model, which, however, can be recovered as special cases. It is demonstrated how this new model can be calibrated with measurements in some typical geophysical boundary layer flows. As an example, the generic model is applied to the uppermost oceanic boundary layer directly influenced by the effects of breaking surface waves. Recent measurements show that in this layer the classical law of the wall is invalid, since there turbulence is dominated by turbulent transport of TKE from above, and not by shear-production. A widely accepted approach to describe the wave-affected layer with a one-equation turbulence model was suggested by Craig and Banner (1994). Here, some deficien- cies of their solutions are pointed out and a generalization of their ideas for the case of two-equation models is suggested. Direct comparison with very recently obtained measurements of the dissipation rate, , in the wave-affected boundary layer with com- puted results clearly demonstrate that only the generic two-equation model yields cor- rect predictions for the profiles of and the turbulent length scale, l. Also, the pre- dicted velocity profiles in the wave-affected layer, important e.g. for the interpretation of surface drifter experiments, are reproduced correctly only by the generic model. Implementation and computational costs of the generic model are comparable with traditonal two-equation models.
Neumann, B. J.
1983-07-01
One objective of the Advanced Undersea Vehicle (AUV) program is to design a low drag vehicle. The approach in this investigation is boundary layer control by means of an annular suction slot located on the afterbody. Although wind tunnel data showed significant reduction in propulsive power over conventional shapes, an attempt was made to achieve further reduction by means of forebody shaping. Two methods were used to vary the geometric parameters for this analysis. The direct method, based on the mathematical development of the Series 58 bodies, allows the definition of a shape by a fifth-order polynomial based on the four fundamental parameters of fineness ratio, nose radius of curvature, location of maximum thickness, and prismatic coefficient. The inverse method allows various velocity distributions to define the body shape. The shapes derived by this method have flat velocity distributions and show similar trends to the polynomial shapes (about 3-percent reduction in propulsive power). The range of fineness ratios analyzed was from 1 to 10 at a volume-based Reynolds number of 3.2 million. In the range of 2.5 to 8, fineness ratio did not affect propulsive power more than 6 percent. A maximum improvement of 3 percent as shown by varying the meridian section.
On the dynamic behavior of composite panels under turbulent boundary layer excitations
Ciappi, E.; De Rosa, S.; Franco, F.; Vitiello, P.; Miozzi, M.
2016-03-01
In this work high Mach number aerodynamic and structural measurements acquired in the CIRA (Italian Aerospace Research Center) transonic wind tunnel and the models used to analyze the response of composite panels to turbulent boundary layer excitation are presented. The two investigated panels are CFRP (Carbon Fiber-Reinforced Polymer) composite plates and their lay-up is similar to configurations used in aeronautical structures. They differ only for the presence of an embedded viscoelastic layer. The experimental set-up has been designed to reproduce a pressure fluctuations field beneath a turbulent boundary layer as close as possible to those in flight. A tripping system, specifically conceived to this aim for this facility, has been used to generate thick turbulent boundary layers at Mach number values ranging between 0.4 and 0.8. It is shown that the designed setup provides a realistic representation of full scale size pressure spectra in the frequency range of interest for the noise component inside the fuselage, generated by turbulent boundary layer. The significant role of the viscoelastic layer at reducing panel's response is detailed and discussed. Finally, it is demonstrated that at high Mach number the aeroelastic effect cannot be neglected when analyzing the panel response, especially when composite materials are considered.
A high-resolution code for large eddy simulation of incompressible turbulent boundary layer flows
Cheng, Wan
2014-03-01
We describe a framework for large eddy simulation (LES) of incompressible turbulent boundary layers over a flat plate. This framework uses a fractional-step method with fourth-order finite difference on a staggered mesh. We present several laminar examples to establish the fourth-order accuracy and energy conservation property of the code. Furthermore, we implement a recycling method to generate turbulent inflow. We use the stretched spiral vortex subgrid-scale model and virtual wall model to simulate the turbulent boundary layer flow. We find that the case with Reθ ≈ 2.5 × 105 agrees well with available experimental measurements of wall friction, streamwise velocity profiles and turbulent intensities. We demonstrate that for cases with extremely large Reynolds numbers (Reθ = 1012), the present LES can reasonably predict the flow with a coarse mesh. The parallel implementation of the LES code demonstrates reasonable scaling on O(103) cores. © 2013 Elsevier Ltd.
Embedded-LES and experiment of turbulent boundary layer flow around a floor-mounted cube
DEFF Research Database (Denmark)
Jørgensen, Nina Gall; Koss, Holger; Bennetsen, Jens Chr.
An Embedded LES approach is used to numerically simulate fluctuating surface pressures on a floor-mounted cube in a turbulent boundary layer flow and compared to wind tunnel experiments. The computation were performed with the CFD software ANSYS FLUENT at a Reynolds number at cube height of Reh = 1...... correct velocity scales. However, the body induced turbulence is well captured in the fluctuating pressure coefficients....
Structure and dynamics of turbulent boundary layer flow over healthy and algae-covered corals
Stocking, Jonathan B.; Rippe, John P.; Reidenbach, Matthew A.
2016-09-01
Fine-scale velocity measurements over healthy and algae-covered corals were collected in situ to characterize combined wave-current boundary layer flow and the effects of algal canopies on turbulence hydrodynamics. Data were collected using acoustic Doppler velocimetry and particle image velocimetry. Flow over healthy corals is well described by traditional wall-bounded shear layers, distinguished by a logarithmic velocity profile, a local balance of turbulence production and dissipation, and high levels of bed shear stress. Healthy corals exhibit significant spatial heterogeneity in boundary layer flow structure resulting from variations in large-scale coral topography. By contrast, the turbulence structure of algae-covered corals is best represented by a plane mixing layer, with a sharp inflection point in mean velocity at the canopy top, a large imbalance of turbulence production and dissipation, and strongly damped flow and shear stresses within the canopy. The presence of an algal canopy increases turbulent kinetic energy within the roughness sublayer by ~2.5 times compared to healthy corals while simultaneously reducing bed shear stress by nearly an order of magnitude. Reduced bed shear at the coral surface and within-canopy turbulent stresses imply reduced mass transfer of necessary metabolites (e.g., oxygen, nutrients), leading to negative impacts on coral health.
First Signs of Flow Reversal Within a Separated Turbulent Boundary Layer
Hammerton, Jared; Lang, Amy
2015-11-01
A shark's skin is covered in millions of microscopic scales that have been shown to be able to bristle in a reversing flow. The motive of this project is to further explore a potential bio-inspired passive separation control mechanism which can reduce drag. To better understand this mechanism, a more complete understanding of flow reversal within the turbulent boundary layer is required. In order to capture this phenomenon, water tunnel testing at The University of Alabama was conducted. Using a long flat plate and a rotating cylinder, a large turbulent boundary layer and adverse pressure gradient were generated. Under our testing conditions the boundary layer had a Reynolds number of 200,000 and a boundary layer height in the testing window of 5.6 cm. The adverse pressure gradient causes the viscous length scale to increase and thus increase the size of the individual components of the turbulent boundary layer. This will make the low speed streaks approximately 1 cm in width and thus large enough to measure. Results will be presented that test our hypothesis that the first signs of flow reversal will occur within the section of lowest momentum located furthest from the wall, or within the low speed streaks. This Project was funded by NSF REU Site Award 1358991.
Effects of shear in the convective boundary layer: analysis of the turbulent kinetic energy budget
Pino, D.; Vilà-Guerau de Arellano, J.
2008-01-01
Effects of convective and mechanical turbulence at the entrainment zone are studied through the use of systematic Large-Eddy Simulation (LES) experiments. Five LES experiments with different shear characteristics in the quasi-steady barotropic boundary layer were conducted by increasing the value of
Modeling of individual coherent structures in wall region of a turbulent boundary layer
Institute of Scientific and Technical Information of China (English)
周恒; 陆昌根; 罗纪生
1999-01-01
Models for individual coherent structures in the wall region of a turbulent boundary layer are proposed. Method of numerical simulations is used to follow the evolution of the structures. It is found that the proposed model does bear many features of coherent structures found in experiments.
Prediction of mean flow data for adiabatic 2-D compressible turbulent boundary layers
Motallebi, F.
1997-01-01
This book presents a method for the prediction of mean flow data (i.e. skin friction, velocity profile and shape parameter) for adiabatic two-dimensional compressible turbulent boundary layers at zero pressure gradient. The transformed law of the wall, law of the lake, the van Driest model for the c
DEFF Research Database (Denmark)
SHI, Xiao-jun; Jacobsen, Finn
2010-01-01
The influence of turbulent boundary layer pressure fluctuation on the sound intensity measurement in a flow is a subject of practical concern, because the sound intensity probe is generally exposed to the airflow and is sensed the turbulent boundary layer (TBL) pressure fluctuation which may even...
Avery, D. E.
1978-01-01
An experimental heat-transfer investigation was conducted on two staggered arrays of metallic tiles in laminar and turbulent boundary layers. This investigation was conducted for two purposes. The impingement heating distribution where flow in a longitudinal gap intersects a transverse gap and impinges on a downstream blocking tile was defined. The influence of tile and gap geometries was analyzed to develop empirical relationships for impingement heating in laminar and turbulent boundary layers. Tests were conducted in a high temperature structures tunnel at a nominal Mach number of 7, a nominal total temperature of 1800 K, and free-stream unit Reynolds numbers from 1.0 x 10 million to 4.8 x 10 million per meter. The test results were used to assess the impingement heating effects produced by parameters that include gap width, longitudinal gap length, slope of the tile forward-facing wall, boundary-layer displacement thickness, Reynolds number, and local surface pressure.
DEFF Research Database (Denmark)
Keck, Rolf-Erik; Veldkamp, Dick; Wedel-Heinen, Jens Jakob;
This thesis describes the further development and validation of the dynamic meandering wake model for simulating the flow field and power production of wind farms operating in the atmospheric boundary layer (ABL). The overall objective of the conducted research is to improve the modelling...... by an actuator line model. As a consequence, part of the research also targets the performance of the actuator line model when generating wind turbine wakes in the atmospheric boundary layer. Highlights of the conducted research: 1. A description is given for using the dynamic wake meandering model....... 2. The EllipSys3D actuator line model, including the synthetic methods used to model atmospheric boundary layer shear and turbulence, is verified for modelling the evolution of wind turbine wake turbulence by comparison to field data and wind tunnel experiments. 3. A two-dimensional eddy viscosity...
Vertical structure of aeolian turbulence in a boundary layer with sand transport
Lee, Zoe S.; Baas, Andreas C. W.
2016-04-01
Recently we have found that Reynolds shear stress shows a significant variability with measurement height (Lee and Baas, 2016), and so an alternative parameter for boundary layer turbulence may help to explain the relationship between wind forcing and sediment transport. We present data that were collected during a field study of boundary layer turbulence conducted on a North Atlantic beach. High-frequency (50 Hz) 3D wind velocity measurements were collected using ultrasonic anemometry at thirteen different measurement heights in a tight vertical array between 0.11 and 1.62 metres above the surface. Thanks to the high density installation of sensors a detailed analysis of the boundary layer flow can be conducted using methods more typically used in studies where data is only available from one or just a few measurement heights. We use quadrant analysis to explore the vertical structure of turbulence and track the changes in quadrant signatures with measurement elevation and over time. Results of quadrant analysis, at the 'raw' 50 Hz timescale, demonstrates the tendency for event clustering across all four quadrants, which implies that at-a-point quadrant events are part of larger-scale turbulent structures. Using an HSV colour model, applied to the quadrant analysis data and plotted in series, we create colour maps of turbulence, which can provide a clear visualisation of the clustering of event activity at each height and illustrate the shape of the larger coherent flow structures that are present within the boundary layer. By including a saturation component to the colour model, the most significant stress producing sections of the data are emphasised. This results in a 'banded' colour map, which relates to clustering of quadrant I (Outward Interaction) and quadrant IV (Sweep) activity, separate from clustering of quadrant II (Burst) and quadrant III (Inward Interaction). Both 'sweep-type' and 'burst-type' sequences are shown to have a diagonal structure
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A direct numerical simulation of the shock/turbulent boundary layer interaction flow in a supersonic 24-degree compression ramp is conducted with the free stream Mach number 2.9.The blow-and-suction disturbance in the upstream wall boundary is used to trigger the transition.Both the mean wall pressure and the velocity profiles agree with those of the experimental data,which validates the simulation.The turbulent kinetic energy budget in the separation region is analyzed.Results show that the turbulent production term increases fast in the separation region,while the turbulent dissipation term reaches its peak in the near-wall region.The turbulent transport term contributes to the balance of the turbulent conduction and turbulent dissipation.Based on the analysis of instantaneous pressure in the downstream region of the mean shock and that in the separation bubble,the authors suggest that the low frequency oscillation of the shock is not caused by the upstream turbulent disturbance,but rather the instability of separation bubble.
RANS Modeling of Stably Stratified Turbulent Boundary Layer Flows in OpenFOAM®
Directory of Open Access Journals (Sweden)
Wilson Jordan M.
2015-01-01
Full Text Available Quantifying mixing processes relating to the transport of heat, momentum, and scalar quantities of stably stratified turbulent geophysical flows remains a substantial task. In a stably stratified flow, such as the stable atmospheric boundary layer (SABL, buoyancy forces have a significant impact on the flow characteristics. This study investigates constant and stability-dependent turbulent Prandtl number (Prt formulations linking the turbulent viscosity (νt and diffusivity (κt for modeling applications of boundary layer flows. Numerical simulations of plane Couette flow and pressure-driven channel flow are performed using the Reynolds-averaged Navier-Stokes (RANS framework with the standard k-ε turbulence model. Results are compared with DNS data to evaluate model efficacy for predicting mean velocity and density fields. In channel flow simulations, a Prandtl number formulation for wall-bounded flows is introduced to alleviate overmixing of the mean density field. This research reveals that appropriate specification of Prt can improve predictions of stably stratified turbulent boundary layer flows.
Measurements of laminar and turbulent flow in a curved duct with thin inlet boundary layers
Taylor, A. M. K. P.; Whitelaw, J. H.; Yianneskis, M.
1981-01-01
Laser Doppler velocimetry was used to measure the laminar and turbulent flow in a 90 deg square bend of strong curvature. The boundary layers at the inlet to the bend were approximately 25 percent and 15 percent of the hydraulic diameter for the laminar and turbulent flows, respectively. The development of the pressure driven secondary motion is more rapid for laminar flow: the maximum cross stream component measured was 60 percent of the bulk velocity in contrast to 40 percent for turbulent flow. The streamwise isotachs show that, for laminar flow, large velocities are found progressively nearer to the outer radius of the bend and along the sidewalls. For turbulent flow, the isotachs move towards the inner radius until about 60 deg around the bend where strong secondary motion results in a similar redistribution. Turbulence level and shear stress measurements are also presented.
Institute of Scientific and Technical Information of China (English)
Alex R. Parfitt; Julian F.V. Vincent
2005-01-01
An area of protruding feathers found around the beak of many penguin species is thought to induce a turbulent boundary layer whilst swimming. Hydrodynamic tests on a model Humboldt penguin, Spheniscus humboldti, suggest that induced turbulence causes a significant reduction in boundary layer height, flow separation, and an average of 31% reduction in drag (1.0 m/s to 4.5 m/s). Visualisation of surface flow showed it to follow the body profile, over the feet and tail, before separating. Movement of the feet in swimming penguins correlates with steering of the bird. Induced turbulence may therefore further increase swimming efficiency by reducing the amount of foot movement required to direct the swimming bird.
Institute of Scientific and Technical Information of China (English)
LIU Jian-Hua; JIANG Nan
2008-01-01
We experimentally investigate the frequency response of near-wall coherent structures to localized periodic blowing and suction through a spanwise slot in a turbulent boundary layer by changing the frequency of periodic disturbance at similar velocities of free stream.The effects of blowing and suction disturbance on energy redistribution,turbulent intensity u'+rms over y+ and waveforms of phase-averaged velocity during sweeping process are respectively discussed under three frequencies of periodic blowing and suction in near-wall region of turbulent boundary layer,compared with those in a standard turbulent boundary layer.The most effective disturbancefrequency is figured out in this system.
Bannier, Amaury; Garnier, Eric; Sagaut, Pierre
2016-03-01
Various control strategies, such as active feedback control or riblets, end up restraining near-wall turbulence. An analytical study is conducted to estimate the drag-reduction achievable by such control in zero-pressure-gradient turbulent boundary-layers. Based on an idealized control which damps all fluctuations within a near-wall layer, a composite flow profile is established. It leads to explicit models for both the drag-reduction and the boundary-layer development rate. A skin-friction decomposition is applied and gives physical insights on the underlying phenomena. The control is found to alter the spatial development of the boundary-layer, resulting in detrimental impact on the skin-friction. However, the drag-reducing mechanism, attributed to the turbulence weakening, is found predominant and massive drag reductions remain achievable at high Reynolds number, although a minute part of the boundary-layer is manipulated. The model is finally assessed against Large Eddy Simulations of riblet-controlled flow.
The calculation of incompressible separated turbulent boundary layers
Kogan, A.; Migemi, S.
1990-02-01
The algebraic turbulent model of Baldwin-Lomax was incorporated into the incompressible Navier-Stokes code FIDAP. This model has been extensively tested in the past in finite difference codes. We believe that the incorporation of the model into the finite element code also has resulted in a practical method to compute a variety of separated turbulent two-dimensional flows. Firstly, the model is used to compute the attached flow about an airfoil. Next, the application of the model to separated flows is presented, by computing the flows at high angles of attack up to maximum lift. It is shown that the model is capable of predicting separation, steady stall and C(sub L MAX). As a difficult test of the model, we compute the laminar separation bubble development directly, using the full Navier-Stokes finite elements code. As far as we know, this approach has not been reported previously. The importance of using an appropriate upwinding is discussed. When possible, comparison of computed results with experiments is presented and the agreement is good.
Response of a skewed turbulent boundary layer to favourable pressure gradient
Energy Technology Data Exchange (ETDEWEB)
Escudier, M.P.; Johnson, M.W. [Dept. of Engineering Mechanical Engineering, Liverpool Univ. (United Kingdom); Ramadan, A. [Dept. of Mechanical Engineering, Kings College, London (United Kingdom)
2001-06-01
Experimental results are reported for the response to a favourable pressure gradient of an initially turbulent boundary layer (Re{sub {theta}} {approx} 1600) developing on a flat plate with its leading edge skewed at 60 to the approach flow. The pressure gradient orthogonal to the leading edge is nominally the same as that which was shown by Escudier et al. [(1998) Exp Fluids 25: 491-502] to cause extreme thinning of a two-dimensional (2D) (i.e. unskewed) turbulent boundary layer and the intermittency in the immediate vicinity of the surface to fall to zero, i.e. an apparent laminarisation of the boundary layer. In the case of the skewed boundary layer, the responses of the turbulence and mean-flow structures are qualitatively similar to those for the 2D situation. However, the streamwise pressure gradient is much weaker than for the 2D experiment and the extent of the changes it produces is much reduced. Even so, the changes are considerably greater than would be expected from the magnitude of the streamwise pressure gradient. (orig.)
A body-force based method to generate supersonic equilibrium turbulent boundary layer profiles
Waindim, M.; Gaitonde, D. V.
2016-01-01
We further develop a simple counterflow body force-based approach to generate an equilibrium spatially developing turbulent boundary layer suitable for Direct Numerical Simulations (DNS) or Large Eddy Simulations (LES) of viscous-inviscid interactions. The force essentially induces a small separated region in an incoming specified laminar boundary layer. The resulting unstable shear layer then transitions and breaks down to yield the desired unsteady profile. The effects of wall thermal conditions are explored to demonstrate the capability of the method for both fixed wall and adiabatic wall conditions. We then describe an efficient method to select parameters that ensure transition by examining precursor signatures using generalized stability variables. These precursors are shown to be evident in a computational domain spanning only a small region around the trip and can also be detected using 2D simulations. Finally, the method is tested for different Mach numbers ranging from 1.7 to 2.9, with emphasis on flow field surveys, Reynolds stresses, and energy spectra. These results provide guidance on boundary conditions for desired boundary layer thickness at each Mach number. The consequences of using a much lower Reynolds number in computation relative to experiment are evident at the higher Mach number, where a self sustaining turbulent boundary layer is more difficult to obtain.
Turbulent kinetic energy generation in the convective boundary layer derived from thermodynamics
Slameršak, Aljoša; Renner, Maik; Ganzeveld, Laurens; Hartogensis, Oscar; Kolle, Olaf; Kleidon, Axel
2016-04-01
Turbulent heat fluxes facilitate the bulk of heat transfer between the surface and lower atmosphere, which results in the diurnal growth of convective boundary layer (CBL) and turbulent kinetic energy generation (TKE). Here we postulate the hypothesis that TKE generation in the CBL occurs as a result of heat transfer in a "Carnot-like" heat engine with temporal changes in the internal energy of the boundary layer. We used the Tennekes energy-balance model of CBL and extended it with the analysis of the entropy balance to derive the estimates of TKE generation in the CBL. These TKE generation estimates were compared to the turbulent dissipation from a simple dissipation model from Moeng and Sullivan, to test the validity of our heat engine hypothesis. In addition, to evaluate the performance of the dissipation model, this was independently validated by a comparison of its estimates with the turbulent dissipation calculations based on spectral analysis of eddy covariance wind measurements at a German field station. Our analysis demonstrates how a consistent application of thermodynamics can be used to obtain an independent physical constraint on the diurnal boundary layer evolution. Furthermore, our analysis suggests that the CBL operates at the thermodynamic limit, thus imposing a thermodynamic constraint on surface-atmosphere exchange.
Wang, Qian-cheng; Wang, Zhen-guo; Zhao, Yu-xin
2016-09-01
By employing particle image velocimetry, the response of a Mach 2.95 turbulent boundary layer to the concave curvature is experimentally investigated. The radius of the concave wall is 350 mm, and the turning angle is 20∘. Logarithmic law is well preserved in the profile of streamwise velocity at all streamwise positions despite the impact of curvature. The varying trend of principal strain rate is found to be different at different heights within the boundary layer, which cannot be explained by the suggestion given by former researchers. Based on the three-layer model proposed in this paper, distribution of the principal strain rate is carefully analyzed. The streamwise increase of wall friction is suggested to be brought by the increase of velocity gradient in the thin subsonic layer. Increases of the static temperature and the related sound speed are responsible for that. Larger correlated turbulent motions could be introduced by the concave curvature. The probability density histograms of streamwise velocity reveal that the large scale hairpin packets are statistically well organized. The concave curvature is found to have the potential of reinforcing the organization, which explains the increase of turbulent level in the supersonic concave boundary layer.
Laminar and turbulent boundary layer separation control of Mako shark skin
Afroz, Farhana
The Shortfin Mako shark (Isurus oxyrinchus) is one of the fastest swimmers in nature. They have an incredible turning agility and are estimated to achieve speeds as high as ten body lengths per second. Shark skin is known to contain flexible denticles or scales, capable of being actuated by the flow whereby a unique boundary layer control (BLC) method could reduce drag. It is hypothesized that shark scales bristle when the flow is reversed, and this bristling may serve to control flow separation by (1) inhibiting the localized flow reversal near the wall and (2) inducing mixing within the boundary layer by cavities formed between the scales that increases the momentum of the flow near the wall. To test this hypothesis, samples of Mako shark skin have been studied under various amounts of adverse pressure gradient (APG). These samples were collected from the flank region of a Shortfin Mako shark where the scales have the greatest potential for separation control due to the highest bristling angles. An easy technique for inducing boundary layer separation has been developed where an APG can be generated and varied using a rotating cylinder. Both the experimental and numerical studies showed that the amount of APG can be varied as a function of cylinder rotation speed or cylinder gap height for a wide range of Reynolds numbers. This method of generating an APG is used effectively for inducing both laminar and turbulent boundary layer separation over a flat plate. Laminar and turbulent boundary layer separation studies conducted over a smooth plate have been compared with the same setup repeated over shark skin. The time-averaged DPIV results showed that shark scale bristling controlled both laminar and turbulent boundary layer separation to a measurable extent. It shows that the shark scales cause an early transition to turbulence and reduce the degree of laminar separation. For turbulent separation, reverse flow near the wall and inside the boundary layer is
Helicity and potential vorticity in the surface boundary layer turbulence
Chkhetiani, Otto; Kurgansky, Michael; Koprov, Boris; Koprov, Victor
2016-04-01
An experimental measurement of all three components of the velocity and vorticity vectors, as well as the temperature and its gradient, and potential vorticity, has been developed using four acoustic anemometers. Anemometers were placed at vertices of a tetrahedron, the horizontal base of which was a rectangular triangle with equal legs, and the upper point was exactly above the top of the right angle. The distance from the surface to the tetrahedron its base was 5.5 m, and the lengths of legs and a vertical edge were 5 m. The measurements were carried out of total duration near 100 hours both in stable and unstable stratification conditions (at the Tsimlyansk Scientific Station in a uniform area of virgin steppe 700 x 650 m, August 2012). A covariance-correlation matrix for turbulent variations in all measured values has been calculated. In the daytime horizontal and vertical components of the helicity are of the order of -0.03 and +0.01 m s-2, respectively. The nighttime signs remain unchanged, but the absolute values are several times smaller. It is confirmed also by statistics of a relative helicity. The cospectra and spectral correlation coefficients have been calculated for all helicity components. The time variations in the components of "instantaneous" relative helicity and potential vorticity are considered. Connections of helicity with Monin-Obukhov length and the wind vertical profile structure are discussed. This work was supported by the Russian Science Foundation (Project No 14-27-00134).
Boundary layers in turbulent Rayleigh-B\\'enard convection in air
Puits, Ronald du; Resagk, Christian; Thess, André
2012-01-01
The boundary layer flow in a Rayleigh-B\\'enard convection cell of rectangular shape has been visualized in this fluid dynamics video. The experiment has been undertaken in air at a Rayleigh number $Ra=1.3\\times 10^{10}$ and a Prandtl number $Pr=0.7$. Various sequences captured at selected positions of the heating plate show that the boundary layer is a very transient flow region characterized by coherent structures that permanently evolve. It becomes fully turbulent in the areas where the large-scale circulation impinge or leave the bottom plate.
Sun, Jielun; Mahrt, Larry; Nappo, Carmen; Lenschow, Donald
2015-04-01
We investigate atmospheric internal gravity waves (IGWs): their generation and induction of global intermittent turbulence in the nocturnal stable atmospheric boundary layer based on the new concept of turbulence generation discussed in Sun et al. (2012). The IGWs are generated by air lifted by convergence forced by the colliding background flow and cold currents near the ground. The buoyancy-forced IGWs enhance wind speed at the wind-speed wave crests such that the bulk shear instability generates large coherent eddies, which augment local turbulent mixing and vertically redistribute momentum and heat. The periodically enhanced turbulent mixing, in turn, modifies the air temperature and flow oscillations of the original IGWs. These turbulence-forced oscillations (TFOs) resemble waves and coherently transport momentum and sensible heat. The observed momentum and sensible heat fluxes at the IGW frequency, which are either due to the buoyancy-forced IGWs themselves or by the TFOs, are larger than turbulent fluxes near the surface. The IGWs enhance not only the bulk shear at the wave crests, but also local shear over the wind speed troughs of the surface IGWs. Temporal and spatial variations of turbulent mixing as a result of this wave-induced turbulent mixing change the mean air flow and the shape of the IGWs.
The Modelling of Particle Resuspension in a Turbulent Boundary Layer
Energy Technology Data Exchange (ETDEWEB)
Zhang, Fan
2011-10-20
The work presented concerns the way small particles attached to a surface are resuspended when exposed to a turbulent flow. Of particular concern to this work is the remobilization of radioactive particles as a consequence of potential nuclear accidents. In this particular case the focus is on small particles, < 5 microns in diameter, where the principal force holding such particles onto a surface arises from van der Waals inter-molecular forces. Given its suitable treatment of the microphysics of small particles, it was decided here to aim to develop improved versions of the Rock'n'Roll (R'n'R) model; the R'n'R model is based on a statistical approach to resuspension involving the rocking and rolling of a particle about surface asperities induced by the moments of the fluctuating drag forces acting on the particle close to the surface. Firstly, a force (moment) balance model has been modified by including the distribution of the aerodynamic force instead of considering only its mean value. The R'n'R model is significantly improved by using realistic statistical fluctuations of both the stream-wise fluid velocity and acceleration close to the wall obtained from Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) of turbulent channel flow; in the standard model a major assumption is that these obey a Gaussian distribution. The flow conditions are translated into the moments of the drag force acting on the particle attached to the surface. In so doing the influence of highly non-Gaussian forces on the resuspension rate has been examined along with the sensitivity of the fluctuation statistics to LES and DNS. As a result of the analysis of our DNS/LES data 3 distinct features of the modified R'n'R model have emerged as playing an important part in the resuspension. The first is the typical forcing frequency due to the turbulent aerodynamic drag forces acting on the particle attached to a surface. The
Institute of Scientific and Technical Information of China (English)
HUANG; Zhangfeng; ZHOU; Heng; LUO; Jisheng
2005-01-01
Temporal mode direct numerical simulation (DNS) has been done for a supersonic turbulent boundary layer on a flat plate with Mach number 4.5. It was found that the mean flow profile, the normal-wise distribution of turbulent Mach number and the root mean square (RMS) of the fluctuations of various variables, as well as the Reynolds stresses, bore similarity in nature, when the turbulence reached a fully developed state. But the compressibility effect was strong and must be considered. The strong Reynolds analogy (SRA) and the Morkovin hypothesis were no longer valid. From the end of transition to the fully developed state of turbulence, it was in the transient period, for which the similarity did not hold.
Institute of Scientific and Technical Information of China (English)
LIU Jian-hua; JIANG Nan; WANG Zhen-dong; SHU Wei
2005-01-01
The time sequence of longitudinal velocity component at different vertical locations in turbulent boundary layer was finely measured in a wind tunnel. The concept of coarse-grained velocity structure functions, which describes the relative motions of straining and compressing for multi-scale eddy structures in turbulent flows, was put forward based on the theory of locally multi-scale average. Based on the consistency between coarse-grained velocity structure function and Harr wavelet transformation, detecting method was presented,by which the coherent structures and their intermittency was identified by multi-scale flatness factor calculated by locally average structure function. Phase-averaged evolution course for multi-scale coherent eddy structures in wall turbulence were extracted by this conditional sampling to educe scheme. The dynamics course of multi-scale coherent eddy structures and their effects on statistics of turbulent flows were studied.
A Laboratory Study of the Turbulent Velocity Characteristics in the Convective Boundary Layer
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Based on the measurement of the velocity field in the convective boundary layer (CBL) in a convection water tank with the particle image velocimetry (PIV) technique, this paper studies the characteristics of the CBL turbulent velocity in a modified convection tank. The experiment results show that the velocity distribution in the mixed layer clearly possesses the characteristics of the CBL thermals, and the turbulent eddies can be seen obviously. The comparison of the vertical distribution of the turbulent velocity variables indicates that the modeling in the new tank is better than in the old one. The experiment data show that the thermal's motion in the entrainment zone sometimes fluctuates obviously due to the intermittence of turbulence. Analyses show that this fluctuation can influence the agreement of the measurement data with the parameterization scheme, in which the convective Richardson number is used to characterize the entrainment zone depth. The normalized square velocity w2i/w2* at the top of the mixed layer seems to be time-dependent, and has a decreasing trend during the experiments. This implies that the vertical turbulent velocity at the top of the mixed layer may not be proportional to the convective velocity (w*).
Diagnostic analysis of turbulent boundary layer data by a trivariate Lagrangian partitioning method
Energy Technology Data Exchange (ETDEWEB)
Welsh, P.T. [Florida State Univ., Tallahassee, FL (United States)
1994-12-31
The rapid scientific and technological advances in meteorological theory and modeling predominantly have occurred on the large (or synoptic) scale flow characterized by the extratropical cyclone. Turbulent boundary layer flows, in contrast, have been slower in developing both theoretically and in accuracy for several reasons. There are many existing problems in boundary layer models, among them are limits to computational power available, the inability to handle countergradient fluxes, poor growth matching to real boundary layers, and inaccuracy in calculating the diffusion of scalar concentrations. Such transport errors exist within the boundary layer as well as into the free atmosphere above. This research uses a new method, which can provide insight into these problems, and ultimately improve boundary layer models. There are several potential applications of the insights provided by this approach, among them are estimation of cloud contamination of satellite remotely sensed surface parameters, improved flux and vertical transport calculations, and better understanding of the diurnal boundary layer growth process and its hysteresis cycle.
A law of the wall for turbulent boundary layers with suction: Stevenson's formula revisited
Vigdorovich, Igor
2016-08-01
The turbulent velocity field in the viscous sublayer of the boundary layer with suction to a first approximation is homogeneous in any direction parallel to the wall and is determined by only three constant quantities — the wall shear stress, the suction velocity, and the fluid viscosity. This means that there exists a finite algebraic relation between the turbulent shear stress and the longitudinal mean-velocity gradient, using which as a closure condition for the equations of motion, we establish an exact asymptotic behavior of the velocity profile at the outer edge of the viscous sublayer. The obtained relationship provides a generalization of the logarithmic law to the case of wall suction.
Experimental Study of Turbulent Boundary Layers on Groove/Smooth Flat Surfaces
Institute of Scientific and Technical Information of China (English)
Hongwei MA; Qiao TIAN; Hui WU
2005-01-01
This paper presents an experimental investigation of the turbulent boundary layers on both groove and smooth flat surfaces. The flow structures were shown in a water tunnel using the hydrogen-bubble flow visualization technique. The measurement results indicate that: (1) the grooves can effectively reduce accumulation of low-speed fluids, decrease the number of the low-speed streaks and depress oscillation of the streaks in the sublayer; (2) the grooves can restrain forming of the horseshoe vortices in the buffer region; (3) the grooves bate oscillation and kinking of the quasi-streamwise vortices and restrain production of the hairpin vortices and the ring vortices, reducing both frequency and intensity of the turbulence bursting; (4) the grooves directly affect the flow structures in the sublayer of the boundary layer and then modulate the flow field up to the buffer region and the logarithmic region by restraining development and interaction of the vortices.
DEFF Research Database (Denmark)
Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun
2014-01-01
The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient...... by the modified model. The model is validated against Large Eddy Simulation results and additional wind tunnel measurements. It is further validated in the context of trailing edge noise for which the model formulation makes use of the above surface pressure spectrum....... along the airfoil chord. It is shown that discrepancies between measurements and results from the TNO model increase as the pressure gradient increases. The original model is modified by introducing anisotropy in the definition of the turbulent vertical velocity spectrum across the boundary layer...
Acoustic Radiation from High-Speed Turbulent Boundary Layers in a Tunnel-Like Environment
Duan, Lian; Choudhari, Meelan M.; Zhang, Chao
2015-01-01
Direct numerical simulation of acoustic radiation from a turbulent boundary layer in a cylindrical domain will be conducted under the flow conditions corresponding to those at the nozzle exit of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) operated under noisy-flow conditions with a total pressure p(sub t) of 225 kPa and a total temperature of T(sub t) equal to 430 K. Simulations of acoustic radiation from a turbulent boundary layer over a flat surface are used as a reference configuration to illustrate the effects of the cylindrical enclosure. A detailed analysis of acoustic freestream disturbances in the cylindrical domain will be reported in the final paper along with a discussion pertaining to the significance of the flat-plate acoustic simulations and guidelines concerning the modeling of the effects of an axisymmetric tunnel wall on the noise field.
Institute of Scientific and Technical Information of China (English)
GE Huiliang; HE Zuoyong; BAO Xuemei
2001-01-01
The point power spectrum density and the wavenumber frequency spectrum density of turbulent-boundary-layer fluctuation pressure were measured in water-tunnel by use of a φ8 mm hydrophone and a 20-element array, respectively. The non-dimensional representation of measured point power spectrum coincides with the measured results by Bull M. K. et. al. in wind tunnel. The convection peak can be seen clearly in the measured wavenumber frequencyspectrum and the convection velocity can be calculated from the location of the convection peak.The response spectrum of a polyvinylidence fluoride (PVDF) hydrophone, which receiving area is 100 mm × 60 mm, was also measured. By comparing it with the response spectrum of the φ8 mm hydrophone, it is shown that the PVDF hyrdophone has a strong wavenumber filtering effect on turbulent-boundary-layer pressure fluctuation.
On determining characteristic length scales in pressure-gradient turbulent boundary layers
Vinuesa, R.; Bobke, A.; Örlü, R.; Schlatter, P.
2016-05-01
In the present work, we analyze three commonly used methods to determine the edge of pressure gradient turbulent boundary layers: two based on composite profiles, the one by Chauhan et al. ["Criteria for assessing experiments in zero pressure gradient boundary layers," Fluid Dyn. Res. 41, 021404 (2009)] and the one by Nickels ["Inner scaling for wall-bounded flows subject to large pressure gradients," J. Fluid Mech. 521, 217-239 (2004)], and the other one based on the condition of vanishing mean velocity gradient. Additionally, a new method is introduced based on the diagnostic plot concept by Alfredsson et al. ["A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the `outer' peak," Phys. Fluids 23, 041702 (2011)]. The boundary layers developing over the suction and pressure sides of a NACA4412 wing section, extracted from a direct numerical simulation at chord Reynolds number Rec = 400 000, are used as the test case, besides other numerical and experimental data from favorable, zero, and adverse pressure-gradient flat-plate turbulent boundary layers. We find that all the methods produce robust results with mild or moderate pressure gradients, although the composite-profile techniques require data preparation, including initial estimations of fitting parameters and data truncation. Stronger pressure gradients (with a Rotta-Clauser pressure-gradient parameter β larger than around 7) lead to inconsistent results in all the techniques except the diagnostic plot. This method also has the advantage of providing an objective way of defining the point where the mean streamwise velocity is 99% of the edge velocity and shows consistent results in a wide range of pressure gradient conditions, as well as flow histories. Collapse of intermittency factors obtained from a wide range of pressure-gradient and Re conditions on the wing further highlights the robustness of the diagnostic plot method to determine the
The behaviour of a compressible turbulent boundary layer under incipient separation conditions
Muck, K. C.; Smits, A. J.
1984-01-01
This paper presents an experimental study of a turbulent boundary-layer/shock-wave interaction. The interaction was generated by a two-dimensional compression corner, and the flow was on the point of separating. Measurements were made using both normal and inclined hot wires, and the data include measurements of the longitudinal mass-flow fluctuation intensity and the mass-weighted Reynolds shear stress.
Weyburne, David
2015-01-01
The use of the defect profile instead of the experimentally observed velocity profile for the search for similarity parameters has become firmly imbedded in the turbulent boundary layer literature. However, a search of the literature reveals that there are no theoretical reasons for this defect profile preference over the more traditional velocity profile. In the report herein, we use the flow governing equation approach to develop similarity criteria for the two profiles. Results show that t...
An extension of the transpired skin-friction equation to compressible turbulent boundary layers
Silva-Freire, Atila P.
1988-11-01
A skin-friction equation for transpired incompressible turbulent boundary layer, proposed in a previous paper (Silva-Freire, 1988), is extended to compressible flow. The expression derived here is simple and gives more consistent results than the momentum-integral equation. The difficulty with the present formulation, however, is that the wake profile parameter due to injection has to be carefully determined in order to obtain good results.
On determining characteristic length scales in pressure gradient turbulent boundary layers
Vinuesa, Ricardo; Örlü, Ramis; Schlatter, Philipp
2016-04-01
In the present work we analyze three methods used to determine the edge of pressure gradient turbulent boundary layers: two based on composite profiles, the one by Chauhan et al. (Fluid Dyn. Res. 41:021401, 2009) and the one by Nickels (J. Fluid Mech. 521:217-239, 2004), and the other one based on the condition of vanishing mean velocity gradient. Additionally, a new method is introduced based on the diagnostic plot concept by Alfredsson et al. (Phys. Fluids 23:041702, 2011). The boundary layer developing over the suction side of a NACA4412 wing profile, extracted from a direct numerical simulation at Rec = 400,000, is used as the test case. We find that all the methods produce robust results with mild or moderate pressure gradients, but stronger pressure gradients (with β larger than around 7) lead to inconsistent results in all the techniques except the diagnostic plot. This method also has the advantage of providing an objective way of defining the point where the mean streamwise velocity is 99% of the edge velocity, and shows consistent results in a wide range of pressure gradient conditions, as well as flow histories. Therefore, the technique based on the diagnostic plot is a robust method to determine the boundary layer thickness (equivalent to δ99) and edge velocity in pressure gradient turbulent boundary layers.
On determining characteristic length scales in pressure gradient turbulent boundary layers
Vinuesa, Ricardo; Örlü, Ramis; Schlatter, Philipp
2016-04-01
In the present work we analyze three methods used to determine the edge of pressure gradient turbulent boundary layers: two based on composite profiles, the one by Chauhan et al. (Fluid Dyn. Res. 41:021401, 2009) and the one by Nickels (J. Fluid Mech. 521:217–239, 2004), and the other one based on the condition of vanishing mean velocity gradient. Additionally, a new method is introduced based on the diagnostic plot concept by Alfredsson et al. (Phys. Fluids 23:041702, 2011). The boundary layer developing over the suction side of a NACA4412 wing profile, extracted from a direct numerical simulation at Rec = 400,000, is used as the test case. We find that all the methods produce robust results with mild or moderate pressure gradients, but stronger pressure gradients (with β larger than around 7) lead to inconsistent results in all the techniques except the diagnostic plot. This method also has the advantage of providing an objective way of defining the point where the mean streamwise velocity is 99% of the edge velocity, and shows consistent results in a wide range of pressure gradient conditions, as well as flow histories. Therefore, the technique based on the diagnostic plot is a robust method to determine the boundary layer thickness (equivalent to δ99) and edge velocity in pressure gradient turbulent boundary layers.
Turbulent boundary layer control through spanwise wall oscillation using Kagome lattice structures
Bird, James; Santer, Matthew; Morrison, Jonathan
2015-11-01
It is well established that a reduction in skin-friction and turbulence intensity can be achieved by applying in-plane spanwise forcing to a surface beneath a turbulent boundary layer. It has also been shown in DNS (M. Quadrio, P. Ricco, & C. Viotti; J. Fluid Mech; 627, 161, 2009), that this phenomenon is significantly enhanced when the forcing takes the form of a streamwise travelling wave of spanwise perturbation. In the present work, this type of forcing is generated by an active surface comprising a compliant structure, based on a Kagome lattice geometry, supporting a membrane skin. The structural design ensures negligible wall normal displacement while facilitating large in-plane velocities. The surface is driven pneumatically, achieving displacements of 3 mm approximately, at frequencies in excess of 70 Hz for a turbulent boundary layer at Reτ ~ 1000 . As the influence of this forcing on boundary layer is highly dependent on the wavenumber and frequency of the travelling wave, a flat surface was designed and optimised to allow these forcing parameters to be varied, without reconfiguration of the experiment. Simultaneous measurements of the fluid and surface motion are presented, and notable skin-friction drag reduction is demonstrated. Airbus support agreement IW202838 is gratefully acknowledged.
Lyons, G. W.; Murray, N. E.
2015-12-01
Turbulence in the atmospheric boundary layer (ABL) produces fluctuations in the static pressure. The instantaneous pressure at a point depends on an integral over the entire flow; therefore, the effects from turbulence far aloft may be felt at the earth's surface. The statistics of fluctuating pressure at the surface have been studied extensively in the context of wall-bounded engineering-type flows. At best, these neutral flows are a special case of the thermally-stratified ABL, but relatively few experimental studies have considered pressure at the ground under various stability conditions. Here the scaling of pressure statistics at the surface, particularly the spectral density, is reported over a range of convective and stable conditions for both inner and outer turbulence parameters. Measurements of turbulent surface pressure were made using low-frequency microphones buried flush to the ground in a field near Laramie, Wyoming. Simultaneous measurements from three near-surface sonic anemometers and a 50-meter wind tower give estimates of the mean surface-layer parameters. The normalization of the pressure spectrum with the inner scales collapses the spectra along the high-frequency viscous power-law band. The wall shear stress, Obukhov length, L, and horizontal integral scale, λ, are identified as outer scaling parameters for the surface pressure spectrum from an integral solution employing a Monin-Obukhov-similar profile and a simple model of inhomogeneous surface-layer turbulence. Normalization with the outer scales collapses the spectra at low frequencies. Spectral scaling also reveals trends with λ/L in the low-frequency region for both convective and stable boundary layers.
Drag reduction by means of dimpled surfaces in turbulent boundary layers
van Nesselrooij, M.; Veldhuis, L. L. M.; van Oudheusden, B. W.; Schrijer, F. F. J.
2016-09-01
Direct force measurements and particle image velocimetry (PIV) were used to investigate the drag and flow structure caused by surfaces with patterns of shallow spherical dimples with rounded edges subject to turbulent boundary layers. Drag reduction of up to 4 % is found compared to a flat surface. The largest drag reduction was found at the highest tested Reynolds number of 40,000 (based on dimple diameter). A favorable trend promises further improvements at higher Reynolds numbers. PIV revealed the absence of significant separation inside the dimples but did show the existence of a converging/diverging flow in the upstream and downstream dimple half, respectively. This leads to the rejection of theories proposed by other authors concerning the mechanism responsible for drag reduction. Instead, a fundamental dependence on pattern orientation is observed. Furthermore, preliminary Reynolds-averaged Navier-Stokes (RANS) simulations have been compared with the PIV data. Although the large-scale mean flows show good agreement, the numerical simulation predicts no drag reduction. As the RANS approach is inherently incapable of resolving effects on the behavior of small-scale turbulence structure, the origin of drag reduction is attributed to effects on the small-scale turbulence, which is not resolved in the simulations. It is argued that dimples, when placed in well-designed patterns to create the necessary large-scale flow structure, lead to drag reduction by affecting the turbulent structures in the boundary layer, possibly in a way similar to spanwise oscillations of the wall.
Esau, Igor
2009-01-01
The present study gives an overview and emphasizes principal moments of the applications of the turbulence-resolving modeling with large-eddy simulation (LES) numerical technique to planetary boundary layer (PBL) research and climate studies. LES proved to be very useful in understanding of the atmospheric and ocean turbulent exchange and ultimately in parameterization improvement in traditional meteorological models. LES have played a key role in recognizing the importance of previously ignored self-organized structures in the geophysical turbulence. LES assisted theoreticians and weather/climate modelers with reliable information about the averaged vertical structure of the PBL in convection and shear regimes as well as with better estimations of key PBL parameters, e.g. an entrainment rate, for model calibrations. At present, LES are an essential, indispensible part of geosciences, while the mainstream of the LES research still deals with idealized case studies with rather simple micro-physics.
Inflow conditions for spatial direct numerical simulation of turbulent boundary layers
Institute of Scientific and Technical Information of China (English)
2008-01-01
The inflow conditions for spatial direct numerical simulation(SDNS) of turbulent boundary layers should reflect the characteristics of upstream turbulence,which is a puzzle. In this paper a new method is suggested,in which the flow field obtained by using temporal direct numerical simulation(TDNS) for fully developed turbulent flow(only flow field for a single moment is sufficient) can be used as the inflow of SDNS with a proper transformation. The calculation results confirm that this method is feasible and effective. It is also found that,under a proper time-space transformation,all statistics of the fully developed turbulence obtained by both temporal mode and spatial mode DNS are in excellent agreement with each other,not only qualitatively,but also quantitatively. The normal-wise distributions of mean flow profile,turbulent Mach number and the root mean square(RMS) of the fluctuations of various variables,as well as the Reynolds stresses of the fully developed turbulence obtained by using SDNS,bear similarity in nature.
INTERACTION BETWEEN COHERENT STRUCTURES IN WALL REGION OF A TURBULENT BOUNDARY LAYER
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Using the idea of general resonant triad of the hydrodynamic stability, the theoretical models for coherent structures in the wall region of a turbulent boundary layer is proposed. The interaction between coherent structures in the wall region of a turbulent boundary layer is studied by combining the compact finite differences of high numerical accuracy and the Fourier spectral hybrid method for solving the three dimensional Navier-Stokes equations. In this method, the third order mixed explicit implicit scheme is employed for the time integration. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are descried, respectively. The fourthorder compact schemes satisfied by the velocities and pressure in spectral space is derived. As an application,the method is implemented to the wall region of a turbulent boundary to study the interaction between coherent structures. It is found that the numerical results are satisfactory.``
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A theoretical model for identical coherent structures in the wall region of a turbulent boundary layer was proposed, using the idea of general resonant triad of the hydrodynamic stability. The evolution of the structures in the wall region of a turbulent boundary layer was studied by combining the compact finite differences of high numerical accuracy and the Fourier spectral hybrid method for solving the three dimensional Navier-Stokes equations. In this method, the third order mixed explicit-implicit scheme was applied for the time integration. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space were introduced, respectively. The fourth-order compact schemes satisfied by the velocities and pressure in spectral space was derived. As an application, the method was implemented to the wall region of a turbulent boundary to study the evolution of identical coherent structures. It is found that the numerical results are satisfactory.
National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...
Farhat, Charbel; Lakshminarayan, Vinod K.
2014-04-01
Embedded Boundary Methods (EBMs) for Computational Fluid Dynamics (CFD) are usually constructed in the Eulerian setting. They are particularly attractive for complex Fluid-Structure Interaction (FSI) problems characterized by large structural motions and deformations. They are also critical for flow problems with topological changes and FSI problems with cracking. For all of these problems, the alternative Arbitrary Lagrangian-Eulerian (ALE) methods are often unfeasible because of the issue of mesh crossovers. However for viscous flows, Eulerian EBMs for CFD do not track the boundary layers around dynamic rigid or flexible bodies. Consequently, the application of these methods to viscous FSI problems requires either a high mesh resolution in a large part of the computational fluid domain, or adaptive mesh refinement. Unfortunately, the first option is computationally inefficient, and the second one is labor intensive. For these reasons, an alternative approach is proposed in this paper for maintaining all moving boundary layers resolved during the simulation of a turbulent FSI problem using an EBM for CFD. In this approach, which is simple and computationally reasonable, the underlying non-body-fitted mesh is rigidly translated and/or rotated in order to track the rigid component of the motion of the dynamic obstacle. Then, the flow computations away from the embedded surface are performed using the ALE framework, and the wall boundary conditions are treated by the chosen Eulerian EBM for CFD. Hence, the solution of the boundary layer tracking problem proposed in this paper can be described as an ALE implementation of a given EBM for CFD. Its basic features are illustrated with the Large Eddy Simulation using a non-body-fitted mesh of a turbulent flow past an airfoil in heaving motion. Its strong potential for the solution of challenging FSI problems at reasonable computational costs is also demonstrated with the simulation of turbulent flows past a family of
DHMPIV and Tomo-PIV measurements of three-dimensional structures in a turbulent boundary layer
Amili, O.; Atkinson, C.; Soria, J.
In turbulent boundary layers, a large portion of total turbulence production happens in the near wall region, y/δ Tomo-PIV) was used to extract the 3C-3D velocity field using a rapid and less memory intensive reconstruction algorithm. It is based on a multiplicative line-of-sight (MLOS) estimation that determines possible particle locations in the volume, followed by simultaneous iterative correction. Application of MLOS-SART and MART to a turbulent boundary layer at Refθ=2200 using a 4 camera Tomo-PIV system with a volume of 1000×1000×160 voxels is discussed. In addition, near wall velocity measurement attempt made by digital holographic microscopic particle image velocimetry (DHMPIV). The technique provides a solution to overcome the poor axial accuracy and the low spatial resolution which are common problems in digital holography [5]. By reducing the depth of focus by at least one order of magnitude as well as increasing the lateral spatial resolution, DHMPIV provides the opportunity to resolve the small-scale structures existing in near wall layers.
Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3
Ringuette, Matthew J.; Wu, Minwei; Mart?N, M. Pino
We demonstrate that data from direct numerical simulation of turbulent boundary layers at Mach 3 exhibit the same large-scale coherent structures that are found in supersonic and subsonic experiments, namely elongated, low-speed features in the logarithmic region and hairpin vortex packets. Contour plots of the streamwise mass flux show very long low-momentum structures in the logarithmic layer. These low-momentum features carry about one-third of the turbulent kinetic energy. Using Taylor's hypothesis, we find that these structures prevail and meander for very long streamwise distances. Structure lengths on the order of 100 boundary layer thicknesses are observed. Length scales obtained from correlations of the streamwise mass flux severely underpredict the extent of these structures, most likely because of their significant meandering in the spanwise direction. A hairpin-packet-finding algorithm is employed to determine the average packet properties, and we find that the Mach 3 packets are similar to those observed at subsonic conditions. A connection between the wall shear stress and hairpin packets is observed. Visualization of the instantaneous turbulence structure shows that groups of hairpin packets are frequently located above the long low-momentum structures. This finding is consistent with the very large-scale motion model of Kim & Adrian (1999).
Avila, R; Wilson, R W; Chun, M; Butterley, T; Carrasco, E
2008-01-01
We report the development and first results of an instrument called Low Layer Scidar (LOLAS) which is aimed at the measurement of optical-turbulence profiles in the atmospheric boundary layer with high altitude-resolution. The method is based on the Generalized Scidar (GS) concept, but unlike the GS instruments which need a 1- m or larger telescope, LOLAS is implemented on a dedicated 40-cm telescope, making it an independent instrument. The system is designed for widely separated double-star targets, which enables the high altitude-resolution. Using a 20000-separation double- star, we have obtained turbulence profiles with unprecedented 12-m resolution. The system incorporates necessary novel algorithms for autoguiding, autofocus and image stabilisation. The results presented here were obtained at Mauna Kea Observatory. They show LOLAS capabilities but cannot be considered as representative of the site. A forthcoming paper will be devoted to the site characterisation. The instrument was built as part of the ...
Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models
Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.
2016-10-01
We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.
Tomographic PIV investigation of coherent structures in a turbulent boundary layer flow
Institute of Scientific and Technical Information of China (English)
Zhan-Qi Tang; Nan Jiang; Andreas Schr(ǒ)der; Reinhard Geisler
2012-01-01
Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in the logarithmic region of the turbulent boundary layer in a water tunnel.The Reynolds number based on momentum thickness is Reθ =2 460.The instantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low speed fluid,which is flanked on either side by highspeed ones.Statistical support for the existence of hairpins is given by conditional averaged eddy within an increasing spanwise width as the distance from the wall increases,and the main vortex characteristic in different wall-normal regions can be reflected by comparing the proportion of ejection and its contribution to Reynolds stress with that of sweep event.The pre-multiplied power spectra and two-point correlations indicate the presence of large-scale motions in the boundary layer,which are consistent with what have been termed very large scale motions (VLSMs).The three dimensional spatial correlations of three components of velocity further indicate that the elongated low-speed and highspeed regions will be accompanied by a counter-rotating roll modes,as the statistical imprint of hairpin packet structures,all of which together make up the characteristic of coherent structures in the logarithmic region of the turbulent boundary layer (TBL).
Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer
Zahradka, D.; Parziale, N. J.; Smith, M. S.; Marineau, E. C.
2016-05-01
The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the "Mach 3 Calibration Tunnel" at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 % {N}2/1 % Kr at momentum-thickness Reynolds numbers of {Re}_{\\varTheta }= 800, 1400, and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV (y/δ ≈ 0.1-0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.
Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models
Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.
2016-08-01
We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.
Current state and prospects of researches on the control of turbulent boundary layer by air blowing
Kornilov, V. I.
2015-07-01
The paper presents the analytical review of the current state of the investigations and development trends on the problem of turbulent friction and aerodynamic drag reduction in simple model configurations, which is among key ones in modern aeromechanics. Under consideration is the modern fast progressing method of the turbulent flow control by air- and other gases (micro)blowing through a permeable surface, which is utilized in incompressible and compressible turbulent boundary layers. Several computational results to understand the essential flow physics are also included. The problem of simulation of the flow over a perforated wall where some ambiguities, in particular, at the permeable/impermeable boundary being still remained is discussed. Special attention is paid to the analysis of most important experimental and numerical results obtained with the air blowing through a finely-perforated surface, analysis of the physical peculiarities and regularities of the flow with the blowing, probability to describe the properties of such a flow within simple approach frameworks, evaluation of the efficiency of this control method, as well as the trends and opportunities of this method progress in view of state-of-the-art achievements. Although this technology has a penalty for developing the effective turbulent-flow control method, some modifications of the air blowing are an attractive alternative for real applications.
Om, D.; Childs, M. E.
1983-01-01
An approximate integral viscous-inviscid interaction method is presented for calculating the development of a turbulent boundary layer subjected to a normal shock wave induced adverse pressure gradient in an internal axisymmetric flow. The inflow conditions and the downstream pressure are provided for the computation. In the supersonic region of shock pressure rise, the Prandtl-Meyer function is used to couple the viscous and inviscid flows. An analytical model for the coupling process is postulated and appropriate equations are defined. Downstream of the sonic point, one-dimensional inviscid flow is assumed for coupling with the viscous flow. The turbulent boundary layer is calculated using Green's integral lag-entrainment method. Comparisons of the solutions with the experimental data are made for interactions which are unseparated, near separation and separated. For comparison purposes, solutions to the time-dependent, mass-averaged, Navier-Stokes equations incorporating a two-equation, Wilcox-Rubesin turbulence model are also shown. The computed results from the integral method show good agreement with experimental data for unseparated interactions and reasonable agreement with the trend of the viscous effects when the interaction becomes increasingly separated.
Harvesting energy from turbulence in boundary layers by using piezoelectric generators
Andreopoulos, Yiannis; Akaydin, Dogus H.; Elvin, Niell
2009-11-01
The availability of significant kinetic energy in fluid flows distributed over a number of temporal and spatial scales creates a unique opportunity to convert this energy into electrical output by using piezoelectric generators. The unsteadiness due to turbulence can produce mechanical strain energy in the piezoelectric material which in turn can generate a build up of charge that can be used to power electronic devices. In the present work, short length piezoelectric beams were placed in a zero pressure gradient two dimensional turbulent boundary layer at Reynolds numbers based on momentum thickness up to 6500 to evaluate their performance as energy generators. The piezoelectric beam was traversed across the boundary layer to determine the location where the output power is maximized. It was found that the location of maximum power is not close to the wall where most of the turbulent activities are high but further away from the wall. The work has shown that there is a three-way coupled interaction between the fluid flow, the piezoelectric structure and its electromechanical field.
Interference heating from interactions of shock waves with turbulent boundary layers at Mach 6
Johnson, C. B.; Kaufman, L. G., II
1974-01-01
An experimental investigation of interference heating resulting from interactions of shock waves and turbulent boundary layers was conducted. Pressure and heat-transfer distributions were measured on a flat plate in the free stream and on the wall of the test section of the Langley Mach 6 high Reynolds number tunnel for Reynolds numbers ranging from 2 million to 400 million. Various incident shock strengths were obtained by varying a wedge-shock generator angle (from 10 deg to 15 deg) and by placing a spherical-shock generator at different vertical positions above the instrumented flat plate and tunnel wall. The largest heating-rate amplification factors obtained for completely turbulent boundary layers were 22.1 for the flat plate and 11.6 for the tunnel wall experiments. Maximum heating correlated with peak pressures using a power law with a 0.85 exponent. Measured pressure distributions were compared with those calculated using turbulent free-interaction pressure rise theories, and separation lengths were compared with values calculated by using different methods.
Global effect of local skin friction drag reduction in spatially developing turbulent boundary layer
Stroh, A; Schlatter, P; Frohnapfel, B
2016-01-01
A numerical investigation of two locally applied drag reducing control schemes is carried out in the configuration of a spatially developing turbulent boundary layer (TBL). One control is designed to damp near-wall turbulence and the other induces constant mass flux in the wall-normal direction. Both control schemes yield similar local drag reduction rates within the control region. However, the flow development downstream of the control significantly differs: persistent drag reduction is found for the uniform blowing case whereas drag increase is found for the turbulence damping case. In order to account for this difference the formulation of a global drag reduction rate is suggested. It represents the reduction of the streamwise force exerted by the fluid on a finite length plate. Furthermore, it is shown that the far downstream development of the TBL after the control region can be described by a single quantity, namely a streamwise shift of the uncontrolled boundary layer, i.e. a changed virtual origin. B...
Large-eddy simulation of a solid-particles suspension in a turbulent boundary layer
Rahman, Mustafa; Samtaney, Ravi
2014-11-01
We decribe a framework for the large-eddy simulation of solid particles suspended and transported within an incompressible turbulent boundary layer. The underlying approach to simulate the solid-particle laden flow is Eulerian-Eulerian in which the particles are characterized by statistical descriptors. For the fluid phase, the large-eddy simulation (LES) of incompressible turbulent boundary layer employs stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work of Inoue & Pullin (J. Fluid Mech. 2011). Furthermore, a recycling method to generate turbulent inflow is implemented. For the particle phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The numerical method in this framework is based on a fractional-step method with an energy-conservative fourth-order finite difference scheme on a staggered mesh. It is proposed to utilize this framework to examine transport of sand in desert sandstorms. Supported by KAUST OCRF funded CRG project on simulation of sandstorms.
Influence of pressure gradient on streamwise skewness factor in turbulent boundary layer
International Nuclear Information System (INIS)
The paper shows an effect of favourable and adverse pressure gradients on turbulent boundary layer. The skewness factor of streamwise velocity component was chosen as a measure of the pressure gradient impact. It appears that skewness factor is an indicator of convection velocity of coherent structures, which is not always equal to the average flow velocity. The analysis has been performed based upon velocity profiles measured with hot-wire technique in turbulent boundary layer with pressure gradient corresponding to turbomachinery conditions. The results show that the skewness factor decreases in the flow region subjected to FPG and increases in the APG conditions. The changes of convection velocity and skewness factor are caused by influence of large-scale motion through the mechanism called amplitude modulation. The large-scale motion is less active in FPG and more active in APG, therefore in FPG the production of vortices is random (there are no high and low speed regions), while in the APG the large-scale motion drives the production of vortices. Namely, the vortices appear only in the high-speed regions, therefore have convection velocity higher than local mean velocity. The convection velocity affects directly the turbulent sweep and ejection events. The more flow is dominated by large-scale motion the higher values takes both the convection velocity of small-scale structures and sweep events induced by them.
Advances of drag-reducing surface technologies in turbulence based on boundary layer control
Institute of Scientific and Technical Information of China (English)
LUO Yuehao; WANG Liguo; GREEN Lork; SONG Kenan; WANG Liang; SMITH Robert
2015-01-01
Our living environment is surrounded by turbulence, which is also a concern of the global energy consumption and the greenhouse gas emission, and the viscous force on the solid-liquid/solid-gas interface is an important part of the turbulence. Reducing friction force in turbulence to the greatest extent is becoming an urgent issue to be resolved at present. In this paper, the various state-of-the-art approaches of drag-reducing and energy-saving technologies based on the boundary layer control are reviewed, focusing on the polymer drag reduction additives, the micro-morphology, the super-hydrophobic surface, the micro air bubbles, the heating wall, the vibrant flexible wall and the composite drag reduction methods. In addition, the mechanisms of different drag reductions based on the boundary layer control and the potential applications in fluid engineering are discussed. This paper aims not only to contribute to a better understanding of drag reduction mechanisms, but also to offer new perspectives to improve the current drag-reducing and energy saving technologies.
High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces
Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min
2007-11-01
This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.
Breaking the boundary layer symmetry in turbulent convection using wall geometry
Toppaladoddi, Srikanth; Wettlaufer, John S
2014-01-01
We systematically probe the interaction of the boundary layer with the core flow during two-dimensional turbulent Rayleigh-B\\'{e}nard convection using numerical simulations and scaling theory. The boundary layer/core flow interaction is manipulated by configuring the top plate with a sinusoidal geometry and breaking the symmetry between the top and bottom thermal boundary layers. At long wavelength the planar results are recovered. However, at intermediate wavelengths, and for Rayleigh numbers ($Ra$) such that the amplitude of the roughness elements is larger than the boundary layer thickness, there is enhanced cold plume production at the tips of the elements. It is found that, while the interior of the flow is well mixed as in the classical theory of Malkus, the mean temperature is lower than that in the planar case. For a Prandtl number of unity and $Ra = 10^6$ to $2.5 \\times 10^9$ we find a Nusselt number ($Nu$) scaling law of $Nu = 0.052 \\times Ra^{0.34}$, in good agreement with recent experiments. The c...
3-D Navier-Stokes analysis of crossing, glancing shocks/turbulent boundary layer interactions
Reddy, D. R.
1991-01-01
Three dimensional viscous flow analysis is performed for a configuration where two crossing and glancing shocks interact with a turbulent boundary layer. A time marching 3-D full Navier-Stokes code, called PARC3D, is used to compute the flow field, and the solution is compared to the experimental data obtained at the NASA Lewis Research Center's 1 x 1 ft supersonic wind tunnel facility. The study is carried out as part of the continuing code assessment program in support of the generic hypersonic research at NASA Lewis. Detailed comparisons of static pressure fields and oil flow patterns are made with the corresponding solution on the wall containing the shock/boundary layer interaction in an effort to validate the code for hypersonic inlet applications.
The 3-D Navier-Stokes analysis of crossing, glancing shocks/turbulent boundary layer interactions
Reddy, D. R.
1991-01-01
Three dimensional viscous flow analysis is performed for a configuration where two crossing and glancing shocks interact with a turbulent boundary layer. A time marching 3-D full Navier-Stokes code, called PARC3D, is used to compute the flow field, and the solution is compared to the experimental data obtained at the NASA Lewis Research Center's 1 x 1 ft supersonic wind tunnel facility. The study is carried out as part of the continuing code assessment program in support of the generic hypersonic research at NASA Lewis. Detailed comparisons of static pressure fields and oil flow patterns are made with the corresponding solution on the wall containing the shock/boundary layer interaction in an effort to validate the code for hypersonic inlet applications.
Direct simulation of turbulent supersonic boundary layers by an extended temporal approach
Maeder, Thierry; Adams, Nikolaus A.; Kleiser, Leonhard
2001-02-01
The present paper addresses the direct numerical simulation of turbulent zero-pressure-gradient boundary layers on a flat plate at Mach numbers 3, 4.5 and 6 with momentum-thickness Reynolds numbers of about 3000. Simulations are performed with an extended temporal direct numerical simulation (ETDNS) method. Assuming that the slow streamwise variation of the mean boundary layer is governed by parabolized Navier Stokes equations, the equations solved locally in time with a temporal DNS are modified by a distributed forcing term so that the parabolized Navier Stokes equations are recovered for the spatial average. The correct mean flow is obtained without a priori knowledge, the streamwise mean-flow evolution being approximated from its upstream history. ETDNS reduces the computational effort by up to two orders of magnitude compared to a fully spatial simulation.
DNS of a spatially developing turbulent boundary layer with passive scalar transport
Energy Technology Data Exchange (ETDEWEB)
Li Qiang [Linne Flow Centre, KTH Mechanics, Osquars Backe 18, SE-100 44 Stockholm (Sweden)], E-mail: qiang@mech.kth.se; Schlatter, Philipp; Brandt, Luca; Henningson, Dan S. [Linne Flow Centre, KTH Mechanics, Osquars Backe 18, SE-100 44 Stockholm (Sweden)
2009-10-15
A direct numerical simulation (DNS) of a spatially developing turbulent boundary layer over a flat plate under zero pressure gradient (ZPG) has been carried out. The evolution of several passive scalars with both isoscalar and isoflux wall boundary condition are computed during the simulation. The Navier-Stokes equations as well as the scalar transport equation are solved using a fully spectral method. The highest Reynolds number based on the free-stream velocity U{sub {infinity}} and momentum thickness {theta} is Re{sub {theta}}=830, and the molecular Prandtl numbers are 0.2, 0.71 and 2. To the authors' knowledge, this Reynolds number is to date the highest with such a variety of scalars. A large number of turbulence statistics for both flow and scalar fields are obtained and compared when possible to existing experimental and numerical simulations at comparable Reynolds number. The main focus of the present paper is on the statistical behaviour of the scalars in the outer region of the boundary layer, distinctly different from the channel-flow simulations. Agreements as well as discrepancies are discussed while the influence of the molecular Prandtl number and wall boundary conditions is also highlighted. A Pr scaling for various quantities is proposed in outer scalings. In addition, spanwise two-point correlation and instantaneous fields are employed to investigate the near-wall streak spacing and the coherence between the velocity and the scalar fields. Probability density functions (PDF) and joint probability density functions (JPDF) are shown to identify the intermittency both near the wall and in the outer region of the boundary layer. The present simulation data will be available online for the research community.
Directory of Open Access Journals (Sweden)
Jonáš P.
2008-12-01
Full Text Available This paper considers the knowledge of the individual action and joint action of surface roughness and external flow turbulence on the mean flow in boundary layer. The experimental evidence of this problem has been reviewed. A lack of results has been ascertain of the investigation on the joint action of the mentioned influences on the development of a boundary layer from the state with laminar flow up to a turbulent boundary layer. The knowledge on the actions of individual effects has been gathered with the regard to the improvement of the evaluation and analysis of the mean flow characteristics of the zero pressure gradient boundary layer developing under the joint action of the uniform roughness of the surface and homogeneous, close to isotropy, free stream turbulence.
Buono, Armand C.
The numerical method presented in this study attempts to predict the mean, non-uniform flow field upstream of a propeller partially immersed in a thick turbulent boundary layer with an actuator disk using CFD based on RANS in ANSYS FLUENT. Three different configurations, involving an infinitely thin actuator disk in the freestream (Configuration 1), an actuator disk near a wall with a turbulent boundary layer (Configuration 2), and an actuator disk with a hub near a wall with a turbulent boundary layer (Configuration 3), were analyzed for a variety of advance ratios ranging from J = 0.48 to J =1.44. CFD results are shown to be in agreement with previous works and validated with experimental data of reverse flow occurring within the boundary layer above the flat plate upstream of a rotor in the Virginia Tech's Stability Wind Tunnel facility. Results from Configuration 3 will be used in future aero-acoustic computations.
Numerical simulation of quasi-streamwise hairpin-like vortex generation in turbulent boundary layer
Institute of Scientific and Technical Information of China (English)
ZHANG Nan; LU Li-peng; DUAN Zhen-zhen; YUAN Xiang-jiang
2008-01-01
A mechanism for generation of near wall quasi-streamwise hairpin-like vortex (QHV) and secondary quasi-streamwise vortices (SQV) is presented. The conceptual model of resonant triad in the theory of hydrodynamic instability and direct numerical simulation of a turbulent boundary layer were applied to reveal the formation of QHV and SQV. The generation procedures and the characteristics of the vortex structures are obtained, which share some similarities with previous numerical simulations. The research using resonant triad conceptual model and numerical simulation provides a possibility for investigating and controling the vortex structures, which play a dominant role in the evolution of coherent structures in the near-wall region.
Investigation of Wall Pressure Fluctuations in a Turbulent Boundary Layer by Large Eddy Simulation
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Large eddy simulation (LES) was used to investigate the space-time field of the low Mach number, fully developed turbulent boundary layer on a smooth, rigid flat plate. The wall-pressure field simulated by LES was analyzed to obtain the pressure statistics , including the wall-pressure root-mean square, skewness and flatness factors, which show the wall pressure distribution was not Gaussian. The profile of the auto-power spectral density and the contour of the streamwise wavenumber-frequency spectral density of wall-pressure were plotted. The "convection ridge" can be observed clearly and the convection velocity can be calculated from the location of the convection peak.
Double large field stereoscopic PIV in a high Reynolds number turbulent boundary layer
Coudert, S.; Foucaut, J. M.; Kostas, J.; Stanislas, M.; Braud, P.; Fourment, C.; Delville, J.; Tutkun, M.; Mehdi, F.; Johansson, P.; George, W. K.
2011-01-01
An experiment on a flat plate turbulent boundary layer at high Reynolds number has been carried out in the Laboratoire de Mecanique de Lille (LML, UMR CNRS 8107) wind tunnel. This experiment was performed jointly with LEA (UMR CNRS 6609) in Poitiers (France) and Chalmers University of Technology (Sweden), in the frame of the WALLTURB European project. The simultaneous recording of 143 hot wires in one transverse plane and of two perpendicular stereoscopic PIV fields was performed successfully. The first SPIV plane is 1 cm upstream of the hot wire rake and the second is both orthogonal to the first one and to the wall. The first PIV results show a blockage effect which based on both statistical results (i.e. mean, RMS and spatial correlation) and a potential model does not seem to affect the turbulence organization.
Coupled Mesoscale-Large-Eddy Modeling of Realistic Stable Boundary Layer Turbulence
Wang, Yao; Manuel, Lance
2013-01-01
Site-specific flow and turbulence information are needed for various practical applications, ranging from aerodynamic/aeroelastic modeling for wind turbine design to optical diffraction calculations. Even though highly desirable, collecting on-site meteorological measurements can be an expensive, time-consuming, and sometimes a challenging task. In this work, we propose a coupled mesoscale-large-eddy modeling framework to synthetically generate site-specific flow and turbulence data. The workhorses behind our framework are a state-of-the-art, open-source atmospheric model called the Weather Research and Forecasting (WRF) model and a tuning-free large-eddy simulation (LES) model. Using this coupled framework, we simulate a nighttime stable boundary layer (SBL) case from the well-known CASES-99 field campaign. One of the unique aspects of this work is the usage of a diverse range of observations for characterization and validation. The coupled models reproduce certain characteristics of observed low-level jets....
A computational study on oblique shock wave-turbulent boundary layer interaction
Joy, Md. Saddam Hossain; Rahman, Saeedur; Hasan, A. B. M. Toufique; Ali, M.; Mitsutake, Y.; Matsuo, S.; Setoguchi, T.
2016-07-01
A numerical computation of an oblique shock wave incident on a turbulent boundary layer was performed for free stream flow of air at M∞ = 2.0 and Re1 = 10.5×106 m-1. The oblique shock wave was generated from a 8° wedge. Reynolds averaged Navier-Stokes (RANS) simulation with k-ω SST turbulence model was first utilized for two dimensional (2D) steady case. The results were compared with the experiment at the same flow conditions. Further, to capture the unsteadiness, a 2D Large Eddy Simulation (LES) with sub-grid scale model WMLES was performed which showed the unsteady effects. The frequency of the shock oscillation was computed and was found to be comparable with that of experimental measurement.
Edge states for the turbulence transition in the asymptotic suction boundary layer
Kreilos, Tobias; Schneider, Tobias M; Eckhardt, Bruno
2013-01-01
We demonstrate the existence of an exact invariant solution to the Navier-Stokes equations for the asymptotic suction boundary layer. The identified periodic orbit with a very long period of several thousand advective time units is found as a local dynamical attractor embedded in the stability boundary between laminar and turbulent dynamics. Its dynamics captures both the interplay of downstream oriented vortex pairs and streaks observed in numerous shear flows as well as the energetic bursting that is characteristic for boundary layers. By embedding the flow into a family of flows that interpolates between plane Couette flow and the boundary layer we demonstrate that the periodic orbit emerges in a saddle-node infinite-period (SNIPER) bifurcation of two symmetry-related travelling wave solutions of plane Couette flow. Physically, the long period is due to a slow streak instability which leads to a violent breakup of a streak associated with the bursting and the reformation of the streak at a different spanwi...
Structuring of turbulence and its impact on basic features of Ekman boundary layers
Directory of Open Access Journals (Sweden)
I. Esau
2013-08-01
Full Text Available The turbulent Ekman boundary layer (EBL has been studied in a large number of theoretical, laboratory and modeling works since F. Nansen's observations during the Norwegian Polar Expedition 1893–1896. Nevertheless, the proposed analytical models, analysis of the EBL instabilities, and turbulence-resolving numerical simulations are not fully consistent. In particular, the role of turbulence self-organization into longitudinal roll vortices in the EBL and its dependence on the meridional component of the Coriolis force remain unclear. A new set of large-eddy simulations (LES are presented in this study. LES were performed for eight different latitudes (from 1° N to 90° N in the domain spanning 144 km in the meridional direction. Geostrophic winds from the west and from the east were used to drive the development of EBL turbulence. The emergence and growth of longitudinal rolls in the EBL was simulated. The simulated rolls are in good agreement with EBL stability analysis given in Dubos et al. (2008. The destruction of rolls in the westerly flow at low latitude was observed in simulations, which agrees well with the action of secondary instability on the rolls in the EBL. This study quantifies the effect of the meridional component of the Coriolis force and the effect of rolls in the EBL on the internal EBL parameters such as friction velocity, cross-isobaric angle, parameters of the EBL depth and resistance laws. A large impact of the roll development or destruction is found. The depth of the EBL in the westerly flow is about five times less than it is in the easterly flow at low latitudes. The EBL parameters, which depend on the depth, also exhibit large difference in these two types of the EBL. Thus, this study supports the need to include the horizontal component of the Coriolis force into theoretical constructions and parameterizations of the boundary layer in models.
On the Formation Mechanisms of Artificially Generated High Reynolds Number Turbulent Boundary Layers
Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.
2016-08-01
We investigate the evolution of an artificially thick turbulent boundary layer generated by two families of small obstacles (divided into uniform and non-uniform wall normal distributions of blockage). One- and two-point velocity measurements using constant temperature anemometry show that the canonical behaviour of a boundary layer is recovered after an adaptation region downstream of the trips presenting 150~% higher momentum thickness (or equivalently, Reynolds number) than the natural case for the same downstream distance (x≈ 3 m). The effect of the degree of immersion of the trips for h/δ ≳ 1 is shown to play a secondary role. The one-point diagnostic quantities used to assess the degree of recovery of the canonical properties are the friction coefficient (representative of the inner motions), the shape factor and wake parameter (representative of the wake regions); they provide a severe test to be applied to artificially generated boundary layers. Simultaneous two-point velocity measurements of both spanwise and wall-normal correlations and the modulation of inner velocity by the outer structures show that there are two different formation mechanisms for the boundary layer. The trips with high aspect ratio and uniform distributed blockage leave the inner motions of the boundary layer relatively undisturbed, which subsequently drive the mixing of the obstacles' wake with the wall-bounded flow (wall-driven). In contrast, the low aspect-ratio trips with non-uniform blockage destroy the inner structures, which are then re-formed further downstream under the influence of the wake of the trips (wake-driven).
DNS of Laminar-Turbulent Transition in Swept-Wing Boundary Layers
Duan, L.; Choudhari, M.; Li, F.
2014-01-01
Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing and the mode selected for forcing corresponds to the most amplified secondary instability mode that, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. An inlet boundary condition is carefully designed to allow for accurate injection of instability wave modes and minimize acoustic reflections at numerical boundaries. Nonlinear parabolized stability equation (PSE) predictions compare well with the DNS in terms of modal amplitudes and modal shape during the strongly nonlinear phase of the secondary instability mode. During the transition process, the skin friction coefficient rises rather rapidly and the wall-shear distribution shows a sawtooth pattern that is analogous to the previously documented surface flow visualizations of transition due to stationary crossflow instability. Fully turbulent features are observed in the downstream region of the flow.
Atkinson, Callum; Coudert, Sebastien; Foucaut, Jean-Marc; Stanislas, Michel; Soria, Julio
2011-04-01
To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Reθ = 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume "fat" light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV.
Bertagnolio, Franck; Fischer, Andreas; Jun Zhu, Wei
2014-02-01
The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient along the airfoil chord. It is shown that discrepancies between measurements and results from the TNO model increase as the pressure gradient increases. The original model is modified by introducing anisotropy in the definition of the turbulent vertical velocity spectrum across the boundary layer and by considering a frequency-dependent vertical correlation length. The degree of anisotropy is directly related to the strength of the pressure gradient. It is shown that by appropriately normalizing the pressure gradient and by tuning the degree of anisotropy, experimental results can be closely reproduced by the modified model. The model is validated against Large Eddy Simulation results and additional wind tunnel measurements. It is further validated in the context of trailing edge noise for which the model formulation makes use of the above surface pressure spectrum.
Large Civil Tiltrotor (LCTR2) Interior Noise Predictions due to Turbulent Boundary Layer Excitation
Grosveld, Ferdinand W.
2013-01-01
The Large Civil Tiltrotor (LCTR2) is a conceptual vehicle that has a design goal to transport 90 passengers over a distance of 1800 km at a speed of 556 km/hr. In this study noise predictions were made in the notional LCTR2 cabin due to Cockburn/Robertson and Efimtsov turbulent boundary layer (TBL) excitation models. A narrowband hybrid Finite Element (FE) analysis was performed for the low frequencies (6-141 Hz) and a Statistical Energy Analysis (SEA) was conducted for the high frequency one-third octave bands (125- 8000 Hz). It is shown that the interior sound pressure level distribution in the low frequencies is governed by interactions between individual structural and acoustic modes. The spatially averaged predicted interior sound pressure levels for the low frequency hybrid FE and the high frequency SEA analyses, due to the Efimtsov turbulent boundary layer excitation, were within 1 dB in the common 125 Hz one-third octave band. The averaged interior noise levels for the LCTR2 cabin were predicted lower than the levels in a comparable Bombardier Q400 aircraft cabin during cruise flight due to the higher cruise altitude and lower Mach number of the LCTR2. LCTR2 cabin noise due to TBL excitation during cruise flight was found not unacceptable for crew or passengers when predictions were compared to an acoustic survey on a Q400 aircraft.
Computation of turbulent boundary layers employing the defect wall-function method. M.S. Thesis
Brown, Douglas L.
1994-01-01
In order to decrease overall computational time requirements of spatially-marching parabolized Navier-Stokes finite-difference computer code when applied to turbulent fluid flow, a wall-function methodology, originally proposed by R. Barnwell, was implemented. This numerical effort increases computational speed and calculates reasonably accurate wall shear stress spatial distributions and boundary-layer profiles. Since the wall shear stress is analytically determined from the wall-function model, the computational grid near the wall is not required to spatially resolve the laminar-viscous sublayer. Consequently, a substantially increased computational integration step size is achieved resulting in a considerable decrease in net computational time. This wall-function technique is demonstrated for adiabatic flat plate test cases from Mach 2 to Mach 8. These test cases are analytically verified employing: (1) Eckert reference method solutions, (2) experimental turbulent boundary-layer data of Mabey, and (3) finite-difference computational code solutions with fully resolved laminar-viscous sublayers. Additionally, results have been obtained for two pressure-gradient cases: (1) an adiabatic expansion corner and (2) an adiabatic compression corner.
Near-Surface Boundary Layer Turbulence Along a Horizontally-Moving, Surface-Piercing Vertical Wall
Washuta, Nathan; Duncan, James H
2016-01-01
The complex interaction between turbulence and the free surface in boundary layer shear flow created by a vertical surface-piercing wall is considered. A laboratory-scale device was built that utilizes a surface-piercing stainless steel belt that travels in a loop around two vertical rollers, with one length of the belt between the rollers acting as a horizontally-moving flat wall. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally-evolving boundary layer analogous to the spatially-evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface profiles are measured with a cinematic laser-induced fluorescence system and sub-surface velocity fields are recorded using a high-speed planar particle image velocimetry system. It is found that the belt initially travels through the water without creating any significant waves, before the free surface bursts with activity close to the belt surface. These free surface ripples travel away...
Large scale structures in a turbulent boundary layer and their imprint on wall shear stress
Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark
2015-11-01
Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
Jelinek, Tomas; Straka, Petr; Uruba, Vaclav
2016-06-01
The article deals with the effects of the inlet flow parameters on the flow field structures in axial turbine stage. The experiment was performed on the axial turbine stage rig with an air as a working medium. The variable inlet channel produced the different inlet turbulence intensity and different inlet end-wall boundary layer thickness, resp. different inlet velocity distribution was applied. The turbulence was measured by CTA probes. The measured parameters of the inlet velocity distribution and turbulence intensity across the inlet channel height are presented. Based on the experimental inlet parameters the CFD fully turbulent calculation of the flow field was made. The differences in outlet kinetic energy loss, outlet vane angle and the turbulence distribution in the vane mid-span section are depicted. Changes of secondary flow structures with the different inlet end-wall boundary layer thickness were observed on the vane outlet parameters.
Yaglom, A. M.
1994-02-01
Most of the existing theoretical models for statistical characteristics of turbulence in convective boundary layers are based on the similarity theory by Monin and Obukhov [Trudy Geofiz. Inst. Akad. Nauk SSSR 24(151), 163 (1954)], and its further refinements. A number of such models was recently reconsidered and partially compared with available data by Kader and Yaglom [J. Fluid Mech. 212, 637 (1990); Turbulence and Coherent Structures (Kluwer, Dordrecht, 1991), p. 387]. However, in these papers the data related to variances =σ2u and =σ2v of horizontal velocity components were not considered at all, and the data on horizontal velocity spectra Eu(k) and Ev(k) were used only for a restricted range of not too small wave numbers k. This is connected with findings by Kaimal et al. [Q. J. R. Meteorol. Soc. 98, 563 (1972)] and Panofsky et al. [Boundary-Layer Meteorol. 11, 355 (1977)], who showed that the Monin-Obukhov theory cannot be applied to velocity variance σ2u and σ2v and to spectra Eu(k) and Ev(k) in energy ranges of wave numbers. It is shown in this paper that a simple generalization of the traditional similarity theory, which takes into account the influence of large-scale organized structures, leads to new models of horizontal velocity variances and spectra, which describe the observed deviations of these characteristics from the predictions based on the Monin-Obukhov theory, and agree satisfactorily with the available data. The application of the same approach to the temperature spectrum and variance explains why the observed deviations of temperature spectrum in convective boundary layers from the Monin-Obukhov similarity does not lead to marked violations of the same similarity as applied to temperature variance =σ2t.
Simpson, R. L.; Chehroudi, B.; Shivaprasad, B. G.
1982-01-01
The physical features of steady and unsteady freestream separating turbulent boundary layers that have been determined by pointwise laser anemometer measurements are outlined. It is seen that the large-scale structures control the outer region's backflow behavior. Near the wall, the mean backflow velocity profile for both the steady and unsteady cases is found to scale on the maximum negative mean velocity and its distance from the wall. A description is given of a scanning laser anemometer that produces nearly instantaneous velocity profiles for examing the temporal features of these large-scale structures. Also described is a 'zero-wake' seeder that supplies particles to the outer shear layer and freestream flow with a minimal disturbance.
Scaling laws of turbulence intermittency in the atmospheric boundary layer: the role of stability
Paradisi, Paolo; Cesari, Rita; Allegrini, Paolo
2015-09-01
Bursting and intermittent behavior is a fundamental feature of turbulence, especially in the vicinity of solid obstacles. This is associated with the dynamics of turbulent energy production and dissipation, which can be described in terms of coherent motion structures. These structures are generated at random times and remain stable for long times, after which they become suddenly unstable and undergo a rapid decay event. This intermittent behavior is described as a birth-death point process of self-organization, i.e., a sequence of critical events. The Inter-Event Time (IET) distribution, associated with intermittent self-organization, is typically a power-law decay, whose power exponent is known as complexity index and characterizes the complexity of the system, i.e., the ability to develop self-organized, metastable motion structures. We use a method, based on diffusion scaling, for the estimation of system's complexity. The method is applied to turbulence velocity data in the atmospheric boundary layer. A neutral condition is compared with a stable one, finding that the complexity index is lower in the neutral case with respect to the stable one. As a consequence, the crucial birth-death events are more rare in the stable case, and this could be associated with a less efficient transport dynamics.
Rahman, Mustafa; Samtaney, Ravi
2015-11-01
We present results of solid particles suspension and transport in a fully-developed turbulent boundary layer flow using large-eddy simulation of the incompressible Navier-Stokes equations. We adopt the Eulerian-Eulerian approach to simulating particle laden flow with a large number of particles, in which the particles are characterized by statistical descriptors. For the particulate phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The underlying approach in modeling the turbulence of fluid phase utilizes the stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work proposed by Inoue & Pullin (J. Fluid Mech. 2011). The solver is verified against simple analytical solutions and the computational results are found to be in a good agreement with these. The capability of the new numerical solver will be exercised to investigate turbulent transport of sand in sandstorms. Finally, the adequacy and limitations of the solver will be discussed. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1704-01.
Washuta, Nathan; Duncan, James H
2016-01-01
The complex interactions between turbulence and the free surface, including air entrainment processes, in boundary layer shear flows created by vertical surface-piercing plates are considered. A laboratory-scale device was built that utilizes a surface-piercing stainless steel belt that travels in a loop around two vertical rollers, with one length of the belt between the rollers acting as a horizontally-moving flat wall. The belt is operated both as a suddenly-started plate to reproduce boundary layer flow or at steady state in the presence of a stationary flat plate positioned parallel to the belt to create a Couette flow with a free surface. Surface profiles are measured with a cinematic laser-induced fluorescence system in both experiments and air entrainment events and bubble motions are observed with stereo underwater white-light movies in the suddenly started belt experiment. It is found that the RMS surface height fluctuations, $\\eta$, peak near the boundaries of the flows and increase approximately l...
Direct Numerical Simulation of Two Shock Wave/Turbulent Boundary Layer Interactions
Priebe, Stephan
Direct numerical simulations (DNSs) of two shock wave/turbulent boundary layer interactions (STBLIs) are presented in this thesis. The first interaction is a 24° compression ramp at Mach 2.9, and the second interaction is an 8° compression ramp at Mach 7.2. The large-scale low-frequency unsteadiness in the Mach 2.9 DNS is investigated with the aim of shedding some light on its physical origin. Previous experimental and computational works have linked the unsteadiness either to fluctuations in the incoming boundary layer or to a mechanism in the downstream separated flow. Consistent with experimental observations, the shock in the DNS is found to undergo streamwise oscillations, which are broadband and occur at frequencies that are about two orders of magnitude lower than the characteristic frequency of the energy-containing turbulent scales in the incoming boundary layer. Based on a coherence and phase analysis of signals at the wall and in the flow field, it is found that the low frequency shock unsteadiness is statistically linked to pulsations of the downstream separated flow. The statistical link with fluctuations in the upstream boundary layer is also investigated. A weak link is observed: the value of the low-frequency coherence with the upstream flow is found to lie just above the limit of statistical significance, which is determined by means of a Monte Carlo study. The dynamics of the downstream separated flow are characterized further based on low-pass filtered DNS fields. The results suggest that structural changes occur in the downstream separated flow during the low-frequency motions, including the breaking-up of the separation bubble, which is observed when the shock moves downstream. The structural changes are described based on the Cf distribution through the interaction, as well as the velocity and vorticity fields. The possible link between the low-frequency dynamics observed in the DNS and results from global instability theory is explored. It
Energy Technology Data Exchange (ETDEWEB)
Song, Woo Seog; Lee, Seung Bae [Inha University, Incheon (Korea, Republic of); Shin, Dong Shin [Hongik University, Seoul (Korea, Republic of); Na, Yang [Konkuk University, Seoul (Korea, Republic of)
2006-11-15
The piezoelectric bimorph film, which, as an actuator, can generate more effective displacement than the usual PVDF film, is used to control the turbulent boundary-layer flow. The change of wall pressures inside the turbulent boundary layer is observed by using the multi-channel microphone array flush-mounted on the surface when actuation at the non-dimensional frequency f{sub b}{sup +} =0.008 and 0.028 is applied to the turbulent boundary layer. The wall pressure characteristics by the actuation to produce local displacement are more dominantly influenced by the size of the actuator module than the actuation frequency. The movement of large-scale turbulent structures to the upper layer is found to be the main mechanism of the reduction in the wall-pressure energy spectrum when the 700{nu}/u{sub {tau}}-long bimorph film is periodically actuated at the non-dimensional frequency f{sub b}{sup +} =0.008 and 0.028. The bimorph actuator is triggered with the time delay for the active forcing at a single frequency when a 1/8' pressure-type, pin-holed microphone sensor detects the large-amplitude pressure event by the turbulent spot. The wall-pressure energy in the late-transitional boundary layer is partially reduced near the convection wavenumber by the open-loop control based on the large amplitude event.
Institute of Scientific and Technical Information of China (English)
Yang Shaoqiong杨绍琼; Li Shan李山; Tian Haiping田海平; Wang Qingyi王清毅; Jiang Nan姜楠
2015-01-01
The time series of velocity vector fields and their statistics in the turbulent boundary layer(TBL)over riblets and smooth plate were measured by utilizing a time-resolved particle image velocimetry(TR-PIV)system. The mean velocity profiles of the TBL were compared in the case of 0.13 m/s(the riblets with dimensionless peak-to-peak spacing being approximately s+≈21)and 0.19 m/s( s+≈28)for these two kinds of plates, respectively. Two kinds of drag-reducing velocity profiles were illustrated and analyzed. Then the spatial topologies of the physical vorticity for the coherent spanwise structures were detected and extracted at the fourth scale by utilizing an improved quadrant splitting method(IQSM). Results revealed that nearly 6.17%, and 10.73%, of a drag reduction was separately achieved over the riblets surface. Besides, it was visualized that the drag-reduction was acquired by the riblets influencing the bursting ejection(Q2)and sweep(Q4)events of the coherent spanwise vortex structures, the Q4 events in particular. Based on such two drag-reducing cases of the riblets, lastly, a simplified Kelvin-Helmholtz-like linear instability model proposed initially by García-Mayoral and Jiménez(2011)has been dis-cussed. It is still difficult to establish with certainty whether the observed phenomena, the appearance of coherent spanwise structures found at around or below y+≈20 in both cases of s+≈21 and s+≈28 and their topological changes, were consequences or causes of the breakdown of the viscous regime. We prefer to suggest that the inter-actions between those structures and the riblets, which contain the coherent spanwise structures extending toward the wall and penetrating into the riblet grooves, are the root causes.
Renard, N.; Deck, S.
2014-01-01
Je n'ai pas les mots clés en anglais donc j'ai mis ceux en français International audience Mean quantities in attached turbulent boundary layers are provided by RANS simulations, but resolving the most energetic turbulent fluctuations is sometimes needed (e.g. mild flow separation sensitive to the upstream history of the boundary layer, dynamic loading and noise predictions). A DNS and even a wall-resolved LES at the highest Reynolds numbers relevant to the industry is extremely expensi...
Kornilov, V. I.; Boiko, A. V.; Kavun, I. N.
2015-11-01
The characteristics of an incompressible turbulent boundary layer on a flat plate with air blown in though a finely perforated surface from an external confined flow through an input device, located on the "idle" side of the plate, have been investigated experimentally and numerically. A stable decrease in the local values of the coefficient of surface friction along the plate length that attains 85% at the end of the perforated portion is shown. The experimental and calculated data obtained point to the possibility of modeling, under earth conditions, the process of controlling a turbulent boundary layer with air injection by using the resources of an external confined flow.
McCaffrey, K.; Bianco, L.; Wilczak, J. M.; Johnston, P. E.
2015-12-01
When forecasting winds at a wind plant for energy production, the turbulence parameterizations are crucial for understanding wind plant performance. Recent research shows that the turbulence (eddy) dissipation rate in planetary boundary layer (PBL) parameterization schemes introduces significant uncertainty in the Weather Research and Forecasting (WRF) model. Thus, developing the capability to measure dissipation rates in the PBL will allow for identification of weaknesses in, and improvements to the parameterizations. We use data from a 915-MHz wind profiling radar at the Boulder Atmospheric Observatory, collected during the XPIA campaign in spring 2015, to identify the critical parameters for measuring eddy dissipation rates using the spectral width method. Radar set-up parameters (e.g., spectral resolution), post-processing techniques (e.g., filtering for non-atmospheric signals), and spectral averaging, are optimized to capture the most accurate power spectrum for measuring spectral widths for use in the computation of the eddy dissipation rates. These estimates are compared to six heights of turbulence-measuring sonic anemometers from 50 - 300 m on a co-located 300 m tower as verification, showing encouraging results. These methods are then applied to the wind profiling radar data being collected in the Wind Forecasting Improvement Project 2 (WFIP2), a DOE funded campaign that aims to improve the ability to forecast hub-height winds from WRF-based models. This campaign uses of a suite of field observations, including many wind profiling radars, in the Columbia River Gorge, a location with complex terrain where turbulence parameterizations are critical for wind energy prediction.
Directory of Open Access Journals (Sweden)
Kiran Bhaganagar
2014-09-01
Full Text Available Turbulence structure in the wake behind a full-scale horizontal-axis wind turbine under the influence of real-time atmospheric inflow conditions has been investigated using actuator-line-model based large-eddy-simulations. Precursor atmospheric boundary layer (ABL simulations have been performed to obtain mean and turbulence states of the atmosphere under stable stratification subjected to two different cooling rates. Wind turbine simulations have revealed that, in addition to wind shear and ABL turbulence, height-varying wind angle and low-level jets are ABL metrics that influence the structure of the turbine wake. Increasing stability results in shallower boundary layers with stronger wind shear, steeper vertical wind angle gradients, lower turbulence, and suppressed vertical motions. A turbulent mixing layer forms downstream of the wind turbines, the strength and size of which decreases with increasing stability. Height dependent wind angle and turbulence are the ABL metrics influencing the lateral wake expansion. Further, ABL metrics strongly impact the evolution of tip and root vortices formed behind the rotor. Two factors play an important role in wake meandering: tip vortex merging due to the mutual inductance form of instability and the corresponding instability of the turbulent mixing layer.
Abedina, Mohammad Zoynal; Islam, Mohammed Moinul; Hanif, Md. Abu; Alam, Md. Jahangir
2016-07-01
A numerical investigation is performed in the turbulent combined-convection boundary layer with aiding flows in air along a heated vertical flat plate at a higher freestream velocity (Reδ0 = 600) by time-developing direct numerical simulation (DNS). At higher freestream velocity, the transition from laminar to turbulent delays for aiding flows and relatively a lower and higher heat transfer rates are observed, respectively, in the laminar and turbulent region compared to that of lower freestream velocity. The wall shear stresses are higher in the laminar region compared to that in the turbulent region, and at higher freestream velocity, the wall shear stress in the transition region shows a higher peak value. The intensity of velocity and temperature fluctuations for aiding flows with higher freestream velocity become appreciably lower than that for lower freestream velocity due to the laminarization of the boundary layer.
Measured Instantaneous Viscous Boundary Layer in Turbulent Rayleigh-B\\'{e}nard Convection
Zhou, Quan
2009-01-01
We report measurements of the instantaneous viscous boundary layer (BL) thickness $\\delta_v(t)$ in turbulent Rayleigh-B\\'{e}nard convection. It is found that $\\delta_v(t)$ obtained from the measured instantaneous two-dimensional velocity field exhibits intermittent fluctuations. For small values, $\\delta_v(t)$ obeys a lognormal distribution, whereas for large values the distribution of $\\delta_v(t)$ exhibits an exponential tail. The variation of $\\delta_v(t)$ with time is found to be driven by the fluctuations of the large-scale mean flow velocity, as expected, and the local horizontal velocities close to the plate can be used as an instant measure of this variation. It is further found that the mean velocity profile measured in the laboratory frame can now be brought into coincidence with the theoretical Blasius laminar BL profile, if it is resampled relative to the time-dependent frame of $\\delta_v(t)$.
Thermal boundary layer profiles in turbulent Rayleigh-B\\'enard convection in a cylindrical sample
Stevens, Richard J A M; Grossmann, Siegfried; Verzicco, Roberto; Xia, Ke-Qing; Lohse, Detlef
2011-01-01
We numerically investigate the structures of the near-plate temperature profiles close to the bottom and top plates of turbulent Rayleigh-B\\'{e}nard flow in a cylindrical sample at Rayleigh numbers $Ra=10^8$ to $Ra=2\\times10^{12}$ and Prandtl numbers Pr=6.4 and Pr=0.7 thus extending previous results for quasi-2-dimensional systems to 3D systems for the first time. The results show that the instantaneous temperature profiles scaled by the dynamical frame method [Q. Zhou and K.-Q. Xia, Phys. Rev. Lett. 104, 104301 (2010)] agree well with the classical Prandtl-Blasius laminar boundary layer (BL) profiles, especially for low Ra and high Pr. The agreement is slightly less, but still good, for lower Pr, where the thermal BL is more exposed to the bulk fluctuations due to the thinner kinetic BL, and higher Ra, where more plumes are passing the measurement location.
Prediction of Turbulent Boundary Layer Induced Noise in the Cabin of a BWB Aircraft
Directory of Open Access Journals (Sweden)
Joana Rocha
2012-01-01
Full Text Available This paper discusses the development of analytical models for the prediction of aircraft cabin noise induced by the external turbulent boundary layer (TBL. While, in previous works, the contribution of an individual panel to the cabin interior noise was considered, here, the simultaneous contribution of multiple flow-excited panels is analyzed. Analytical predictions are presented for the interior sound pressure level (SPL at different locations inside the cabin of a Blended Wing Body (BWB aircraft, for the frequency range 0–1000 Hz. The results show that the number of vibrating panels significantly affects the interior noise levels. It is shown that the average SPL, over the cabin volume, increases with the number of vibrating panels. Additionally, the model is able to predict local SPL values, at specific locations in the cabin, which are also affected with by number of vibrating panels, and are different from the average values.
Turbulent flow over a house in a simulated hurricane boundary layer
Taylor, Zachary; Gurka, Roi; Kopp, Gregory
2009-01-01
Every year hurricanes and other extreme wind storms cause billions of dollars in damage worldwide. For residential construction, such failures are usually associated with roofs, which see the largest aerodynamic loading. However, determining aerodynamic loads on different portions of North American houses is complicated by the lack of clear load paths and non-linear load sharing in wood frame roofs. This problem of fluid-structure interaction requires both wind tunnel testing and full-scale structural testing. A series of wind tunnel tests have been performed on a house in a simulated atmospheric boundary layer (ABL), with the resulting wind-induced pressures applied to the full-scale structure. The ABL was simulated for flow over open country terrain where both velocity and turbulence intensity profiles, as well as spectra, were matched with available full scale measurements for this type of terrain. The first set of measurements was 600 simultaneous surface pressure measurements over the entire house. A key...
Drag Reduction in Turbulent Boundary Layers with Half Wave Wall Oscillations
Directory of Open Access Journals (Sweden)
Maneesh Mishra
2015-01-01
Full Text Available Spatial square waves with positive cycle are used as steady forcing technique to study drag reduction effects on a turbulent boundary layer flow. Pseudospectral method is used for performing direct numerical simulations on very high resolution grids. A smooth step function is employed to prevent Gibbs phenomenon at the sharp discontinuities of a square wave. The idea behind keeping only the positive cycle of the spatial forcing is to reduce the power consumption to boost net power savings. For some spatial frequency of the oscillations with half waves, it is possible to prevent recovery of skin friction back to the reference case values. A set of wall oscillation parameters is numerically simulated to study its effect on the power budget.
Dombroski, Daniel Edward
In aquatic benthic environments, hydrodynamic transport of mass and momentum have shaped the evolution of form-function relationships. Animals whose life cycle depends on success in such environments have developed the biological structure and behavioral mechanisms to sustain dynamic stresses and complex chemical signals. It has become increasingly clear that understanding the ecology of these organisms is dependent on examining the complexities of the turbulent environment. In this dissertation, hydrodynamics and the structure of chemical signals within turbulent boundary layer flows are examined in the context of natural and biological systems. Experiments were conducted in the benthic region of a water flume using a combination of point-measurement and full-field imaging techniques. There are three areas of focus within the complete body of work: (1) The accuracy of an acoustic measurement technique commonly used in natural flows was evaluated. Errors in the technique, primarily attributed to a sampling volume that is large relative to the scales of motion in turbulent flows, were found to be larger than and extend farther from the bed than previously reported. (2) A three-dimensional laser-based imaging system was developed for quantifying turbulent scalar structure. The system was employed to study the topology and orientation of structure within a bed-level, passively released scalar plume. (3) Hydrodynamic stresses were measured near marine fouling communities in a study aimed at predicting larval settlement probabilities. Turbulent stresses, and by extension, the suitability of microhabitats, were found to be highly dependent on local topography and outer-scale flow conditions. This body of work advances the field of experimental fluid mechanics by contributing to the development of methods for quantifying turbulent flows, as well as furthering current understanding of the capabilities and limitations associated with new and existing techniques. Statistical
Energy Technology Data Exchange (ETDEWEB)
Atkinson, Callum [Monash University, Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Victoria (Australia); Ecole Centrale de Lille, Bd Paul Langevin, Laboratoire de Mecanique de Lille (UMR CNRS 8107), Villeneuve d' Ascq cedex (France); Coudert, Sebastien; Foucaut, Jean-Marc; Stanislas, Michel [Ecole Centrale de Lille, Bd Paul Langevin, Laboratoire de Mecanique de Lille (UMR CNRS 8107), Villeneuve d' Ascq cedex (France); Soria, Julio [Monash University, Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Victoria (Australia)
2011-04-15
To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Re{sub {theta}} = 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume ''fat'' light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV. (orig.)
Turbulent boundary layer flow with a step change from smooth to rough surface
International Nuclear Information System (INIS)
Highlights: • Evidence for mean flow universality for turbulent boundary layer with 2-D roughness is provided. • Characteristics of overshooting behavior for the statistics are presented. • It is shown direct evidence for predominance of hairpin vortices over the rough wall. • A possible cause for spanwise scale growth of structures over the rough wall is examined. - Abstract: A direct numerical simulation (DNS) dataset of a turbulent boundary layer (TBL) with a step change from a smooth to a rough surface is analyzed to examine the characteristics of a spatially developing flow. The roughness elements are periodically arranged two-dimensional (2-D) spanwise rods, with the first rod placed 80θin downstream from the inlet, where θin denotes the inlet momentum thickness. Based on an accurate estimation of relevant parameters, clear evidence for mean flow universality is provided when scaled properly, even for the present roughness configuration, which is believed to have one of the strongest impacts on the flow. Compared to previous studies, it is shown that overshooting behavior is present in the first- and second-order statistics and is locally created either within the cavity or at the leading edge of the roughness depending on the type of statistics and the wall-normal measurement location. Inspection of spatial two-point correlations of the streamwise velocity fluctuations shows a continuous increase of spanwise length scales of structures over the rough wall after the step change at a greater growth rate than that over smooth wall TBL flow. This is expected because spanwise energy spectrum shows presence of much energetic wider structures over the rough wall. Full images of the DNS data are presented to describe not only predominance of hairpin vortices but also a possible spanwise scale growth mechanism via merging over the rough wall
Structure of the refractive index distribution of the supersonic turbulent boundary layer
Gao, Qiong; Yi, Shihe; Jiang, Zongfu; He, Lin; Wang, Xiaohu
2013-09-01
The refractive index field of supersonic turbulent boundary layer with Mach number 3 is measured with the nanoparticle-based planar laser scattering technique, and its structure is investigated from the viewpoints of power spectrum, structure function and correlation function. The power spectrum along streamwise direction shows evident power behavior in a broad region of wavenumber, and the power exponent varies from -1.9 to -1.7 in the logarithmic region. The dominant structures is revealed using the pre-multiplied spectrum, and the length of the largest structure is about 1.2δ (δ is the thickness of the boundary layer). The structure function of the refractive index along streamwise direction is computed and an analytic expression is suggested to fit the experimental results, which is a modification of the Tatraski model. The power spectrum is computed with the fitting expression and its behavior is analyzed. The characteristic length along normal direction is studied with the linking equation in aero-optics. This length is defined with normal integral of correlation coefficient, and the results with two slightly different definitions of correlation coefficient are compared.
MHD flow in a cylindrical vessel of finite size with turbulent boundary layers
Energy Technology Data Exchange (ETDEWEB)
Gorbachev, L.P.; Nikitin, N.V.
1979-01-01
The hydrodynamic characteristics of flows generated by electromagnetic forces in a cylindrical vessel of finite size, for the case of large values of the hydrodynamic and small values of the magnetic Reynolds numbers have been inadequately analyzed in previous literature, since neither the nonlinear nor the linear theory adequately accounts for secondary flows due to the strong action of boundary layers formed at the end faces of the cylinders at large Reynolds numbers and the results do not agree with experimental data. This paper generalizes the previously more accurate nonlinear scheme of the same authors, the basis for which was the fact that viscosity at large Reynolds numbers is manifest only close to solid surfaces. Two cases are treated: crossed fields and a rotating magnetic field in the cylindrical vessel, where the entire flow region is broken down into an inviscid core and end face boundary layers. It is assumed that the velocity distribution near the end surfaces obeys an empirical one-seventh power law, which is applicable to turbulent liquid flow in a tube in a range of Re = 3 x 10/sup 3/ to 10/sup 5/ simple engineering formulas are derived for the angular velocity, which exhibit good agreement with the experimental data for Hartmann numbers less than 10. The procedure can be generalized to the case of a rotating magnetic field having several pairs of poles. 6 references, 2 figures.
Yuan, Jing
2016-04-01
A full-scale experimental study of turbulent boundary layer flows under irregular waves and currents is conducted with the primary objective to investigate the equivalent-wave concept by Madsen (1994). Irregular oscillatory flows following the bottom-velocity spectrum under realistic surface irregular waves are produced over two fixed rough bottoms in an oscillatory water tunnel, and flow velocities are measured using a Particle Image Velocimetry. The root-mean-square (RMS) value and representative phase lead of wave velocities have vertical variations very similar to those of the first-harmonic velocity of periodic wave boundary layers, e.g., the RMS wave velocity follows a logarithmic distribution controlled by the physical bottom roughness in the very near-bottom region. The RMS wave bottom shear stress and the associated representative phase lead can be accurately predicted using the equivalent-wave approach. The spectra of wave bottom shear stress and boundary layer velocity are found to be proportional to the spectrum of free-stream velocity. Currents in the presence of irregular waves exhibit the classic two-log-profile structure with the lower log-profile controlled by the physical bottom roughness and the upper log-profile controlled by a much larger apparent roughness. Replacing the irregular waves by their equivalent sinusoidal waves virtually makes no difference for the coexisting currents. These observations, together with the excellent agreement between measurements and model predictions, suggest that the equivalent-wave representation adequately characterizes the basic wave-current interaction under irregular waves.
Aerodynamic wake study: oscillating model wind turbine within a turbulent boundary layer
Feist, Christopher J.
An experimental investigation on the aerodynamic wake behind a pitching and/or heaving model wind turbine was performed. The study was split into two quasi-coupled phases; the first phase characterized the motion of an offshore floating wind turbine subjected to linear wave forcing, the second phase replicated specific motion cases, which were driven by results from phase I, on a model wind turbine within a turbulent boundary layer. Wake measurements were made in an effort to quantify fluctuations in the flow associated with the motion of the turbine. Weak differences were observed in the mean, streamwise velocity and turbulent fluctuations between the static and oscillating turbine cases. These weak differences were a result of opposing trends in the velocity quantities based on turbine motion phases. The wake oscillations created by the turbine motion was characteristic of a 2D wave (with convection in the x plane and amplitude in the z plane) with a relatively small amplitude as compared to urms..
HOT WIRE MEASUREMENT OF TURBULENT BOUNDARY LAYER ON A FILM COOLING PLATE WITH DIFFUSION HOLES
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This study experimentally investigated the film cooling flowfield of a single row of diffusion holes, from which the secondary air flow was injected into a turbulent boundary layer with zero pressure gradient on a flat plate. Circular-shaped holes were also tested as a basis for comparison. All the holes were inclined downstream at 35° with respect to the surface and the lateral spacing between the holes was 3 diameters of the hole. The mainstream velocity was maintained at 17 m/s and the Reynolds number based on the injection hole diameter was almost 11000. The density ratio of the jet to mainstream was 1.0, and the jet-to-mainstream velocity ratios M were 0.5 and 1.5. Normal-type and X-type hot wire anemometries were used to measure the streamwise mean velocity and its components, the normal and shear turbulent Reynolds stress components at the locations from the backward edge of the injection hole to 25 diameters downstream.
Modeling turbulent mixing and sand distribution in the bottom boundary layer
Absi, Rafik
2011-01-01
For the calculation of turbulent mixing in the bottom boundary layer, we present simple analytical tools for the mixing velocity wm and the mixing length lm. Based on observations of turbulence intensity measurements, the mixing velocity wm is represented by an exponential function decaying with z. We suggest two theoretical functions for the mixing length, a first lm1 obtained from the k-equation written as a constant modeled fluctuating kinetic energy flux and a second lm2 based on von K\\'arm\\'an's similarity hypothesis. These analytical tools were used in the finite-mixing-length model of Nielsen and Teakle (2004). The modeling of time-mean sediment concentration profiles C(z) over wave ripples shows that at the opposite of the second equation lm2 which increases the upward convexity of C(z), the first equation lm1 increases the upward concavity of C(z) and is able to reproduce the shape of the measured concentrations for coarse sand.
Reduced-order FSI simulation of NREL 5 MW wind turbine in atmospheric boundary layer turbulence
Motta-Mena, Javier; Campbell, Robert; Lavely, Adam; Jha, Pankaj
2015-11-01
A partitioned fluid-structure interaction (FSI) solver based on an actuator-line method solver and a finite-element modal-dynamic structural solver is used to evaluate the effect of blade deformation in the presence of a day-time, moderately convective atmospheric boundary layer (ABL). The solver components were validated separately and the integrated solver was partially validated against FAST. An overview of the solver is provided in addition to results of the validation study. A finite element model of the NREL 5 MW rotor was developed for use in the present simulations. The effect of blade pitching moment and the inherent bend/twist coupling of the rotor blades are assessed for both uniform inflow and the ABL turbulence cases. The results suggest that blade twisting in response to pitching moment and the bend/twist coupling can have a significant impact on rotor out-of-plane bending moment and power generated for both the uniform inflow and the ABL turbulence cases.
Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie
Wang, H
2014-06-16
Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.
Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie
International Nuclear Information System (INIS)
Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core
Impact of planetary boundary layer turbulence on model climate and tracer transport
Directory of Open Access Journals (Sweden)
E. L. McGrath-Spangler
2014-12-01
Full Text Available Planetary boundary layer (PBL processes are important for weather, climate, and tracer transport and concentration. One measure of the strength of these processes is the PBL depth. However, no single PBL depth definition exists and several studies have found that the estimated depth can vary substantially based on the definition used. In the Goddard Earth Observing System (GEOS-5 atmospheric general circulation model, the PBL depth is particularly important because it is used to calculate the turbulent length scale that is used in the estimation of turbulent mixing. This study analyzes the impact of using three different PBL depth definitions in this calculation. Two definitions are based on the scalar eddy diffusion coefficient and the third is based on the bulk Richardson number. Over land, the bulk Richardson number definition estimates shallower nocturnal PBLs than the other estimates while over water this definition generally produces deeper PBLs. The near surface wind velocity, temperature, and specific humidity responses to the change in turbulence are spatially and temporally heterogeneous, resulting in changes to tracer transport and concentrations. Near surface wind speed increases in the bulk Richardson number experiment cause Saharan dust increases on the order of 1 × 10−4 kg m−2 downwind over the Atlantic Ocean. Carbon monoxide (CO surface concentrations are modified over Africa during boreal summer, producing differences on the order of 20 ppb, due to the model's treatment of emissions from biomass burning. While differences in carbon dioxide (CO2 are small in the time mean, instantaneous differences are on the order of 10 ppm and these are especially prevalent at high latitude during boreal winter. Understanding the sensitivity of trace gas and aerosol concentration estimates to PBL depth is important for studies seeking to calculate surface fluxes based on near-surface concentrations and to studies projecting future
Bhattacharya, Ritthik; Stevens, Bjorn
2016-03-01
A two Turbulence Kinetic Energy (2TKE) model is developed to address the boundary layer "grey zone" problem. The model combines ideas from local and nonlocal models into a single energetically consistent framework. By applying the Reynolds averaging to the large eddy simulation (LES) equations that employ Deardorff's subgrid TKE, we arrive at a system of equations for the boundary layer quantities and two turbulence kinetic energies: one which encapsulates the TKE of large boundary-layer-scale eddies and another which represents the energy of eddies subgrid to the vertical grid size of a typical large-scale model. These two energies are linked via the turbulent cascade of energy from larger to smaller scales and are used to model the mixing in the boundary layer. The model is evaluated for three dry test cases and found to compare favorably to large eddy simulations. The usage of two TKEs for mixing helps reduce the dependency of the model on the vertical grid scale as well as on the free tropospheric stability and facilitates a smoother transition from convective to stable regimes. The usage of two TKEs representing two ranges of scales satisfies the prerequisite for modeling the boundary layer in the "grey zone": an idea that is explored further in a companion paper.
Directory of Open Access Journals (Sweden)
Xiao Hong
2013-08-01
large deviation. The hypersonic flat-plate laminar flow was also compared with CP and st calculated from the three turbulence models for the three grids. Evidently, the grids near the wall must be encrypted to an appropriate extent to simulate more accurately the boundary laminar flow as well as obtain proper surface friction and heat flow. The calculation in the present study showed that the Reynolds number in the first layer of the grid was more reasonable when it was about 20. The simulation result for the hypersonic isothermal two-dimensional turning wall flow showed that the calculation and experiment results from the different turbulence model were consistent. There was little difference between the location of the simulated heat flow peak and the position given by experiment. However, the peak, the curve trend after the peak and the experimental result widely differed. The curve and experimental results for pressure distribution greatly varied because of the existence of an isolated area in the calculation of the laminar flow. The calculation and experimental results from different turbulence models were close. The curve trend, the peak and the experimental result basically matched.
Institute of Scientific and Technical Information of China (English)
Sun-Hee SHIN; Kyung-Ja HA
2009-01-01
The effect of a vertical diffusion scheme over a stratocumulus topped boundary layer (STBL) was investigated using the YONU AGCM (Yonsei University Atmospheric General Circulation Model).To consider the impact of clouds on the turbulence production,the turbulence mixing term,driven by radiative cooling at the cloud top,is implemented as an extended non-local diffusion scheme.In the model with this new scheme,the STBL parameterization significantly influences the lower atmosphere over the tropical and subtropical regions.Consideration of the turbulent mixing within the cloud layer leads to continuous stratocumulus formation.The cloud-top radiative cooling tends to favor more rapid entrainment and produces top-down turbulent mixing.This cooling develops a mixed layer without initiation of deep convection by surface fluxes.Variations in thermodynamical and dynamical features are produced by planetary boundary layer (PBL)cloud development.The simulated stratocumulus induces more mixing of heat and moisture due to the cloud forcing.Over STBL regions,the lower boundary layer bccomes warmer and drier.It also weakens vertical motion and zonal trade winds in the eastern Pacific,which indicates that stratocumulus cloud cover plays a role in weakening the Walker circulation;that is,cloud cover damps the tropical circulation.
Directory of Open Access Journals (Sweden)
Ma Li
2014-04-01
Full Text Available It is of great significance to improve the accuracy of turbulence models in shock-wave/boundary layer interaction flow. The relationship between the pressure gradient, as well as the shear layer, and the development of turbulent kinetic energy in impinging shock-wave/turbulent boundary layer interaction flow at Mach 2.25 is analyzed based on the data of direct numerical simulation (DNS. It is found that the turbulent kinetic energy is amplified by strong shear in the separation zone and the adverse pressure gradient near the separation point. The pressure gradient was non-dimensionalised with local density, velocity, and viscosity. Spalart–Allmaras (S–A model is modified by introducing the non-dimensional pressure gradient into the production term of the eddy viscosity transportation equation. Simulation results show that the production and dissipation of eddy viscosity are strongly enhanced by the modification of S–A model. Compared with DNS and experimental data, the wall pressure and the wall skin friction coefficient as well as the velocity profile of the modified S–A model are obviously improved. Thus it can be concluded that the modification of S–A model with the pressure gradient can improve the predictive accuracy for simulating the shock-wave/turbulent boundary layer interaction.
Characteristics of the turbulent flow in the boundary layer of a Tropical Glacier
Litt, M.; Sicart, J.
2012-12-01
An extensive micro-meteorological experiment has been deployed within the atmospheric boundary layer over the ablation zone of the tropical Zongo glacier, Bolivia, during the dry season from July to August, 2007. It included two complete eddy correlation systems (Campbell CSAT and LICOR7500) at a 2-m mean level and a 6-m mast measuring the mean profiles of air temperature (type-T artificially ventilated thermocouples) and of wind speed (Vector A100R). Weakly stable conditions prevailed in the first meters above the ice or snow surface. With weak large scale forcing, a katabatic downslope flow with a wind maximum at about 2-m height usually appeared in the middle of the afternoon and maintained itself during most of the night. Characteristics and structure of the turbulent flow were studied using spectral and quadrant analysis, along with the study of statistical moments of high frequency wind speed and temperature data. The wind regime was found to be highly gusty and irregular: more than 50% of the flux was exchanged during less than 10% of the time. Stationary conditions were rarely encountered. The spectral analysis shows that the observed turbulence cannot be generated only by local shear, and that some outside layer perturbations must transport kinetic energy in the vicinity of the surface. Flux exchanges are thus found to be greater than predicted by aerodynamic approaches which use mean temperature and wind speed measurements and stability-correction functions based on the Monin-Obukhov similarity theory. The net surface energy balance is quantified during selected periods using fusion measurements derived from height variations of the ice surface (measured with an ultrasonic depth gauge). It is compared to the energy balance computed from radiative balance along with mean wind speed and temperature or eddy covariance fluxes.This data helps us to quantify errors made with classical similarity methods, and their variation regarding to meteorological forcings.
Sun, Jielun; Lenschow, Donald; LeMone, Margaret; Mahrt, Larry
2015-04-01
Turbulent fluxes from the Cooperative Atmosphere-Surface Exchange Study in 1999 (CASES-99) field experiment are further analyzed for both day- and nighttime as a follow-on to the investigation of the nighttime turbulence in Sun et al. (2012). The behavior of momentum and heat fluxes is investigated as functions of wind speed and the bulk temperature difference between observation heights and the surface. Vertical variations of momentum and heat flux at a given height z are correlated and are explained in terms of the energy and heat balance in a layer above the ground surface in which the surface heating/cooling and momentum sink need to be included. In addition, the surface also plays an important role in constraining the size of the dominant turbulent eddies, which is directly related to turbulence strength and the length scale of turbulence generation. The turbulence generation is not related to local vertical gradients especially under neutral condition as assumed in Monin-Obukhov similarity theory. Based on the observed relationships between momentum and heat fluxes, a new bulk formula for turbulence parameterization is developed to mainly examine the above-mentioned surface effects on vertical variation of turbulent momentum and heat fluxes. The new understanding of the observed relationships between these turbulent variables and mean variables explains the observed nighttime turbulence regime change observed in Sun et al. (2012) as well as the daytime momentum and heat flux variations with height up to the maximum observation height of 55 m.
International Nuclear Information System (INIS)
Highlights: • Parametric study of turbulent boundary layers over a converging–diverging riblet-type surface. • This unique surface roughness induces large-scale spanwise periodicity that distort the layer thickness. • Large-scale low and high speed regions form above converging and diverging regions respectively. • The converging and diverging regions also exhibit increased and reduced turbulent intensity. • These highly directional rough surfaces seem to induce large counter-rotating roll-modes. -- Abstract: The effect of converging–diverging riblet-type surface roughness (riblets arranged in a ‘herringbone’ pattern) are investigated experimentally in a zero pressure gradient turbulent boundary layer. For this initial parametric investigation three different parameters of the surface roughness are analysed in detail; the converging–diverging riblet yaw angle α, the streamwise fetch or development length over the rough surface Fx and the viscous-scaled riblet height h+. It is observed that this highly directional surface roughness pattern induces a large-scale spanwise periodicity onto the boundary layer, resulting in a pronounced spanwise modification of the boundary layer thickness. Hot-wire measurements reveal that above the diverging region, the local mean velocity increases while the turbulent intensity decreases, resulting in a thinner overall boundary layer thickness in these locations. The opposite situation occurs over the converging region, where the local mean velocity is decreased and the turbulent intensity increases, producing a locally thicker boundary layer. Increasing the converging–diverging angle or the viscous-scaled riblet height results in stronger spanwise perturbations. For the strongest convergent–divergent angle, the spanwise variation of the boundary layer thickness between the diverging and converging region is almost a factor of two. Such a large variation is remarkable considering that the riblet height is only
Talpos, Simona; Apostol, Marian
2015-12-01
It is shown that the Reynolds equations for a turbulent flow over an unbounded flat surface in the presence of a constant pressure-gradient lead to a displaced logarithmic profile of the velocity distribution; the displaced logarithmic profile is obtained by assuming a constant production rate of turbulence energy. The displacement height measured on the (vertical) axis perpendicular to the surface is either positive or negative. For a positive displacement height the boundary layer exhibits an inversion, while for a negative displacement height the boundary layer is a direct one. In an inversion boundary layer the logarithmic velocity profile is disrupted into two distinct branches separated by a logarithmic singularity. The viscosity transforms this logarithmic singularity into a sharp edge, governed by a generalized Reynolds number. The associated temperature distribution is calculated, and the results are discussed in relation to meteorological boundary-layer jets and stratified layers. The effects of gravitation and atmospheric thermal or fluid-mixture concentration gradients ("external forcings") are also considered; it is shown that such circumstances may lead to various modifications of the boundary layers. A brief presentation of a similar situation is described for a circular pipe.
Barnhart, Paul J.; Greber, Isaac
1997-01-01
A series of experiments were performed to investigate the effects of Mach number variation on the characteristics of the unsteady shock wave/turbulent boundary layer interaction generated by a blunt fin. A single blunt fin hemicylindrical leading edge diameter size was used in all of the experiments which covered the Mach number range from 2.0 to 5.0. The measurements in this investigation included surface flow visualization, static and dynamic pressure measurements, both on centerline and off-centerline of the blunt fin axis. Surface flow visualization and static pressure measurements showed that the spatial extent of the shock wave/turbulent boundary layer interaction increased with increasing Mach number. The maximum static pressure, normalized by the incoming static pressure, measured at the peak location in the separated flow region ahead of the blunt fin was found to increase with increasing Mach number. The mean and standard deviations of the fluctuating pressure signals from the dynamic pressure transducers were found to collapse to self-similar distributions as a function of the distance perpendicular to the separation line. The standard deviation of the pressure signals showed initial peaked distribution, with the maximum standard deviation point corresponding to the location of the separation line at Mach number 3.0 to 5.0. At Mach 2.0 the maximum standard deviation point was found to occur significantly upstream of the separation line. The intermittency distributions of the separation shock wave motion were found to be self-similar profiles for all Mach numbers. The intermittent region length was found to increase with Mach number and decrease with interaction sweepback angle. For Mach numbers 3.0 to 5.0 the separation line was found to correspond to high intermittencies or equivalently to the downstream locus of the separation shock wave motion. The Mach 2.0 tests, however, showed that the intermittent region occurs significantly upstream of the
Foufoula-Georgiou, E.
2002-12-01
Deepening our understanding of the space-time variability of atmospheric/hydrologic processes and their interactions over a range of scales has important implications for improving model parameterizations and increasing the accuracy of predictive models. At the same time, the inherent nonlinear and chaotic character of some of these processes imposes limits on their predictability, and therefore provides upper bounds on the expected prediction accuracy from numerical models. This paper will address questions of scaling, nonlinearity and predictability in processes active at two major interfaces of the hydrologic system: the land-atmosphere interface, and the land-water interface. Specifically, recent findings and their practical implications will be presented on: (a) multiscale interactions in turbulent boundary layers and implications for boundary condition formulations; (b) predictability assessment of turbulent velocities in a boundary layer as a function of scale; and (c) nonlinear dynamics of basin hydrologic response as a function of spatio-temporally varying forcing and basin geomorphological organization.
Diurnal variation in the turbulent structure of the cloudy marine boundary layer during FIRE 1987
Hignett, Phillip
1990-01-01
During the 1987 FIRE marine stratocumulus experiment the U.K. Meteorological Office operated a set of turbulence probes attached to the tether cable of a balloon based on San Nicolas Island. Typically six probes were used; each probe is fitted with Gill propeller anemometers, a platinum resistance thermometer and wet and dry thermistors, to permit measurements of the fluxes of momentum, heat, and humidity. The orientation of each probe is determined from a pair of inclinometers and a three-axis magnetometer. Sufficient information is available to allow the measured wind velocities to be corrected for the motion of the balloon. On the 14 to 15 July measurements were made over the period 1530 to 1200 UTC and again, after a short break for battery recharging and topping-up the balloon, between 0400 to 0900 UTC. Data were therefore recorded from morning to early evening, and again for a period overnight. Six probes were available for the daytime measurements, five for the night. Data were recorded at 4 Hz for individual periods of a little over an hour. The intention was to keep a minimum of one probe at or just above cloud top; small changes in balloon height were necessary to accommodate changes in inversion height. The ability of the balloon system to make simultaneous measurements at several levels allows the vertical structure of the boundary layer to be displayed without resort to composites. Turbulent statistics were calculated from 2 hour periods, one straddling local noon and one at night. These were subdivided into half-hour averaging intervals for the evaluation of variances and fluxes.
Realtime Surface Shear Stress Control with MEMS Sensors/Actuators in Turbulent Boundary Layers
Huang, Adam; Lew, James; Ho, Chih-Ming; Xu, Yong; Tai, Yu-Chong
2003-11-01
High-speed surface streaks in turbulent boundary layers have been attributed to approximately 40friction drag. A real-time control system for reducing surface shear stress has being developed. The system consists of two linear arrays of MEMS surface shear stress imagers for providing control and feedback measurements and a recently developed, micro-machined flap-type actuator for interaction with the streak structures. Driven by a constant temperature anemometry circuit with an overheat ratio of 12sensitivity of 100 mV/Pa and frequency response of 20 kHz. The micro-machined bubble-flap actuator is essentially a thin silicon cantilever beam which hangs/sits on top of a silicone diaphragm molded into a bulk etched silicon cavity. The flap shape used is a 3mm long (streamwise) by 1mm wide rectangular beam, with a thickness of 40 um. Actuation is achieved by pneumatically inflating the silicone diaphragm, which then pushes up the silicon beam. The current flap can achieve off-plane deflections of over 130 um at frequencies up to 150 Hz, with a rise time of 2ms and a fall time of 4ms. Experiments are carried out with the system installed onto the wall of a 2-D turbulent wind tunnel. At Re 10k, corresponding to flow velocity of 10 m/s, time-averaged reduction of 4achieved continuous actuation at 130 um and 150 Hz. Furthermore, in offline data processing, it has been found that the actuator interacting with the streak structures has reduce the peak shear stress of a streak by an additional 0.2 Pa, or about 50
Couvreux, Fleur; Bazile, Eric; Canut, Guylaine; Seity, Yann; Lothon, Marie; Lohou, Fabienne; Guichard, Françoise; Nilsson, Erik
2016-07-01
This study evaluates the ability of three operational models, with resolution varying from 2.5 to 16 km, to predict the boundary-layer turbulent processes and mesoscale variability observed during the Boundary Layer Late-Afternoon and Sunset Turbulence (BLLAST) field campaign. We analyse the representation of the vertical profiles of temperature and humidity and the time evolution of near-surface atmospheric variables and the radiative and turbulent fluxes over a total of 12 intensive observing periods (IOPs), each lasting 24 h. Special attention is paid to the evolution of the turbulent kinetic energy (TKE), which was sampled by a combination of independent instruments. For the first time, this variable, a central one in the turbulence scheme used in AROME and ARPEGE, is evaluated with observations.In general, the 24 h forecasts succeed in reproducing the variability from one day to another in terms of cloud cover, temperature and boundary-layer depth. However, they exhibit some systematic biases, in particular a cold bias within the daytime boundary layer for all models. An overestimation of the sensible heat flux is noted for two points in ARPEGE and is found to be partly related to an inaccurate simplification of surface characteristics. AROME shows a moist bias within the daytime boundary layer, which is consistent with overestimated latent heat fluxes. ECMWF presents a dry bias at 2 m above the surface and also overestimates the sensible heat flux. The high-resolution model AROME resolves the vertical structures better, in particular the strong daytime inversion and the thin evening stable boundary layer. This model is also able to capture some specific observed features, such as the orographically driven subsidence and a well-defined maximum that arises during the evening of the water vapour mixing ratio in the upper part of the residual layer due to fine-scale advection. The model reproduces the order of magnitude of spatial variability observed at
Effects of micro-ramps on a shock wave/turbulent boundary layer interaction
Blinde, P.L.; Humble, R.A.; Van Oudheusden, B.W.; Scarano, F.
2009-01-01
Stereoscopic particle image velocimetry is used to investigate the effects of micro-ramp sub-boundary layer vortex generators, on an incident shock wave/boundary layer interaction at Mach 1.84. Single- and double-row arrangements of micro-ramps are considered. The micro-ramps have a height of 20% of
RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes
DEFF Research Database (Denmark)
Fuhrman, David R.; Schløer, Signe; Sterner, Johanna
2013-01-01
of a number of local factors important within cross-shore wave boundary layer and sediment transport dynamics. The hydrodynamic model is validated for both hydraulically smooth and rough conditions, based on wave friction factor diagrams and boundary layer streaming profiles, with the results in excellent...
Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer
Cheng, W.
2015-11-11
© 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number Reθ based on the momentum boundary-layer thickness θ. Comparison with data from the first case at demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, Reθ, the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger Reθ = 11000 of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.
Free-stream Turbulence Effects on the Boundary Layer of a High-lift Low-Pressure-Turbine Blade
Institute of Scientific and Technical Information of China (English)
Simoni D.; Ubaldi M.; Zunino P.; Ampellio E.
2016-01-01
The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally investigated at low and high free-stream turbulence intensity conditions.Measurements have been carried out in order to analyze the boundary layer transition and separation processes at a low Reynolds number,under both steady and unsteady inflows.Static pressure distributions along the blade surfaces as well as total pressure distributions in a downstream tangential plane have been measured to evaluate the overall aerodynamic efficiency of the blade for the different conditions.Particle Image Velocimetry has been adopted to analyze the time-mean and time-varying velocity fields.The flow field has been surveyed in two orthogonal planes (a blade-to-blade plane and a wall-parallel one).These measurements allow the identification of the Kelvin-Helmholtz large scale coherent structures shed as a consequence of the boundary layer laminar separation under steady inflow,as well as the investigation of the three-dimensional effects induced by the intermittent passage of low and high speed streaks.A close inspection of the time-mean velocity profiles as well as of the boundary layer integral parameters helps to characterize the suction side boundary layer state,thus justifying the influence of free-stream turbulence intensity on the blade aerodynamic losses measured under steady and unsteady inflows.
Free-stream turbulence effects on the boundary layer of a high-lift low-pressure-turbine blade
Simoni, D.; Ubaldi, M.; Zunino, P.; Ampellio, E.
2016-06-01
The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally investigated at low and high free-stream turbulence intensity conditions. Measurements have been carried out in order to analyze the boundary layer transition and separation processes at a low Reynolds number, under both steady and unsteady inflows. Static pressure distributions along the blade surfaces as well as total pressure distributions in a downstream tangential plane have been measured to evaluate the overall aerodynamic efficiency of the blade for the different conditions. Particle Image Velocimetry has been adopted to analyze the time-mean and time-varying velocity fields. The flow field has been surveyed in two orthogonal planes (a blade-to-blade plane and a wall-parallel one). These measurements allow the identification of the Kelvin-Helmholtz large scale coherent structures shed as a consequence of the boundary layer laminar separation under steady inflow, as well as the investigation of the three-dimensional effects induced by the intermittent passage of low and high speed streaks. A close inspection of the time-mean velocity profiles as well as of the boundary layer integral parameters helps to characterize the suction side boundary layer state, thus justifying the influence of free-stream turbulence intensity on the blade aerodynamic losses measured under steady and unsteady inflows.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
For hypersonic vehicles,as the temperature in its boundary layer usually exceeds 600 K,for which the molecular vibrational degree of freedom is excited,the perfect gas model is no longer valid.In this paper,the effect of high temperature induced variation of specific heat on the hypersonic turbulent boundary layer of flat plates is investigated by direct numerical simulations with the perfect gas model,i.e.with constant specific heat,as well as with a variable specific heat gas model.The comparison of the results from the two gas models has found that the effect of the variation of specific heat on the velocity of the turbulent boundary layers is relatively small,while its effect on temperature,such as the mean temperature,the temperature fluctuations,is appreciable.It is also found that the mean specific heat is quite close to the specific heat calculated by using the mean temperature,indicating that it is possible to do turbulence modeling.The modeling is done under the variable specific heat gas model with the mean temperature as the variable.The feasibility of such consideration is verified by applying the SST model for variable specific heat turbulence computation.
Institute of Scientific and Technical Information of China (English)
Jian Zhong Lin; Ke Sun; Weifeng Zhang
2008-01-01
A model relating the translational and rotational transport of orientation distribution function (ODF) of fibers to the gradient of mean ODF and the dispersion coefficients is proposed to derive the mean equation for the ODE Then the ODF of fibers is predicted by numerically solving the mean equation for the ODF together with the equations of turbulent boundary layer flow. Finally the shear stress and first normal stress difference of fiber suspensions are obtained. The results, some of which agree with the available relevant experimental data, show that the most fibers tend to orient to the flow direction. The fiber aspect ratio and Reynolds number have significant and negligible effects on the orientation distribution of fibers, respectively. The additional normal stress due to the presence of fibers is anisotropic. The shear stress of fiber suspension is larger than that of Newtonian solvent, and the first normal stress difference is much less than the shear stress. Both the additional shear stress and the first normal stress difference increase with increasing the fiber concentration and decreasing fiber aspect ratio.
Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions
Bernardini, Matteo; Pirozzoli, Sergio; Grasso, Francesco
2016-01-01
Direct numerical simulations are carried out to investigate the effect of the wall temperature on the behavior of oblique shock-wave/turbulent boundary layer interactions at freestream Mach number $2.28$ and shock angle of the wedge generator $\\varphi = 8^{\\circ}$. Five values of the wall-to-recovery-temperature ratio ($T_w/T_r$) are considered, corresponding to cold, adiabatic and hot wall thermal conditions. We show that the main effect of cooling is to decrease the characteristic scales of the interaction in terms of upstream influence and extent of the separation bubble. The opposite behavior is observed in the case of heating, that produces a marked dilatation of the interaction region. The distribution of the Stanton number shows that a strong amplification of the heat transfer occurs across the interaction, and the maximum values of thermal and dynamic loads are found in the case of cold wall. The analysis reveals that the fluctuating heat flux exhibits a strong intermittent behavior, characterized by ...
Wind Tunnel Measurements of Turbulent Boundary Layer over Hypothetical Urban Roughness Elements
Ho, Y. K.; Liu, C. H.
2012-04-01
Urban morphology affects the near-ground atmospheric boundary layer that in turn modifies the wind flows and pollutant dispersion over urban areas. A number of numerical models (large-eddy simulation, LES and k-ɛ turbulence models) have been developed to elucidate the transport processes in and above urban street canyons. To complement the modelling results, we initiated a wind tunnel study to examine the influence of idealized urban roughness on the flow characteristics and pollutant dispersion mechanism over 2D idealized street canyons placed in cross flows. Hot-wire anemometry (HWA) was employed in this study to measure the flows over 2D street canyons in the wind tunnel in our university. Particular focus in the beginning stage was on the fabrication of hot-wire probes, data acquisition system, and signal processing technique. Employing the commonly adopted hot-wire universal function, we investigated the relationship in between and developed a scaling factor which could generalize the output of our hot-wire probes to the standardized one as each hot-wire probes has its unique behaviour. Preliminary experiments were performed to measure the wind flows over street canyons of unity aspect ratio. Vertical profiles of the ensemble average velocity and fluctuations at three different segments over the street canyons were collected. The results were then compared with our LES that show a good argument with each other. Additional experiments are undertaken to collect more data in order to formulate the pollutant dispersion mechanism of street canyons and urban areas.
A Cautionary Note on the Zagarola and Smits Similarity Parameter for the Turbulent Boundary Layer
Weyburne, David
2015-01-01
Zagarola and Smits developed an empirical velocity parameter for scaling the outer region of the turbulent boundary layer velocity profile that has been widely applied and has resulted in similarity in many of those datasets. In all the cases studied thus far claims for similarity involving the Zagarola and Smits scaling parameter have been based on examining plots of the defect profile. In the work herein it is shown that the common practice of finding similarity behavior using the defect profile has often been incomplete in the sense that not all of the criteria for similarity have been checked for compliance. When full compliance is checked it is found that some datasets displaying defect similarity do not satisfy all the criteria for similarity. The nature of this contradiction and noncompliance is described in detail. It is shown that the original datasets used by Zagarola and Smits display this flawed similarity behavior. Hence, a careful reassessment of any claims in the literature is required for thos...
Wiggert, D. C.; Martin, C. S.
1983-09-01
The present conference discusses experiments in periodic turbulent pipe flow whose fluids include air, water, oil, and electrolyte solutions, as well as pressure and heat transfer measurements around a cylinder in pulsating crossflow and the calculation of oscillatory turbulent flows in open channels. Also considered are the transient response of a turbulent boundary layer to a spontaneous change in freestream velocity distribution, evidence of large scale time-dependent flow in a wing-wall interaction wake, and the effect of the interaction between mean and fluctuating velocity components on turbulent dispersion in unsteady turbulent boundary layers.
Energy Technology Data Exchange (ETDEWEB)
Kadja, P. [Universite de Constantine (Algeria)
1993-12-31
Thanks to a numerical code to solve boundary layer equations, natural air convection along a hot and vertical plate was predicted with different turbulence models in order to choose the best one suitable for the calculation of this kind of heat transfer. The turbulence models compared are: the Cebeci Smith algebraic model, the k- standard model with wall functions for k and, and three low Reynolds number k- models: Lam and Bremhorst, de Chien and Jones and Launder. (Authors). 8 refs., 3 figs., 1 tab.
Institute of Scientific and Technical Information of China (English)
HUANG ZhangFeng; ZHOU Heng; LUO JiSheng
2007-01-01
Through temporal mode direct numerical simulation, flow field database of a fully developed turbulent boundary layer on a flat plate with Mach number 4.5 and Reynolds number Reθ=1094 has been obtained. Commonly used detection methods in experiments are applied to detecting coherent structures in the flow field,and it is found that coherent structures do exist in the wall region of a supersonic turbulent boundary layer. The detected results show that a low-speed streak is detected by using the Mu-level method, the rising parts of this streak are detected by using the second quadrant method, and the crossing regions from a low-speed streak to the high-speed one are detected by using the VITA method respectively.Notwithstanding that different regions are detected by different methods, they are all accompanied by quasi-stream-wise vortex structures.
Institute of Scientific and Technical Information of China (English)
2007-01-01
Through temporal mode direct numerical simulation, flow field database of a fully developed turbulent boundary layer on a flat plate with Mach number 4.5 and Reynolds number Reθ =1094 has been obtained. Commonly used detection meth- ods in experiments are applied to detecting coherent structures in the flow field, and it is found that coherent structures do exist in the wall region of a supersonic turbulent boundary layer. The detected results show that a low-speed streak is de- tected by using the Mu-level method, the rising parts of this streak are detected by using the second quadrant method, and the crossing regions from a low-speed streak to the high-speed one are detected by using the VITA method respectively. Notwithstanding that different regions are detected by different methods, they are all accompanied by quasi-stream-wise vortex structures.
Narayanswami, N.; Horstman, C. C.; Knight, D. D.
1993-01-01
A 3D hypersonic crossing shock wave/turbulent boundary layer interaction is examined numerically. The test geometry consists of a pair of opposing sharp fins of angle alpha = 15 deg mounted on a flat plate. The freestream Mach number is 8.28. Two theoretical models are evaluated. The full 3D Reynolds-averaged Navier-Stokes equations are solved using the Baldwin-Lomax algebraic turbulent eddy viscosity model and the Rodi turbulence model. Computed results for both cases show good agreement with experiment for flat plate surface pressure and for pitot pressure and yaw angle profiles in the flowfield. General agreement is obtained for surface flow direction. Fair to poor agreement is obtained for surface heat transfer, indicating a need for more accurate turbulence models. The overall flowfield structure is similar to that observed in previous crossing shock interaction studies.
Chefranov, Sergey G
2010-01-01
For Gagen-Poiseuille flow, we show that exponential instability (to extremely small, axially symmetric disturbances represented by Galerkin's approximation) is possible only if there exists conditionally periodic variability of the disturbances along the pipe axis when the threshold Reynolds number depends on the ratio of two longitudinal periods. Absolute minimum (for) is obtained that corresponds to the observed conditions of transition from the laminar resistance law to the turbulent one and Tollmien-Schlichting waves exciting in the boundary layer.
Marine boundary layer and turbulent fluxes over the Baltic Sea: Measurements and modelling
DEFF Research Database (Denmark)
Gryning, Sven-Erik; Batchvarova, E.
2002-01-01
Two weeks of measurements of the boundary-layer height over a small island (Christianso) in the Baltic Sea are discussed. The meteorological conditions are characterised by positive heat flux over the sea. The boundary-layer height was simulated with two models, a simple applied high-resolution (2...... km x 2 km) model, and the operational numerical weather prediction model HIRLAM (grid resolution of 22.5 km x 22.5 km). For southwesterly winds it was found that a relatively large island (Bornholm) lying 20-km upwind of the measuring site influences the boundary-layer height. In this situation the...... high-resolution simple applied model reproduces the characteristics of the boundary-layer height over the measuring site. Richardson-number based methods using data from simulations with the HIRLAM model fail, most likely because the island and the water fetch to the measuring site are about the size...
Directory of Open Access Journals (Sweden)
Yang Guang
2016-06-01
Full Text Available The efficiency and mechanism of an active control device “SparkJet” and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The numerical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were systematically validated against the available wind tunnel particle image velocimetry (PIV measurements of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator “SparkJet” was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resistant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted.
Institute of Scientific and Technical Information of China (English)
Yang Guang; Yao Yufeng; Fang Jian; Gan Tian; Li Qiushi; Lu Lipeng
2016-01-01
The efficiency and mechanism of an active control device‘‘SparkJet”and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8? wedge and a spatially-developing Ma=2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The numerical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were sys-tematically validated against the available wind tunnel particle image velocimetry (PIV) measure-ments of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator ‘‘SparkJet” was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resis-tant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35%with control exerted.
Closed-loop control of boundary layer streaks induced by free-stream turbulence
Papadakis, George; Lu, Liang; Ricco, Pierre
2016-08-01
The central aim of the paper is to carry out a theoretical and numerical study of active wall transpiration control of streaks generated within an incompressible boundary layer by free-stream turbulence. The disturbance flow model is based on the linearized unsteady boundary-region (LUBR) equations, studied by Leib, Wundrow, and Goldstein [J. Fluid Mech. 380, 169 (1999), 10.1017/S0022112098003504], which are the rigorous asymptotic limit of the Navier-Stokes equations for low-frequency and long-streamwise wavelength. The mathematical formulation of the problem directly incorporates the random forcing into the equations in a consistent way. Due to linearity, this forcing is factored out and appears as a multiplicative factor. It is shown that the cost function (integral of kinetic energy in the domain) is properly defined as the expectation of a random quadratic function only after integration in wave number space. This operation naturally introduces the free-stream turbulence spectral tensor into the cost function. The controller gains for each wave number are independent of the spectral tensor and, in that sense, universal. Asymptotic matching of the LUBR equations with the free-stream conditions results in an additional forcing term in the state-space system whose presence necessitates the reformulation of the control problem and the rederivation of its solution. It is proved that the solution can be obtained analytically using an extension of the sweep method used in control theory to obtain the standard Riccati equation. The control signal consists of two components, a feedback part and a feed-forward part (that depends explicitly on the forcing term). Explicit recursive equations that provide these two components are derived. It is shown that the feed-forward part makes a negligible contribution to the control signal. We also derive an explicit expression that a priori (i.e., before solving the control problem) leads to the minimum of the objective cost
Jha, Pankaj Kumar
Wind energy is becoming one of the most significant sources of renewable energy. With its growing use, and social and political awareness, efforts are being made to harness it in the most efficient manner. However, a number of challenges preclude efficient and optimum operation of wind farms. Wind resource forecasting over a long operation window of a wind farm, development of wind farms over a complex terrain on-shore, and air/wave interaction off-shore all pose difficulties in materializing the goal of the efficient harnessing of wind energy. These difficulties are further amplified when wind turbine wakes interact directly with turbines located downstream and in adjacent rows in a turbulent atmospheric boundary layer (ABL). In the present study, an ABL solver is used to simulate different atmospheric stability states over a diurnal cycle. The effect of the turbines is modeled by using actuator methods, in particular the state-of-the-art actuator line method (ALM) and an improved ALM are used for the simulation of the turbine arrays. The two ALM approaches are used either with uniform inflow or are coupled with the ABL solver. In the latter case, a precursor simulation is first obtained and data saved at the inflow planes for the duration the turbines are anticipated to be simulated. The coupled ABL-ALM solver is then used to simulate the turbine arrays operating in atmospheric turbulence. A detailed accuracy assessment of the state-of-the-art ALM is performed by applying it to different rotors. A discrepancy regarding over-prediction of tip loads and an artificial tip correction is identified. A new proposed ALM* is developed and validated for the NREL Phase VI rotor. This is also applied to the NREL 5-MW turbine, and guidelines to obtain consistent results with ALM* are developed. Both the ALM approaches are then applied to study a turbine-turbine interaction problem consisting of two NREL 5-MW turbines. The simulations are performed for two ABL stability
Nilsson, E.; Lohou, F.; M. Lothon; Pardyjak, E.; Mahrt, L.; C. Darbieu
2015-01-01
The decay of turbulence kinetic energy (TKE) and its budget in the afternoon period from mid-day until zero buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign for 10 Intensive Observation Period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics a...
Afzal, Bushra; Noor Afzal Team; Bushra Afzal Team
2014-11-01
The momentum and thermal turbulent boundary layers over a continuous moving sheet subjected to a free stream have been analyzed in two layers (inner wall and outer wake) theory at large Reynolds number. The present work is based on open Reynolds equations of momentum and heat transfer without any closure model say, like eddy viscosity or mixing length etc. The matching of inner and outer layers has been carried out by Izakson-Millikan-Kolmogorov hypothesis. The matching for velocity and temperature profiles yields the logarithmic laws and power laws in overlap region of inner and outer layers, along with friction factor and heat transfer laws. The uniformly valid solution for velocity, Reynolds shear stress, temperature and thermal Reynolds heat flux have been proposed by introducing the outer wake functions due to momentum and thermal boundary layers. The comparison with experimental data for velocity profile, temperature profile, skin friction and heat transfer are presented. In outer non-linear layers, the lowest order momentum and thermal boundary layer equations have also been analyses by using eddy viscosity closure model, and results are compared with experimental data. Retired Professor, Embassy Hotel, Rasal Ganj, Aligarh 202001 India.
Wake Turbulence of Two NREL 5-MW Wind Turbines Immersed in a Neutral Atmospheric Boundary-Layer Flow
Bashioum, Jessica L; Schmitz, Sven; Duque, Earl P N
2013-01-01
The fluid dynamics video considers an array of two NREL 5-MW turbines separated by seven rotor diameters in a neutral atmospheric boundary layer (ABL). The neutral atmospheric boundary-layer flow data were obtained from a precursor ABL simulation using a Large-Eddy Simulation (LES) framework within OpenFOAM. The mean wind speed at hub height is 8m/s, and the surface roughness is 0.2m. The actuator line method (ALM) is used to model the wind turbine blades by means of body forces added to the momentum equation. The fluid dynamics video shows the root and tip vortices emanating from the blades from various viewpoints. The vortices become unstable and break down into large-scale turbulent structures. As the wakes of the wind turbines advect further downstream, smaller-scale turbulence is generated. It is apparent that vortices generated by the blades of the downstream wind turbine break down faster due to increased turbulence levels generated by the wake of the upstream wind turbine.
Puhales, Franciano Scremin; Rizza, Umberto; Degrazia, Gervásio Annes; Acevedo, Otávio Costa
2013-02-01
In this work a parametrization for the transport terms of the turbulent kinetic energy (TKE) budget equation, valid for a convective boundary layer (CBL) is presented. This is a hard task to accomplish from experimental data, especially because of the difficulty associated to the measurements of pressure turbulent fluctuations, which are necessary to determine the pressure correlation TKE transport term. Thus, employing a large eddy simulation (LES) a full diurnal planetary boundary layer (PBL) cycle was simulated. In this simulation a forcing obtained from experimental data is used, so that the numerical experiment represents a more realistic case than a stationary PBL. For this study all terms of the TKE budget equation were determined for a CBL. From these data, polynomials that describe the TKE transport terms’ vertical profiles were adjusted. The polynomials found are a good description of the LES data, and from them it is shown that a simple formulation that directly relates the transport terms to the TKE magnitude has advantages on other parameterizations commonly used in CBL numerical models. Furthermore, the present study shows that the TKE turbulent transport term dominates over the TKE transport by pressure perturbations and that for most of the CBL these two terms have opposite signs.
Energy Technology Data Exchange (ETDEWEB)
Ames, Forrest E. [University of North Dakota; Kingery, Joseph E. [University of North Dakota
2015-06-17
Full coverage shaped-hole film cooling and downstream heat transfer measurements have been acquired in the accelerating flows over a large cylindrical leading edge test surface. The shaped holes had an 8° lateral expansion angled at 30° to the surface with spanwise and streamwise spacings of 3 diameters. Measurements were conducted at four blowing ratios, two Reynolds numbers and six well documented turbulence conditions. Film cooling measurements were acquired over a four to one range in blowing ratio at the lower Reynolds number and at the two lower blowing ratios for the higher Reynolds number. The film cooling measurements were acquired at a coolant to free-stream density ratio of approximately 1.04. The flows were subjected to a low turbulence condition (Tu = 0.7%), two levels of turbulence for a smaller sized grid (Tu = 3.5%, and 7.9%), one turbulence level for a larger grid (8.1%), and two levels of turbulence generated using a mock aero-combustor (Tu = 9.3% and 13.7%). Turbulence level is shown to have a significant influence in mixing away film cooling coverage progressively as the flow develops in the streamwise direction. Effectiveness levels for the aero-combustor turbulence condition are reduced to as low as 20% of low turbulence values by the furthest downstream region. The film cooling discharge is located close to the leading edge with very thin and accelerating upstream boundary layers. Film cooling data at the lower Reynolds number, show that transitional flows have significantly improved effectiveness levels compared with turbulent flows. Downstream effectiveness levels are very similar to slot film cooling data taken at the same coolant flow rates over the same cylindrical test surface. However, slots perform significantly better in the near discharge region. These data are expected to be very useful in grounding computational predictions of full coverage shaped hole film cooling with elevated turbulence levels and acceleration. IR
Wilson, Jordan M.
This research focuses on the dynamics of turbulent mixing under stably stratified flow conditions. Velocity fluctuations and instabilities are suppressed by buoyancy forces limiting mixing as stability increases and turbulence decreases until the flow relaminarizes. Theories that ubiquitously assume turbulence collapse above a critical value of the gradient Richardson number (e.g. Ri > Ric) are common in meteorological and oceanographic communities. However, most theories were developed from results of small-scale laboratory and numerical experiments with energetic levels several orders of magnitude less than geophysical flows. Geophysical flows exhibit strong turbulence that enhances the transport of momentum and scalars. The mixing length for the turbulent momentum field, L M, serves as a key parameter in assessing large-scale, energy-containing motions. For a stably stratified turbulent shear flow, the shear production of turbulent kinetic energy, P, is here considered to be of greater relevance than the dissipation rate of turbulent kinetic energy, epsilon. Thus, the turbulent Reynolds number can be recast as Re ≡ k2/(nuP) where k is the turbulent kinetic energy, allowing for a new perspective on flow energetics. Using an ensemble data set of high quality direct numerical simulation (DNS) results, large-eddy simulation (LES) results, laboratory experiments, and observational field data of the stable atmospheric boundary layer (SABL), the dichotomy of data becomes apparent. High mixing rates persist to strong stability (e.g. Ri ≈ 10) in the SABL whereas numerical and laboratory results confirm turbulence collapse for Ri ˜ O(1). While this behavior has been alluded to in literature, this direct comparison of data elucidates the disparity in universal theories of stably stratified turbulence. From this theoretical perspective, a Reynolds-averaged framework is employed to develop and evaluate parameterizations of turbulent mixing based on the competing forces
Vijayakumar, Ganesh
Modern commercial megawatt-scale wind turbines occupy the lower 15-20% of the atmospheric boundary layer (ABL), the atmospheric surface layer (ASL). The current trend of increasing wind turbine diameter and hub height increases the interaction of the wind turbines with the upper ASL which contains spatio-temporal velocity variations over a wide range of length and time scales. Our interest is the interaction of the wind turbine with the energetic integral-scale eddies, since these cause the largest temporal variations in blade loadings. The rotation of a wind turbine blade through the ABL causes fluctuations in the local velocity magnitude and angle of attack at different sections along the blade. The blade boundary layer responds to these fluctuations and in turn causes temporal transients in local sectional loads and integrated blade and shaft bending moments. While the integral scales of the atmospheric boundary layer are ˜ O(10--100m) in the horizontal with advection time scales of order tens of seconds, the viscous surface layer of the blade boundary layer is ˜ O(10 -- 100 mum) with time scales of order milliseconds. Thus, the response of wind turbine blade loadings to atmospheric turbulence is the result of the interaction between two turbulence dynamical systems at extremely disparate ranges of length and time scales. A deeper understanding of this interaction can impact future approaches to improve the reliability of wind turbines in wind farms, and can underlie future improvements. My thesis centers on the development of a computational framework to simulate the interaction between the atmospheric and wind turbine blade turbulence dynamical systems using a two step one-way coupled approach. Pseudo-spectral large eddy simulation (LES) is used to generate a true (equilibrium) atmospheric boundary layer over a flat land with specified surface roughness and heating consistent with the stability state of the daytime lower troposphere. Using the data from the
Cheng, Wan
2015-06-30
We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.
Faloona, I. C.; Lothon, M.
2014-12-01
Because of the dominant influence of surface solar heating on atmospheric boundary layer (ABL) flows, the character and even underlying theories of turbulence vary diurnally over the continents. While great strides have been made in our understanding of the stable boundary layers that prevail overnight, the period of transition from a convective daytime to a stable nighttime ABL remains a very challenging problem in no small part because of its inherently non-stationary nature and because both of the main forcings, wind stress and surface heat flux, tend to flag at this time of day. These underexplored topics motivated the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field experiment held in the summer of 2011 at the CNRS Laboratorie d'Aerologie in Campistrous, France. On three of the twelve intensive observational days of the experiment, three rawinsondes were launched simultaneously approximately 3 km apart throughout the afternoon transition in order to directly measure mesoscale horizontal divergence in the ABL and lower free troposphere. Using the assumption of incompressibility, the observed divergence is integrated and a vertical profile of mean vertical wind is derived for the lower troposphere. Although the magnitude of the inferred vertical winds are much larger than expected (of order 0.1 ms-1), the measurements do indicate a clear trend in afternoon subsidence giving way to evening uplift at the site, which is within ~10 km of the Pyrenees' foothills. The observed transition from low-level divergence to convergence was accompanied by a deep surface pressure minimum that fluctuated by nearly 300 Pa diurnally, and we propose that it is likely related to the reversal of the plain-mountain circulation across the region. The impact of such behavior on boundary layer growth and entrainment during the afternoon hours are discussed along with evidence of similar behavior observed elsewhere in mountainous terrain.
Yang, X. I. A.; Marusic, I.; Meneveau, C.
2016-06-01
Townsend [Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, UK, 1976)] hypothesized that the logarithmic region in high-Reynolds-number wall-bounded flows consists of space-filling, self-similar attached eddies. Invoking this hypothesis, we express streamwise velocity fluctuations in the inertial layer in high-Reynolds-number wall-bounded flows as a hierarchical random additive process (HRAP): uz+=∑i=1Nzai . Here u is the streamwise velocity fluctuation, + indicates normalization in wall units, z is the wall normal distance, and ai's are independently, identically distributed random additives, each of which is associated with an attached eddy in the wall-attached hierarchy. The number of random additives is Nz˜ln(δ /z ) where δ is the boundary layer thickness and ln is natural log. Due to its simplified structure, such a process leads to predictions of the scaling behaviors for various turbulence statistics in the logarithmic layer. Besides reproducing known logarithmic scaling of moments, structure functions, and correlation function [" close="]3/2 uz(x ) uz(x +r ) >, new logarithmic laws in two-point statistics such as uz4(x ) > 1 /2, 1/3, etc. can be derived using the HRAP formalism. Supporting empirical evidence for the logarithmic scaling in such statistics is found from the Melbourne High Reynolds Number Boundary Layer Wind Tunnel measurements. We also show that, at high Reynolds numbers, the above mentioned new logarithmic laws can be derived by assuming the arrival of an attached eddy at a generic point in the flow field to be a Poisson process [Woodcock and Marusic, Phys. Fluids 27, 015104 (2015), 10.1063/1.4905301]. Taken together, the results provide new evidence supporting the essential ingredients of the attached eddy hypothesis to describe streamwise velocity fluctuations of large, momentum transporting eddies in wall-bounded turbulence, while observed deviations suggest the need for further extensions of the
DEFF Research Database (Denmark)
Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu
2009-01-01
contributions believed to play a prominent role in cross-shore boundary layer and sediment transport processes: (1) converging-diverging effects from bed slope, (2) wave skewness, (3) wave asymmetry, and (4) waves combined with superposed negative currents (intended to loosely represent, for example, return...... currents or undertow). The effects from each of the four components are isolated and quantified using a standard set of bed shear stress quantities, allowing their easy comparison. For conditions representing large shallow-water waves on steep slopes, the results suggest that converging-diverging effects...... from beach slope may make a significant onshore bed load contribution. Generally, however, the results suggest wave skewness (in addition to conventional steady streaming) as the most important onshore contribution outside the surf zone. Streaming induced within the wave boundary layer is also...
Marginally stable and turbulent boundary layers in low-curvature Taylor-Couette flow
Brauckmann, Hannes J
2016-01-01
Marginal stability arguments are used to describe the rotation-number dependence of torque in Taylor-Couette (TC) flow for radius ratios $\\eta \\geq 0.9$ and shear Reynolds number $Re_S=2\\times 10^4$. With an approximate representation of the mean profile by piecewise linear functions, characterized by the boundary-layer thicknesses at the inner and outer cylinder and the angular momentum in the center, profiles and torques are extracted from the requirement that the boundary layers represent marginally stable TC subsystems and that the torque at the inner and outer cylinder coincide. This model then explains the broad shoulder in the torque as a function of rotation number near $R_\\Omega\\approx 0.2$. For rotation numbers $R_\\Omega < 0.07$ the TC stability conditions predict boundary layers in which shear Reynolds numbers are very large. Assuming that the TC instability is bypassed by some shear instability, a second maximum in torque appears, in very good agreement with numerical simulations. The results s...
Li, Lixiao; Kareem, Ahsan; Hunt, Julian; Xiao, Yiqing; Zhou, Chaoying; Song, Lili
2015-02-01
A conceptual model is proposed for the characteristic sub-ranges in the velocity and temperature spectra in the boundary layer of tropical cyclones (hurricanes or typhoons). The model is based on observations and computation of radial and vertical profiles of the mean flow and turbulence, and on the interpretation of eddy mechanisms determined by shear (namely roll and streak structures near the surface), convection, rotation, blocking and sheltering effects at the ground/sea surface and in internal shear layers. The significant sub-ranges, as the frequency increases, are associated with larger energy containing eddies, shear and blocking, inertial transfer between large and small scales, and intense small-scale eddies generated near the surface caused by waves, coastal roughness change, and the buoyancy force associated with the evaporation of spray droplets. These sub-ranges vary with the locations at which the spectra are measured, i.e. the level in relation to the height of the peak mean velocity and the depth of the boundary layer, and the radius in relation to the eyewall radius and the outer-vortex radius . For two tropical cyclones (Nuri and Hagupit), experimental data were analyzed. Spectra were measured where is near to and using four 1-h long datasets at coastal towers, at 10- and 60-m heights for tropical cyclone Nuri, and at 60-m height for tropical cyclone Hagupit at the south China coast. The field measurements of spectra within the boundary layer show significant sub-ranges of self-similar energy spectra (lying between the length scale 1,000 m and the smallest scales less than 40 m) that are consistent with the above conceptual model of the surface layer. However, with very high wind speeds near the eyewall, the energy of the independently generated intense surface eddy motions, associated with surface waves and water droplets in the airflow, greatly exceeds the energies of the small scales in the inertial sub-range of the boundary layer, over
Asanuma, Jun
Variances of the velocity components and scalars are important as indicators of the turbulence intensity. They also can be utilized to estimate surface fluxes in several types of "variance methods", and the estimated fluxes can be regional values if the variances from which they are calculated are regionally representative measurements. On these motivations, variances measured by an aircraft in the unstable ABL over a flat pine forest during HAPEX-Mobilhy were analyzed within the context of the similarity scaling arguments. The variances of temperature and vertical velocity within the atmospheric surface layer were found to follow closely the Monin-Obukhov similarity theory, and to yield reasonable estimates of the surface sensible heat fluxes when they are used in variance methods. This gives a validation to the variance methods with aircraft measurements. On the other hand, the specific humidity variances were influenced by the surface heterogeneity and clearly fail to obey MOS. A simple analysis based on the similarity law for free convection produced a comprehensible and quantitative picture regarding the effect of the surface flux heterogeneity on the statistical moments, and revealed that variances of the active and passive scalars become dissimilar because of their different roles in turbulence. The analysis also indicated that the mean quantities are also affected by the heterogeneity but to a less extent than the variances. The temperature variances in the mixed layer (ML) were examined by using a generalized top-down bottom-up diffusion model with some combinations of velocity scales and inversion flux models. The results showed that the surface shear stress exerts considerable influence on the lower ML. Also with the temperature and vertical velocity variances ML variance methods were tested, and their feasibility was investigated. Finally, the variances in the ML were analyzed in terms of the local similarity concept; the results confirmed the original
Guerra-Garcia, C.; Nguyen, N. C.; Peraire, J.; Martinez-Sanchez, M.
2016-09-01
A lightning channel attached to an aircraft in flight will be swept along the aircraft’s surface in response to the relative velocity between the arc’s root (attached to a moving electrode) and the bulk of the arc, which is stationary with respect to the air. During this process, the reattachment of the arc to new locations often occurs. The detailed description of this swept stroke is still at an early stage of research, and it entails the interaction between an electrical arc and the flow boundary layer. In this paper we examine the implications of the structure of the boundary layer for the arc sweeping and reattachment process by considering different velocity profiles, both for laminar and turbulent flow, as well as a high fidelity description, using large eddy simulation, of transitional flow over an airfoil. It is found that the local velocity fluctuations in a turbulent flow may be important contributors to the reattachment of the arc, through a combination of an increased potential drop along the arc and local approaches of the arc to the surface. Specific flow features, such as the presence of a laminar recirculation bubble, can also contribute to the possibility of reattachment.
Goger, Brigitta; Rotach, Mathias W.; Gohm, Alexander; Fuhrer, Oliver; Stiperski, Ivana
2016-04-01
Atmospheric processes associated with complex terrain include various phenomena on the meso- and microscale, which contribute significantly to the local weather in mountainous areas of the Earth. One of the most prominent and well-known boundary-layer phenomena in mountainous terrain is the daytime valley wind circulation, which is very pronounced on clear-sky days with weak synoptic forcing. We use several chosen "valley wind days" in the Inn Valley, Austria, as case studies for the evaluation of the performance of the NWP model COSMO on a horizontal resolution of 1.1 km with a focus on boundary-layer processes and turbulent exchange. The overall goal is to evaluate the model setup and to investigate whether the model's physics schemes (initially developed for horizontally homogeneous and flat surroundings) are suitable for truly complex terrain. We evaluate the model by using measurements from the so-called "i-Box" located in the Inn Valley. The i-Box consists of six core sites that are located at representative locations in the Inn Valley, and two remote sensing systems (wind Lidar and HATPRO passive T/RH profiler) in the city of Innsbruck. The long-term data set provides a data pool of high-resolution velocity variances, turbulence variables, radiation, soil moisture, and vertical profiles of temperature, humidity, and wind in the lower troposphere, which allows a process-oriented analysis. A special focus is laid on the daytime valley boundary layer and its interaction with the developing up-valley wind. Vertical cross-sections show that the valley wind has an asymmetric structure, hence, the i-Box stations show a high spatial variability. While the station on the valley bottom and on the south-facing slope are clearly under the strong influence of the valley wind, the two stations on the north-facing slope are rather dominated by slope flows. We find that the valley wind has a strong (indirect) influence on the development of the local turbulence kinetic
Tumin, Anatoli
2015-11-01
Zavol'skii and Reutov (1983), Luchini (2008, 2010), Fedorov (2010, 2012, 2014) explored potential role of kinetic fluctuations (KF) in incompressible and calorically perfect gas boundary layer flows. The results indicate that role of KF is comparable with other disturbance sources in flight experiments and in quiet wind tunnels. The analysis is based on the Landau and Lifshitz (1957) concept of fluctuating hydrodynamics representing the dissipative fluxes as an average and fluctuating parts. We are extending analysis of the receptivity problem to the fluctuating dissipative fluxes in chemically reacting nonequilibrium boundary layer flows of binary mixtures. There are new terms in the energy, and the species equations. The species conservation equation includes the dissipative diffusion flux and the species generation due to dissociation. The momentum equation includes fluctuating stress tensor. The energy equation includes fluctuating heat flux, energy flux due to diffusion of the species, and fluctuating dissipative flux due to viscosity. The effects are compared for the cases stemming from constraints of the HTV project (Klentzman and Tumin, AIAA Paper 2013-2882). Supported by AFOSR.
van Hout, Rene; Eisma, Jerke; Overmars, Edwin; Elsinga, Gerrit; Westerweel, Jerry
2015-11-01
Time resolved tomographic PIV measurements (acquisition rate 250Hz) were performed in a turbulent boundary layer (TBL) on the side wall of an open channel, water flow facility (cross section 60x60cm, Wx H) , 3.5m downstream of the inlet at a bulk flow velocity of Ub = 0.17m/s (Reb =Ub H / ν = 102x103, δ0 . 99 = 5 . 0 cm, Reθ = 891). The measurement volume was a horizontal slab (6x1.5x6cm3, lx wx h) extending from the side wall, 30cm above the bottom. The Tomo-PIV setup comprised four high-speed ImagerPro HS cameras (2016x2016pixels), a high-speed laser (Nd:YLF, Darwin Duo 80M, Quantronix), optics/prisms and data acquisition/processing software (LaVision, DaVis8.2). A sphere with diameter, D = 6mm (D+ = 51, ``+'' denotes inner wall scaling), was positioned at y = 37.5 and 5.4mm (y+ = 319 and 46) from the wall (measured from the sphere's center). The latter position covers most of the buffer layer while the former is well in the outer layer. Sphere Reynolds numbers based on D and the average streamwise velocity at the sphere's center were 984 (y+ = 319) and 684 (y+ = 46). Results show the interaction between the coherent turbulence structures in the TBL and those generated in the sphere's wake. Total and partial destruction of the log-law layer is observed when the sphere is positioned in the buffer and outer layer, respectively.
Jordan, Stephen A.
2016-05-01
Long thin circular cylinders commonly serve as towed sonar tracking devices, where the radius-of-curvature along the longitudinal axis is quite low [ρr = O(10-4)]. Because no understanding presently exists about the direct impact of longitudinal curvature on the turbulent statistics, the long cylinder is simply viewed as a chain of straight segments at various (increasing then decreasing) small inclinations to the freestream direction. Realistically, even our statistical evidence along straight thin cylinders at low incidence angles is inadequate to build solid evidence towards forming reliable empirical models. In the present study, we address these shortcomings by executing Large-Eddy Simulations (LESs) of straight and longitudinally curved thin cylinders at low to moderate turbulent radius-based Reynolds numbers (500 ≤ Rea ≤ 3500) and small angles-of-incidence (α = 0° → 9°). Coupled with the previous experimental measurements and numerical results, the new expanded database (311 ≤ Rea ≤ 56 500) delivered sufficient means to propose power-law expressions for the longitudinal evolution of the skin friction, normal drag, and turbulent boundary layer (TBL) length scales. Surprisingly, the LES computations of the curved cylinders at analogous geometric and kinematic conditions as the straight cylinder showed similar character in terms of the longitudinal skin friction. Beyond incidence 1°-3° (upper end corresponds to the highest simulated Rea), the skin friction was directly proportional to the yaw angle and monotonically shifted downward with higher Rea. Conversely, the flow structure, normal drag, TBL length scales, Reynolds stresses, and the separation state of the transverse shear layers towards regular vortex shedding for the curved cylinder were highly dissimilar than the straight one at equivalent incidence angles.
Anderson, E. C.; Lewis, C. H.
1971-01-01
Turbulent boundary layer flows of non-reacting gases are predicted for both interal (nozzle) and external flows. Effects of favorable pressure gradients on two eddy viscosity models were studied in rocket and hypervelocity wind tunnel flows. Nozzle flows of equilibrium air with stagnation temperatures up to 10,000 K were computed. Predictions of equilibrium nitrogen flows through hypervelocity nozzles were compared with experimental data. A slender spherically blunted cone was studied at 70,000 ft altitude and 19,000 ft/sec. in the earth's atmosphere. Comparisons with available experimental data showed good agreement. A computer program was developed and fully documented during this investigation for use by interested individuals.
DEFF Research Database (Denmark)
Jørgensen, Nina Gall; Koss, Holger; Bennetsen, Jens Chr.
2014-01-01
Large Eddy Simulations (LES) are used to numerically simulate the flow around and the surface pressure on a floor-mounted cube in a turbulent boundary layer flow. Both a full LES and an embedded- LES (ELES) approach was used and the simulation results were compared to data from wind tunnel....... Furthermore, the fluctuating surface pressure simulated by the ELES is also discussed. The computed time-averaged flow is comparable to the wind tunnel measurements while the frequency spectrum of the upstream flow has deficits in the low and high frequency ranges. The time-averaged surface pressures...... experiments. The computations were performed with the commercial CFD software ANSYS FLUENT at a Reynolds number at the cube height of Reh = 1.3x105. The object was to evaluate the numerically generated flow upstream and around the cube and the accuracy of the timeaveraged surface pressure on the cube...
Polar spacecraft observations of the turbulent outer cusp/magnetopause boundary layer of Earth
Directory of Open Access Journals (Sweden)
J. S. Pickett
1999-01-01
Full Text Available The orbit of the Polar spacecraft has been ideally suited for studying the turbulent region of the cusp that is located near or just outside the magnetopause current sheet at 7-9 RE. The wave data obtained in this region show that electromagnetic turbulence is dominant in the frequency range 1-10 Hz. The waves responsible for this turbulence usually propagate perpendicular to the local magnetic field and have an index of refraction that generally falls between the estimated cold plasma theoretical values of the electromagnetic lower hybrid and whistler modes and may be composed of both modes in concert with kinetic Alfvén waves and/or fast magnetosonic waves. Fourier spectra of the higher frequency wave data also show the electromagnetic turbulence at frequencies up to and near the electron cyclotron frequency. This higher frequency electromagnetic turbulence is most likely associated with whistler mode waves. The lower hybrid drift and current gradient instabilities are suggested as possible mechanisms for producing the turbulence. The plasma and field environment of this turbulent region is examined and found to be extremely complex. Some of the wave activity is associated with processes occurring locally, such as changes in the DC magnetic field, while others are associated with solar wind and interplanetary magnetic field changes.
Wall-drag measurements of smooth- and rough-wall turbulent boundary layers using a floating element
Baars, W. J.; Squire, D. T.; Talluru, K. M.; Abbassi, M. R.; Hutchins, N.; Marusic, I.
2016-05-01
The mean wall shear stress, overline{τ }_w, is a fundamental variable for characterizing turbulent boundary layers. Ideally, overline{τ }_w is measured by a direct means and the use of floating elements has long been proposed. However, previous such devices have proven to be problematic due to low signal-to-noise ratios. In this paper, we present new direct measurements of overline{τ }_w where high signal-to-noise ratios are achieved using a new design of a large-scale floating element with a surface area of 3 m (streamwise) × 1 m (spanwise). These dimensions ensure a strong measurement signal, while any error associated with an integral measurement of overline{τ }_w is negligible in Melbourne's large-scale turbulent boundary layer facility. Wall-drag induced by both smooth- and rough-wall zero-pressure-gradient flows are considered. Results for the smooth-wall friction coefficient, C_f ≡ overline{τ }_w/q_{∞}, follow a Coles-Fernholz relation C_f = [ 1/κ ln ( Re_{θ }) + C] ^{-2} to within 3 % (κ = 0.38 and C = 3.7) for a momentum thickness-based Reynolds number, Re_{θ } > 15{,}000. The agreement improves for higher Reynolds numbers to 38{,}000. This smooth-wall benchmark verification of the experimental apparatus is critical before attempting any rough-wall studies. For a rough-wall configuration with P36 grit sandpaper, measurements were performed for 10{,}500< Re_{θ } < 88{,}500, for which the wall-drag indicates the anticipated trend from the transitionally to the fully rough regime.
Kuhn, G. D.
1971-01-01
A computer program was developed to do the calculations for two-dimensional or axisymmetric configurations from low speeds to hypersonic speeds with arbitrary streamwise pressure, temperature, and Mach number distributions. Options are provided for obtaining initial conditions either from experimental information or from a theoretical similarity solution. The transition region can be described either by an arbitrary distribution of intermittency or by a function based on Emmons' probability theory. Correlations were developed for use in estimating the parameters of the theoretical intermittency function. Correlations obtained from other sources are used for estimating the transition point. Comparisons were made between calculated and measured boundary layer quantities for laminar, transitional, and turbulent flows on flat plates, cones, cone flares, and a waisted body of revolution. Excellent agreement was obtained between the present theory and two other theories based on the method of finite differences. The intermittency required to reproduce some experimental heat transfer results in hypersonic flow was found to be quite different from the theoretical function. It is suggested that the simple probability theory of Emmons may not be valid for representing the intermittency of hypersonic transitional boundary layers and that the program could be useful as a tool for detailed study of the intermittency of the transition region.
Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando
2014-11-01
Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).
Turbulent structures dependent on tidal currents in the bottom boundary layer of the Venice Lagoon
Energy Technology Data Exchange (ETDEWEB)
Cavazzoni, S.; Crosera, F.
The time series of horizontal and vertical turbulent velocity fluctuations u', w' have been recorded by means of an electromagnetic currentmeter in proximity of the bottom of a channel feeding the Venetian Lagoon. Simultaneous surface gradients have been recorded at two tide gauge stations, one upstream and the other downstream of the chosen test site. The time series of u', w' and u'w' values have been analysed using standard digital methods and, for each record, spectra, cross-spectra, co-spectra, quadrature spectra, phase and coherence of u' and w' have been computed. This analysis allows us to determine temporal and spatial dimensions of turbulent structures that give the greatest contribution to Reynolds stress (- rhoanti u'anti w', where rho is the water density). These structures that seem to be dependent on longitudinal surface gradients are primarily responsible for vertical momentum transport and, consequently, for the lift-up and transport of sediments. Statistic distributions of u', w' and u'w' values indicate that the greatest turbulent structures are those with u'w'<0 and with u'<0 predominating.
Sjöholm, Mikael; Kapp, Stefan; Kristensen, Leif; Mikkelsen, Torben
2011-11-01
Affordable coherent wind lidars based on modern telecom components have recently emerged on the wind energy market spurred by high demand of the industry for compact and accurate remote sensing wind and turbulence profilers. Today, hundreds of ground based wind lidars that achieve the range resolution by either focusing a continuous-wave laser beam or by gating a pulsed laser beam are used for measuring mean wind and turbulence profiles in the lower atmospheric boundary-layer. However, detailed understanding of the influence of the spatial filtering of the lidars on their precise assessment of turbulence is still a challenge. For assessment of the fine structure turbulence, and in particular for the easy and fast assessment of the dissipation rate of turbulent kinetic energy from measurements in the Kolmogorov inertial subrange, we havemodeled the atmospheric velocity structure functions and spectra obtainable from fixed-orientation along-beam wind measurements by these lidars. The dissipation rate retrieval model is experimentally evaluated with data obtained with a pulsed lidar pointing horizontally into horizontally homogeneous turbulence encountered at the top level of a 125 m tall meteorological tower, equipped with an in-situ turbulence measurement device (a three-dimensional sonic anemometer) for intercomparison. Our experimental study has revealed that the easily manageable analytical model accounts well for the observed fine structure turbulent spectra and their dependence on the pointing direction of the lidar beam relative to the mean wind direction. The results demonstrate that turbulence dissipation rates, and hence boundary-layer turbulence, can easily be obtained from wind lidar-based fine structure measurements.
Particle Resuspension in Turbulent Boundary Layers and the Influence of Non-Gaussian Removal Forces
Zhang, F; Kissane, M
2012-01-01
The work presented is concerned with the way very small micron-size particles attached to a surface are resuspended when exposed to a turbulent flow. Of particular concern is the remobilization of radioactive particles as a consequence of potential nuclear accidents. In this particular case the focus is on small particles, < 5 microns in diameter, where the principal force holding such particles onto a surface arises from van der Waals inter-molecular adhesive forces. Here an improved version of the "Rock n Roll" model (Reeks & Hall, 2001) is developed where this model employs a stochastic approach to resuspension involving the rocking and rolling of a particle about surface asperities arising from the moments of the fluctuating drag forces acting on the particle close to the surface. In this work the model is significantly improved by using values of both the stream-wise fluid velocity and acceleration close to the wall obtained from Direct Numerical Simulation (DNS) of turbulent channelflow. Using an...
Evolutions of hairpin vortexes over a superhydrophobic surface in turbulent boundary layer flow
Zhang, Jingxian; Tian, Haiping; Yao, Zhaohui; Hao, Pengfei; Jiang, Nan
2016-09-01
Turbulent flows over a superhydrophobic surface and a smooth surface have been measured and studied by particle image velocimetry technology at Reθ = 990. The Reynolds shear stress distributions over the two surfaces are significantly different. Specifically, for the superhydrophobic surface, the Reynolds shear stress is suppressed in the near-wall region (y/δ curve. Evolutions of hairpin vortexes are analyzed to interpret differences in the Reynolds shear stress, based on some comparisons in the low-speed streaks and Q2/Q4 (ejection/sweep) events. The results show that, in the near wall region, the turbulent coherent structures (low-speed streaks and hairpin vortex) over the superhydrophobic surface are more stable and flat, due to the suppression in the strength and the lifting effect of the hairpin vortex. In the outer region, the superhydrophobic surface lifts the hairpin vortex away from the wall with a value of 0.14δ in our experiment, which makes the Q4 events occur further from the wall and contribute less to skin friction.
Martin, Raleigh L; Chamecki, Marcelo
2016-01-01
The wind-blown transport of sand is driven by turbulent winds that fluctuate over a broad range of temporal and spatial scales. Increasingly sophisticated models and wind tunnel experiments have attempted to capture these dynamics of aeolian saltation, yet model predictions often diverge substantially from field observations. To help fill this knowledge gap, we collected comprehensive high-frequency field measurements to characterize the dynamics of aeolian saltation under natural conditions. Here, we provide detailed description of our field deployments, including information about sites, instruments, and data processing methods. We then demonstrate how our field measurements can help to improve understanding of the mechanics of aeolian processes. We also describe the limitations of our measurement techniques and the needs for future work.
Benhachmi, Driss; Greber, Isaac; Hingst, Warren R.
1988-01-01
A combined experimental and numerical study of the interaction of an incident oblique shock wave with a turbulent boundary layer on a rough plate and on a porous plate with suction is presented. The experimental phase involved the acquisition of mean data upstream of, within, and downstream of the interaction region at Mach numbers 2.5 and 3.0. Data were taken at unit Reynolds numbers of 1.66 E7 and 1.85 E7 m respectively, and for flow deflection angles of 0, 4, 6 and 8 degs. Measured data include wall static pressure, pitot pressure profiles, and local bleed distributions on the porous plate. On the rough plate, with no suction, the boundary layer profiles were modified near the wall, but not separated for the 4 deg flow deflection angle. For the higher deflection angles of 6 and 8 degs, the boundary layer was separated. Suction increases the strength of the incident shock required to separate the turbulent boundary layer; for all shock strengths tested, separation is completely eliminated. The pitot pressure profiles are affected throughout the whole boundary layer; they are fuller than the ones obtained on the rough plate. It is also found that the combination of suction and roughness introduces spatial perturbations.
Wei, Nan; Zhou, Liming; Dai, Yongjiu
2016-08-01
This study examines the effects of modeled planetary boundary layer (PBL) mixing on the simulated temperature diurnal cycle climatology over land in 20 CMIP5 models with AMIP simulations. When compared with observations, the magnitude of diurnal temperature range (DTR) is systematically underestimated over almost all land areas due to a widespread warm bias of daily minimum temperature (Tmin) and mostly a cold bias of daily maximum temperature (Tmax). Analyses of the CMIP5 multi-model ensemble means suggest that the biases of the simulated PBL mixing could very likely contribute to the temperature biases. For the regions with the cold bias in Tmax, the daytime PBL mixing is generally underestimated. The consequent more dry air entrainment from the free atmosphere could help maintain the surface humidity gradient, and thus produce more surface evaporation and potentially lower the Tmax. The opposite situation holds true for the regions with the warm bias of Tmax. This mechanism could be particularly applicable to the regions with moderate and wet climate conditions where surface evaporation depends more on the surface humidity gradient, but less on the available soil moisture. For the widespread warm bias of Tmin, the widely-recognized overestimated PBL mixing at nighttime should play a dominant role by transferring more heat from the atmosphere to the near-surface to warm the Tmin. Further analyses using the high resolution CFMIP2 output also support the CMIP5 results about the connections of the biases between the simulated turbulent mixing and the temperature diurnal cycle. The large inter-model variations of the simulated temperature diurnal cycle primarily appear over the arid and semi-arid regions and boreal arctic regions where the model differences in the PBL turbulence mixing could make equally significant contributions to the inter-model variations of DTR, Tmax and Tmin compared to the model differences in surface radiative processes. These results
Maxit, Laurent
2016-08-01
This paper investigates the modeling of a vibrating structure excited by a turbulent boundary layer (TBL). Although the wall pressure field (WPF) of the TBL constitutes a random excitation, the element-based methods generally used for describing complex mechanical structures consider deterministic loads. The response of such structures to a random excitation like TBL is generally deduced from calculations of numerous Frequency Response Functions. Consequently, the process is computationally expansive. To tackle this issue, an efficient process is proposed for generating realizations of the WPF corresponding to the TBL. This process is based on a formulation of the problem in the wavenumber space and the interpretation of the WPF as uncorrelated wall plane waves. Once the WPF has been synthesized, the local vibroacoustic responses are calculated for the different realizations and averaged together in the last step. A numerical application of this process to a plate located beneath a TBL is used to verify its efficiency and ability to reproduce the partial space correlation of the excitation. To further illustrate the proposed method, a stiffened panel modeled using the finite element method is finally examined. PMID:27586754
Institute of Scientific and Technical Information of China (English)
LIU Huan; WU Chao-yu; REN Jie
2011-01-01
A structure function approach is applied to estimate the turbulent kinetic energy (TKE) dissipation rate in the bottom boundary layer of the Pearl River Estuary (PRE).Simultaneous measurements with an acoustic Doppler velocimeter (ADV) supplied independent data for the verification of the structure function method.The results show that,1) the structure function approach is reliable and successfully applied method to estimate the TKE dissipation rate.The observed dissipation rates range between 8.3× 10-4 W/kg and 4.9×l0 6 W/kg in YM01 and between 3.4×10 4 W/kg and 4.8× 10-7 W/kg in YM03,respectively,while exhibiting a strong quarter-diurnal variation.2) The balance between the shear production and viscous dissipation is better achieved in the straight river.This first-order balance is significantly broken in the estuary by non-shear production/dissipation due to wave-induced fluctuations.
International Nuclear Information System (INIS)
Highlights: • The boundary layer developing on the suction side of a LPT is surveyed by PIV. • POD is adopted to post-process data obtained in two orthogonal planes. • Coherent structures driving transition at high and low turbulence level are discussed. • 2-D Kelvin–Helmholtz rolls are observed in the low FS turbulence (separated) case. • At high FS turbulence the instability of streaky structures drives the transition. - Abstract: Particle Image Velocimetry (PIV) has been adopted to analyze the instantaneous flow field developing on a high-lift turbine blade profile operating under low and elevated free-stream turbulence conditions (FSTI). Results reported in the paper allow us to analyze the dynamics leading to transition and separation of the suction side boundary layer, looking to generation, propagation and breakdown of coherent structures observed in the two different FSTI cases. To this end, measurements have been performed in two orthogonal planes. Results obtained in the blade-to-blade plane allow the detailed characterization of the propagation of Kelvin–Helmholtz (KH) rolls generating, at low FSTI condition, as a consequence of a non-reattaching separation. Otherwise, data in the wall-parallel plane allow recognizing the presence of three-dimensional disuniformities induced at high FSTI by low and high speed streaks (Klebanoff mode). The sinuous breakdown of boundary layer streaks generates other complex three-dimensional coherent structures such as hairpin or cane-like vortices that induce transition. Proper Orthogonal Decomposition (POD) has been adopted to in depth characterize these structures, thus further explaining the mechanisms through which the free-stream turbulence intensity modify the transition/separation processes of the suction side boundary layer of an highly loaded low pressure turbine blade
Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.
1992-01-01
A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.
Pal, Sandip
2016-06-01
The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. PMID:26950615
Pal, Sandip
2016-06-01
The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features.
Instability of the stable boundary layer?
Wiel, van de B.J.H.; Moene, A.F.; Steeneveld, G.J.; Holtslag, A.A.M.
2006-01-01
Many observations of artic boundary layers and nighttime boundary layers in general show low temperatures and weak winds near the surface. These weak wind conditions coincide with extremely low intensities of turbulence. As a result, the upper part of the boundary seems to be de-coupled from the sur
McPhee, Miles G.; Stevens, Craig L.; Smith, Inga J.; Robinson, Natalie J.
2016-04-01
Late winter measurements of turbulent quantities in tidally modulated flow under land-fast sea ice near the Erebus Glacier Tongue, McMurdo Sound, Antarctica, identified processes that influence growth at the interface of an ice surface in contact with supercooled seawater. The data show that turbulent heat exchange at the ocean-ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing, analogous to similar results for moderate melting rates in seawater above freezing. Platelet ice growth appears to increase the hydraulic roughness (drag) of fast ice compared with undeformed fast ice without platelets. Platelet growth in supercooled water under thick ice appears to be rate-limited by turbulent heat transfer and that this is a significant factor to be considered in mass transfer at the underside of ice shelves and sea ice in the vicinity of ice shelves.
McPhee, M. G.; Stevens, C. L.; Smith, I. J.; Robinson, N. J.
2015-11-01
Late winter measurements of turbulent quantities in tidally modulated flow under land-fast sea ice near the Erebus Glacier Tongue, McMurdo Sound, identified processes that influence growth at the interface of an ice surface in contact with supercool seawater. The data suggest that turbulent heat exchange at the ocean-ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing, analogous to similar results for moderate melting rates in seawater above freezing. Platelet ice growth appears to increase the hydraulic roughness (drag) of fast ice compared with undeformed fast ice without platelets. We hypothesize that platelet growth in supercool water under thick ice is rate-limited by turbulent heat transfer and that this is a significant factor to be considered in mass transfer at the under-side of ice shelves and sea ice in the vicinity of ice shelves.
Brown, James L.
2014-01-01
Examined is sensitivity of separation extent, wall pressure and heating to variation of primary input flow parameters, such as Mach and Reynolds numbers and shock strength, for 2D and Axisymmetric Hypersonic Shock Wave Turbulent Boundary Layer interactions obtained by Navier-Stokes methods using the SST turbulence model. Baseline parametric sensitivity response is provided in part by comparison with vetted experiments, and in part through updated correlations based on free interaction theory concepts. A recent database compilation of hypersonic 2D shock-wave/turbulent boundary layer experiments extensively used in a prior related uncertainty analysis provides the foundation for this updated correlation approach, as well as for more conventional validation. The primary CFD method for this work is DPLR, one of NASA's real-gas aerothermodynamic production RANS codes. Comparisons are also made with CFL3D, one of NASA's mature perfect-gas RANS codes. Deficiencies in predicted separation response of RANS/SST solutions to parametric variations of test conditions are summarized, along with recommendations as to future turbulence approach.
Sergeev, Daniil; Troitskaya, Yuliya; Vdovin, Maxim
2015-04-01
the spray of droplets generation, especially heat transfer. The work was supported by RFBR grants (14-05-91767, 14-08-31740, 15-35-20953) and RSF grant 14-17-00667 and by President grant for young scientists MK-3550.2014.5 References: 1. Emanuel, K. A. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics // J. Atmos. Sci., 52(22), 3969-3976,1995. 2. Brian K. Haus, Dahai Jeong, Mark A. Donelan, Jun A. Zhang, and Ivan Savelyev Relative rates of sea-air heat transfer and frictional drag in very high winds // GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L07802, doi:10.1029/2009GL042206, 2010 3. Yu. I. Troitskaya, D.A. Sergeev, A.A. Kandaurov, G.A Baidakov, M.A. Vdovin, V.I. Kazakov Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions // JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, C00J21, 13 PP., 2012 doi:10.1029/2011JC007778 4. Yu.I.Troitskaya, D.A.Sergeev, A.A.Kandaurov, M.I. Vdovin, A.A. Kandaurov, E.V.Ezhova, S.S.Zilitinkevich Momentum and buoyancy exchange in a turbulent air boundary layer over a wavy water surface. Part 2. Wind wave spectra // Nonlinear. Geoph. Processes, Vol. 20, P. 841-856, 2013.
Zhu, Ping; Wang, Yuting; Chen, Shuyi S.; Curcic, Milan; Gao, Cen
2016-01-01
Roll vortices in the atmospheric boundary layer (ABL) are important to oil operation and oil spill transport. This study investigates the impact of storm-induced sea surface temperature (SST) cooling on the roll vortices generated by the convective and dynamic instability in the ABL of Hurricane Isaac (2012) and the roll induced transport using hindcasting large eddy simulations (LESs) configured from the multiply nested Weather Research & Forecasting model. Two experiments are performed: one forced by the Unified Wave INterface - Coupled Model and the other with the SST replaced by the NCEP FNL analysis that does not include the storm-induced SST cooling. The simulations show that the roll vortices are the prevalent eddy circulations in the ABL of Isaac. The storm-induced SST cooling causes the ABL stability falls in a range that satisfies the empirical criterion of roll generation by dynamic instability, whereas the ABL stability without considering the storm-induced SST cooling meets the criterion of roll generation by convective instability. The ABL roll is skewed and the increase of convective instability enhances the skewness. Large convective instability leads to large vertical transport of heat and moisture; whereas the dominant dynamic instability results in large turbulent kinetic energy but relatively weak heat and moisture transport. This study suggests that failure to consider roll vortices or incorrect initiation of dynamic and convective instability of rolls in simulations may substantially affect the transport of momentum, energy, and pollutants in the ABL and the dispersion/advection of oil spill fume at the ocean surface.
National Aerospace Laboratory; 航空宇宙技術研究所
1996-01-01
The following topics were discussed: vortex shedding, laminar boundary layer measurement, vortex ring, turbulent flow measurement, high Reynolds number turbulence, pulsed flow, boundary layer instability, Ekman boundary layer, sound receptivity, Tollmien-Schlichting wave in supersonic boundary layer, flow field instability, turbulent flow pattern, vorticity distribution in shear flow, turbulence wedge, streamwise vortex mixing, thermal convection, oblique wave generation in boundary layer, in...
Boundary Plasma Turbulence Simulations for Tokamaks
Energy Technology Data Exchange (ETDEWEB)
Xu, X; Umansky, M; Dudson, B; Snyder, P
2008-05-15
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.
Institute of Scientific and Technical Information of China (English)
E.Sanz; C.Nicot; R.Point; F.Plaza
2007-01-01
The boundary layer transition over a flat tilted plate has been studied by means of heat transfer measurements. A heat flux sensor has been developed, in order to measure the efficiency of convective heat transfer for various types of surfaces or flows. Its operation at constant temperature allows direct and fast measurements of heat flux. The present paper reports the development of the sensor and presents its application to the study of transition in a boundary layer depending on the angle of incidence of the external flow. An exponential relationship between critical Reynolds number and pressure gradient parameter has been found.
Simulation of atmospheric turbulence layers with phase screens by JAVA
Zhang, Xiaofang; Chen, Wenqin; Yu, Xin; Yan, Jixiang
2008-03-01
In multiconjugate Adaptive Optics (MCAO), the phase screens are used to simulate atmospheric turbulence layers to study the optimal turbulence delamination and the determination of layer boundary position. In this paper, the method of power spectrum inversion and sub-harmonic compensation were used to simulate atmospheric turbulence layers and results can be shown by grey map. The simulation results showed that, with the increase of turbulence layers, the RMS of adaptive system decreased, but the amplitude diminished. So the atmospheric turbulence can be split into 2-3 layers and be modeled by phase screens. Otherwise, a small simulation atmospheric turbulence delamination system was realized by JAVA.
Study on Shock Wave and Turbulent Boundary Layer Interactions in a Square Duct at Mach 2 and 4
Institute of Scientific and Technical Information of China (English)
Hiromu SUGIYAMA; Ryojiro MINATO; Kazuhide MIZOBATA; Akira TOJO; Yohei MUTO
2006-01-01
In this paper, the outline of the Mach 4 supersonic wind runnel for the investigation of the supersonic internal flows in ducts was firstly described. Secondly, the location, structure and characteristics of the Mach 2 and Mach 4 pseudo-shock waves in a square duct were investigated by color schlieren photographs and duct wall pressure fluctuation measurements. Finally, the wall shear stress distributions on the side, top and bottom walls of the square duct with the Mach 4 pseudo-shock wave were investigated qualitatively by the shear stress-sensitive liquid crystal visualization method. The side wall boundary layer separation region under the first shock is narrow near the top wall, while the side wall boundary layer separation region under the first shock is very wide near the bottom wall.
Experimental investigation of wave boundary layer
DEFF Research Database (Denmark)
Sumer, B. Mutlu
2003-01-01
with an oscillating seabed. A brief account is given of measured quantities, measurement techniques (LDA, PIV, flow visualization) and limitations/constraints in the experimental investigation of the wave boundary layer in the laboratory. The second section concentrates on uniform oscillating boundary layers...... with a smooth bed. The boundary layer process is described over the entire range of the Reynolds number (Re from practically nil to Re = O(107)), from the laminar regime to the transitional regime and to the fully developed turbulent regime. The third section focuses on the effect of the boundary roughness......-dominated regime, is covered. Processes such as turbulence reduction/re-laminarization, and increase/decrease in the bed shear stress are presented. The fifth section considers various effects on the wave boundary layer such as the non-uniformity (that due to change in the boundary roughness and that due to change...
Local scaling characteristics of Antarctic surface layer turbulence
Directory of Open Access Journals (Sweden)
S. Basu
2010-03-01
Full Text Available Over the past years, several studies have validated Nieuwstadt's local scaling hypothesis by utilizing turbulence observations from the mid-latitude, nocturnal stable boundary layers. In this work, we probe into the local scaling characteristics of polar, long-lived stable boundary layers by analyzing turbulence data from the South Pole region of the Antarctic Plateau.
收缩喷嘴中的湍流(I)——边界层解%Turbulent Flow in Converging Nozzles Part(Ⅰ)-Boundary Layer Solution
Institute of Scientific and Technical Information of China (English)
R·马达核安; B·法哈涅; B·费入扎巴迪; 吴承平
2011-01-01
应用边界层积分法,研究锥形喷嘴入口区域中湍动涡流的发展.球面坐标系中的控制方程,通过边界层的假定得到简化,并对边界层进行了积分.应用4阶Adams预测校正法求解该微分方程组.入口区域的切向和轴向速度,分别应用自由涡流和均匀速度分布来表示.由于缺乏收缩喷嘴中涡流的实验数据,需要用数值模拟对该发展模式进行逆向验证.数值模拟的结果证明,该解析模型在预测边界层参数中的能力,例如边界层的生长、剪切率和边界层厚度,以及不同锥度角时的涡流强度衰减率等.为所提出的方法引进一个简明而有效的程序,用以研究几何形状收缩设备内的边界层参数.%In this research the boundary layer integral method was used to investigate the development of turbulent swirling flow at the entrance region of a conical nozzle.The governing equations in the spherical coordinate system were simplified with the boundary layer assumptions and integrated through the boundary layer.The resulting sets of differential equations were then solved by the forth-order Adams predictor-corrector method.The free vortex and uniform velocity profiles were applied for tangential and axial velocities at the inlet region respectively.Due to the lack of experimental data for swirling flow in converging nozzles, the developed model was validated against the numerical simulations.The results of numerical simulations demonstrate the capability of the analytical model in predicting boundary layer parameters, such as boundary layer growth, shear rate and boundary layer thickness, as well as the swirl intensity decay rate for different cone angles.The proposed method introduces a simple and robust procedure in order to investigate the boundary layer parameters inside converging geometries.
Computation of Boundary Layers
Directory of Open Access Journals (Sweden)
József Dénes
2004-11-01
Full Text Available This paper is the first part of a series of studies where we examine several methods for the solution of the boundary layer equation of the fluid mechanics. The first of these is the analytical or rather quasi analytical method due to Blasius. This method reduces a system of partial differential equations to a system of ordinary differential equations and these in turn are solved by numerical methods since no exact solution of the Blasius type equations is known. We determind all the Blasius equation neccessary for up to 11-th order approximation. Our further aim to study the finite difference numerical solutions of the boundary layer equation and some of the methods applying weighted residual principles and by comparing these with the ”exact” solutions arrived at by Blasius method develop a quick reliable method for solving the boundary layer equation.
High frequency ground temperature fluctuation in a Convective Boundary Layer
Garai, A.; Kleissl, J.; Lothon, M.; Lohou, F.; Pardyjak, E.; Saïd, F.; Cuxart, J.; Steeneveld, G.J.; Yaguë, C.; Derrien, S.; Alexander, D.; Villagrasa, D.M.
2012-01-01
To study influence of the turbulent structures in the convective boundary layer (CBL) on the ground temperature, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) observational campaign, high frequency ground temperature was recorded through infra-red imagery from 13 June - 8 J
Deck, Sébastien; Renard, Nicolas; Laraufie, Romain; Sagaut, Pierre
2014-02-01
A Wall-Modeled Large Eddy Simulation (WMLES) of a spatially developing zero-pressure gradient smooth flat plate turbulent boundary layer is performed by means of the third mode of the Zonal Detached Eddy Simulation technique. The outer layer is resolved by a Large Eddy Simulation whereas the wall is modeled by a RANS simulation zone, with a RANS/LES interface prescribed at a fixed location. A revisited cost assessment of the Direct Numerical Simulation of high Reynolds numbers (Reθ ⩾ 10 000) wall-bounded flows emphasizes how moderate the cost of the WMLES approach is compared to methods resolving the near-wall dynamics. This makes possible the simulation over a wide Reynolds number range 3 150 ⩽ Reθ ⩽ 14 000, leaving quite enough space for very large scale motions to develop. For a better skin friction prediction, it is shown that the RANS/LES interface should be high enough in the boundary layer and at a location scaling in boundary layer thickness units (e.g., 0.1δ) rather than in wall units. Velocity spectra are compared to experimental data. The outer layer is well resolved, except near the RANS/LES interface where the very simple and robust passive boundary treatment might be improved by a more specific treatment. Besides, the inner RANS zone also contains large scale fluctuations down to the wall. It is shown that these fluctuations fit better to the experimental data for the same interface location that provides a better skin friction prediction. Numerical tests suggest that the observed very large scale motions may appear in an autonomous way, independently from the near-wall dynamics. It still has to be determined whether the observed structures have a physical or a numerical origin. In order to assess how the large scale motions contribute to skin friction, the Reynolds shear stress contribution is studied as suggested by the FIK identity [K. Fukagata, K. Iwamoto, and N. Kasagi, "Contribution of Reynolds stress distribution to the skin friction
A Coordinate Transformation for Unsteady Boundary Layer Equations
Directory of Open Access Journals (Sweden)
Paul G. A. CIZMAS
2011-12-01
Full Text Available This paper presents a new coordinate transformation for unsteady, incompressible boundary layer equations that applies to both laminar and turbulent flows. A generalization of this coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently derived. In addition, the boundary layer equations are derived using a time linearization approach and assuming harmonically varying small disturbances.
Nilsson, Erik; Lohou, Fabienne; Lothon, Marie; Pardyjak, Eric; Mahrt, Larry; Darbieu, Clara
2016-07-01
The decay of turbulence kinetic energy (TKE) and its budget in the afternoon period from midday until zero-buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign for 10 intensive observation period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and mesoscale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near-surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near-surface production of TKE is compensated for by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of -0.69 was found for the afternoon period. For comparison with previous results, the TKE budget terms are normalized with
Directory of Open Access Journals (Sweden)
E. Nilsson
2015-11-01
Full Text Available The decay of turbulence kinetic energy (TKE and its budget in the afternoon period from mid-day until zero buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST field campaign for 10 Intensive Observation Period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and meso-scale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near surface production of TKE is compensated by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of −0.69 was found for the afternoon period. For comparison with previous results, the TKE budget terms are
Willert, Christian E
2015-01-01
This study reports on experimentally observed near-wall reverse flow events in a fully developed flat plate boundary layer at zero pressure gradient with Reynolds numbers between $Re_\\tau = 1000$ and $Re_\\tau = 2700$. The reverse flow events are captured using high magnification particle image velocimetry sequences with record lengths varying from 50,000 to 126,000 samples. Time resolved particle image sequences allow singular reverse flow events to be followed over several time steps whereas long records of nearly statistically independent samples provide a variety of single snapshots at a higher spatial resolution. The probability of occurrence lies in the range of 0.01% to 0.1% which matches predictions made with direct numerical simulations (DNS). The self-similar size of the reverse flow bubble is about 30-50 wall units in length and 5 wall units in height which also agrees well to DNS data provided by Lenaers et al. (ETC13, Journal of Physics: Conference Series 318 (2011) 022013).
Directory of Open Access Journals (Sweden)
Yu. I. Troitskaya
2013-10-01
Full Text Available Drag and mass exchange coefficients are calculated within a self-consistent problem for the wave-induced air perturbations and mean velocity and density fields using a quasi-linear model based on the Reynolds equations with down-gradient turbulence closure. This second part of the report is devoted to specification of the model elements: turbulent transfer coefficients and wave number-frequency spectra. It is shown that the theory agrees with laboratory and field experimental data well when turbulent mass and momentum transfer coefficients do not depend on the wave parameters. Among several model spectra better agreement of the theoretically calculated drag coefficients with TOGA (Tropical Ocean Global Atmosphere COARE (Coupled Ocean–Atmosphere Response Experiment data is achieved for the Hwang spectrum (Hwang, 2005 with the high frequency part completed by the Romeiser spectrum (Romeiser et al., 1997.
Directory of Open Access Journals (Sweden)
T.-S. El-Madany
2014-03-01
Full Text Available SODAR (SOund Detection And Ranging, eddy-covariance, and tower profile measurements of wind speed and carbon dioxide were performed during 17 consecutive nights in complex terrain in northern Taiwan. The scope of the study was to identify the causes for intermittent turbulence events and to analyse their importance in nocturnal atmosphere–biosphere exchange as quantified with eddy-covariance measurements. If intermittency occurs frequently at a measurement site this process needs to be quantified in order to achieve reliable values for ecosystem characteristics such as net ecosystem exchange or net primary production. Fourteen events of intermittent turbulence were identified and classified into above canopy drainage flows (ACDF and low-level jets (LLJ according to the height of the wind speed maximum. Intermittent turbulence periods lasted between 30 min and 110 min. Towards the end of LLJ or ACDF events, positive vertical wind velocities and, in some cases upslope flows occurred, counteracting the general flow regime at night time. The observations suggest that the LLJ and ACDF penetrate deep into the cold air pool in the valley, where they experience strong buoyancy due to density differences, resulting in either upslope flows or upward vertical winds. Turbulence was found to be stronger and better developed during LLJs and ACDFs, with eddy-covariance data presenting higher quality. This was particularly indicated by spectral analysis and stationary tests. Significantly higher fluxes of sensible heat, latent heat and shear stress occurred during these periods. During LLJ and ACDF, fluxes of sensible heat, latent heat, and CO2 were mostly one-directional. For example, exclusively negative sensible heat fluxes occurred while intermittent turbulence was present. Latent heat fluxes were mostly positive during LLJ and ACDF with a median value of 34 W m−2, while outside these periods the median was 2 W m−2. In conclusion, intermittent
Directory of Open Access Journals (Sweden)
Yu. I. Troitskaya
2013-10-01
Full Text Available The surface-drag and mass-transfer coefficients are determined within a self-consistent problem of wave-induced perturbations and mean fields of velocity and density in the air, using a quasi-linear model based on the Reynolds equations with down-gradient turbulence closure. Investigation of a harmonic wave propagating along the wind has disclosed that the surface drag is generally larger for shorter waves. This effect is more pronounced in the unstable and neutral stratification. The stable stratification suppresses turbulence, which leads to weakening of the momentum and mass transfer.
Xia, Geng; Zhou, Liming; Freedman, Jeffrey M.; Roy, Somnath Baidya; Harris, Ronald A.; Cervarich, Matthew Charles
2016-04-01
Recent studies using satellite observations show that operational wind farms in west-central Texas increase local nighttime land surface temperature (LST) by 0.31-0.70 °C, but no noticeable impact is detected during daytime, and that the diurnal and seasonal variations in the magnitude of this warming are likely determined by those in the magnitude of wind speed. This paper further explores these findings by using the data from a year-long field campaign and nearby radiosonde observations to investigate how thermodynamic profiles and surface-atmosphere exchange processes work in tandem with the presence of wind farms to affect the local climate. Combined with satellite data analyses, we find that wind farm impacts on LST are predominantly determined by the relative ratio of turbulence kinetic energy (TKE) induced by the wind turbines compared to the background TKE. This ratio explains not only the day-night contrast of the wind farm impact and the warming magnitude of nighttime LST over the wind farms, but also most of the seasonal variations in the nighttime LST changes. These results indicate that the diurnal and seasonal variations in the turbine-induced turbulence relative to the background TKE play an essential role in determining those in the magnitude of LST changes over the wind farms. In addition, atmospheric stability determines the sign and strength of the net downward heat transport as well as the magnitude of the background TKE. The study highlights the need for better understanding of atmospheric boundary layer and wind farm interactions, and for better parameterizations of sub-grid scale turbulent mixing in numerical weather prediction and climate models.
Green House Gases Flux Model in Boundary Layer
Nurgaliev, Ildus
Analytical dynamic model of the turbulent flux in the three-layer boundary system is presented. Turbulence is described as a presence of the non-zero vorticity. The generalized advection-diffusion-reaction equation is derived for an arbitrary number of components in the flux. The fluxes in the layers are objects for matching requirements on the boundaries between the layers. Different types of transport mechanisms are dominant on the different levels of the layers.
Druzhinin, Oleg; Troitskaya, Yliya; Zilitinkevich, Sergej
2015-04-01
Detailed knowledge of the interaction of surface water waves with the wind flow is of primary importance for correct parameterization of turbulent momentum and heat fluxes which define the energy and momentum transfer between the atmosphere and hydrosphere. The objective of the present study is to investigate the properties of the stably stratified turbulent boundary-layer (BL) air-flow over waved water surface by direct numerical simulation (DNS) at a bulk Reynolds number varying from 15000 to 80000 and the surface-wave slope up to ka = 0.2. The DNS results show that the BL-flow remains in the statistically stationary, turbulent regime if the Reynolds number (ReL) based on the Obukhov length scale and friction velocity is sufficiently large (ReL > 100). In this case, mean velocity and temperature vertical profiles are well predicted by log-linear asymptotic solutions following from the Monin-Obukhov similarity theory provided the velocity and temperature roughness parameters, z0U and z0T, are appropriately prescribed. Both z0U and z0T increase for larger surface-wave slope. DNS results also show that turbulent momentum and heat fluxes and turbulent velocity and temperature fluctuations are increased for larger wave slope (ka) whereas the mean velocity and temperature derivatives remain practically the same for different ka. Thus, we conclude that the source of turbulence enhancement in BL-flow are perturbations induced by the surface wave, and not the shear instability of the bulk flow. On the other hand, if stratification is sufficiently strong, and the surface-wave slope is sufficiently small, the BL-flow over waved surface relaminarizes in the bulk of the domain. However, if the surface-wave slope exceeds a threshold value, the velocity and temperature fluctuations remain finite in the vicinity of the critical-layer level, where the surface-wave phase velocity coincides with the mean flow velocity. We call this new stably-stratified BL-flow regime observed in
Troitskaya, Yu. I.; Ezhova, E. V.; Zilitinkevich, S. S.
2013-01-01
The surface-drag and mass-transfer coefficients are determined within a self-consistent problem of wave-induced perturbations and mean fields of velocity and density in the air, using a quasi-linear model based on the Reynolds equations with down-gradient turbulence closure. Investigation of a harmonic wave propagating along the wind has disclosed that the surface drag is generally larger for shorter waves. This effect is more pronounced in the unstable and neutral stratification. The stable ...
Suarez Mullins, Astrid
Terrain-induced gravity waves and rotor circulations have been hypothesized to enhance the generation of submeso motions (i.e., nonstationary shear events with spatial and temporal scales greater than the turbulence scale and smaller than the meso-gamma scale) and to modulate low-level intermittency in the stable boundary layer (SBL). Intermittent turbulence, generated by submeso motions and/or the waves, can affect the atmospheric transport and dispersion of pollutants and hazardous materials. Thus, the study of these motions and the mechanisms through which they impact the weakly to very stable SBL is crucial for improving air quality modeling and hazard predictions. In this thesis, the effects of waves and rotor circulations on submeso and turbulence variability within the SBL is investigated over the moderate terrain of central Pennsylvania using special observations from a network deployed at Rock Springs, PA and high-resolution Weather Research and Forecasting (WRF) model forecasts. The investigation of waves and rotors over central PA is important because 1) the moderate topography of this region is common to most of the eastern US and thus the knowledge acquired from this study can be of significance to a large population, 2) there have been little evidence of complex wave structures and rotors reported for this region, and 3) little is known about the waves and rotors generated by smaller and more moderate topographies. Six case studies exhibiting an array of wave and rotor structures are analyzed. Observational evidence of the presence of complex wave structures, resembling nonstationary trapped gravity waves and downslope windstorms, and complex rotor circulations, resembling trapped and jump-type rotors, is presented. These motions and the mechanisms through which they modulate the SBL are further investigated using high-resolution WRF forecasts. First, the efficacy of the 0.444-km horizontal grid spacing WRF model to reproduce submeso and meso
Wang, Zhenyu; Tian, Wei; Ozbay, Ahmet; Sharma, Anupam; Hu, Hui
2016-09-01
The aeromechanic performance and wake characteristics of a novel twin-rotor wind turbine (TRWT) design, which has an extra set of smaller, auxiliary rotor blades appended in front of the main rotor, was evaluated experimentally, in comparison with those of a conventional single-rotor wind turbine (SRWT) design. The comparative study was performed in a large-scale wind tunnel with scaled TRWT and SRWT models mounted in the same incoming turbulent boundary layer flow. In addition to quantifying power outputs and the dynamic wind loadings acting on the model turbines, the wake characteristics behind the model turbines were also measured by using a particle image velocimetry system and a Cobra anemometry probe. The measurement results reveal that, while the TRWT design is capable of harnessing more wind energy from the same incoming airflow by reducing the roots losses incurred in the region near the roots of the main rotor blades, it also cause much greater dynamic wind loadings acting on the TRWT model and higher velocity deficits in the near wake behind the TRWT model, in comparison with those of the SRWT case. Due to the existence of the auxiliary rotor, more complex vortex structures were found to be generated in the wake behind the TRWT model, which greatly enhanced the turbulent mixing in the turbine wake, and caused a much faster recovery of the velocity deficits in the turbine far wake. As a result, the TRWT design was also found to enable the same downstream turbine to generate more power when sited in the wake behind the TRWT model than that in the SRWT wake, i.e., by mitigating wake losses in typical wind farm settings.
Intermittent Turbulence in the Very Stable Ekman Layer
Energy Technology Data Exchange (ETDEWEB)
Barnard, James C.
2001-01-05
INTERMITTENT TURBULENCE IN THE VERY STABLE EKMAN LAYER This study describes a Direct Numerical Simulation (DNS) of a very stable Ekman layer in which a constant downward heat flux is applied at the lower boundary, thus cooling the fluid above. Numerical experiments were performed in which the strength of the imposed heat flux was varied. For downward heat fluxes above a certain critical value the turbulence becomes intermittent and, as the heat flux increases beyond this value, the flow tends to relaminarize because of the very strong ambient stratification. We adopt Mahrt?s (1999) definition of the very stable boundary layer as a boundary layer in which intermittent, rather than continuous turbulence, is observed. Numerical experiments were used to test various hypothesis of where in ?stability parameter space? the very stable boundary layer is found. These experiments support the findings of Howell and Sun (1999) that the boundary layer will exhibit intermittency and therefore be categorized as ?very stable?, when the stability parameter, z/L, exceeds unity. Another marker for the very stable boundary layer, Derbyshire?s (1990) maximum heat flux criterion, was also examined. Using a case study drawn from the simulations where turbulence intermittency was observed, the mechanism that causes the intermittence was investigated. It was found that patchy turbulence originates from a vigorous inflectional, Ekman-like instability -- a roll cell -- that lifts colder air over warmer air. The resulting convective instability causes an intense burst of turbulence. This turbulence is short-lived because the lifting motion of the roll cell, as well as the roll cell itself, is partially destroyed after the patchy turbulence is generated. Examples of intermittent turbulence obtained from the simulations appear to be consistent with observations of intermittency even though the Reynolds number of the DNS is relatively low (400).
Jain, Akash; Mehdi, Faraz; Sheng, Jian
2014-11-01
The near-wake field, a short region characterized by the physical specifications of a turbine, is of particular interest for flow-structure interactions responsible for asymmetric loadings, premature structural breakdown, noise generation etc. Helical tip vortices constitute a distinctive feature of this region and are dependent not only on the turbine geometry but also on the incoming flow profile. High-spatial resolution PIV measurements are made in the wake of a horizontal-axis model wind turbine embedded in a neutrally stratified turbulent boundary layer. The data is acquired over consecutive locations up to 10 diameters downstream of the turbine but the focus here is on the tip vortices identified in the instantaneous fields. Contrary to previous studies, both top and bottom tip vortices are clearly distinguishable in either ensemble fields or instantaneous realizations. The streamwise extent of these vortices stretches from the turbine till they merge into the expanding mid-span wake. The similarities and differences in the top and bottom tip vortices are explored through the evolution of their statistics. In particular, the distributions of the loci of vortex cores and their circulations are compared. The information will improve our understanding of near wake vortical dynamics, provide data for model validation, and aid in the devise of flow control strategies.
Rackl, Robert; Weston, Adam
2005-01-01
The literature on turbulent boundary layer pressure fluctuations provides several empirical models which were compared to the measured TU-144 data. The Efimtsov model showed the best agreement. Adjustments were made to improve its agreement further, consisting of the addition of a broad band peak in the mid frequencies, and a minor modification to the high frequency rolloff. The adjusted Efimtsov predicted and measured results are compared for both subsonic and supersonic flight conditions. Measurements in the forward and middle portions of the fuselage have better agreement with the model than those from the aft portion. For High Speed Civil Transport supersonic cruise, interior levels predicted by use of this model are expected to increase by 1-3 dB due to the adjustments to the Efimtsov model. The space-time cross-correlations and cross-spectra of the fluctuating surface pressure were also investigated. This analysis is an important ingredient in structural acoustic models of aircraft interior noise. Once again the measured data were compared to the predicted levels from the Efimtsov model.
Boundary Layers in Laminar Vortex Flows.
Baker, Glenn Leslie
A detailed experimental study of the flow in an intense, laminar, axisymmetric vortex has been conducted in the Purdue Tornado Vortex Simulator. The complicated nature of the flow in the boundary layer of laboratory vortices and presumably on that encountered in full-scale tornadoes has been examined. After completing a number of modifications to the existing facility to improve the quality of the flow in the simulator, hot-film anemometry was employed for making velocity-component and turbulence-intensity measurements of both the free-stream and boundary layer portions of the flow. The measurements represent the first experimental boundary layer investigation of a well-defined vortex flow to appear in the literature. These results were compared with recent theoretical work by Burggraf, Stewartson and Belcher (1971) and with an exact similarity solution for line-sink boundary layers developed by the author. A comparison is also made with the numerical simulation of Wilson (1981) in which the boundary conditions were matched to those of the present experimental investigation. Expressions for the vortex core radius, the maximum tangential velocity and the maximum pressure drop are given in terms of dimensionless modeling parameters. References. Burggraf, O. R., K. Stewartson and R. Belcher, Boundary layer. induced by a potential vortex. Phys. Fluids 14, 1821-1833 (1971). Wilson, T., M. S. thesis, Vortex Boundary Layer Dynamics, Univ. Calif. Davis (1981).
Wind and boundary layers in Rayleigh-Benard convection. Part 2: boundary layer character and scaling
van Reeuwijk, Maarten; Hanjalic, Kemo
2007-01-01
The effect of the wind of Rayleigh-Benard convection on the boundary layers is studied by direct numerical simulation of an L/H=4 aspect-ratio domain with periodic side boundary conditions for Ra={10^5, 10^6, 10^7} and Pr=1. It is shown that the kinetic boundary layers on the top- and bottom plate have some features of both laminar and turbulent boundary layers. A continuous spectrum, as well as significant forcing due to Reynolds stresses indicates undoubtedly a turbulent character, whereas the classical integral boundary layer parameters -- the shape factor and friction factor (the latter is shown to be dominated by the pressure gradient) -- scale with Reynolds number more akin to laminar boundary layers. This apparent dual behavior is caused by the large influence of plumes impinging onto and detaching from the boundary layer. The plume-generated Reynolds stresses have a negligible effect on the friction factor at the Rayleigh numbers we consider, which indicates that they are passive with respect to momen...
Costigliola, V.
2010-09-01
It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate
Hartogensis, O.K.; Debruin, H.A.R.
2005-01-01
The Monin-Obukhov similarity theory (MOST) functions fepsi; and fT, of the dissipation rate of turbulent kinetic energy (TKE), ¿, and the structure parameter of temperature, CT2, were determined for the stable atmospheric surface layer using data gathered in the context of CASES-99. These data cover
Boundary-layer linear stability theory
Mack, L. M.
1984-06-01
Most fluid flows are turbulent rather than laminar and the reason for this was studied. One of the earliest explanations was that laminar flow is unstable, and the linear instability theory was first developed to explore this possibility. A series of early papers by Rayleigh produced many notable results concerning the instability of inviscid flows, such as the discovery of inflectional instability. Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles appeared to be stable. The investigations that led to a viscous theory of boundary layer instability was reported. The earliest application of linear stability theory to transition prediction calculated the amplitude ratio of the most amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this quantity had values between five and nine at the observed Ret. The experiment of Schubauer and Skramstad (1947) completely reversed the prevailing option and fully vindicated the Gottingen proponents of the theory. This experiment demonstrated the existence of instability waves in a boundary layer, their connection with transition, and the quantitative description of their behavior by the theory of Tollmien and Schlichting. It is generally accepted that flow parameters such as pressure gradient, suction and heat transfer qualitatively affect transition in the manner predicted by the linear theory, and in particular that a flow predicted to be stable by the theory should remain laminar. The linear theory, in the form of the e9, or N-factor is today in routine use in engineering studies of laminar flow. The stability theory to boundary layers with pressure gradients and suction was applied. The only large body of numerical results for exact boundary layer solutions before the advent of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity profiles are given. When the digital computer
Vertical pressure gradient and particle motions in wave boundary layers
DEFF Research Database (Denmark)
Jensen, Karsten Lindegård
The present study covers both a numerical and experimental investigation of the processes in the oscillatory boundary layer. In the first part a direct numerical simulation (DNS) is conducted to study the vertical pressure gradient, and its role in relation to laminar to turbulent transition...... and its role in the fully turbulent boundary layer. The pressure in the flow is obtained from the flow fields of the oscillatory boundary layer. What differs, the vertical pressure gradient, from other turbulent quantities, like e.g. velocity fluctuations is that it can detect newly generated turbulence....... This is in contrast to velocity fluctuations that are diffusive, so they can also contain residual turbulence from the previous half cycle until they are dissipated. Furthermore, the magnitude of the mean value of conditionally averaged vertical pressure gradient (for −∂p∗/∂x∗ 2 > 0) is compared to the submerged...
Bypass transition and spot nucleation in boundary layers
Kreilos, Tobias; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S; Eckhardt, Bruno
2016-01-01
The spatio-temporal aspects of the transition to turbulence are considered in the case of a boundary layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly fitted from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.
Bypass transition and spot nucleation in boundary layers
Kreilos, Tobias; Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S.; Eckhardt, Bruno
2016-08-01
The spatiotemporal aspects of the transition to turbulence are considered in the case of a boundary-layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly obtained from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.
Instabilities and transition in boundary layers
Indian Academy of Sciences (India)
N Vinod; Rama Govindarajan
2005-03-01
Some recent developments in boundary layer instabilities and transition are reviewed. Background disturbance levels determine the instability mechanism that ultimately leads to turbulence. At low noise levels, the traditional Tollmien–Schlichting route is followed, while at high levels, a `by-pass' route is more likely. Our recent work shows that spot birth is related to the pattern of secondary instability in either route.
Behrendt, A.; Wulfmeyer, V.; Hammann, E.; Muppa, S. K.; Pal, S.
2015-05-01
The rotational Raman lidar (RRL) of the University of Hohenheim (UHOH) measures atmospheric temperature profiles with high resolution (10 s, 109 m). The data contain low-noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, the first profiling of the second- to fourth-order moments of turbulent temperature fluctuations is presented. Furthermore, skewness profiles and kurtosis profiles in the convective planetary boundary layer (CBL) including the interfacial layer (IL) are discussed. The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E; 110 m a.s.l.) on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE). We used the data between 11:00 and 12:00 UTC corresponding to 1 h around local noon (the highest position of the Sun was at 11:33 UTC). First, we investigated profiles of the total noise error of the temperature measurements and compared them with estimates of the temperature measurement uncertainty due to shot noise derived with Poisson statistics. The comparison confirms that the major contribution to the total statistical uncertainty of the temperature measurements originates from shot noise. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. (above ground level) at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1020 m a.g.l. Autocovariance and spectral analyses of the atmospheric temperature fluctuations confirm that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the integral scale of
Boundary layer physics over snow and ice
Directory of Open Access Journals (Sweden)
P. S. Anderson
2007-06-01
Full Text Available A general understanding of the physics of advection and turbulent mixing within the near surface atmosphere assists the interpretation and predictive power of air chemistry theory. The theory of the physical processes involved in diffusion of trace gas reactants in the near surface atmosphere is still incomplete. Such boundary layer theory is least understood over snow and ice covered surfaces, due in part to the thermo-optical properties of the surface. Polar boundary layers have additional aspects to consider, due to the possibility of long periods without diurnal forcing and enhanced Coriolis effects.
This paper provides a review of present concepts in polar boundary layer meteorology, which will generally apply to atmospheric flow over snow and ice surfaces. It forms a companion paper to the chemistry review papers in this special issue of ACP.
Nature, theory and modelling of geophysical convective planetary boundary layers
Zilitinkevich, Sergej
2015-04-01
Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in
Temperature structure in the atmospheric boundary layer
Smedman, Ann-Sofi
2010-05-01
Temperature structure in the atmospheric boundary layer It is well established from experimental and theoretical studies that the temperature structure in the atmospheric boundary layer is depends on stability. During free convection conditions the flow is dominated by circular thermals but when stratification is becoming slightly unstable longitudinal roll structures that extend vertically throughout the entire boundary layer will be present. In close to neutral conditions on the unstable side (the UVCN regime) when the Obukhov length is much greater than the surface layer depth, it is observed that the structure of the surface layer turbulence does not accord with standard similarity theory. In particular the efficiency of the turbulent exchange of sensible and latent heat is observed to be more strongly enhanced than is consistent with the standard model. Also the profiles of dissipation of turbulent kinetic energy and temperature fluctuation variance are found to depend on the structure of the whole boundary layer (i.e. are non-local), indicating that a large-scale transport process is at work. At the same time, co-spectral analysis shows how the large scale eddy motions that determine the heat transport process near the surface are typically 1/5 of the surface layer depth. All these features are found to be similar in measurements at two marine sites, in the Baltic Sea and in Lake Ontario respectively and at several flat land sites ( around Uppsala and at the Island of Gotland), indicating that they are determined by the dynamics of the whole boundary layer rather than being simply dependent on the surface boundary conditions. The observed structures can also be interpreted as possible manifestations of a bifurcation of the large scale eddy structure towards a state in which there are quasi-steady longitudinal rolls and, on a smaller scale, unsteady detached eddies. Our interpretation of the results from the measurements is that, in the UVCN regime, the latter
Modeling the urban boundary layer
Bergstrom, R. W., Jr.
1976-01-01
A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.
Coherent structures in wave boundary layers. Part 1. Oscillatory motion
DEFF Research Database (Denmark)
Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen
2010-01-01
This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i...... spots, isolated arrowhead-shaped areas close to the bed in an otherwise laminar boundary layer where the flow ‘bursts’ with violent oscillations. The emergence of the turbulent spots marks the onset of turbulence. Turbulent spots cause single or multiple violent spikes in the bed shear stress signal......) Vortex tubes, essentially two-dimensional vortices close to the bed extending across the width of the boundary-layer flow, caused by an inflectional-point shear layer instability. The imprint of these vortices in the bed shear stress is a series of small, insignificant kinks and dips. (ii) Turbulent...
Modeling the summertime Arctic cloudy boundary layer
Energy Technology Data Exchange (ETDEWEB)
Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)
1996-04-01
Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.
Boundary Layer Cloudiness Parameterizations Using ARM Observations
Energy Technology Data Exchange (ETDEWEB)
Bruce Albrecht
2004-09-15
This study used DOE ARM data and facilities to: (1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, (2) develop a scientific basis for understanding the processes responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and (3) evaluate cumulus cloud characteristics retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: (1) develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, (2) evaluate the capability and limitations of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low- signal-to-noise conditions associated with weak no n-precipitating clouds, (3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and (4) retrieve updraft and downdraft structures under precipitating conditions.
Directory of Open Access Journals (Sweden)
A. Behrendt
2014-11-01
Full Text Available The rotational Raman lidar of the University of Hohenheim (UHOH measures atmospheric temperature profiles during daytime with high resolution (10 s, 109 m. The data contain low noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz and a very efficient interference-filter-based polychromator. In this paper, we present the first profiling of the second- to forth-order moments of turbulent temperature fluctuations as well as of skewness and kurtosis in the convective boundary layer (CBL including the interfacial layer (IL. The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56′′ N, 6°27'50.39′′ E, 110 m a.s.l. within one hour around local noon on 24 April 2013 during the Intensive Observations Period (IOP 6 of the HD(CP2 Observational Prototype Experiment (HOPE, which is embedded in the German project HD(CP2 (High-Definition Clouds and Precipitation for advancing Climate Prediction. First, we investigated profiles of the noise variance and compared it with estimates of the statistical temperature measurement uncertainty Δ T based on Poisson statistics. The agreement confirms that photon count numbers obtained from extrapolated analog signal intensities provide a lower estimate of the statistical errors. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1000 m a.g.l.. Then we confirmed by autocovariance and spectral analyses of the atmospheric temperature fluctuations that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the profile of the integral scale of the temperature fluctuations, which was in the range of 40 to 120 s in the CBL. Analyzing then
Behrendt, A.; Wulfmeyer, V.; Hammann, E.; Muppa, S. K.; Pal, S.
2014-11-01
The rotational Raman lidar of the University of Hohenheim (UHOH) measures atmospheric temperature profiles during daytime with high resolution (10 s, 109 m). The data contain low noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, we present the first profiling of the second- to forth-order moments of turbulent temperature fluctuations as well as of skewness and kurtosis in the convective boundary layer (CBL) including the interfacial layer (IL). The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E, 110 m a.s.l.) within one hour around local noon on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 Observational Prototype Experiment (HOPE), which is embedded in the German project HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction). First, we investigated profiles of the noise variance and compared it with estimates of the statistical temperature measurement uncertainty Δ T based on Poisson statistics. The agreement confirms that photon count numbers obtained from extrapolated analog signal intensities provide a lower estimate of the statistical errors. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1000 m a.g.l.. Then we confirmed by autocovariance and spectral analyses of the atmospheric temperature fluctuations that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the profile of the integral scale of the temperature fluctuations, which was in the range of 40 to 120 s in the CBL. Analyzing then profiles of the second
Boundary Layer Ventilation Processes During a High Pressure Event
Gray, S. L.; Dacre, H. F.; Belcher, S. E.
2006-12-01
It is often assumed that ventilation of the atmospheric boundary layer is weak during high pressure events. But is this always true? Here we investigate the processes responsible for ventilation of the atmospheric boundary layer during a high pressure event that occured on the 9 May 2005 using the UK Met Office Unifed Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include a sea breeze circulation, turbulent mixing across the top of the boundary layer followed by large-scale ascent, and shallow convection. Vertical distributions of tracer are validated with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree impressively well. Budget calculations of tracers are performed in order to determine the relative importance of these ventilation processes. The sea breeze circulation was found to ventilate 26% of the boundary layer tracer by sunset of which 2% was above 2km. A combination of the sea breeze circulation and turbulent mixing ventilated 46% of the boundary layer tracer, of which 10% was above 2km. Finally, the sea breeze circulation, turbulent mixing and shallow convection processes together ventilated 52% of the tracer into the free troposphere, of which 26% was above 2km. Hence this study shows that signicant ventilation of the boundary layer can occur during high pressure events; turbulent mixing and convection processes can double the amount of pollution ventilated from the boundary layer.
Turbulence and intermittent transport at the boundary of magnetized plasmas
DEFF Research Database (Denmark)
Garcia, O.E.; Naulin, V.; Nielsen, A.H.;
2005-01-01
Numerical fluid simulations of interchange turbulence for geometry and parameters relevant to the boundary region of magnetically confined plasmas are shown to result in intermittent transport qualitatively similar to recent experimental measurements. The two-dimensional simulation domain features...... a forcing region with spatially localized sources of particles and heat outside which losses due to the motion along open magnetic-field lines dominate, corresponding to the edge region and the scrape-off layer, respectively. Turbulent states reveal intermittent eruptions of hot plasma from the edge region...
The Boundary Layer Interaction with Shock Wave and Expansion Fan
Institute of Scientific and Technical Information of China (English)
MaratA.Goldfeld; RomanV.Nestoulia; 等
2000-01-01
The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented.They include the study of the shock wave and /or expansion fan action upon the boundary layer,boundary layer sepqartion and its relaxation.Complex events of paired interactions and the flow on compression convex-concave surfaces were studied.The posibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented.Different model configurations for wide range conditions were investigated.Comparison of results for different interactions was carried out.
Dynamics of turbulent western boundary currents at low latitude in a shallow water model
Directory of Open Access Journals (Sweden)
C. Q. C. Akuetevi
2014-03-01
Full Text Available The dynamics of low latitude turbulent western boundary currents, subject to two different types of idealized wind forcing, Monsoon Wind and Trade Wind, is considered using numerical results from integrations of a reduced gravity shallow-water model. For viscosity values of 1000 m2 s−1 and above, the boundary layer dynamics compares well to the analytical solutions of the Munk-layer and the inertial-layer, derived from quasigeostrophic theory. Modifications due to variations in the layer thickness (vortex stretching are only important close to the boundary. When the viscosity is reduced the boundary layer becomes turbulent and coherent structures in form of anticyclonic eddies, bursts (violent detachments of the viscous sub-layer and dipoles appear. Three distinct boundary layers emerge, the viscous sub-layer, the advective boundary layer and the extended boundary layer. The first is characterized by a dominant vorticity balance between the viscous transport and the advective transport of vorticity. The second by a balance between the advection of planetary vorticity and the advective transport of relative vorticity. The extended boundary layer is the area to which turbulent motion from the boundary extends. The scaling of the three boundary layer thicknesses with viscosity is evaluated. A pragmatic approach to determine the eddy viscosity diagnostically for coarse resolution numerical models is proposed.
Boundary Layer Control on Airfoils.
Gerhab, George; Eastlake, Charles
1991-01-01
A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)
Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.
van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo
2008-03-01
The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.
Elbing, Brian R.; Perlin, Marc; Dowling, David R.; Ceccio, Steven L.
2013-08-01
The current study explores the influence of polymer drag reduction on the near-wall velocity distribution in a turbulent boundary layer (TBL) and its dependence on Reynolds number. Recent moderate Reynolds number direct numerical simulation and experimental studies presented in White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862 have challenged the classical representation of the logarithmic dependence of the velocity profile for drag-reduced flows, especially at drag reduction levels above 40%. In the present study, high Reynolds number data from a drag reduced TBL is presented and compared to the observations of White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862. Data presented here were acquired in the TBL flow on a 12.9-m-long flat plate at speeds to 20.3 m s-1, achieving momentum thickness based Reynolds number to 1.5 × 105, which is an order of magnitude greater than that available in the literature. Polyethylene oxide solutions with an average molecular weight of 3.9 × 106 g mol-1 were injected into the flow at various concentrations and volumetric fluxes to achieve a particular level of drag reduction. The resulting mean near-wall velocity profiles show distinctly different behavior depending on whether they fall in the low drag reduction (LDR) or the high drag reduction (HDR) regimes, which are nominally divided at 40% drag reduction. In the LDR regime, the classical view that the logarithmic slope remains constant at the Newtonian value and the intercept constant increases with increasing drag reduction appears to be valid. However, in the HDR regime the behavior is no longer universal. The intercept constant continues to increase linearly in proportion to the drag reduction level until a Reynolds-number-dependent threshold is achieved, at which point the intercept constant rapidly decreases to that predicted by the ultimate profile. The rapid decrease in the intercept constant is due to the corresponding increase in the
LES model intercomparisons for the stable atmospheric boundary layer
Moene, A.F.; Baas, P.; Bosveld, F.C.; Basu, S.
2011-01-01
Model intercomparisons are one possible method to gain confidence in Large-Eddy Simulation (LES) as a viable tool to study turbulence in the atmospheric boundary-layer. This paper discusses the setup and some results of two intercomparison cases focussing on the stably stratified nocturnal boundary-
Astrophysical Boundary Layers: A New Picture
Belyaev, Mikhail; Rafikov, Roman R.; Mclellan Stone, James
2016-04-01
Accretion is a ubiquitous process in astrophysics. In cases when the magnetic field is not too strong and a disk is formed, accretion can proceed through the mid plane all the way to the surface of the central compact object. Unless that compact object is a black hole, a boundary layer will be formed where the accretion disk touches its surfaces. The boundary layer is both dynamically and observationally significant as up to half of the accretion energy is dissipated there.Using a combination of analytical theory and computer simulations we show that angular momentum transport and accretion in the boundary layer is mediated by waves. This breaks with the standard astrophysical paradigm of an anomalous turbulent viscosity that drives accretion. However, wave-mediated angular momentum transport is a natural consequence of "sonic instability." The sonic instability, which we describe analytically and observe in our simulations, is a close cousin of the Papaloizou-Pringle instability. However, it is very vigorous in the boundary layer due to the immense radial velocity shear present at the equator.Our results are applicable to accreting neutron stars, white dwarfs, protostars, and protoplanets.
BUBBLE - an urban boundary layer meteorology project
DEFF Research Database (Denmark)
Rotach, M.W.; Vogt, R.; Bernhofer, C.;
2005-01-01
The Basel urban Boundary Layer Experiment (BUBBLE) was a year-long experimental effort to investigate in detail the boundary layer structure in the City of Basel, Switzerland. At several sites over different surface types (urban, sub-urban and rural reference) towers up to at least twice the main...... ground truth, as well as on urban turbulence and profiling (sodar, RASS, tethered balloon) were performed. Also tracer experiments with near-roof-level release and sampling were performed. In parallel to the experimental activities within BUBBLE, a meso-scale numerical atmospheric model, which contains...... a surface exchange parameterization, especially designed for urban areas was evaluated and further developed. Finally, the area of the full-scale tracer experiment which also contains several sites of other special projects during the IOP (street canyon energetics, satellite ground truth) is modeled using...
Active control of ionized boundary layers
Mendes, R V
1997-01-01
The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.
Some characteristics of bypass transition in a heated boundary layer
Sohn, K. H.; Reshotko, E.; O'Brien, J. E.
Experimental measurements of both mean and conditionally sampled characteristics of laminar, transitional and low Reynolds number turbulent boundary layers on a heated flat plate are presented. Measurements were obtained in air over a range of freestream turbulence intensities from 0.3 percent to 6 percent with a freestream velocity of 30.5 m/s and zero pressure gradient. Conditional sampling performed in the transitional boundary layers indicate the existence of a near-wall drop in intermittency, especially pronounced at low intermittencies. Nonturbulent intervals were observed to possess large levels of low-frequency unsteadiness, and turbulent intervals had peak intensities as much as 50 percent higher than were measured at fully turbulent stations. Heat transfer results were consistent with results of previous researches and Reynolds analogy factors were found to be well predicted by laminar and turbulent correlations which accounted for unheated starting length. A small dependence of the turbulent Reynolds analogy factors on freestream turbulence level was observed. Laminar boundary layer spectra indicated selective amplification of unstable frequencies. These instabilities appear to play a dominant role in the transition process only for the lowest freestream turbulence level studied, however.
A global boundary-layer height climatology
Energy Technology Data Exchange (ETDEWEB)
Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)
1997-10-01
In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)
Dynamics of turbulent western boundary currents at low latitude in a shallow water model
Directory of Open Access Journals (Sweden)
C. Q. C. Akuetevi
2014-11-01
Full Text Available The dynamics of low latitude turbulent western boundary currents crossing the equator is considered using numerical results from integrations of a reduced gravity shallow-water model. For viscosity values of 1000 m2 s−1 and more, the boundary layer dynamics compares well to the analytical Munk-layer solution. When the viscosity is reduced, the boundary layer becomes turbulent and coherent structures in form of anticyclonic eddies, bursts (violent detachments of the viscous sub-layer and dipoles appear. Three distinct boundary layers emerge, the viscous sub-layer, the advective boundary layer and the extended boundary layer. The first is characterized by a dominant vorticity balance between the viscous transport and the advective transport of vorticity. The second by a balance between the advection of planetary vorticity and the advective transport of relative vorticity. The extended boundary layer is the area to which turbulent motion from the boundary extends. The scaling of the three boundary layer thicknesses with viscosity is evaluated. Characteristic scales of the dynamics and dissipation are determined. A pragmatic approach to determine the eddy viscosity diagnostically for coarse resolution numerical models is proposed.
Modelling of the Evolving Stable Boundary Layer
Sorbjan, Zbigniew
2014-06-01
A single-column model of the evolving stable boundary layer (SBL) is tested for self-similar properties of the flow and effects of ambient forcing. The turbulence closure of the model is diagnostic, based on the K-theory approach, with a semi-empirical form of the mixing length, and empirical stability functions of the Richardson number. The model results, expressed in terms of local similarity scales, are universal functions, satisfied in the entire SBL. Based on similarity expression, a realizability condition is derived for the minimum allowable turbulent heat flux in the SBL. Numerical experiments show that the development of "horse-shoe" shaped, fixed-elevation hodographs in the interior of the SBL around sunrise is controlled by effects imposed by surface thermal forcing.
Asymptotic analysis and boundary layers
Cousteix, Jean
2007-01-01
This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...
Numerical simulation of tsunami-scale wave boundary layers
DEFF Research Database (Denmark)
Williams, Isaac A.; Fuhrman, David R.
2016-01-01
, is newly extended to incorporate a transitional variant of the standard two-equation k–ω turbulence closure. The developed numerical model is successfully validated against recent experimental measurements involving transient solitary wave boundary layers as well as for oscillatory flows, collectively......This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scalewaves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...
Propeller slipstream/wing boundary layer effects at low Reynolds numbers
Miley, S. J.; Howard, R. M.; Holmes, B. J.
1985-01-01
The effects of propeller slipstream on the wing laminar boundary are being investigated. Hot-wire velocity sensor measurements have been performed in flight and in a wind tunnel. It is shown that the boundary layer cycles between a laminar state and a turbulent state at the propeller blade passage rate. The cyclic length of the turbulent state increases with decreasing laminar stability. Analyses of the time varying velocity profiles show the turbulent state to lie in a transition region between fully laminar and fully turbulent. The observed cyclic boundary layer has characteristics similar to relaminarizing flow and laminar flow with external turbulence.
Shockwave-boundary layer interactions
Glepman, R.
2014-01-01
Shock wave-boundary layer interactions are a very common feature in both transonic and supersonic flows. They can be encountered on compressor and turbine blades, in supersonic jet inlets, on transonic wings, on the stabilization fins of missiles and in many more situations. Because of their major i
Velocity fields and optical turbulence near the boundary in a strongly convective laboratory flow
Matt, Silvia; Hou, Weilin; Goode, Wesley; Hellman, Samuel
2016-05-01
Boundary layers around moving underwater vehicles or other platforms can be a limiting factor for optical communication. Turbulence in the boundary layer of a body moving through a stratified medium can lead to small variations in the index of refraction, which impede optical signals. As a first step towards investigating this boundary layer effect on underwater optics, we study the flow near the boundary in the Rayleigh-Bénard laboratory tank at the Naval Research Laboratory Stennis Space Center. The tank is set up to generate temperature-driven, i.e., convective turbulence, and allows control of the turbulence intensity. This controlled turbulence environment is complemented by computational fluid dynamics simulations to visualize and quantify multi-scale flow patterns. The boundary layer dynamics in the laboratory tank are quantified using a state-of-the-art Particle Image Velocimetry (PIV) system to examine the boundary layer velocities and turbulence parameters. The velocity fields and flow dynamics from the PIV are compared to the numerical model and show the model to accurately reproduce the velocity range and flow dynamics. The temperature variations and thus optical turbulence effects can then be inferred from the model temperature data. Optical turbulence is also visible in the raw data from the PIV system. The newly collected data are consistent with previously reported measurements from high-resolution Acoustic Doppler Velocimeter profilers (Nortek Vectrino), as well as fast thermistor probes and novel next-generation fiber-optics temperature sensors. This multi-level approach to studying optical turbulence near a boundary, combining in-situ measurements, optical techniques, and numerical simulations, can provide new insight and aid in mitigating turbulence impacts on underwater optical signal transmission.
Gokoglu, Suleyman A.; Rosner, Daniel E.
1986-01-01
A formulation previously developed to predict and correlate the thermophoretically-augmented submicron particle mass transfer rate to cold surfaces is found to account for the thermophoretically reduced particle mass transfer rate to overheated surfaces such that thermophoresis brings about a 10-decade reduction below the convective mass transfer rate expected by pure Brownian diffusion and convection alone. Thermophoretic blowing is shown to produce effects on particle concentration boundary-layer (BL) structure and wall mass transfer rates similar to those produced by real blowing through a porous wall. The applicability of the correlations to developing BL-situations is demonstrated by a numerical example relevant to wet-steam technology.
Measurement of turbulence in the oceanic mixed layer using Synthetic Aperture Radar (SAR)
George, S.G.; Tatnall, A. R. L.
2012-01-01
Turbulence in the surface layer of the ocean contributes to the transfer of heat, gas and momentum across the air-sea boundary. As such, study of turbulence in the ocean surface layer is becoming increasingly important for understanding its effects on climate change. Direct Numerical Simulation (DNS) techniques were implemented to examine the interaction of small-scale wake turbulence in the upper ocean layer with incident electromagnetic radar waves. Hydrodynamic-electromag...
Directory of Open Access Journals (Sweden)
Yee-Lin Wu
2010-01-01
Full Text Available Linyuan (LY is a coastal station located down wind of the industrial city of Kaohsiung in southern Taiwan. This station is often affected by severe ozone pollution during sea breeze events. Intensive tethered ozone soundings were per formed at this station during a 4-day ozone episode in November, 2005. Back air trajectories were also calculated to track the origins of air masses arriving at the station during the experiment. The investigation revealed complicated ozone pro files in the lower at mo sphere (be low 1300 m both day and night. At night, industrial plumes forming no-ozone air layers were frequently distributed at 400 - 800 m. Mixing layers rapidly decreased from 800 - 1100 m down to 200 - 350 m in the late morning hours when sea breezes and thermal internal boundary layers (TIBLs developed. Recirculation of polluted in land air masses over the sea, the development of TIBLs, and the late development of sea-breeze events all are likely responsible for severe ozone pollution at the LY station. Elevated industrial plumes or ozone aloft above TIBLs revealed only aminor contribution to ozone pollution via a downward mixing process. Elevated ozone levels (140 - 170 ppb were of ten trapped within transitional layers of sea-breeze circulations at 600 - 800 m and were accompanied by ambient northerly flows parallel to the coast line, suggesting that an ozone pollution core likely formed over the west coast of Taiwan on ozone-episodic days when sea-breeze circulations developed.
The high frequency acoustic radiation from the boundary layer of an axisymmetric body
Institute of Scientific and Technical Information of China (English)
LI Fuxin; MA Lin; MA Zhiming
2001-01-01
The mechanism of acoustic radiation from the boundary layer of an axisymmetric body is analyzed, and its sound pressure spectrum is predicted. It is shown that the acoustic radiation results from the transition region and the turbulent boundary layer; and that the acoustic radiation from transition region is predominant at low frequencies; while the turbulent boundary layer has the decisive effect on acoustic radiation at high frequencies. The calculated values are in good agreement with the experimental data.
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Shear Capacity as Prognostic of Nocturnal Boundary Layer Regimes
van Hooijdonk, Ivo; Donda, Judith; Bosveld, Fred; Moene, Arnold; Clercx, Herman; van de Wiel, Bas
2015-04-01
After sunset the surface temperature can drop rapidly in some nights and may lead to ground frost. This sudden drop is closely related to the occurrence of fundamentally different behaviour of turbulence in the nocturnal boundary layer. Recent theoretical findings predict the appearance of two different regimes: the continuously turbulent (weakly stable) boundary layer and the relatively 'quiet' (very stable) boundary layer. Field observations from a large number of nights (approx. 4500 in total) are analysed using an ensemble averaging technique. The observations support the existence of these two fundamentally different regimes: weakly stable (turbulent) nights rapidly reach a steady state (within 2-3 hours). In contrast, very stable nights reach a steady state much later after a transition period (2-6 hours). During this period turbulence is weak and non-stationary. To characterise the regime a new parameter is introduced: the Shear Capacity. This parameter compares the actual shear after sunset with the minimum shear needed to sustain continuous turbulence. In turn, the minimum shear is dictated by the heat flux demand at the surface (net radiative cooling), so that the Shear Capacity combines flow information with knowledge on the boundary condition. It is shown that the Shear Capacity enables prediction of the flow regimes. The prognostic strength of this non-dimensional parameter appears to outperform the traditional ones like z/L and Ri as regime indicator.
Agostini, Lionel; Leschziner, Michael
2016-04-01
The "quasi-steady hypothesis," as understood in the context of large-scale/small-scale interactions in near-wall turbulence, rests on the assumption that the small scales near the wall react within very short time scales to changes imposed on them by energetic large scales whose length scales differ by at least one order of magnitude and whose energy reaches a maximum in the middle to the outer portion of the log-law layer. A key statistical manifestation of this assumption is that scaling the small-scale motions with the large-scale wall-friction-velocity footprints renders the small-scale statistics universal. This hypothesis is examined here by reference to direct numerical simulation (DNS) data for channel flow at Reτ ≈ 4200, subjected to a large-scale/small-scale separation by the empirical mode decomposition method. Flow properties examined include the mean velocity, second moments, joint probability density functions, and skewness. It is shown that the validity of the hypothesis depends on the particular property being considered and on the range of length scales of structures included within the large-scale spectrum. The quasi-steady hypothesis is found to be well justified for the mean velocity and streamwise energy of the small scales up to y + ˜ O ( 80 ) , but only up to y + ˜ O ( 30 ) for other properties.
Stabilization of boundary layer streaks by plasma actuators
International Nuclear Information System (INIS)
A flow's transition from laminar to turbulent leads to increased levels of skin friction. In recent years, dielectric barrier discharge actuators have been shown to be able to delay the onset of turbulence in boundary layers. While the laminar to turbulent transition process can be initiated by several different instability mechanisms, so far, only stabilization of the Tollmien–Schlichting path to transition has received significant attention, leaving the stabilization of other transition paths using these actuators less explored. To fill that void, a bi-global stability analysis is used here to examine the stabilization of boundary layer streaks in a laminar boundary layer. These streaks, which are important to both transient and by-pass instability mechanisms, are damped by the addition of a flow-wise oriented plasma body force to the boundary layer. Depending on the magnitude of the plasma actuation, this damping can be up to 25% of the perturbation's kinetic energy. The damping mechanism appears to be due to highly localized effects in the immediate vicinity of the body force, and when examined using a linearized Reynolds-averaged Navier–Stokes energy balance, indicate negative production of the perturbation's kinetic energy. Parametric studies of the stabilization have also been performed, varying the magnitude of the plasma actuator's body force and the spanwise wavenumber of the actuation. Based on these parametric studies, the damping of the boundary layer streaks appears to be linear with respect to the total amount of body force applied to the flow. (paper)
CISM Course on Recent Advances in Boundary Layer Theory
1998-01-01
Recent advances in boundary-layer theory have shown how modern analytical and computational techniques can and should be combined to deepen the understanding of high Reynolds number flows and to design effective calculation strategies. This is the unifying theme of the present volume which addresses laminar as well as turbulent flows.
Thin layer structure of dissipation rate of scalar turbulence
Institute of Scientific and Technical Information of China (English)
ZHOU; Haibing; (周海兵); CUI; Guixiang; (崔桂香); XU; Chunxiao; (许春晓); ZHANG; Zhaoshun; (张兆顺)
2003-01-01
The structure of scalar turbulence dissipation is studied by means of direct numerical simulation. It has been discovered that the scalar turbulence dissipation exhibits thin layer structure. Based on the analysis of transportation equation of scalar turbulence dissipation, we have investigated the effect of turbulent strains on the generation of scalar turbulence dissipation and found that fluctuating scalar gradients trend to the third principal direction of turbulent strains. Therefore the generation of the thin layer structure of scalar turbulence dissipation is well interpreted.
Localized travelling waves in the asymptotic suction boundary layer
Kreilos, Tobias; Schneider, Tobias M
2016-01-01
We present two spanwise-localized travelling wave solutions in the asymptotic suction boundary layer, obtained by continuation of solutions of plane Couette flow. One of the solutions has the vortical structures located close to the wall, similar to spanwise-localized edge states previously found for this system. The vortical structures of the second solution are located in the free stream far above the laminar boundary layer and are supported by a secondary shear gradient that is created by a large-scale low-speed streak. The dynamically relevant eigenmodes of this solution are concentrated in the free stream, and the departure into turbulence from this solution evolves in the free stream towards the walls. For invariant solutions in free-stream turbulence, this solution thus shows that that the source of energy of the vortical structures can be a dynamical structure of the solution itself, instead of the laminar boundary layer.
Teichrieb, Claudio A.; Acevedo, Otávio C.; Degrazia, Gervásio A.; Moraes, Osvaldo L. L.; Roberti, Débora R.; Zimermann, Hans R.; Santos, Daniel M.; Alves, Rita C. M.
2013-03-01
The study presents an analysis of two-point correlations between time series of nocturnal atmospheric wind, obtained from two micrometeorological towers, 45 m horizontally apart, each equipped with two sonic anemometers, 2.5 m vertically apart. It focuses on the scale dependence of the two-point correlations obtained from sensors vertically and horizontally separated. In particular, the role of low-frequency non-turbulent processes in the correlations is assessed, and compared to that of the turbulent scales of motion. The vertical correlations of the streamwise and vertical wind components show little dependence on the turbulence intensity, but those of the spanwise component decrease appreciably as it gets more turbulent. Multiresolution decomposition shows that the two-point correlations become increasingly dominated by low-frequency scales as it gets less turbulent, and that such large-scale processes are largely reduced in fully turbulent conditions. It is also shown that the vertical correlations of the spanwise wind component is negative for very small time scales. Horizontal two-point correlations obtained at the 45 m separation distance between the towers are almost entirely dominated by low-frequency motions, regardless of the turbulence intensity, but the magnitude of such correlations decreases with increasing turbulence intensity for any wind components. A comparison between the horizontal two-point correlations and autocorrelations taken with a time lag given by the ratio of the horizontal separation to the mean wind component in the direction that connects the two towers leads to the conclusion that the statistical properties of turbulence are often preserved over the horizontal distance, despite the lack of turbulence correlations for that separation.
Turbulent Shear Layers in Supersonic Flow
Smits, Alexander J
2006-01-01
A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.
Numerical Modeling of the Evolving Stable Boundary Layer
Sorbjan, Z.
2013-12-01
A single-column model of the evolving stable boundary layer is tested for the consistency of turbulence parameterization, self-similar properties of the flow, and effects of ambient forcing. The turbulence closure of the model is based on the K-theory approach, with stability functions based on empirical data, and a semi-empirical form of the mixing length. The model has one internal, governing stability parameter, the Richardson number Ri, which dynamically adjusts to the boundary conditions and to external forcing. Model results, expressed in terms of local similarity scales, are universal functions of the Richardson number, i.e. they are satisfied in the entire stable boundary layer, for all instants of time, and all kinds of external forcing. Based on similarity expression, a realizability condition is derived for the minimum turbulent heat flux in the stable boundary layer. Numerical experiments show that the development of 'horse-shoe' shaped, 'fixed-elevation' wind hodographs in the interior of the stable boundary layer are solely caused by effects imposed by surface thermal forcing, and are not related to the inertial oscillation mechanism.
A Note on the bottom shear stress in oscillatory planetary boundary layer flow
Directory of Open Access Journals (Sweden)
Dag Myrhaug
1988-07-01
Full Text Available A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974 measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.
Ishihara, S.; Tamura, S.; Ishii, K.; Kataoka, H.
2016-09-01
To study the effects of the boundary layer on the deflagration to detonation transition (DDT) process, the mixture behind an incident shock wave was ignited using laser breakdown. Ignition timing was controlled so that the interaction of the resulting flame with a laminar or turbulent boundary layer could be examined. In the case of the interaction with a laminar boundary layer, wrinkling of the flame was observed after the flame reached the corner of the channel. On the other hand, interaction with the turbulent boundary layer distorted the flame front and increased the spreading rate of the flame followed by prompt DDT. The inner structure of the turbulent boundary layer plays an important role in the DDT process. The region that distorted the flame within the turbulent boundary layer was found to be the intermediate region 0.01< y/δ < 0.4, where y is the distance from the wall and δ is the boundary layer thickness. The flame disturbance by the turbulent motions is followed by the flame interaction with the inner layer near the wall, which in turn generates a secondary-ignition kernel that produced a spherical accelerating flame, which ultimately led to the onset of detonation. After the flame reached the intermediate region, the time required for DDT was independent of the ignition position. The effect of the boundary layer on the propagating flame, thus, became relatively small after the accelerating flame was generated.
Moist turbulent Rayleigh-Benard convection with Neumann and Dirichlet boundary conditions
Weidauer, Thomas
2012-01-01
Turbulent Rayleigh-Benard convection with phase changes in an extended layer between two parallel impermeable planes is studied by means of three-dimensional direct numerical simulations for Rayleigh numbers between 10^4 and 1.5\\times 10^7 and for Prandtl number Pr=0.7. Two different sets of boundary conditions of temperature and total water content are compared: imposed constant amplitudes which translate into Dirichlet boundary conditions for the scalar field fluctuations about the quiescent diffusive equilibrium and constant imposed flux boundary conditions that result in Neumann boundary conditions. Moist turbulent convection is in the conditionally unstable regime throughout this study for which unsaturated air parcels are stably and saturated air parcels unstably stratified. A direct comparison of both sets of boundary conditions with the same parameters requires to start the turbulence simulations out of differently saturated equilibrium states. Similar to dry Rayleigh-Benard convection the differences...
Johnson, Perry L.; Shyam, Vikram
2012-01-01
A Large Eddy Simulation (LES) is performed of a high blowing ratio (M = 1.7) film cooling flow with density ratio of unity. Mean results are compared with experimental data to show the degree of fidelity achieved in the simulation. While the trends in the LES prediction are a noticeable improvement over Reynolds-Averaged Navier-Stokes (RANS) predictions, there is still a lack a spreading on the underside of the lifted jet. This is likely due to the inability of the LES to capture the full range of influential eddies on the underside of the jet due to their smaller structure. The unsteady structures in the turbulent coolant jet are also explored and related to turbulent mixing characteristics
Boundary-layer control by electric fields A feasibility study
Mendes, R V
1998-01-01
A problem of great concern in aviation and submarine propulsion is the control of the boundary layer and, in particular, the methods to extend the laminar region as a means to decrease noise and fuel consumption. In this paper we study the flow of air along an airfoil when a layer of ionized gas and a longitudinal electric field are created in the boundary layer region. By deriving scaling solutions and more accurate numerical solutions we discuss the possibility of achieving significant boundary layer control for realistic physical parameters. Practical design formulas and criteria are obtained. We also discuss the perspectives for active control of the laminar-to-turbulent transition fluctuations by electromagnetic field modulation.
Compressible turbulent channel flow with impedance boundary conditions
Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.
2015-03-01
We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with
Microgravity Effects on Plant Boundary Layers
Stutte, Gary; Monje, Oscar
2005-01-01
The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.
Characteristics of the Boundary Layer Structure of Sea Fog on the Coast of Southern China
Institute of Scientific and Technical Information of China (English)
HUANG Huijun; LIU Hongnian; JIANG Weimei; HUANG Jian; MAO Weikang
2011-01-01
Using boundary layer data with regard to sea fog observed at the Science Experiment Base for Marine Meteorology at Bohe,Guangdong Province,the structure of the atmospheric boundary layer and the characteristics of the tops of the fog and the clouds were analyzed.In addition,the effects of advection,radiation,and turbulence during sea fog were also investigated.According to the stability definition of saturated,wet air,the gradient of the potential pseudo-equivalent temperature equal to zero was defined as the thermal turbulence interface.There is evidence to suggest that two layers of turbulence exist in sea fog.Thermal turbulence produced by long-wave radiation is prevalent above the thermal turbulence interface,whereas mechanical turbulence aroused by wind shear is predominant below the interface.The height of the thermal turbulence interface was observed between 180 m and 380 m.Three important factors are closely related to the development of the top of the sea fog:(1) the horizontal advection of the water vapor,(2) the long-wave radiation of the fog top,and (3) the movement of the vertical turbulence.Formation,development,and dissipation are the three possible phases of the evolution of the boundary-layer structure during the sea fog season.In addition,the thermal turbulence interface is the most significant turbulence interface during the formation and development periods; it is maintained after sea fog rises into the stratus layer.
Investigation of Laminar Boundary Layer on Airfoil
林, 秀千人; 佐々木, 壮一; 児玉, 好雄; 清水, 光昭
1999-01-01
The development of the laminar boundary layer on the NACA symmetrical airfoils and the separation of it are simulated by using the boundary layer theory and discrete vortex method. The arrangement of the discrete vortices on the airfoil affects on the separation position very much because the separation is sensitive to the velocity gradient of the main flow. It needs the very small increment 1/500 in boundary layer simulation to get the exact position of the separation. The simulation of both...
An investigation of the effects of the propeller slipstream of a laminar wing boundary layer
Howard, R. M.; Miley, S. J.; Holmes, B. J.
1985-01-01
A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.
Shifted periodic boundary conditions for simulations of wall-bounded turbulent flows
Munters, Wim; Meneveau, Charles; Meyers, Johan
2016-02-01
In wall-bounded turbulent flow simulations, periodic boundary conditions combined with insufficiently long domains lead to persistent spanwise locking of large-scale turbulent structures. This leads to statistical inhomogeneities of 10%-15% that persist in time averages of 60 eddy turnover times and more. We propose a shifted periodic boundary condition that eliminates this effect without the need for excessive streamwise domain lengths. The method is tested based on a set of direct numerical simulations of a turbulent channel flow, and large-eddy simulations of a high Reynolds number rough-wall half-channel flow. The method is very useful for precursor simulations that generate inlet conditions for simulations that are spatially inhomogeneous, but require statistically homogeneous inlet boundary conditions in the spanwise direction. The method's advantages are illustrated for the simulation of a developing wind-farm boundary layer.
Transition in Hypersonic Boundary Layers: Role of Dilatational Waves
Zhu, Yiding; Yuan, Huijing; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed
2015-01-01
Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 quiet wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second instability acoustic mode is the key modulator of the transition process. The second mode experiences a rapid growth and a very fast annihilation due to the effect of bulk viscosity. The second mode interacts strongly with the first vorticity mode to directly promote a fast growth of the latter and leads to immediate transition to turbulence.
Role of the vertical pressure gradient in wave boundary layers
DEFF Research Database (Denmark)
Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna;
2014-01-01
By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....
Notes on an Internal Boundary-Layer Height Formula
Savelyev, Sergiya.; Taylor, Petera.
The derivation of the Panofsky-Dutton internal boundary-layer(IBL) height formula has been revisited. We propose that the upwindroughness length (rather than downwind) should be used in theformula and that a turbulent vertical velocity (w) ratherthan the surface friction velocity (u*) should be considered asthe appropriate scaling for the rate of propagation ofdisturbances into the turbulent flow. A published set ofwind-tunnel and atmospheric data for neutral stratification hasbeen used to investigate the influence of the magnitude ofroughness change on the IBL height.
Characterization of the Martian Convective Boundary Layer
Martínez, Germán; Valero Rodríguez, Francisco; Vázquez Martínez, Luis
2009-01-01
The authors have carried out an extensive characterization of the Martian mixed layer formed under convective conditions. The values of the mixed layer height, convective velocity scale, convective temperature scale, mean temperature standard deviation, mean horizontal and vertical velocity standard deviations, and mean turbulent viscous dissipation rate have been obtained during the strongest convective hours for the mixed layer. In addition, the existing database of the surface layer has be...
A Thermal Plume Model for the Martian Convective Boundary Layer
Colaïtis, Arnaud; Hourdin, Frédéric; Rio, Catherine; Forget, François; Millour, Ehouarn
2013-01-01
The Martian Planetary Boundary Layer [PBL] is a crucial component of the Martian climate system. Global Climate Models [GCMs] and Mesoscale Models [MMs] lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically-based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in Large-Eddy Simulations [LESs]. We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking ...
Surface Layer Turbulence During a Frontal Passage
Energy Technology Data Exchange (ETDEWEB)
Piper, M; Lundquist, J K
2004-06-15
Some recent investigations have begun to quantify turbulence and dissipation in frontal zones to address the question of what physical mechanism counteracts the intensification of temperature and velocity gradients across a developing front. Frank (1994) examines the turbulence structure of two fronts that passed a 200m instrumented tower near Karlsruhe, Germany. In addition to showing the mean vertical structure of the fronts as they pass the tower, Frank demonstrates that there is an order of magnitude or more increase in turbulent kinetic energy across the frontal zone. Blumen and Piper (1999) reported turbulence statistics, including dissipation rate measurements, from the MICROFRONTS field experiment, where high-frequency turbulence data were collected from tower-mounted hotwire and sonic anemometers in a cold front and in a density current. Chapman and Browning (2001) measured dissipation rate in a precipitating frontal zone with high-resolution Doppler radar. Their measurements were conducted above the surface layer, to heights of 5km. The dissipation rate values they found are comparable to those measured in Kennedy and Shapiro (1975) in an upper-level front. Here, we expand on these recent studies by depicting the behavior of the fine scales of turbulence near the surface in a frontal zone. The primary objective of this study is to quantify the levels of turbulence and dissipation occurring in a frontal zone through the calculation of kinetic energy spectra and dissipation rates. The high-resolution turbulence data used in this study are taken during the cold front that passed the MICROFRONTS site in the early evening hours of 20 March 1995. These new measurements can be used as a basis for parameterizing the effects of surface-layer turbulence in numerical models of frontogenesis. We present three techniques for calculating the dissipation rate: direct dissipation technique, inertial dissipation technique and Kolmogorov's four-fifths law. Dissipation
Institute of Scientific and Technical Information of China (English)
姜楠; 于培宁; 管新蕾
2012-01-01
用层析TRPIV（time-resolved paticle image velocimetry）技术精细测量了水洞中平板湍流边界层三分量速度的时空序列信号,提出了空间局部平均多尺度速度结构函数的新概念描述湍流多尺度涡结构的空间拉伸、压缩、剪切变形和旋转.用空间局部平均多尺度速度结构函数对湍流脉动速度进行了空间多尺度分解.用空间局部平均多尺度速度结构函数的新概念,根据湍流多尺度涡结构在空间流向的拉伸和压缩特征,提出了新的湍流相干结构条件采样方法,检测并提取了层析TRPIV数据中相干结构的＂喷射＂和＂扫掠＂事件中的速度、涡量等物理量的空间拓扑形态.发现在喷射和扫掠事件中均存在一对反向旋转的准流向＂马蹄形＂涡结构.%The spatial-temporal sequence of 3D-3C（three-dimensional-three-component） simultaneous velocity field in a turbulent boundary layer was finely measured by tomographic TRPIV（time-resolved particle image velocimetry） in a water channel.A new concept of spatial local averaged velocity structure function was introduced to describe the dilation,compression and shear distortion and rotation of multi-scale eddy structures in turbulent flow.The three fluctuating velocity components of TBL（turbulent boundary layer） were decomposed into multi-scale components by spatial local averaged velocity structure function.A new turbulence coherent structure conditional sampling method was proposed based on the dilation and compression features of turbulent multi-scale eddy structures and the new concept of spatial local averaged velocity structure function.The eject and sweep process due to large-scale coherent structure burst was conditionally detected and the characteristic spatial topology modes of physical quantities,such as velocity and vorticity,during coherent structure bursts,were extracted from the tomo-PIV（particle image velocimetry） experimental dataset.A pair
EFFECT OF COOLED BOUNDARY ON THE TURBULENT STRUCTURE
Institute of Scientific and Technical Information of China (English)
Li Guo-xiang; Mao Hua-yong; Li Na
2003-01-01
The flow field in the cooled channel of a heat exchanger was measured using the X-type film probes of Hot Wire/Firm Anemotheter, and the turbulent mechanism was discussed. It is concluded that the airflow is cooled in the flow process, the distribution of the turbulent intensity is relatively convergent near the centerline and the boundary, the constriction action produced due to heat release at the foot of the fins causes u to decrease and w to increase near the root downstream. It is concluded that the turbulent flow with cooled boundary results from the balance of production, dissipation and intermittency caused by constriction action.
Application of Viscothermal Wave Propagation Theory for Reduction of Boundary Layer Induced Noise
Wijnant, Y.H.; Hannink, M.H.C.; Boer, de A.
2003-01-01
Boundary layer induced noise, i.e. noise inside the aircraft resulting from the turbulent boundary layer enclosing the fuselage, is known to dominate air-cabin noise at cruise conditions. In this paper a method is described to design trim panels containing a large number of coupled tubes to effectiv
On the Effects of Surface Roughness on Boundary Layer Transition
Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack
2009-01-01
Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.
RANS Modeling of Benchmark Shockwave / Boundary Layer Interaction Experiments
Georgiadis, Nick; Vyas, Manan; Yoder, Dennis
2010-01-01
This presentation summarizes the computations of a set of shock wave / turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock / boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Three turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Shear Stress Transport wavenumber-angular frequency two-equation model, and an explicit algebraic stress wavenumber-angular frequency formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.!
Modelling stable atmospheric boundary layers over snow
Sterk, H.A.M.
2015-01-01
Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar re
Magnetohydrodynamic cross-field boundary layer flow
Directory of Open Access Journals (Sweden)
D. B. Ingham
1982-01-01
Full Text Available The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.
Turbulent transport in the atmospheric surface layer
Energy Technology Data Exchange (ETDEWEB)
Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)
2012-04-15
In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to {approx}3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect
Investigation of turbulence models with compressibility corrections for hypersonic boundary flows
Directory of Open Access Journals (Sweden)
Han Tang
2015-12-01
Full Text Available The applications of pressure work, pressure-dilatation, and dilatation-dissipation (Sarkar, Zeman, and Wilcox models to hypersonic boundary flows are investigated. The flat plate boundary layer flows of Mach number 5–11 and shock wave/boundary layer interactions of compression corners are simulated numerically. For the flat plate boundary layer flows, original turbulence models overestimate the heat flux with Mach number high up to 10, and compressibility corrections applied to turbulence models lead to a decrease in friction coefficients and heating rates. The pressure work and pressure-dilatation models yield the better results. Among the three dilatation-dissipation models, Sarkar and Wilcox corrections present larger deviations from the experiment measurement, while Zeman correction can achieve acceptable results. For hypersonic compression corner flows, due to the evident increase of turbulence Mach number in separation zone, compressibility corrections make the separation areas larger, thus cannot improve the accuracy of calculated results. It is unreasonable that compressibility corrections take effect in separation zone. Density-corrected model by Catris and Aupoix is suitable for shock wave/boundary layer interaction flows which can improve the simulation accuracy of the peak heating and have a little influence on separation zone.
Plasma boundary layer and magnetopause layer of the earth's magnetosphere
International Nuclear Information System (INIS)
IMP 6 observations of the plasma boundary layer (PBL) and magnetopause layer (MPL) of the earth's magnetosphere indicate that plasma in the low-latitude portion of the PBL is supplied primarily by direct transport of magnetosheath plasma across the MPL and that this transport process is relatively widespread over the entire sunward magnetospheric boundary
Convective boundary layer wind dynamics and inertial oscillations: the influence of surface stress
Schröter, J.S.; Moene, A.F.; Holtslag, A.A.M.
2013-01-01
Investigating the influence of surface friction on the inertial oscillation (IO) of an extratropical, non-growing, convective boundary layer (CBL), we paid particular attention to the stability-dependent interactive coupling of shear-induced turbulence and turbulent friction, which leads to a nonlin
Boundary Layer Flow Over a Moving Wavy Surface
Hendin, Gali; Toledo, Yaron
2016-04-01
Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a
Grey zone simulations of the morning convective boundary layer development
Efstathiou, G. A.; Beare, R. J.; Osborne, S.; Lock, A. P.
2016-05-01
Numerical simulations of two cases of morning boundary layer development are conducted to investigate the impact of grid resolution on mean profiles and turbulent kinetic energy (TKE) partitioning from the large eddy simulation (LES) to the mesoscale limit. Idealized LES, using the 3-D Smagorinsky scheme, is shown to be capable of reproducing the boundary layer evolution when compared against measurements. However, increasing grid spacing results in the damping of resolved TKE and the production of superadiabatic temperature profiles in the boundary layer. Turbulence initiation is significantly delayed, exhibiting an abrupt onset at intermediate resolutions. Two approaches, the bounding of vertical diffusion coefficient and the blending of the 3-D Smagorinsky with a nonlocal 1D scheme, are used to model subgrid diffusion at grey zone resolutions. Simulations are compared against the coarse-grained fields from the validated LES results for each case. Both methods exhibit particular strengths and weaknesses, indicating the compromise that needs to be made currently in high-resolution numerical weather prediction. The blending scheme is able to reproduce the adiabatic profiles although turbulence is underestimated in favor of the parametrized heat flux, and the spin-up of TKE remains delayed. In contrast, the bounding approach gives an evolution of TKE that follows the coarse-grained LES very well, relying on the resolved motions for the nonlocal heat flux. However, bounding gives unrealistic static instability in the early morning temperature profiles (similar to the 3-D Smagorinsky scheme) because model dynamics are unable to resolve TKE when the boundary layer is too shallow compared to the grid spacing.
Exploring the possible role of small scale terrain drag on stable boundary layers over land
Steeneveld, G. J.; Holtslag, A.A.M.; C. J. Nappo; Wiel, van de, C.C.M.; Mahrt, L.
2008-01-01
This paper addresses the possible role of unresolved terrain drag, relative to the turbulent drag on the development of the stable atmospheric boundary layer over land. Adding a first-order estimate for terrain drag to the turbulent drag appears to provide drag that is similar to the enhanced turbulent drag obtained with the so-called long-tail mixing functions. These functions are currently used in many operational models for weather and climate, although they lack a clear physical basis. Co...
He, Ping; Nunalee, Christopher G.; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.
2014-10-01
In this study, we present a brief review on the existing approaches for optical turbulence estimation in various layers of the Earth's atmosphere. The advantages and disadvantages of these approaches are also discussed. An alternative approach, based on mesoscale modeling with parameterized turbulence, is proposed and tested for the simulation of refractive index structure parameter (C2n ) in the atmospheric boundary layer. The impacts of a few atmospheric flow phenomena (e.g., low-level jets, island wake vortices, gravity waves) on optical turbulence are discussed. Consideration of diverse geographic settings (e.g., flat terrain, coastal region, ocean islands) makes this study distinct.
Wave boundary layer over a stone-covered bed
DEFF Research Database (Denmark)
Dixen, Martin; Hatipoglu, Figen; Sumer, B. Mutlu;
2008-01-01
This paper summarizes the results of an experimental investigation on wave boundary layers over a bed with large roughness, simulating stone/rock/armour block cover on the sea bottom. The roughness elements used in the experiments were stones the size of 1.4cm and 3.85cm in one group of experiments...... and regular ping-pong balls the size 3.6cm in the other. The orbital-motion-amplitude-to-roughness ratio at the bed was rather small, in the range a/ks=0.6-3. The mean and turbulence properties of the boundary-layer flow were measured. Various configurations of the roughness elements were used in the ping...... for small values of a/ks. The results further show that the phase lead of the bed friction velocity over the surface elevation does not seem to change radically with a/ks, and found to be in the range 12°-23°. Furthermore the results show that the boundary-layer turbulence also is not extremely sensitive...
Characterization of internal boundary layer capacitors
International Nuclear Information System (INIS)
Internal boundary layer capacitors were characterized by scanning transmission electron microscopy and by microscale electrical measurements. Data are given for the chemical and physical characteristics of the individual grains and boundaries, and their associated electric and dielectric properties. Segregated internal boundary layers were identified with resistivities of 1012-1013 Ω-cm. Bulk apparent dielectric constants were 10,000-60,000. A model is proposed to explain the dielectric behavior in terms of an equivalent n-c-i-c-n representation of ceramic microstructure, which is substantiated by capacitance-voltage analysis
DEFF Research Database (Denmark)
Fischer, Andreas
2011-01-01
blades makes a transition from laminar to turbulent. In the turbulent boundary layer eddies are created which are a potential noise sources. They are ineffective as noise source on the airfoil surface or in free flow, but when convecting past the trailing edge of the airfoil their efficiency is much......The present work aims at the characterization of aerodynamic noise from wind turbines. There is a consensus among scientists that the dominant aerodynamic noise mechanism is turbulent boundary trailing edge noise. In almost all operational conditions the boundary layer flow over the wind turbine...... increased and audible sound is radiated. We performed measurements of the boundary layer velocity fluctuations and the fluctuating surface pressure field in two different wind tunnels and on three different airfoils. The first wind tunnel is the one of LM Wind Power A/S following the classic concept...
Grass, A. J.; Stuart, R. J.; Mansour-Tehrani, M.
1991-01-01
The current status of knowledge regarding coherent vortical structures in turbulent boundary layers and their role in turbulence generation are reviewed. The investigations reported in the study concentrate attention on rough-wall flows prevailing in the geophysical environment and include an experiment determining the three-dimensional form of the turbulence structures linked to the ejection and inrush events observed over rough walls and an experiment concerned with measuring the actual spanwise scale of the near-wall structures for boundary conditions ranging from hydrodynamically smooth to fully rough. It is demonstrated that horseshoe vortical structures are present and play an important role in rough-wall flows and they increase in scale with increasing wall distance, while a dominant spanwise wavelength occurs in the instantaneous cross-flow distribution of streamwise velocity close to the rough wall.
DEFF Research Database (Denmark)
Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming
2012-01-01
simulation and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid......Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM...
THERMAL BOUNDARY LAYER IN CFB BOILER RISER
Institute of Scientific and Technical Information of China (English)
Jinwei; Wang; Xinmu; Zhao; Yu; Wang; Xing; Xing; Jiansheng; Zhang; Guangxi; Yue
2006-01-01
Measurement of temperature profiles of gas-solid two-phase flow at different heights in commercial-scale circulating fluidized bed (CFB) boilers was carried out. Experimental results showed that the thickness of thermal boundary layer was generally independent of the distance from the air distributor, except when close to the riser outlet. Through analysis of flow and combustion characteristics in the riser, it was found that the main reasons for the phenomena were: 1) the hydrodynamic boundary layer was thinner than the thermal layer and hardly changed along the CFB boiler height, and 2) both radial and axial mass and heat exchanges were strong in the CFB boiler. Numerical simulation of gas flow in the outlet zone confirmed that the distribution of the thermal boundary layer was dominated by the flow field characteristics.
Numerical modeling of the transitional boundary layer over a flat plate
Ivanov, Dimitry; Chorny, Andrei
2015-11-01
Our example is connected with fundamental research on understanding how an initially laminar boundary layer becomes turbulent. We have chosen the flow over a flat plate as a prototype for boundary-layer flows around bodies. Special attention was paid to the near-wall region in order to capture all levels of the boundary layer. In this study, the numerical software package OpenFOAM has been used in order to solve the flow field. The results were used in a comparative study with data obtained from Large Eddy Simulation (LES). The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. Presently this model is extended to the LES of the zero-pressure gradient, flat-plate turbulent boundary layer. In current study the time discretization is based on a second order Crank-Nicolson/Adams-Bashforth method. LES solver using Smagorinsky and the one-equation LES turbulence models. The transition models significantly improve the prediction of the onset location compared to the fully turbulent models.LES methods appear to be the most promising new tool for the design and analysis of flow devices including transition regions of the turbulent flow.
Modification of premixed combustion in shear layers by grid turbulence
Institute of Scientific and Technical Information of China (English)
MU Kejin; WANG Yue; ZHANG Zhedian; NIE Chaoqun
2007-01-01
The influence of grid turbulence on the shear layer of a jet and the premixed flames embedded in it was investigated in the present study. The velocity field of the jet was measured by using hot-wire anemometry. It was found that grid turbulence reduced turbulence intensities in the shear layer and suppressed low frcquency fluctuation. Moreover, the energy contained in small-scale fluctuation was increased and turbulence became homogeneous. The results indicate that grid turbulence inhibits the formation of a large-scale coherent structure in the shear layer. Flame temperature was measured by using a compensated free-wire thermocouple. It was found that grid turbulence reduced low frequency fluctuation of thc flame fronts, increased the small-scale wrinkles and elevated the mean temperature of the flame zone. The results show that grid turbulence can enhance and stabilize premixed flames in shear flow.
Coherent structures in wave boundary layers. Part 2. Solitary motion
DEFF Research Database (Denmark)
Sumer, B. Mutlu; Jensen, Palle Martin; Sørensen, Lone B.;
2010-01-01
in an oscillating water tunnel. Two kinds of measurements were made: bed shear stress measurements and velocity measurements. The experiments show that the solitary-motion boundary layer experiences three kinds of flow regimes as the Reynolds number is increased: (i) laminar regime; (ii) laminar regime where...... the boundary-layer flow experiences a regular array of vortex tubes near the bed over a short period of time during the deceleration stage; and (iii) transitional regime characterized with turbulent spots, revealed by single/multiple, or, sometimes, quite dense spikes in the bed shear stress traces....... Supplementary synchronized flow visualization tests confirmed the presence of the previously mentioned flow features. Information related to flow resistance are also given in the paper....
Full-Scale Spectrum of Boundary-Layer Winds
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik
2016-01-01
Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used...... to estimate the spectrum from about 1 yr−1 to 0.05 min−1; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day−1 to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various...... of the three velocity components over a wide range from 1 day−1 to 10 Hz, which is useful in determining the necessary sample duration when measuring turbulence statistics in the boundary layer....
The height of the atmospheric boundary layer during unstable conditions
Energy Technology Data Exchange (ETDEWEB)
Gryning, S.E.
2005-11-01
The height of the convective atmospheric boundary layer, also called the mixed-layer, is one of the fundamental parameters that characterise the structure of the atmosphere near the ground. It has many theoretical and practical applications such as the prediction of air pollution concentrations, surface temperature and the scaling of turbulence. However, as pointed out by Builtjes (2001) in a review paper on Major Twentieth Century Milestones in Air Pollution Modelling and Its Application, the weakest point in meteorology data is still the determination of the height of the mixed-layer, the so-called mixing height. A simple applied model for the height of the mixed-layer over homogeneous terrain is suggested in chapter 2. It is based on a parameterised budget for the turbulent kinetic energy. In the model basically three terms - the spin-up term and the production of mechanical and convective turbulent kinetic energy - control the growth of the mixed layer. The interplay between the three terms is related to the meteorological conditions and the height of the mixed layer. A stable layer, the so-called entrainment zone, which is confined between the mixed layer and the free air above, caps the mixed layer. A parameterisation of the depth of the entrainment zone is also suggested, and used to devise a combined model for the height of the mixed layer and the entrainment zone. Another important aspect of the mixed layer development exists in coastal areas where an internal boundary layer forms downwind from the coastline. A model for the growth of the internal boundary layer is developed in analogy with the model for mixed layer development over homogeneous terrain. The strength of this model is that it can operate on a very fine spatial resolution with minor computer resources. Chapter 3 deals with the validation of the models. It is based in parts on data from the literature, and on own measurements. For the validation of the formation of the internal boundary layer
Role of the basin boundary conditions in gravity wave turbulence
Deike, Luc; Gutiérrez-Matus, Pablo; Jamin, Timothée; Semin, Benoit; Aumaitre, Sébastien; Berhanu, Michael; Falcon, Eric; BONNEFOY, Félicien
2014-01-01
Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely...
High enthalpy hypersonic boundary layer flow
Yanow, G.
1972-01-01
A theoretical and experimental study of an ionizing laminar boundary layer formed by a very high enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with allowance for the presence of helium driver gas is described. The theoretical investigation has shown that the use of variable transport properties and their respective derivatives is very important in the solution of equilibrium boundary layer equations of high enthalpy flow. The effect of low level helium contamination on the surface heat transfer rate is minimal. The variation of ionization is much smaller in a chemically frozen boundary layer solution than in an equilibrium boundary layer calculation and consequently, the variation of the transport properties in the case of the former was not essential in the integration. The experiments have been conducted in a free piston shock tunnel, and a detailed study of its nozzle operation, including the effects of low levels of helium driver gas contamination has been made. Neither the extreme solutions of an equilibrium nor of a frozen boundary layer will adequately predict surface heat transfer rate in very high enthalpy flows.
Large Eddy Simulation of the ventilated wave boundary layer
DEFF Research Database (Denmark)
Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu;
2006-01-01
to reproduce experimental results well. However, in case 1, the near-bed ensemble averaged velocity is underestimated during the acceleration stage, probably due to the Smagorinsky subgrid-scale model not being able to capture the physics well in that region. Also, there is a general overestimation......A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...
Lidar Scanning of Momentum Flux in the Marine Boundary Layer
DEFF Research Database (Denmark)
Pena Diaz, Alfredo; Mann, Jakob; Courtney, Michael;
Momentum flux measurements are important for describing the wind profile in the atmospheric boundary layer, modeling the atmospheric flow over water, the accounting of exchange processes between air and sea, etc. It is also directly related to the friction velocity, which is a velocity scale...... turbulence measurements from a sonic anemometer, showing high agreement. In this study, a conical scanning lidar is used to derive the momentum flux, which compares well to the estimations from the bulk-derived method, but it also shows a filtering effect due to the large spatial-averaging volume...
Passive and active control of boundary layer transition
Nosenchuck, Daniel Mark
It is well known that laminar-turbulent boundary layer transition is initiated by the formation of Tollmien-Schlichting laminar instability waves. The amplification rates of these waves are strongly dependent on the shape of the boundary layer velocity profile. Consequently, the transition process can be controlled by modifying the velocity profile. This can be accomplished by controlling the pressure gradient (dp/dx), using boundary layer suction, installing surface roughness elements, or by surface heating or cooling. Methods used to modify the transition process through changes in the mean velocity profile are called "passive" in this paper. There exists a large set of experiments and theory on the application of passive methods for boundary layer control. In the present work only surface heating will be addressed.Transition measurements were made on a heated flat plate in water. Results are presented for several plate wall temperature distributions. An increase by a factor of 2.5 in transition Reynolds number was observed for a 5°C isothermal wall overheat. Buoyancy effects on transition were minimal due to the small Richardson and Grashof numbers encountered in the experiments.The amplification of laminar instability waves is comparatively to process, taking place over many boundary layer thicknesses. After the slow amplification of the laminar instability waves, transition occurs by a strong three dimensional dynamic instability. It appears possible to attenuate (or reinforce) the instability waves by introducing amplitude-and phase-controlled perturbations into the laminar boundary layer using feedback control system. This method is called "active" control and forms the larger part of the research reported in this thesis.A combination of sensors, activators and feedback control electronics is required for active control. The sensors used in the experiments are flush-mounted hot film wall shear robes. A new type of activator was developed using thin, flush
Large Eddy Simulation and Study of the Urban Boundary Layer
Institute of Scientific and Technical Information of China (English)
苗世光; 蒋维楣
2004-01-01
Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.
Turbulent transport across shear layers in magnetically confined plasmas
International Nuclear Information System (INIS)
Shear layers modify the turbulence in diverse ways and do not only suppress it. A spatial-temporal investigation of gyrofluid simulations in comparison with experiments allows to identify further details of the transport process across shear layers. Blobs in and outside a shear layer merge, thereby exchange particles and heat and subsequently break up. Via this mechanism particles and heat are transported radially across shear layers. Turbulence spreading is the immanent mechanism behind this process
A Qualitative Description of Boundary Layer Wind Speed Records
Kavasseri, R G; Nagarajan, Radhakrishnan
2006-01-01
The complexity of the atmosphere endows it with the property of turbulence by virtue of which, wind speed variations in the atmospheric boundary layer (ABL) exhibit highly irregular fluctuations that persist over a wide range of temporal and spatial scales. Despite the large and significant body of work on microscale turbulence, understanding the statistics of atmospheric wind speed variations has proved to be elusive and challenging. Knowledge about the nature of wind speed at ABL has far reaching impact on several fields of research such as meteorology, hydrology, agriculture, pollutant dispersion, and more importantly wind energy generation. In the present study, temporal wind speed records from twenty eight stations distributed through out the state of North Dakota (ND, USA), ($\\sim$ 70,000 square-miles) and spanning a period of nearly eight years are analyzed. We show that these records exhibit a characteristic broad multifractal spectrum irrespective of the geographical location and topography. The rapi...
Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ = 250
Attili, Antonio
2012-03-21
The turbulent flow originating from the interaction between two parallel streams with different velocities is studied by means of direct numerical simulation. Rather than the more common temporal evolving layer, a spatially evolving configuration, with perturbed laminar inlet conditions is considered. The streamwise evolution and the self-similar state of turbulence statistics are reported and compared to results available in the literature. The characteristics of the transitional region agree with those observed in other simulations and experiments of mixing layers originating from laminar inlets. The present results indicate that the transitional region depends strongly on the inlet flow. Conversely, the self-similar state of turbulent kinetic energy and dissipation agrees quantitatively with those in a temporal mixing layer developing from turbulent initial conditions [M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar turbulent mixing layer,” Phys. Fluids6, 903 (1994)]. The statistical features of turbulence in the self-similar region have been analysed in terms of longitudinal velocity structure functions, and scaling exponents are estimated by applying the extended self-similarity concept. In the small scale range (60 < r/η < 250), the scaling exponents display the universal anomalous scaling observed in homogeneous isotropic turbulence. The hypothesis of isotropy recovery holds in the turbulent mixing layer despite the presence of strong shear and large-scale structures, independently of the means of turbulence generation. At larger scales (r/η > 400), the mean shear and large coherent structures result in a significant deviation from predictions based on homogeneous isotropic turbulence theory. In this second scaling range, the numerical values of the exponents agree quantitatively with those reported for a variety of other flows characterized by strong shear, such as boundary layers, as well as channel and wake flows.
Boundary layer heights derived from velocity spectra
Energy Technology Data Exchange (ETDEWEB)
Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)
1997-10-01
It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)
Self-similar magnetohydrodynamic boundary layers
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel; Lastra, Alberto, E-mail: mnjmhd@am.uva.e [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)
2010-10-15
The boundary layer created by parallel flow in a magnetized fluid of high conductivity is considered in this paper. Under appropriate boundary conditions, self-similar solutions analogous to the ones studied by Blasius for the hydrodynamic problem may be found. It is proved that for these to be stable, the size of the Alfven velocity at the outer flow must be smaller than the flow velocity, a fact that has a ready physical explanation. The process by which the transverse velocity and the thickness of the layer grow with the size of the Alfven velocity is detailed.
Statistical characterization of turbulence in the boundary plasma of EAST
DEFF Research Database (Denmark)
Yan, Ning; Nielsen, Anders Henry; Xu, G.S.;
2013-01-01
In Ohmic heated low confinement mode (L-mode) discharges, the intermittent statistical characteristics of turbulent fluctuations have been investigated in the edge and the scrape-off layer (SOL) plasma on EAST (the experimental advanced superconducting tokamak) by fast reciprocating Langmuir probe...
Bypass transition of the bottom boundary layer under solitary wave
Sadek, Mahmoud; Diamessis, Peter; Parras, Luis; Liu, Philip
2015-11-01
The transition to turbulence in the bottom boundary layer (BBL) flow driven by a soliton-like pressure gradient in an oscillating water tunnel (an approximation for the BBL under solitary waves) is investigated using hydrodynamic linear stability theory and DNS. As observed in the laboratory experiment by Sumer et al. (2010), two possible transition scenarios exist. The first scenario is associated with the classical transition resulting from the breakdown of the exponentially growing 2-D Tollmien-Schlichting waves. The alternative scenario; i.e., bypass transition; takes place through formation of localized turbulent spots. The investigation of the latter transition scenario is performed in two steps. The first step consists of reformulating the linear stability analysis in the non-modal framework for the purpose of finding the optimum disturbance characteristics which lead to the formation of those turbulent spots. In the second step, the computed optimum noise structure is inserted in the 3D DNS in order to induce the formation of the turbulent spots and effectively simulate the bypass transition observed experimentally.
The Coupling State of an Idealized Stable Boundary Layer
Acevedo, Otávio C.; Costa, Felipe D.; Degrazia, Gervásio A.
2012-10-01
The coupling state between the surface and the top of the stable boundary layer (SBL) is investigated using four different schemes to represent the turbulent exchange. An idealized SBL is assumed, with fixed wind speed and temperature at its top. At the surface, two cases are considered, first a constant temperature, 20 K lower than the SBL top, and later a constant 2 K h-1 cooling rate is assumed for 10 h after a neutral initial condition. The idealized conditions have been chosen to isolate the influence of the turbulence formulations on the coupling state, and the intense stratification has the purpose of enhancing such a response. The formulations compared are those that solve a prognostic equation for turbulent kinetic energy (TKE) and those that directly prescribe turbulence intensity as a function of atmospheric stability. Two TKE formulations are considered, with and without a dependence of the exchange coefficients on stability, while short and long tail stability functions (SFs) are also compared. In each case, the dependence on the wind speed at the SBL top is considered and it is shown that, for all formulations, the SBL experiences a transition from a decoupled state to a coupled state at an intermediate value of mechanical forcing. The vertical profiles of potential temperature, wind speed and turbulence intensity are shown as a function of the wind speed at the SBL top, both for the decoupled and coupled states. The formulation influence on the coupling state is analyzed and it is concluded that, in general, the simple TKE formulation has a better response, although it also tends to overestimate turbulent mixing. The consequences are discussed.
Measurement of turbulence in the oceanic mixed layer using Synthetic Aperture Radar (SAR
Directory of Open Access Journals (Sweden)
S. G. George
2012-09-01
Full Text Available Turbulence in the surface layer of the ocean contributes to the transfer of heat, gas and momentum across the air-sea boundary. As such, study of turbulence in the ocean surface layer is becoming increasingly important for understanding its effects on climate change. Direct Numerical Simulation (DNS techniques were implemented to examine the interaction of small-scale wake turbulence in the upper ocean layer with incident electromagnetic radar waves. Hydrodynamic-electromagnetic wave interaction models were invoked to demonstrate the ability of Synthetic Aperture Radar (SAR to observe and characterise surface turbulent wake flows. A range of simulated radar images are presented for a turbulent surface current field behind a moving surface vessel, and compared with the surface flow fields to investigate the impact of turbulent currents on simulated radar backscatter. This has yielded insights into the feasibility of resolving small-scale turbulence with remote-sensing radar and highlights the potential for extracting details of the flow structure and characteristics of turbulence using SAR.
Boundary-layer theory for blast waves
Kim, K. B.; Berger, S. A.; Kamel, M. M.; Korobeinikov, V. P.; Oppenheim, A. K.
1975-01-01
It is profitable to consider the blast wave as a flow field consisting of two regions: the outer, which retains the properties of the inviscid solution, and the inner, which is governed by flow equations including terms expressing the effects of heat transfer and, concomitantly, viscosity. The latter region thus plays the role of a boundary layer. Reported here is an analytical method developed for the study of such layers, based on the matched asymptotic expansion technique combined with patched solutions.
Allaerts, Dries; Meyers, Johan
2014-06-01
In this study we consider large wind farms in a conventionally neutral atmospheric boundary layer. In large wind farms the energy extracted by the turbines is dominated by downward vertical turbulent transport of kinetic energy from the airflow above the farm. However, atmospheric boundary layers are almost always capped by an inversion layer which slows down the entrainment rate and counteracts boundary layer growth. In a suite of large eddy simulations the effect of the strength of the capping inversion on the boundary layer and on the performance of a large wind farm is investigated. For simulations with and without wind turbines the results indicate that the boundary layer growth is effectively limited by the capping inversion and that the entrainment rate depends strongly on the inversion strength. The power output of wind farms is shown to decrease for increasing inversions.
High-resolution PIV measurements of a transitional shock wave-boundary layer interaction
Giepman, R. H. M.; Schrijer, F. F. J.; van Oudheusden, B. W.
2015-06-01
This study investigates the effects of boundary layer transition on an oblique shock wave reflection. The Mach number was 1.7, the unit Reynolds number was 35 × 106 m-1, and the pressure ratio over the interaction was 1.35. Particle image velocimetry is used as the main flow diagnostics tool, supported by oil-flow and Schlieren visualizations. At these conditions, the thickness of the laminar boundary layer is only 0.2 mm, and seeding proved to be problematic as practically no seeding was recorded in the lower 40 % of the boundary layer. The top 60 % could, however, still be resolved with good accuracy and is found to be in good agreement with the compressible Blasius solution. Due to the effects of turbulent mixing, the near-wall seeding deficiency disappears when the boundary layer transitions to a turbulent state. This allowed the seeding distribution to be used as an indicator for the state of the boundary layer, permitting to obtain an approximate intermittency distribution for the boundary layer transition region. This knowledge was then used for positioning the oblique shock wave in the laminar, transitional (50 % intermittency) or turbulent region of the boundary layer. Separation is only recorded for the laminar and transitional interactions. For the laminar interaction, a large separation bubble is found, with a streamwise length of 96. The incoming boundary layer is lifted over the separation bubble and remains in a laminar state up to the impingement point of the shock wave. After the shock, transition starts and a turbulent profile is reached approximately 80-90 downstream of the shock. Under the same shock conditions, the transitional interaction displays a smaller separation bubble (43), and transition is found to be accelerated over the separation bubble.
Boundary Layer Measurements of the NACA0015 and Implications for Noise Modeling
Bertagnolio, Franck
2011-01-01
A NACA0015 airfoil section instrumented with an array of high frequency microphones flush-mounted beneath its surface was measured in the wind tunnel at LM Wind Power in Lunderskov. Various inflow speeds and angles of attack were investigated. In addition, a hot-wire device system was used to measure the velocity profiles and turbulence characteristics in the boundary layer near the trailing edge of the airfoil. The measured boundary layer data are presented in this report and compared with C...
Nonlinear Transient Growth and Boundary Layer Transition
Paredes, Pedro; Choudhari, Meelan M.; Li, Fei
2016-01-01
Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.
Boundary layer control device for duct silencers
Schmitz, Fredric H. (Inventor); Soderman, Paul T. (Inventor)
1993-01-01
A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations.
Analysis of Laminar Boundary Layer Equations
Directory of Open Access Journals (Sweden)
R. Yesman
2012-01-01
Full Text Available The paper proposes methodology for analysis and calculation of laminar fluid flow processes in a boundary layer.The presented dependences can be used for practical calculations while power carriers of various application are moving in the channels of heat and power devices.
Global stability analysis of axisymmetric boundary layers
Vinod, N
2016-01-01
This paper presents the linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inlet. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes(LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes are nega...
Measurements of Reynolds stress and turbulence in the boundary plasma of the HT-7 tokamak
Institute of Scientific and Technical Information of China (English)
Song Mei; Wan Bao-Nian; Xu Guo-Sheng
2004-01-01
Measurements of electric field fluctuations, Reynolds stress and poloidal flow have been performed in the boundary region of the HT-7 tokamak using a Langmuir probe array. Sheared radial electric field and poloidal flow have been found in the vicinity of the limiter and the turbulence has been clearly modified in this region. Furthermore, the electrostatic Reynolds stress component shows a radial gradient close to the velocity shear layer location. All results here indicate that the radial gradient of Reynolds stress may play an important role in the driving of poloidal flows in the plasma boundary region.
Controls on boundary layer ventilation: Boundary layer processes and large-scale dynamics
Sinclair, V. A.; Gray, S. L.; Belcher, S. E.
2010-06-01
Midlatitude cyclones are important contributors to boundary layer ventilation. However, it is uncertain how efficient such systems are at transporting pollutants out of the boundary layer, and variations between cyclones are unexplained. In this study 15 idealized baroclinic life cycles, with a passive tracer included, are simulated to identify the relative importance of two transport processes: horizontal divergence and convergence within the boundary layer and large-scale advection by the warm conveyor belt. Results show that the amount of ventilation is insensitive to surface drag over a realistic range of values. This indicates that although boundary layer processes are necessary for ventilation they do not control the magnitude of ventilation. A diagnostic for the mass flux out of the boundary layer has been developed to identify the synoptic-scale variables controlling the strength of ascent in the warm conveyor belt. A very high level of correlation (R2 values exceeding 0.98) is found between the diagnostic and the actual mass flux computed from the simulations. This demonstrates that the large-scale dynamics control the amount of ventilation, and the efficiency of midlatitude cyclones to ventilate the boundary layer can be estimated using the new mass flux diagnostic. We conclude that meteorological analyses, such as ERA-40, are sufficient to quantify boundary layer ventilation by the large-scale dynamics.
Significant Atmospheric Boundary Layer Change Observed above an Agulhas Current Warm Cored Eddy
Directory of Open Access Journals (Sweden)
C. Messager
2016-01-01
Full Text Available The air-sea impact of a warm cored eddy ejected from the Agulhas Retroflection region south of Africa was assessed through both ocean and atmospheric profiling measurements during the austral summer. The presence of the eddy causes dramatic atmospheric boundary layer deepening, exceeding what was measured previously over such a feature in the region. This deepening seems mainly due to the turbulent heat flux anomaly above the warm eddy inducing extensive deep and persistent changes in the atmospheric boundary layer thermodynamics. The loss of heat by turbulent processes suggests that this kind of oceanic feature is an important and persistent source of heat for the atmosphere.
Delaying natural transition of a boundary layer using smooth steps
Xu, Hui; Sherwin, Spencer J
2015-01-01
The boundary layer flow over a smooth forward-facing stepped plate is studied with particular emphasis on the delay of the transition to turbulence. The interaction between the Tollmien-Schlichting (T-S) waves and the base flow over a single/two forward facing smooth steps is conducted by linear analysis indicating the amplitude of the T-S waves are attenuated in the boundary layer over a single smooth plate. Furthermore, we show that two smooth forward facing steps give rise to a further reduction of the amplitude of the T-S waves. A direct numerical simulation (DNS) is performed for the two smooth forward steps correlating favourably with the linear analysis and showing that for the investigated parameters, the K-type transition is inhibited whereas the turbulence onset of the H-type transition is postponed albeit not suppressed. Transition is indeed delayed and drag reduced for both these transition scenarios suggesting smooth forward facing steps could be leveraged as a passive flow control strategy to de...
Three-Dimensional Waves in Tilt Thermal Boundary Layers
Institute of Scientific and Technical Information of China (English)
TAO Jian-Jun; YUAN Xiang-Jiang
2009-01-01
We numerically and theoretically study the stabilities of tilt thermal boundary layers immersed in stratified air. An interesting phenomenon is revealed: the stationary longitudinal-roll mode becomes unstable to some oscillating state even when the Grashof number is smaller than its corresponding critical value. By stability analysis, this phenomenon is explained in terms of a new three-dimensional wave mode. The effect of the tilt angle on the stability of the boundary flows is investigated. Since the new three-dimensional wave is found to be the most unstable mode when the title angle is between 30° and 64°, it is expected to play an important role in the transition to turbulence.
Simulation of a 5MW wind turbine in an atmospheric boundary layer
International Nuclear Information System (INIS)
This article presents detached eddy simulation (DES) results of a 5MW wind turbine in an unsteady atmospheric boundary layer. The evaluation performed in this article focuses on turbine blade loads as well as on the influence of atmospheric turbulence and tower on blade loads. Therefore, the turbulence transport of the atmospheric boundary layer to the turbine position is analyzed. To determine the influence of atmospheric turbulence on wind turbines the blade load spectrum is evaluated and compared to wind turbine simulation results with uniform inflow. Moreover, the influences of different frequency regimes and the tower on the blade loads are discussed. Finally, the normal force coefficient spectrum is analyzed at three different radial positions and the influence of tower and atmospheric turbulence is shown
An experimental investigation of the three-dimensional boundary layer on a rotating disk
Littell, Howard Steven
The velocity field above a large spinning disk has been studied using pressure probes and hotwire anemometers. The flowfield consists of a three-dimensional boundary layer due to a crossflow caused by centrifugal forces. The disk was 1 m in diameter and was spun at speeds up to 1500 rpm, giving momentum thickness Reynolds numbers in excess of 6000. The mean flow in both the laminar and turbulent regimes compares well with previous studies of 'infinite' smooth rotating disks. All six Reynolds stresses and the ten triple products have been measured using established crosswire anemometry techniques. These results are compared to previous three-dimensional boundary layer measurements and several key differences are noted. The ratio of the shear stress vector magnitude to the turbulent kinetic energy is a common descriptor of boundary layer flow and is used in many modeling efforts because it is usually a constant over most of a two-dimensional boundary layer. Three-dimensionality has been observed to depress this parameter near the wall in many pressure-driven boundary layers. In the disk flow, this parameter was at a maximum near the wall at close to the 2-D value, but dropped off almost linearly away from the wall. Two-point velocity correlations were also measured using a pair of crosswire anemometers to gain insight into the structure of the turbulence. These measurements were obtained at two different heights at momentum thickness Reynolds numbers of 2650 and 5000 to test for possible scaling effects. These measurements showed that the turbulence exhibits asymmetry in the crossflow direction, which cannot occur in two-dimensional boundary layers. A mechanism by which the crossflow may be modifying the turbulence structure is proposed which exhibits several features of the asymmetric two-point correlations.
An investigation of the effects of the propeller slipstream on a wing boundary layer
Howard, Richard Moore
1987-12-01
The behavior of a wing boundary layer immersed in a propeller slipstream has been studied experimentally. Airfoil surface static pressure measurements were made for time-averaged effects, and time-dependent measurements were made with hot-film anemometer sensors for the determination of instantaneous velocities. Vertical boundary layer traverses were made at fixed chord locations for the determination of velocity profiles and for values of the turbulence intensity. The boundary layer has a coherent, time-dependent cycle of transitional behavior, varying from laminar to turbulent. This layer shows similarities to those disturbed by high levels of external flow turbulence and to those in a relaminarizing environment. Profile drag coefficients determined from the time-dependent ensemble-average velocity profiles for the freewheeling propeller case show the drag in the propeller slipstream varies from the undisturbed laminar value to a value less than that predicted for fully turbulent flow. Drag values determined from the low Reynolds number thrusting propeller case in the wind tunnel show that the effects of the slipstream are to enhance the stability of the boundary layer and to reduce the drag coefficient in the laminar portion of the slipstream cycle below its undisturbed value.
Turbulent channel without boundaries: the periodic Kolmogorov flow.
Musacchio, S; Boffetta, G
2014-02-01
The Kolmogorov flow provides an ideal instance of a virtual channel flow: It has no boundaries, but it possesses well defined mean flow in each half wavelength. We exploit this remarkable feature for the purpose of investigating the interplay between the mean flow and the turbulent drag of the bulk flow. By means of a set of direct numerical simulations at increasing Reynolds number, we show the dependence of the bulk turbulent drag on the amplitude of the mean flow. Further, we present a detailed analysis of the scale-by-scale energy balance, which describes how kinetic energy is redistributed among different regions of the flow while being transported toward small dissipative scales. Our results allow us to obtain an accurate prediction for the spatial energy transport at large scales.
Institute of Scientific and Technical Information of China (English)
王洪平; 高琪; 魏润杰; 王晋军
2016-01-01
层析PIV是一种现代激光测速技术，能实现三分量空间体内三分量（3D3C）速度场的测量。应用层析PIV测量Reτ＝1768的平板湍流边界层，得到150个瞬时速度场，测量体的大小为80mm×16mm×45mm。旋涡强度λci 准则用来进行涡识别，而旋涡强度在展向的投影λzci 被用来识别展向涡。根据λzci 的连通域得到展向涡位置后，统计了展向涡沿法向的变化规律，并给出了在流向-法向平面内高低速区域和正负展向涡空间位置的关系。统计结果表明：随着法向高度的增加，展向涡的强度逐渐降低；负展向涡的流向平均速度高于正展向涡，且流向速度与法向速度有很强的依赖性；在小尺度范围内，流向-法向平面内的高低速流动区域与正负展向涡的空间位置密切相关。%Tomographic particle image velocimetry (Tomo-PIV )is a novel laser technique that can be applied to measure a three-dimensional three-component (3D3C)velocity field.In the current work,Tomo-PIV was utilized to measure a plate turbulent boundary layer (TBL)at Reτ= 1768,and 150 velocity fields with each size of 80mm×16mm×45mm were obtained.The swirl strengthλci was used to identify the local vortex,while its proj ection on the spanwise directionλzci was used to identify the spanwise vortex.The spatial coherent structures of spanwise vortices and their population trends along the wall-normal direction were studied through swirling strengthλzci .The statistic results suggest that the strength of the spanwise vortices reduces with the in-crease of the wall-normal distance y+ .The streamwise velocity of retrograde spanwise vortices is higher than that of the prograde vortices and there is a strong dependence between the streamwise velocity and the wall-normal velocity.High or low momentum regions of small scale in the stre-amwise and wall-normal plane are highly correlated with the spatial arrangement of spanwise vor
Assessment of boundary layer profiling formulas using tower, sodar and balloon data
Energy Technology Data Exchange (ETDEWEB)
Paine, R.J. [ENSR Consulting and Engineering, Inc., Acton, MA (United States); Kendall, S.B. [Phelps Dodge Corp., Phoenix, AZ (United States)
1994-12-31
The accuracy of an air quality dispersion model is largely dependent upon the availability of representative meteorological data for the simulation of plume rise, transport, and dispersion. In many cases where tall stacks and/or buoyant plumes are involved, the available meteorological measurements do not extend to plume height. Air quality models contend with these situations by either assuming no change of meteorological variables with elevation or by applying a profiling relationship based upon theoretical or empirical relationships. The latter treatment is employed in recently-developed models such as CTDMPLUS, and HPDM, and OML. In the well-mixed convective boundary layer, meteorological variables such as wind direction, wind speed, and turbulence do not vary substantially above the surface layer (about 0.1 z{sub i}, the mixed-layer height). Above the surface layer, behavior on an hourly average basis is fairly well parameterized by boundary-layer formulations. However, models are sensitive to the height of the convective boundary layer, z{sub i}, which affects the magnitude of the convective velocity scale, w., and is important for simulating plume trapping and plume penetration into the stable layer aloft. In the stable boundary layer, plumes are often released at heights above the stable boundary layer, the height of which is often hard to define. Models are sensitive to the manner in which wind direction, wind speed, temperature and turbulence are profiled with height in stable conditions.
Submarine design optimization using boundary layer control
Christopher L Warren
1997-01-01
Several hull designs are studied with parametric based volume and area estimates to obtain preliminary hull forms. The volume and area study includes the effects of technologies which manifest themselves in the parametric study through stack length requirements. Subsequently, the hull forms are studied using a Reynolds Averaged Navier Stokes analysis coupled with a vortex lattice propeller design code. Optimization is done through boundary layer control analysis and through studies on the eff...
Coupled wake boundary layer model of windfarms
Stevens, Richard; Gayme, Dennice; Meneveau, Charles
2014-11-01
We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.
Boundary layer emission in luminous LMXBs
Gilfanov, M
2005-01-01
We show that aperiodic and quasiperiodic variability of bright LMXBs - atoll and Z- sources, on ~sec - msec time scales is caused primarily by variations of the boundary layer luminosity. The accretion disk emission is less variable on these time scales and its power density follows 1/f law, contributing to observed flux variation at low frequencies and low energies only. The kHz QPOs have the same origin as variability at lower frequencies - independent of the nature of the "clock", the actual luminosity modulation takes place on the NS surface. The boundary layer spectrum remains nearly constant during luminosity variations and can be represented by the Fourier frequency resolved spectrum. In the range of Mdot~(0.1-1)*Mdot_Edd it depends weakly on the global mass accretion rate and in the limit Mdot~Mdot_Edd is close to Wien spectrum with kT~2.4 keV. Its independence on the Mdot lends support to the suggestion by Inogamov & Sunyaev (1999) that the boundary layer is radiation pressure supported. Based on...
Remote sensing of the nocturnal boundary layer for wind energy applications
International Nuclear Information System (INIS)
The fine temporal and spatial resolution of Doppler lidar observations has been highly effective in the study of wind and turbulence dynamic in the nocturnal boundary layer during Lamar Low-Level Project in 2003. The High-Resolution Doppler Lidar (HRDL), designed and developed at the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL), measures range-resolved profiles of line-of sight (LOS) Doppler velocity and aerosol backscatter with a pulse repetition frequency of 200 Hz, velocity precision about 10 cm s-1, and a very narrow beam width. The majority of the lidar-measured wind speed and variance profiles were derived using a vertical-scan mode and the application of a vertical binning technique. The profile data were used to calculate quantities important for wind energy applications, including turbulence intensity, wind and directional shear through the layer of the turbine rotor. Profiles of all quantities show a strong variation with height. The mean wind fields, the turbulence, and turbulence intensities show a good agreement with sonic anemometer sodar high confidence (high SNR) measurements. The ability of HRDL to provide continuous information about wind and turbulence conditions at the turbine height and above the range of the tower measurements made HRDL as a powerful instrument for studies of the nighttime boundary layer features. Such information is needed as turbine rotors continue to rise higher into the boundary layer
Shock Wave-Boundary Layer Interaction in Forced Shock Oscillations
Institute of Scientific and Technical Information of China (English)
Piotr Doerffer; Oskar Szulc; Franco Magagnato
2003-01-01
The flow in transonic diffusers as well as in supersonic air intakes becomes often unsteady due to shock wave boundary layer interaction. The oscillations may be induced by natural separation unsteadiness or may be forced by boundary conditions. Significant improvement of CFD tools, increase of computer resources as well as development of experimental methods have again.drawn the attention of researchers to this topic.To investigate the problem forced oscillations of transonic turbulent flow in asymmetric two-dimensional Laval nozzle were considered. A viscous, perfect gas flow, was numerically simulated using the Reynolds-averaged compressible Navier-Stokes solver SPARC, employing a two-equation, eddy viscosity, turbulence closure in the URANS approach.For time-dependent and stationary flow simulations, Mach numbers upstream of the shock between 1.2 and 1.4 were considered. Comparison of computed and experimental data for steady states generally gave acceptable agreement. In the case of forced oscillations, a harmonic pressure variation was prescribed at the exit plane resulting in shock wave motion. Excitation frequencies between 0 Hz and 1024 Hz were investigated at the same pressure amplitude.The main result of the work carried out is the relation between the amplitude of the shock wave motion and the excitation frequency in the investigated range. Increasing excitation frequency resulted in decreasing amplitude of the shock movement. At high frequencies a natural mode of shock oscillation (of small amplitude) was observed which is not sensitive to forced excitement.
Effect of wall boundary condition on scalar transfer in a fully developed turbulent flume
Tiselj, Iztok; Pogrebnyak, Elena; Li, Changfeng; Mosyak, Albert; Hetsroni, Gad
2001-04-01
We performed direct numerical simulation of fully developed turbulent velocity and temperature fields in a flume, for Reynolds number, based on the wall shear velocity and the height of the flume, Re=171 and Prandtl numbers Pr=1.0 and Pr=5.4. To elucidate exactly the role of the wall boundary condition for passive scalar, the system considered was the flow at constant properties of the fluid. Two types of thermal wall boundary conditions (BCs) for the dimensionless temperature equation were studied: isothermal wall boundary condition—H1, and isoflux wall boundary condition—H2. The profile of the mean temperature was not affected by the type of BC. However, the type of BC has a profound effect on the statistics of the temperature fluctuations in the near-wall region y+<10. Comparison of near-wall statistics of temperature fluctuations shows that at Pr=1 the buffer part of the turbulent boundary layer significantly influences the scalar transfer in the conductive sublayer, whereas at Pr=5.4 the near-wall temperature field may be associated with predominant motion in the viscous sublayer.
Kranenburg, W.M.; Ribberink, J.S.; Uittenbogaard, R.E.; Hulscher, S.J.M.H.
2012-01-01
The net current (streaming) in a turbulent bottom boundary layer under waves above a flat bed, identified as potentially relevant for sediment transport, is mainly determined by two competing mechanisms: an onshore streaming resulting from the horizontal non-uniformity of the velocity field under pr
Angular momentum transport in accretion disk boundary layers around weakly magnetized stars
DEFF Research Database (Denmark)
Pessah, M.E.; Chan, C.-K.
2013-01-01
, in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI...
Dispersion of a passive tracer in buoyancy- and shear-driven boundary layers
Dosio, A.; Vilà-Guerau de Arellano, J.; Holtslag, A.A.M.; Builtjes, P.J.H.
2003-01-01
By means of finescale modeling [large-eddy simulation (LES)], the combined effect of thermal and mechanical forcing on the dispersion of a plume in a convective boundary layer is investigated. Dispersion of a passive tracer is studied in various atmospheric turbulent flows, from pure convective to a
Tomas, J.M.; Pourquie, M.J.B.M.; Jonker, H.J.J.
2016-01-01
Large-eddy simulations (LES) are used to investigate the effect of stable stratification on rural-to-urban roughness transitions. Smooth-wall turbulent boundary layers are subjected to a generic urban roughness consisting of cubes in an in-line arrangement. Two line sources of pollutant are added to
Comparing wall modeled LES and prescribed boundary layer approach in infinite wind farm simulations
DEFF Research Database (Denmark)
Sarlak, Hamid; Mikkelsen, Robert; Sørensen, Jens Nørkær
2015-01-01
This paper aims at presenting a simple and computationally fast method for simulation of the Atmospheric Boundary Layer (ABL) and comparing the results with the commonly used wall-modelled Large Eddy Simulation (WMLES). The simple method, called Prescribed Mean Shear and Turbulence (PMST) hereaft...
Institute of Scientific and Technical Information of China (English)
Fiancesca Satta; Daniele Simoni; Marina Ubaldi; Pietro Zunino
2008-01-01
The present work is part of an extensive experimental activity carried out by the authors in recent years aimed at investigating the boundary layer transition phenomenon in turbine blades. The large scale of the cascade and the use of advanced LDV instrumentation and precision probe traversing mechanism resulted in high degree of spa-tial resolution and high accuracy of measurements. The main dissipation mechanism determining the profile losses in turbomachinery blades is the work of deformation of the mean motion within the boundary layer oper-ated by both viscous and turbulent shear stresses. In the present paper, the local viscous and turbulent deformation works have been directly evaluated from the detailed measurements of boundary layer mean velocity and Rey-nolds shear stress. The results show the distributions and the relative importance of the viscous and turbulent con-tributions to the loss production, in relation with the boundary layer states occurring along the turbine profile.
Experimental study of the boundary layer over an airfoil in plunging motion
Marzabadi, F. Rasi; Soltani, M. R.
2012-04-01
This is an experimental study on the boundary layer over an airfoil under steady and unsteady conditions. It specifically deals with the effect of plunging oscillation on the laminar/turbulent characteristics of the boundary layer. The wind tunnel measurements involved surfacemounted hot-film sensors and boundary-layer rake. The experiments were conducted at Reynolds numbers of 0.42×106 to 0.84 × 106 and the reduced frequency was varied from 0.01 to 0.11. The results of the quasi-wall-shear stress as well as the boundary layer velocity profiles provided important information about the state of the boundary layer over the suction surface of the airfoil in both static and dynamic cases. For the static tests, boundary layer transition occurred through a laminar separation bubble. By increasing the angle of attack, disturbances and the transition location moved toward the leading edge. For the dynamic tests, earlier transition occurred with increasing rather than decreasing effective angle of attack. The mean angle of attack and the oscillating parameters significantly affected the state of the boundary layer. By increasing the reduced frequency, the boundary layer transition was promoted to the upstroke portion of the equivalent angle of attack, but the quasi skin friction coefficient was decreased.
Experimental study of the boundary layer over an airfoil in plunging motion
Institute of Scientific and Technical Information of China (English)
F. Rasi Marzabadi; M. R. Soltani
2012-01-01
This is an experimental study on the boundary layer over an airfoil under steady and unsteady conditions.It specifically deals with the effect of plunging oscillation on the laminar/turbulent characteristics of the boundary layer.The wind tunnel measurements involved surfacemounted hot-film sensors and boundary-layer rake.The experiments were conducted at Reynolds numbers of 0.42 × 106 to 0.84 × 106 and the reduced frequency was varied from 0.01 to 0.1 1.The results of the quasi-wall-shear stress as well as the boundary layer velocity profiles provided important information about the state of the boundary layer over the suction surface of the airfoil in both static and dynamic cases.For the static tests,boundary layer transition occurred through a laminar separation bubble.By increasing the angle of attack,disturbances and the transition location moved toward the leading edge.For the dynamic tests,earlier transition occurred with increasing rather than decreasing effective angle of attack.The mean angle of attack and the oscillating parameters significantly affected the state of the boundary layer.By increasing the reduced frequency,the boundary layer transition was promoted to the upstroke portion of the equivalent angle of attack,but the quasi skin friction coefficient was decreased.
Evolution of a storm-driven cloudy boundary layer in the Arctic
Energy Technology Data Exchange (ETDEWEB)
Inoue, J; Kosovic, B; Curry, J A
2003-10-24
The cloudy boundary layer under stormy conditions during the summertime Arctic has been studied using observation from the SHEBA experiment and large-eddy simulations (LES). On 29 July 1998, a stable Arctic cloudy boundary layer event was observed after passage of a synoptic low. The local dynamic and thermodynamic structure of the boundary layer was determined from aircraft measurement including analysis of turbulence, cloud microphysics and radiative properties. After the upper cloud layer advected over the existing cloud layer, the turbulent kinetic energy budget indicated that the cloud layer below 200 m was maintained predominantly by shear production. Observations of longwave radiation showed that cloud top cooling at the lower cloud top has been suppressed by radiative effects of the upper cloud layer. Our LES results demonstrate the importance of the combination of shear mixing near the surface and radiative cooling at the cloud top in the storm-driven cloudy boundary layer. Once the low-level cloud reaches a certain height, depending on the amount of cloud-top cooling, the two sources of TKE production begin to separate in space under continuous stormy conditions, suggesting one possible mechanism for the cloud layering. The sensitivity tests suggest that the storm-driven cloudy boundary layer is flexibly switched to the shear-driven system due to the advection of upper clouds or the buoyantly driven system due to the lack of the wind shear. A comparison is made of this storm-driven boundary layer with the buoyantly driven boundary layer previously described in the literature.
DEFF Research Database (Denmark)
Kristensen, Leif; Lenschow, Donald H.; Gurarie, David;
2010-01-01
We have developed a simple, steady-state, one-dimensional second-order closure model to obtain continuous profiles of turbulent fluxes and mean concentrations of non-conserved scalars in a convective boundary layer without shear. As a basic tool we first set up a model for conserved species...... with standard parameterizations. This leads to formulations for profiles of the turbulent diffusivity and the ratio of temperature-scalar covariance to the flux of the passive scalar. The model is then extended to solving, in terms of profiles of mean concentrations and fluxes, the NO x –O3 triad problem...... layer, the problem reduces to solving two differential equations for the concentration and the flux of NO2. The boundary conditions are the three surface fluxes and the fluxes at the top of the boundary layer, the last obtained from the entrainment velocity, and the concentration differences between...
Directory of Open Access Journals (Sweden)
J. Lauros
2010-08-01
Full Text Available We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the vertical profile of particle number distribution does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by biosphere.
Simulation of aerosol concentration inside the atmospheric boundary layer during nucleation days shows highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated suitability of our turbulent mixing scheme in reproducing most important characteristics of particle dynamics inside the atmospheric boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles at the lowest part of the atmospheric boundary layer.
Leaky waves in boundary layer flow
Pralits, Jan
2005-11-01
Linear stability analysis of boundary layer flow is traditionally performed by solving the Orr-Sommerfeld equation (OSE), either in a temporal or a spatial framework. The mode structure of the OSE is in both cases composed of a finite number of discrete modes which decay at infinity in the wall- normal direction y, and a continuous spectrum of propagating modes behaving as (±ik y) when y->∞, with real k. A peculiarity of this structure is that the number of discrete modes changes with the Reynolds number, Re. They indeed seem to disappear behind the continuous spectrum at certain Re. This phenomenon is here investigated by studying the response of the Blasius boundary layer forced instantaneously in space and time. Since the solution of the forced and homogeneous Laplace-transformed problem both depend on the free-stream boundary conditions, it is shown here that a suitable change of variables can remove the branch cut in the Laplace plane. As a result, integration of the inverse Laplace transform along the two sides of the branch cut, which gives rise to the continuous spectrum, can be replaced by a sum of residues corresponding to an additional set of discrete eigenvalues. These new modes grow at infinity in the y direction, and are analogous to the leaky waves found in the theory of optical waveguides, i.e. optical fibers, which are attenuated in the direction of the waveguide but grow unbounded in the direction perpendicular to it.
Boundary-layer and stalling characteristics of two symmetrical NACA low-drag airfoil sections
Mccullough, George B; Gault, Donald E
1947-01-01
Two symmetrical airfoils, an NACA 633-018 and an NACA 631-012, were investigated for the purpose of determining their stalling and boundary-layer characteristics with a view toward the eventual application of this information to the problem of boundary-layer control. Force measurements, pressure distributions, tuft studies, and boundary-layer-profile measurements were made at a value of 5,800,000 Reynolds number. It was found that the 18-percent-thick airfoil stalled progressively from the trailing edge because of separation of the turbulent boundary layer. In contrast, the12-percent-thick airfoil stalled abruptly from a separation of flow near the leading edge before the turbulent boundary layer became subject to separation. From this it was concluded that if high values of lift are to be obtained with thin, high-critical-speed sections by means of boundary-layer control, the work must be directed toward delaying the separation of flow near the leading edge. It was found that the presence of a nose flap on the 12-percent-thick section caused the airfoil to stall in a manner similar to that of the 18-percent-thick section.
PLIF Visualization of Active Control of Hypersonic Boundary Layers Using Blowing
Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Berry, Scott A.
2008-01-01
Planar laser-induced fluorescence (PLIF) imaging was used to visualize the boundary layer flow on a 1/3-scale Hyper-X forebody model. The boundary layer was perturbed by blowing out of orifices normal to the model surface. Two blowing orifice configurations were used: a spanwise row of 17-holes spaced at 1/8 inch, with diameters of 0.020 inches and a single-hole orifice with a diameter of 0.010 inches. The purpose of the study was to visualize and identify laminar and turbulent structures in the boundary layer and to make comparisons with previous phosphor thermography measurements of surface heating. Jet penetration and its influence on the boundary layer development was also examined as was the effect of a compression corner on downstream boundary layer transition. Based upon the acquired PLIF images, it was determined that global surface heating measurements obtained using the phosphor thermography technique provide an incomplete indicator of transitional and turbulent behavior of the corresponding boundary layer flow. Additionally, the PLIF images show a significant contribution towards transition from instabilities originating from the underexpanded jets. For this experiment, a nitric oxide/nitrogen mixture was seeded through the orifices, with nitric oxide (NO) serving as the fluorescing gas. The experiment was performed in the 31-inch Mach 10 Air Tunnel at NASA Langley Research Center.
Chitta, Subhashini; Steinhoff, John
2015-11-01
This paper describes the use of Vorticity Confinement (VC) to efficiently treat complex blunt bodies with thin shed vortex sheets and attached boundary layers. Because these flows involve turbulence in the vortical regions, there is currently no ab initio method to treat them on current or foreseeable computers. In fact, in spite of years of turbulence modeling efforts (such as LES or RANS), serious flaws in aerodynamic design involving vortex shedding may still be left undetected until the expensive prototype or production stage. Our basic premise is that, for a class of real-world problems requiring simulating ensembles of flow conditions for overall accuracy, conventional turbulence models suffer cost constraints. For these reasons, VC is used to rapidly simulate many operating conditions, as is often done in expensive testing programs for flying prototypes, and in realistic simulations. To achieve dramatically lower computational cost, VC treats the entire flow in a uniform, coarse grid with solid surfaces ``immersed'' in the grid so that they can be quickly generated for many configurations with no requirement for adaptive or conforming fine grids. Also, the VC method has the efficiency of panel methods, but the generality and ease of use of Euler equation methods. We would like to thank Dr. Frank Caradonna for his suggestions and support.
A case study of boundary layer ventilation by convection and coastal processes
Dacre, H. F.; Gray, S. L.; Belcher, S. E.
2007-09-01
It is often assumed that ventilation of the atmospheric boundary layer is weak in the absence of fronts, but is this always true? In this paper we investigate the processes responsible for ventilation of the atmospheric boundary layer during a nonfrontal day that occurred on 9 May 2005 using the UK Met Office Unified Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include shallow convection, turbulent mixing followed by large-scale ascent, a sea breeze circulation and coastal outflow. Vertical distributions of tracer are validated qualitatively with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree impressively well. Budget calculations of tracers are performed in order to determine the relative importance of these ventilation processes. Coastal outflow and the sea breeze circulation were found to ventilate 26% of the boundary layer tracer by sunset of which 2% was above 2 km. A combination of coastal outflow, the sea breeze circulation, turbulent mixing and large-scale ascent ventilated 46% of the boundary layer tracer, of which 10% was above 2 km. Finally, coastal outflow, the sea breeze circulation, turbulent mixing, large-scale ascent and shallow convection together ventilated 52% of the tracer into the free troposphere, of which 26% was above 2 km. Hence this study shows that significant ventilation of the boundary layer can occur in the absence of fronts (and thus during high-pressure events). Turbulent mixing and convection processes can double the amount of pollution ventilated from the boundary layer.
Stochastic Structural Stability Theory applied to roll/streak formation in boundary layer shear flow
Farrell, Brian F
2010-01-01
Stochastic Structural Stability Theory (SSST) provides an autonomous, deterministic, nonlinear dynamical system for evolving the statistical mean state of a turbulent system. In this work SSST is applied to the problem of understanding the formation of the roll/streak structures that arise from free-stream turbulence (FST) and are associated with bypass transition in boundary layers. Roll structures in the cross-stream/spanwise plane and associated streamwise streaks are shown to arise as a linear instability of interaction between the FST and the mean flow. In this interaction incoherent Reynolds stresses arising from FST are organized by perturbation streamwise streaks to coherently force perturbation rolls giving rise to an amplification of the streamwise streak perturbation and through this feedback to an instability of the combined roll/streak/turbulence complex. The dominant turbulent perturbation structures involved in supporting the roll/streak/turbulence complex instability are non-normal optimal per...
Segregation in the Atmospheric Boundary Layer - A Discussion
Dlugi, Ralph; Berger, Martina; Zelger, Michael; Hofzumahaus, Andreas; Rohrer, Franz; Holland, Frank; Lu, Keding; Tsokankunku, Anywhere; Sörgel, Matthias; Kramm, Gerhard; Mölders, Nicole
2016-04-01
Segregation is a well known topic in technical chemistry and means an incomplete mixing of the reactants. Incomplete mixing reduces the rate of reaction which is of utmost importance in technical chemistry but has been payed less attention in atmospheric chemistry. Different observational and modelling studies on chemical reactions in the turbulent and convective atmospheric boundary layer are analysed for the influences of segregation in the systems NO ‑ NO2 ‑ O3 and OH + V OCs (with main focus on isoprene). Also some estimates on reactions like HO2 + NO (an important recycling mechanism for OH) will be given. Especially, different terms of the intensity of segregation IS (correlation coefficients, standard deviations of mixing ratios) are compared and are related to characteristics of the flow regimes, such as mixing conditions and Damköhler numbers. Also influences of fluctuations of actinic fluxes are discussed which influence the mostly photo chemically driven reactions that were investigated.
Unsteady Phenomena in Shock Wave/Boundary Layer Interaction
Dolling, D. S.
1993-01-01
A brief review is given of the unsteadiness of shock wave/turbulent boundary layer interaction. The focus is on interactions generated by swept and unswept compression ramps, by flares, steps and incident shock waves, by cylinders and blunt fins, and by glancing shock waves. The effects of Mach number, Reynolds number, and separated flow scale are discussed as are the physical causes of the unsteadiness. The implications that the unsteadiness has for interpreting time-average surface and flowfield data, and for comparisons of such experimental data with computation, is also briefly discussed. Finally, some suggestions for future work are given. It is clear that there are large gaps in the data base and that many aspects of such phenomena are poorly understood. Much work remains to be done.
Efficiency of eddy mixing in a stable stratified atmospheric boundary layer
Kurbatskiy, A. F.; Kurbatskaya, L. I.
2011-12-01
Based on a mesoscale RANS model of turbulence, the behavior of turbulent eddy mixing parameters is found to agree with the latest data of laboratory and atmospheric measurements. Some problems of the description of turbulent eddy mixing in the atmospheric boundary layer are studied. When the flow transforms to an extremely stable state, in particular, it is found the flux Richardson number Ri f can change nonmonotonically: it increases with increasing gradient Richardson number Rig until the state of saturation is reached at Ri g ≃ 1 and then decreases. The behavior of the coefficients of eddy diffusion of momentum and heat agrees with the concept of momentum (but not heat) transfer by internal waves propagating in an extremely stable atmospheric boundary layer.
“Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”
Energy Technology Data Exchange (ETDEWEB)
Ferrare, Richard [NASA Langley Research Center, Hampton, VA (United States); Turner, David [National Oceanic and Atmospheric Administration (NOAA) National Severe Storms Lab., Norman, OK (United States)
2015-01-13
Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.
Investigation of turbulent plane mixing layer using generalized differential quadrature
Energy Technology Data Exchange (ETDEWEB)
Basirat Tabrizi, H.; Rezaei Niya, S.M.; Fariborz, S.J. [Amirkabir Univ. of Tech., Mechanical Engineering Dept., Tehran (Iran, Islamic Republic of)]. E-mail: hbasirat@aut.ac.ir; H.Basirat@dal.ca
2004-07-01
There is considerable interest in two-dimensional turbulent mixing layer, to name a few e.g. nature, combustion chamber, premixers of gas turbine combustor and many other technological applications. There features are the presence of large vortical structure, free turbulent characteristics, asymptotic behavior, faster growth rate. Some of the parameters that are known to affect the mixing layer behavior are investigated through the numerical models and experimental analysis during these past decades. A suitable solution for turbulent plane mixing layer requires the use of variable mesh size and an appropriate discretization scheme. The Generalized Differential Quadrature (GDQ) method is utilized to solve the problem. It can be a tool for evaluating the equations obtained for plane mixing layer. The present approach works well by refining mesh size, simplifying the calculation algorithms and less time for calculation anticipated. The numerical simulation is compared with the reported numerical and experimental results of others. (author)
Velocities, turbulence, and skin friction in a deep-sea logarithmic layer
Gust, Giselher; Weatherly, Georges L.
1985-05-01
Speed, turbulence, skin friction, and drag measurements made with metal-clad hot wires, epoxy-coated hot films, and Savonius rotors are reported for a deep-sea boundary layer at a water depth of ˜5000 m. They include data from heights z < 30 cm, a region hitherto only investigated in detail by Chriss and Caldwell (1982) for a shelf site. A mean speed logarithmic layer was observed at 3 < z < 200 cm. The difference between the friction velocity u*log determined from the speed profiles and the skin friction u*skin measured by flush-mounted hot films was statistically significant at the 95% level in five out of eight analyzed burst intervals. This result suggests form-drag influence on the vertical mean flow profile. Although identified from the mean speed data as a hydrodynamically rough boundary layer, the turbulence and bottom stress intensities at the deep-sea site were found to be reduced by more than 40% compared to smooth-wall open-channel flow and planetary boundary layers. Applicability of the universal law of the wall has not been confirmed for this deep-sea boundary layer.
International Nuclear Information System (INIS)
Results of the experimental investigation on the development of boundary layers on flat plates with the smooth surface and with the surfaces covered by sandpapers 60-grit, 80-grit and 100-grit under external turbulent flows of various grid turbulence scales are presented. The displacement thickness Reynolds number was at the most 2000 during experiments. The investigated boundary layers belong to the class of layers close to the lower limit of admissible roughness region, k+ = 4.6, 5.7 and 8.7 respectively. It was certified that both the wall roughness and the free stream turbulence accelerate individually the boundary layer development from the laminar state of boundary layer to turbulence. Next it was ascertained that their joint effect amplifies the development of boundary layers so, that the surface roughness impact is predominating but the actions of intensity and length scale of the free stream turbulence disturbances are also significant. With the increasing roughness number the initial region with a pseudo-laminar flow structure and the transitional region become shorter.
An Observational Study of the Structure of the Nocturnal Boundary Layer
DEFF Research Database (Denmark)
Mahrt, Larry; Heald, R. C.; Lenschow, D. H.;
1980-01-01
to remain constant or decrease with time. Since the inversion layer extends above the low level wind maximum and shear is small in the region of the low level jet, the Richardson number reaches a maximum at the jet level and then decreases again with height. As a result, turbulence is observed......In an effort to describe the basic vertical structure of the nocturnal boundary layer, observations from four experiments are analyzed. During the night, the depth of significant cooling appears to increase with time while the depth of the turbulence and height of the low level wind maximum tend...
Strong, Stuart L.; Meade, Andrew J., Jr.
1992-01-01
Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.
Application of Arnoldi method to boundary layer instability
Zhang, Yong-Ming; Luo, Ji-Sheng
2015-12-01
The Arnoldi method is applied to boundary layer instability, and a finite difference method is employed to avoid the limit of the finite element method. This modus operandi is verified by three comparison cases, i.e., comparison with linear stability theory (LST) for two-dimensional (2D) disturbance on one-dimensional (1D) basic flow, comparison with LST for three-dimensional (3D) disturbance on 1D basic flow, and comparison with Floquet theory for 3D disturbance on 2D basic flow. Then it is applied to secondary instability analysis on the streaky boundary layer under spanwise-localized free-stream turbulence (FST). Three unstable modes are found, i.e., an inner mode at a high-speed center streak, a sinuous type outer mode at a low-speed center streak, and a sinuous type outer mode at low-speed side streaks. All these modes are much more unstable than Tollmien-Schlichting (TS) waves, implying the dominant contribution of secondary instability in bypass transition. The modes at strong center streak are more unstable than those at weak side streaks, so the center streak is ‘dangerous’ in secondary instability. Project supported by the National Natural Science Foundation of China (Grant Nos. 11202147, 11332007, 11172203, and 91216111) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032120007).
International Nuclear Information System (INIS)
An analytical model for the dispersion of particulates and finely divided material released into the atmosphere near the ground is presented. The possible precipitation when the particles are dense enough and large enough to have deposition velocity, is taken into consideration. The model is derived analytically in the mixing layer or Ekman boundary layer where the mixing process is a direct consequence of turbulent and convective motions generated in the boundary layer. (author)
Halogen chemistry in the trosopheric boundary layer
Plane, John M. C.; Mahajan, Anoop; Oetjen, Hilke
Iodine and bromine chemistry can affect the lower troposphere in several important ways: (1), change the oxidizing capacity by destroying ozone and affecting the hydroxyl radical concentration; (2), react efficiently with dimethyl sulphide (in the marine boundary layer) and mercury (in the polar regions); and (3), form ultra-fine particles (iodine oxides are highly condensable), which may contribute to cloud condensation nuclei and hence affect climate. This paper will report measurements of IO, BrO, OIO and I2 , made by the technique of differential optical absorption spectroscopy (DOAS), in several contrasting environments: equatorial clean mid-ocean (Cape Verde); mid-latitude clean coastal (Mace Head, Ireland); polluted coastal (Roscoff, France); and the polar boundary layer (Halley Bay, Antarctica and Hudson Bay, Canada). Both IO and BrO are observed in all these locations at concentrations (> 1 pptv), and so have a major impact on (1) and (2) above. The concentrations of IO in coastal Antarctica, and coastlines rich in certain species of macro-algae, are large enough (> 10 pptv) to promote ultra-fine particle formation. Recently, the first satellite measurements of IO, using the SCIAMACHY instrument on ENVISAT, have been reported by two groups; their results will be compared with the ground-based measurements.
DEFF Research Database (Denmark)
Gilling, Lasse
Wind turbines operate in inflow turbulence whether it originates from the shear in the atmospheric boundary layer or from the wake of other wind turbines. Consequently, the airfoils of the wings experience turbulence in the inflow. The main topic of this thesis is to investigate the effect...... of resolved inflow turbulence on airfoil simulations in CFD. The detached-eddy simulation technique is used because it can resolve the inflow turbulence without becoming too computationally expensive due to its limited requirements for mesh resolution in the boundary layer. It cannot resolve the turbulence...... that is formed in attached boundary layers, but the freestream turbulence can penetrate the boundary layer. The idea is that the resolved turbulence from the freestream should mix high momentum flow into the boundary layer and thereby increase the resistance against separation and increase the maximum lift...
FOREWORD: International Conference on Planetary Boundary Layer and Climate Change
Djolov, G.; Esau, I.
2010-05-01
One of the greatest achievements of climate science has been the establisment of the concept of climate change on a multitude of time scales. The Earth's complex climate system does not allow a straightforward interpretation of dependences between the external parameter perturbation, internal stochastic system dynamics and the long-term system response. The latter is usually referred to as climate change in a narrow sense (IPCC, 2007). The focused international conference "Planetary Boundary Layers and Climate Change" has addressed only time scales and dynamical aspects of climate change with possible links to the turbulent processes in the Planetary Boundary Layer (PBL). Although limited, the conference topic is by no means singular. One should clearly understand that the PBL is the layer where 99% of biosphere and human activity are concentrated. The PBL is the layer where the energy fluxes, which are followed by changes in cryosphere and other known feedbacks, are maximized. At the same time, the PBL processes are of a naturally small scale. What is the averaged long-term effect of the small-scale processes on the long-term climate dynamics? Can this effect be recognized in existing long-term paleo-climate data records? Can it be modeled? What is the current status of our theoretical understanding of this effect? What is the sensitivity of the climate model projections to the representation of small-scale processes? Are there significant indirect effects, e.g. through transport of chemical components, of the PBL processes on climate? These and other linked questions have been addressed during the conference. The Earth's climate has changed many times during the planet's history, with events ranging from ice ages to long periods of warmth. Historically, natural factors such as the amount of energy released from the Sun, volcanic eruptions and changes in the Earth's orbit have affected the Earth's climate. Beginning late in the 18th century, human activities
Wave breaking on turbulent energy budget in the ocean surface mixed layer
Institute of Scientific and Technical Information of China (English)
SUN Qun; GUAN Changlong; SONG Jinbao
2008-01-01
As an important physical process at the air-sea interface.wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML).When breaking waves occur at the ocean surface,turbulent kinetic energy (TKE) is input downwards,and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced.A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget wimin OSML.The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input.The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered.Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE,which is twice higher than that of non-wave breaking.The shear production of TKE decreased bv 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing.As a result.a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer.Below the sublayer,the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner,1994).
Jähn, Michael; Muñoz-Esparza, Domingo; Chouza, Fernando; Reitebuch, Oliver; Knoth, Oswald; Haarig, Moritz; Ansmann, Albert; Tegen, Ina
2016-04-01
Large eddy simulations (LESs) with ASAM (All Scale Atmospheric Model) are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, we use the cell perturbation method based on finite amplitude potential temperature perturbations. This method is now also validated for moist boundary layer simulations with open lateral boundary conditions. Observational data obtained from the SALTRACE (Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment) field campaign is used for both model initialization and comparisons. Several sensitivity tests are carried out to demonstrate the problems related to "gray zone modeling" or when the turbulent marine boundary layer flow is replaced by laminar winds. Additional simulation cases deal with modified surface characteristics and their impacts on the simulation results. Saharan dust layers that reach Barbados via long-range transport over the North Atlantic are included as passive tracers in the model. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom at z ≈ 1800 m become apparent. The exact position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability (especially inversion strength) and wind shear. Comparisons of LES model output with lidar data show similarities in the downwind vertical wind structure and accurately reproduces the development of the daytime convective boundary layer measured by the Raman lidar.
Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus
2015-11-01
Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.
PERIODIC BOUNDARY CONDITION IN SIMULATION OF TURBULENT FLOW
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
In this paper, the simulations of the three-di-mensional turbulent flows through hydraulic turbine compo-nents[1] were conducted based on the standard k-ε turbulentmodel with body-fitted coordinates and staggering grid sys-tem. The SIMPLEC algorithm was adopted in the numericalprocedure. A new method to treat the periodic boundary con-dition was used. The calculated results of the new methodwere compared with those of traditional ones. These resultsindicate that the new method can give much better results,and can be used in simulating flow through rotational impel-lers. The presented method can be combined with alternativeturbulent model or employed in large eddy simulation.
Indian Academy of Sciences (India)
A N V Satyanarayana; U C Mohanty; N V Sam; Swati Basu; V N Lykossov
2000-06-01
An attempt has been made to study the marine boundary layer characteristics over Bay of Bengal using BOBMEX (Bay of Bengal and Monsoon Experiment) pilot experiment data sets, which was conducted between 23rd October and 12th November 1998 on board ORV Sagar Kanya. A one-dimensional multi- level atmospheric boundary layer with TKE- closure scheme is employed to study the marine boundary layer characteristics. In this study two synoptic situations are chosen: one represents an active convection case and the other a suppressed convection. In the present article the marine boundary layer charac- teristics such as temporal evolution of turbulent kinetic energy, height of the boundary layer and the air- sea exchange processes such as sensible and latent heat fluxes, drag coefficient for momentum are simulated during both active and suppressed convection. Marine boundary layer height is estimated from the vertical profiles of potential temperature using the stability criterion. The model simulations are compared with the available observations.
Time-dependent boundary-layer response in a propeller slipstream
Howard, Richard M.; Miley, Stan J.
1989-01-01
The time-dependent behavior of a wing boundary layer immersed in a propeller slipstream has been studied experimentally in wind-tunnel tests and in flight. Hot-wire anemometer measurements were made through the boundary layer for time-dependent, ensemble-average velocity and turbulence-intensity profiles at various chord locations. The boundary layer has a coherent, time-dependent cycle of transitional behavior, varying from a laminar to a turbulent-transitional state. Local drag coefficients determined from the velocity profiles for the freewheeling propeller case in flight show that the time-dependent drag in the propeller slipstream varies from the undisturbed laminar value to a value less than that predicted for fully turbulent flow. Local drag coefficients determined from the thrusting propeller case in the wind tunnel indicate that the effects of the slipstream are to enhance the stability of the boundary layer and to reduce the drag coefficient in the laminar portion of the cycle below its undisturbed laminar value.
Structure Identification Within a Transitioning Swept-Wing Boundary Layer
Chapman, Keith; Glauser, Mark
1996-01-01
Extensive measurements are made in a transitioning swept-wing boundary layer using hot-film, hot-wire and cross-wire anemometry. The crossflow-dominated flow contains stationary vortices that breakdown near mid-chord. The most amplified vortex wavelength is forced by the use of artificial roughness elements near the leading edge. Two-component velocity and spanwise surface shear-stress correlation measurements are made at two constant chord locations, before and after transition. Streamwise surface shear stresses are also measured through the entire transition region. Correlation techniques are used to identify stationary structures in the laminar regime and coherent structures in the turbulent regime. Basic techniques include observation of the spatial correlations and the spatially distributed auto-spectra. The primary and secondary instability mechanisms are identified in the spectra in all measured fields. The primary mechanism is seen to grow, cause transition and produce large-scale turbulence. The secondary mechanism grows through the entire transition region and produces the small-scale turbulence. Advanced techniques use Linear Stochastic Estimation (LSE) and Proper Orthogonal Decomposition (POD) to identify the spatio-temporal evolutions of structures in the boundary layer. LSE is used to estimate the instantaneous velocity fields using temporal data from just two spatial locations and the spatial correlations. Reference locations are selected using maximum RMS values to provide the best available estimates. POD is used to objectively determine modes characteristic of the measured flow based on energy. The stationary vortices are identified in the first laminar modes of each velocity component and shear component. Experimental evidence suggests that neighboring vortices interact and produce large coherent structures with spanwise periodicity at double the stationary vortex wavelength. An objective transition region detection method is developed using
Allaerts, Dries; Meyers, Johan
2014-05-01
Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as
Institute of Scientific and Technical Information of China (English)
WANG Liang; FU Song
2009-01-01
Based on Reynolds-averaged Navier-Stokes approach, a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows. The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy, ωthe specific dissipation rate and the intermittency factor γ.The particular features of the model are that: 1) k includes the non-turbulent, as well as turbulent fluctuations; 2) a transport equation for the intermittency factor γis proposed here with a source term set to trigger the transition onset; 3) through the introduction of a new length scale normal to wall, the present model employs the local variables only avoiding the use of the integral parameters, like the boundary layer thickness δ,which are often cost-ineffective with the modern CFD (Computational Fluid Dynamics) methods; 4) in the fully turbulent region, the model retreats to the well-known k-ωSST (Shear Stress Transport) model. This model is validated with a number of available experiments on boundary layer transitions including the incompressible, supersonic and hypersonic flows past flat plates, straight/flared cones at zero incidences, etc. It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Based on Reynolds-averaged Navier-Stokes approach,a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows.The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy,ωthe specific dissipation rate and the intermittency factorγ.The particular features of the model are that:1)k includes the non-turbulent,as well as turbulent fluctuations;2)a transport equation for the intermittency factorγis proposed here with a source term set to trigger the transition onset;3)through the introduction of a new length scale normal to wall,the present model employs the local variables only avoiding the use of the integral parameters,like the boundary layer thicknessδ,which are often cost-ineffective with the modern CFD(Computational Fluid Dynamics)methods;4)in the fully turbulent region,the model retreats to the well-known k-ωSST(Shear Stress Transport)model.This model is validated with a number of available experiments on boundary layer transitions including the incompressible,supersonic and hypersonic flows past flat plates,straight/flared cones at zero incidences,etc.It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition.
Halogen chemistry in the marine boundary layer
Plane, J. M. C.; Gomez Martin, J. C.; Kumar, R.; Mahajan, A. S.; Oetjen, H.; Saunders, R. W.
2009-04-01
Important atmospheric sources of iodine include the air-sea exchange of biogenic iodocarbons, and the emission of I2 from macro-algae. The major source of bromine is the release of bromide ions from sea-salt aerosol. The subsequent atmospheric chemistry of these halogens (1), changes the oxidizing capacity of the marine boundary layer by destroying ozone and changing the hydroxyl radical concentration; (2), reacts efficiently with dimethyl sulphide and mercury (in the polar regions); and (3), leads to the formation of ultra-fine particles which may contribute to cloud condensation nuclei (CCN) and hence affect climate. This paper will report observations of IO, BrO, OIO and I2 made by the technique of differential optical absorption spectroscopy, in several contrasting marine environments: the equatorial mid-Atlantic (Cape Verde); mid-latitude clean coastal (Mace Head, Ireland); polluted coastal (Roscoff, France); and the polar marine boundary layer (Hudson Bay, Canada). Both IO and BrO are observed in all these locations at significant concentrations (> 1 pptv), and so have a major impact on (1) and (2) above. To complement the field campaigns we have also carried out wide-ranging laboratory investigation. A new study of OIO photochemistry shows that absorption in the visible bands between 490 and 630 nm leads to I atom production with a quantum yield of unity, which now means that iodine is a particularly powerful ozone-depleting agent. We have also studied the formation and growth kinetics of iodine oxide nano-particles, and their uptake of water, sulphuric acid and di-carboxylic organic acids, in order to model their growth to a size where they can act as CCN. Their ice-nucleating properties will also be reported.
Spectral Gap Energy Transfer in Atmospheric Boundary Layer
Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.
2012-12-01
Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation of 2D and 3D spectra is explained using spectral gap energy transfer. The existence of the spectral gap energy transfer is validated by performing LES for the interaction of large scale circulation with a wall, and studying the evolution of the energy spectra both near to and far from the wall
The role of subsidence in a weakly unstable marine boundary layer: a case study
DEFF Research Database (Denmark)
Mazzitelli, I. M.; Cassol, M.; Miglietta, M.M.;
2014-01-01
constant, and does not exhibit the diurnal cycle characteristic of boundary layers over land. A case study, during summer, showing an anomalous development of the mixed layer under unstable and nearly neutral atmospheric conditions, is selected in the campaign. Subsidence is identified as the main physical......The diurnal evolution of a cloud free, marine boundary layer is studied by means of experimental measurements and numerical simulations. Experimental data belong to an investigation of the mixing height over inner Danish waters. The mixed-layer height measured over the sea is generally nearly...... mechanism causing the sudden decrease in the mixing layer height. This is quantified by comparing radiosounding profiles with data from numerical simulations of a mesoscale model, and a large-eddy simulation model. Subsidence not only affects the mixing layer height, but also the turbulent fluctuations...
Numerical simulations of sink-flow boundary layers over rough surfaces
Yuan, J.; Piomelli, U.
2014-01-01
Turbulent sink flows over smooth or rough walls with sand-grain roughness are studied using large-eddy and direct numerical simulations. Mild and strong levels of acceleration are applied, yielding a wide range of Reynolds number (Reθ = 372 - 2748) and cases close to the reverse-transitional state. Flow acceleration and roughness are shown to exert opposite effects on boundary-layer integral parameters, on the Reynolds stresses, budgets of turbulent kinetic energy, and properties of turbulent structures in the vicinity of the rough surface; statistics exhibit similarity when plotted using inner scaling for cases with the same roughness Reynolds number, k+. Acceleration leads to a decrease of k+, while roughness increases it. For cases with higher k+, the low-speed streaks become destabilized, and turbulent structures near the wall are distributed more uniformly in the wall-parallel plane; they are less extended in the streamwise direction, but more densely packed. Higher k+ also causes decorrelation of the outer-layer hairpin packets with the near-wall structures, probably due to the direct impact of random roughness elements on the hairpin legs. Wall-similarity applies for the fully turbulent cases, in which the outer-layer turbulent statistics are affected by acceleration only. It is shown that being in the hydraulically smooth regime is a necessary condition for reverse-transition, supporting the idea that relaminarization starts from the inner region, where roughness effects dominate.
Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.
2011-01-01
Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.
Atmospheric boundary layers in storms: advanced theory and modelling applications
Zilitinkevich, S. S.; Esau, I. N.; Baklanov, A.
2005-03-01
Turbulent planetary boundary layers (PBLs) control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow). It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral) or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions) depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S were overlooked
Atmospheric boundary layers in storms: advanced theory and modelling applications
Directory of Open Access Journals (Sweden)
S. S. Zilitinkevich
2005-01-01
Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S
Mean motion and trajectories of heavy particles falling through a boundary layer
Energy Technology Data Exchange (ETDEWEB)
Stout, J.E.; Arya, S.P. [North Carolina State Univ., Raleigh, NC (United States)
1994-12-31
As particles fall through a turbulent boundary layer they experience a rather complex and unique time series of aerodynamic forces and, thus, each individual particle follows a rather complex and unique trajectory to the surface. For sufficiently large and heavy particles, the turbulence induced particle motion can be thought of as a small perturbation superimposed on the mean trajectory. By ignoring the turbulent contribution to particle motion it is possible to calculate the trajectory of a particle due to the mean flow alone. The mean trajectory provides an estimate of the ensemble-averaged path of a set of particles released from a given point in the atmosphere. The effect of turbulence on individual particle trajectories, the distribution of particle displacements from the mean trajectory, and their deposition patterns on the surface will be investigated in a separate study, using a random walk model.
Directory of Open Access Journals (Sweden)
S. Galmarini
2007-06-01
Full Text Available The diurnal atmospheric boundary layer evolution of the 222Rn decaying family is studied by using a state-of-the-art large-eddy simulation model. In particular, a diurnal cycle observed during the Wangara experiment is successfully simulated together with the effect of diurnal varying turbulent characteristics on radioactive compounds in a secular equilibrium. This study allows us to clearly analyze and identify the boundary layer processes driving the 222Rn and its progeny concentration behaviors. The activity disequilibrium observed in the nocturnal boundary layer is due to the proximity of the radon source and the trapping of fresh 222Rn close to the surface induced by the weak vertical transport. During the morning transition, the secular equilibrium is fast restored by the vigorous turbulent mixing. The evolution of 222Rn and its progeny concentration in the unsteady growing convective boundary layer depends on the strength of entrainment events.
Jähn, M.; Muñoz-Esparza, D.; Chouza, F.; Reitebuch, O.; Knoth, O.; Haarig, M.; Ansmann, A.
2016-01-01
Large eddy simulations (LESs) are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. Due to the presence of a topographically structured island surface in the domain center, the model setup has to be designed with open lateral boundaries. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, we use the cell perturbation method based on finite amplitude potential temperature perturbations. In this work, this method is for the first time tested and validated for moist boundary layer simulations with open lateral boundary conditions. Observational data obtained from the SALTRACE field campaign is used for both model initialization and a comparison with Doppler wind and Raman lidar data. Several numerical sensitivity tests are carried out to demonstrate the problems related to "gray zone modeling" when using coarser spatial grid spacings beyond the inertial subrange of three-dimensional turbulence or when the turbulent marine boundary layer flow is replaced by laminar winds. Especially cloud properties in the downwind area west of Barbados are markedly affected in these kinds of simulations. Results of an additional simulation with a strong trade-wind inversion reveal its effect on cloud layer depth and location. Saharan dust layers that reach Barbados via long-range transport over the North Atlantic are included as passive tracers in the model. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom at z ≈ 1800 m become apparent. The exact position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability (especially inversion strength) and wind shear. Comparisons of LES model output with wind lidar data show similarities in the downwind vertical wind structure. Additionally, the model results accurately reproduce the
Petenko, Igor; Argentini, Stefania; Casasanta, Giampietro; Kallistratova, Margarita; Sozzi, Roberto; Viola, Angelo
2016-11-01
In the period January-February 2014, observations were made at the Concordia station, Dome C, Antarctica to study atmospheric turbulence in the boundary layer using a high-resolution sodar. The turbulence structure was observed beginning from the lowest height of about 2 m, with a vertical resolution of less than 2 m. Typical patterns of the diurnal evolution of the spatio-temporal structure of turbulence detected by the sodar are analyzed. Here, we focus on the wavelike processes observed within the transition period from stable to unstable stratification occurring in the morning hours. Thanks to the high-resolution sodar measurements during the development of the convection near the surface, clear undulations were detected in the overlying turbulent layer for a significant part of the time. The wavelike pattern exhibits a regular braid structure, with undulations associated with internal gravity waves attributed to Kelvin-Helmholtz shear instability. The main spatial and temporal scales of the wavelike structures were determined, with predominant periodicity of the observed wavy patterns estimated to be 40-50 s. The horizontal scales roughly estimated using Taylor's frozen turbulence hypothesis are about 250-350 m.