WorldWideScience

Sample records for boundary layer transition

  1. Instabilities and transition in boundary layers

    Indian Academy of Sciences (India)

    N Vinod; Rama Govindarajan

    2005-03-01

    Some recent developments in boundary layer instabilities and transition are reviewed. Background disturbance levels determine the instability mechanism that ultimately leads to turbulence. At low noise levels, the traditional Tollmien–Schlichting route is followed, while at high levels, a `by-pass' route is more likely. Our recent work shows that spot birth is related to the pattern of secondary instability in either route.

  2. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    Science.gov (United States)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  3. Bypass transition and spot nucleation in boundary layers

    CERN Document Server

    Kreilos, Tobias; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S; Eckhardt, Bruno

    2016-01-01

    The spatio-temporal aspects of the transition to turbulence are considered in the case of a boundary layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly fitted from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  4. DNS Study on Physics of Late Boundary Layer Transition

    CERN Document Server

    Liu, Chaoqun

    2014-01-01

    This paper serves as a review of our recent new DNS study on physics of late boundary layer transition. This includes mechanism of the large coherent vortex structure formation, small length scale generation and flow randomization. The widely spread concept vortex breakdown to turbulence,which was considered as the last stage of flow transition, is not observed and is found theoretically incorrect. The classical theory on boundary layer transition is challenged and we proposed a new theory with five steps, i.e. receptivity, linear instability, large vortex formation, small length scale generation, loss of symmetry and randomization to turbulence. We have also proposed a new theory about turbulence generation. The new theory shows that all small length scales (turbulence) are generated by shear layer instability which is produced by large vortex structure with multiple level vortex rings, multiple level sweeps and ejections, and multiple level negative and positive spikes near the laminar sub-layers.Therefore,...

  5. Modeling and computation of boundary-layer flows laminar, turbulent and transitional boundary layers in incompressible and compressible flows

    CERN Document Server

    Cebeci, Tuncer

    2005-01-01

    This second edition of our book extends the modeling and calculation of boundary-layer flows to include compressible flows. The subjects cover laminar, transitional and turbulent boundary layers for two- and three-dimensional incompressible and compressible flows. The viscous-inviscid coupling between the boundary layer and the inviscid flow is also addressed. The book has a large number of homework problems.

  6. Turbulent spots detection during boundary layer by-pass transition

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel; Elsner, W.; Mazur, Oton; Uruba, Václav; Wysocki, M.

    -, č. 80 (2009), s. 16-19. ISSN N R&D Projects: GA AV ČR(CZ) IAA200760614; GA MŠk MEB050810 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulent spot * boundary layer * by-pass transition * turbulent spot detection Subject RIV: BK - Fluid Dynamics

  7. Numerical studies on laminar-turbulent transition in boundary layers

    International Nuclear Information System (INIS)

    Laminar-turbulent transition in flat-plate boundary layers is investigated by direct numerical solution of the full Navier-Stokes equations. Both forced transition (in parallel Blasius flow excited by a vibrating ribbon) and natural transition (in a decelerating boundary layer) are studied. In both cases, an initial state containing random noise is employed to eliminate bias in selecting unstable waves. In the simulations of ribbon-induced transition, close agreement with experiments (Saric et al. (1984)) is obtained for low-amplitude two-dimensional Tollmien-Schlichting waves-producing subharmonic breakdown (C- or H-type). For high amplitudes, a mixture of subharmonic and fundamental structures is observed. Clear-cut fundamental breakdown (K-type) is never obtained. In the simulation of the early stages of natural transition in a decelerating boundary layer, two-dimensional and/or slightly oblique waves initially grow due to the inflectional instability. When they become strong enough, they initiate a secondary instability leading to three dimensional distortion and Λ vortices, in good agreement with experiments (Gad-el-Hak et al. (1984)). The tips of the Λ vortices are rarely aligned with the flow direction, and that they appear locally in apace. A simple wave-interference model accounting for these features of natural transition has been developed. It suggests that multiple waves are active in the secondary instability, and that they are determined by unpredictable initial disturbances. The later stages of transition in a decelerating boundary layer were also studied with higher numerical resolution. The naturally-born Λ vortices undergo breakdown processes similar to those of ribbon-induced Λ vortices. Conversely, this justifies the conventional approach to study laminar-turbulent transition-the vibrating-ribbon technique

  8. On the Effects of Surface Roughness on Boundary Layer Transition

    Science.gov (United States)

    Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack

    2009-01-01

    Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.

  9. Grain-boundary layering transitions and phonon engineering

    Science.gov (United States)

    Rickman, J. M.; Harmer, M. P.; Chan, H. M.

    2016-09-01

    We employ semi-grand canonical Monte Carlo simulation to investigate layering transitions at grain boundaries in a prototypical binary alloy. We demonstrate the existence of such transitions among various interfacial states and examine the role of elastic fields in dictating state equilibria. The results of these studies are summarized in the form of diagrams that highlight interfacial state coexistence in this system. Finally, we examine the impact of layering transitions on the phononic properties of the system, as given by the specific heat and, by extension, the thermal conductivity. Thus, it is suggested that by inducing interfacial layering transitions via changes in temperature or pressure, one can thereby engineer thermodynamic and transport properties in materials.

  10. Experiments on the active control of transitional boundary layers

    Science.gov (United States)

    Nelson, P. A.; Rioual, J.-L.; Fisher, M. J.

    Experimental results are presented which demonstrate that the streamwise position of the transition region of a flat plate boundary layer can be actively controlled. The means of control is through the application of suction through the surface of the plate, a progressive increase in suction rate being capable of producing transition at progressively larger distances downstream from the plate leading edge. A simple digital feedback regulator based on an integral control law is shown to be most effective in regulating the position of transition, an error signal being derived from measurements of pressure fluctuations on the surface of the plate.

  11. Transition in Hypersonic Boundary Layers: Role of Dilatational Waves

    CERN Document Server

    Zhu, Yiding; Yuan, Huijing; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2015-01-01

    Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 quiet wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second instability acoustic mode is the key modulator of the transition process. The second mode experiences a rapid growth and a very fast annihilation due to the effect of bulk viscosity. The second mode interacts strongly with the first vorticity mode to directly promote a fast growth of the latter and leads to immediate transition to turbulence.

  12. Fluid Mechanics and Heat Transfer in Transitional Boundary Layers

    Science.gov (United States)

    Wang, Ting

    2007-01-01

    Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.

  13. Calculation of transitional boundary layer under pressure gradient

    International Nuclear Information System (INIS)

    A modified κ-ε model is proposed for calculation of transitional boundary-layer flows under pressure gradient with high freestream turbulence intensity. In order to develop the model for this problem, the flow is divided into three regions; pre-transition region, transition region and fully turbulent region. The effect of pressure gradient is taken into account in a stream-wise intermittency factor, bridging the eddy-viscosities between in the pre-transition region and in the fully turbulent region. From intermittency data in various flows, Narashima's intermittency function, F(γ), has been found to be proportional to xn according to the extent of pressure gradient. Three empirical correlations of intermittency factor being analyzed, the best one was chosen to calculate three benchmark cases of bypass transition under pressure gradient. It was found that the variations of skin friction and shape factor as well as the profiles of mean velocity in the transition region were very satisfactorily predicted

  14. Delaying natural transition of a boundary layer using smooth steps

    CERN Document Server

    Xu, Hui; Sherwin, Spencer J

    2015-01-01

    The boundary layer flow over a smooth forward-facing stepped plate is studied with particular emphasis on the delay of the transition to turbulence. The interaction between the Tollmien-Schlichting (T-S) waves and the base flow over a single/two forward facing smooth steps is conducted by linear analysis indicating the amplitude of the T-S waves are attenuated in the boundary layer over a single smooth plate. Furthermore, we show that two smooth forward facing steps give rise to a further reduction of the amplitude of the T-S waves. A direct numerical simulation (DNS) is performed for the two smooth forward steps correlating favourably with the linear analysis and showing that for the investigated parameters, the K-type transition is inhibited whereas the turbulence onset of the H-type transition is postponed albeit not suppressed. Transition is indeed delayed and drag reduced for both these transition scenarios suggesting smooth forward facing steps could be leveraged as a passive flow control strategy to de...

  15. Transition Delay in Hypersonic Boundary Layers via Optimal Perturbations

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.

  16. Characteristics of turbulent spots in transitional boundary layers

    Science.gov (United States)

    Marxen, Olaf; Zaki, Tamer

    2015-11-01

    The laminar-turbulent transition process in a flat-plate boundary layer beneath free-stream turbulence takes place through the inception and spreading of confined patches of turbulence in an otherwise laminar flow. These patches, also referred to as turbulent spots, result from a secondary instability of the Klebanoff streaks in the pre-transitional region. The dynamics of turbulence in the spots are investigated by analyzing data sets obtained from direct numerical simulations. Conditionally-averaged and spot-ensemble-averaged statistics are evaluated and describe the flow in the intermittent transition zone. Both mean-flow and disturbance root mean square levels obtained from conditional averaging agree very well with results for fully turbulent flows, in particular near the wall and at high intermittency levels. At relatively low intermittency, the spatial inhomogeneity of turbulence within the spots is important, and is examined using ensemble averaging of turbulent patches that have comparable volume and a similar streamwise location.

  17. On Hairpin Vortices in a Transitional Boundary Layer

    Czech Academy of Sciences Publication Activity Database

    Hladík, Ondřej; Jonáš, Pavel; Uruba, Václav

    Liberec : Technical University of Liberec, 2011 - (Vít, T.; Dančová, P.; Novotný, P.), s. 163-170 ISBN 978-80-7372-784-0. - (Vol. 2). [Experimental Fluid Mechanics 2011. Jičín (CZ), 22.11.2011-25.11.2011] R&D Projects: GA ČR GA101/08/1112; GA ČR GAP101/10/1230 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulence transition * boundary layer * hairpin vortex Subject RIV: BK - Fluid Dynamics http:// orion .kez.tul.cz/efm/

  18. Bypass transition of the bottom boundary layer under solitary wave

    Science.gov (United States)

    Sadek, Mahmoud; Diamessis, Peter; Parras, Luis; Liu, Philip

    2015-11-01

    The transition to turbulence in the bottom boundary layer (BBL) flow driven by a soliton-like pressure gradient in an oscillating water tunnel (an approximation for the BBL under solitary waves) is investigated using hydrodynamic linear stability theory and DNS. As observed in the laboratory experiment by Sumer et al. (2010), two possible transition scenarios exist. The first scenario is associated with the classical transition resulting from the breakdown of the exponentially growing 2-D Tollmien-Schlichting waves. The alternative scenario; i.e., bypass transition; takes place through formation of localized turbulent spots. The investigation of the latter transition scenario is performed in two steps. The first step consists of reformulating the linear stability analysis in the non-modal framework for the purpose of finding the optimum disturbance characteristics which lead to the formation of those turbulent spots. In the second step, the computed optimum noise structure is inserted in the 3D DNS in order to induce the formation of the turbulent spots and effectively simulate the bypass transition observed experimentally.

  19. Recommendations for Hypersonic Boundary Layer Transition Flight Testing

    Science.gov (United States)

    Berry, Scott A.; Kimmel, Roger; Reshotko, Eli

    2011-01-01

    Much has been learned about the physics underlying the transition process at supersonic and hypersonic speeds through years of analysis, experiment and computation. Generally, the application of this knowledge has been restricted to simple shapes like plates, cones and spherical bodies. However, flight reentry vehicles are in reality never simple. They typically are highly complex geometries flown at angle of attack so three-dimensional effects are very important, as are roughness effects due to surface features and/or ablation. This paper will review our present understanding of the physics of the transition process and look back at some of the recent flight test programs for their successes and failures. The goal of this paper is to develop rationale for new hypersonic boundary layer transition flight experiments. Motivations will be derived from both an inward look at what we believe constitutes a good flight test program as well as an outward review of the goals and objectives of some recent US based unclassified proposals and programs. As part of our recommendations, this paper will address the need for careful experimental work as per the guidelines enunciated years ago by the U.S. Transition Study Group. Following these guidelines is essential to obtaining reliable, usable data for allowing refinement of transition estimation techniques.

  20. Structure Identification Within a Transitioning Swept-Wing Boundary Layer

    Science.gov (United States)

    Chapman, Keith; Glauser, Mark

    1996-01-01

    Extensive measurements are made in a transitioning swept-wing boundary layer using hot-film, hot-wire and cross-wire anemometry. The crossflow-dominated flow contains stationary vortices that breakdown near mid-chord. The most amplified vortex wavelength is forced by the use of artificial roughness elements near the leading edge. Two-component velocity and spanwise surface shear-stress correlation measurements are made at two constant chord locations, before and after transition. Streamwise surface shear stresses are also measured through the entire transition region. Correlation techniques are used to identify stationary structures in the laminar regime and coherent structures in the turbulent regime. Basic techniques include observation of the spatial correlations and the spatially distributed auto-spectra. The primary and secondary instability mechanisms are identified in the spectra in all measured fields. The primary mechanism is seen to grow, cause transition and produce large-scale turbulence. The secondary mechanism grows through the entire transition region and produces the small-scale turbulence. Advanced techniques use Linear Stochastic Estimation (LSE) and Proper Orthogonal Decomposition (POD) to identify the spatio-temporal evolutions of structures in the boundary layer. LSE is used to estimate the instantaneous velocity fields using temporal data from just two spatial locations and the spatial correlations. Reference locations are selected using maximum RMS values to provide the best available estimates. POD is used to objectively determine modes characteristic of the measured flow based on energy. The stationary vortices are identified in the first laminar modes of each velocity component and shear component. Experimental evidence suggests that neighboring vortices interact and produce large coherent structures with spanwise periodicity at double the stationary vortex wavelength. An objective transition region detection method is developed using

  1. Turbulence transition in the asymptotic suction boundary layer

    CERN Document Server

    Kreilos, Tobias; Schneider, Tobias M; Veble, Gregor; Duguet, Yohann; Schlatter, Philipp; Henningson, Dan S; Eckhardt, Bruno

    2015-01-01

    We study the transition to turbulence in the asymptotic suction boundary layer (ASBL) by direct numerical simulation. Tracking the motion of trajectories intermediate between laminar and turbulent states we can identify the invariant object inside the laminar-turbulent boundary, the edge state. In small domains, the flow behaves like a travelling wave over short time intervals. On longer times one notes that the energy shows strong bursts at regular time intervals. During the bursts the streak structure is lost, but it reforms, translated in the spanwise direction by half the domain size. Varying the suction velocity allows to embed the flow into a family of flows that interpolate between plane Couette flow and the ASBL. Near the plane Couette limit, the edge state is a travelling wave. Increasing the suction, the travelling wave and a symmetry-related copy of it undergo a saddle-node infinite-period (SNIPER) bifurcation that leads to bursting and discrete-symmetry shifts. In wider domains, the structures loc...

  2. Boundary Layer Transition on an Axial Compressor Stator Blade-Wake Passing and Freestream Turbulence Effects

    Science.gov (United States)

    Walker, G. J.; Solomon, W. J.

    2007-01-01

    Quantitative observations of transitional boundary layers in regions of strong flow deceleration on an axial compressor stator blade are reported. Measurements are obtained at a fixed chordwise position, and the blade incidence was varied by changing the compressor throughflow so as to move the transition region relative to the stationary probe. It was thus possible to observe typical boundary layer behavior at various stages of transition in the turbomachine environment. The range of observations covers separating laminar flow at transition onset, and reattachment of intermittently turbulent periodically separated shear layers.

  3. Boundary Layer

    Science.gov (United States)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  4. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    Science.gov (United States)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  5. Assessment of a transitional boundary layer theory at low hypersonic Mach numbers

    Science.gov (United States)

    Shamroth, S. J.; Mcdonald, H.

    1972-01-01

    An investigation was carried out to assess the accuracy of a transitional boundary layer theory in the low hypersonic Mach number regime. The theory is based upon the simultaneous numerical solution of the boundary layer partial differential equations for the mean motion and an integral form of the turbulence kinetic energy equation which controls the magnitude and development of the Reynolds stress. Comparisions with experimental data show the theory is capable of accurately predicting heat transfer and velocity profiles through the transitional regime and correctly predicts the effects of Mach number and wall cooling on transition Reynolds number. The procedure shows promise of predicting the initiation of transition for given free stream disturbance levels. The effects on transition predictions of the pressure dilitation term and of direct absorption of acoustic energy by the boundary layer were evaluated.

  6. Measurements in Transitional Boundary Layers Under High Free-Stream Turbulence and Strong Acceleration Conditions.

    Science.gov (United States)

    Volino, Ralph John

    1995-01-01

    Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong (K = {nuover U_sp{infty} {2}}{dUinftyover dx} as high as 9times 10^{ -6}) acceleration. The high FSTI experiments are the main focus of the work. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. The high FSTI boundary layers undergo transition from a strongly disturbed non-turbulent state to a fully-turbulent state. Due to the stabilizing effect of strong acceleration, the transition zones are of extended length in spite of the high FSTI. Transitional values of skin friction coefficients and Stanton numbers drop below flat-plate, low FSTI, turbulent flow correlations, but remain well above laminar flow values. Mean velocity and temperature profiles exhibit clear changes in shape as the flow passes through transition. Turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. Turbulent transport is strongly suppressed below values in unaccelerated turbulent boundary layers. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Octant analysis shows a fundamental difference between transitional and fully-turbulent boundary layers. Transitional boundary layers are characterized by incomplete mixing compared to fully-turbulent boundary layers. Similar octant analysis results are observed in both low and high FSTI cases. Spectral analysis suggests that the non-turbulent zone of the high FSTI flow is dominated by large scale

  7. Geometry effect of isolated roughness on boundary layer transition investigated by tomographic PIV

    NARCIS (Netherlands)

    Ye, Q.; Schrijer, F.F.J.; Scarano, F.

    2015-01-01

    Transitional flow over isolated roughness elements is investigated in the incompressible flow regime using Tomographic PIV. Three different geometries are considered (micro-ramp, cylinder and square) with same height and span. Their effect on accelerating boundary layer transition is compared and di

  8. Transition prediction for oblique breakdown in supersonic boundary layers with uncertain disturbance spectrum

    OpenAIRE

    Serino, Gennaro; Marxen, Olaf; Pinna, Fabio; Magin, Thierry,; Rambaud, Patrick

    2012-01-01

    Laminar to turbulent transition in supersonic boundary layer is numerically investigated by combining linear stability theory and Uncertainty Quanti cation. Linear stability theory is used to determine the N factor for the eN transition prediction method for a Mach 6 at plate test case. Transition onset location is determined by using the N factor experimen- tally obtained in the facility where the test was carried out. Uncertainty quanti cation is used to compute the proba...

  9. DNS of laminar-turbulent boundary layer transition induced by solid obstacles

    CERN Document Server

    Orlandi, Paolo; Bernardini, Matteo

    2015-01-01

    Results of numerical simulations obtained by a staggered finite difference scheme together with an efficient immersed boundary method are presented to understand the effects of the shape of three-dimensional obstacles on the transition of a boundary layer from a laminar to a turbulent regime. Fully resolved Direct Numerical Simulations (DNS), highlight that the closer to the obstacle the symmetry is disrupted the smaller is the transitional Reynolds number. It has been also found that the transition can not be related to the critical roughness Reynolds number used in the past. The simulations highlight the differences between wake and inflectional instabilities, proving that two-dimensional tripping devices are more efficient in promoting the transition. Simulations at high Reynolds number demonstrate that the reproduction of a real experiment with a solid obstacle at the inlet is an efficient tool to generate numerical data bases for understanding the physics of boundary layers. The quality of the numerical ...

  10. Laminar-turbulent boundary layer transition modeling for turbomachinery flows

    Czech Academy of Sciences Publication Activity Database

    Straka, P.; Příhoda, Jaromír

    -, č. 4 (2010), s. 10-12. ISSN 1211-877X R&D Projects: GA ČR(CZ) GAP101/10/1329; GA AV ČR(CZ) IAA200760614 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbomachinery flow * transitional flow * k-omega turbulence model Subject RIV: BK - Fluid Dynamics

  11. Boundary Layer Transition in the Leading Edge Region of a Swept Cylinder in High Speed Flow

    Science.gov (United States)

    Coleman, Colin P.

    1998-01-01

    Experiments were conducted on a 76 degree swept cylinder to establish the behavior of the attachment line transition process in a low-disturbance level, Mach number 1.6 flow. For a near adiabatic wall condition, the attachment-line boundary layer remained laminar up to the highest attainable Reynolds number. The attachment-line boundary layer transition under the influence of trip wires depended on wind tunnel disturbance level, and a transition onset condition for this flow is established. Internal heating raised the surface temperature of the attachment line to induce boundary layer instabilities. This was demonstrated experimentally for the first time and the frequencies of the most amplified disturbances were determined over a range of temperature settings. Results were in excellent agreement to those predicted by a linear stability code, and provide the first experimental verification of theory. Transition onset along the heated attachment line at an R-bar of 800 under quiet tunnel conditions was found to correlate with an N factor of 13.2. Increased tunnel disturbance levels caused the transition onset to occur at lower cylinder surface temperatures and was found to correlate with an approximate N factor of 1 1.9, so demonstrating that the attachment-line boundary layer is receptive to increases in the tunnel disturbance level.

  12. Boundary Layer Transition During the Orion Exploration Flight Test 1 (EFT-1)

    Science.gov (United States)

    Kirk, Lindsay C.

    2016-01-01

    Boundary layer transition was observed in the thermocouple data on the windside backshell of the Orion reentry capsule. Sensors along the windside centerline, as well as off-centerline, indicated transition late in the flight at approximately Mach 4 conditions. Transition progressed as expected, beginning at the sensors closest to the forward bay cover (FBC) and moving towards the heatshield. Sensors placed in off-centerline locations did not follow streamlines, so the progression of transition observed in these sensors is less intuitive. Future analysis will include comparisons to pre-flight predictions and expected transitional behavior will be investigated. Sensors located within the centerline and off-centerline launch abort system (LAS) attach well cavities on the FBC also showed indications of boundary layer transition. The transition within the centerline cavity was observed in the temperature traces prior to transition onset on the sensors upstream of the cavity. Transition behavior within the off centerline LAS attach well cavity will also be investigated. Heatshield thermocouples were placed within Avcoat plugs to attempt to capture transitional behavior as well as better understand the aerothermal environments. Thermocouples were placed in stacks of two or five vertically within the plugs, but the temperature data obtained at the sensors closest to the surface did not immediately indicate transitional behavior. Efforts to use the in depth thermocouple temperatures to reconstruct the surface heat flux are ongoing and any results showing the onset of boundary layer transition obtained from those reconstructions will also be included in this paper. Transition on additional features of interest, including compression pad ramps, will be included if it becomes available.

  13. Predicting Boundary-Layer Transition on Space-Shuttle Re-Entry

    Science.gov (United States)

    Berry, Scott; Horvath, Tom; Merski, Ron; Liechty, Derek; Greene, Frank; Bibb, Karen; Buck, Greg; Hamilton, Harris; Weilmuenster, Jim; Campbell, Chuck; Bouslog, Stan; Kirk, Ben; Bourland, Garry; Cassady, Amy; Anderson, Brian; Reda, Dan; Reuther, James; Kinder, Gerry; Chao, Dennis; Hyatt, Jay; Barnwell, Maria; Wang, K. C.; Schneider, Steve

    2008-01-01

    The BLT Prediction Tool ("BLT" signifies "Boundary Layer Transition") is provided as part of the Damage Assessment Team analysis package, which is utilized for analyzing local aerothermodynamics environments of damaged or repaired space-shuttle thermal protection tiles. Such analyses are helpful in deciding whether to repair launch-induced damage before re-entering the terrestrial atmosphere.

  14. Application of a transitional boundary-layer theory in the low hypersonic Mach number regime

    Science.gov (United States)

    Shamroth, S. J.; Mcdonald, H.

    1975-01-01

    An investigation is made to assess the capability of a finite-difference boundary-layer procedure to predict the mean profile development across a transition from laminar to turbulent flow in the low hypersonic Mach-number regime. The boundary-layer procedure uses an integral form of the turbulence kinetic-energy equation to govern the development of the Reynolds apparent shear stress. The present investigation shows the ability of this procedure to predict Stanton number, velocity profiles, and density profiles through the transition region and, in addition, to predict the effect of wall cooling and Mach number on transition Reynolds number. The contribution of the pressure-dilatation term to the energy balance is examined and it is suggested that transition can be initiated by the direct absorption of acoustic energy even if only a small amount (1 per cent) of the incident acoustic energy is absorbed.

  15. Heat transfer and fluid mechanics measurements in transitional boundary layers on convex-curved surfaces

    Science.gov (United States)

    Wang, T.; Simon, T. W.

    1987-01-01

    The test section of the present experiment to ascertain the effects of convex curvature and freestream turbulence on boundary layer momentum and heat transfer during natural transition provided a two-dimensional boundary layer flow on a uniformly heated curved surface, with bending to various curvature radii, R. Attention is given to results for the cases of R = infinity, 180 cm, and 90 cm, each with two freestream turbulence intensity levels. While the mild convex curvature of R = 180 cm delays transition, further bending to R = 90 cm leads to no signifucant further delay of transition. Cases with both curvature and higher freestream disturbance effects exhibit the latter's pronounced dominance. These data are pertinent to the development of transition prediction models for gas turbine blade design.

  16. Numerical modeling of the transitional boundary layer over a flat plate

    Science.gov (United States)

    Ivanov, Dimitry; Chorny, Andrei

    2015-11-01

    Our example is connected with fundamental research on understanding how an initially laminar boundary layer becomes turbulent. We have chosen the flow over a flat plate as a prototype for boundary-layer flows around bodies. Special attention was paid to the near-wall region in order to capture all levels of the boundary layer. In this study, the numerical software package OpenFOAM has been used in order to solve the flow field. The results were used in a comparative study with data obtained from Large Eddy Simulation (LES). The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. Presently this model is extended to the LES of the zero-pressure gradient, flat-plate turbulent boundary layer. In current study the time discretization is based on a second order Crank-Nicolson/Adams-Bashforth method. LES solver using Smagorinsky and the one-equation LES turbulence models. The transition models significantly improve the prediction of the onset location compared to the fully turbulent models.LES methods appear to be the most promising new tool for the design and analysis of flow devices including transition regions of the turbulent flow.

  17. Heat transfer and fluid mechanics measurements in transitional boundary layer flows

    Science.gov (United States)

    Wang, T.; Simon, T. W.; Buddhavarapu, J.

    1985-01-01

    Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68 percent and 2.0 percent free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.

  18. Boundary Layer Transition over Blunt Hypersonic Vehicles Including Effects of Ablation-Induced Out-Gassing

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan; Chang, Chau-Lyan; White, Jeffery

    2011-01-01

    Computations are performed to study the boundary layer instability mechanisms pertaining to hypersonic flow over blunt capsules. For capsules with ablative heat shields, transition may be influenced both by out-gassing associated with surface pyrolysis and the resulting modification of surface geometry including the formation of micro-roughness. To isolate the effects of out-gassing, this paper examines the stability of canonical boundary layer flows over a smooth surface in the presence of gas injection into the boundary layer. For a slender cone, the effects of out-gassing on the predominantly second mode instability are found to be stabilizing. In contrast, for a blunt capsule flow dominated by first mode instability, out-gassing is shown to be destabilizing. Analogous destabilizing effects of outgassing are also noted for both stationary and traveling modes of crossflow instability over a blunt sphere-cone configuration at angle of attack.

  19. Reduced-order representation of near-wall structures in the late transitional boundary layer

    OpenAIRE

    Sayadi, Taraneh; Schmid, Peter J.; Nichols, Joseph W.; Moin, Parviz

    2014-01-01

    Direct numerical simulations (DNS) of controlled H- and K-type transitions to turbulence in an M=0.2 (where M is the Mach number) nominally zero-pressure-gradient and spatially developing flat-plate boundary layer are considered. Sayadi, Hamman & Moin (J. Fluid Mech., vol. 724, 2013, pp. 480-509) showed that with the start of the transition process, the skin-friction profiles of these controlled transitions diverge abruptly from the laminar value and overshoot the turbulent estimation. The ob...

  20. Boundary-layer transition measurements on hovering helicopter rotors by infrared thermography

    Science.gov (United States)

    Richter, K.; Schülein, E.

    2014-07-01

    High-speed infrared thermography was applied for boundary-layer transition measurements on the upper side of helicopter rotors. The transition detection is based on the analysis of a single instantaneous thermal image of the rotating blade and allows the determination of both the locations of the onset and of the end of the transition region. Measurements were performed on a Mach-scaled BO105 model rotor for different rotation frequencies. The transition characteristics are presented and compared to two-dimensional numerical simulations, and the measurement scatter is discussed. Additional transition measurements were performed on the main rotors of the DLR research helicopters Eurocopter BO105 and EC135. The transition behavior of the EC135 rotor blade is presented for different cases, and the effect of the contamination of the rotor blade leading edge on the laminar flow is discussed.

  1. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; FU Song

    2009-01-01

    Based on Reynolds-averaged Navier-Stokes approach, a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows. The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy, ωthe specific dissipation rate and the intermittency factor γ.The particular features of the model are that: 1) k includes the non-turbulent, as well as turbulent fluctuations; 2) a transport equation for the intermittency factor γis proposed here with a source term set to trigger the transition onset; 3) through the introduction of a new length scale normal to wall, the present model employs the local variables only avoiding the use of the integral parameters, like the boundary layer thickness δ,which are often cost-ineffective with the modern CFD (Computational Fluid Dynamics) methods; 4) in the fully turbulent region, the model retreats to the well-known k-ωSST (Shear Stress Transport) model. This model is validated with a number of available experiments on boundary layer transitions including the incompressible, supersonic and hypersonic flows past flat plates, straight/flared cones at zero incidences, etc. It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition.

  2. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on Reynolds-averaged Navier-Stokes approach,a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows.The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy,ωthe specific dissipation rate and the intermittency factorγ.The particular features of the model are that:1)k includes the non-turbulent,as well as turbulent fluctuations;2)a transport equation for the intermittency factorγis proposed here with a source term set to trigger the transition onset;3)through the introduction of a new length scale normal to wall,the present model employs the local variables only avoiding the use of the integral parameters,like the boundary layer thicknessδ,which are often cost-ineffective with the modern CFD(Computational Fluid Dynamics)methods;4)in the fully turbulent region,the model retreats to the well-known k-ωSST(Shear Stress Transport)model.This model is validated with a number of available experiments on boundary layer transitions including the incompressible,supersonic and hypersonic flows past flat plates,straight/flared cones at zero incidences,etc.It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition.

  3. Laminar Turbulent Transition in a Boundary Layer Subjected to Weak Free Stream Turbulence

    Science.gov (United States)

    Kenchi, Toshiaki; Matsubara, Masaharu; Ikeda, Toshihiko

    For revealing the transition process in a flat plate boundary layer subjected to a weak free stream turbulence, flow visualization and hot-wire measurements were performed. A weak free stream turbulence was generated by a turbulence grid mounted upstream of the contraction. The flow visualization clearly displayed a transition scenario in which a local two-dimensional wave packet rapidly forms a Λ shape structure and then breaks down to turbulence, resulting in the generation of a turbulent spot. Quantitative measurements performed by using a hot-wire anemometer also confirmed the existence of local Tollmien-Schlichting waves that agreed with the parallel linear theory in terms of their frequency, phase velocity, and the wall-normal distribution of band-pass-filtered fluctuations. For comparison, a boundary layer subjected to a moderate-intensity free stream turbulence was investigated. This investigation showed that streaky structures play an important role in the boundary layer transition, as shown by Matsubara et al. [J. Fluid Mech., 430, (2001), 149-168.] A drastic change occurred in the transition process and this change could be sensitively determined by employing the intensity and/or spectra of the free stream turbulence.

  4. Flat Plate Boundary Layer Transition Affected by the External Turbulence and Surface Roughness

    Czech Academy of Sciences Publication Activity Database

    Hladík, Ondřej; Jonáš, Pavel; Mazur, Oton; Uruba, Václav

    Karlsruhe , 2010. s. 9-9. ISBN N. [GAMM annual meeting 2010 /81./. 22.03.2010-26.03.2010, Karlsruhe ] R&D Projects: GA ČR GA101/08/1112; GA ČR GAP101/10/1230 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer transition * external turbulence * surface roughness Subject RIV: BK - Fluid Dynamics

  5. Computational Investigation of Supersonic Boundary Layer Transition Over Canonical Fuselage Nose Configurations

    Science.gov (United States)

    Choudhari, Meelan M.; Tokugawa, Naoko; Li, Fei; Chang, Chau-Lyan; White, Jeffery A.; Ishikawa, Hiroaki; Ueda, Yoshine; Atobe, Takashi; Fujii, Keisuke

    2012-01-01

    Boundary layer transition over axisymmetric bodies at non-zero angle of attack in supersonic flow is numerically investigated as part of joint research between the National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). Transition over four axisymmetric bodies (namely, Sears-Haack body, semi-Sears-Haack body, 5-degree straight cone and flared cone) with different axial pressure gradients has been studied at Mach 2 in order to understand the effect of axial pressure gradient on instability amplification along the leeward symmetry plane and in the region of nonzero crossflow away from it. Comparisons are made with measured transition data in Mach 2 facilities as well as with predicted and measured transition characteristics for a 5-degree straight cone in a Mach 3.5 low disturbance tunnel. Limitations of using linear stability correlations for predicting transition over axisymmetric bodies at angle of attack are pointed out.

  6. The atmospheric boundary layer evening transitions: an observational and numerical study from two different datasets

    Science.gov (United States)

    Sastre, Mariano; Yagüe, Carlos; Román-Cascón, Carlos; Maqueda, Gregorio; Ander Arrillaga, Jon

    2015-04-01

    In this work we study the temporal evolution of the Atmospheric Boundary Layer (ABL) along the transition period from a diurnal typical convection to a nocturnal more frequently stable situation. This period is known as late afternoon or evening transition, depending on the specific definitions employed by different authors [1]. In order to obtain a proper characterization, we try to learn whether or not the behaviour of these transitional boundary layers is strongly dependent on local conditions. To do so, two sets of evening transitions are studied from data collected at two different experimental sites. These locations correspond to research facilities named CIBA (Spain) and CRA (France), which are the places where atmospheric field campaigns have been conducted during the last years, such as CIBA2008 and BLLAST 2011, respectively. In order to get comparable situations, we focus especially on transitions with weak synoptic forcing, and consider daily astronomical sunset as a reference time. A statistical analysis on main parameters related to the transition is carried out for both locations, and the average behaviour is shown as well as extreme values according to the timing. A similar pattern in the qualitative evolution of many variables is found. Nevertheless, several relevant differences in the progress of key variables are obtained too. Moisture, both from the soil and the air, is thought to have great relevance in explaining many of the differences found between the two sites. Some case studies are explored, focusing on the role played by the atmospheric turbulence. Complementary, numerical experiments are also performed using the Weather Research and Forecast (WRF) mesoscale model, in order to test the role of humidity, by artificially varying it in some of the simulations. [1] Lothon, M. and coauthors (2014): The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys., 14, 10931-10960.

  7. Seasonal analysis of the planetary boundary-layer afternoon and evening transition through observational measurements

    Science.gov (United States)

    Sastre, Mariano; Román-Cascón, Carlos; Yagüe, Carlos; Arrillaga, Jon A.; Maqueda, Gregorio

    2016-04-01

    From a typically convective diurnal situation to a stably stratified nocturnal one, the atmospheric boundary layer (ABL) experiences the so-called afternoon and evening transition. This period is complex to study due to the presence of many different forcings, usually weak and opposite [1]. In this work, the transitional processes are studied by using 6-year data from permanent instrumentation at CIBA, a research center located in the Spanish Northern plateau. These measurements include particulate matter (PM) and turbulent records. Certain variables display a twin pattern in their time evolution for all the seasons, only differing in their absolute values. On the contrary, the air specific humidity behaves differently for each season, which is distinct to the results from a previous study at a different location [2]. Besides, a common pattern of increasing PM values near sunset is found, with a number of influences playing a role in PM concentrations: stability, turbulence and ABL thickness among others. In particular, the competing thermal and mechanical turbulent effects result in PM concentration reduction (settling on the ground or being advected) or increase, depending in each case on the specific season and particle group. Furthermore, the relative importance of the bigger PM (between 2.5 and 10 μm) is linked to the wind minimum around sunset, especially during summer. [1] Lothon, M. and coauthors (2014): The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence, Atmos. Chem. Phys., 14, 10931-10960. [2] Wingo, S. M. and Knupp, K. R. (2015): Multi-platform observations characterizing the afternoon-to-evening transition of the planetary boundary layer in Northern Alabama, USA, Boundary-Layer Meteorol., 155, 29-53.

  8. DNS Study for the origin of the flow Randomization in Late Boundary Layer Transition

    CERN Document Server

    Thapa, Manoj; Liu, Chaoqun

    2014-01-01

    This paper is devoted to the investigation of the origin and mechanism of randomization in late boundary layer transition over a flat plate without pressure gradient. The flow randomization is a crucial phase before flow transition to the turbulent state. According to existing literatures, the randomization was caused by the big background noises and non-periodic spanwise boundary conditions. It was assumed that the large ring structure is affected by background noises first, and then the change of large ring structure affects the small length scales quickly, which directly leads to randomization and formation of turbulence. However, by careful analysis of our high order DNS results, we believe that the internal instability of multiple ring cycles structure is the main reason. What we observed is that randomization begins when the third cycle overlaps the first and second cycles. A significant asymmetric phenomenon is originated from the second cycle in the middle of both streamwise and spanwise directions. M...

  9. Numerical Study on Mechanism of Small Vortex Generation in Boundary Layer Transition

    CERN Document Server

    Lu, Ping

    2014-01-01

    The small vortex generation is a key issue of the mechanism for late flow transition and turbulence generation. It was widely accepted that small length vortices were generated by large vortex breakdown. According to our recent DNS, we find that the hairpin vortex structure is very stable and never breaks down to small pieces. On the other hand, we recognize that there are strong positive spikes besides the ring neck in the spanwise direction. The strongly positive spikes are caused by second sweeps which are generated by perfectly circular and perpendicularly standing vortex rings. The second sweep brings energy from the invisid region downdraft to the bottom of the boundary layers, which generates high shear layers around the positive spikes.Since the high shear layer is not stable, all small length scales (turbulence) are generated around high shear layers especially near the wall surface (bottom of boundary layers). This happens near the ring neck in the streamwise direction and besides the original vorte...

  10. Direct Numerical Simulation of Transition in a Swept-Wing Boundary Layer

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.; Li, Fei

    2013-01-01

    Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing derived from a two-dimensional, partial-differential-equation based eigenvalue computation; and the mode selected for forcing corresponds to the most amplified secondary instability mode which, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. Both the growth of the secondary instability wave and the resulting onset of laminar-turbulent transition are captured within the DNS computations. The growth of the secondary instability wave in the DNS solution compares well with linear secondary instability theory when the amplitude is small; the linear growth is followed by a region of reduced growth resulting from nonlinear effects before an explosive onset of laminar breakdown to turbulence. The peak fluctuations are concentrated near the boundary layer edge during the initial stage of transition, but rapidly propagates towards the surface during the process of laminar breakdown. Both time-averaged statistics and flow visualization based on the DNS reveal a sawtooth transition pattern that is analogous to previously documented surface flow visualizations of transition due to stationary crossflow instability. The memory of the stationary crossflow vortex is found to persist through the transition zone and well beyond the location of the maximum skin friction.

  11. DNS of Laminar-Turbulent Transition in Swept-Wing Boundary Layers

    Science.gov (United States)

    Duan, L.; Choudhari, M.; Li, F.

    2014-01-01

    Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing and the mode selected for forcing corresponds to the most amplified secondary instability mode that, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. An inlet boundary condition is carefully designed to allow for accurate injection of instability wave modes and minimize acoustic reflections at numerical boundaries. Nonlinear parabolized stability equation (PSE) predictions compare well with the DNS in terms of modal amplitudes and modal shape during the strongly nonlinear phase of the secondary instability mode. During the transition process, the skin friction coefficient rises rather rapidly and the wall-shear distribution shows a sawtooth pattern that is analogous to the previously documented surface flow visualizations of transition due to stationary crossflow instability. Fully turbulent features are observed in the downstream region of the flow.

  12. Measurement of ground effect and boundary-layer transition by towing wind tunnel

    International Nuclear Information System (INIS)

    A newly constructed towing wind tunnel facility is introduced. In this wind tunnel, unlike a conventional wind tunnel, a testing model moves in still air on a testing track. This towing wind tunnel facility can therefore simulate highly complex flow between steady ground and a moving model without using a moving belt system. The performance of this facility is first explained. Some results of wings in ground effect experiments and boundary-layer transition experiments obtained using this facility are then given. From these results, we conclude that this facility has enough performance for complex flow testing. (invited paper)

  13. Comparison of transitional intermittency distributions in boundary layers on smooth and rough surface

    Czech Academy of Sciences Publication Activity Database

    Hladík, Ondřej; Jonáš, Pavel; Mazur, Oton; Uruba, Václav

    Žilina : University of Žilina, 2012 - (Lenhard, R.; Kaduchová, K.), s. 53-60 ISBN 978-80-554-0516-2. [International Scientific Conference The Application of Experimental and Numerical Methods in Fluid Mechanics and Energy 2012 /18./. Demanovská dolina (SK), 25.04.2012-27.04.2012] R&D Projects: GA ČR(CZ) GAP101/12/1271 Institutional research plan: CEZ:AV0Z20760514 Keywords : by-pass transition * rough wall boundary layer * CTA anemometry * instantaneous wall friction * intermittency analysis Subject RIV: BK - Fluid Dynamics

  14. Buoyancy reversal, decoupling and the transition from stratocumulus to shallow cumulus topped marine boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Heng; Wu, Chien-Ming; Mechoso, Carlos Roberto [University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles (United States)

    2011-09-15

    The transition in a marine boundary layer (MBL) from stratocumulus topped to shallow cumulus topped is investigated by using a large eddy simulation (LES) model. The experiments performed aim to examine the influence on the transition of (1) the probability of buoyancy reversal at the MBL top (i.e. situations in which the mixture of two air parcels becomes denser than either of the original parcels due to phase change or other nonlinear processes involved in the mixing), and (2) the degree of decoupling in the MBL (i.e. the strength of a shallow stably stratified layer near cloud base). Our results suggest that a stratocumulus-topped MBL is most likely to transit to a cumulus-topped one when (1) there exists high probability of buoyancy reversal at the MBL top, and (2) the MBL is decoupled due to large surface evaporation. We argue that a parameterization that includes representation of those two effects combined has the potential to provide a simple way of predicting the MBL transition in climate models. (orig.)

  15. The effect of wake parameters on the transitional boundary layer on turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Zarzycki, R.; Elsner, W. [Czestochowa University of Technology (Poland). Inst. of Thermal Machinery

    2005-09-15

    This paper presents an experimental analysis of the interaction between wakes and boundary layers on an aerodynamic blade profile. The main objective of this research was to investigate the simultaneous influence of the freestream conditions and wake parameters on the wake-induced transition process. The investigations were performed for two levels of inlet freestream turbulence Tu = 0.4 and 3 per cent. The wakes were generated by cylindrical bars mounted in the rotating wheel. It was shown that wake parameters and especially the turbulence in the wake and wake width have a great influence on the position and extent of the induced transition. The role of free-stream turbulence on the wake structure passing over the blade surface was also emphasized. (author)

  16. Simultaneous Boundary-Layer Transition, Tip Vortex, and Blade Deformation Measurements of a Rotor in Hover

    Science.gov (United States)

    Heineck, James; Schairer, Edward; Ramasamy, Manikandan; Roozeboom, Nettie

    2016-01-01

    This paper describes simultaneous optical measurements of a sub-scale helicopter rotor in the U.S. Army Hover Chamber at NASA Ames Research Center. The measurements included thermal imaging of the rotor blades to detect boundary layer transition; retro-reflective background-oriented schlieren (RBOS) to visualize vortices; and stereo photogrammetry to measure displacements of the rotor blades, to compute spatial coordinates of the vortices from the RBOS data, and to map the thermal imaging data to a three-dimensional surface grid. The test also included an exploratory effort to measure flow near the rotor tip by tomographic particle image velocimetry (tomo PIV)an effort that yielded valuable experience but little data. The thermal imaging was accomplished using an image-derotation method that allowed long integration times without image blur. By mapping the thermal image data to a surface grid it was possible to accurately locate transition in spatial coordinates along the length of the rotor blade.

  17. Seasonal transition and its boundary layer characteristics in Anduo area of Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    ZUO Hongchao; HU Yinqiao; LI Dongliang; L(U) Shihua; MA Yaoming

    2005-01-01

    Using the data, especially the GPS rawinsode data, observed in Anduo area of the Tibetan Plateau during the intensive observation period of GAME/Tibet in 1998, the transition from the dry to the rainy season along with their boundary layer characteristics is analyzed comprehensively. The result shows that the formation of the rainy season in Anduo area is related closely to the general atmospheric circulation. The westerly belt moving north and the southeast damp current are basic conditions for development of the rainy season in Anduo area. In the dry season, the air is drier, air temperature higher, and the atmospheric boundary layer is strongly developed to cause its maximum height to reach about 3550 m. Moreover the sensible heat flux is dominant, and the latent heat flux is small in the interaction of land-atmosphere energy exchange, and a reverse humidity phenomenon occurs frequently. In the rainy season, the air is damper, air temperature lower, and the ABL height, with maximum of only about 2300 m, is lower. And the sensible heat flux becomes much smaller, the latent heat flux much larger in the interaction of land-atmosphere energy exchange. The reverse humidity phenomenon disappears.

  18. New Findings by High-Order DNS for Late Flow Transition in a Boundary Layer

    Directory of Open Access Journals (Sweden)

    Chaoqun Liu

    2011-01-01

    Full Text Available This paper serves as a summary of new discoveries by DNS for late stages of flow transition in a boundary layer. The widely spread concept “vortex breakdown” is found theoretically impossible and never happened in practice. The ring-like vortex is found the only form existing inside the flow field. The ring-like vortex formation is the result of the interaction between two pairs of counter-rotating primary and secondary streamwise vortices. Following the first Helmholtz vortex conservation law, the primary vortex tube rolls up and is stretched due to the velocity gradient. In order to maintain vorticity conservation, a bridge must be formed to link two Λ-vortex legs. The bridge finally develops as a new ring. This process keeps going on to form a multiple ring structure. The U-shaped vortices are not new but existing coherent vortex structure. Actually, the U-shaped vortex, which is a third level vortex, serves as a second neck to supply vorticity to the multiple rings. The small vortices can be found on the bottom of the boundary layer near the wall surface. It is believed that the small vortices, and thus turbulence, are generated by the interaction of positive spikes and other higher level vortices with the solid wall. The mechanism of formation of secondary vortex, second sweep, positive spike, high shear distribution, downdraft and updraft motion, and multiple ring-circle overlapping is also investigated.

  19. Conditional analysis of the instantaneous wall friction during by-pass transition of rough wall boundary layer

    Czech Academy of Sciences Publication Activity Database

    Hladík, Ondřej; Jonáš, Pavel; Mazur, Oton; Uruba, Václav

    Budapest : Budapest University of Technology and Economics, 2012 - (Vad, J.), s. 963-970 ISBN 978-963-08-4587-8. [International Conference on Fluid Flow Technologies /15./. Budapest (HU), 04.09.2012-07.09.2012] R&D Projects: GA ČR GAP101/12/1271 Institutional support: RVO:61388998 Keywords : by-pass transition * conditional analysis of the wall friction * CTA * rough wall boundary layer * transitional intermittency factor Subject RIV: BK - Fluid Dynamics

  20. Analysis of the leading edge effects on the boundary layer transition

    Science.gov (United States)

    Chow, Pao-Liu

    1990-01-01

    A general theory of boundary layer control by surface heating is presented. Some analytical results for a simplified model, i.e., the optimal control of temperature fluctuations in a shear flow are described. The results may provide a clue to the effectiveness of the active feedback control of a boundary layer flow by wall heating. In a practical situation, the feedback control may not be feasible from the instrumentational point of view. In this case the vibrational control introduced in systems science can provide a useful alternative. This principle is briefly explained and applied to the control of an unstable wavepacket in a parallel shear flow.

  1. By-pass transition of flat plate boundary layers on the surfaces near the limit of admissible roughness

    International Nuclear Information System (INIS)

    Results of the experimental investigation on the development of boundary layers on flat plates with the smooth surface and with the surfaces covered by sandpapers 60-grit, 80-grit and 100-grit under external turbulent flows of various grid turbulence scales are presented. The displacement thickness Reynolds number was at the most 2000 during experiments. The investigated boundary layers belong to the class of layers close to the lower limit of admissible roughness region, k+ = 4.6, 5.7 and 8.7 respectively. It was certified that both the wall roughness and the free stream turbulence accelerate individually the boundary layer development from the laminar state of boundary layer to turbulence. Next it was ascertained that their joint effect amplifies the development of boundary layers so, that the surface roughness impact is predominating but the actions of intensity and length scale of the free stream turbulence disturbances are also significant. With the increasing roughness number the initial region with a pseudo-laminar flow structure and the transitional region become shorter.

  2. DNS and LES of estimation and control of transition in boundary layers subject to free-stream turbulence

    International Nuclear Information System (INIS)

    Transition to turbulence occurring in a flat-plate boundary-layer flow subjected to high levels of free-stream turbulence is considered. This scenario, denoted bypass transition, is characterised by the non-modal growth of streamwise elongated disturbances. These so-called streaks are regions of positive and negative streamwise velocity alternating in the spanwise direction inside the boundary layer. When they reach large enough amplitudes, breakdown into turbulent spots occurs via their secondary instability. In this work, the bypass-transition process is simulated using direct numerical simulations (DNS) and large-eddy simulations (LES). The ADM-RT subgrid-scale model turned out to be particularly suited for transitional flows after a thorough validation. Linear feedback control is applied in order to reduce the perturbation energy and consequently delay transition. This case represents therefore an extension of the linear approach (Chevalier, M., Hoepffner, J., Akervik, E., Henningson, D.S., 2007a. Linear feedback control and estimation applied to instabilities in spatially developing boundary layers. J. Fluid Mech. 588, 163-187, 167-187.) to flows characterised by strong nonlinearities. Control is applied by blowing and suction at the wall and it is both based on the full knowledge of the instantaneous velocity field (i.e. full information control) and on the velocity field estimated from wall measurements. The results show that the control is able to delay the growth of the streaks in the region where it is active, which implies a delay of the whole transition process. The flow field can be estimated from wall measurements alone: The structures occurring in the 'real' flow are reproduced correctly in the region where the measurements are taken. Downstream of this region the estimated field gradually diverges from the 'real' flow, revealing the importance of the continuous excitation of the boundary layer by the external free-stream turbulence. Control based on

  3. Design and Implementation of the Boundary Layer Transition Flight Experiment on Space Shuttle Discovery

    Science.gov (United States)

    Spanos, Theodoros A.; Micklos, Ann

    2010-01-01

    In an effort to better the understanding of high speed aerodynamics, a series of flight experiments were installed on Space Shuttle Discovery during the STS-119 and STS-128 missions. This experiment, known as the Boundary Layer Transition Flight Experiment (BLTFE), provided the technical community with actual entry flight data from a known height protuberance at Mach numbers at and above Mach 15. Any such data above Mach 15 is irreproducible in a laboratory setting. Years of effort have been invested in obtaining this valuable data, and many obstacles had to be overcome in order to ensure the success of implementing an Orbiter modification. Many Space Shuttle systems were involved in the installation of appropriate components that revealed 'concurrent engineering' was a key integration tool. This allowed the coordination of all various parts and pieces which had to be sequenced appropriately and installed at the right time. Several issues encountered include Orbiter configuration and access, design requirements versus current layout, implementing the modification versus typical processing timelines, and optimizing the engineering design cycles and changes. Open lines of communication within the entire modification team were essential to project success as the team was spread out across the United States, from NASA Kennedy Space Center in Florida, to NASA Johnson Space Center in Texas, to Boeing Huntington Beach, California among others. The forum permits the discussion of processing concerns from the design phase to the implementation phase, which eventually saw the successful flights and data acquisition on STS-119 in March 2009 and on STS-128 in September 2009.

  4. Edge states for the turbulence transition in the asymptotic suction boundary layer

    CERN Document Server

    Kreilos, Tobias; Schneider, Tobias M; Eckhardt, Bruno

    2013-01-01

    We demonstrate the existence of an exact invariant solution to the Navier-Stokes equations for the asymptotic suction boundary layer. The identified periodic orbit with a very long period of several thousand advective time units is found as a local dynamical attractor embedded in the stability boundary between laminar and turbulent dynamics. Its dynamics captures both the interplay of downstream oriented vortex pairs and streaks observed in numerous shear flows as well as the energetic bursting that is characteristic for boundary layers. By embedding the flow into a family of flows that interpolates between plane Couette flow and the boundary layer we demonstrate that the periodic orbit emerges in a saddle-node infinite-period (SNIPER) bifurcation of two symmetry-related travelling wave solutions of plane Couette flow. Physically, the long period is due to a slow streak instability which leads to a violent breakup of a streak associated with the bursting and the reformation of the streak at a different spanwi...

  5. Edge states as mediators of bypass transition in boundary-layer flows

    CERN Document Server

    Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Eckhardt, Bruno; Henningson, Dan S

    2016-01-01

    The concept of edge state is investigated in the asymptotic suction boundary layer in relation with the receptivity process to noisy perturbations and the nucleation of turbulent spots. Edge tracking is first performed numerically, without imposing any discrete symmetry, in a large computational domain allowing for full spatial localisation of the perturbation velocity. The edge state is a three-dimensional localised structure recurrently characterised by a single low-speed streak that experiences erratic bursts and planar shifts. This recurrent streaky structure is then compared with predecessors of individual spot nucleation events, triggered by non-localised initial noise. The present results suggest a nonlinear picture, rooted in dynamical systems theory, of the nucleation process of turbulent spots in boundary-layer flows, in which the localised edge state play the role of state-space mediator.

  6. Preliminary results of the conditional analysis of wall friction during laminarturbulent transition of a rough wall boundary layer

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel; Hladík, Ondřej; Mazur, Oton; Uruba, Václav

    Darmstadt : TU Darmstadt, 2012 - (Alber, H.; Tropea, C.). s. 214 [Annual Meeting of the International Association of Applied Mathematics and Mechanics /83./. 26.03.2012-30.03.2012, Darmstadt] R&D Projects: GA ČR(CZ) GAP101/12/1271; GA ČR GAP101/10/1230 Institutional support: RVO:61388998 Keywords : laminar/turbulent transition * wall friction * rough wall * boundary layer Subject RIV: BK - Fluid Dynamics http://www.gamm2012.tu-darmstadt.de/

  7. Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models

    Science.gov (United States)

    Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.

    2016-08-01

    We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.

  8. By-pass transition of flat plate boundary layers on the surfaces near the limit of admissible roughness

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel; Hladík, Ondřej; Mazur, Oton; Uruba, Václav

    Warsaw, Poland: University of Warsaw, 2011 - (Bajer, K.; Kopeč, J.; Podziemski, P.), s. 82-82 ISSN N. [European turbulence conference /13./. Warsaw (PL), 12.09.2011-15.09.2011] R&D Projects: GA ČR GA101/08/1112; GA ČR GAP101/10/1230 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer by-pass transition * effect of free stream turbulence * effect of surface roughness * joint effect on by-pass transition Subject RIV: BK - Fluid Dynamics www.etc13.fuw.edu.pl

  9. Flat Plate Boundary Layer By-Pass Transition by Joint Action of Surface Roughness and External Turbulence

    Czech Academy of Sciences Publication Activity Database

    Hladík, Ondřej; Jonáš, Pavel; Mazur, Oton; Uruba, Václav

    Berlin, Heidelberg : Springer-Verlag, 2012, s. 205-208. ISBN 978-3-642-28967-5. ISSN 0930-8989. - (Springer Proceedings in Physics. 141). [iTi 2010 Conference in Turbulence. Bertinoro (IT), 19.09.2010-22.09.2010] R&D Projects: GA ČR GA101/08/1112; GA ČR GAP101/10/1230 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : boundary layer * laminar - turbulent transition * bypass transition Subject RIV: BK - Fluid Dynamics

  10. Calculation of compressible nonadiabatic boundary layers in laminar, transitional and turbulent flow by the method of integral relations

    Science.gov (United States)

    Kuhn, G. D.

    1971-01-01

    A computer program was developed to do the calculations for two-dimensional or axisymmetric configurations from low speeds to hypersonic speeds with arbitrary streamwise pressure, temperature, and Mach number distributions. Options are provided for obtaining initial conditions either from experimental information or from a theoretical similarity solution. The transition region can be described either by an arbitrary distribution of intermittency or by a function based on Emmons' probability theory. Correlations were developed for use in estimating the parameters of the theoretical intermittency function. Correlations obtained from other sources are used for estimating the transition point. Comparisons were made between calculated and measured boundary layer quantities for laminar, transitional, and turbulent flows on flat plates, cones, cone flares, and a waisted body of revolution. Excellent agreement was obtained between the present theory and two other theories based on the method of finite differences. The intermittency required to reproduce some experimental heat transfer results in hypersonic flow was found to be quite different from the theoretical function. It is suggested that the simple probability theory of Emmons may not be valid for representing the intermittency of hypersonic transitional boundary layers and that the program could be useful as a tool for detailed study of the intermittency of the transition region.

  11. Use of shear-stress-sensitive, temperature-insensitive liquid crystals for hypersonic boundary-layer transition detection

    Energy Technology Data Exchange (ETDEWEB)

    Aeschliman, D.P.; Croll, R.H.; Kuntz, D.W.

    1997-04-01

    The use of shear-stress-sensitive, temperature-insensitive (SSS/TI) liquid crystals (LCs) has been evaluated as a boundary-layer transition detection technique for hypersonic flows. Experiments were conducted at Mach 8 in the Sandia National Laboratories Hypersonic Wind Tunnel using a flat plate model at near zero-degree angle of attack over the freestream unit Reynolds number range 1.2-5.8x10{sup 6}/ft. Standard 35mm color photography and Super VHS color video were used to record LC color changes due to varying surface shear stress during the transition process for a range of commercial SSS liquid crystals. Visual transition data were compared to an established method using calorimetric surface heat-transfer measurements to evaluate the LC technique. It is concluded that the use of SSS/TI LCs can be an inexpensive, safe, and easy to use boundary-layer transition detection method for hypersonic flows. However, a valid interpretation of the visual records requires careful attention to illumination intensity levels and uniformity, lighting and viewing angles, some prior understanding of the general character of the flow, and the selection of the appropriate liquid crystal for the particular flow conditions.

  12. On role of kinetic fluctuations in laminar-turbulent transition in chemically nonequilibrium boundary layer flows

    Science.gov (United States)

    Tumin, Anatoli

    2015-11-01

    Zavol'skii and Reutov (1983), Luchini (2008, 2010), Fedorov (2010, 2012, 2014) explored potential role of kinetic fluctuations (KF) in incompressible and calorically perfect gas boundary layer flows. The results indicate that role of KF is comparable with other disturbance sources in flight experiments and in quiet wind tunnels. The analysis is based on the Landau and Lifshitz (1957) concept of fluctuating hydrodynamics representing the dissipative fluxes as an average and fluctuating parts. We are extending analysis of the receptivity problem to the fluctuating dissipative fluxes in chemically reacting nonequilibrium boundary layer flows of binary mixtures. There are new terms in the energy, and the species equations. The species conservation equation includes the dissipative diffusion flux and the species generation due to dissociation. The momentum equation includes fluctuating stress tensor. The energy equation includes fluctuating heat flux, energy flux due to diffusion of the species, and fluctuating dissipative flux due to viscosity. The effects are compared for the cases stemming from constraints of the HTV project (Klentzman and Tumin, AIAA Paper 2013-2882). Supported by AFOSR.

  13. Impact of ns-DBD plasma actuation on the boundary layer transition using convective heat transfer measurements

    Science.gov (United States)

    Ullmer, Dirk; Peschke, Philip; Terzis, Alexandros; Ott, Peter; Weigand, Bernhard

    2015-09-01

    This paper demonstrates that the impact of nanosecond pulsed dielectric barrier discharge (ns-DBD) actuators on the structure of the boundary layer can be investigated using quantitative convective heat transfer measurements. For the experiments, the flow over a flat plate with a C4 leading edge thickness distribution was examined at low speed incompressible flow (6.6-11.5 m s-1). An ns-DBD plasma actuator was mounted 5 mm downstream of the leading edge and several experiments were conducted giving particular emphasis on the effect of actuation frequency and the freestream velocity. Local heat transfer distributions were measured using the transient liquid crystal technique with and without plasma activated. As a result, any effect of plasma on the structure of the boundary layer is interpreted by local heat transfer coefficient distributions which are compared with laminar and turbulent boundary layer correlations. The heat transfer results, which are also confirmed by hot-wire measurements, show the considerable effect of the actuation frequency on the location of the transition point elucidating that liquid crystal thermography is a promising method for investigating plasma-flow interactions very close to the wall. Additionally, the hot-wire measurements indicate possible velocity oscillations in the near wall flow due to plasma activation.

  14. Numerical and experimental modelling of transition in a separated boundary layer on the NACA63A421 Airfiol

    Czech Academy of Sciences Publication Activity Database

    Ďuriš, M.; Popelka, Lukáš; Příhoda, Jaromír; Šimurda, David

    2010-01-01

    Roč. 56, č. 3 (2010), s. 47-53. ISSN 1210-0471. [International Meeting of Departments of Fluid Mechanics and Thermomechanics held in Rožnov pod Radhoštěm /29./. Rožnov pod Radhoštěm, 23.06.2010-25.06.2010] R&D Projects: GA MŠk(CZ) 1M06031; GA ČR GA103/09/0977 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer transition * CFD * airfoil Subject RIV: BK - Fluid Dynamics

  15. Preliminary results of the conditional analysis of wall friction during laminar-turbulent transition of a rough wall boundary layer

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel; Hladík, Ondřej; Mazur, Oton; Uruba, Václav

    2012-01-01

    Roč. 12, č. 1 (2012), s. 467-468. ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /83./. Darmstadt, 26.03.2012-30.03.2012] R&D Projects: GA ČR GAP101/10/1230; GA ČR GAP101/12/1271 Institutional research plan: CEZ:AV0Z20760514 Keywords : laminar/turbulent transition * wall friction * rough wall * boundary layer Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201210222/abstract

  16. Multigrid mapping and box relaxation for simulation of the whole process of flow transition in 3-D boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Liu, Z. [Univ. of Colorado, Denver, CO (United States)

    1994-12-31

    A new multilevel technology was developed in this study which provides a successful numerical simulation for the whole process of flow transition in 3-D flat plate boundary layers, including linear growth, secondary instability, breakdown, and transition on a relatively coarse grid with low CPU cost. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time-marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all employed for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to catch the large eddies and represent main roles of small eddies to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The computation also reproduced the K-type and C-type transition observed by laboratory experiments. The CPU cost for a typical case is around 2-9 CRAY-YMP hours.

  17. An experimental study on laminar-turbulent transition at high free-stream turbulence in boundary layers with pressure gradients

    Directory of Open Access Journals (Sweden)

    Chernoray Valery

    2012-04-01

    Full Text Available We report here the results of a study on measurements and prediction of laminar-turbulent transition at high free-stream turbulence in boundary layers of the airfoil-like geometries with presence of the external pressure gradient changeover. The experiments are performed for a number of flow cases with different flow Reynolds number, turbulence intensity and pressure gradient distributions. The results were then compared to numerical calculations for same geometries and flow conditions. The experiments and computations are performed for the flow parameters which are typical for turbomachinery applications and the major idea of the current study is the validation of the turbulence model which can be used for such engineering applications.

  18. Assessment of intermittency transport equations for modeling transition in boundary layers subjected to freestream turbulence

    International Nuclear Information System (INIS)

    The γ-Reθ transition model of Menter et al. [Menter, F.R., Langtry, R.B., Volker, S., Huang, P.G., 2005. Transition modelling for general purpose CFD codes. ERCOFTAC International Symposium Engineering Turbulence Modelling and Measurements] is a highly generalized transport equation model in which it has been developed based on the concept of local variables compatible with modern CFD methods where the unstructured grid and the parallel computing technique are usually integrated in. To perform the prediction with this model, two essential parameters, Flength which is used to control the length of the transition region and Reθc which is used to control the onset of the transition location, must be specified to close the model. At present, both parameters are proprietary and their formulations are unpublished. For the first time here, the relations for both parameters are formulated by means of numerical experiments and analysis under the assumption of Reθc = Reθt corresponding with the bypass transition behavior. Based on this analysis, the optimized values of the parameters are found and their relations can be constructed as follows: Reθc = 803.73(Tu∞,le + 0.6067)-1.027 and Flength = 163 ln(Tu∞,le) + 3.625. The performance of this transition model is assessed by testing with the experimental cases of T3AM, T3A, and T3B. Detailed comparisons with the predicted results by the transition models of Suzen and Huang [Suzen, Y.B., Huang, P.G., 2000. Modeling of flow transition using an intermittency transport equation. J. Fluids Eng. 122, 273-284] and Lodefier et al. [Lodefier, K., Merci, B., De Langhe, C., Dick, E., 2003. Transition modelling with the SST turbulence model and intermittency transport equation. ASME Turbo Expo, Atlanta, GA, USA, June 16-19], and also with the predicted results by the k-ε model of Launder and Sharma [Launder, B.E., Sharma, B., 1974. Application of the energy dissipation model of turbulence to the calculation of flow near a

  19. Experimental study of the wall-friction development during boundary layer by-pass transition

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel; Mazur, Oton; Uruba, Václav

    Praha : Ústav termomechaniky AV ČR, 2006 - (Jonáš, P.; Uruba, V.), s. 67-70 ISBN 80-87012-01-1. [Colloquium Fluid Dynamics 2006. Praha (CZ), 25.10.2006-27.10.2006] R&D Projects: GA AV ČR(CZ) IAA200760614 Institutional research plan: CEZ:AV0Z20760514 Keywords : by-pass transition * wall-friction intermittency * conditioned averaging Subject RIV: BK - Fluid Dynamics

  20. Influence of a recent Transition Model on Complex Nonsteady Boundary Layer Flows with Dynamic Stall and Multiple Phases

    Science.gov (United States)

    Lavely, Adam; Kinzel, Michael; Vijayakumar, Ganesh; Brasseur, James; Paterson, Eric; Lindau, Jules

    2010-11-01

    Computational fluid dynamics (CFD) simulations are prone to inaccuracies associated with incorrectly formulated physical models. Common in CFD is the spurious treatment as locally laminar flow regions as turbulent, resulting in incorrect turbulent-boundary-layer profiles, separated-flow behavior, and local skin-friction coefficients. The combined effects impacts global measures like drag, lift coefficient, and wake intensity. Recently, Menter & Langtry (AIAA 47 2009) developed a transition model applicable to unsteady three-dimensional CFD codes that shows promise to improve the prediction of local laminar regions. Our aim is to evaluate the accuracy of this model with the additional complexities of unsteady flow around rotating wind turbine blades and multiphase flows using codes designed within OpenFOAM. We investigate how transition and locally laminar flow regions impact various complex problems of interest including: (1) stationary S809 airfoil through stall, (2) an oscillating S809 airfoil in dynamic stall, and (3) a ventilated gaseous cavity in a liquid flow. We will evaluate the efficacy of the model by comparing with experimental results, and shall evaluate the impact on integral measures and flow details. Supported by NSF & DOE.

  1. Investigation of the boundary layer during the transition from volume to surface dominated H- production at the BATMAN test facility

    Science.gov (United States)

    Wimmer, C.; Schiesko, L.; Fantz, U.

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 1/8 scale H- source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H- production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H- density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H- density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (jH-, je) exists with the Cs emission.

  2. Investigation of the boundary layer during the transition from volume to surface dominated H(-) production at the BATMAN test facility.

    Science.gov (United States)

    Wimmer, C; Schiesko, L; Fantz, U

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 18 scale H(-) source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H(-) production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H(-) density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H(-) density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (jH(-) , je) exists with the Cs emission. PMID:26932038

  3. Transitions of cloud-topped marine boundary layers characterized by AIRS, MODIS, and a large eddy simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Qing; Kahn, Brian; Xiao, Heng; Schreier, Mathias; Fetzer, E. J.; Teixeira, J.; Suselj, Kay

    2013-08-16

    Cloud top entrainment instability (CTEI) is a hypothesized positive feedback between entrainment mixing and evaporative cooling near the cloud top. Previous theoretical and numerical modeling studies have shown that the persistence or breakup of marine boundary layer (MBL) clouds may be sensitive to the CTEI parameter. Collocated thermodynamic profile and cloud observations obtained from the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify the relationship between the CTEI parameter and the cloud-topped MBL transition from stratocumulus to trade cumulus in the northeastern Pacific Ocean. Results derived from AIRS and MODIS are compared with numerical results from the UCLA large eddy simulation (LES) model for both well-mixed and decoupled MBLs. The satellite and model results both demonstrate a clear correlation between the CTEI parameter and MBL cloud fraction. Despite fundamental differences between LES steady state results and the instantaneous snapshot type of observations from satellites, significant correlations for both the instantaneous pixel-scale observations and the long-term averaged spatial patterns between the CTEI parameter and MBL cloud fraction are found from the satellite observations and are consistent with LES results. This suggests the potential of using AIRS and MODIS to quantify global and temporal characteristics of the cloud-topped MBL transition.

  4. Boundary Layer Transition Detection on a Rotor Blade Using Rotating Mirror Thermography

    Science.gov (United States)

    Heineck, James T.; Schuelein, Erich; Raffel, Markus

    2014-01-01

    Laminar-to-turbulent transition on a rotor blade in hover has been imaged using an area-scan infrared camera. A new method for tracking a blade using a rotating mirror was employed. The mirror axis of rotation roughly corresponded to the rotor axis of rotation and the mirror rotational frequency is 1/2 that of the rotor. This permitted the use of cameras whose integration time was too long to prevent image blur due to the motion of the blade. This article will show the use of this method for a rotor blade at different collective pitch angles.

  5. Passive Hypersonic Boundary Layer Transition Control Using Ultrasonically Absorptive Carbon-Carbon Ceramic with Random Microstructure

    OpenAIRE

    Wagner, Alexander

    2014-01-01

    In the presented work ultrasonically absorptive carbon-carbon ceramic was shown for the first time to delay hypersonic laminar to turbulent boundarylayer transition. Three 7° half-angle cones with nose radii between 0.1 mm and 5.0 mm and a total length of 1100 mm were tested at zero angle of attack in the High Enthalpy Shock Tunnel Göttingen (HEG) of the German Aerospace Center (DLR) at Mach 7.5. One model was equipped with an inhouse manufactured ultrasonically absorptive carbon-carbon ...

  6. Transition to Turbulence and Separation of the Boundary Layer in the Context of Airfoil Design

    Czech Academy of Sciences Publication Activity Database

    Popelka, Lukáš; Matějka, M.; Schmirler, M.

    Žilina: Žilinská universita, 2006, s. 221-224. ISBN 80-8070-533-X. [Aplikácia experimentálnych a numerických metód v mechanike tekutín. Strečno (SK), 26.04.2006-28.04.2006] R&D Projects: GA AV ČR IAA2076403 Institutional research plan: CEZ:AV0Z20760514 Keywords : Transition to Turbulence * Separation * Airfoil Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts

  7. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    2012-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  8. LDV measurements of turbulent baroclinic boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Neuwald, P.; Reichenbach, H. [Fraunhofer-Institut fuer Kurzzeitdynamik - Ernst-Mach-Institut (EMI), Freiburg im Breisgau (Germany); Kuhl, A.L. [Lawrence Livermore National Lab., El Segundo, CA (United States)

    1993-07-01

    Described here are shock tube experiments of nonsteady, turbulent boundary layers with large density variations. A dense-gas layer was created by injecting Freon through the porous floor of the shock tube. As the shock front propagated along the layer, vorticity was created at the air-Freon interface by an inviscid, baroclinic mechanism. Shadow-schlieren photography was used to visualize the turbulent mixing in this baroclinic boundary layer. Laser-Doppler-Velocimetry (LDV) was used to measure the streamwise velocity histories at 14 heights. After transition, the boundary layer profiles may be approximated by a power-law function u {approximately} u{sup {alpha}} where {alpha} {approx_equal} 3/8. This value lies between the clean flat plate value ({alpha} = 1/7) and the dusty boundary layer value ({alpha} {approx_equal} 0.7), and is controlled by the gas density near the wall.

  9. Boundary-Layer & health

    Science.gov (United States)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  10. Experiments in a boundary layer subjected to free stream turbulence. Part 2: The role of TS waves in the transition process

    International Nuclear Information System (INIS)

    The natural occurrence of Tollmien-Schlichting (TS) waves has so far only been observed in boundary layers subjected to moderate levels of free stream turbulence (Tu <1%), due to the difficulty in detecting small-amplitude waves in highly perturbed boundary layers. By introducing controlled oscillations with a vibrating ribbon, it is possible to study small amplitude waves using phase-selective filtering techniques. In the present work, the effect of TS-waves on the transition is studied at Tu = 1.5%. It is demonstrated that TS-waves can exist and develop in a similar way as in an undisturbed boundary layer. It is also found that TS-waves with quite small amplitudes are involved in nonlinear interactions which lead to a regeneration of TS-waves in the whole unstable frequency band. This results in a significant increase in the number of turbulent spots, which promote the onset of turbulence. 28 refs

  11. Parallel data-driven decomposition algorithm for large-scale datasets: with application to transitional boundary layers

    Science.gov (United States)

    Sayadi, Taraneh; Schmid, Peter J.

    2016-03-01

    Many fluid flows of engineering interest, though very complex in appearance, can be approximated by low-order models governed by a few modes, able to capture the dominant behavior (dynamics) of the system. This feature has fueled the development of various methodologies aimed at extracting dominant coherent structures from the flow. Some of the more general techniques are based on data-driven decompositions, most of which rely on performing a singular value decomposition (SVD) on a formulated snapshot (data) matrix. The amount of experimentally or numerically generated data expands as more detailed experimental measurements and increased computational resources become readily available. Consequently, the data matrix to be processed will consist of far more rows than columns, resulting in a so-called tall-and-skinny (TS) matrix. Ultimately, the SVD of such a TS data matrix can no longer be performed on a single processor, and parallel algorithms are necessary. The present study employs the parallel TSQR algorithm of (Demmel et al. in SIAM J Sci Comput 34(1):206-239, 2012), which is further used as a basis of the underlying parallel SVD. This algorithm is shown to scale well on machines with a large number of processors and, therefore, allows the decomposition of very large datasets. In addition, the simplicity of its implementation and the minimum required communication makes it suitable for integration in existing numerical solvers and data decomposition techniques. Examples that demonstrate the capabilities of highly parallel data decomposition algorithms include transitional processes in compressible boundary layers without and with induced flow separation.

  12. Boundary-layer linear stability theory

    Science.gov (United States)

    Mack, L. M.

    1984-06-01

    Most fluid flows are turbulent rather than laminar and the reason for this was studied. One of the earliest explanations was that laminar flow is unstable, and the linear instability theory was first developed to explore this possibility. A series of early papers by Rayleigh produced many notable results concerning the instability of inviscid flows, such as the discovery of inflectional instability. Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles appeared to be stable. The investigations that led to a viscous theory of boundary layer instability was reported. The earliest application of linear stability theory to transition prediction calculated the amplitude ratio of the most amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this quantity had values between five and nine at the observed Ret. The experiment of Schubauer and Skramstad (1947) completely reversed the prevailing option and fully vindicated the Gottingen proponents of the theory. This experiment demonstrated the existence of instability waves in a boundary layer, their connection with transition, and the quantitative description of their behavior by the theory of Tollmien and Schlichting. It is generally accepted that flow parameters such as pressure gradient, suction and heat transfer qualitatively affect transition in the manner predicted by the linear theory, and in particular that a flow predicted to be stable by the theory should remain laminar. The linear theory, in the form of the e9, or N-factor is today in routine use in engineering studies of laminar flow. The stability theory to boundary layers with pressure gradients and suction was applied. The only large body of numerical results for exact boundary layer solutions before the advent of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity profiles are given. When the digital computer

  13. Boundary-layer linear stability theory

    Science.gov (United States)

    Mack, L. M.

    1984-01-01

    Most fluid flows are turbulent rather than laminar and the reason for this was studied. One of the earliest explanations was that laminar flow is unstable, and the linear instability theory was first developed to explore this possibility. A series of early papers by Rayleigh produced many notable results concerning the instability of inviscid flows, such as the discovery of inflectional instability. Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles appeared to be stable. The investigations that led to a viscous theory of boundary layer instability was reported. The earliest application of linear stability theory to transition prediction calculated the amplitude ratio of the most amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this quantity had values between five and nine at the observed Ret. The experiment of Schubauer and Skramstad (1947) completely reversed the prevailing option and fully vindicated the Gottingen proponents of the theory. This experiment demonstrated the existence of instability waves in a boundary layer, their connection with transition, and the quantitative description of their behavior by the theory of Tollmien and Schlichting. It is generally accepted that flow parameters such as pressure gradient, suction and heat transfer qualitatively affect transition in the manner predicted by the linear theory, and in particular that a flow predicted to be stable by the theory should remain laminar. The linear theory, in the form of the e9, or N-factor is today in routine use in engineering studies of laminar flow. The stability theory to boundary layers with pressure gradients and suction was applied. The only large body of numerical results for exact boundary layer solutions before the advent of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity profiles are given. When the digital computer

  14. Modeling the urban boundary layer

    Science.gov (United States)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  15. An Application of CFD to Guide Forced Boundary-Layer Transition for Low-Speed Tests of a Hybrid Wing-Body Configuration

    Science.gov (United States)

    Luckring, James M.; Deere, Karen A.; Childs, Robert E.; Stremel, Paul M.; Long, Kurtis R.

    2016-01-01

    A hybrid transition trip-dot sizing and placement test technique was developed in support of recent experimental research on a hybrid wing-body configuration under study for the NASA Environmentally Responsible Aviation project. The approach combines traditional methods with Computational Fluid Dynamics. The application had three-dimensional boundary layers that were simulated with either fully turbulent or transitional flow models using established Reynolds-Averaged Navier-Stokes methods. Trip strip effectiveness was verified experimentally using infrared thermography during a low-speed wind tunnel test. Although the work was performed on one specific configuration, the process was based on fundamental flow physics and could be applicable to other configurations.

  16. Boundary Layer under Oscillatory Wave

    OpenAIRE

    Mohammad Bagus Adityawan; Hitoshi Tanaka

    2011-01-01

    Turbulence due to wave motion and propagation is a very important aspect in sediment transport modeling. The boundary layer characteristic during the process will highly influence the sediment transport mechanism at the bottom. 1D model approach has been widely used to assess the turbulent boundary layer. However, the need for a more detailed model leads to the development of a more sophisticated models. This study presents a 2D turbulent model using k-ω equation to approach the turbulent bou...

  17. Boundary-Layer Transition on the N.A.C.A. 0012 and 23012 Airfoils in the 8-Foot High-Speed Wind Tunnel, Special Report

    Science.gov (United States)

    Becker, John V.

    1940-01-01

    Determinations of boundary-layer transition on the NACA 0012 and 2301 airfoils were made in the 8-foot high-speed wind tunnel over a range of Reynolds Numbers from 1,600,000 to 16,800,000. The results are of particular significance as compared with flight tests and tests in wind tunnels of appreciable turbulence because of the extremely low turbulence in the high-speed tunnel. A comparison of the results obtained on NACA 0012 airfoils of 2-foot and 5-foot chord at the same Reynolds Number permitted an evaluation of the effect of compressibility on transition. The local skin friction along the surface of the NACA 0012 airfoil was measured at a Reynolds Number of 10,000,000. For all the lift coefficient at which tests were made, transition occurred in the region of estimated laminar separation at the low Reynolds Numbers and approach the point of minimum static pressure as a forward limit at the high Reynolds Numbers. The effect of compressibility on transition was slight. None of the usual parameters describing the local conditions in the boundary layer near the transition point served as an index for locating the transition point. As a consequence of the lower turbulence in the 8-foot high-speed tunnel, the transition points occurred consistently farther back along the chord than those measured in the NACA full-scale tunnel. An empirical relation for estimating the location of the transition point for conventional airfoils on the basis of static-pressure distribution and Reynolds Number is presented.

  18. Transition prediction of a hypersonic boundary layer over a cone at small angle of attack——with the improvement of e~N method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The problem of transition prediction for hypersonic boundary layers over a sharp cone has been studied in this work. The Mach number of the oncoming flow is 6, the cone half-angle is 5o,and the angle of attack is 1o. The conventional eN method is used, but the transition location so obtained is obviously incorrect. The reason is that in the conventional method, only the amplifying waves are taken into account, while in fact, for different meridians the decay processes of the disturbances before they begin to grow are different. Based on our own previous work, new interpretation and essential improvement for the eN method are proposed. Not only the amplification process but also the decay process is considered. The location, where by linear stability theory, the amplitude of disturbance wave is amplified from its initial small value to 1%, is considered to be the transition location. The new result for transition prediction thus obtained is found to be fairly satisfactory. It is also indicated that for the calculation of base flow, boundary layer equations can be used for a small angle of attack. Its computational cost is much smaller than those for DNS.

  19. DNS of heat transfer in transitional, accelerated boundary layer flow over a flat plate affected by free-stream fluctuations

    International Nuclear Information System (INIS)

    Direct numerical simulations (DNS) of flow over and heat transfer from a flat plate affected by free-stream fluctuations were performed. A contoured upper wall was employed to generate a favourable streamwise pressure gradient along a large portion of the flat plate. The free-stream fluctuations originated from a separate LES of isotropic turbulence in a box. In the laminar portions of the accelerating boundary layer flow the formation of streaks was observed to induce an increase in heat transfer by the exchange of hot fluid near the surface of the plate and cold fluid from the free-stream. In the regions where the streamwise pressure gradient was only mildly favourable, intermittent turbulent spots were detected which relaminarised downstream as the streamwise pressure gradient became stronger. The relaminarisation of the turbulent spots was reflected by a slight decrease in the friction coefficient, which converged to its laminar value in the region where the streamwise pressure gradient was strongest.

  20. Active control of ionized boundary layers

    CERN Document Server

    Mendes, R V

    1997-01-01

    The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.

  1. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  2. Turbulence Kinetic Energy budget during the afternoon transition - Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days

    Science.gov (United States)

    Nilsson, E.; Lohou, F.; Lothon, M.; Pardyjak, E.; Mahrt, L.; Darbieu, C.

    2015-11-01

    The decay of turbulence kinetic energy (TKE) and its budget in the afternoon period from mid-day until zero buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign for 10 Intensive Observation Period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and meso-scale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near surface production of TKE is compensated by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of -0.69 was found for the afternoon period. For comparison with previous results, the TKE budget terms are normalized with

  3. Turbulence Kinetic Energy budget during the afternoon transition – Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days

    Directory of Open Access Journals (Sweden)

    E. Nilsson

    2015-11-01

    Full Text Available The decay of turbulence kinetic energy (TKE and its budget in the afternoon period from mid-day until zero buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST field campaign for 10 Intensive Observation Period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and meso-scale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near surface production of TKE is compensated by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of −0.69 was found for the afternoon period. For comparison with previous results, the TKE budget terms are

  4. Turbulence kinetic energy budget during the afternoon transition - Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days

    Science.gov (United States)

    Nilsson, Erik; Lohou, Fabienne; Lothon, Marie; Pardyjak, Eric; Mahrt, Larry; Darbieu, Clara

    2016-07-01

    The decay of turbulence kinetic energy (TKE) and its budget in the afternoon period from midday until zero-buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign for 10 intensive observation period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and mesoscale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near-surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near-surface production of TKE is compensated for by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of -0.69 was found for the afternoon period. For comparison with previous results, the TKE budget terms are normalized with

  5. The Langley Stability and Transition Analysis Code (LASTRAC) : LST, Linear and Nonlinear PSE for 2-D, Axisymmetric, and Infinite Swept Wing Boundary Layers

    Science.gov (United States)

    Chang, Chau-Lyan

    2003-01-01

    During the past two decades, our understanding of laminar-turbulent transition flow physics has advanced significantly owing to, in a large part, the NASA program support such as the National Aerospace Plane (NASP), High-speed Civil Transport (HSCT), and Advanced Subsonic Technology (AST). Experimental, theoretical, as well as computational efforts on various issues such as receptivity and linear and nonlinear evolution of instability waves take part in broadening our knowledge base for this intricate flow phenomenon. Despite all these advances, transition prediction remains a nontrivial task for engineers due to the lack of a widely available, robust, and efficient prediction tool. The design and development of the LASTRAC code is aimed at providing one such engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. LASTRAC was written from scratch based on the state-of-the-art numerical methods for stability analysis and modem software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory (LST) or linear parabolized stability equations (LPSE) method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. Coupled with the built-in receptivity model that is currently under development, the nonlinear PSE method offers a synergistic approach to predict transition onset for a given disturbance environment based on first principles. This paper describes the governing equations, numerical methods, code development, and case studies for the current release of LASTRAC. Practical applications of LASTRAC are demonstrated for linear stability calculations, N-factor transition correlation, non-linear breakdown simulations, and controls of stationary crossflow instability in supersonic swept wing boundary

  6. Magnetic activity in accretion disc boundary layers

    Science.gov (United States)

    Armitage, Philip J.

    2002-03-01

    We use three-dimensional magnetohydrodynamic simulations to study the structure of the boundary layer between an accretion disc and a non-rotating, unmagnetized star. Under the assumption that cooling is efficient, we obtain a narrow but highly variable transition region in which the radial velocity is only a small fraction of the sound speed. A large fraction of the energy dissipation occurs in high-density gas adjacent to the hydrostatic stellar envelope, and may therefore be reprocessed and largely hidden from view of the observer. As suggested by Pringle, the magnetic field energy in the boundary layer is strongly amplified by shear, and exceeds that in the disc by an order of magnitude. These fields may play a role in generating the magnetic activity, X-ray emission and outflows in disc systems where the accretion rate is high enough to overwhelm the stellar magnetosphere.

  7. Boundary Layer Heights from CALIOP

    Science.gov (United States)

    Kuehn, R.; Ackerman, S. A.; Holz, R.; Roubert, L.

    2012-12-01

    This work is focused on the development of a planetary boundary layer (PBL) height retrieval algorithm for CALIOP and validation studies. Our current approach uses a wavelet covariance transform analysis technique to find the top of the boundary layer. We use the methodology similar to that found in Davis et. al. 2000, ours has been developed to work with the lower SNR data provided by CALIOP, and is intended to work autonomously. Concurrently developed with the CALIOP algorithm we will show results from a PBL height retrieval algorithm from profiles of potential temperature, these are derived from Aircraft Meteorological DAta Relay (AMDAR) observations. Results from 5 years of collocated AMDAR - CALIOP retrievals near O'Hare airport demonstrate good agreement between the CALIOP - AMDAR retrievals. In addition, because we are able to make daily retrievals from the AMDAR measurements, we are able to observe the seasonal and annual variation in the PBL height at airports that have sufficient instrumented-aircraft traffic. Also, a comparison has been done between the CALIOP retrievals and the NASA Langley airborne High Spectral Resolution Lidar (HSRL) PBL height retrievals acquired during the GoMACCS experiment. Results of this comparison, like the AMDAR comparison are favorable. Our current work also involves the analysis and verification of the CALIOP PBL height retrieval from the 6 year CALIOP global data set. Results from this analysis will also be presented.

  8. On the intermittent nature of the flow structure at by-pass transition of a flat plate boundary layer

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel; Mazur, Oton; Uruba, Václav

    Praha: Ústav termomechaniky AV ČR, 2001 - (Poživilová, A.; Masák, J.), s. 317-318 ISBN 80-85918-64-1. [National Conference with International Participation Engineering Mechanics 2001. Svratka (CZ), 14.05.2001-17.05.2001] R&D Projects: GA ČR GA101/00/1057 Keywords : by-pass transition Subject RIV: BK - Fluid Dynamics

  9. A magnetic boundary layer creating a quasi-cylindrical substructure within a propagating flux rope leading to a plasma beta transition

    CERN Document Server

    Savani, Neel P; Shiota, D; Linton, M G; Kusano, K; Lugaz, N; Rouillard, A P

    2013-01-01

    We present a 2.5D MHD simulation of a magnetic flux rope (FR) propagating in the heliosphere and investigate the cause of the observed sharp plasma beta transition. Specifically, we consider a strong internal magnetic field and an explosive fast start, such that the plasma beta is significantly lower in the FR than the sheath region that is formed ahead. This leads to an unusual FR morphology in the first stage of propagation, while the more traditional view (e.g. from space weather simulations like Enlil) of a `pancake' shaped FR is observed as it approaches 1 AU. We investigate how an equipartition line, defined by a magnetic Weber number, surrounding a core region of a propagating FR can demarcate a boundary layer where there is a sharp transition in the plasma beta. The substructure affects the distribution of toroidal flux, with the majority of the flux remaining in a small core region which maintains a quasi-cylindrical structure. Quantitatively, we investigate a locus of points where the kinetic energy...

  10. Turbulence Kinetic Energy budget during the afternoon transition – Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days

    OpenAIRE

    Nilsson, E.; Lohou, F.; M. Lothon; Pardyjak, E.; Mahrt, L.; C. Darbieu

    2015-01-01

    The decay of turbulence kinetic energy (TKE) and its budget in the afternoon period from mid-day until zero buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign for 10 Intensive Observation Period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics a...

  11. An Investigation of the Effects of Heat Transfer on Boundary-Layer Transition on a Parabolic Body of Revolution (NACA RM-10) at a Mach Number of 1.61

    Science.gov (United States)

    Czarnecki, K R; Sinclair, Archibald R

    1955-01-01

    Report presents the results of an investigation conducted to determine the effects of heat transfer on boundary-layer transition on a parabolic body of revolution (NACA rm-10 without fins) at Mach number of 1.61 and over a Reynolds number range from 2.5 x 10(6) to 35 x 10(6). The maximum cooling of the model used in these tests corresponded to a temperature ratio (ratio of model-surface temperature to free-stream temperature) of 1.12, a value somewhat higher than the theoretical value required for infinite boundary-layer stability at this Mach number. The maximum heating corresponded to a temperature ratio of about 1.85. Included in the investigation was a study of the effects of surface irregularities and disturbances generated in the airstream on the ability of heat transfer to influence boundary-layer transition.

  12. Transitional Boundary Layers Under the Influence of High Free Stream Turbulence, Intensive Wall Cooling and High Pressure Gradients in Hot Gas Circulation. Ph.D. Thesis - Technische Hochschule, Karlsruhe, 1985

    Science.gov (United States)

    Rued, Klaus

    1987-01-01

    The requirements for fundamental experimental studies of the influence of free stream turbulence, pressure gradients and wall cooling are discussed. Under turbine-like free stream conditions, comprehensive tests of transitional boundary layers with laminar, reversing and turbulent flow increments were performed to decouple the effects of the parameters and to determine the effects during mutual interaction.

  13. Microgravity Effects on Plant Boundary Layers

    Science.gov (United States)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  14. Bristled shark skin: a microgeometry for boundary layer control?

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A W; Hidalgo, P; Westcott, M [Aerospace Engineering and Mechanics Department, University of Alabama, Box 870280, Tuscaloosa, AL 35487 (United States); Motta, P [Biology Department, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)], E-mail: alang@eng.ua.edu

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  15. BUBBLE - an urban boundary layer meteorology project

    DEFF Research Database (Denmark)

    Rotach, M.W.; Vogt, R.; Bernhofer, C.;

    2005-01-01

    The Basel urban Boundary Layer Experiment (BUBBLE) was a year-long experimental effort to investigate in detail the boundary layer structure in the City of Basel, Switzerland. At several sites over different surface types (urban, sub-urban and rural reference) towers up to at least twice the main...

  16. Cyclone separator having boundary layer turbulence control

    International Nuclear Information System (INIS)

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator

  17. Experimental investigation of wave boundary layer

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2003-01-01

    A review is presented of experimental investigation of wave boundary layer. The review is organized in six main sections. The first section describes the wave boundary layer in a real-life environment and its simulation in the laboratory in an oscillating water tunnel and in a water tank with an ...

  18. Magnetohydrodynamic cross-field boundary layer flow

    Directory of Open Access Journals (Sweden)

    D. B. Ingham

    1982-01-01

    Full Text Available The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.

  19. Cyclone separator having boundary layer turbulence control

    Science.gov (United States)

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  20. Stabilization of boundary layer streaks by plasma actuators

    International Nuclear Information System (INIS)

    A flow's transition from laminar to turbulent leads to increased levels of skin friction. In recent years, dielectric barrier discharge actuators have been shown to be able to delay the onset of turbulence in boundary layers. While the laminar to turbulent transition process can be initiated by several different instability mechanisms, so far, only stabilization of the Tollmien–Schlichting path to transition has received significant attention, leaving the stabilization of other transition paths using these actuators less explored. To fill that void, a bi-global stability analysis is used here to examine the stabilization of boundary layer streaks in a laminar boundary layer. These streaks, which are important to both transient and by-pass instability mechanisms, are damped by the addition of a flow-wise oriented plasma body force to the boundary layer. Depending on the magnitude of the plasma actuation, this damping can be up to 25% of the perturbation's kinetic energy. The damping mechanism appears to be due to highly localized effects in the immediate vicinity of the body force, and when examined using a linearized Reynolds-averaged Navier–Stokes energy balance, indicate negative production of the perturbation's kinetic energy. Parametric studies of the stabilization have also been performed, varying the magnitude of the plasma actuator's body force and the spanwise wavenumber of the actuation. Based on these parametric studies, the damping of the boundary layer streaks appears to be linear with respect to the total amount of body force applied to the flow. (paper)

  1. Plasma boundary layer and magnetopause layer of the earth's magnetosphere

    International Nuclear Information System (INIS)

    IMP 6 observations of the plasma boundary layer (PBL) and magnetopause layer (MPL) of the earth's magnetosphere indicate that plasma in the low-latitude portion of the PBL is supplied primarily by direct transport of magnetosheath plasma across the MPL and that this transport process is relatively widespread over the entire sunward magnetospheric boundary

  2. Theoretical skin-friction law in a turbulent boundary layer

    International Nuclear Information System (INIS)

    We study transitional and turbulent boundary layers using a turbulent velocity profile equation recently derived from the Navier-Stokes-alpha and Leray-alpha models. From this equation we obtain a theoretical prediction of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce the maximal value of cfmax=0.0063 for turbulent velocity profiles. A two-parameter family of solutions to the equation matches experimental data in the transitional boundary layers with different free-stream turbulence intensity, while one-parameter family of solutions, obtained using our skin-friction coefficient law, matches experimental data in the turbulent boundary layer for moderately large Reynolds numbers

  3. Boundary layer physics over snow and ice

    Directory of Open Access Journals (Sweden)

    P. S. Anderson

    2008-07-01

    Full Text Available Observations of the unique chemical environment over snow and ice in recent decades, particularly in the polar regions, have stimulated increasing interest in the boundary layer processes that mediate exchanges between the ice/snow interface and the atmosphere. This paper provides a review of the underlying concepts and examples from recent field studies in polar boundary layer meteorology, which will generally apply to atmospheric flow over snow and ice surfaces. It forms a companion paper to the chemistry review papers in this special issue of ACP that focus on processes linking halogens to the depletion of boundary layer ozone in coastal environments, mercury transport and deposition, snow photochemistry, and related snow physics. In this context, observational approaches, stable boundary layer behavior, the effects of a weak or absent diurnal cycle, and transport and mixing over the heterogeneous surfaces characteristic of coastal ocean environments are of particular relevance.

  4. Dense gas boundary layer experiments: Visualization, pressure measurements, concentration evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Reichenbach, H.; Neuwald, P. [Ernst-Mach-Institut, Freiburg (DE); Kuhl, A.L. [R and D Associates, Los Angeles, CA (United States)

    1992-11-01

    This technical report describes methods that were applied to investigate turbulent boundary layers generated by inviscid, baroclinic effects. The Cranz-Schardin 24-sparks camera was used to visualize the interactions of a planar shock wave with a Freon R12-layer. The shock propagates more slowly in the Freon layer than in air because of its smaller sound speed. This causes the shock front to be curved and to be reflected between the wall and the layer interface. As a consequence of the reflection process, a series of compression and expansion waves radiate from the layer. Large fluctuations in the streamwise velocity and in pressure develop for about 1 ms. These waves strongly perturb the interface shear layer, which rapidly transitions to a turbulent boundary flow. Pressure measurements showed that the fluctuations in the Freon layer reach a peak pressure 4 times higher than in the turbulent boundary flow. To characterize the preshock Freon boundary layer, concentration measurements were performed with a differential interferometry technique. The refraction index of Freon R12 is so high that Mach-Zehnder interferometry was not successful in these experiments. The evaluation of the concentration profile is described here in detail. Method and results of corresponding LDV measurements under the same conditions are presented in a different report, EMI Report T 9/92. The authors plan to continue the dense gas layer investigations with the gas combination helium/Freon.

  5. Characterization of internal boundary layer capacitors

    International Nuclear Information System (INIS)

    Internal boundary layer capacitors were characterized by scanning transmission electron microscopy and by microscale electrical measurements. Data are given for the chemical and physical characteristics of the individual grains and boundaries, and their associated electric and dielectric properties. Segregated internal boundary layers were identified with resistivities of 1012-1013 Ω-cm. Bulk apparent dielectric constants were 10,000-60,000. A model is proposed to explain the dielectric behavior in terms of an equivalent n-c-i-c-n representation of ceramic microstructure, which is substantiated by capacitance-voltage analysis

  6. Boundary-layer control by electric fields A feasibility study

    CERN Document Server

    Mendes, R V

    1998-01-01

    A problem of great concern in aviation and submarine propulsion is the control of the boundary layer and, in particular, the methods to extend the laminar region as a means to decrease noise and fuel consumption. In this paper we study the flow of air along an airfoil when a layer of ionized gas and a longitudinal electric field are created in the boundary layer region. By deriving scaling solutions and more accurate numerical solutions we discuss the possibility of achieving significant boundary layer control for realistic physical parameters. Practical design formulas and criteria are obtained. We also discuss the perspectives for active control of the laminar-to-turbulent transition fluctuations by electromagnetic field modulation.

  7. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  8. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    simulation and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid......Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM...

  9. Boundary Layer Flow Over a Moving Wavy Surface

    Science.gov (United States)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    novel self-similar solution is obtained from the first order set of equations. A second order solution is also obtained, stressing the role of small curvature on the boundary layer flow. The proposed model and solution for the boundary layer problem overlaying a moving wavy surface can also be used as a base flow for stability problems that can develop in a boundary layer, including phases of transitional states.

  10. Problems of matter-antimatter boundary layers

    International Nuclear Information System (INIS)

    This paper outlines the problems of the quasi-steady matter-antimatter boundary layers discussed in Klein-Alfven's cosmological theory, and a crude model of the corresponding ambiplasma balance is presented: (i) at interstellar particle densities, no well-defined boundary layer can exist in presence of neutral gas, nor can such a layer be sustained in an unmagnetized fully ionized ambiplasma. (ii) Within the limits of applicability of the present model, sharply defined boundary layers are under certain conditions found to exist in a magnetized ambiplasma. Thus, at beta values less than unity, a steep pressure drop of the low-energy components of matter and antimatter can be balanced by a magnetic field and the electric currents in the ambiplasma. (iii) The boundary layer thickness is of the order of 2x0 approximately 10/BT0sup(1/4) meters, where B is the magnetic field strength in MKS units and T0 the characteristic temperature of the low-energy components in the layer. (Auth.)

  11. Boundary layer physics over snow and ice

    Directory of Open Access Journals (Sweden)

    P. S. Anderson

    2007-06-01

    Full Text Available A general understanding of the physics of advection and turbulent mixing within the near surface atmosphere assists the interpretation and predictive power of air chemistry theory. The theory of the physical processes involved in diffusion of trace gas reactants in the near surface atmosphere is still incomplete. Such boundary layer theory is least understood over snow and ice covered surfaces, due in part to the thermo-optical properties of the surface. Polar boundary layers have additional aspects to consider, due to the possibility of long periods without diurnal forcing and enhanced Coriolis effects.

    This paper provides a review of present concepts in polar boundary layer meteorology, which will generally apply to atmospheric flow over snow and ice surfaces. It forms a companion paper to the chemistry review papers in this special issue of ACP.

  12. Pillared layered transition metal oxides

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper reviews the recent progress in the synthesis and application of pillared transition metal oxides during the last decade, mainly concerning the synthetic methods, structures, physical properties and catalytic applications of the layered transition metal oxides pillared by inorganic oxides. The factors and their affecting regularity in the process of preparation, and some important results obtained in the catalytic application studies are summarized. Finally, a prospect on the potential new directions in this research area is also presented.

  13. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  14. Self-similar magnetohydrodynamic boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel; Lastra, Alberto, E-mail: mnjmhd@am.uva.e [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2010-10-15

    The boundary layer created by parallel flow in a magnetized fluid of high conductivity is considered in this paper. Under appropriate boundary conditions, self-similar solutions analogous to the ones studied by Blasius for the hydrodynamic problem may be found. It is proved that for these to be stable, the size of the Alfven velocity at the outer flow must be smaller than the flow velocity, a fact that has a ready physical explanation. The process by which the transverse velocity and the thickness of the layer grow with the size of the Alfven velocity is detailed.

  15. Boundary-layer theory for blast waves

    Science.gov (United States)

    Kim, K. B.; Berger, S. A.; Kamel, M. M.; Korobeinikov, V. P.; Oppenheim, A. K.

    1975-01-01

    It is profitable to consider the blast wave as a flow field consisting of two regions: the outer, which retains the properties of the inviscid solution, and the inner, which is governed by flow equations including terms expressing the effects of heat transfer and, concomitantly, viscosity. The latter region thus plays the role of a boundary layer. Reported here is an analytical method developed for the study of such layers, based on the matched asymptotic expansion technique combined with patched solutions.

  16. Thick diffusion limit boundary layer test problems

    International Nuclear Information System (INIS)

    We develop two simple test problems that quantify the behavior of computational transport solutions in the presence of boundary layers that are not resolved by the spatial grid. In particular we study the quantitative effects of 'contamination' terms that, according to previous asymptotic analyses, may have a detrimental effect on the solutions obtained by both discontinuous finite element (DFEM) and characteristic-method (CM) spatial discretizations, at least for boundary layers caused by azimuthally asymmetric incident intensities. Few numerical results have illustrated the effects of this contamination, and none have quantified it to our knowledge. Our test problems use leading-order analytic solutions that should be equal to zero in the problem interior, which means the observed interior solution is the error introduced by the contamination terms. Results from DFEM solutions demonstrate that the contamination terms can cause error propagation into the problem interior for both orthogonal and non-orthogonal grids, and that this error is much worse for non-orthogonal grids. This behavior is consistent with the predictions of previous analyses. We conclude that these boundary layer test problems and their variants are useful tools for the study of errors that are introduced by unresolved boundary layers in diffusive transport problems. (authors)

  17. DYNAMICS OF A BOUNDARY LAYER SEPARATION

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav; Knob, Martin

    2009-01-01

    Roč. 16, č. 1 (2009), s. 29-38. ISSN 1802-1484 R&D Projects: GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer * triple-deck theory * Time-Resolved PIV Subject RIV: BK - Fluid Dynamics

  18. Analysis of Laminar Boundary Layer Equations

    Directory of Open Access Journals (Sweden)

    R. Yesman

    2012-01-01

    Full Text Available The paper proposes methodology for analysis and calculation of laminar fluid flow processes in a boundary layer.The presented dependences can be used for practical calculations while power carriers of various application are moving in the channels of heat and power devices. 

  19. Global stability analysis of axisymmetric boundary layers

    CERN Document Server

    Vinod, N

    2016-01-01

    This paper presents the linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inlet. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes(LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes are nega...

  20. Minimum Wind Dynamic Soaring Trajectories under Boundary Layer Thickness Limits

    Science.gov (United States)

    Bousquet, Gabriel; Triantafyllou, Michael; Slotine, Jean-Jacques

    2015-11-01

    Dynamic soaring is the flight technique where a glider, either avian or manmade, extracts its propulsive energy from the non-uniformity of horizontal winds. Albatrosses have been recorded to fly an impressive 5000 km/week at no energy cost of their own. In the sharp boundary layer limit, we show that the popular image, where the glider travels in a succession of half turns, is suboptimal for travel speed, airspeed, and soaring ability. Instead, we show that the strategy that maximizes the three criteria simultaneously is a succession of infinitely small arc-circles connecting transitions between the calm and windy layers. The model is consistent with the recordings of albatross flight patterns. This lowers the required wind speed for dynamic soaring by over 50% compared to previous beliefs. In the thick boundary layer limit, energetic considerations allow us to predict a minimum wind gradient necessary for sustained soaring consistent with numerical models.

  1. Shear-flow transition: the basin boundary

    International Nuclear Information System (INIS)

    The basin of attraction of a stable equilibrium point is investigated for a dynamical system (W97) that has been used to model transition to turbulence in shear flows. The basin boundary contains a linearly unstable equilibrium point Xlb which, in the self-sustaining scenario, plays a role in mediating the transition in that transition orbits cluster around its unstable manifold. However we find—for W97 with canonical parameter values—that this role is played not by Xlb but rather by a periodic orbit also lying on the basin boundary. Moreover, it appears via numerical computations that all orbits beginning near Xlb relaminarize. We offer numerical evidence that the parameter values of W97 are post-critical in the following sense: for some, subcritical parameter values, the basin boundary coincides with the stable manifold of Xlb and only a subset of nearby orbits relaminarize, whereas for supercritical values the basin boundary is the union of two stable manifolds, one belonging to the periodic orbit and dominating the basin boundary, and the other belonging to Xlb and detectable only as edge separating relaminarizing orbits of different characters. The periodic orbit appears at the critical parameter value via a homoclinic connection. This further leads to a proposal for the structure of the 'edge of chaos' somewhat different from that which has previously been proposed

  2. Analytic prediction for planar turbulent boundary layers

    CERN Document Server

    Chen, Xi

    2016-01-01

    Analytic predictions of mean velocity profile (MVP) and streamwise ($x$) development of related integral quantities are presented for flows in channel and turbulent boundary layer (TBL), based on a symmetry analysis of eddy length and total stress. Specific predictions are the friction velocity $u_\\tau$: ${ U_e/u_\\tau }\\approx 2.22\\ln Re_x+2.86-3.83\\ln(\\ln Re_x)$; the boundary layer thickness $\\delta_e$: $x/\\delta_e \\approx 7.27\\ln Re_x-5.18-12.52\\ln(\\ln Re_x)$; the momentum thickness Reynolds number: $Re_x/Re_\\theta=4.94[{(\\ln {{\\mathop{\\rm Re}\

  3. Investigation of turbulent spot production rate in boundary layer

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel; Elsner, W.; Mazur, Oton; Uruba, Václav; Wysocki, M.

    Žilina : Žilinská univerzita, 2010, s. 1-6. ISBN 978-80-554-0189-8. [Aplikácia experimentálnych a numerických metód v mechanike tekutín a energetike. Bojnice (SK), 28.04.2010-30.04.2010] R&D Projects: GA AV ČR(CZ) IAA200760614 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulent spot * by- pas boundary layer transition * transitional intermittency * wavelet analysis Subject RIV: BK - Fluid Dynamics

  4. DYNAMICS OF A BOUNDARY LAYER SEPARATION

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav

    Budapest : University of Technology and Economics , 2009, s. 268-275. ISBN 978-963-420-985-0. [Conference on Modelling Fluid Flow CMFF'09. Budapest (HU), 09.09.2009-12.09.2009] R&D Projects: GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer * dynamics * separation * POPs Subject RIV: BK - Fluid Dynamics

  5. Numerical Simulation of the Atmospheric Boundary Layer

    Czech Academy of Sciences Publication Activity Database

    Bauer, Petr

    Praha : Česká technika - nakladatelství ČVUT, 2006 - (Ambrož, P.; Masáková, Z.), s. 11-18 [Doktorandské dny 2006. Katedra matematiky FJFI ČVUT, Praha (CZ), 10.11.2006-24.11.2006] Institutional research plan: CEZ:AV0Z20760514 Keywords : atmospheric boundary layer * numerical simulation * finite element method Subject RIV: DI - Air Pollution ; Quality

  6. Dynamical analysis of separated boundary layer flow

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav

    Berlin : Technische Universität Berlin, 2009. s. 1-2 ISBN N. [Nonlinear Normal Modes, Dimension Reduction and Localization in Vibrating Systems. 27.09.2009-02.10.2009, Frascati (Rome)] R&D Projects: GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer * separation * dynamics Subject RIV: BK - Fluid Dynamics

  7. Submarine design optimization using boundary layer control

    OpenAIRE

    Christopher L Warren

    1997-01-01

    Several hull designs are studied with parametric based volume and area estimates to obtain preliminary hull forms. The volume and area study includes the effects of technologies which manifest themselves in the parametric study through stack length requirements. Subsequently, the hull forms are studied using a Reynolds Averaged Navier Stokes analysis coupled with a vortex lattice propeller design code. Optimization is done through boundary layer control analysis and through studies on the eff...

  8. DNS of compressible turbulent boundary layer around a sharp cone

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20° cone angle (or 10° half-cone angle) is performed by using the mixed seventh- order up-wind biased finite difference scheme and sixth-order central difference scheme. The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch. The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer. Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow. The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations. The turbulent energy equation in the cylindrical coordinate is given and turbulent en-ergy budget is studied. The computed results show that the effect of circumferen-tial curvature on turbulence characteristics is not obvious.

  9. DNS of compressible turbulent boundary layer around a sharp cone

    Institute of Scientific and Technical Information of China (English)

    LI XinLiang; FU DeXun; MA YanWen

    2008-01-01

    Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20° cone angle (or 10° half-cone angle) is performed by using the mixed seventh-order up-wind biased finite difference scheme and sixth-order central difference scheme.The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch.The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer,Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow.The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations,The turbulent energy equation in the cylindrical coordinate is given and turbulent en-ergy budget is studied.The computed results show that the effect of circumferen-tial curvature on turbulence characteristics is not obvious.

  10. Coupled wake boundary layer model of windfarms

    Science.gov (United States)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  11. Experimental study of the boundary layer over an airfoil in plunging motion

    Institute of Scientific and Technical Information of China (English)

    F. Rasi Marzabadi; M. R. Soltani

    2012-01-01

    This is an experimental study on the boundary layer over an airfoil under steady and unsteady conditions.It specifically deals with the effect of plunging oscillation on the laminar/turbulent characteristics of the boundary layer.The wind tunnel measurements involved surfacemounted hot-film sensors and boundary-layer rake.The experiments were conducted at Reynolds numbers of 0.42 × 106 to 0.84 × 106 and the reduced frequency was varied from 0.01 to 0.1 1.The results of the quasi-wall-shear stress as well as the boundary layer velocity profiles provided important information about the state of the boundary layer over the suction surface of the airfoil in both static and dynamic cases.For the static tests,boundary layer transition occurred through a laminar separation bubble.By increasing the angle of attack,disturbances and the transition location moved toward the leading edge.For the dynamic tests,earlier transition occurred with increasing rather than decreasing effective angle of attack.The mean angle of attack and the oscillating parameters significantly affected the state of the boundary layer.By increasing the reduced frequency,the boundary layer transition was promoted to the upstroke portion of the equivalent angle of attack,but the quasi skin friction coefficient was decreased.

  12. Experimental study of the boundary layer over an airfoil in plunging motion

    Science.gov (United States)

    Marzabadi, F. Rasi; Soltani, M. R.

    2012-04-01

    This is an experimental study on the boundary layer over an airfoil under steady and unsteady conditions. It specifically deals with the effect of plunging oscillation on the laminar/turbulent characteristics of the boundary layer. The wind tunnel measurements involved surfacemounted hot-film sensors and boundary-layer rake. The experiments were conducted at Reynolds numbers of 0.42×106 to 0.84 × 106 and the reduced frequency was varied from 0.01 to 0.11. The results of the quasi-wall-shear stress as well as the boundary layer velocity profiles provided important information about the state of the boundary layer over the suction surface of the airfoil in both static and dynamic cases. For the static tests, boundary layer transition occurred through a laminar separation bubble. By increasing the angle of attack, disturbances and the transition location moved toward the leading edge. For the dynamic tests, earlier transition occurred with increasing rather than decreasing effective angle of attack. The mean angle of attack and the oscillating parameters significantly affected the state of the boundary layer. By increasing the reduced frequency, the boundary layer transition was promoted to the upstroke portion of the equivalent angle of attack, but the quasi skin friction coefficient was decreased.

  13. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  14. A global boundary-layer height climatology

    Energy Technology Data Exchange (ETDEWEB)

    Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)

    1997-10-01

    In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)

  15. Modelling turbulent spots in swept boundary layers

    International Nuclear Information System (INIS)

    Highlights: • A linear perturbation method can capture the important flow features within a turbulent spot. • The horseshoe vortex in the perturbed velocity field is the dominant flow feature. • Sweep leads to skewing of the turbulent spot and calmed region. • The effects of pressure gradient are generally reduced by sweep. -- Abstract: A computational technique is presented for determining the fully 3-d viscid unsteady perturbation to a non-developing laminar swept boundary layer. For zero pressure gradient, unswept boundary layers, the perturbation method reveals a strongly three dimensional flow within the turbulent spot and its associated calmed region which is very similar to that observed in experiments and full DNS calculations. The perturbation method cannot predict turbulent motion but nevertheless provides a simple yet accurate means of studying and understanding the development of turbulent spot geometry. The most influential flow feature is the horseshoe vortex observed in the fluctuation velocity field, which is responsible for delivering the fluid found in the calmed region between its trailing legs. The upwards flow around the outer periphery of the vortex is also responsible for delivering low momentum fluid to the spot, but additional high momentum fluid also enters the spot from its rear through the downward sweeping motion of fluid between the vortex legs. The effect of an adverse streamwise pressure gradient is to increase the size of the spot and calmed region whereas a favourable pressure gradient has the opposite effect. When sweep is introduced to the boundary layer the spot is skewed for all non-zero pressure gradients, but the changes in size of the spot and calmed region due to pressure gradient are reduced. For favourable pressure gradients the skew increases monotonically with sweep, but this is not the case for adverse pressure gradients where the effect of sweep is more complex

  16. Two Dimensional Boundary Layer Growth with Suction

    Directory of Open Access Journals (Sweden)

    Krishna Lal

    1970-07-01

    Full Text Available The boundary layer equations for the unsteady fluid flow with constant suction velocity have been worked out for the impulsive motion of a circular cylinder in the form V(t=A exp (Ct where A and C are certain constants. The stream function has been expanded in terms of some functions X/sub 0/(s where s is a function of y coordinate. The phase angles for various terms have been calculated, and variations shown graphically for large and small frequency of oscillations, where the oscillatory motion is obtained on replacing C by iw.

  17. Plasma boundary layer with active surface. Pt. 1

    International Nuclear Information System (INIS)

    The space-charge boundary layer between plasma and wall which is normally (almost) homogeneous may become instable and may decay into largely independent spots of plasma-induced unipolar-like discharges. In Tokamaks the existence of such highly inhomogeneous boundary plasmas often has been found by observation of arc tracks and of ''hot spots'' a.s.o. In this way wall erosion and production rates of plasma impurities will be enhanced, and several special phenomena of intense wall erosion (like ''carbon blooming'') may be traced back to such effects. In this paper the influence of electron emission from the wall (i.e. of an ''active'' surface) on the parameter of the space charge sheath is investigated, applying simple balance equations, as a first step towards an explanation of the transition from a homogeneous into an inhomogeneous boundary layer. Several variations of such models are calculated, using typical plasma parameters. Essential result is the dependence of the sheath potential and of the surface power density on the emission yield and on the net current density. Irrespective of the chosen constants the potential drop between plasma and wall turns out to become the higher the lower is the electron emission and the higher is the net current. Opposite is the dependence of the energy flux to the wall which, however, passes a minimum and increases rapidly again near the maximum net current jmax (with jmax∼jis(γ-1), where jis=ion saturation current, and γ=emission yield per ion). As a consequence, the wall loading is strongly enhanced as well in case of high negative net currents and intense electron emission, as near the maximum net current. This will be infavour of an instability of the boundary layer, resulting - with high probability - in the decay of the layer into plasma-induced arc spots. As a next step in this investigation of such plasma boundary layers a careful analysis of this transition is provided for, taking the specified conditions of the

  18. Modelling of the Evolving Stable Boundary Layer

    Science.gov (United States)

    Sorbjan, Zbigniew

    2014-06-01

    A single-column model of the evolving stable boundary layer (SBL) is tested for self-similar properties of the flow and effects of ambient forcing. The turbulence closure of the model is diagnostic, based on the K-theory approach, with a semi-empirical form of the mixing length, and empirical stability functions of the Richardson number. The model results, expressed in terms of local similarity scales, are universal functions, satisfied in the entire SBL. Based on similarity expression, a realizability condition is derived for the minimum allowable turbulent heat flux in the SBL. Numerical experiments show that the development of "horse-shoe" shaped, fixed-elevation hodographs in the interior of the SBL around sunrise is controlled by effects imposed by surface thermal forcing.

  19. Atmospheric boundary layer over steep surface waves

    Science.gov (United States)

    Troitskaya, Yuliya; Sergeev, Daniil A.; Druzhinin, Oleg; Kandaurov, Alexander A.; Ermakova, Olga S.; Ezhova, Ekaterina V.; Esau, Igor; Zilitinkevich, Sergej

    2014-08-01

    Turbulent air-sea interactions coupled with the surface wave dynamics remain a challenging problem. The needs to include this kind of interaction into the coupled environmental, weather and climate models motivate the development of a simplified approximation of the complex and strongly nonlinear interaction processes. This study proposes a quasi-linear model of wind-wave coupling. It formulates the approach and derives the model equations. The model is verified through a set of laboratory (direct measurements of an airflow by the particle image velocimetry (PIV) technique) and numerical (a direct numerical simulation (DNS) technique) experiments. The experiments support the central model assumption that the flow velocity field averaged over an ensemble of turbulent fluctuations is smooth and does not demonstrate flow separation from the crests of the waves. The proposed quasi-linear model correctly recovers the measured characteristics of the turbulent boundary layer over the waved water surface.

  20. Geometric invariance of compressible turbulent boundary layers

    Science.gov (United States)

    Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle

    2015-11-01

    A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.

  1. BOUNDARY LAYER TRANSITION, SEPARATION AND FLOW CONTROL ON AIRFOILS AND BODIES IN CFD, WIND-TUNNEL AND IN-FLIGHT STUDIES

    Czech Academy of Sciences Publication Activity Database

    Popelka, Lukáš; Šimurda, David; Matějka, M.; Součková, Natálie

    Edinburg: Otimage Ltd., 2010 - (Grant, I.), s. 1-9 ISBN 978-0-9565333-0-2. [ICAS 2010 /27./. Nice (FR), 19.09.2010-24.09.2010] R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR IAA2076403; GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : flow control * transition and turbulence * wind tunnel Subject RIV: BK - Fluid Dynamics

  2. Separation-induced boundary layer transition: Modeling with a non-linear eddy-viscosity model coupled with the laminar kinetic energy equation

    Energy Technology Data Exchange (ETDEWEB)

    Vlahostergios, Z. [Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Karamanli str., Thessaloniki 54124 (Greece); Yakinthos, K. [Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Karamanli str., Thessaloniki 54124 (Greece)], E-mail: kyros@eng.auth.gr; Goulas, A. [Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Karamanli str., Thessaloniki 54124 (Greece)

    2009-08-15

    We present an effort to model the separation-induced transition on a flat plate with a semi-circular leading edge, using a cubic non-linear eddy-viscosity model combined with the laminar kinetic energy. A non-linear model, compared to a linear one, has the advantage to resolve the anisotropic behavior of the Reynolds-stresses in the near-wall region and it provides a more accurate expression for the generation of turbulence in the transport equation of the turbulence kinetic energy. Although in its original formulation the model is not able to accurately predict the separation-induced transition, the inclusion of the laminar kinetic energy increases its accuracy. The adoption of the laminar kinetic energy by the non-linear model is presented in detail, together with some additional modifications required for the adaption of the laminar kinetic energy into the basic concepts of the non-linear eddy-viscosity model. The computational results using the proposed combined model are shown together with the ones obtained using an isotropic linear eddy-viscosity model, which adopts also the laminar kinetic energy concept and in comparison with the existing experimental data.

  3. Aerodynamic Heating in Hypersonic Boundary Layers:\\ Role of Dilatational Waves

    CERN Document Server

    Zhu, Yiding; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2016-01-01

    The evolution of multi-mode instabilities in a hypersonic boundary layer and their effects on aerodynamic heating are investigated. Experiments are conducted in a Mach 6 wind tunnel using Rayleigh-scattering flow visualization, fast-response pressure sensors, fluorescent temperature-sensitive paint (TSP), and particle image velocimetry (PIV). Calculations are also performed based on both parabolized stability equations (PSE) and direct numerical simulations (DNS). It is found that second-mode dilatational waves, accompanied by high-frequency alternating fluid compression and expansion, produce intense aerodynamic heating in a small region that rapidly heats the fluid passing through it. As a result, the surface temperature rapidly increases and results in an overshoot over the nominal transitional value. When the dilatation waves decay downstream, the surface temperature decreases gradually until transition is completed. A theoretical analysis is provided to interpret the temperature distribution affected by ...

  4. A Cautionary Note on the Thermal Boundary Layer Similarity Scaling for the Turbulent Boundary Layer

    CERN Document Server

    Weyburne, David

    2016-01-01

    Wang and Castillo have developed empirical parameters for scaling the temperature profile of the turbulent boundary layer flowing over a heated wall in the paper X. Wang and L. Castillo, J. Turbul., 4, 1(2003). They presented experimental data plots that showed similarity type behavior when scaled with their new scaling parameters. However, what was actually plotted, and what actually showed similarity type behavior, was not the temperature profile but the defect profile formed by subtracting the temperature in the boundary layer from the temperature in the bulk flow. We show that if the same data and same scaling is replotted as just the scaled temperature profile, similarity is no longer prevalent. This failure to show both defect profile similarity and temperature profile similarity is indicative of false similarity. The nature of this false similarity problem is discussed in detail.

  5. Numerical analysis and optimization of boundary layer suction on airfoils

    Directory of Open Access Journals (Sweden)

    Shi Yayun

    2015-04-01

    Full Text Available Numerical approach of hybrid laminar flow control (HLFC is investigated for the suction hole with a width between 0.5 mm and 7 mm. The accuracy of Menter and Langtry’s transition model applied for simulating the flow with boundary layer suction is validated. The experiment data are compared with the computational results. The solutions show that this transition model can predict the transition position with suction control accurately. A well designed laminar airfoil is selected in the present research. For suction control with a single hole, the physical mechanism of suction control, including the impact of suction coefficient and the width and position of the suction hole on control results, is analyzed. The single hole simulation results indicate that it is favorable for transition delay and drag reduction to increase the suction coefficient and set the hole position closer to the trailing edge properly. The modified radial basis function (RBF neural network and the modified differential evolution algorithm are used to optimize the design for suction control with three holes. The design variables are suction coefficient, hole width, hole position and hole spacing. The optimization target is to obtain the minimum drag coefficient. After optimization, the transition delay can be up to 17% and the aerodynamic drag coefficient can decrease by 12.1%.

  6. The Boundary Layer Interaction with Shock Wave and Expansion Fan

    Institute of Scientific and Technical Information of China (English)

    MaratA.Goldfeld; RomanV.Nestoulia; 等

    2000-01-01

    The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented.They include the study of the shock wave and /or expansion fan action upon the boundary layer,boundary layer sepqartion and its relaxation.Complex events of paired interactions and the flow on compression convex-concave surfaces were studied.The posibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented.Different model configurations for wide range conditions were investigated.Comparison of results for different interactions was carried out.

  7. Stationary plasma-field equilibrium states in astropause boundary layers

    International Nuclear Information System (INIS)

    The transition layer between a stellar wind plasma and the surrounding regime of magnetized interstellar plasma, i.e. the astropause boundary layer has been investigated theoretically. For the description of the 'microscopic' structures a planar representation of the transition zone geometry is used. Here the plasma is taken to be dominated by instability-induced collective relaxation processes as, for example, modified two-stream instabilities, keeping the effective electron and proton temperatures close to each other. These are caused by strong couplings between the plasma constituents and the equilibrium wave field. This permits a quasi-hydrodynamic description of the plasma flow in a two-fluid approximation. For this case a system of differential equations is developed describing consistently the dynamical variables of the plasma and the magnetic and electric fields in the transition region. Integrals of this system are discussed and it is shown that it can be reduced to one ordinary differential equation. This equation is solved in terms of elliptic integrals and gives an implicit representation of magnetic and electric fields and the density. (author)

  8. Simulation of Wind turbines in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    Large eddy simulation of an arbitrary wind farm is studied in the neutral and thermally stratified atmospheric boundary Layer. Large eddy simulations of industrial flows usually requires full resolution of the flow near the wall and this is believed to be one of the main deficiencies of LES because...... in the boundary layer. In the current study, another approach has been implemented to simulate the flow in a fully developed wind farm boundary layer. The approach is based on Immersed Boundary Method and involves implementation of an arbitrary prescribed initial boundary layer. An initial boundary...... based on the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [2] while having the advantage of resolving the wall layer with a coarser grid than a typical required grid size for such problems. LES simulations are...

  9. Characteristics of the boundary layer of magnetic clouds and a new definition of the cloud boundary

    Institute of Scientific and Technical Information of China (English)

    魏奉思; 刘睿; 范全林; 冯学尚

    2003-01-01

    Based on the analysis of the boundaries of 70 magnetic clouds from 1967 to 1998, and relatively complete spacecraft observations, it is indicated that the magnetic cloud boundaries are boundary layers formed through the interaction between the magnetic clouds and the ambient medium. Most of the outer boundaries of the layers, with relatively high proton temperature, density and plasma β, are magnetic reconnection boundaries, while the inner boundaries, with low proton temperature, proton density and plasma β, separate the main body of magnetic clouds, which has not been affected by the interaction, from the boundary layers. The average time scale of the front boundary layer is 1.7 h and that of the tail boundary layer 3.1 h. It is also found that the magnetic probability distribution function undergoes significant changes across the boundary layers. This new definition, supported by the preliminary numerical simulation in principle, could qualitatively explain the observations of interplanetary magnetic clouds, and could help resolve the controversy in identifying the boundaries of magnetic clouds. Our concept of the boundary layer may provide some understanding of what underlies the observations, and a fresh train of thought in the interplanetary dynamics research.

  10. Green House Gases Flux Model in Boundary Layer

    Science.gov (United States)

    Nurgaliev, Ildus

    Analytical dynamic model of the turbulent flux in the three-layer boundary system is presented. Turbulence is described as a presence of the non-zero vorticity. The generalized advection-diffusion-reaction equation is derived for an arbitrary number of components in the flux. The fluxes in the layers are objects for matching requirements on the boundaries between the layers. Different types of transport mechanisms are dominant on the different levels of the layers.

  11. Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities

    Science.gov (United States)

    Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei

    2010-01-01

    Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.

  12. Planetary Boundary Layer Dynamics over Reno, Nevada in Summer

    Science.gov (United States)

    Liming, A.; Sumlin, B.; Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.

    2014-12-01

    Quantifying the height of the planetary boundary layer (PBL) is important to understand the transport behavior, mixing, and surface concentrations of air pollutants. In Reno, NV, located in complex, mountainous terrain with high desert climate, the daytime boundary layer can rise to an estimated 3km or more on a summer day due to surface heating and convection. The nocturnal boundary layer, conversely, tends to be much lower and highly stable due to radiative cooling from the surface at night and downslope flow of cool air from nearby mountains. With limited availability of radiosonde data, current estimates of the PBL height at any given time or location are potentially over or underestimated. To better quantify the height and characterize the PBL physics, we developed portable, lightweight sensors that measure CO2 concentrations, temperature, pressure, and humidity every 5 seconds. Four of these sensors are used on a tethered balloon system to monitor CO2 concentrations from the surface up to 300m. We will combine this data with Radio Acoustic Sounding System (RASS) data that measures vertical profiles of wind speed, temperature, and humidity from 40m to 400m. This experiment will characterize the diurnal evolution of CO2 concentrations at multiple heights in the PBL, provide insight into PBL physics during stability transition periods at sunrise and sunset, and estimate the nighttime PBL depth during August in Reno. Further, we expect to gain a better understanding of the impact of mixing volume changes (i.e., PBL height) on air quality and pollution concentrations in Reno. The custom portable sensor design will also be presented. It is expected that these instruments can be used for indoor or outdoor air quality studies, where lightness, small size, and battery operation can be of benefit.

  13. High frequency ground temperature fluctuation in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Kleissl, J.; Lothon, M.; Lohou, F.; Pardyjak, E.; Saïd, F.; Cuxart, J.; Steeneveld, G.J.; Yaguë, C.; Derrien, S.; Alexander, D.; Villagrasa, D.M.

    2012-01-01

    To study influence of the turbulent structures in the convective boundary layer (CBL) on the ground temperature, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) observational campaign, high frequency ground temperature was recorded through infra-red imagery from 13 June - 8 J

  14. Application of Arnoldi method to boundary layer instability

    Science.gov (United States)

    Zhang, Yong-Ming; Luo, Ji-Sheng

    2015-12-01

    The Arnoldi method is applied to boundary layer instability, and a finite difference method is employed to avoid the limit of the finite element method. This modus operandi is verified by three comparison cases, i.e., comparison with linear stability theory (LST) for two-dimensional (2D) disturbance on one-dimensional (1D) basic flow, comparison with LST for three-dimensional (3D) disturbance on 1D basic flow, and comparison with Floquet theory for 3D disturbance on 2D basic flow. Then it is applied to secondary instability analysis on the streaky boundary layer under spanwise-localized free-stream turbulence (FST). Three unstable modes are found, i.e., an inner mode at a high-speed center streak, a sinuous type outer mode at a low-speed center streak, and a sinuous type outer mode at low-speed side streaks. All these modes are much more unstable than Tollmien-Schlichting (TS) waves, implying the dominant contribution of secondary instability in bypass transition. The modes at strong center streak are more unstable than those at weak side streaks, so the center streak is ‘dangerous’ in secondary instability. Project supported by the National Natural Science Foundation of China (Grant Nos. 11202147, 11332007, 11172203, and 91216111) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032120007).

  15. Using GPS Radio Occultation to study polar boundary layer properties

    Science.gov (United States)

    Ganeshan, M.; Wu, D. L.

    2015-12-01

    The sensitivity of GPS RO refractivity to moisture and temperature variations in polar regions is explored using radiosonde observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. A retrieval algorithm for the boundary layer inversion height and surface-based inversion (SBI) frequency is developed for dry atmospheric conditions (total precipitable water < 3.6 mm) that typically exist during polar winter, as well as in high-latitude, elevated regions such as eastern Antarctica and central Greenland. The algorithm is applied to the high-resolution refractivity profiles obtained over the polar Arctic region using the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) dataset for the period 2006-2013. The method is found useful for capturing the spatiotemporal variability in Arctic inversion properties. For the Arctic Ocean, the spatial patterns show a minimum inversion height (maximum SBI frequency) over the ice-covered Pacific sector similar to that observed in past studies. Monthly evolution of the inversion characteristics suggests a surface temperature control in the multi-year sea ice region, with the peak in SBI frequency occurring during the transition period from winter to spring. For central Greenland, the seasonal peak in SBI frequency occurs during winter. The diurnal variability in SBI frequency is forced mainly by solar heating, consistent with past observations. Despite some limitations, the RO refractivity profile is found quite useful for monitoring the Arctic boundary layer, and is able to capture the interannual variability of inversion characteristics.

  16. Competing disturbance amplification mechanisms in two-fluid boundary layers

    Science.gov (United States)

    Saha, Sandeep; Page, Jacob; Zaki, Tamer

    2015-11-01

    The linear stability of boundary layers above a thin wall film of lower viscosity is analyzed. Appropriate choice of the film thickness and viscosity excludes the possibility of interfacial instabilities. Transient amplification of disturbances is therefore the relevant destabilizing influence, and can take place via three different mechanisms in the two-fluid configuration. Each is examined in detail by solving an initial value problem whose initial condition comprises a pair of appropriately chosen eigenmodes from the discrete, continuous and interface modes. Two regimes are driven by the lift-up mechanism: (i) The response to a streamwise vortex and (ii) the normal vorticity generated by a stable Tollmien-Schlichting wave. Both are damped due to the film. The third regime is associated with the wall-normal vorticity that is generated by the interface displacement. It can lead to appreciable streamwise velocity disturbances in the near-wall region at relatively low viscosity ratios. The results demonstrate that a wall film can stabilize the early linear stages of boundary-layer transition, and explain the observations from the recent nonlinear direct numerical simulations of this configuration by Jung & Zaki (J. Fluid Mech., vol 772, 2015, 330-360).

  17. Shock wave boundary layer interaction on suction side of compressor profile in single passage test section

    Science.gov (United States)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Kaczynski, Piotr; Piotrowicz, Michal

    2015-11-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to investigate the flow structure on the suction side of a profile, a design of a generic test section in linear transonic wind tunnel was proposed. The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. Near the sidewalls the suction slots are applied for the corner flow structure control. It allows to control the Axial Velocity Density Ratio (AVDR), important parameter for compressor cascade investigations. Numerical results for Explicit Algebraic Reynolds Stress Model with transition modeling are compared with oil flow visualization, schlieren and Pressure Sensitive Paint. Boundary layer transition location is detected by Temperature Sensitive Paint.

  18. Local boundary layer scales in turbulent Rayleigh-Benard convection

    CERN Document Server

    Scheel, Janet D

    2014-01-01

    We compute fully local boundary layer scales in three-dimensional turbulent Rayleigh-Benard convection. These scales are directly connected to the highly intermittent fluctuations of the fluxes of momentum and heat at the isothermal top and bottom walls and are statistically distributed around the corresponding mean thickness scales. The local boundary layer scales also reflect the strong spatial inhomogeneities of both boundary layers due to the large-scale, but complex and intermittent, circulation that builds up in closed convection cells. Similar to turbulent boundary layers, we define inner scales based on local shear stress which can be consistently extended to the classical viscous scales in bulk turbulence, e.g. the Kolmogorov scale, and outer scales based on slopes at the wall. We discuss the consequences of our generalization, in particular the scaling of our inner and outer boundary layer thicknesses and the resulting shear Reynolds number with respect to Rayleigh number. The mean outer thickness s...

  19. Boundary Layer to a System of Viscous Hyperbolic Conservation Laws

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, we investigate the large-time behavior of solutions to the initial-boundary value problem for nxn hyperbolic system of conservation laws with artificial viscosity in the half line (0, ∞). We first show that a boundary layer exists if the corresponding hyperbolic part contains at least one characteristic field with negative propagation speed. We further show that such boundary layer is nonlinearly stable under small initial perturbation. The proofs are given by an elementary energy method.

  20. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    , boundary layer thickness, turbulence, and bed shear stresses induced are systematically monitored and parameterised, under both hydraulically smooth and roughbed conditions. The results generally support a notion that the boundary layers induced by tsunami-scalewaves are both current-like, due...... layer properties beneath wind-waves maintain reasonable accuracy when extrapolated to full tsunami scales. Boundary layers driven by actual field-measured tsunami signals are likewise simulated, stemming from both the 2004 Indian Ocean as well as the 2011 Tohoku events. These results are reconciled...

  1. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R. W.

    2015-03-25

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.

  2. The stabilizing role of anisotropy in the free stream on boundary layer development

    Science.gov (United States)

    Frohnapfel, Bettina

    2005-11-01

    An experimental study on the transition of a flat plate boundary layer was conducted in the large wind tunnel of the chair of fluid dynamics (LSTM) in Erlangen, Germany. Although this is not an especially designed transition tunnel it was possible to maintain a stable laminar regime up to Rex=4x10^6, one of the highest transition Reynolds numbers achieved in a flat plate boundary layer. It is argued that this was possible due to a stabilizing effect originating from the high anisotropy level in the free stream disturbances that exists in the tunnel. Based on a statistical analysis of the dynamical equations for small axisymmetric disturbances, the influence of anisotropy on the dynamics of those disturbances in a laminar boundary layer was studied. The derived transition criterion is formulated in terms of a transition Reynolds number - based on intensity and Taylor length scale of the disturbances - that shows a dependency on the anisotropy level of the free stream disturbances. In this respect all available existing measurements on natural boundary layer transition at high Reynolds numbers were analyzed.

  3. Role of boundary layer processes on the mixed layer CO2-budget

    OpenAIRE

    D. Pino; Vilà-Guerau de Arellano, J.

    2010-01-01

    The diurnal and vertical variability of temperature, humidity and specially CO2 in the atmospheric boundary layer is studied by combining detailed observations taken at Cabauw (The Netherlands), Large-Eddy simulations (LES) and mixed layer theory. The research focus on the role played by the entrainment and other boundary layer driven processes on the distribution and diurnal evolution of CO2 in the boundary layer. The relative importance of this entrained air to ventilate CO2 will be analyze...

  4. Role of residual layer and large-scale phenomena on the evolution of the boundary layer

    OpenAIRE

    Blay, E.; D. Pino; Vilà-Guerau de Arellano, J.; Boer; Coster, van, R.; I. Faloona; Garrouste, O.; Hartogensis, O. K.

    2012-01-01

    Mixed-layer theory and large-eddy simulations are used to analyze the dynamics of the boundary layer on two intensive operational periods during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign: 1st and 2nd of July 2011, when convective boundary layers (CBLs) were observed. Continuous measurements made by several remote sensing and in situ instruments in combination with radiosoundings, and measurements done by unmanned aerial vehicles and an aircraft probed the verti...

  5. Boundary-layer control by electric fields: A feasibility study

    OpenAIRE

    Mendes, R. Vilela; Dente, J. A.

    1997-01-01

    A problem of great concern in aviation and submarine propulsion is the control of the boundary layer and, in particular, the methods to extend the laminar region as a means to decrease noise and fuel consumption. In this paper we study the flow of air along an airfoil when a layer of ionized gas and a longitudinal electric field are created in the boundary layer region. By deriving scaling solutions and more accurate numerical solutions we discuss the possibility of achieving significant boun...

  6. Spatially Developing Secondary Instabilities in Compressible Swept Airfoil Boundary Layers

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.

    2011-01-01

    Two-dimensional eigenvalue analysis is used on a massive scale to study spatial instabilities of compressible shear flows with two inhomogeneous directions. The main focus of the study is crossflow dominated swept-wing boundary layers although the methodology can also be applied to study other type of flows, such as the attachment-line flow. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed, namely, fixing the spatial growth direction unambiguously through a non-orthogonal formulation of the linearized disturbance equations. A primary test case used for parameter study corresponds to the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. Implications of this finding for transition control in swept wing boundary layers are examined.

  7. Characterization of the Martian Convective Boundary Layer

    OpenAIRE

    Martínez, Germán; Valero Rodríguez, Francisco; Vázquez Martínez, Luis

    2009-01-01

    The authors have carried out an extensive characterization of the Martian mixed layer formed under convective conditions. The values of the mixed layer height, convective velocity scale, convective temperature scale, mean temperature standard deviation, mean horizontal and vertical velocity standard deviations, and mean turbulent viscous dissipation rate have been obtained during the strongest convective hours for the mixed layer. In addition, the existing database of the surface layer has be...

  8. Appraisal of boundary layer trips for landing gear testing

    Science.gov (United States)

    McCarthy, Philip; Feltham, Graham; Ekmekci, Alis

    2013-11-01

    Dynamic similarity during scaled model testing is difficult to maintain. Forced boundary layer transition via a surface protuberance is a common method used to address this issue, however few guidelines exist for the effective tripping of complex geometries, such as aircraft landing gears. To address this shortcoming, preliminary wind tunnel tests were performed at Re = 500,000. Surface transition visualisation and pressure measurements show that zigzag type trips of a given size and location are effective at promoting transition, thus preventing the formation of laminar separation bubbles and increasing the effective Reynolds number from the critical regime to the supercritical regime. Extension of these experiments to include three additional tripping methods (wires, roughness strips, CADCUT dots) in a range of sizes, at Reynolds number of 200,000 and below, have been performed in a recirculating water channel. Analysis of surface pressure measurements and time resolved PIV for each trip device, size and location has established a set of recommendations for successful use of tripping for future, low Reynolds number landing gear testing.

  9. Propeller slipstream/wing boundary layer effects at low Reynolds numbers

    Science.gov (United States)

    Miley, S. J.; Howard, R. M.; Holmes, B. J.

    1985-01-01

    The effects of propeller slipstream on the wing laminar boundary are being investigated. Hot-wire velocity sensor measurements have been performed in flight and in a wind tunnel. It is shown that the boundary layer cycles between a laminar state and a turbulent state at the propeller blade passage rate. The cyclic length of the turbulent state increases with decreasing laminar stability. Analyses of the time varying velocity profiles show the turbulent state to lie in a transition region between fully laminar and fully turbulent. The observed cyclic boundary layer has characteristics similar to relaminarizing flow and laminar flow with external turbulence.

  10. Near continuum boundary layer flows at a flat plate

    Directory of Open Access Journals (Sweden)

    Chunpei Cai

    2015-05-01

    Full Text Available The problem of boundary layer flows at a flat plate surface with velocity-slip and temperature-jump boundary conditions is analyzed. With the velocity slip conditions, there are multiple physical factors lumped together, and the boundary layer solutions significantly change their behaviors. The self-similarity in the solutions degenerates, however, the problem is still an ordinary differential equation which can be solved. Shooting methods are applied to solve the flowfield. The results include velocity and temperature for both the surface and flowfield. Unlike the traditional Blasius flat plate boundary layer solutions which are self-similar through all the plate boundary layer, the new solutions indicate that the front tip is actually a singularity point, especially at locations within one mean free path from the leading edge.

  11. Investigations of shock wave boundary layer interaction on suction side of compressor profile

    International Nuclear Information System (INIS)

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to look more closely into the flow structure on the suction side of a blade, a design of a generic test section in linear transonic wind tunnel was proposed. The test section which could reproduce flow structure, shock wave location, pressure distribution and boundary layer development similar to the obtained on a cascade profile is the main objective of the presented here design. The design of the proposed test section is very challenging, because of shock wave existence, its interaction with boundary layer and its influence on the 3-D flow structure in the test section.

  12. Numerical simulations of two-fluid boundary layers beneath free-stream turbulence

    Science.gov (United States)

    Jung, Seo Yoon; Zaki, Tamer

    2011-11-01

    In two-fluid boundary layers, a wall-film is sheared by an external stream with different density and viscosity. As a result, the flow becomes prone to both shear and interfacial instabilities. In this study, the evolution of two-fluid boundary layers beneath free-stream vortical forcing is investigated using DNS. The simulations employ a conservative level-set technique in conjunction with a ghost fluid approach in order to capture a sharp interface. The wall film is less viscous than the outer flow, and its thickness is 10 % of that of the boundary layer at the inlet. The choice of viscosity ratio influences the spatial development of disturbances within the boundary layer. The spatial growth of instabilities is examined into the non-linear regime, which includes the region of breakdown to turbulence. We demonstrate that, at moderate levels of free-stream turbulence intensities, appropriate choice of the viscosity ratio can yield considerable transition delay.

  13. Crosshatch roughness distortions on a hypersonic turbulent boundary layer

    Science.gov (United States)

    Peltier, S. J.; Humble, R. A.; Bowersox, R. D. W.

    2016-04-01

    The effects of periodic crosshatch roughness (k+ = 160) on a Mach 4.9 turbulent boundary layer (Reθ = 63 000) are examined using particle image velocimetry. The roughness elements generate a series of alternating shock and expansion waves, which span the entire boundary layer, causing significant (up to +50% and -30%) variations in the Reynolds shear stress field. Evidence of the hairpin vortex organization of incompressible flows is found in the comparative smooth-wall boundary layer case (Reθ = 47 000), and can be used to explain several observations regarding the rough-wall vortex organization. In general, the rough-wall boundary layer near-wall vortices no longer appear to be well-organized into streamwise-aligned packets that straddle relatively low-speed regions like their smooth-wall counterpart; instead, they lean farther away from the wall, become more spatially compact, and their populations become altered. In the lower half of the boundary layer, the net vortex swirling strength and outer-scaled Reynolds stresses increase relative to the smooth-wall case, and actually decrease in the outer half of the boundary layer, as ejection and entrainment processes are strengthened and weakened in these two regions, respectively. A spectral analysis of the data suggests a relative homogenizing of the most energetic scales near Λ = ˜ 0.5δ across the rough-wall boundary layer.

  14. Size distributions of boundary-layer clouds

    Energy Technology Data Exchange (ETDEWEB)

    Stull, R.; Berg, L.; Modzelewski, H. [Univ. of Wisconsin, Madison, WI (United States)

    1996-04-01

    Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.

  15. Stable Boundary Layer Education (STABLE) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region, a low-level jet. To advance our understanding of the nocturnal stable boundary layer, high temporal and vertical resolution data on the temperature and wind properties are needed, along with both large-eddy simulation and cloud-resolving modeling.

  16. Linear Stability of the boundary layer under a solitary wave

    OpenAIRE

    Verschaeve, Joris C. G.; Pedersen, Geir K.

    2013-01-01

    A theoretical and numerical analysis of the linear stability of the boundary layer flow under a solitary wave is presented. In the present work, the nonlinear boundary layer equations are solved. The result is compared to the linear boundary layer solution in Liu et al. (2007) reveal- ing that both profiles are disagreeing more than has been found before. A change of frame of reference has been used to allow for a classical linear stability analysis without the need to redefine the notion of ...

  17. Coupled wake boundary layer model of wind-farms

    OpenAIRE

    Stevens, Richard J. A. M.; Gayme, Dennice F.; Meneveau, Charles

    2014-01-01

    We present and test the coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. The model couples the traditional, industry-standard wake model approach with a "top-down" model for the overall wind-farm boundary layer structure. This wake model captures the effect of turbine positioning, while the "top-down" portion of the model adds the interactions between the wind-turbine wakes and the atmospheric boundary layer. Each portion of the mode...

  18. Reactive boundary layers in metallic rolling contacts

    International Nuclear Information System (INIS)

    thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 - 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 - 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates of the

  19. Reactive boundary layers in metallic rolling contacts

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, John

    2016-05-01

    more thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 - 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 - 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates

  20. Coherent structures in wave boundary layers. Part 1. Oscillatory motion

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen

    2010-01-01

    This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i) ...

  1. On Cauchy conditions for asymmetric mixed convection boundary layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Amaouche, Mustapha [Laboratoire de Physique Theorique, Universite de Bejaia (Algeria); Kessal, Mohand [Departement Transport et Equipement Petrolier, Faculte des Hydrocarbures et de la Chimie, Universite de Boumerdes, 35000, Boumerdes (Algeria)

    2003-06-01

    The fundamental question of how and where does an asymmetric mixed convection boundary layer flow around a heated horizontal circular cylinder begin to develop is raised. We first transform the classical boundary layer equations by using an integral method of Karman-Pohlhausen type and obtain two coupled equations governing the evolutions of the dynamic and thermal boundary layers. Because of its global character, the implemented method allows to bypass the difficulty of downstream-upstream interactions. Cauchy conditions characterizing the starting of the boundary layers are found; they are obtained in a surprisingly simple manner for the limiting cases corresponding to Pr=1, Pr{yields}0 and Pr{yields}{infinity}. Otherwise, these conditions can be found by using a prediction correction algorithm. Some numerical experiments are finally performed in order to illustrate the theory. (authors)

  2. Change of Surface Roughness and Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1978-01-01

    The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent ...... numerical results from higher-order closure models, it is found that, even at a downwind distance such that the internal boundary layer has grown to the full height of the planetary boundary layers, the surface stress still considerably exceeds the equilibrium value......The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent...

  3. A Lagrangian Study of Southeast Pacific Boundary Layer Clouds

    Science.gov (United States)

    Painter, Gallia

    Low clouds lie at the heart of climate feedback uncertainties. The representation of clouds in global climate models relies on parameterization of many sub-grid scale processes that are crucial to understanding cloud responses to climate; low clouds in particular exist as a result of tightly coupled microphysical, mesoscale, and synoptic mechanisms. The influence of anthropogenic aerosols on cloud properties could have important ramifications for our understanding of how clouds respond to a changing climate. The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS REx) sampled the persistent stratocumulus cloud deck located off the coast of Peru and Chile in the southeastern Pacific ocean. Several cloud features found in the stratocumulus deck during VOCALS exhibit signs of interesting aerosol-cloud interactions, including pockets of open cells (POCs). POCs are regions of open-cellular convection surrounded by closed cell stratocumulus, exhibiting not only a marked transition in mesoscale organization and cloud morphology, but also sharp microphysical gradients (especially in droplet concentration) across the boundary between open-cellular and closed cellular convection. In addition, precipitation is often higher at the POC boundaries, hinting at the importance of precipitation in driving their formation. In order to evaluate the microphysical characteristics of POCs prior cloud breakup, we use Lagrangian trajectories coupled with geostationary satellite imagery and cloud retrievals, as well as observational data from VOCALS REx and model data. In three of our case studies, we found regions of anomalously low droplet concentration 18-24 hours prior to POC formation (coupled with liquid water path similar to or higher than surrounding cloud), supporting a precipitation driven mechanism for POC formation. Another group of features with interesting aerosol-cloud interactions observed during VOCALS were mesoscale hook-like features of high droplet

  4. Numerical simulation of turbulent atmospheric boundary layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Bennes, L.; Bodnar, T.; Kozel, K.; Sladek, I. [Czech Technical Univ., Prague (Czech Republic). Dept. of Technical Mathematics; Fraunie, P. [Universite Toulon et du Var, La Garde (France). Lab. de Sondages Electromagnetiques de l' Environment Terrestre

    2001-07-01

    The work deals with the numerical solution of viscous turbulent steady flows in the atmospheric boundary layer including pollution propagation. For its description we use two different mathematical models: - a model based on the Reynolds averaged Navier-Stokes equations for incompressible flows - a model based on a system of boundary layer equations. These systems are completed by two transport equations for the concentration of passive pollutants and the potential temperature in conservative form, respectively, and by an algebraic turbulence model. (orig.)

  5. Theoretical investigation on shocklets in compressible boundary layers

    Institute of Scientific and Technical Information of China (English)

    袁湘江; 刘智勇; 沈洁; 李国良

    2014-01-01

    By the shock relationships, the wavy characteristics and the forming condi-tions of a shock wave are analyzed. The wavy characteristics of an Euler system are stud-ied theoretically. The present research focuses on the wavy characteristics of Tollmien-Schlichting (T-S) waves, the excitation conditions of shocklets in compressible boundary layers, and the viscous effect on shock. The possibility of existence of shocklets in the compressible boundary layer and the physical mechanism of formation are theoretically interpreted.

  6. Tropical boundary layer equilibrium in the last ice age

    Science.gov (United States)

    Betts, Alan K.; Ridgway, W.

    1992-01-01

    A radiative-convective boundary layer model is used to assess the effect of changing sea surface temperature, pressure, wind speed, and the energy export from the tropics on the boundary layer equilibrium equivalent potential temperature. It remains difficult to reconcile the observations that during the last glacial maximum (18,000 yr BP) the snowline on the tropical mountains fell 950 m, while the tropical sea surface temperatures fell only 1-2 K.

  7. Unsteady boundary layer studies on ultra-high-lift low-pressure turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Hodson, H. [Cambridge Univ. (United Kingdom). Whittle Lab.; Harvey, N. [Rolls-Royce plc., Derby (United Kingdom). Turbine Systems

    2005-09-15

    The unsteady boundary layer development on the suction surface of two ultra-high-lift low-pressure (LP) turbine blades, known as T106C and U2, was investigated to further understand the loss reduction mechanism, which is integral to optimize the blade design in unsteady flow. The T106C profile is a mid-loaded ultra-high-lift LP turbine blade. Owing to the strong local adverse pressure gradient, the laminar boundary layer on the suction surface separates shortly after the suction side peak velocity. The turbulence within the incoming wakes cannot induce transition around the separation point because of the low receptivity of the laminar boundary layer. This allows the wake's negative jet to induce roll-up vortex, which reduces the benefits of the wake-induced transition. The wake-turbulence induced transition, which occurs downstream of the separation point, helps the separated boundary layer to reattach earlier. Owing to its mid-loaded nature, a large portion of the suction surface is covered by the reattached turbulent flow, which also contributes to the high profile loss. Therefore, LP turbine blades designed to make best use of unsteady flow effects should be aft-loaded. The ultra-high-lift blade U2 is an aft-loaded profile. Furthermore, the mild local adverse pressure gradient after the suction side peak velocity allows the laminar boundary layer to further develop before separation and results in a local Re {theta} of about 250 at separation. Therefore, the turbulence in the passing wake is able to induce transition close to the separation point. The earlier wake-induced transition and calmed region significantly reduce the size of the separation bubble. Furthermore, the earlier occurrence of wake-turbulence induced transition prevents the wake's negative jet from generating roll-up vortex, which also leads to lower losses. (author)

  8. Dynamic Boundary Layer Properties in Turbulent Thermal Convection

    Science.gov (United States)

    Xia, Ke-Qing; Har Cheung, Yin; Sun, Chao

    2004-11-01

    We report an experimental study on the properties of the velocity and temperature boundary layers in turbulent thermal convection in a rectangular-shaped box over a range of Rayleigh numbers and at a constant Prandtl number. Velocity components both parallel and perpendicular to the conducting plate are measured simultaneously using the PIV technique. Our results show that, for the given geometry of the cell, the velocity boundary layer at the conduction plate is of a Blasius type, i.e. the boundary layer thickness δv scales with the Reynolds number Re as δv ˜ Re-1/2. The measurement further reveals that, at the velocity boundary layer, the turbulent (Reynolds) shear tress becomes larger than the viscous shear stress when Ra reaches 1-2×10^10, indicating that the boundary layer becomes turbulent for Ra >10^10. The viscous dissipation rate calculated based on the measured velocity field shows that it is dominated by contribution from the bulk over that from the boundary layer.

  9. Structure and Growth of the Marine Boundary Layer

    Science.gov (United States)

    Mccumber, M.

    1984-01-01

    LANDSAT visible imagery and a one-dimensional Lagrangian boundary layer model were used to hypothesize the nature and the development of the marine boundary layer during a winter episode of strong seaward cold air advection. Over-water heating and moistening of the cold, dry continental air is estimable from linear relations involving horizontal gradients of the near-surface air temperature and humidity. A line of enhanced convection paralleling the Atlantic U.S. coast from south of New York Bay to the vicinity of Virginia Beach, VA was attributed to stronger convergence at low levels. This feature was characterized as a mesoscale front. With the assistance of a three-dimensional mesoscale boundary layer model, initialized with data obtained from the MASEX, the marine boundary layer can be mapped over the entire Atlantic coastal domain and the evolution of the boundary layer can be studied as a function of different characteristics of important surface level forcings. The effects on boundary layer growth due to the magnitude and pattern of sea surface temperature, to the shape of the coastline, and to atmospheric conditions, such as the orientation of the prevailing wind are examined.

  10. Vane Clocking Effects on Stator Suction Side Boundary Layers in a Multistage Compressor

    Directory of Open Access Journals (Sweden)

    Natalie R. Smith

    2016-01-01

    Full Text Available The stator inlet flow field in a multistage compressor varies in the pitchwise direction due to upstream vane wakes and how those wakes interact with the upstream rotor tip leakage flows. If successive vane rows have the same count, then vane clocking can be used to position the downstream vane in the optimum circumferential position for minimum vane loss. This paper explores vane clocking effects on the suction side vane boundary layer development by measuring the quasi-wall shear stress on the downstream vane at three spanwise locations. Comparisons between the boundary layer transition on Stator 1 and Stator 2 are made to emphasize the impact of rotor-rotor interactions which are not present for Stator 1 and yet contribute significantly to transition on Stator 2. Vane clocking can move the boundary layer transition in the path between the wakes by up to 24% of the suction side length at midspan by altering the influence of the Rotor 1 wakes in the 3/rev modulation from rotor-rotor interactions. The boundary layer near the vane hub and tip experiences earlier transition and separation due to interactions with the secondary flows along the shrouded endwalls. Flow visualization and Stator 2 wakes support the shear stress results.

  11. Stable Stratification Effects on Flow and Pollutant Dispersion in Boundary Layers Entering a Generic Urban Environment

    NARCIS (Netherlands)

    Tomas, J.M.; Pourquie, M.J.B.M.; Jonker, H.J.J.

    2016-01-01

    Large-eddy simulations (LES) are used to investigate the effect of stable stratification on rural-to-urban roughness transitions. Smooth-wall turbulent boundary layers are subjected to a generic urban roughness consisting of cubes in an in-line arrangement. Two line sources of pollutant are added to

  12. Study of effect of a smooth hump on hypersonic boundary layer instability

    Science.gov (United States)

    Park, Donghun; Park, Seung O.

    2016-05-01

    Effect of a two-dimensional smooth hump on linear instability of hypersonic boundary layer is studied by using parabolized stability equations. Linear evolution of mode S over a hump is analyzed for Mach 4.5 and 5.92 flat plate and Mach 7.1 sharp cone boundary layers. Mean flow for stability analysis is obtained by solving the parabolized Navier-Stokes equations. Hump with height smaller than local boundary layer thickness is considered. The case of flat plate and sharp cone without the hump are also studied to provide comparable data. For flat plate boundary layers, destabilization and stabilization effect is confirmed for hump located at upstream and downstream of synchronization point, respectively. Results of parametric studies to examine the effect of hump height, location, etc., are also given. For sharp cone boundary layer, stabilization influence of hump is also identified for a specific range of frequency. Stabilization influence of hump on convective instability of mode S is found to be a possible cause of previous experimental observations of delaying transition in hypersonic boundary layers.

  13. Some properties of boundary layer under the joint effect of external flow turbulence and surface roughness

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel; Mazur, Oton; Uruba, Václav

    Stockholm: KTH Royal Institute of Technology + Congrex Sweden AB, 2009. s. 194-195 [IUTAM Symposium on Laminar-Turbulent Transition /7./. 23.06.2009-26.06.2009, Stockholm] R&D Projects: GA AV ČR(CZ) IAA200760614 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer * laminar-turbulent transition * effect of free stream turbulence * effect of surface roughness Subject RIV: BK - Fluid Dynamics

  14. A body-force based method to generate supersonic equilibrium turbulent boundary layer profiles

    Science.gov (United States)

    Waindim, M.; Gaitonde, D. V.

    2016-01-01

    We further develop a simple counterflow body force-based approach to generate an equilibrium spatially developing turbulent boundary layer suitable for Direct Numerical Simulations (DNS) or Large Eddy Simulations (LES) of viscous-inviscid interactions. The force essentially induces a small separated region in an incoming specified laminar boundary layer. The resulting unstable shear layer then transitions and breaks down to yield the desired unsteady profile. The effects of wall thermal conditions are explored to demonstrate the capability of the method for both fixed wall and adiabatic wall conditions. We then describe an efficient method to select parameters that ensure transition by examining precursor signatures using generalized stability variables. These precursors are shown to be evident in a computational domain spanning only a small region around the trip and can also be detected using 2D simulations. Finally, the method is tested for different Mach numbers ranging from 1.7 to 2.9, with emphasis on flow field surveys, Reynolds stresses, and energy spectra. These results provide guidance on boundary conditions for desired boundary layer thickness at each Mach number. The consequences of using a much lower Reynolds number in computation relative to experiment are evident at the higher Mach number, where a self sustaining turbulent boundary layer is more difficult to obtain.

  15. Plasma boundary layer and magnetopause layer of the earth's magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, T.E.

    1979-06-01

    IMP 6 observations of the plasma boundary layer (PBL) and magnetopause layer (MPL) of the earth's magnetosphere indicate that plasma in the low-latitude portion of the PBL is supplied primarily by direct transport of magnetosheath plasma across the MPL and that this transport process is relatively widespread over the entire sunward magnetospheric boundary.

  16. Beta limitation of matter-antimatter boundary layers

    International Nuclear Information System (INIS)

    A model has earlier been proposed for a boundary layer which separates a cloud of matter from one of antimatter in a magnetized ambiplasma. In this model steady pressure equilibrium ceases to exist when a certain beta limit is exceeded. The latter is defined as the ratio between the ambiplasma and magnetic field pressures which balance each other in the boundary layer. Thus, at an increasing density, the high-energy particles created by annihilation within the layer are 'pumped up' to a pressure which cannot be balanced by a given magnetic field. The boundary layer then 'disrupts'. The critical beta limit thus obtained falls within the observed parameter ranges of galaxies and other large cosmical objects. Provided that the considered matter-antimatter balance holds true, this limit is thus expected to impose certain existence conditions on matter-antimatter boundary layers. Such a limitation may apply to certain cosmical objects and cosmological models. The maximum time scale for the corresponding disruption development has been estimated to be in the range from about 10-4 to 102 seconds for boundary layers at ambiplasma particle densities in the range from 104 to 10-2 m-3, respectively. (author)

  17. Fluorescence Visualization of Hypersonic Flow Past Triangular and Rectangular Boundary-layer Trips

    Science.gov (United States)

    Danehy, Paul M.; Garcia, A. P.; Borg, Stephen E.; Dyakonov, Artem A.; Berry, Scott A.; Inman, Jennifer A.; Alderfer, David W.

    2007-01-01

    Planar laser-induced fluorescence (PLIF) flow visualization has been used to investigate the hypersonic flow of air over surface protrusions that are sized to force laminar-to-turbulent boundary layer transition. These trips were selected to simulate protruding Space Shuttle Orbiter heat shield gap-filler material. Experiments were performed in the NASA Langley Research Center 31-Inch Mach 10 Air Wind Tunnel, which is an electrically-heated, blowdown facility. Two-mm high by 8-mm wide triangular and rectangular trips were attached to a flat plate and were oriented at an angle of 45 degrees with respect to the oncoming flow. Upstream of these trips, nitric oxide (NO) was seeded into the boundary layer. PLIF visualization of this NO allowed observation of both laminar and turbulent boundary layer flow downstream of the trips for varying flow conditions as the flat plate angle of attack was varied. By varying the angle of attack, the Mach number above the boundary layer was varied between 4.2 and 9.8, according to analytical oblique-shock calculations. Computational Fluid Dynamics (CFD) simulations of the flowfield with a laminar boundary layer were also performed to better understand the flow environment. The PLIF images of the tripped boundary layer flow were compared to a case with no trip for which the flow remained laminar over the entire angle-of-attack range studied. Qualitative agreement is found between the present observed transition measurements and a previous experimental roughness-induced transition database determined by other means, which is used by the shuttle return-to-flight program.

  18. Response of neutral boundary-layers to changes of roughness

    DEFF Research Database (Denmark)

    Sempreviva, Anna Maria; Larsen, Søren Ejling; Mortensen, Niels Gylling;

    1990-01-01

    stratification, and the surface roughness is the main parameter. The analysis of wind data and two simple models, a surface layer and a planetary boundary layer (PBL) model, are described. Results from both models are discussed and compared with data analysis. Model parameters have been evaluated and the model......When air blows across a change in surface roughness, an internal boundary layer (IBL) develops within which the wind adapts to the new surface. This process is well described for short fetches, > 1 km. However, few data exist for large fetches on how the IBL grows to become a new equilibrium...... boundary layer where again the drag laws can be used to estimate the surface wind. To study this problem, data have been sampled for two years from four 30-m meteorological masts placed from 0 to 30 km inland from the North Sea coast of Jutland in Denmark. The present analysis is limited to neutral...

  19. Vortex Generators to Control Boundary Layer Interactions

    Science.gov (United States)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  20. Nature, theory and modelling of geophysical convective planetary boundary layers

    Science.gov (United States)

    Zilitinkevich, Sergej

    2015-04-01

    Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in

  1. Highly buoyant bent-over plumes in a boundary layer

    Science.gov (United States)

    Tohidi, Ali; Kaye, Nigel B.

    2016-04-01

    Highly buoyant plumes, such as wildfire plumes, in low to moderate wind speeds have initial trajectories that are steeper than many industrial waste plumes. They will rise further into the atmosphere before bending significantly. In such cases the plume's trajectory will be influenced by the vertical variation in horizontal velocity of the atmospheric boundary layer. This paper examined the behavior of a plume in an unstratified environment with a power-law ambient velocity profile. Examination of previously published experimental measurements of plume trajectory show that inclusion of the boundary layer velocity profile in the plume model often provides better predictions of the plume trajectory compared to algebraic expressions developed for uniform flow plumes. However, there are many cases in which uniform velocity profile algebraic expressions are as good as boundary layer models. It is shown that it is only important to model the role of the atmospheric boundary layer velocity profile in cases where either the momentum length (square root of source momentum flux divided by the reference wind speed) or buoyancy length (buoyancy flux divided by the reference wind speed cubed) is significantly greater than the plume release height within the boundary layer. This criteria is rarely met with industrial waste plumes, but it is important in modeling wildfire plumes.

  2. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    Science.gov (United States)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  3. Turbulent boundary-layer structure of flows over freshwater biofilms

    Science.gov (United States)

    Walker, J. M.; Sargison, J. E.; Henderson, A. D.

    2013-12-01

    The structure of the turbulent boundary-layer for flows over freshwater biofilms dominated by the diatom Tabellaria flocculosa was investigated. Biofilms were grown on large test plates under flow conditions in an Australian hydropower canal for periods up to 12 months. Velocity-profile measurements were obtained using LDV in a recirculating water tunnel for biofouled, smooth and artificially sandgrain roughened surfaces over a momentum thickness Reynolds number range of 3,000-8,000. Significant increases in skin friction coefficient of up to 160 % were measured over smooth-wall values. The effective roughnesses of the biofilms, k s, were significantly higher than their physical roughness measured using novel photogrammetry techniques and consisted of the physical roughness and a component due to the vibration of the biofilm mat. The biofilms displayed a k-type roughness function, and a logarithmic relationship was found between the roughness function and roughness Reynolds number based on the maximum peak-to-valley height of the biofilm, R t. The structure of the boundary layer adhered to Townsend's wall-similarity hypothesis even though the scale separation between the effective roughness height and the boundary-layer thickness was small. The biofouled velocity-defect profiles collapsed with smooth and sandgrain profiles in the outer region of the boundary layer. The Reynolds stresses and quadrant analysis also collapsed in the outer region of the boundary layer.

  4. The inner core thermodynamics of the tropical cyclone boundary layer

    Science.gov (United States)

    Williams, Gabriel J.

    2016-02-01

    Although considerable progress has been made in understanding the inner-core dynamics of the tropical cyclone boundary layer (TCBL), our knowledge of the inner-core thermodynamics of the TCBL remains limited. In this study, the inner-core budgets of potential temperature (θ ), specific humidity (q), and reversible equivalent potential temperature (θ _e ) are examined using a high-resolution multilevel boundary layer model. The potential temperature budgets show that the heat energy is dominated by latent heat release in the eyewall, evaporative cooling along the outer edge of the eyewall, and upward surface fluxes of sensible and latent heat from the underlying warm ocean. It is shown that the vertical θ advection overcompensates the sum of radial advective warming from the boundary layer outflow jet and latent heating for the development of cooling in the eyewall within the TCBL. The moisture budgets show the dominant upward transport of moisture in the eyewall updrafts, partly by the boundary-layer outflow jet from the bottom eye region, so that the eyewall remains nearly saturated. The θ _e budgets reveal that the TCBL is maintained thermodynamically by the upward surface flux of higher-θ _e air from the underlying warm ocean, the radial transport of low-θ _e air from the outer regions of the TCBL, and the dry adiabatic cooling associated by eyewall updrafts. These results underscore the significance of vertical motion and the location of the boundary layer outflow jet in maintaining the inner core thermal structure of the TCBL.

  5. Coupled vs. decoupled boundary layers in VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. R. Jones

    2011-07-01

    Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture and temperature stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150 m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.

    We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the "mixed layer cloud thickness", defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling.

    In the deeper boundary layers observed well offshore, there was frequently nearly 100 % boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.

  6. Uranus evolution models with simple thermal boundary layers

    Science.gov (United States)

    Nettelmann, Nadine; Redmer, Ronald; Fortney, Jonathan J.; Hamel, Sebastien; Bethkenhagen, Mandy

    2016-04-01

    The strikingly low luminosity of Uranus imposes a long-standing challenge to our understanding of Ice Giant planets. Similar to the Earth, Uranus appears to evolve in equilibrium with the solar incident flux (Teq). Here we present the first Uranus structure and evolution models that are constructed to agree with both the observed low luminosity and the gravity field data. Our models make use of modern ab initio equations of state at high pressures for the icy components water, methane, and ammonia. We argue that the transition between the ice/rock-rich interior and the H/He-rich outer envelope should be stably stratified. Therefore, we introduce a simple thermal boundary layer (TBL) and adjust it to reproduce the luminosity. Due to this TBL, the deep interior of the Uranus models are up to a factor 3 warmer than adiabatic models, necessitating the presence of rocks there with a possible I:R of 1 x solar. Furthermore, we also allow for an equilibrium evolution (Teff ~ Teq) that begun prior to the present day, which would therefore no longer constitute a "special time" in Uranus' evolution. Once Teff ~ Teq happens, a shallow, subadiabatic zone in the atmosphere begins to develop. Its depth is adjusted to meet the luminosity constraint. This work provides a simple foundation for future Ice Giant structure and evolution models, that can be improved by properly treating the heat and particle fluxes in the diffusive zones.

  7. Experimental Investigation of the Effects of Acceleration on Heat Transfer in the Turbulent Boundary Layer

    Science.gov (United States)

    Chakroun, Walid M.; Taylor, Robert P.

    1996-01-01

    The objective of this research was to experimentally investigate the combined effects of freestream acceleration and surface roughness on heat transfer and fluid flow in the turbulent boundary layer. The experiments included a variety of flow conditions ranging from aerodynamically smooth to transitionally rough to fully rough boundary layers with accelerations ranging from moderate to moderately strong. The test surfaces used were a smooth-wall test surface and two rough-wall surfaces which were roughened with 1.27 mm diameter hemispheres spaced 2 and 4 base diameters apart in a staggered array. The measurements consisted of Stanton number distributions, mean temperature profiles, skin friction distributions, mean velocity profiles, turbulence intensity profiles, and Reynolds stress profiles. The Stanton numbers for the rough-wall experiments increased with acceleration. For aerodynamically smooth and transitionally rough boundary layers, the effect of roughness is not seen immediately at the beginning of the accelerated region as it is for fully rough boundary layers; however, as the boundery layer thins under acceleration, the surface becomes relatively rougher resulting in a sharp increase in Stanton number.

  8. Behaviour of tracer diffusion in simple atmospheric boundary layer models

    Directory of Open Access Journals (Sweden)

    P. S. Anderson

    2007-10-01

    Full Text Available 1-D profiles and time series from an idealised atmospheric boundary layer model are presented, which show agreement with boundary layer measurements of polar NOx. Diffusion models are increasingly being used as the framework for studying tropospheric air chemistry dynamics. Models based on standard boundary layer diffusivity profiles have an intrinsic behaviour that is not necessarily intuitive, due to the variation of turbulent diffusivity with height. The simple model presented captures the essence of the evolution of a trace gas released at the surface, and thereby provides both a programming and a conceptual tool in the analysis of observed trace gas evolution. A time scale inherent in the model can be tuned by fitting model time series to observations. This scale is then applicable to the more physically simple but chemically complex zeroth order or box models of chemical interactions.

  9. Particle motion inside Ekman and Bödewadt boundary layers

    Science.gov (United States)

    Duran Matute, Matias; van der Linden, Steven; van Heijst, Gertjan

    2014-11-01

    We present results from both laboratory experiments and numerical simulations of the motion of heavy particles inside Ekman and Bödewadt boundary layers. The particles are initially at rest on the bottom of a rotating cylinder filled with water and with its axis parallel to the axis of rotation. The particles are set into motion by suddenly diminishing the rotation rate and the subsequent creation of a swirl flow with the boundary layer above the bottom plate. We consider both spherical and non-spherical particles with their size of the same order as the boundary layer thickness. It was found that the particle trajectories define a clear logarithmic spiral with its shape depending on the different parameters of the problem. Numerical simulations show good agreement with experiments and help explain the motion of the particles. This research is funded by NWO (the Netherlands) through the VENI Grant 863.13.022.

  10. Large Eddy Simulation of the ventilated wave boundary layer

    DEFF Research Database (Denmark)

    Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu; Christensen, Erik Damgaard

    2006-01-01

    A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... overall (local) grid size. The results indicate that the large eddies develop in the resolved scale, corresponding to fluid with an effective viscosity decided by the sum of the kinematic and subgrid viscosity. Regarding case 2, the results are qualitatively in accordance with experimental findings....... Injection generally slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean...

  11. Localized travelling waves in the asymptotic suction boundary layer

    CERN Document Server

    Kreilos, Tobias; Schneider, Tobias M

    2016-01-01

    We present two spanwise-localized travelling wave solutions in the asymptotic suction boundary layer, obtained by continuation of solutions of plane Couette flow. One of the solutions has the vortical structures located close to the wall, similar to spanwise-localized edge states previously found for this system. The vortical structures of the second solution are located in the free stream far above the laminar boundary layer and are supported by a secondary shear gradient that is created by a large-scale low-speed streak. The dynamically relevant eigenmodes of this solution are concentrated in the free stream, and the departure into turbulence from this solution evolves in the free stream towards the walls. For invariant solutions in free-stream turbulence, this solution thus shows that that the source of energy of the vortical structures can be a dynamical structure of the solution itself, instead of the laminar boundary layer.

  12. Boundary layer for non-newtonian fluids on curved surfaces

    International Nuclear Information System (INIS)

    By using the basic equation of fluid motion (conservation of mass and momentum) the boundary layer parameters for a Non-Newtonian, incompressible and laminar fluid flow, has been evaluated. As a test, the flat plate boundary layer is first analized and afterwards, a case with pressure gradient, allowing separation, is studied. In the case of curved surfaces, the problem is first developed in general and afterwards particularized to a circular cylinder. Finally suction and slip in the flow interface are examined. The power law model is used to represent the stress strain relationship in Non-Newtonian flow. By varying the fluid exponent one can then, have an idea of how the Non-Newtonian behavior of the flow influences the parameters of the boundary layer. Two equations, in an appropriate coordinate system have been obtained after an order of magnitude analysis of the terms in the equations of motion is performed. (Author)

  13. Wind Tunnel Simulation of the Atmospheric Boundary Layer

    Science.gov (United States)

    Hohman, Tristen; Smits, Alexander; Martinelli, Luigi

    2013-11-01

    To simulate the interaction of large Vertical Axis Wind Turbines (VAWT) with the Atmospheric Boundary Layer (ABL) in the laboratory, we implement a variant of Counihan's technique [Counihan 1969] in which a combination of a castellated barrier, elliptical vortex generators, and floor roughness elements is used to create an artificial ABL profile in a standard closed loop wind tunnel. To examine the development and formation of the artificial ABL hotwire and SPIV measurements were taken at various downstream locations with changes in wall roughness, wall type, and vortex generator arrangements. It was found possible to generate a boundary layer at Reθ ~106 , with a mean velocity that followed the 1/7 power law of a neutral ABL over rural terrain and longitudinal turbulence intensities and power spectra that compare well with the data obtained for high Reynolds number flat plate turbulent boundary layers [Hultmark et al. 2010]. Supported by Hopewell Wind Power Ltd., and the Princeton Grand Challenges Program.

  14. Coupled vs. decoupled boundary layers in VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. R. Jones

    2011-03-01

    Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.

    We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the “well-mixed cloud thickness”, defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling. In the deeper boundary layers observed well offshore, there was frequently nearly 100% boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.

  15. Numerical Modeling of the Evolving Stable Boundary Layer

    Science.gov (United States)

    Sorbjan, Z.

    2013-12-01

    A single-column model of the evolving stable boundary layer is tested for the consistency of turbulence parameterization, self-similar properties of the flow, and effects of ambient forcing. The turbulence closure of the model is based on the K-theory approach, with stability functions based on empirical data, and a semi-empirical form of the mixing length. The model has one internal, governing stability parameter, the Richardson number Ri, which dynamically adjusts to the boundary conditions and to external forcing. Model results, expressed in terms of local similarity scales, are universal functions of the Richardson number, i.e. they are satisfied in the entire stable boundary layer, for all instants of time, and all kinds of external forcing. Based on similarity expression, a realizability condition is derived for the minimum turbulent heat flux in the stable boundary layer. Numerical experiments show that the development of 'horse-shoe' shaped, 'fixed-elevation' wind hodographs in the interior of the stable boundary layer are solely caused by effects imposed by surface thermal forcing, and are not related to the inertial oscillation mechanism.

  16. Conference on Boundary and Interior Layers : Computational and Asymptotic Methods

    CERN Document Server

    2015-01-01

    This volume offers contributions reflecting a selection of the lectures presented at the international conference BAIL 2014, which was held from 15th to 19th September 2014 at the Charles University in Prague, Czech Republic. These are devoted to the theoretical and/or numerical analysis of problems involving boundary and interior layers and methods for solving these problems numerically. The authors are both mathematicians (pure and applied) and engineers, and bring together a large number of interesting ideas. The wide variety of topics treated in the contributions provides an excellent overview of current research into the theory and numerical solution of problems involving boundary and interior layers.  .

  17. Lagrangian analysis of the laminar flat plate boundary layer

    CERN Document Server

    Gabr, Mohammad

    2016-01-01

    The leading edge flow properties has been a singularity to the Blasius laminar boundary layer equations, by applying the Lagrangian approach the leading edge velocity profiles of the laminar boundary layer over a flat plate are studied. Experimental observations as well as the theoretical analysis show an exact Gaussian distribution curve as the original starting profile of the laminar flow. Comparisons between the Blasius solution and the Gaussian curve solution are carried out providing a new insight into the physics of the laminar flow.

  18. The turning of the wind in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    periods of analysis, that under both barotropic and baroclinic conditions, the model predicts the gradient and geostrophic wind well, explaining for a particular case an 'unusual' backing of the wind. The observed conditions at the surface, on the other hand, explain the differences in wind veering. The......Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... simulated winds underpredict the turning of the wind and the boundary-layer winds in general....

  19. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  20. Oscillations of the Boundary Layer and High-frequency QPOs

    Directory of Open Access Journals (Sweden)

    Blinova A. A.

    2014-01-01

    Full Text Available We observed persistent high-frequency oscillations of the boundary layer near an accreting, weakly-magnetized star in global 3D MHD simulations. The tilted dipole magnetic field is not strong enough to open a gap between the star and the disk. Instead, it forms a highly-wrapped azimuthal field near the surface of the star which slows down rotation of the disk matter, while a small tilt of the field excites oscillations of the boundary layer with a frequency below the Keplerian frequency. This mechanism may be responsible for the high-frequency oscillations in accreting neutron stars, white dwarfs and classical T Tauri stars.

  1. Interaction between surface and atmosphere in a convective boundary layer /

    OpenAIRE

    Garai, Anirban

    2013-01-01

    Solar heating of the surface causes the near surface air to warm up and with sufficient buoyancy it ascends through the atmosphere as surface-layer plumes and thermals. The cold fluid from the upper part of the boundary layer descends as downdrafts. The downdrafts and thermals form streamwise roll vortices. All these turbulent coherent structures are important because they contribute most of the momentum and heat transport. While these structures have been studied in depth, their imprint on t...

  2. Validation of three-dimensional incompressible spatial direct numerical simulation code: A comparison with linear stability and parabolic stability equation theories for boundary-layer transition on a flat plate

    Science.gov (United States)

    Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan

    1992-01-01

    Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.

  3. On the voltage and distance across the low latitude boundary layer

    OpenAIRE

    Hapgood, Mike; Lockwood, Mike

    1993-01-01

    A pass of the AMPTE-UKS satellite through the low-latitude boundary layer (LLBL) at 8:30 MLT is studied in detail. The magnetosheath field is predominantly northward. It is shown that multiple transitions through part or all of the layer of antisunward flow lead to overestimation of both the voltage across this layer and its width. The voltage is estimated to be only about 3 kV and this implies that the full LLBL is about 1200 km thick, consistent with previous studies.

  4. Time-dependent boundary-layer response in a propeller slipstream

    Science.gov (United States)

    Howard, Richard M.; Miley, Stan J.

    1989-01-01

    The time-dependent behavior of a wing boundary layer immersed in a propeller slipstream has been studied experimentally in wind-tunnel tests and in flight. Hot-wire anemometer measurements were made through the boundary layer for time-dependent, ensemble-average velocity and turbulence-intensity profiles at various chord locations. The boundary layer has a coherent, time-dependent cycle of transitional behavior, varying from a laminar to a turbulent-transitional state. Local drag coefficients determined from the velocity profiles for the freewheeling propeller case in flight show that the time-dependent drag in the propeller slipstream varies from the undisturbed laminar value to a value less than that predicted for fully turbulent flow. Local drag coefficients determined from the thrusting propeller case in the wind tunnel indicate that the effects of the slipstream are to enhance the stability of the boundary layer and to reduce the drag coefficient in the laminar portion of the cycle below its undisturbed laminar value.

  5. Clear-air radar observations of the atmospheric boundary layer

    Science.gov (United States)

    Ince, Turker

    2001-10-01

    This dissertation presents the design and operation of a high-resolution frequency-modulated continuous-wave (FM- CW) radar system to study the structure and dynamics of clear-air turbulence in the atmospheric boundary layer (ABL). This sensitive radar can image the vertical structure of the ABL with both high spatial and temporal resolutions, and provide both qualitative information about the morphology of clear-air structures and quantitative information on the intensity of fluctuations in refractive-index of air. The principles of operation and the hardware and data acquisition characteristics of the radar are described in the dissertation. In October 1999, the radar participated in the Cooperative Atmosphere-Surface Exchange Study (CASES'99) Experiment to characterize the temporal structure and evolution of the boundary-layer features in both convective and stable conditions. The observed structures include clear-air convection, boundary layer evolution, gravity waves, Kelvin-Helmholtz instabilities, stably stratified layers, and clear-air turbulence. Many of the S-band radar images also show high- reflectivity returns from Rayleigh scatterers such as insects. An adaptive median filtering technique based on local statistics has, therefore, been developed to discriminate between Bragg and Rayleigh scattering in clear-air radar observations. The filter is tested on radar observations of clear air convection with comparison to two commonly used image processing techniques. The dissertation also examines the statistical mean of the radar-measured C2n for clear-air convection, and compares it with the theoretical predictions. The study also shows that the inversion height, local thickness of the inversion layer, and the height of the elevated atmospheric layers can be estimated from the radar reflectivity measurements. In addition, comparisons to the radiosonde-based height estimates are made. To examine the temporal and spatial structure of C2n , the dissertation

  6. Boundary-Layer Wind Structure in a Landfalling Tropical Cyclone

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components of horizontal wind in the tropical cyclone boundary layer at landfall. For a steady tropical cyclone on a straight coastline at landfall, the magnitude of the radial component is greater in the offshoreflow side and the tangential component is greater over the sea, slightly offshore, therefore the greater total wind speed occurs in the offshore-flow side over the sea. The budget analysis suggests that: (1) a greater surface friction over land produces a greater inflow and the nonlinear effect advects the maximum inflow downstream, and (2) a smaller surface friction over the sea makes the decrease of the tangential wind component less than that over land. Moreover, the boundary layer wind structures in a tropical cyclone are related to the locations of the tropical cyclone relative to the coastline due to the different surface frictions. During tropical cyclone landfall, the impact of rough terrain on the cyclone increases, so the magnitude of the radial component of wind speed increases in the offshore-flow side and the tangential component outside the radius of maximum wind speed decreases gradually.

  7. Two Phases of Coherent Structure Motions in Turbulent Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Hua; JIANG Nan

    2007-01-01

    Two phases of coherent structure motion are acquired after obtaining conditional phase-averaged waveforms for longitudinal velocity of coherent structures in turbulent boundary layer based on Harr wavelet transfer. The correspondences of the two phases to the two processes (i.e. ejection and sweep) during a burst are determined.

  8. A parametric study of adverse pressure gradient turbulent boundary layers

    International Nuclear Information System (INIS)

    There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure gradients and this is confounded by the large parameter space that may affect these flows. While there have been many valuable investigations conducted within this parameter space, there are still insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gradient parameter, β, the Reynolds number and the acceleration parameter, K. The statistics analyzed are limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there appears to be no measurable logarithmic region in these cases. It is also found that the large-scale motions scaling with outer variables are energised by the pressure gradient. These increasingly strong large-scale motions are found to be the dominant contributor to the increase in turbulence intensity (scaled with friction velocity) with increasing pressure gradient across the boundary layer.

  9. Full-Scale Spectrum of Boundary-Layer Winds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik

    2016-01-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used t...

  10. Boundary Layer on a Moving Wall with Suction and Injection

    Institute of Scientific and Technical Information of China (English)

    Anuar Ishak; Roslinda Nazar; Ioan Pop

    2007-01-01

    @@ We investigate the boundary-layer flow on a moving permeable plate parallel to a moving stream. The governing equations are solved numerically by a finite-difference method. Dual solutions are found to exist when the plate and the free stream move in the opposite directions.

  11. On the growth of turbulent regions in laminar boundary layers

    Science.gov (United States)

    Gad-El-hak, M.; Riley, J. J.; Blackwelder, R. F.

    1981-01-01

    Turbulent spots evolving in a laminar boundary layer on a nominally zero pressure gradient flat plate are investigated. The plate is towed through an 18 m water channel, using a carriage that rides on a continuously replenished oil film giving a vibrationless tow. Turbulent spots are initiated using a solenoid valve that ejects a small amount of fluid through a minute hole on the working surface. A novel visualization technique that utilizes fluorescent dye excited by a sheet of laser light is employed. Some new aspects of the growth and entrainment of turbulent spots, especially with regard to lateral growth, are inferred from the present experiments. To supplement the information on lateral spreading, a turbulent wedge created by placing a roughness element in the laminar boundary layer is also studied both visually and with probe measurements. The present results show that, in addition to entrainment, another mechanism is needed to explain the lateral growth characteristics of a turbulent region in a laminar boundary layer. This mechanism, termed growth by destabilization, appears to be a result of the turbulence destabilizing the unstable laminar boundary layer in its vicinity. To further understand the growth mechanisms, the turbulence in the spot is modulated using drag-reducing additives and salinity stratification.

  12. CISM Course on Recent Advances in Boundary Layer Theory

    CERN Document Server

    1998-01-01

    Recent advances in boundary-layer theory have shown how modern analytical and computational techniques can and should be combined to deepen the understanding of high Reynolds number flows and to design effective calculation strategies. This is the unifying theme of the present volume which addresses laminar as well as turbulent flows.

  13. The collapse of turbulence in the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wiel, B J H; Clercx, H J H [Department of Physics, Eindhoven University of Technology (Netherlands); Moene, A F [Department of Meteorology and Air Quality, Wageningen University and Research Centre (Netherlands); Jonker, H J J, E-mail: b.j.h.v.d.wiel@tue.nl [Department of Multi-scale Pysics, Delft University of Technology (Netherlands)

    2011-12-22

    A well-known phenomenon in the atmospheric boundary layer is the fact that winds may become very weak in the evening after a clear sunny day. In these quiet conditions usually hardly any turbulence is present. Consequently this type of boundary layer is referred to as the quasi-laminar boundary layer. In spite of its relevance, the appearance of laminar boundary layers is poorly understood and forms a long standing problem in meteorological research. Here we investigate an analogue problem in the form of a stably stratified channel flow. The flow is studied with a simplified atmospheric model as well as with Direct Numerical Simulations. Both models show remarkably similar behaviour with respect to the mean variables such as temperature and wind speed. The similarity between both models opens new way for understanding and predicting the laminarization process. Mathematical analysis on the simplified model shows that relaminarization can be understood from the existence of a definite limit in the maximum sustainable heat flux under stably stratified conditions. This fascinating aspect will be elaborated in future work.

  14. Passive Control of Supersonic Rectangular Jets through Boundary Layer Swirl

    Science.gov (United States)

    Han, Sang Yeop; Taghavi, Ray R.; Farokhi, Saeed

    2013-06-01

    Mixing characteristics of under-expanded supersonic jets emerging from plane and notched rectangular nozzles are computationally studied using nozzle exit boundary layer swirl as a mean of passive flow control. The coupling of the rectangular jet instability modes, such as flapping, and the swirl is investigated. A three-dimensional unsteady Reynolds-Averaged Navier-Stokes (RANS) code with shock adaptive grids is utilized. For plane rectangular nozzle with boundary layer swirl, the flapping and spanwise oscillations are captured in the jet's small and large dimensions at twice the frequencies of the nozzles without swirl. A symmetrical oscillatory mode is also observed in the jet with double the frequency of spanwise oscillation mode. For the notched rectangular nozzle with boundary layer swirl, the flapping oscillation in the small jet dimension and the spanwise oscillation in the large jet dimension are observed at the same frequency as those without boundary layer swirl. The mass flow rates in jets at 11 and 8 nozzle heights downstream of the nozzles increased by nearly 25% and 41% for the plane and notched rectangular nozzles respectively, due to swirl. The axial gross thrust penalty due to induced swirl was 5.1% for the plane and 4.9% for the notched rectangular nozzle.

  15. Linear Stability of the boundary layer under a solitary wave

    CERN Document Server

    Verschaeve, Joris C G

    2013-01-01

    A theoretical and numerical analysis of the linear stability of the boundary layer flow under a solitary wave is presented. In the present work, the nonlinear boundary layer equations are solved. The result is compared to the linear boundary layer solution in Liu et al. (2007) reveal- ing that both profiles are disagreeing more than has been found before. A change of frame of reference has been used to allow for a classical linear stability analysis without the need to redefine the notion of stability for this otherwise unsteady flow. For the linear stability the Orr-Sommerfeld equation and the parabolic stability equation were used. The results are compared to key results of inviscid stability theory and validated by means of a direct numerical simulation using a Legendre-Galerkin spectral ele- ment Navier-Stokes solver. Special care has been taken to ensure that the numerical results are valid. Linear stability predicts that the boundary layer flow is unstable for the entire parameter range considered, conf...

  16. Boundary Layer Flows in Porous Media with Lateral Mass Flux

    DEFF Research Database (Denmark)

    Nemati, H; H, Bararnia; Noori, F;

    2015-01-01

    Solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium are presented using the Homotopy Analysis Method and Shooting Numerical Method. Homotopy Analysis Method yields an analytic solution in the form of a rapidly...

  17. Analysis of diabatic flow modification in the internal boundary layer

    DEFF Research Database (Denmark)

    Floors, Rogier; Gryning, Sven-Erik; Pena Diaz, Alfredo;

    2011-01-01

    Measurements at two meteorological masts in Denmark, Horns Rev in the sea and Høvsøre near the coastline on land, are used to analyze the behaviour of the flow after a smooth-to-rough change in surface conditions. The study shows that the wind profile within the internal boundary layer is...

  18. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.;

    2012-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...

  19. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.;

    2014-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...

  20. Spatially developing turbulent boundary layer on a flat plate

    CERN Document Server

    Lee, J H; Hutchins, N; Monty, J P

    2012-01-01

    This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as it would form over the hull of a ship or fuselage of an aircraft. The towed plate permits visualisation of the zero-pressure-gradient turbulent boundary layer as it develops from the trip to a high Reynolds number state ($Re_\\tau \\approx 3000$). An evolving large-scale coherent structure will appear almost stationary in this frame of reference. The visualisations provide an unique view of the evolution of fundamental processes in the boundary layer (such as interfacial bulging, entrainment, vortical motions, etc.). In the more traditional laboratory frame of reference, in which fluid passes over a stationary body, it is difficult to observe the full evolution and lifetime of turbulent coherent structures. An equivalent experiment in a wind/water-tunnel would requ...

  1. The height of the atmospheric boundary layer during unstable conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E.

    2005-11-01

    The height of the convective atmospheric boundary layer, also called the mixed-layer, is one of the fundamental parameters that characterise the structure of the atmosphere near the ground. It has many theoretical and practical applications such as the prediction of air pollution concentrations, surface temperature and the scaling of turbulence. However, as pointed out by Builtjes (2001) in a review paper on Major Twentieth Century Milestones in Air Pollution Modelling and Its Application, the weakest point in meteorology data is still the determination of the height of the mixed-layer, the so-called mixing height. A simple applied model for the height of the mixed-layer over homogeneous terrain is suggested in chapter 2. It is based on a parameterised budget for the turbulent kinetic energy. In the model basically three terms - the spin-up term and the production of mechanical and convective turbulent kinetic energy - control the growth of the mixed layer. The interplay between the three terms is related to the meteorological conditions and the height of the mixed layer. A stable layer, the so-called entrainment zone, which is confined between the mixed layer and the free air above, caps the mixed layer. A parameterisation of the depth of the entrainment zone is also suggested, and used to devise a combined model for the height of the mixed layer and the entrainment zone. Another important aspect of the mixed layer development exists in coastal areas where an internal boundary layer forms downwind from the coastline. A model for the growth of the internal boundary layer is developed in analogy with the model for mixed layer development over homogeneous terrain. The strength of this model is that it can operate on a very fine spatial resolution with minor computer resources. Chapter 3 deals with the validation of the models. It is based in parts on data from the literature, and on own measurements. For the validation of the formation of the internal boundary layer

  2. Experimental characterization of airfoil boundary layers for improvement of aeroacoustic and aerodynamic modeling

    DEFF Research Database (Denmark)

    Fischer, Andreas

    2011-01-01

    and to improve it, because the predictions gave in general too low far field noise levels. Our main finding is that the acoustic formulations to relate the fluctuating surface pressure field close to the trailing edge of airfoil to the radiated far field sound give excellent results when compared to far field......The present work aims at the characterization of aerodynamic noise from wind turbines. There is a consensus among scientists that the dominant aerodynamic noise mechanism is turbulent boundary trailing edge noise. In almost all operational conditions the boundary layer flow over the wind turbine...... blades makes a transition from laminar to turbulent. In the turbulent boundary layer eddies are created which are a potential noise sources. They are ineffective as noise source on the airfoil surface or in free flow, but when convecting past the trailing edge of the airfoil their efficiency is much...

  3. An investigation of the effects of the propeller slipstream on a wing boundary layer

    Science.gov (United States)

    Howard, Richard Moore

    1987-12-01

    The behavior of a wing boundary layer immersed in a propeller slipstream has been studied experimentally. Airfoil surface static pressure measurements were made for time-averaged effects, and time-dependent measurements were made with hot-film anemometer sensors for the determination of instantaneous velocities. Vertical boundary layer traverses were made at fixed chord locations for the determination of velocity profiles and for values of the turbulence intensity. The boundary layer has a coherent, time-dependent cycle of transitional behavior, varying from laminar to turbulent. This layer shows similarities to those disturbed by high levels of external flow turbulence and to those in a relaminarizing environment. Profile drag coefficients determined from the time-dependent ensemble-average velocity profiles for the freewheeling propeller case show the drag in the propeller slipstream varies from the undisturbed laminar value to a value less than that predicted for fully turbulent flow. Drag values determined from the low Reynolds number thrusting propeller case in the wind tunnel show that the effects of the slipstream are to enhance the stability of the boundary layer and to reduce the drag coefficient in the laminar portion of the slipstream cycle below its undisturbed value.

  4. Stability analysis of Boundary Layer in Poiseuille Flow Through A Modified Orr-Sommerfeld Equation

    CERN Document Server

    Monwanou, A V; Orou, J B Chabi; 10.5539/apr.v4n4p138

    2013-01-01

    For applications regarding transition prediction, wing design and control of boundary layers, the fundamental understanding of disturbance growth in the flat-plate boundary layer is an important issue. In the present work we investigate the stability of boundary layer in Poiseuille flow. We normalize pressure and time by inertial and viscous effects. The disturbances are taken to be periodic in the spanwise direction and time. We present a set of linear governing equations for the parabolic evolution of wavelike disturbances. Then, we derive modified Orr-Sommerfeld equations that can be applied in the layer. Contrary to what one might think, we find that Squire's theorem is not applicable for the boundary layer. We find also that normalization by inertial or viscous effects leads to the same order of stability or instability. For the 2D disturbances flow ($\\theta=0$), we found the same critical Reynolds number for our two normalizations. This value coincides with the one we know for neutral stability of the k...

  5. Effects of Nose Bluntness on Hypersonic Boundary-Layer Receptivity and Stability Over Cones

    Science.gov (United States)

    Kara, Kursat; Balakumar, Ponnampalam; Kandil, Osama A.

    2011-01-01

    The receptivity to freestream acoustic disturbances and the stability properties of hypersonic boundary layers are numerically investigated for boundary-layer flows over a 5 straight cone at a freestream Mach number of 6.0. To compute the shock and the interaction of the shock with the instability waves, the Navier-Stokes equations in axisymmetric coordinates were solved. In the governing equations, inviscid and viscous flux vectors are discretized using a fifth-order accurate weighted-essentially-non-oscillatory scheme. A third-order accurate total-variation-diminishing Runge-Kutta scheme is employed for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. The appearance of instability waves near the nose region and the receptivity of the boundary layer with respect to slow mode acoustic waves are investigated. Computations confirm the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary-layer transition. The current solutions, compared with experimental observations and other computational results, exhibit good agreement.

  6. Preliminary Measurements in The Flat Plate Boundary Layer Downstream The Narrow Band with Air Suction

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel

    Praha : Ústav termomechaniky AV ČR, v. v. i., 2014 - (Jonáš, P.; Uruba, V.), s. 19-20 ISBN 978-80-87012-53-6. [Colloquium FLUID DYNAMICS 2014. Praha (CZ), 22.10.2014-24.10.2014] R&D Projects: GA ČR GAP101/12/1271 Institutional support: RVO:61388998 Keywords : boundary layer * laminar-turbulent transition * flow control by suction * porous surface Subject RIV: BK - Fluid Dynamics

  7. Time-Resolved Visualization of Instability Waves in a Hypersonic Boundary Layer

    OpenAIRE

    Laurence, Stuart; Wagner, Alexander; Hannemann, Klaus; Wartemann, Viola; Lüdeke, Heinrich; TANNO, Hideyuki; ITOH, Katsuhiro

    2012-01-01

    LAMINAR-TURBULENT transition in hypersonic boundary layers remains a challenging subject. This is especially true of the hypervelocity regime, in which an intriguing phenomenon is the possible damping of second-mode disturbances by chemical and vibrational nonequilibrium processes. To generate flows with sufficiently high enthalpy to investigate such effects, the use of shock-tunnel facilities is necessary; furthermore, it is now generally accepted that direct measurements of the instabili...

  8. Effect of the wall roughness and external flow turbulence on boundary layer development

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel; Mazur, Oton; Uruba, Václav

    München: European Mechanics Society, 2010. s. 22-22. ISBN N. [Euromech Fluid Mechanics Conference /8./. 13.09.2010-16.09.2010, Bad Reichenhall] R&D Projects: GA AV ČR(CZ) IAA200760614 Institutional research plan: CEZ:AV0Z20760514 Keywords : rough surface boundary layer * by-pass transition * effect of external turbulence scales Subject RIV: BK - Fluid Dynamics

  9. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    Science.gov (United States)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  10. Boundary-layer turbulence in experiments of quasi-Keplerian flows

    CERN Document Server

    Lopez, Jose M

    2016-01-01

    Most flows in nature and engineering are turbulent because of their large velocities and spatial scales. Laboratory experiments of rotating quasi-Keplerian flows, for which the angular velocity decreases radially but the angular momentum increases, are however laminar at Reynolds numbers exceeding one million. This is in apparent contradiction to direct numerical simulations showing that in these experiments turbulence transition is triggered by the axial boundaries. We here show numerically that as the Reynolds number increases turbulence becomes progressively confined to the boundary layers and the flow in the bulk fully relaminarizes. Our findings support that hydrodynamic turbulence cannot drive accretion in astrophysical disks.

  11. Edge Plasma Boundary Layer Generated By Kink Modes in Tokamaks

    International Nuclear Information System (INIS)

    This paper describes the structure of the electric current generated by external kink modes at the plasma edge using the ideally conducting plasma model. It is found that the edge current layer is created by both wall touching and free boundary kink modes. Near marginal stability, the total edge current has a universal expression as a result of partial compensation of the (delta)-functional surface current by the bulk current at the edge. The resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  12. Studies of stability of blade cascade suction surface boundary layer

    Institute of Scientific and Technical Information of China (English)

    DONG Xue-zhi; YAN Pei-gang; HAN Wan-jin

    2007-01-01

    Compressible boundary layers stability on blade cascade suction surface was discussed by wind tunnel experiment and numerical solution. Three dimensional disturbance wave Parabolized Stability Equations(PSE) of orthogonal Curvilinear Coordinates in compressible flow was deducted. The surface pressure of blade in wind tunnel experiment was measured. The Falkner-Skan equation was solved under the boundary conditions of experiment result, and velocity, pressure and temperature of average flow were obtained. Substituted this result for discretization of the PSE Eigenvalue Problem, the stability problem can be solved.

  13. Two-phase boundary layer prediction in upward boiling flow

    International Nuclear Information System (INIS)

    In the present work, the numerical modelling of the two-phase turbulent boundary layer in upward boiling flow was investigated. First, non-dimensional liquid velocity and temperature profiles in the two-phase boundary layer were validated on the one-dimensional section of a pipe with prescribed radial void fraction profiles. Simulations were performed on a fine grid with a commercial code CFX-5 using the k-ω turbulence model. A significant deviation of results from the analytical single-phase and two-phase wall functions from the literature was observed. Second, a wall boiling model in a vertical heated pipe was simulated (CFX-5) on the coarse grid. Here the prediction of the two-phase thermal boudary layer was compared to the experimental data, k-ω calculation on the fine grid and against the singlephase analytical wall function. Again a major deviation against single-phase temperature wall function was obtained. Presented analyses suggest that the existing analytical velocity and temperature wall functions cannot be valid for the boiling boundary layer with the high void fraction on the wall. (author)

  14. Numerical simulation considering an entrainment on a natural convection boundary layer along a vertical heated wall

    International Nuclear Information System (INIS)

    Fire models use a wall function in the calculation of the heat transfer rate between the heated wall and a fluid. The function is constructed from the empirical properties in a natural convection boundary layer along a vertical plate. It is effective in the view of time-saving for calculations; however, the heat transfer rate of the natural convection boundary layer is not simple as the functions because a laminar, turbulent and transition regions coexist. With the growth of computational resources, the near-wall region, where the wall function is no more effective, will be directly resolved. This report focuses on the accuracy of the large eddy simulation on the natural convection boundary layer without the use of the wall function. As a result, the transition region from laminar to turbulent flow fairly depended on the grid resolutions of the stream wise direction, and the Subgrid-scale model's effect on this uncertainty is still pending. However, with sufficiently high grid resolution, the results of the heat transfer rate and the profile of the flow field agreed well with the experiments. In addition, the visualization of the spatial temperature distribution revealed the transition from laminar to turbulent flow. The existing information about the heat transfer rate is confined to a scale of laboratory experiment. This is smaller than the very large scale disasters in and outside the power plant. The investigation about the heat transfer rate in such a very large scale flow field will be the next goal. (author)

  15. Validating coastal, near and far offshore boundary layer parameterizations with airborne helipod turbulence probe

    Science.gov (United States)

    Sood, A.; Bange, J.

    2009-09-01

    The atmospheric boundary layer (ABL) flow is more complex at the land-sea transition zone due to the formation of coherent mesoscale land-sea breeze circulation triggered by abrupt changes in the surface roughness and thermal forcing. Since the structure of the boundary layer flow is closely related to the representation of the surface conditions as determined by e.g. orography, land use, surface roughness etc., we begin with investigating the sensitivity of the boundary layer flow to the surface forcing at the land-sea transition zone including the coastline, the islands, the near (offshore regions at the north-western German coast, the Borkum island and the offshore research platform FINO-1. The turbulent momentum, heat and moisture fluxes derived from in-situ airborne Helipod measurements are compared with results from the Mellor-Yamada-Janic (MYJ), Mellor-Yamada-Nakanishi-Niino (YMNN) and the Quasi Normal Scale Elimination (QSNE) boundary layer parameterization schemes implemented in the WRF (V3.1) mesoscale model. Since ground stations and measurement towers offer only isolated point measurements, and remote sensing methods rely strongly on assumptions on the turbulent structure of the lower part of the atmospheric boundary layer, the best strategy to obtain precise in-situ data are airborne measurements. Probably the most accurate airborne measurement platform offering highest spatial and temporal resolution of thermodynamic quantities is the helicopter-borne turbulence probe Helipod. The Helipod is attached to a 15 m rope and carried below a helicopter and outside the downwash area of the rotor blades at 40 m/s. At a sampling rate of 500 Hz, measurements of the wind vector, temperature and humidity resolve sub-meter turbulence but also large (e.g. convective) structures. Vertical profiles and horizontal legs can be flown between 1500 m and a few meters above the surface, although the latter is limited by local flight safety rules (settlements, power lines

  16. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    Science.gov (United States)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  17. Physics of Transitional Shear Flows Instability and Laminar–Turbulent Transition in Incompressible Near-Wall Shear Layers

    CERN Document Server

    Boiko, Andrey V; Grek, Genrih R; Kozlov, Victor V

    2012-01-01

    Starting from fundamentals of classical stability theory, an overview is given of the transition phenomena in subsonic, wall-bounded shear flows. At first, the consideration focuses on elementary small-amplitude velocity perturbations of laminar shear layers, i.e. instability waves, in the simplest canonical configurations of a plane channel flow and a flat-plate boundary layer. Then the linear stability problem is expanded to include the effects of pressure gradients, flow curvature, boundary-layer separation, wall compliance, etc. related to applications. Beyond the amplification of instability waves is the non-modal growth of local stationary and non-stationary shear flow perturbations which are discussed as well. The volume continues with the key aspect of the transition process, that is, receptivity of convectively unstable shear layers to external perturbations, summarizing main paths of the excitation of laminar flow disturbances. The remainder of the book addresses the instability phenomena found at l...

  18. A Thermal Plume Model for the Martian Convective Boundary Layer

    CERN Document Server

    Colaïtis, Arnaud; Hourdin, Frédéric; Rio, Catherine; Forget, François; Millour, Ehouarn

    2013-01-01

    The Martian Planetary Boundary Layer [PBL] is a crucial component of the Martian climate system. Global Climate Models [GCMs] and Mesoscale Models [MMs] lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically-based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in Large-Eddy Simulations [LESs]. We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking ...

  19. Direct numerical simulation of supersonic turbulent boundary layers

    Science.gov (United States)

    Guarini, Stephen

    The objectives of this research were to develop a method by which the spatially developing compressible turbulent boundary layer could be simulated using a temporally developing numerical simulation and to study the physics of the compressible turbulent boundary layer. We take advantage of the technique developed by Spalart (1987, 1988) for the incompressible case. In this technique, it is recognized that the boundary layer exhibits slow growth in the streamwise direction, so the turbulence can be treated as approximately homogeneous in this direction. The slow growth is accounted for with a coordinate transformation and a multiple scale analysis. The result is a modified system of equations (Navier-Stokes plus some extra terms, which we call "slow growth terms") that are homogeneous in both the streamwise and spanwise directions and represent the state of the boundary layer at a given streamwise location (or, equivalently, a given thickness). The compressible Navier-Stokes equations are solved using a mixed Fourier and B-spline "spectral" method. The dependent variables are expanded in terms of a Fourier representation in the horizontal directions and a B-spline representation in the wall-normal direction. In the wall-normal direction non-reflecting boundary conditions are used at the freestream boundary, and zero-heat-flux no-slip boundary conditions are used at the wall. This combination of splines and Fourier methods produces a very accurate numerical method. Mixed implicit/explicit time discretization is used. Results are presented for a case with a Mach number of 2.5, and a Reynolds number, based on momentum integral thickness and wall viscosity, of Rsb{thetasp'} = 840. The results show that the van Driest transformed velocity satisfies the incompressible scalings and a narrow logarithmic region is obtained. The results for the turbulence intensities compare well with the incompressible simulations of Spalart. Pressure fluctuations are found to be higher than

  20. Infrared propagation in the air-sea boundary layer

    Science.gov (United States)

    Larsen, R.; Preedy, K. A.; Drake, G.

    1990-03-01

    Over the oceans and other large bodies of water the structure of the lowest layers of the atmosphere is often strongly modified by evaporation of water vapor from the water surface. At radio wavelengths this layer will usually be strongly refracting or ducting, and the layer is commonly known as the evaporation duct. However, the refractive index of air at infrared wavelengths differs from that at radio wavelengths, and the effects of the marine boundary layer on the propagation of infrared radiation are examined. Meteorological models of the air-sea boundary layer are used to compute vertical profiles of temperature and water-vapor pressure. From these are derived profiles of atmospheric refractive index at radio wavelengths and at infrared wavelengths in the window regions of low absorption. For duct propagation to occur it is necessary that the refractivity of air decreases rapidly with increasing height above the surface. At radio wavelengths this usually occurs when there is a strong lapse of water vapor pressure with increasing height. By contrast, at infrared wavelengths the refractive index is almost independent of water vapor pressure, and it is found that an infrared duct is formed only when there is a temperature inversion.

  1. CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions

    DEFF Research Database (Denmark)

    Koblitz, Tilman

    For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important to the...... atmospheric boundary-layer, are mostly ignored so far. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include atmospheric stability and the Coriolis effect. Within the present work a RANS model framework is developed and implemented into...

  2. An algorithm for detecting layer boundaries in sediments

    Directory of Open Access Journals (Sweden)

    K. Bube

    2006-01-01

    Full Text Available In this paper we present an algorithm based on wavelet multiscale decomposition, designed to detect lines of maximal gradients in horizontal direction within two-dimensional data sets. The algorithm is capable of identifying layer boundaries within sediment profiles, as demonstrated for artificial as well as two field data sets. Layers are detected with a good resolution within (i digital images of a deep sea sediment core (IODP-expedition 301, core 15H and (ii chemical concentration patterns of recent tidal sediments (North Sea.

  3. Boundary Layer Turbulence Index: Progress and Recent Developments

    CERN Document Server

    Pryor, Kenneth L

    2008-01-01

    A boundary layer turbulence index (TIBL) product has been developed to assess the potential for turbulence in the lower troposphere, generated using RUC-2 numerical model data. The index algorithm approximates boundary layer turbulent kinetic energy by parameterizing vertical wind shear, responsible for mechanical production of TKE, and kinematic heat flux, parameterized by the vertical temperature lapse rate and responsible for buoyant production of TKE. Validation for the TIBL product has been conducted for selected nonconvective wind events during the 2008 winter season over the Idaho National Laboratory mesonet domain. This paper presents studies of four significant wind events between December 2007 and February 2008 over southeastern Idaho. Based on the favorable results highlighted from validation statistics and in the case studies, the RUC TIBL product has demonstrated operational utility in assessing turbulence hazards to low-flying aircraft and ground transportation, and in the assessment of wildfire...

  4. Behaviour of tracer diffusion in simple atmospheric boundary layer models

    Directory of Open Access Journals (Sweden)

    P. S. Anderson

    2006-12-01

    Full Text Available 1-D profiles and time series from an idealised atmospheric boundary layer model are presented, which show agreement with measurements of polar photogenic NO and NO2. Diffusion models are increasingly being used as the framework for studying tropospheric air chemistry dynamics. Models based on standard boundary layer diffusivity profiles have an intrinsic behaviour that is not necessarily intuitive, due to the variation of turbulent diffusivity with height. The relatively simple model provides both a programming and a conceptual tool in the analysis of observed trace gas evolution. A time scale inherent in the model can be tuned by fitting model time series to observations. This scale is then applicable to the more physically simple but chemically complex zeroth order or box models of chemical interactions.

  5. Stereoscopic PIV measurement of boundary layer affected by DBD actuator

    Directory of Open Access Journals (Sweden)

    Procházka Pavel

    2016-01-01

    Full Text Available The effect of ionic wind generated by plasma actuator on developed boundary layer inside a narrow channel was investigated recently. Since the main investigated plane was parallel to the channel axis, the description of flow field was not evaluated credibly. This paper is dealing with cross-section planes downstream the actuator measured via 3D time-resolved PIV. The actuator position is in spanwise or in streamwise orientation so that ionic wind is blown in the same direction as the main flow or in opposite direction or perpendicularly. The interaction between boundary layer and ionic wind is evaluated for three different velocities of main flow and several parameters of plasma actuation (steady and unsteady regime, frequency etc.. Statistical properties of the flow are shown as well as dynamical behaviour of arising longitudinal vortices are discussed via phase-locked measurement and decomposition method.

  6. Construction of a Non-Equilibrium Thermal Boundary Layer Facility

    Science.gov (United States)

    Biles, Drummond; Ebadi, Alireza; Ma, Allen; White, Christopher

    2015-11-01

    A thermally conductive, electrically heated wall-plate forming the bottom wall of a wind tunnel has been constructed and validation tests have been performed. The wall-plate is a sectioned wall design, where each section is independently heated and controlled. Each section consists of an aluminum 6061 plate, an array of resistive heaters affixed to the bottom of the aluminum plate, and a calcium silicate holder used for thermal isolation. Embedded thermocouples in the aluminum plates are used to monitor the wall temperature and for feedback control of wall heating. The wall-plate is used to investigate thermal transport in both equilibrium and non-equilibrium boundary layers. The non-equilibrium boundary layer flow investigated is oscillatory flow produced by a rotor-stator mechanism placed downstream of the test section of the wind tunnel.

  7. Works on theory of flapping wing. [considering boundary layer

    Science.gov (United States)

    Golubev, V. V.

    1980-01-01

    It is shown mathematically that taking account of the boundary layer is the only way to develop a theory of flapping wings without violating the basic observations and mathematics of hydromechanics. A theory of thrust generation by flapping wings can be developed if the conventional downstream velocity discontinuity surface is replaced with the observed Karman type vortex streets behind a flapping wing. Experiments show that the direction of such vortices is the reverse of that of conventional Karman streets. The streets form by breakdown of the boundary layer. Detailed analysis of the movements of certain birds and insects during flight 'in place' is fully consistent with this theory of the lift, thrust and drag of flapping wings. Further directions for research into flight with flapping wings are indicated.

  8. Electrical properties of boundary layers of fatty acids

    Science.gov (United States)

    Deryagin, B. V.; Snitkovskii, M. M.

    1992-05-01

    Nonlinear current-voltage and coulomb-voltage characteristics with a hysteresis loop, which is peculiar to ferroelectrics, were observed in the boundary layers of individual saturated organic acids and oleic acid which have a domain structure and also an anomalously high conductivity which corresponds, in its order of magnitude, to the lower conductivity limit for metals. These effects are related with the formation of a volume space charge and by the cording of the current (formation of conductivity channels). The electrical properties of the boundary layers change in relation to the thickness: for subcritical thicknesses Ohm's Law is obeyed but for larger thicknesses strong field effects are observed. The thickness at which the system changes into the nonconducting stage has meaning as a physical characteristic of the system.

  9. Leading-edge effects on boundary-layer receptivity

    Science.gov (United States)

    Gatski, Thomas B.; Kerschen, Edward J.

    1990-01-01

    Numerical calculations are presented for the incompressible flow over a parabolic cylinder. The computational domain extends from a region upstream of the body downstream to the region where the Blasius boundary-layer solution holds. A steady mean flow solution is computed and the results for the scaled surface vorticity, surface pressure and displacement thickness are compared to previous studies. The unsteady problem is then formulated as a perturbation solution starting with and evolving from the mean flow. The response to irrotational time harmonic pulsation of the free-stream is examined. Results for the initial development of the velocity profile and displacement thickness are presented. These calculations will be extended to later times to investigate the initiation of instability waves within the boundary-layer.

  10. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    OpenAIRE

    Elena-Carmen Teleman; Radu Silion; Elena Axinte; Radu Pescaru

    2008-01-01

    The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence sca...

  11. Simulation of aerosol substance transfer in the atmospheric boundary layer

    Science.gov (United States)

    Lezhenin, A. A.; Raputa, V. F.; Shlychkov, V. Ð. ń.

    2014-11-01

    A model for the reconstruction of the surface concentration of a heavy non-homogeneous substance transfered in the atmosphere is proposed. The model is used to simulate the snow surface contamination by benzo(a)pyren in the vicinity of Power Station-3 in the city of Barnaul. The effects of wind rotation in the atmospheric boundary layer on the field of long-term aerosol substance are assessed.

  12. Pressure gradient effect in natural convection boundary layers

    OpenAIRE

    Higuera Antón, Francisco; Liñán Martínez, Amable

    1993-01-01

    The high Grashof number laminar natural convection flow around the lower stagnation point of a symmetric bowl- shaped heated body is analyzed. A region is identified where the direct effect on the flow of the component of the buoyancy force tangential to the body surface is comparable to the indirect effect of the component normal to the surface, which acts through the gradient of the nonuniform pressure that it induces in the boundary layer. Analysis of this region provides a description ...

  13. Iodine monoxide in the Western Pacific marine boundary layer

    Directory of Open Access Journals (Sweden)

    K. Großmann

    2012-10-01

    Full Text Available A latitudinal cross-section and vertical profiles of iodine monoxide (IO are reported from the marine boundary layer of the Western Pacific. The measurements were taken using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS during the TransBrom cruise of the German research vessel Sonne, which led from Tomakomai, Japan (42° N, 141° E through the Western Pacific to Townsville, Australia (19° S, 146° E in October 2009. In the marine boundary layer within the tropics (between 20° N and 5° S, IO mixing ratios ranged between 1 and 2.2 ppt, whereas in the subtropics and at mid-latitudes typical IO mixing ratios were around 1 ppt in the daytime. The profile retrieval reveals that the bulk of the IO was located in the lower part of the marine boundary layer. Photochemical simulations indicate that the organic iodine precursors observed during the cruise (CH3I, CH2I2, CH2ClI, CH2BrI are not sufficient to explain the measured IO mixing ratios. Reasonable agreement between measured and modelled IO can only be achieved, if an additional sea-air flux of inorganic iodine (e.g. I2 is assumed in the model. Our observations add further evidence to previous studies that reactive iodine is an important oxidant in the marine boundary layer.

  14. Computation of 2D stratified flows in atmospheric boundary layer

    Czech Academy of Sciences Publication Activity Database

    Tauer, M.; Šimonek, J.; Kozel, Karel; Jaňour, Zbyněk

    Praha : Ústav termomechaniky AV ČR, v. v. i., 2009 - (Jonáš, P.; Uruba, V.), s. 47-48 ISBN 978-80-87012-21-5. [Colloquium Fluid Dynamics 2009. Praha (CZ), 21.10.2009-23.10.2009] R&D Projects: GA ČR GA103/09/0977 Institutional research plan: CEZ:AV0Z20760514 Keywords : computation stratified flows * Navier-Stokes equations * atmospheric boundary layer Subject RIV: DG - Athmosphere Sciences, Meteorology

  15. Numerical solution of 2D flows in atmospheric boundary layer

    Czech Academy of Sciences Publication Activity Database

    Šimonek, J.; Tauer, J.; Kozel, K.; Jaňour, Zbyněk; Příhoda, Jaromír

    Praha : Ústav termomechaniky AV ČR, v. v. i., 2008 - (Jonáš, P.; Uruba, V.), s. 51-52 ISBN 978-80-87012-14-7. [Colloquium FLUID DYNAMICS 2008. Praha (CZ), 22.10.2008-24.10.2008] R&D Projects: GA AV ČR 1ET400760405 Institutional research plan: CEZ:AV0Z20760514 Keywords : numerical simulation * atmospheric boundary layer * stratified flow Subject RIV: BK - Fluid Dynamics

  16. Flat Plate Boundary Layer Under Negative Pressure Gradient

    Czech Academy of Sciences Publication Activity Database

    Antoš, Pavel; Jonáš, Pavel; Procházka, Pavel P.; Skála, Vladislav

    Pretoria, South Africa: HEFAT, 2015 - (Meyer, J.), s. 251-253 ISBN 978-1-77592-108-0. [International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics : HEFAT 2015 /11./. SKUKUZA (ZA), 20.07.2015-23.07.2015] R&D Projects: GA ČR GAP101/12/1271 Institutional support: RVO:61388998 Keywords : boundary layer in decelerating flow * adverse pressure gradient * hot-wire anemometry Subject RIV: BK - Fluid Dynamics

  17. Ozone in the Atlantic Ocean marine boundary layer

    OpenAIRE

    Patrick Boylan; Detlev Helmig; Samuel Oltmans

    2015-01-01

    Abstract In situ atmospheric ozone measurements aboard the R/V Ronald H. Brown during the 2008 Gas-Ex and AMMA research cruises were compared with data from four island and coastal Global Atmospheric Watch stations in the Atlantic Ocean to examine ozone transport in the marine boundary layer (MBL). Ozone measurements made at Tudor Hill, Bermuda, were subjected to continental outflow from the east coast of the United States, which resulted in elevated ozone levels above 50 ppbv. Ozone measurem...

  18. Grey zone simulations of the morning convective boundary layer development

    Science.gov (United States)

    Efstathiou, G. A.; Beare, R. J.; Osborne, S.; Lock, A. P.

    2016-05-01

    Numerical simulations of two cases of morning boundary layer development are conducted to investigate the impact of grid resolution on mean profiles and turbulent kinetic energy (TKE) partitioning from the large eddy simulation (LES) to the mesoscale limit. Idealized LES, using the 3-D Smagorinsky scheme, is shown to be capable of reproducing the boundary layer evolution when compared against measurements. However, increasing grid spacing results in the damping of resolved TKE and the production of superadiabatic temperature profiles in the boundary layer. Turbulence initiation is significantly delayed, exhibiting an abrupt onset at intermediate resolutions. Two approaches, the bounding of vertical diffusion coefficient and the blending of the 3-D Smagorinsky with a nonlocal 1D scheme, are used to model subgrid diffusion at grey zone resolutions. Simulations are compared against the coarse-grained fields from the validated LES results for each case. Both methods exhibit particular strengths and weaknesses, indicating the compromise that needs to be made currently in high-resolution numerical weather prediction. The blending scheme is able to reproduce the adiabatic profiles although turbulence is underestimated in favor of the parametrized heat flux, and the spin-up of TKE remains delayed. In contrast, the bounding approach gives an evolution of TKE that follows the coarse-grained LES very well, relying on the resolved motions for the nonlocal heat flux. However, bounding gives unrealistic static instability in the early morning temperature profiles (similar to the 3-D Smagorinsky scheme) because model dynamics are unable to resolve TKE when the boundary layer is too shallow compared to the grid spacing.

  19. Aerodynamic Optimization and Boundary Layer Control On Sailplane Wing Sections

    Czech Academy of Sciences Publication Activity Database

    Popelka, Lukáš; Matějka, Milan; Součková, Natálie

    Berlin: CEAS Council of European Aerospace Societies, 2007, s. 1763-1767. ISSN 0070-4083. [CEAS European Air and Space Conference /1./. Berlin (DE), 10.09.2007-13.09.2007] R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR IAA2076403; GA AV ČR(CZ) IAA200760614 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer control * sailplane wing section Subject RIV: BK - Fluid Dynamics

  20. Defects and boundary layers in non-Euclidean plates

    CERN Document Server

    Gemmer, John

    2012-01-01

    We investigate the behaviour of non-Euclidean plates with constant negative Gaussian curvature using the F\\"oppl-von K\\'arm\\'an reduced theory of elasticity. Motivated by recent experimental results, we focus on annuli with a periodic profile. We prove rigorous upper and lower bounds for the elastic energy that scales like the thickness squared. We also investigate the scaling with thickness of boundary layers where the stretching energy is concentrated with decreasing thickness.

  1. Glyoxal observations in the global marine boundary layer

    OpenAIRE

    Mahajan, Anoop S.; Prados-Roman, Cristina; Hay, Timothy D.; Lampel, Johannes; Pöhler, Denis; Groβmann, Katja; Tschritter, Jens; Frieß, Udo; Platt, Ulrich; Johnston, Paul; Kreher, Karin; Wittrock, Folkard; Burrows, John P; Plane, John M. C.; Saiz-Lopez, Alfonso

    2014-01-01

    Glyoxal is an important intermediate species formed by the oxidation of common biogenic and anthropogenic volatile organic compounds such as isoprene, toluene and acetylene. Although glyoxal has been shown to play an important role in urban and forested environments, its role in the open ocean environment is still not well understood, with only a few observations showing evidence for its presence in the open ocean marine boundary layer (MBL). In this study, we report observations of glyoxal f...

  2. Vortical Structures in a Boundary Layer Separation Region

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav; Sedlák, K.

    Plzeň : ZČU Plzeň, 2009 - (Žitek, P.; Milčák, P.; Krivánka, D.), s. 209-214 ISBN 978-80-7043-804-9. [Conference on Power System Engineering /8./. Plzeň (CZ), 18.06.2009] R&D Projects: GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : vortex * boundary layer * separation Subject RIV: BK - Fluid Dynamics

  3. Sensitivity of African easterly waves to boundary layer conditions

    OpenAIRE

    A. Lenouo; Mkankam Kamga, F.

    2008-01-01

    A linearized version of the quasi-geostrophic model (QGM) with an explicit Ekman layer and observed static stability parameter and profile of the African easterly jet (AEJ), is used to study the instability properties of the environment of the West African wave disturbances. It is found that the growth rate, the propagation velocity and the structure of the African easterly waves (AEW) can be well simulated. Two different lower boundary conditions are applied. One assumes a lack of vertical g...

  4. Amendment to "Analytical Solution for the Convectively-Mixed Atmospheric Boundary Layer": Inclusion of Subsidence

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Arellano, de J.V.G.

    2013-01-01

    In Ouwersloot and Vila-Guerau de Arellano (Boundary-Layer Meteorol. doi: 10. 1007/s10546-013-9816-z, 2013, this issue), the analytical solutions for the boundary-layer height and scalar evolutions are derived for the convective boundary layer, based on the prognostic equations of mixed-layer slab mo

  5. The effect of a shear boundary layer on the stability of a capillary jet

    Science.gov (United States)

    Ganan-Calvo, Alfonso; Montanero, Jose M.; Herrada, Miguel A.

    2014-11-01

    The generic stabilization effect of a shear boundary layer over the free surface of a capillary jet is here studied from analytical (asymptotic), numerical and experimental approaches. In first place, we show the consistency of the proposed asymptotic analysis by a linear stability (numerical) analysis of the Navier-Stokes equations for a finite boundary layer thickness. We show how the convective-to-absolute instability transition departs drastically from the flat velocity profile case as the axial coordinate becomes closer to the origin of the boundary layer development. For large enough axial distances from that origin, Rayleigh's dispersion relation is recovered. A collection of experimental observations is analyzed from the perspective provided by these results. We propose a systematic framework to the dynamics of capillary jets issued from a nozzle, either by direct injection into a quiescent atmosphere or in a co-flow (e.g. gas flow-focused jets), which exhibit peculiarities now definitely attributable in first order to the formation of shear boundary layers. Partial support from the Ministry of Economy and Competitiveness, Junta de Extremadura, and Junta de Andalucia (Spain) through Grant Nos. DPI2010-21103, GR10047, P08-TEP-04128, and TEP-7465, respectively, is gratefully acknowledged.

  6. Effects of Nose Bluntness on Stability of Hypersonic Boundary Layers over Blunt Cone

    Science.gov (United States)

    Kara, K.; Balakumar, P.; Kandil, O. A.

    2007-01-01

    Receptivity and stability of hypersonic boundary layers are numerically investigated for boundary layer flows over a 5-degree straight cone at a free-stream Mach number of 6.0. To compute the shock and the interaction of shock with the instability waves, we solve the Navier-Stokes equations in axisymmetric coordinates. The governing equations are solved using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. Generation of instability waves from leading edge region and receptivity of boundary layer to slow acoustic waves are investigated. Computations are performed for a cone with nose radii of 0.001, 0.05 and 0.10 inches that give Reynolds numbers based on the nose radii ranging from 650 to 130,000. The linear stability results showed that the bluntness has a strong stabilizing effect on the stability of axisymmetric boundary layers. The transition Reynolds number for a cone with the nose Reynolds number of 65,000 is increased by a factor of 1.82 compared to that for a sharp cone. The receptivity coefficient for a sharp cone is about 4.23 and it is very small, approx.10(exp -3), for large bluntness.

  7. Using UAV's to Measure the Urban Boundary Layer

    Science.gov (United States)

    Jacob, R. L.; Sankaran, R.; Beckman, P. H.

    2015-12-01

    The urban boundary layer is one of the most poorly studied regions of the atmospheric boundary layer. Since a majority of the world's population now lives in urban areas, it is becoming a more important region to measure and model. The combination of relatively low-cost unmanned aerial vehicles and low-cost sensors can together provide a new instrument for measuring urban and other boundary layers. We have mounted a new sensor and compute platform called Waggle on an off-the-shelf XR8 octo-copter from 3DRobotics. Waggle consists of multiple sensors for measuring pressure, temperature and humidity as well as trace gases such as carbon monoxide, nitrogen dioxide, sulfur dioxide and ozone. A single board computer running Linux included in Waggle on the UAV allows in-situ processing and data storage. Communication of the data is through WiFi or 3G and the Waggle software can save the data in case communication is lost during flight. The flight pattern is a deliberately simple vertical ascent and descent over a fixed location to provide vertical profiles and so flights can be confined to urban parks, industrial areas or the footprint of a single rooftop. We will present results from test flights in urban and rural areas in and around Chicago.

  8. Turbulent Boundary Layers in the Vicinity of Separation

    Science.gov (United States)

    Indinger, Thomas; Buschmann, Matthias H.; Gad-El-Hak, Mohamed

    2004-11-01

    There has been some controversy regarding the behavior of the mean velocity profile of turbulent boundary layers approaching separation. While a number of experiments show that the logarithmic law is sustained even under strong adverse-pressure-gradient and non-equilibrium conditions, other experiments and DNS results reveal that the mean velocity profile breaks down in the vicinity of separation. Measurements at TU Dresden of a decelerated, fully developed turbulent boundary layer over a smooth flat plate in a closed water channel show that the classical log law no longer describes the mean velocity in the overlap region after a certain fraction of the flow travels in the upstream direction. This finding is consistent with the physical explanation advanced by Dengel & Fernholz (J. Fluid Mech. 212, 1990) that the log law failure is caused by the first occurrence of reverse flow. Analyzing adverse-pressure-gradient turbulent boundary layer data from three independent groups, we demonstrate that the log law can be restored by replacing y^+ with a new variable depending both on the wall-normal coordinate and the reverse-flow parameter \\chi_w. This finding is of importance in cases where other complexities such as surface roughness or structured walls (riblets, dimples, etc.) are involved and a universal profile in inner variables is desired.

  9. Coupled wake boundary layer model of wind-farms

    CERN Document Server

    Stevens, Richard J A M; Meneveau, Charles

    2014-01-01

    We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall wind-farm boundary layer structure. The wake expansion/superposition model captures the effect of turbine positioning, while the top-down portion adds the interaction between the wind-turbine wakes and the atmospheric boundary layer. Each portion of the model requires specification of a parameter that is not known a-priori. For the wake model the wake expansion coefficient is required, while the top-down model requires an effective span-wise turbine spacing within which the model's momentum balance is relevant. The wake expansion coefficient is obtained by matching the predicted mean velocity at the turbine from both approaches, while the effective span-wise turbine spacing depends on turbine positioning and thus can be determined from the wake expansion...

  10. New insights into adverse pressure gradient boundary layers

    Science.gov (United States)

    George, William K.; Stanislas, Michel; Laval, Jean-Philippe

    2010-11-01

    In a recent paper Shah et al. 2010 (Proc. of the WALLTURB Meeting, 2009), Lille, FR, Springer, in press) documented a number of adverse pressure gradient flows (APG's), with and without wall curvature, where the turbulence intensity peak moved quite sharply away from the wall with increasing distance. They further suggested that this peak was triggered by the adverse pressure gradient and had its origin in an instability hidden in the turbulent boundary layer, developing soon after the change of sign of the pressure gradient. They then offered that this may explain the difficulties encountered up to now in finding a universal scaling for turbulent boundary layers. We build on these observations, and show that in fact there is clear evidence in the literature (in most experiments, both old and new) for such a development downstream of the imposition of an adverse pressure gradient. The exact nature of the evolution and the distance over which it occurs depends on the upstream boundary layer and the manner in which the APG is imposed. But far enough downstream the mean velocity profile in all cases becomes an inflectional point profile with the location of the inflection point corresponding quite closely to the observed peak in the streamwise turbulence intensity. This does not seem to have been previously noticed.

  11. Manipulation of Turbulent Boundary Layers Using Synthetic Jets

    Science.gov (United States)

    Berger, Zachary; Gomit, Guillaume; Lavoie, Philippe; Ganapathisubramani, Bharath

    2015-11-01

    This work focuses on the application of active flow control, in the form of synthetic jet actuators, of turbulent boundary layers. An array of 2 synthetic jets are oriented in the spanwise direction and located approximately 2.7 meters downstream from the leading edge of a flat plate. Actuation is applied perpendicular to the surface of the flat plate with varying blowing ratios and reduced frequencies (open-loop). Two-component large window particle image velocimetry (PIV) was performed at the University of Southampton, in the streamwise-wall-normal plane. Complementary stereo PIV measurements were performed at the University of Toronto Institute for Aerospace Studies (UTIAS), in the spanwise-wall-normal plane. The freestream Reynolds number is 3x104, based on the boundary layer thickness. The skin friction Reynolds number is 1,200 based on the skin friction velocity. The experiments at Southampton allow for the observation of the control effects as the flow propagates downstream. The experiments at UTIAS allow for the observation of the streamwise vorticity induced from the actuation. Overall the two experiments provide a 3D representation of the flow field with respect to actuation effects. The current work focuses on the comparison of the two experiments, as well as the effects of varying blowing ratios and reduced frequencies on the turbulent boundary layer. Funded Supported by Airbus.

  12. Turbulent thermal boundary layers subjected to severe acceleration

    Science.gov (United States)

    Araya, Guillermo; Castillo, Luciano

    2013-11-01

    Favorable turbulent boundary layers are flows of great importance in industry. Particularly, understanding the mechanisms of quasi-laminarization by means of a very strong favorable streamwise pressure gradient is indeed crucial in drag reduction and energy management applications. Furthermore, due to the low Reynolds numbers involved in the quasi-laminarization process, abundant experimental investigation can be found in the literature for the past few decades. However, several grey zones still remain unsolved, principally associated with the difficulties that experiments encounter as the boundary layer becomes smaller. In addition, little attention has been paid to the heat transfer in a quasi-laminarization process. In this investigation, DNS of spatially-developing turbulent thermal boundary layers with prescribed very strong favorable pressure gradients (K = 4 × 10-6) are performed. Realistic inflow conditions are prescribed based on the Dynamic Multi-scale Approach (DMA) [Araya et al. JFM, Vol. 670, pp. 581-605, 2011]. In this sense the flow carries the footprint of turbulence, particularly in the streamwise component of the Reynolds stresses.

  13. Improving Subtropical Boundary Layer Cloudiness in the 2011 NCEP GFS

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J. K.; Bretherton, Christopher S.; Xiao, Heng; Sun, Ruiyu N.; Han, J.

    2014-09-23

    The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of short-wave cloud radiative forcing, and affect predicted sea surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parameterisations to make them more consistent with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single-column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.

  14. On injection-ejection fluid influence through different accelerating porous surfaces on unsteady 2d incompressible boundary layer characteristics

    Directory of Open Access Journals (Sweden)

    Ivanović Dečan

    2005-01-01

    Full Text Available Through the porous contour in perpendicular direction, the fluid of the same properties as incompressible fluid in basic flow, has been injected or ejected with velocity who is a function of the contour longitudinal coordinate and time. The corresponding equations of unsteady boundary layer, by introducing the appropriate variable transformations, momentum and energy equations and two similarity parameters sets, are transformed into generalized form. These parameters are expressing the influence of the outer flow velocity, the injection or ejection velocity and the flow history in boundary layer, on the boundary layer characteristics. Obtained generalized solutions are used to calculate the distributions of velocity, and shear stress in laminar-turbulent transition of unsteady incompressible boundary layer on different porous contours: circular cylinder, thin elliptical cylinder and aerofoil, whose centers velocities changes in time as a degree functions. The ejection of fluid postpones the boundary layer separation, i.e. laminar-turbulent transition, and vice versa the injection of fluid favors the separation. Boundary layer characteristics are found directly, no further numerical integration of momentum equation.

  15. Stable Stratification Effects on Flow and Pollutant Dispersion in Boundary Layers Entering a Generic Urban Environment

    Science.gov (United States)

    Tomas, J. M.; Pourquie, M. J. B. M.; Jonker, H. J. J.

    2016-05-01

    Large-eddy simulations (LES) are used to investigate the effect of stable stratification on rural-to-urban roughness transitions. Smooth-wall turbulent boundary layers are subjected to a generic urban roughness consisting of cubes in an in-line arrangement. Two line sources of pollutant are added to investigate the effect on pollutant dispersion. Firstly, the LES method is validated with data from wind-tunnel experiments on fully-developed flow over cubical roughness. Good agreement is found for the vertical profiles of the mean streamwise velocity component and mean Reynolds stress. Subsequently, roughness transition simulations are done for both neutral and stable conditions. Results are compared with fully-developed simulations with conventional double-periodic boundary conditions. In stable conditions, at the end of the domain the streamwise velocity component has not yet reached the fully-developed state even though the surface forces are nearly constant. Moreover, the internal boundary layer is shallower than in the neutral case. Furthermore, an investigation of the turbulence kinetic energy budget shows that the buoyancy destruction term is reduced in the internal boundary layer, above which it is equal to the undisturbed (smooth wall) value. In addition, in stable conditions pollutants emitted above the urban canopy enter the canopy farther downstream due to decreased vertical mixing. Pollutants emitted below the top of the urban canopy are 85 % higher in concentration in stable conditions mostly due to decreased advection. If this is taken into account concentrations remain 17 % greater in stable conditions due to less rapid internal boundary-layer growth. Finally, it is concluded that in the first seven streets the vertical advective pollutant flux is significant, in contrast to the fully-developed case.

  16. An Experimental Investigation of the Dissipation Mechanisms in the Suction Side Boundary Layer of a Turbine Blade

    Institute of Scientific and Technical Information of China (English)

    Fiancesca Satta; Daniele Simoni; Marina Ubaldi; Pietro Zunino

    2008-01-01

    The present work is part of an extensive experimental activity carried out by the authors in recent years aimed at investigating the boundary layer transition phenomenon in turbine blades. The large scale of the cascade and the use of advanced LDV instrumentation and precision probe traversing mechanism resulted in high degree of spa-tial resolution and high accuracy of measurements. The main dissipation mechanism determining the profile losses in turbomachinery blades is the work of deformation of the mean motion within the boundary layer oper-ated by both viscous and turbulent shear stresses. In the present paper, the local viscous and turbulent deformation works have been directly evaluated from the detailed measurements of boundary layer mean velocity and Rey-nolds shear stress. The results show the distributions and the relative importance of the viscous and turbulent con-tributions to the loss production, in relation with the boundary layer states occurring along the turbine profile.

  17. The evolution of the boundary layer in turbulent Rayleigh-Bénard convection in air

    Science.gov (United States)

    du Puits, R.; Willert, C.

    2016-04-01

    We report measurements of the near-wall flow field in turbulent Rayleigh-Bénard convection in air (Pr = 0.7) using particle image velocimetry. The measurements were performed in a thin, rectangular sample at fixed Rayleigh number Ra = 1.45 × 1010. In particular, we focus on the evolution of the boundary layer that a single convection roll generates along its path at the lower horizontal plate. We identify three specific flow regions along this path: (i) a region of wall-normal impingement of the down flow close to one corner of the sample, (ii) a region where a shear layer with almost constant thickness evolves, and (iii) a region in which this boundary layer grows and eventually detaches from the plate surface at the opposite corner of the sample. Our measurements with a spatial resolution better than 1/500 of the total thickness of the boundary layer show that the typical velocity field as well as its statistics qualitatively varies between the three flow regions. In particular, it could be verified that the shear layer region covering about 75% of the total area of the plate is in transition to turbulence at the Rayleigh number as low as investigated in the present work.

  18. Wave boundary layer over a stone-covered bed

    DEFF Research Database (Denmark)

    Dixen, Martin; Hatipoglu, Figen; Sumer, B. Mutlu;

    2008-01-01

    This paper summarizes the results of an experimental investigation on wave boundary layers over a bed with large roughness, simulating stone/rock/armour block cover on the sea bottom. The roughness elements used in the experiments were stones the size of 1.4cm and 3.85cm in one group of experiments...... ping-pong ball experiments to study the influence of packing pattern, packing density, number of layers and surface roughness of the roughness elements. The results show that the friction factor seems to be not extremely sensitive to these factors. The results also show that the friction factor for...... extremely sensitive to the packing pattern, the packing density, the number of layers and the surface roughness of the roughness elements. There exists a steady streaming near the bed in the direction of wave propagation, in agreement with the existing work. The present data indicate that the steady...

  19. A scaling analysis of the turbulent boundary-layer in a shallow urban lake

    Science.gov (United States)

    Mezemate, Yacine; Fitton, George; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bonhomme, Céline; Soulignac, Frédéric; Lemaire, Bruno; Vinçon Leite, Brigitte

    2014-05-01

    The turbulent boundary-layer (TBL) has been the focus of countless experimental and numerical studies. Due to its complex nature the dynamics of the TBL are still far from being understood. Thus, to study, in particular the scaling properties of a TBL, we use a three-dimensional velocity time-series measured from an Acoustic Doppler Current Profiler(ADCP). The ADCP is particularly useful for analysing the TBL as it is able to measure the 3D velocity in the vertical, 127 cells over 3 meters. The ADCP is positioned next to a storm water discharge point at the bottom of a shallow urban lake in Créteil, a region in Paris. The positioning of the ADCP, in a stable, stratified lake, with a strong turbulent flow occurring close to the surface has given us a unique situation in which a turbulent bounded-layer can be analysed. Vertical profiles measured in the atmospheric boundary-layer are typically intrusive due to the requirement of masts and other complex measuring structures. Moreover atmospheric profilers are normally coarsely spaced in the vertical. In order to analyse the scaling properties of the velocity we compute its energy spectrum. In a log- log plot, if the velocity is scaling, the spectral exponent is its slope. It frequently that in the presence of a boundary-layer, a -1 spectral exponent is observed. Dimensional arguments suggest a -1 spectral exponent when the energy flux becomes dependent on the friction velocity instead of the length-scale. Due to the fine vertical spacing of the measurements we are not only able to observe a -1 spectral exponent, but observe a smooth transition from a free-stream turbulent regime (spectral exponent close to -5/3) to a boundary-layer -1 exponent. Because the transition shows such a strong a depth dependence we are able to propose a general model based on dynamical equations for the scaling exponent as a function of height. This generalised scaling boundary-layer model allows one to easily reproduce the turbulent

  20. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

    Directory of Open Access Journals (Sweden)

    M. Lothon

    2014-04-01

    Full Text Available Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective to the night-time stable boundary layer, still raises several scientific issues. This phase of the diurnal cycle is challenging from both modeling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective regime, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary Layer Late Afternoon and Sunset Turbulence field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of integrated instrument platforms including full-size aircraft, remotely piloted aircraft systems (RPAS, remote sensing instruments, radiosoundings, tethered balloons, surface flux stations, and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observations from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, like new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the residual layer of the previous day, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence

  1. Defining the Entrainment Zone in Stratocumulus-topped Boundary Layers

    Science.gov (United States)

    Wang, Q.; Zhou, M.; Kalogiros, J. A.; Lenschow, D. H.; Dai, C.; Wang, S.

    2010-12-01

    The presence of an entrainment zone near the top of the stratocumulus-topped boundary layers has been identified by many early studies. However, the definition of the entrainment zone was rather vague. We have examined the fine vertical variations of cloud liquid water content, wind, temperature and humidity near the stratocumulus top and developed a new method to identify the entrainment zone objectively. Aircraft measurements from various field projects in stratocumulus-topped boundary layers are used, taking advantage of the fast sampling capability of many of the aircraft sensors. Because of the inhomogeneous mixing of two air masses with distinctively different thermodynamic properties, the magnitude of temperature perturbations within the entrainment zone is significantly larger than those above or below. This characteristics is used to define the upper and lower boundaries of the entrainment zone using a wavelet spectra analyses. The definition of the entrainment zone is further evaluated by the presence of a linear mixing line through mixing line analyses. Various other interfaces at the cloud top are also examined, including the cloud interface, temperature interface (inversion), and moisture interface. The heights of these interfaces are examined relative to the height of the entrainment zone. This study also systematically revealed the presence of turbulence above the local cloud top and/or above the entrainment zone. Wind shear near the cloud top is one possible source that generated local turbulence. Other potential sources of turbulence will also be discussed.

  2. Longitudinal dispersion of heavy particles in an oscillating tunnel and application to wave boundary layers

    DEFF Research Database (Denmark)

    Kirca, V. S. Ozgur; Sumer, B. Mutlu; Steffensen, Michael;

    2016-01-01

    The present research aims at getting an understanding of the process of dispersion of surface sediment in an oscillatory boundary layer, which may represent an idealised case of, for example, a stockpile area where excavated sediment is stockpiled temporarily (or permanently). The process is...... studied numerically, using a random-walk particle model with the input data for the mean and turbulence characteristics of the wave boundary layer picked up from a transitional two-equation k–ω Reynolds averaged Navier–Stokes model and plugged in the random-walk model. First, the flowmodel is validated...... against experimental data in the literature. Then, the random-walk dispersion model is run for different oscillatory flow cases and for a number of steady flow cases for comparison. The primary sediment grains of concern are fine sediments (with low fall velocity), which would stay in suspension for most...

  3. On the partially reacted boundary layer in rate sticks

    Science.gov (United States)

    Partom, Y.

    2014-05-01

    Using our temperature dependent reactive flow model (TDRR) to simulate detonation in a rate stick, we observe that a partially reacted layer (PRL) is formed near the boundary. We are not aware that such a PRL has been observed in tests, and this is why we regarded it in the past as a numerical artifact. Assuming that such an artefact may be caused by the finite rise time of the detonation shock, we showed in [1] how it can be eliminated by delaying the outward boundary motion for a length of time comparable with the shock rise time. Here we revisit the PRL problem. We first show that it is not a numerical artifact but a real phenomenon. We do this by repeating the reactive flow run with a finer mesh. By looking at the PRL structure, we see that doubling the resolution affects the PRL only slightly. We then conjecture that the PRL formation has to do with the finite duration of the reaction process (or the finite extent of the reaction zone). By the time the boundary rarefaction reaches a cell near the boundary, it may be only partially reacted, and its reaction may therefore be cut off. To establish our conjecture we show how the PRL structure changes with the reaction duration.

  4. Numerical Study of Broadband Disturbance Development in APG Boundary Layer Flow

    Science.gov (United States)

    Chen, Weijia; Chen, Jim; Lo, Edmond

    2014-03-01

    A numerical model is developed with combined compact difference methods to simulation boundary layer transition problems. The model is used to investigate the formation and development of coherent structures in late stage of a laminar-turbulent transition initiated by a two-dimensional Tollmien-Schlichting (TS) wave and initially weak broadband disturbances. The numerical simulation closely follows the conditions in the experiments by Borodulin (2006). The boundary layer base flow has an Adverse Pressure Gradient (APG) with Hartree parameter βH = - 0.115. The instantaneous flow structures are visualized, which demonstrate results comparable with experiments. Interaction between the TS wave and broadband disturbances leads to the formation of Λ-vortices, Ω-vortices, and ring-like vortices. In comparison with those in classical transition paths, i.e., fundamental and subharmonic resonances, these structures are distributed in a random order and have distorted shapes. However, their local evolution properties are qualitatively similar with those in classical transition paths. The authors thank Nanyang Techonological Univerisity for funding support.

  5. The Jovian boundary layer as formed by magnetic-anomaly effects

    Science.gov (United States)

    Dessler, A. J.

    1979-01-01

    A model is presented in which a plasma boundary layer of Jupiter is formed from plasma of internal origin. It is proposed that, unlike the Earth's boundary layer, which is thought to consist principally of solar wind plasma, Jupiter's boundary layer consists principally of sulphur and oxygen from the Io plasma torus, plus a small component of hydrogen from Jupiter's ionosphere. Fresh plasma is supplied to the boundary layer once each planetary rotation period by a convection pattern that rotates with Jupiter.

  6. Radiative instabilities of atmospheric jets and boundary layers

    International Nuclear Information System (INIS)

    Complex flows occur in the atmosphere and they can be source of internal gravity waves. We focus here on the sources associated with radiative and shear (or Kelvin-Helmholtz) instabilities. Stability studies of shear layers in a stably stratified fluid concern mainly cases where shear and stratification are aligned along the same direction. In these cases, Miles (1961) and Howard (1961) found a necessary condition for stability based on the Richardson number: Ri ≥ 1/4. In this thesis, we show that this condition is not necessary when shear and stratification are not aligned: we demonstrate that a two-dimensional planar Bickley jet can be unstable for all Richardson numbers. Although the most unstable mode remains 2D, we show there exists an infinite family of 3D unstable modes exhibiting a radiative structure. A WKBJ theory is found to provide the main characteristics of these modes. We also study an inviscid and stratified boundary layer over an inclined wall with non-Boussinesq and compressible effects. We show that this flow is unstable as soon as the wall is not horizontal for all Froude numbers and that strongly stratified 3D perturbations behave exactly like compressible 2D perturbations. Applications of the results to the jet stream and the atmospheric boundary layer are proposed. (author)

  7. Large Eddy Simulation and Study of the Urban Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    苗世光; 蒋维楣

    2004-01-01

    Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.

  8. Laminar and turbulent boundary layer separation control of Mako shark skin

    Science.gov (United States)

    Afroz, Farhana

    The Shortfin Mako shark (Isurus oxyrinchus) is one of the fastest swimmers in nature. They have an incredible turning agility and are estimated to achieve speeds as high as ten body lengths per second. Shark skin is known to contain flexible denticles or scales, capable of being actuated by the flow whereby a unique boundary layer control (BLC) method could reduce drag. It is hypothesized that shark scales bristle when the flow is reversed, and this bristling may serve to control flow separation by (1) inhibiting the localized flow reversal near the wall and (2) inducing mixing within the boundary layer by cavities formed between the scales that increases the momentum of the flow near the wall. To test this hypothesis, samples of Mako shark skin have been studied under various amounts of adverse pressure gradient (APG). These samples were collected from the flank region of a Shortfin Mako shark where the scales have the greatest potential for separation control due to the highest bristling angles. An easy technique for inducing boundary layer separation has been developed where an APG can be generated and varied using a rotating cylinder. Both the experimental and numerical studies showed that the amount of APG can be varied as a function of cylinder rotation speed or cylinder gap height for a wide range of Reynolds numbers. This method of generating an APG is used effectively for inducing both laminar and turbulent boundary layer separation over a flat plate. Laminar and turbulent boundary layer separation studies conducted over a smooth plate have been compared with the same setup repeated over shark skin. The time-averaged DPIV results showed that shark scale bristling controlled both laminar and turbulent boundary layer separation to a measurable extent. It shows that the shark scales cause an early transition to turbulence and reduce the degree of laminar separation. For turbulent separation, reverse flow near the wall and inside the boundary layer is

  9. A thermal plume model for the Martian convective boundary layer

    Science.gov (United States)

    Colaïtis, A.; Spiga, A.; Hourdin, F.; Rio, C.; Forget, F.; Millour, E.

    2013-07-01

    The Martian planetary boundary layer (PBL) is a crucial component of the Martian climate system. Global climate models (GCMs) and mesoscale models (MMs) lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in large-eddy simulations (LESs). We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking into account stability and turbulent gustiness to calculate surface-atmosphere fluxes. Those new parameterizations for the surface and mixed layers are validated against near-surface lander measurements. Using a thermal plume model moreover enables a first-order estimation of key turbulent quantities (e.g., PBL height and convective plume velocity) in Martian GCMs and MMs without having to run costly LESs.

  10. Turbulent thermal boundary layers with temperature-dependent viscosity

    International Nuclear Information System (INIS)

    Highlights: • Turbulent thermal boundary layers with temperature-dependent viscosity are simulated. • Effect of temperature-dependent viscosity on the statistics of the scalar field. • An identity for the Stanton number is derived and analyzed. • Effect of temperature-dependent viscosity on the statistics of scalar transfer rate. • Modification of turbulent flow field leads to an enhanced scalar transfer rate. - Abstract: Direct numerical simulations (DNS) of turbulent boundary layers (TBLs) over isothermally heated walls were performed, and the influence of the wall-heating on the thermal boundary layers was investigated. The DNS adopt an empirical relation for the temperature-dependent viscosity of water. The Prandtl number therefore changes with temperature, while the Péclet number is constant. Two wall temperatures (Tw = 70 °C and 99 °C) were considered relative to T∞ = 30 °C, and a reference simulation of TBL with constant viscosity was also performed for comparison. In the variable viscosity flow, the mean and variance of the scalar, when normalized by the friction temperature deficit, decrease relative to the constant viscosity flow. A relation for the mean scalar which takes into account the variable viscosity is proposed. Appropriate scalings for the scalar fluctuations and the scalar flux are also introduced, and are shown to be applicable for both variable and constant viscosity flows. Due to the modification of the near-wall turbulence, the Stanton number and the Reynolds analogy factor are augmented by 10% and 44%, respectively, in the variable viscosity flow. An identity for the Stanton number is derived and shows that the mean wall-normal velocity and wall-normal scalar flux cause the increase in the heat transfer coefficient. Finally, the augmented near-wall velocity fluctuations lead to an increase of the wall-normal scalar flux, which contributes favorably to the enhanced heat transfer at the wall

  11. Surface Temperature and Surface-Layer Turbulence in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Pardyjak, E.; Steeneveld, G.J.; Kleissl, J.

    2013-01-01

    Previous laboratory and atmospheric experiments have shown that turbulence influences the surface temperature in a convective boundary layer. The main objective of this study is to examine land-atmosphere coupled heat transport mechanism for different stability conditions. High frequency infrared im

  12. Laboratory simulation of rotating atmospheric boundary layer flows over obstacles

    International Nuclear Information System (INIS)

    The present study fits in the frame of a research program concerning in general the dynamics of airflow in the atmospheric boundary layer and in particular the influence of terrestrial rotation on the movements of air masses interacting with natural extended obstacles (mountains). The experiment has been performed by the method of hydraulic simulation, using schematic models at reduced scale in a channel placed on a rotating platform. Only the case of a neutral atmosphere was considered; the wake of an obstacle with semi-circular section and the reciprocal interaction of two obstacles of this kind placed perpendicular to the flow were studied

  13. Calculation of Turbulent Boundary Layers Using the Dissipation Integral Method

    Institute of Scientific and Technical Information of China (English)

    MatthiasBuschmann

    1999-01-01

    This paper gives an introduction into the dissipation integral method.The general integral equations for the three-dimensional case are derved.It is found that for a practical calculation algorithm the integral monentum equation and the integral energy equation are msot useful.Using Two different sets of mean velocity profiles the hyperbolical character of a dissipation integral method is shown.Test cases for two-and three-dimensional boundary layers are analysed and discussed.The paper concludes with a discussion of the advantages and limits of dissipation integral methods.

  14. Dynamics of Controlled Boundary Layer Separation on a Circular Cylinder

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav; Matějka, Milan; Procházka, Pavel

    Praha : Ústav termomechaniky AV ČR, v. v. i., 2008 - (Jonáš, P.; Uruba, V.), s. 61-62 ISBN 978-80-87012-14-7. [Colloquium FLUID DYNAMICS 2008. Praha (CZ), 22.10.2008-24.10.2008] R&D Projects: GA AV ČR IAA2076403; GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer * separation * control * synthetic jet Subject RIV: BK - Fluid Dynamics www.it.cas.cz/dt

  15. Dynamics of controlled boundary layer separation on a circular cylinder

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav; Matějka, Milan

    Ostritz - St.Marienthal : DLR Berlin, 2008 - (Hage, W.; Wassen, E.; Choi, K.), s. 1-2 [European Drag Reduction and Flow Control Meeting 2008. Ostritz - St.Marienthal (DE), 08.09.2008-11.09.2008] R&D Projects: GA AV ČR IAA2076403; GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer * separation * dynamics Subject RIV: BK - Fluid Dynamics http://edrfcm2008.cfd.tu-berlin.de/

  16. Wave phenomena in a high Reynolds number compressible boundary layer

    Science.gov (United States)

    Bayliss, A.; Maestrello, L.; Parikh, P.; Turkel, E.

    1987-01-01

    The behavior of spatially unstable waves in a high Reynolds number compressible laminar boundary layer is investigated by solution of the laminar two-dimensional compressible Navier-Stokes equations (solved to fourth-order accuracy) over a flat plate with a fluctuating disturbance generated at the inflow. A significant nonlinear distortion is produced, in qualitative agreement with experimental data. It is shown that increasing compressibility can significantly stabilize the flow over a flat plate, and that the mechanism of phase cancellation is a viable mechanism for the control of growing disturbances.

  17. A wavenumber-frequency spectral model for atmospheric boundary layers

    International Nuclear Information System (INIS)

    Motivated by the need to characterize power fluctuations in wind farms, we study spatio-temporal correlations of a neutral atmospheric boundary layer in terms of the joint wavenumber-frequency spectrum of the streamwise velocity fluctuations. To this end, we perform a theoretical analysis of a simple advection model featuring the advection of small- scale velocity fluctuations by the mean flow and large-scale velocity fluctuations. The model is compared to data from large-eddy simulations (LES). We find that the model captures the trends observed in LES, specifically a Doppler shift of frequencies due to the mean flow as well as a Doppler broadening due to random sweeping effects

  18. Numerical simulation of 3D flows in atmospheric boundary layer

    Czech Academy of Sciences Publication Activity Database

    Šimonek, Jiří; Kozel, K.; Jaňour, Zbyněk

    Praha : Ústav termomechaniky AV ČR, v. v. i, 2012 - (Šimurda, D.; Kozel, K.), s. 93-96 ISBN 978-80-87012-40-6. [Topical Problems of Fluid Mechanics 2012 . Praha (CZ), 15.02. 2012 -17.02. 2012 ] R&D Projects: GA ČR GAP101/12/1271 Institutional research plan: CEZ:AV0Z20760514 Keywords : numerical solution * atmospheric boundary layer * Navier-Stokes equation s Subject RIV: DG - Athmosphere Sciences, Meteorology

  19. Role of the vertical pressure gradient in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna;

    2014-01-01

    By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....

  20. Injection-induced turbulence in stagnation-point boundary layers

    Science.gov (United States)

    Park, C.

    1984-02-01

    A theory is developed for the stagnation point boundary layer with injection under the hypothesis that turbulence is produced at the wall by injection. From the existing experimental heat transfer rate data obtained in wind tunnels, the wall mixing length is deduced to be a product of a time constant and an injection velocity. The theory reproduces the observed increase in heat transfer rates at high injection rates. For graphite and carbon-carbon composite, the time constant is determined to be 0.0002 sec from the existing ablation data taken in an arc-jet tunnel and a balistic range.

  1. Atmospheric Boundary Layer Characteristics during BOBMEX-Pilot Experiment

    Indian Academy of Sciences (India)

    G S Bhat; S Ameenulla; M Venkataramana; K Sengupta

    2000-06-01

    The atmospheric boundary layer characteristics observed during the BOBMEX-Pilot experiment are reported. Surface meteorological data were acquired continuously through an automatic weather monitoring system and manually every three hours. High resolution radiosondes were launched to obtain the vertical thermal structure of the atmosphere. The study area was convectively active, the SSTs were high, surface air was warm and moist, and the surface air moist static energy was among the highest observed over the tropical oceans. The mean sea air temperature difference was about 1.25°C and the sea skin temperature was cooler than bucket SST by 0.5°C. The atmospheric mixed layer was shallow, fluctuated in response to synoptic conditions from 100 m to 900 m with a mean around 500 m.

  2. Interactions between the thermal internal boundary layer and sea breezes

    Energy Technology Data Exchange (ETDEWEB)

    Steyn, D.G. [The Univ. of British Columbia, Dept. of Geography, Atmospheric Science Programme, Vancouver (Canada)

    1997-10-01

    In the absence of complex terrain, strongly curved coastline or strongly varying mean wind direction, the Thermal Internal Boundary Layer (TIBL) has well known square root behaviour with inland fetch. Existing slab modeling approaches to this phenomenon indicate no inland fetch limit at which this behaviour must cease. It is obvious however that the TIBL cannot continue to grow in depth with increasing fetch, since the typical continental Mixed Layer Depths (MLD) of 1500 to 2000 m must be reached between 100 and 200 km from the shoreline. The anticyclonic conditions with attendant strong convection and light winds which drive the TIBL, also drive daytime Sea Breeze Circulations (SBC) in the coastal zone. The onshore winds driving mesoscale advection of cool air are at the core of TIBL mechanisms, and are invariably part of a SBC. It is to be expected that TIBL and SBC be intimately linked through common mechanisms, as well as external conditions. (au)

  3. The boundary layer over turbine blade models with realistic rough surfaces

    Science.gov (United States)

    McIlroy, Hugh M., Jr.

    The impact of turbine blade surface roughness on aerodynamic performance and heat loads is well known. Over time, as the turbine blades are exposed to heat loads, the external surfaces of the blades become rough. Also, for film-cooled blades, surface degradation can have a significant impact on film-cooling effectiveness. Many studies have been conducted on the effects of surface degradation/roughness on engine performance but most investigations have modeled the rough surfaces with uniform or two-dimensional roughness patterns. The objective of the present investigation is to conduct measurements that will reveal the influence of realistic surface roughness on the near-wall behavior of the boundary layer. Measurements have been conducted at the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Engineering and Environmental Laboratory with a laser Doppler velocimeter. A flat plate model of a turbine blade has been developed that produces a transitional boundary layer, elevated freestream turbulence and an accelerating freestream in order to simulate conditions on the suction side of a high-pressure turbine blade. Boundary layer measurements have been completed over a smooth plate model and over a model with a strip of realistic rough surface. The realistic rough surface was developed by scaling actual turbine blade surface data that was provided by U.S. Air Force Research Laboratory. The results indicate that bypass transition occurred very early in the flow over the model and that the boundary layer remained unstable throughout the entire length of the test plate; the boundary layer thickness and momentum thickness Reynolds numbers increased over the rough patch; and the shape factor increased over the rough patch but then decreased downstream of the patch relative to the smooth plate case; in the rough patch case the flow experienced two transition reversals with laminar-like behavior achieved by the end of the test plate; streamwise turbulence

  4. Electrons in the boundary layers near the dayside magnetopause

    International Nuclear Information System (INIS)

    Entry of heated solar-wind plasma into the magnetosphere is examined using electron distributions. In particular, the angular structure of the electron distributions is studied within the transition region separating the magnetosheath from the inner magnetosphere. The measurements suggest that electrons in the outer part of the transition region originate in the magnetosheath, whilst the population closer to the Earth consists of electrons from the magnetosphere combined with an energized magnetosheath component. This energized component contains ''counterstreaming'' electrons, which are confined to directions closely parallel and anti-parallel to the magnetic field direction. The possibilities, that the energization of the counterstreaming electrons is cumulatively gained from either waves, electric fields perpendicular to the magnetic field, or quasi-Fermi acceleration, are discussed. It is not possible to identify the topology of the magnetic fields of the outer part of the region, but there is strong evidence that the inner part is on closed magnetic field lines, which map to the dayside auroral zone. The outer part of the transition region is a plasma depletion/magnetic-field compression layer. The structure of the transition region is similar to that surrounding flux transfer events, which leads to the deduction that the plasma and field signatures of flux transfer events may be the result of displacement of the transition region earthwards. Cases where the displacement is such that the field maximum of the depletion/compression region is encountered, may well explain ''crater'' flux transfer event signatures. (author)

  5. Direct numerical simulation of turbulent thermal boundary layers

    Science.gov (United States)

    Kong, Hojin; Choi, Haecheon; Lee, Joon Sik

    2000-10-01

    In this paper, a method of generating realistic turbulent temperature fluctuations at a computational inlet is proposed and direct numerical simulations of turbulent thermal boundary layers developing on a flat plate with isothermal and isoflux wall boundary conditions are carried out. Governing equations are integrated using a fully implicit fractional-step method with 352×64×128 grids for the Reynolds number of 300, based on the free-stream velocity and the inlet momentum thickness, and the Prandtl number of 0.71. The computed Stanton numbers for the isothermal and isoflux walls are in good agreement with power-law relations without transient region from the inlet. The mean statistical quantities including root-mean-square temperature fluctuations, turbulent heat fluxes, turbulent Prandtl number, and skewness and flatness of temperature fluctuations agree well with existing experimental and numerical data. A quadrant analysis is performed to investigate the coherence between the velocity and temperature fluctuations. It is shown that the behavior of the wall-normal heat flux is similar to that of the Reynolds shear stress, indicating close correlation between the streamwise velocity and temperature. The effect of different thermal boundary conditions at the wall on the near-wall turbulence statistics is also discussed.

  6. New Layered Ternary Transition-Metal Tellurides

    Science.gov (United States)

    Mar, Arthur

    Several new ternary transition-metal tellurides, a class of compounds hitherto largely unexplored, have been synthesized and characterized. These are layered materials whose structures have been determined by single -crystal X-ray diffraction methods. The successful preparation of the compound TaPtTe_5 was crucial in developing an understanding of the MM'Te_5 (M = Nb, Ta; M' = Ni, Pd, Pt) series of compounds, which adopt either of two possible closely-related layered structures. Interestingly, the compound TaPdTe _5 remains unknown. Instead, the compound Ta_4Pd_3Te _{16} has been prepared. Its structure is closely related to that of the previously prepared compound Ta_3Pd _3Te_{14}. The physical properties of these compounds have been measured and correlated with the metal substitutions and interlayer separations. A new series of compounds, MM'Te _4 (M = Nb, Ta; M' = Ru, Os, Rh, Ir), has been discovered. The structure of NbIrTe_4 serves as a prototype: it is an ordered variant of the binary telluride WTe_2. Electronic band-structure calculations have been performed in order to rationalize the trends in metal-metal and tellurium -tellurium bonding observed in WTe_2 and the MM'Te_4 phases. Extension of these studies to include main-group metals has resulted in the synthesis of the new layered ternary germanium tellurides TiGeTe_6, ZrGeTe_4 , and HfGeTe_4. Because germanium can behave ambiguously in its role as a metalloid element, it serves as an anion by capping the metal-centered trigonal prisms and also as a cation in being coordinated in turn by other tellurium atoms in a trigonal pyramidal fashion. Structural relationships among these compounds are illustrated through the use of bicapped trigonal prisms and trigonal pyramids as the basic structural building blocks. The electrical and magnetic properties of these compounds have been measured. Insight into the unusual bonding and physical properties of these germanium-containing compounds has been gained through

  7. Geostrophic convective turbulence: The effect of boundary layers

    CERN Document Server

    Ostilla-Mónico, Rodolfo; Kunnen, Rudie P J; Verzicco, Roberto; Lohse, Detlef

    2014-01-01

    This Letter presents results of the first direct numerical simulations of rotating Rayleigh--B\\'enard convection in the so-called geostrophic regime, (hence very small Ekman numbers $\\mathcal{O}(10^{-7})$ and high Rayleigh numbers~$Ra=10^{10}$ and~$5\\cdot 10^{10}$), employing the \\emph{full} Navier--Stokes equations. In the geostrophic regime the criteria of very strong rotation and large supercriticality are met simultaneously, which is true for many geophysical and astrophysical flows. Until now, numerical approaches of this regime have been based on \\emph{reduced} versions of the Navier--Stokes equations (cf. Sprague \\emph{et al.} J. Fluid Mech., \\textbf{551}, 141 (2006)), omitting the effect of the viscous (Ekman) boundary layers. By using different velocity boundary conditions at the plates, we study the effect of these Ekman layers. We find that the formation of large-scale structures (Rubio \\emph{et al.} (Phys. Rev. Lett. \\textbf{112} (2014)), which indicates the presence of an inverse energy cascade, ...

  8. Characteristics of turbulent boundary layer flow over algal biofilm

    Science.gov (United States)

    Murphy, Elizabeth; Barros, Julio; Schultz, Michael; Steppe, Cecily; Flack, Karen; Reidenbach, Matthew

    2015-11-01

    Algal biofilms are an important fouling community on ship hulls, with severe economic consequences due to drag-induced increases in fuel use and cleaning costs. Here, we characterize the boundary layer flow structure in turbulent flow over diatomaceous slime, a type of biofilm. Diatomaceous slime composed of three species of diatoms commonly found on ship hulls was grown on acrylic test plates under shear stress. The slime averages 1.6 mm in thickness and has a high density of streamers, which are flexible elongated growths with a length on the order of 1- 2 mm located at the top of the biofilm that interact with the flow. Fouled acrylic plates were placed in a water tunnel facility specialized for detailed turbulent boundary layer measurements. High resolution Particle Image Velocimetry (PIV) data are analyzed for mean velocity profile as well as local turbulent stresses and turbulent kinetic energy (TKE) production, dissipation and transport. Quadrant analysis is used to characterize the impact of the instantaneous events of Reynolds shear stress (RSS) in the flow. To investigate the coherence of the large-scale motion in the flow two-point correlation analysis is employed. Funding provided by the Office of Naval Research and the National Science Foundation.

  9. Optimizing EDMF parameterization for stratocumulus-topped boundary layer

    Science.gov (United States)

    Jones, C. R.; Bretherton, C. S.; Witek, M. L.; Suselj, K.

    2014-12-01

    We present progress in the development of an Eddy Diffusion / Mass Flux (EDMF) turbulence parameterization, with the goal of improving the representation of the cloudy boundary layer in NCEP's Global Forecast System (GFS), as part of a multi-institution Climate Process Team (CPT). Current GFS versions substantially under-predict cloud amount and cloud radiative impact over much of the globe, leading to large biases in the surface and top of atmosphere energy budgets. As part of the effort to correct these biases, the CPT is developing a new EDMF turbulence scheme for GFS, in which local turbulent mixing is represented by an eddy diffusion term while nonlocal shallow convection is represented by a mass flux term. The sum of both contributions provides the total turbulent flux. Our goal is for this scheme to more skillfully simulate cloud radiative properties without negatively impacting other measures of weather forecast skill. One particular challenge faced by an EDMF parameterization is to be able to handle stratocumulus regimes as well as shallow cumulus regimes. In order to isolate the behavior of the proposed EDMF parameterization and aid in its further development, we have implemented the scheme in a portable MATLAB single column model (SCM). We use this SCM framework to optimize the simulation of stratocumulus cloud top entrainment and boundary layer decoupling.

  10. On boundary layer modelling using the ASTEC code

    International Nuclear Information System (INIS)

    The modelling of fluid boundary layers adjacent to non-slip, heated surface using the ASTEC code is described. The pricipal boundary layer characteristics are derived using simple dimensional arguments and these are developed into criteria for optimum placement of the computational mesh to achieve realistic simulation. In particular, the need for externally-imposed drag and heat transfer correlations as a function of the local mesh concentration is discussed in the context of both laminar and turbulent flow conditions. Special emphasis is placed in the latter case on the (k-ε) turbulence model, which is standard in the code. As far as possible, the analyses are pursued from first principles, so that no comprehensive knowledge of the history of the subject is required for the general ASTEC user to derive practical advice from the document. Some attention is paid to the use of heat transfer correlations for internal solid/fluid surfaces, whose treatment is not straightforward in ASTEC. It is shown that three formulations are possible to effect the heat transfer, called Explicit, Jacobian and Implicit. The particular advantages and disadvantages of each are discussed with regard to numerical stability and computational efficiency. (author) 18 figs., 1 tab., 39 refs

  11. Second Law Analysis of the Turbulent Flat Plate Boundary Layer

    Directory of Open Access Journals (Sweden)

    Dragos Isvoranu

    2000-09-01

    Full Text Available

    Until now the second law analysis of turbulent flow relied only on the irreversibilities performed by the mean velocity and mean temperature gradients. Using the Reynolds decomposition of the volumetric entropy generation rate expression we found that the dissipation rates of both, turbulent kinetic energy and fluctuating temperature variance, also represent the irreversibilities of the flow. Applying the above results, the second law analysis of the turbulent boundary layer shows that the maximum values of the "mean motion irreversibilities" (generated by the mean velocity and mean temperature gradient are located at the wall, while the maximum values of the "turbulent irreversibilities" (performed by the dissipation rate of turbulent kinetic energy and fluctuating temperature variance are located in the buffer sublayer. As a consequence, for a given location on the plate, the integral values of the "mean motion irreversibilities" are approximately constant and the "turbulent irreversibilities" grow up with the boundary layer thickness.

    •  This paper was presented at the ECOS’00 Conference in Enschede, July 5-7, 2000

  12. Impact Electrochemistry of Layered Transition Metal Dichalcogenides.

    Science.gov (United States)

    Lim, Chee Shan; Tan, Shu Min; Sofer, Zdeněk; Pumera, Martin

    2015-08-25

    Layered transition metal dichalcogenides (TMDs) exhibit paramount importance in the electrocatalysis of the hydrogen evolution reaction. It is crucial to determine the size of the electrocatalytic particles as well as to establish their electrocatalytic activity, which occurs at the edges of these particles. Here, we show that individual TMD (MoS2, MoSe2, WS2, or WSe2; in general MX2) nanoparticles impacting an electrode surface provide well-defined current "spikes" in both the cathodic and anodic regions. These spikes originate from direct oxidation of the nanoparticles (from M(4+) to M(6+)) at the anodic region and from the electrocatalytic currents generated upon hydrogen evolution in the cathodic region. The positive correlation between the frequency of the impacts and the concentration of TMD nanoparticles is also demonstrated here, enabling determination of the concentration of TMD nanoparticles in colloidal form. In addition, the size of individual TMD nanoparticles can be evaluated using the charge passed during every spike. The capability of detecting both the "indirect" catalytic effect of an impacting TMD nanoparticle as well as "direct" oxidation indicates that the frequency of impacts in both the "indirect" and "direct" scenarios are comparable. This suggests that all TMD nanoparticles, which are electrochemically oxidizable (thus capable of donating electrons to electrodes), are also capable of catalyzing the hydrogen reduction reaction. PMID:26241193

  13. Wall Effect on the Convective-Absolute Boundary for the Compressible Shear Layer

    Science.gov (United States)

    Robinet, Jean-Christophe; Dussauge, Jean-Paul; Casalis, Grégoire

    The linear stability of inviscid compressible shear layers is studied. When the layer develops at the vicinity of a wall, the two parallel flows can have a velocity of the same sign or of opposite signs. This situation is examined in order to obtain first hints on the stability of separated flows in the compressible regime. The shear layer is described by a hyperbolic tangent profile for the velocity component and the Crocco relation for the temperature profile. Gravity effects and the superficial tension are neglected. By examining the temporal growth rate at the saddle point in the wave-number space, the flow is characterized as being either absolutely unstable or convectively unstable. This study principally shows the effect of the wall on the convective-absolute transition in compressible shear flow. Results are presented, showing the amount of the backflow necessary to have this type of transition for a range of primary flow Mach numbers M1 up to 3.0. The boundary of the convective-absolute transition is defined as a function of the velocity ratio, the temperature ratio and the Mach number. Unstable solutions are calculated for both streamwise and oblique disturbances in the shear layer.

  14. Stereoscopic Imaging in Hypersonics Boundary Layers using Planar Laser-Induced Fluorescence

    Science.gov (United States)

    Danehy, Paul M.; Bathel, Brett; Inman, Jennifer A.; Alderfer, David W.; Jones, Stephen B.

    2008-01-01

    Stereoscopic time-resolved visualization of three-dimensional structures in a hypersonic flow has been performed for the first time. Nitric Oxide (NO) was seeded into hypersonic boundary layer flows that were designed to transition from laminar to turbulent. A thick laser sheet illuminated and excited the NO, causing spatially-varying fluorescence. Two cameras in a stereoscopic configuration were used to image the fluorescence. The images were processed in a computer visualization environment to provide stereoscopic image pairs. Two methods were used to display these image pairs: a cross-eyed viewing method which can be viewed by naked eyes, and red/blue anaglyphs, which require viewing through red/blue glasses. The images visualized three-dimensional information that would be lost if conventional planar laser-induced fluorescence imaging had been used. Two model configurations were studied in NASA Langley Research Center's 31-Inch Mach 10 Air Wind tunnel. One model was a 10 degree half-angle wedge containing a small protuberance to force the flow to transition. The other model was a 1/3-scale, truncated Hyper-X forebody model with blowing through a series of holes to force the boundary layer flow to transition to turbulence. In the former case, low flowrates of pure NO seeded and marked the boundary layer fluid. In the latter, a trace concentration of NO was seeded into the injected N2 gas. The three-dimensional visualizations have an effective time resolution of about 500 ns, which is fast enough to freeze this hypersonic flow. The 512x512 resolution of the resulting images is much higher than high-speed laser-sheet scanning systems with similar time response, which typically measure 10-20 planes.

  15. Climatic impacts of the boundary layer circulation over Antarctica

    International Nuclear Information System (INIS)

    Prolonged periods of strong radiational cooling over the sloping ice fields of Antarctica produce cold, negatively buoyant air in the lowest layers of the atmosphere. This cooling generates a continental-scale, near-surface wind-field which is highly irregular. Cold air in the interior is channeled into narrow zones that enable the downstream coastal katabatic winds to become anomalously strong and persistent. This probably means that the boundary layer transport of air across the Antarctic coastline is concentrated in a small number of narrow regions, and that previous quantitative evaluations of the importance of this boundary layer circulation are likely to be substantially in error. From continuity considerations, the time-averaged outflow of cold surface air must be compensated by inflow aloft and sinking over the continent. This time-averaged meridional mass circulation plays a dominant role in the heat budget of the Antarctic atmosphere by adiabatic compression in the statically stable atmosphere. The tropospheric convergence and sinking motion also generate cyclonic vorticity which is comparable in magnitude to that arising from the temperature contrast between the ice sheet and the surrounding ocean. That is, the circumpolar vortex is centered over the East Antarctic ice sheet in pan because of the tropospheric mass convergence. The concentration of cold surface air transport from the ice sheet into narrow coastal zones has important consequences for sea ice formation and cyclonic development. Katabatic jets can force coastal polynyas where very active sea ice formation and associated brine rejection produce saline shelf water. This water mass is a component of Antarctic Bottom Water. Such water mass formation provides a way to couple climatic variations over the ice sheet to the deep ocean on relatively short time scales

  16. Numerical study of compressible magnetoconvection with an open transitional boundary

    Energy Technology Data Exchange (ETDEWEB)

    Hanami, H.; Tajima, T.

    1990-08-01

    We study by computer simulation nonlinear evolution of magnetoconvection in a system with a dynamical open boundary between the convection region and corona of the sun. We study a model in which the fluid is subject to the vertical gravitation, magnetohydrodynamics (MHD), and high stratification, through an MHD code with the MacCormack-Donner cell hybrid scheme in order to well represent convective phenomena. Initially the vertical fluid flux penetrates from the convectively unstable zone at the bottom into the upper diffuse atmosphere. As the instability develops, the magnetic fields are twisted by the convection motion and the folding magnetic fields is observed. When the magnetic pressure is comparable to the thermal pressure in the upper layer of convective zone, strong flux expulsion from the convective cell interior toward the cell boundary appears. Under appropriate conditions our simulation exhibits no shock formation incurred by the fluid convected to the photosphere, in contrast to earlier works with box boundaries. The magnetic field patterns observed are those of concentrated magnetic flux tubes, accumulation of dynamo flux near the bottom boundary, pinched flux near the downdraft region, and the surface movement of magnetic flux toward the downdraft region. Many of these computationally observed features are reminiscent of solar observations of the fluid and magnetic structures of their motions.

  17. Numerical study of compressible magnetoconvection with an open transitional boundary

    International Nuclear Information System (INIS)

    We study by computer simulation nonlinear evolution of magnetoconvection in a system with a dynamical open boundary between the convection region and corona of the sun. We study a model in which the fluid is subject to the vertical gravitation, magnetohydrodynamics (MHD), and high stratification, through an MHD code with the MacCormack-Donner cell hybrid scheme in order to well represent convective phenomena. Initially the vertical fluid flux penetrates from the convectively unstable zone at the bottom into the upper diffuse atmosphere. As the instability develops, the magnetic fields are twisted by the convection motion and the folding magnetic fields is observed. When the magnetic pressure is comparable to the thermal pressure in the upper layer of convective zone, strong flux expulsion from the convective cell interior toward the cell boundary appears. Under appropriate conditions our simulation exhibits no shock formation incurred by the fluid convected to the photosphere, in contrast to earlier works with box boundaries. The magnetic field patterns observed are those of concentrated magnetic flux tubes, accumulation of dynamo flux near the bottom boundary, pinched flux near the downdraft region, and the surface movement of magnetic flux toward the downdraft region. Many of these computationally observed features are reminiscent of solar observations of the fluid and magnetic structures of their motions

  18. Properties of the turbulent/non-turbulent interface in boundary layers

    CERN Document Server

    Borrell, Guillem

    2016-01-01

    The turbulent/non-turbulent interface is analysed in a direct numerical simulation of a boundary layer in the range $Re_\\theta=2800-6600$, with emphasis on the behaviour of the relatively large-scale fractal intermittent region. This requires the introduction of a new definition of the distance between a point and a general surface, which is compared with the more usual vertical distance to the top of the layer. Interfaces are obtained by thresholding the enstrophy field and the magnitude of the rate-of-strain tensor, and it is concluded that, while the former are physically relevant features, the latter are not. By varying the threshold, a topological transition is identified as the interface moves from the free stream into the turbulent core. A vorticity scale is defined that collapses that transition for different Reynolds numbers, roughly equivalent to the root-mean-squared vorticity at the edge of the boundary layer. Conditionally averaged flow variables are analysed as functions of the new distance, bot...

  19. Secondary Instability of Stationary Crossflow Vortices in Mach 6 Boundary Layer Over a Circular Cone

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.; Paredes-Gonzalez, Pedro; Duan, Lian

    2015-01-01

    Hypersonic boundary layer flows over a circular cone at moderate incidence can support strong crossflow instability. Due to more efficient excitation of stationary crossflow vortices by surface roughness, such boundary layer flows may transition to turbulence via rapid amplification of the high-frequency secondary instabilities of finite amplitude stationary crossflow vortices. The amplification characteristics of these secondary instabilities are investigated for crossflow vortices generated by an azimuthally periodic array of roughness elements over a 7-degree half-angle circular cone in a Mach 6 free stream. Depending on the local amplitude of the stationary crossflow mode, the most unstable secondary disturbances either originate from the second (i.e., Mack) mode instabilities of the unperturbed boundary layer or correspond to genuine secondary instabilities that reduce to stable disturbances at sufficiently small amplitudes of the stationary crossflow vortex. The predicted frequencies of dominant secondary disturbances are similar to those measured during wind tunnel experiments at Purdue University and the Technical University of Braunschweig, Germany.

  20. Methyl halides in surface seawater and marine boundary layer of the northwest Pacific

    OpenAIRE

    Ooki, Atsushi; Tsuda, Atsushi; Kameyama, Sohiko; Takeda, Shigenobu; Itoh, Sachihiko; SUGA, Toshio; Tazoe, Hirofumi; Okubo, Ayako; Yokouchi, Yoko

    2010-01-01

    The partial pressures of methyl halides (CH3X; X = Cl, Br, or I) and of CHClF2 (HCFC‐22), which are all volatile organic compounds (VOCs), were measured in the air of the marine boundary layer (pVOCair) and in surface seawater (pVOCwater) during a cruise from the subarctic to subtropical regions of the northwest Pacific in summer of 2008. In the northern transition water (TWN) with high biological activity, high levels of the three CH3Xs in surface seawater were frequently obse...

  1. Direct spatial resonance in the laminar boundary layer due to a rotating-disk

    Indian Academy of Sciences (India)

    M Turkyilmazoglu; J S B Gajjar

    2000-12-01

    Numerical treatment of the linear stability equations is undertaken to investigate the occurrence of direct spatial resonance events in the boundary layer flow due to a rotating-disk. A spectral solution of the eigenvalue problem indicates that algebraic growth of the perturbations shows up, prior to the amplification of exponentially growing instability waves. This phenomenon takes place while the flow is still in the laminar state and it also tends to persist further even if the non-parallelism is taken into account. As a result, there exists the high possibility of this instability mechanism giving rise to nonlinearity and transition, long before the unboundedly growing time-amplified waves.

  2. Dominant wing spectroscopy of energy pooling collisions near the boundary layer involving thermal caesium vapour

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We have observed the dominant wing spectroscopy of energy pooling collision near the boundary layer involving Cs atoms under the condition of moderate-to-high optical depths at line-centre. It appears from our experimental investigations that the energy-pooling fluorescence presents about 16 spectral lines, and all the lines can be assigned to the Cs atomic transitions. We find that all lines of the energy-pooling retrofluorescence from the heated Cs atomic vapour cell show two-peak profiles. In addition, its pumping power linear dependence in the energy pooling process has been measured and analysed.

  3. FOREWORD: International Conference on Planetary Boundary Layer and Climate Change

    Science.gov (United States)

    Djolov, G.; Esau, I.

    2010-05-01

    One of the greatest achievements of climate science has been the establisment of the concept of climate change on a multitude of time scales. The Earth's complex climate system does not allow a straightforward interpretation of dependences between the external parameter perturbation, internal stochastic system dynamics and the long-term system response. The latter is usually referred to as climate change in a narrow sense (IPCC, 2007). The focused international conference "Planetary Boundary Layers and Climate Change" has addressed only time scales and dynamical aspects of climate change with possible links to the turbulent processes in the Planetary Boundary Layer (PBL). Although limited, the conference topic is by no means singular. One should clearly understand that the PBL is the layer where 99% of biosphere and human activity are concentrated. The PBL is the layer where the energy fluxes, which are followed by changes in cryosphere and other known feedbacks, are maximized. At the same time, the PBL processes are of a naturally small scale. What is the averaged long-term effect of the small-scale processes on the long-term climate dynamics? Can this effect be recognized in existing long-term paleo-climate data records? Can it be modeled? What is the current status of our theoretical understanding of this effect? What is the sensitivity of the climate model projections to the representation of small-scale processes? Are there significant indirect effects, e.g. through transport of chemical components, of the PBL processes on climate? These and other linked questions have been addressed during the conference. The Earth's climate has changed many times during the planet's history, with events ranging from ice ages to long periods of warmth. Historically, natural factors such as the amount of energy released from the Sun, volcanic eruptions and changes in the Earth's orbit have affected the Earth's climate. Beginning late in the 18th century, human activities

  4. Intermittent phenomena in the boiling two-phase boundary layer

    International Nuclear Information System (INIS)

    In order to investigate statistical properties of temperature fluctuation in a boiling two-phase boundary layer the corresponding intermittency functions, which describe liquid, vapour and interface region at an individual fixed point, have been defined. In water boiling on a horizontal surface the temperature fluctuation was measured with a microthermocouple and the signal was processed through the digital computer with the detector function specified for liquid, vapor and interface region. The results obtained confirm that the temperature fluctuation in the boiling two-phase layer can be divided into three parts corresponding to individual regions and that its statistical distribution depends on the properties of respective systems. It has also been shown that the temperature fluctuation in the interface region is determinative and corresponds to the temperature changes in the liquid layer surrounding vapor bubble growth. Amplitude distribution in the liquid region changes its form with the distance from the wall as a result of the change in intensity of turbulence at different distances. The probability density distribution in the vapor region shows very small amplitude fluctuation and is almost constant for all distances. (author)

  5. Problems in the simulation of atmospheric boundary layer flows. [natural wind environment in atmospheric boundary layer for aerospace and aeronautical applications

    Science.gov (United States)

    Fichtl, G. H.

    1973-01-01

    The realistic simulation of flow in the atmospheric boundary layers at heights greater than two kilometers is discussed. Information concerning horizontally homogeneous and statistically stationary atmospheric boundary layer flows is presented. The problems related to the incorporation of the information into atmospheric wind simulation programs are analyzed. The information which the meteorologist must acquire in order to provide a basis for improving the simulation of atmospheric boundary flows is explained.

  6. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides.

    Science.gov (United States)

    Ly, Thuc Hue; Chiu, Ming-Hui; Li, Ming-Yang; Zhao, Jiong; Perello, David J; Cichocka, Magdalena Ola; Oh, Hye Min; Chae, Sang Hoon; Jeong, Hye Yun; Yao, Fei; Li, Lain-Jong; Lee, Young Hee

    2014-11-25

    Two-dimensional monolayer transition metal dichalcogenides (TMdCs), driven by graphene science, revisit optical and electronic properties, which are markedly different from bulk characteristics. These properties are easily modified due to accessibility of all the atoms viable to ambient gases, and therefore, there is no guarantee that impurities and defects such as vacancies, grain boundaries, and wrinkles behave as those of ideal bulk. On the other hand, this could be advantageous in engineering such defects. Here, we report a method of observing grain boundary distribution of monolayer TMdCs by a selective oxidation. This was implemented by exposing directly the TMdC layer grown on sapphire without transfer to ultraviolet light irradiation under moisture-rich conditions. The generated oxygen and hydroxyl radicals selectively functionalized defective grain boundaries in TMdCs to provoke morphological changes at the boundary, where the grain boundary distribution was observed by atomic force microscopy and scanning electron microscopy. This paves the way toward the investigation of transport properties engineered by defects and grain boundaries. PMID:25343242

  7. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides

    KAUST Repository

    Ly, Thuchue

    2014-11-25

    Two-dimensional monolayer transition metal dichalcogenides (TMdCs), driven by graphene science, revisit optical and electronic properties, which are markedly different from bulk characteristics. These properties are easily modified due to accessibility of all the atoms viable to ambient gases, and therefore, there is no guarantee that impurities and defects such as vacancies, grain boundaries, and wrinkles behave as those of ideal bulk. On the other hand, this could be advantageous in engineering such defects. Here, we report a method of observing grain boundary distribution of monolayer TMdCs by a selective oxidation. This was implemented by exposing directly the TMdC layer grown on sapphire without transfer to ultraviolet light irradiation under moisture-rich conditions. The generated oxygen and hydroxyl radicals selectively functionalized defective grain boundaries in TMdCs to provoke morphological changes at the boundary, where the grain boundary distribution was observed by atomic force microscopy and scanning electron microscopy. This paves the way toward the investigation of transport properties engineered by defects and grain boundaries. (Figure Presented).

  8. The viscous boundary layer at the free surface of a rotating baroclinic fluid

    OpenAIRE

    Hide, R.

    2011-01-01

    The properties of the viscous boundary layer at the free surface of a rotating baroclinic fluid are analyzed and compared with those of the well-known Ekman boundary layer at a rigid surface. Although the ageostrophic components of the flow in the free surface boundary layer are weaker than in the Ekman layer, there are problems of practical interest in which their effects are not negligible.DOI: 10.1111/j.2153-3490.1964.tb00188.x

  9. Boundary layer effects on the vortex shedding in a Donaldson- type hydrofoil

    International Nuclear Information System (INIS)

    Fluid - Structure Interaction (FSI) phenomena is becoming a relevant study field for the design or revamping of hydropower plants. The generalized trend of increasing flow rates and reducing rotor blades/stay vanes thickness in order to improve the efficiency of the machine together with a major push from plant owners/operators for production flexibility (partial load operation is more common nowadays) make the FSI between the vortex shedding phenomenon and the vanes/blades of the machine an area of interest. From a design point of view, the machine structure has to resist all the hydrodynamic forces generated and maintain tension stresses under the fatigue limit to ensure a machine lifetime of several decades. To accomplish that goal, designers have to assure there is no presence of strong coupling phenomena (lock-in) between the vortex shedding frequency and the eigenfrequencies of the structure. As the vortex street is directly related to the state of the boundary layer along the hydrofoil, in this paper the effect of the boundary layer on the vortex shedding in a Donaldson-type hydrofoil is studied using Computational Fluid Dynamics (CFD). The development of the boundary layer along the Donaldson trailing edge hydrofoil chord is presented under lock-off conditions. The results are validated against previously obtained experimental results. Since the Donaldson trailing edge is non-symmetric, the boundary layer velocity profiles are reported for the suction and pressure side of the hydrofoil. In addition, the effect of the Donaldson trailing edge on laminar-to-turbulent transition on both sides of the hydrofoil is studied

  10. Seasonal Simulations of the Planetary Boundary Layer and Boundary-Layer Stratocumulus Clouds with a General Circulation Model.

    Science.gov (United States)

    Randall, David A.; Abeles, James A.; Corsetti, Thomas G.

    1985-04-01

    The UCLA general circulation model (GCM) has been used to simulate the seasonally varying planetary boundary layer (PBL), as well as boundary-layer stratus and stratocumulus clouds. The PBL depth is a prognostic variable of the GCM, incorporated through the use of a vertical coordinate system in which the PBL is identified with the lowest model layer.Stratocumulus clouds are assumed to occur whenever the upper portion of the PBL becomes saturated, provided that the cloud-top entrainment instability does not occur. As indicated by Arakawa and Schubert, cumulus clouds are assumed to originate at the PBL top, and tend to make the PBL shallow by drawing on its mass.Results are presented from a three-year simulation, starting from a 31 December initial condition obtained from an earlier run with a different version of the model. The simulated seasonally varying climates of the boundary layer and free troposphere are realistic. The observed geographical and seasonal variations of stratocumulus cloudiness are fairly well simulated. The simulation of the stratocumulus clouds associated with wintertime cold-air outbreaks is particularly realistic. Examples are given of individual events. The positions of the subtropical marine stratocumulus regimes are realistically simulated, although their observed frequency of occurrence is seriously underpredicted. The observed summertime abundance of Arctic stratus clouds is also underpredicted.In the GCM results, the layer cloud instability appears to limit the extent of the marine subtropical stratocumulus regimes. The instability also frequently occurs in association with cumulus convection over land.Cumulus convection acts as a very significant sink of PBL mass throughout the tropics, and over the midlatitude continents in summer.Three experiments have been performed to investigate the sensitivity of the GCM results to aspects of the PBL and stratocumulus parameterizations. For all three experiments, the model was started from 1

  11. Uranus evolution models with simple thermal boundary layers

    CERN Document Server

    Nettelmann, N; Fortney, J J; Hamel, S; Yellamilli, S; Bethkenhagen, M; Redmer, R

    2016-01-01

    The strikingly low luminosity of Uranus (Teff ~ Teq) constitutes a long-standing challenge to our understanding of Ice Giant planets. Here we present the first Uranus structure and evolution models that are constructed to agree with both the observed low luminosity and the gravity field data. Our models make use of modern ab initio equations of state at high pressures for the icy components water, methane, and ammonia. Proceeding step by step, we confirm that adiabatic models yield cooling times that are too long, even when uncertainties in the ice:rock ratio (I:R) are taken into account. We then argue that the transition between the ice/rock-rich interior and the H/He-rich outer envelope should be stably stratified. Therefore, we introduce a simple thermal boundary and adjust it to reproduce the low luminosity. Due to this thermal boundary, the deep interior of the Uranus models are up to 2--3 warmer than adiabatic models, necessitating the presence of rocks in the deep interior with a possible I:R of $1\\tim...

  12. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    Directory of Open Access Journals (Sweden)

    Elena-Carmen Teleman

    2008-01-01

    Full Text Available The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence scales of the wind action in urban environment were conducted. The data obtained were processed and analyzed and interpreted with specific software. The results are used for a synthesis regarding the scales of turbulence of the model of flow and the actual accuracy of measurements. The paper presents some of the important elements of this synthesis.

  13. Aeroelectric structures and turbulence in the atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    S. V. Anisimov

    2013-10-01

    Full Text Available Complex electrical measurements with the use of sodar data show that electric field pulsation analysis is useful for electrodynamics/turbulence monitoring under different conditions. In particular, the number of aeroelectric structures (AES generated per hour is a convenient measure of the turbulence intensity. During convectively unstable periods, as many as 5–10 AES form per hour. Under stable conditions, AES occasionally form as well, indicating the appearance of occasional mixing events reflected in the electric field perturbations. AES magnitudes under stable conditions are relatively small, except in special cases such as high humidity and fog. The analysis of electric field (EF spectra gives additional useful information on the parameters of the atmospheric boundary layer and its turbulence. A rather sharp change in the spectrum slope takes place in the vicinity of 0.02 Hz under stable conditions. The characteristic slope of the spectrum and its change are reproduced in a simple model of EF formation.

  14. Compressible Turbulent Boundary Layers on a Strongly Heated Wall

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    This paper concerns the theoretical and experimental modelling of the flat wall,highly heated,compressible turbulent boundary layer.Its final objective is to develop a numerical Navier-Stokes solver and to conclude on its capability to correctly represent complex aerothermic viscous flows near the wall.The paper presents a constructed numerical method with particular attention given to the turbulence modelling at low Reynolds number and comparisons with supersonic and transonic experimental data.For the transonic experiment,very high wall temperature(Tw=1100K)is realized.The method of this difficult experimental set up is discussed.The comparison between experimental and computational data conducts to the first conclusion and gives some indications for the future work.

  15. A Qualitative Description of Boundary Layer Wind Speed Records

    CERN Document Server

    Kavasseri, R G; Nagarajan, Radhakrishnan

    2006-01-01

    The complexity of the atmosphere endows it with the property of turbulence by virtue of which, wind speed variations in the atmospheric boundary layer (ABL) exhibit highly irregular fluctuations that persist over a wide range of temporal and spatial scales. Despite the large and significant body of work on microscale turbulence, understanding the statistics of atmospheric wind speed variations has proved to be elusive and challenging. Knowledge about the nature of wind speed at ABL has far reaching impact on several fields of research such as meteorology, hydrology, agriculture, pollutant dispersion, and more importantly wind energy generation. In the present study, temporal wind speed records from twenty eight stations distributed through out the state of North Dakota (ND, USA), ($\\sim$ 70,000 square-miles) and spanning a period of nearly eight years are analyzed. We show that these records exhibit a characteristic broad multifractal spectrum irrespective of the geographical location and topography. The rapi...

  16. Coherent vorticity extraction in turbulent boundary layers using orthogonal wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Khujadze, George; Oberlack, Martin [Chair of Fluid Dynamics, Technische Universitaet Darmstadt (Germany); Yen, Romain Nguyen van [Institut fuer Mathematik, Freie Universitaet Berlin (Germany); Schneider, Kai [M2P2-CNRS and CMI, Universite de Provence, Marseille (France); Farge, Marie, E-mail: khujadze@fdy.tu-darmstadt.de [LMD-IPSL-CNRS, Ecole Normale Superieure, Paris (France)

    2011-12-22

    Turbulent boundary layer data computed by direct numerical simulation are analyzed using orthogonal anisotropic wavelets. The flow fields, originally given on a Chebychev grid, are first interpolated on a locally refined dyadic grid. Then, they are decomposed using a wavelet basis, which accounts for the anisotropy of the flow by using different scales in the wall-normal direction and in the planes parallel to the wall. Thus the vorticity field is decomposed into coherent and incoherent contributions using thresholding of the wavelet coefficients. It is shown that less than 1% of the coefficients retain the coherent structures of the flow, while the majority of the coefficients corresponds to a structureless, i.e., noise-like background flow. Scale-and direction-dependent statistics in wavelet space quantify the flow properties at different wall distances.

  17. Combined core/boundary layer transport simulations in tokamaks

    International Nuclear Information System (INIS)

    Significant new numerical results are presented from self-consistent core and boundary or scrape-off layer plasma simulations with 3-D neutral transport calculations. For a symmetric belt limiter it is shown that, for plasma conditions considered here, the pump limiter collection efficiency increases from 11% to 18% of the core efflux as a result of local reionization of blade deflected neutrals. This hitherto unobserved effect causes a significant amplification of upstream ion flux entering the pump limiter. Results from coupling of an earlier developed two-zone edge plasma model ODESSA to the PROCTR core plasma simulation code indicates that intense recycling divertor operation may not be possible because of stagnation of upstream flow velocity. This results in a self-consistent reduction of density gradient in an intermediate region between the central plasma and separatrix, and a concomitant reduction of core-efflux. There is also evidence of increased recycling at the first wall

  18. The large Reynolds number - Asymptotic theory of turbulent boundary layers.

    Science.gov (United States)

    Mellor, G. L.

    1972-01-01

    A self-consistent, asymptotic expansion of the one-point, mean turbulent equations of motion is obtained. Results such as the velocity defect law and the law of the wall evolve in a relatively rigorous manner, and a systematic ordering of the mean velocity boundary layer equations and their interaction with the main stream flow are obtained. The analysis is extended to the turbulent energy equation and to a treatment of the small scale equilibrium range of Kolmogoroff; in velocity correlation space the two-thirds power law is obtained. Thus, the two well-known 'laws' of turbulent flow are imbedded in an analysis which provides a great deal of other information.

  19. Centralised versus Decentralised Active Control of Boundary Layer Instabilities

    CERN Document Server

    Dadfar, R; Bagheri, S; Henningson, D S

    2014-01-01

    We use linear control theory to construct an output feedback controller for the attenuation of small-amplitude Tollmien-Schlichting (TS) wavepackets in a flat-plate boundary layer.We distribute evenly in the spanwise direction up to 72 localized objects near the wall (18 disturbances sources, 18 actuators, 18 estimation sensors and 18 objective sensors). In a fully three-dimensional configuration,the interconnection between inputs and outputs becomes quickly unfeasible when the number of actuators and sensors increases in the spanswise direction. The objective of this work is to understand how an efficient controller may be designed by connecting only a subset of the actuators to sensors, thereby reducing the complexity of the controller, without comprising the efficiency. We find that using a semi-decentralized approach - where small control units consisting of 3 estimation sensors connected to 3 actuators are replicated 6 times along the spanwise direction - results only in a 11% reduction of control perfor...

  20. Unsteady Phenomena in Shock Wave/Boundary Layer Interaction

    Science.gov (United States)

    Dolling, D. S.

    1993-01-01

    A brief review is given of the unsteadiness of shock wave/turbulent boundary layer interaction. The focus is on interactions generated by swept and unswept compression ramps, by flares, steps and incident shock waves, by cylinders and blunt fins, and by glancing shock waves. The effects of Mach number, Reynolds number, and separated flow scale are discussed as are the physical causes of the unsteadiness. The implications that the unsteadiness has for interpreting time-average surface and flowfield data, and for comparisons of such experimental data with computation, is also briefly discussed. Finally, some suggestions for future work are given. It is clear that there are large gaps in the data base and that many aspects of such phenomena are poorly understood. Much work remains to be done.

  1. Segregation in the Atmospheric Boundary Layer - A Discussion

    Science.gov (United States)

    Dlugi, Ralph; Berger, Martina; Zelger, Michael; Hofzumahaus, Andreas; Rohrer, Franz; Holland, Frank; Lu, Keding; Tsokankunku, Anywhere; Sörgel, Matthias; Kramm, Gerhard; Mölders, Nicole

    2016-04-01

    Segregation is a well known topic in technical chemistry and means an incomplete mixing of the reactants. Incomplete mixing reduces the rate of reaction which is of utmost importance in technical chemistry but has been payed less attention in atmospheric chemistry. Different observational and modelling studies on chemical reactions in the turbulent and convective atmospheric boundary layer are analysed for the influences of segregation in the systems NO ‑ NO2 ‑ O3 and OH + V OCs (with main focus on isoprene). Also some estimates on reactions like HO2 + NO (an important recycling mechanism for OH) will be given. Especially, different terms of the intensity of segregation IS (correlation coefficients, standard deviations of mixing ratios) are compared and are related to characteristics of the flow regimes, such as mixing conditions and Damköhler numbers. Also influences of fluctuations of actinic fluxes are discussed which influence the mostly photo chemically driven reactions that were investigated.

  2. Numerical analysis of the turbulent natural convection boundary layer

    International Nuclear Information System (INIS)

    It is considered to be one of options of nuclear fuel cycle policies in Japan to store spent fuel before reprocessing. Then we have to evaluate of the thermal integrity for dry type cask storage system. But the turbulent natural convection boundary layer is a flow with relatively large fluctuations of velocity and temperature at low velocity, and measurements of turbulent quantities near the wall are especially difficult. So, the turbulent structure has not been elucidated. On the other hand, numerical analyses of natural convection using turbulence models have been developed. However, there are not the models which are suitable for prediction of natural convection exactly, so it's effective to analyze of direct numerical simulation (DNS). The propose of this study is to simulate (DNS) for buoyant flow as economical as possible. We calculate two different grid size to investigate to numerical accuracy. (author)

  3. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    is a function of phase. Therefore the particle will settle towards the end of each half period, and after flow reversal, when the turbulent intensity becomes large enough it can be suspended. If the particle is light enough it can be maintained in suspension, otherwise it will settle before it is....... This is in contrast to velocity fluctuations that are diffusive, so they can also contain residual turbulence from the previous half cycle until they are dissipated. Furthermore, the magnitude of the mean value of conditionally averaged vertical pressure gradient (for −∂p∗/∂x∗ 2 > 0) is compared to the...... submerged weight of sediment. This revels that the upward directed vertical pressure gradient on average has a magnitude that yields in a contribution to the force needed to overcome the submerged weight of the water-sediment mixture. Secondly particle motion in the oscillatory boundary layer is...

  4. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2012-01-01

    viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where, as...... angular frequencies that increase outward in the shearing-sheet framework. We isolate the modes that are unrelated to the standard MRI and provide analytic solutions for the long-term evolution of the resulting shearing MHD waves. We show that, although the energy density of these waves can be amplified...... significantly, their associated stresses oscillate around zero, rendering them an inefficient mechanism to transport significant angular momentum (inward). These findings are consistent with the results obtained in numerical simulations of MHD accretion disk boundary layers and challenge the standard assumption...

  5. Rapid cycling of reactive nitrogen in the marine boundary layer

    Science.gov (United States)

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L.; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S.; Apel, Eric C.; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N.; Ortega, John; Knote, Christoph

    2016-04-01

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A ‘renoxification’ process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth’s surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  6. Shock Wave-Boundary Layer Interaction in Forced Shock Oscillations

    Institute of Scientific and Technical Information of China (English)

    Piotr Doerffer; Oskar Szulc; Franco Magagnato

    2003-01-01

    The flow in transonic diffusers as well as in supersonic air intakes becomes often unsteady due to shock wave boundary layer interaction. The oscillations may be induced by natural separation unsteadiness or may be forced by boundary conditions. Significant improvement of CFD tools, increase of computer resources as well as development of experimental methods have again.drawn the attention of researchers to this topic.To investigate the problem forced oscillations of transonic turbulent flow in asymmetric two-dimensional Laval nozzle were considered. A viscous, perfect gas flow, was numerically simulated using the Reynolds-averaged compressible Navier-Stokes solver SPARC, employing a two-equation, eddy viscosity, turbulence closure in the URANS approach.For time-dependent and stationary flow simulations, Mach numbers upstream of the shock between 1.2 and 1.4 were considered. Comparison of computed and experimental data for steady states generally gave acceptable agreement. In the case of forced oscillations, a harmonic pressure variation was prescribed at the exit plane resulting in shock wave motion. Excitation frequencies between 0 Hz and 1024 Hz were investigated at the same pressure amplitude.The main result of the work carried out is the relation between the amplitude of the shock wave motion and the excitation frequency in the investigated range. Increasing excitation frequency resulted in decreasing amplitude of the shock movement. At high frequencies a natural mode of shock oscillation (of small amplitude) was observed which is not sensitive to forced excitement.

  7. The Stokes boundary layer for a thixotropic or antithixotropic fluid

    KAUST Repository

    McArdle, Catriona R.

    2012-10-01

    We present a mathematical investigation of the oscillatory boundary layer in a semi-infinite fluid bounded by an oscillating wall (the so-called \\'Stokes problem\\'), when the fluid has a thixotropic or antithixotropic rheology. We obtain asymptotic solutions in the limit of small-amplitude oscillations, and we use numerical integration to validate the asymptotic solutions and to explore the behaviour of the system for larger-amplitude oscillations. The solutions that we obtain differ significantly from the classical solution for a Newtonian fluid. In particular, for antithixotropic fluids the velocity reaches zero at a finite distance from the wall, in contrast to the exponential decay for a thixotropic or a Newtonian fluid.For small amplitudes of oscillation, three regimes of behaviour are possible: the structure parameter may take values defined instantaneously by the shear rate, or by a long-term average; or it may behave hysteretically. The regime boundaries depend on the precise specification of structure build-up and breakdown rates in the rheological model, illustrating the subtleties of complex fluid models in non-rheometric settings. For larger amplitudes of oscillation the dominant behaviour is hysteretic. We discuss in particular the relationship between the shear stress and the shear rate at the oscillating wall. © 2012 Elsevier B.V.

  8. Quasi-periodic oscillations as global hydrodynamic modes in the boundary layers of viscous accretion disks

    CERN Document Server

    Erkut, M Hakan; Alpar, M Ali

    2008-01-01

    The observational characteristics of quasi-periodic oscillations (QPOs) from accreting neutron stars strongly indicate the oscillatory modes in the innermost regions of accretion disks as a likely source of the QPOs. The inner regions of accretion disks around neutron stars can harbor very high frequency modes related to the radial epicyclic frequency $\\kappa $. The degeneracy of $\\kappa $ with the orbital frequency $\\Omega $ is removed in a non-Keplerian boundary or transition zone near the magnetopause between the disk and the compact object. We show, by analyzing the global hydrodynamic modes of long wavelength in the boundary layers of viscous accretion disks, that the fastest growing mode frequencies are associated with frequency bands around $\\kappa $ and $\\kappa \\pm \\Omega $. The maximum growth rates are achieved near the radius where the orbital frequency $\\Omega $ is maximum. The global hydrodynamic parameters such as the surface density profile and the radial drift velocity determine which modes of ...

  9. Evidence of tropospheric layering: interleaved stratospheric and planetary boundary layer intrusions

    Directory of Open Access Journals (Sweden)

    J. Brioude

    2007-01-01

    Full Text Available We present a case study of interleaving in the free troposphere of 4 layers of non-tropospheric origin, with emphasis on their residence time in the troposphere. Two layers are stratospheric intrusions at 4.7 and 2.2 km altitude with residence times of about 2 and 6.5 days, respectively. The two other layers at 7 and 3 km altitude were extracted from the maritime planetary boundary layer by warm conveyor belts associated with two extratropical lows and have residence times of about 2 and 5.75 days, respectively. The event took place over Frankfurt (Germany in February 2002 and was observed by a commercial airliner from the MOZAIC programme with measurements of ozone, carbon monoxide and water vapour. Origins and residence times in the troposphere of these layers are documented with a trajectory and particle dispersion model. The combination of forward and backward simulations of the Lagrangian model allows the period of time during which the residence time can be assessed to be longer, as shown by the capture of the stratospheric-origin signature of the lowest tropopause fold just about to be completely mixed above the planetary boundary layer. This case study is of interest for atmospheric chemistry because it emphasizes the importance of coherent airstreams that produce laminae in the free troposphere and that contribute to the average tropospheric ozone. The interleaving of these 4 layers also provides the conditions for a valuable case study for the validation of global chemistry transport models used to perform tropospheric ozone budgets.

  10. Mesoscale (50-km) Boundary Layer Eddies in CASES-97

    Science.gov (United States)

    LeMone, M. A.; Grossman, R. L.; Yates, D.; Chen, F.; Ikeda, K.

    2001-05-01

    Boundery-layer eddies 50 km across are documented for the morning of 10 May 1997 during the Cooperative Atmosphere Surface Exchange Study (CASES-97). CASES-97 was held from 21 April to 21 May 1997, in the lower Walnut River Watershed in south central Kansas, to study the role of the heterogeneous surface in boundary-layer evolution. The eddies appear to be tied to terrain, with warm, upwelling air over the relatively high terrain that forms the eastern edge of the watershed, and downwelling air over the watershed. The winds on this day were 5 m/s out of the south, and there were strong horizontal contrasts in vegetation and surface fluxes, suggesting that surfact fluxes could also play a role. For comparison, we examine two other days for the presence of mesoscale eddies, 29 April (characterized by high horizontal heterogeneity of vegetation and 10 m/s southerlies), and 20 May (characterized by a uniformly green and moist surface with winds ENE at 7 m/s). 29 April had significant but rapidly-changing horizontal variability at scales greater than 10 km, but variability on 20 May was on scales less than 5 km. Estimates of the sensible heat budgets for the three days revealed a large residual for 10 May, the day with the mesoscale eddies. Calculation of the expected errors and reasonable corrections for bias errors and radiative heating did not account for the residual, leading to the hypothesis that the residual is associated with the mesoscale eddies.

  11. Numerical simulations of coupled sea waves and boundary layer dynamics

    Science.gov (United States)

    Chalikov, D.

    2009-04-01

    Wind-wave dynamic and thermodynamic interaction belongs to one of the most important problems of geophysical fluid dynamics. At present this interaction in a parameterized form is taken into account for formulation of boundary conditions in atmospheric and oceanic models, weather forecast models, coupled ocean-atmosphere climate models and wave forecasting models. However, the accuracy of this parameterization is mostly unknown. The main difficulty in experimental and theoretical investigation of small-scale ocean-atmosphere interaction is the presence of a multi-mode (and, occasionally, non- single-valued) nonstationary interface. It makes impossible many types of measurements in close vicinity of the physical surface, and highly complicates construction of numerical models. Existing approaches on the wind-wave interaction problem are based on assumptions that a wave field can be represented as superposition of linear waves whilst the process of wind-wave interaction is a superposition of elementary processes. This assumption is acceptable only for very small amplitude waves due to: (1) wave surface cannot be represented as superposition of linear waves with random phases as a result of nonlinearity leading to formation of ‘bound' waves, focusing energy in physical space and wave breaking; (2) dynamic interactions of waves with the air (for example, long waves modify the local flow, which influences energy input into short waves, while short waves create local drag that affects the flow over large waves). In general, all waves "spring, burgeon and fall" in the environment provided by the entire spectrum; (3) energy input into waves of even moderate steepness is concentrated rather in physical space than in Fourier space. Hence, a Fourier image of the input is often not quite representative. The new approach to the problem is based on coupled 2-D modeling of waves and boundary layer in joint conformal surface-following coordinates. The wave model is based on full

  12. Uncertainties in the CO2 buget associated to boundary layer dynamics and CO2-advection

    NARCIS (Netherlands)

    Kaikkonen, J.P.; Pino, D.; Vilà-Guerau de Arellano, J.

    2012-01-01

    The relationship between boundary layer dynamics and carbon dioxide (CO2) budget in the convective boundary layer (CBL) is investigated by using mixed-layer theory. We derive a new set of analytical relations to quantify the uncertainties on the estimation of the bulk CO2 mixing ratio and the inferr

  13. Role of the boundary layer in the occurrence and termination of the tropospheric ozone depletion events in polar spring

    Science.gov (United States)

    Cao, Le; Platt, Ulrich; Gutheil, Eva

    2016-05-01

    Tropospheric ozone depletion events (ODEs) in the polar spring are frequently observed in a stable boundary layer condition, and the end of the events occurs when there is a breakup of the boundary layer. In order to improve the understanding of the role of the boundary layer in the ozone depletion event, a one-dimensional model is developed, focusing on the occurrence and the termination period of the ozone depletion episode. A module accounting for the vertical air transport is added to a previous box model, and a first-order parameterization is used for the estimation of the vertical distribution of the turbulent diffusivity. Simulations are performed for different strengths of temperature inversion as well as for different wind speeds. The simulation results suggest that the reactive bromine species released from the underlying surface into the lowest part of the troposphere initially stay in the boundary layer, leading to an increase of the bromine concentration. This bromine accumulation causes the ozone destruction below the top of the boundary layer. After the ozone is totally depleted, if the temperature inversion intensity decreases or the wind speed increases, the severe ozone depletion event tends to transit into a partial ozone depletion event or it recovers to the normal ozone background level of 30-40 ppb. This recovery process takes about 2 h. Due to the presence of high-level HBr left from the initial occurrence of ODEs, the complete removal of ozone in the boundary layer is achieved a few days after the first termination of ODE. The time required for the recurrence of the ozone depletion in a 1000 m boundary layer is approximately 5 days, while the initial occurrence of the complete ozone consumption takes 15 days. The present model is suitable to clarify the reason for both the start and the termination of the severe ozone depletion as well as the partial ozone depletion in the observations.

  14. Role of the boundary layer in the occurrence and termination of the tropospheric ozone depletion events in polar spring

    Science.gov (United States)

    Cao, Le; Platt, Ulrich; Gutheil, Eva

    2016-05-01

    Tropospheric ozone depletion events (ODEs) in the polar spring are frequently observed in a stable boundary layer condition, and the end of the events occurs when there is a breakup of the boundary layer. In order to improve the understanding of the role of the boundary layer in the ozone depletion event, a one-dimensional model is developed, focusing on the occurrence and the termination period of the ozone depletion episode. A module accounting for the vertical air transport is added to a previous box model, and a first-order parameterization is used for the estimation of the vertical distribution of the turbulent diffusivity. Simulations are performed for different strengths of temperature inversion as well as for different wind speeds. The simulation results suggest that the reactive bromine species released from the underlying surface into the lowest part of the troposphere initially stay in the boundary layer, leading to an increase of the bromine concentration. This bromine accumulation causes the ozone destruction below the top of the boundary layer. After the ozone is totally depleted, if the temperature inversion intensity decreases or the wind speed increases, the severe ozone depletion event tends to transit into a partial ozone depletion event or it recovers to the normal ozone background level of 30-40 ppb. This recovery process takes about 2 h. Due to the presence of high-level HBr left from the initial occurrence of ODEs, the complete removal of ozone in the boundary layer is achieved a few days after the first termination of ODE. The time required for the recurrence of the ozone depletion in a 1000 m boundary layer is approximately 5 days, while the initial occurrence of the complete ozone consumption takes 15 days. The present model is suitable to clarify the reason for both the start and the termination of the severe ozone depletion as well as the partial ozone depletion in the observations.

  15. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  16. Spatially Developing Secondary Instabilities and Attachment Line Instability in Supersonic Boundary Layers

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.

    2008-01-01

    This paper reports on progress towards developing a spatial stability code for compressible shear flows with two inhomogeneous directions, such as crossflow dominated swept-wing boundary layers and attachment line flows. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed. A primary test case used for parameter study corresponds to the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. Implications of this finding for transition control in swept wing boundary layers are examined. Finally, extension of the spatial stability analysis to supersonic attachment line flows is also considered.

  17. Surface layer similarity in the nocturnal boundary layer: the application of Hilbert-Huang transform

    Directory of Open Access Journals (Sweden)

    J. Hong

    2009-10-01

    Full Text Available Turbulence statistics such as flux-variance relationship is critical information in measuring and modeling carbon, water, energy, and momentum exchanges at the biosphere-atmosphere interface. Using a recently proposed mathematical technique, the Hilbert-Huang transform (HHT, this study highlights its possibility to quantify impacts of non-turbulent flows on turbulence statistics in the stable surface layer. The HHT is suitable for the analysis of non-stationary and intermittent data and thus very useful for better understanding of the interplay of the surface layer similarity with complex nocturnal environment. Our analysis showed that the HHT can successfully sift non-turbulent components and be used as a tool to estimate the relationships between turbulence statistics and atmospheric stability in complex environment such as nocturnal stable boundary layer.

  18. Surface layer similarity in the nocturnal boundary layer: the application of Hilbert-Huang transform

    Directory of Open Access Journals (Sweden)

    J. Hong

    2010-04-01

    Full Text Available Turbulence statistics such as flux-variance relationship are critical information in measuring and modeling ecosystem exchanges of carbon, water, energy, and momentum at the biosphere-atmosphere interface. Using a recently proposed mathematical technique, the Hilbert-Huang transform (HHT, this study highlights its possibility to quantify impacts of non-turbulent flows on turbulence statistics in the stable surface layer. The HHT is suitable for the analysis of non-stationary and intermittent data and thus very useful for better understanding the interplay of the surface layer similarity with complex nocturnal environment. Our analysis showed that the HHT can successfully sift non-turbulent components and be used as a tool to estimate the relationships between turbulence statistics and atmospheric stability in complex environments such as nocturnal stable boundary layer.

  19. Global instabilities and transient growth in Blasius boundary-layer flow over a compliant panel

    Indian Academy of Sciences (India)

    K Tsigklifis; A D Lucey

    2015-05-01

    We develop a hybrid of computational and theoretical approaches suited to study the fluid–structure interaction (FSI) of a compliant panel, flush between rigid upstream and downstream wall sections, with a Blasius boundary-layer flow. The ensuing linear-stability analysis is focused upon global instability and transient growth of disturbances. The flow solution is developed using a combination of vortex and source boundary-element sheets on a computational grid while the dynamics of a plate-spring compliant wall are couched in finite-difference form. The fully coupled FSI system is then written as an eigenvalue problem and the eigenvalues of the various flow- and wall-based instabilities are analysed. It is shown that coalescence or resonance of a structural eigenmode with either a flow-based Tollmien–Schlichting Wave (TSW) or wall-based travelling-wave flutter (TWF) modes can occur. This can render the nature of these well-known convective instabilities to become global for a finite compliant wall giving temporal growth of system disturbances. Finally, a non-modal analysis based on the linear superposition of the extracted temporal modes is presented. This reveals a high level of transient growth when the flow interacts with a compliant panel that has structural properties which render the FSI system prone to global instability. Thus, to design stable finite compliant panels for applications such as boundary-layer transition postponement, both global instabilities and transient growth must be taken into account.

  20. Evolution of the lower planetary boundary layer over strongly contrasting surfaces

    International Nuclear Information System (INIS)

    In a multilaboratory field study held near Boardman in northeastern Oregon in June 1991, various properties of the surface and lower atmospheric boundary layer over heavily irrigated cropland and adjacent desert steppe were investigated in the initial campaign of the Atmospheric Radiation Measurement (ARM) program. The locale was selected because its disparate characteristics over various spatial scales stress the ability of general circulation models (GCMS) to describe lower boundary conditions, particularly across the discontinuity between desert (in which turbulent flux of heat must be primarily as sensible heat) and large irrigated tracts (in which turbulent flux of latent heat should be the larger term). This campaign of ARM seeks to increase knowledge in three critical areas: (1) determination of the relationships between surface heat fluxes measured over multiple scales and the controlling surface parameters within each scale, (2) integration of local and nearly local heat flux estimates to produce estimates appropriate for GCM grid cells of 100-200 km horizontal dimension, and (3) characterization of the growth and development of the atmospheric boundary layer near transitions between surfaces with strongly contrasting moisture availabilities

  1. Free-stream Turbulence Effects on the Boundary Layer of a High-lift Low-Pressure-Turbine Blade

    Institute of Scientific and Technical Information of China (English)

    Simoni D.; Ubaldi M.; Zunino P.; Ampellio E.

    2016-01-01

    The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally investigated at low and high free-stream turbulence intensity conditions.Measurements have been carried out in order to analyze the boundary layer transition and separation processes at a low Reynolds number,under both steady and unsteady inflows.Static pressure distributions along the blade surfaces as well as total pressure distributions in a downstream tangential plane have been measured to evaluate the overall aerodynamic efficiency of the blade for the different conditions.Particle Image Velocimetry has been adopted to analyze the time-mean and time-varying velocity fields.The flow field has been surveyed in two orthogonal planes (a blade-to-blade plane and a wall-parallel one).These measurements allow the identification of the Kelvin-Helmholtz large scale coherent structures shed as a consequence of the boundary layer laminar separation under steady inflow,as well as the investigation of the three-dimensional effects induced by the intermittent passage of low and high speed streaks.A close inspection of the time-mean velocity profiles as well as of the boundary layer integral parameters helps to characterize the suction side boundary layer state,thus justifying the influence of free-stream turbulence intensity on the blade aerodynamic losses measured under steady and unsteady inflows.

  2. Free-stream turbulence effects on the boundary layer of a high-lift low-pressure-turbine blade

    Science.gov (United States)

    Simoni, D.; Ubaldi, M.; Zunino, P.; Ampellio, E.

    2016-06-01

    The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally investigated at low and high free-stream turbulence intensity conditions. Measurements have been carried out in order to analyze the boundary layer transition and separation processes at a low Reynolds number, under both steady and unsteady inflows. Static pressure distributions along the blade surfaces as well as total pressure distributions in a downstream tangential plane have been measured to evaluate the overall aerodynamic efficiency of the blade for the different conditions. Particle Image Velocimetry has been adopted to analyze the time-mean and time-varying velocity fields. The flow field has been surveyed in two orthogonal planes (a blade-to-blade plane and a wall-parallel one). These measurements allow the identification of the Kelvin-Helmholtz large scale coherent structures shed as a consequence of the boundary layer laminar separation under steady inflow, as well as the investigation of the three-dimensional effects induced by the intermittent passage of low and high speed streaks. A close inspection of the time-mean velocity profiles as well as of the boundary layer integral parameters helps to characterize the suction side boundary layer state, thus justifying the influence of free-stream turbulence intensity on the blade aerodynamic losses measured under steady and unsteady inflows.

  3. A two Turbulence Kinetic Energy model as a scale-adaptive approach to modeling the planetary boundary layer

    Science.gov (United States)

    Bhattacharya, Ritthik; Stevens, Bjorn

    2016-03-01

    A two Turbulence Kinetic Energy (2TKE) model is developed to address the boundary layer "grey zone" problem. The model combines ideas from local and nonlocal models into a single energetically consistent framework. By applying the Reynolds averaging to the large eddy simulation (LES) equations that employ Deardorff's subgrid TKE, we arrive at a system of equations for the boundary layer quantities and two turbulence kinetic energies: one which encapsulates the TKE of large boundary-layer-scale eddies and another which represents the energy of eddies subgrid to the vertical grid size of a typical large-scale model. These two energies are linked via the turbulent cascade of energy from larger to smaller scales and are used to model the mixing in the boundary layer. The model is evaluated for three dry test cases and found to compare favorably to large eddy simulations. The usage of two TKEs for mixing helps reduce the dependency of the model on the vertical grid scale as well as on the free tropospheric stability and facilitates a smoother transition from convective to stable regimes. The usage of two TKEs representing two ranges of scales satisfies the prerequisite for modeling the boundary layer in the "grey zone": an idea that is explored further in a companion paper.

  4. MHD Free Convective Boundary Layer Flow of a Nanofluid past a Flat Vertical Plate with Newtonian Heating Boundary Condition

    OpenAIRE

    Uddin, Mohammed J.; Khan, Waqar A.; Ahmed I Ismail

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first convert...

  5. Mixed convection boundary layer flow adjacent to a vertical surface embedded in a stable stratified medium

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, Anuar; Nazar, Roslinda [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Pop, Ioan [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2008-07-01

    The steady mixed convection boundary layer flow through a stable stratified medium adjacent to a vertical surface is investigated. The velocity outside the boundary layer and the surface temperature are assumed to vary linearly from the leading edge of the surface. The transformed ordinary differential equations are solved numerically by the Keller-box method. It is found that dual solutions exist, and the thermal stratification delays the boundary layer separation. (author)

  6. Seasonality of mercury in the Atlantic marine boundary layer

    Science.gov (United States)

    Soerensen, Anne L.; Sunderland, Elsie; Skov, Henrik; Holmes, Christopher; Jacob, Daniel J.

    2010-05-01

    Around one third of the mercury emissions today are from primary anthropogenic sources, with the remaining two-thirds from secondary reemissions of earlier deposition and natural sources (AMAP/UNEP 2008). Mercury exchange at the air-sea interface is important for the global distribution of atmospheric mercury as parts of deposited mercury will reenter the atmosphere through evasion. The exchange at the air-sea interface also affects the amount of inorganic mercury in the ocean and thereby the conversion to the neuro-toxic methylmercury. Here we combine new cruise measurements in the atmospheric marine boundary layer (MBL) of the Atlantic Ocean (Northern Hemisphere) from the fall of 2006 and the spring of 2007 with existing data from cruises in the Atlantic Ocean since 1978. We observe from these data a seasonal cycle in Hg(0) concentrations in the Atlantic marine boundary later (MBL) that exhibits minimum concentrations during summer and high concentrations during fall to spring. These observations suggest a local, seasonally dependent Hg(0) source in the MBL that causes variability in concentrations above the open ocean. To further investigate controls on Hg(0) concentrations in the MBL, we developed an improved representation of oceanic air-sea exchange processes within the GEOS-Chem global 3-D biogeochemical mercury model. Specifically, we used new data on mercury redox reactions in the surface ocean as a function of biological and photochemical processes, and implemented new algorithms for mercury dynamics associated with suspended particles. Our coupled atmospheric-oceanic modeling results support the premise that oceanic evasion is a main driver controlling Hg(0) concentrations in the MBL. We also use the model to investigate what drivers the evasion across the air-sea interface on shorter timescales. This is done by tracking evasion rates and other model components on an hourly basis for chosen locations in the Atlantic Ocean.

  7. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  8. Unsteady Heat-Flux Measurements of Second-Mode Instability Waves in a Hypersonic Boundary Layer

    Science.gov (United States)

    Kergerise, Michael A.; Rufer, Shann J.

    2016-01-01

    In this paper we report on the application of the atomic layer thermopile (ALTP) heat- flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are in agreement with data previously reported in the literature. Heat flux time series, and the Morlet-wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was developed to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  9. Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon-carbon material with random microstructure

    Science.gov (United States)

    Wagner, Alexander; Kuhn, Markus; Martinez Schramm, Jan; Hannemann, Klaus

    2013-10-01

    For the first time, the influence of ultrasonically absorptive carbon-carbon material on hypersonic laminar to turbulent boundary layer transition was investigated experimentally. A 7° half-angle blunted cone with a nose radius of 2.5 mm and a total length of 1,077 mm was tested at zero angle of attack in the High Enthalpy Shock Tunnel Göttingen of the German Aerospace Center (DLR) at Mach 7.5. One-third of the metallic model surface in circumferential direction was replaced by DLR in-house manufactured ultrasonically absorptive carbon-carbon material with random microstructure for passive transition control. The remaining model surface consisted of polished steel and served as reference surface. The model was equipped with coaxial thermocouples to determine the transition location by means of surface heat flux distribution. Flush-mounted piezoelectric fast-response pressure transducers were used to measure the pressure fluctuations in the boundary layer associated with second-mode instabilities. The free-stream unit Reynolds number was varied over a range of Re m = 1.5 × 106 m-1 to Re m = 6.4 × 106 m-1 at a stagnation enthalpy of h 0 ≈ 3.2 MJ/kg and a wall temperature ratio of T w/ T 0 ≈ 0.1. The present study revealed a clear damping of the second-mode instabilities and a delay of boundary layer transition along the ultrasonically absorptive carbon-carbon insert.

  10. Marine boundary layer simulation and verification during BOBMEX-Pilot using NCMRWF model

    Indian Academy of Sciences (India)

    Swati Basu

    2000-06-01

    A global spectral model (T80L18) that is operational at NCMRWF is utilized to study the structure of the marine boundary layer over the Bay of Bengal during the BOBMEX-Pilot period. The vertical profiles of various meteorological parameters within the boundary layer are studied and verified against the available observations. The diurnal variation of various surface fields are also studied. The impact of non-local closure scheme for the boundary layer parameterisation is seen in simulation of the flow pattern as well as on the boundary layer structure over the oceanic region.

  11. Analytical Determination of the Boundaries of Transition Natural Zones (Ecotones

    Directory of Open Access Journals (Sweden)

    Rulev Aleksandr Sergeevich

    2015-04-01

    Full Text Available The morphological units that are part of the catena, are recognized in accordance with the response to the geomorphological and soil processes. The spatial relationship is the main unit between them. In this regard, the landscape patterns acquire a cascade type, and their main link becomes the zonal catena, which has specific stable features, reflecting the dependence of the complex of natural conditions and processes of latitude. However, clear-cut boundaries do not exist – they have spatial and temporal displacement, associated with the cyclical nature of the global climatic processes. The landscapes in these transition zones (ecotones a priori can be considered unstable. The detection of ecotones boundaries provides the opportunity to divide natural zones to potentially stable and potentially unstable parts for planning measures on preventing the degradation of landscapes localized in them. The latitude of the ecotones localization can be determined through the connection of the radiation heat flux on land (R with the normalized geographical latitude of the subboreal belt (x, which is described by the equation of the energy balance, expressed in the logistic function R = А / [1 + 0,72 exp(4,25 – Bx] + C.

  12. Stationary plasma-field equilibrium states in astropause boundary layers. I - General theory

    Science.gov (United States)

    Fahr, H. J.; Neutsch, W.

    1983-11-01

    A theoretical investigation has been made of the transition layer between a stellar wind plasma and the surrounding regime of magnetized interstellar plasma, i.e., the astropause boundary layer. For the description of the 'microscopic' structures, a planar representation of the transition zone geometry is used. Here the plasma is taken to be dominated by instability-induced collective relaxation processes as, for example, modified two-stream instabilities, keeping the effective electron and proton temperatures close to each other. These are caused by strong couplings between the plasma constituents and the equilibrium wave field. This permits a quasi-hydrodynamic description of the plasma flow in a two-fluid approximation. For this case, a system of differential equations describing consistently the dynamical variables of the plasma and the magnetic and electric fields in the transition region is developed. Integrals of this system are discussed and it is shown that it can be reduced to one ordinary differential equation. This equation is solved in terms of elliptic integrals and gives an implicit representation of magnetic and electric fields and the density.

  13. Discrete dislocation dynamics simulation and continuum modeling of plastic boundary layers in tricrystal micropillars

    Energy Technology Data Exchange (ETDEWEB)

    Aifantis, K E [Lab of Mechanics and Materials, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Senger, J; Weygand, D [Institut fuer Zuverlaessigkeit von Bauteilen und Systemen (IZBS), Universitaet Karlsruhe (Thailand), 76131 Karlsruhe (Germany); Zaiser, M, E-mail: k.aifantis@mom.gen.auth.gr [Centre for Materials Science and Engineering, University of Edinburgh, The King' s Buildings, Sanderson Building, Edinburgh EH93JL (United Kingdom)

    2009-07-15

    Since the mid 80s various gradient plasticity models have been developed for obtaining the plastic response of materials at the micron- and submicron- scales. In particular, gradient terms have been proven to be crucial for understanding size effects in constrained plastic flow, which are related to the emergence of plasticity boundary layers near passive (plastically not deformable) boundaries. In spite of the success of gradient theories in modeling boundary layer formation, there remain unresolved issues concerning the physical interpretation of the internal length scale involved in the theoretical formulation. Physically, boundary layer formation is related to the piling up of dislocations against the boundaries. This phenomenon is investigated by performing discrete dislocation dynamics (DDD) simulations on a tri-crystal with plastically non-deforming grain boundaries. Strain distributions are derived from the DDD simulations and matched with the results of gradient plasticity calculations, in order to identify the internal length scale governing the boundary layer width.

  14. Turbulent boundary layer over a convergent and divergent superhydrophobic surface

    Science.gov (United States)

    Nadeem, Muhammad; Hwang, Jinyul; Sung, Hyung Jin

    2015-11-01

    Direct numerical simulation (DNS) of spatially developing turbulent boundary layer (TBL) over a convergent and divergent superhydrophobic surface (SHS) was performed. The convergent and divergent SHS was aligned in the streamwise direction. The SHS was modeled as a pattern of slip and no-slip surfaces. For comparison, DNS of TBL over a straight SHS was also carried out. The momentum thickness Reynolds number was varied from 800 to 1400. The gas fraction of the convergent and divergent SHS was the same as that of the straight SHS, keeping the slip area constant. The slip velocity in the convergent SHS was higher than that of the straight SHS. An optimal streamwise length of the convergent and divergent SHS was obtained. The convergent and divergent SHS gave more drag reduction than the straight SHS. The convergent and divergent SHS led to the modification of near wall-turbulent structures, resembling the narrowing and widening streaky structures near the wall. The convergent and divergent SHS had a relatively larger damping effect on near-wall turbulence than the straight SHS. These observations will be further analyzed statistically to demonstrate the effect of the convergent and divergent SHS on the interaction of inner and outer regions of TBL.

  15. The decay of wake vortices in the convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Holzaepfel, F.; Gerz, T.; Frech, M.; Doernbrack, A.

    2000-03-01

    The decay of three wake vortex pairs of B-747 aircraft in a convectively driven atmospheric boundary layer is investigated by means of large-eddy simulations (LES). This situation is considered as being hazardous as the updraft velocities of a thermal may compensate the induced descent speed of the vortex pair resulting in vortices stalled in the flight path. The LES results, however, illustrate that (i) the primary rectilinear vortices are rapidly deformed on the scale of the alternating updraft and downdraft regions; (ii) parts of the vortices stay on flight level but are quickly eroded by the enhanced turbulence of an updraft; (iii) longest living sections of the vortices are found in regions of relatively calm downdraft flow which augments their descent. Strip theory calculations are used to illustrate the temporal and spatial development of lift and rolling moments experienced by a following medium weight class B-737 aircraft. Characteristics of the respective distributions are analysed. Initially, the maximum rolling moments slightly exceed the available roll control of the B-737. After 60 seconds the probability of rolling moments exceeding 50% of the roll control, a value which is considered as a threshold for acceptable rolling moments, has decreased to 1% of its initial probability. (orig.)

  16. Wave mediated angular momentum transport in astrophysical boundary layers

    CERN Document Server

    Hertfelder, Marius

    2015-01-01

    Context. Disk accretion onto weakly magnetized stars leads to the formation of a boundary layer (BL) where the gas loses its excess kinetic energy and settles onto the star. There are still many open questions concerning the BL, for instance the transport of angular momentum (AM) or the vertical structure. Aims. It is the aim of this work to investigate the AM transport in the BL where the magneto-rotational instability (MRI) is not operating owing to the increasing angular velocity $\\Omega(r)$ with radius. We will therefore search for an appropriate mechanism and examine its efficiency and implications. Methods. We perform 2D numerical hydrodynamical simulations in a cylindrical coordinate system $(r, \\varphi)$ for a thin, vertically inte- grated accretion disk around a young star. We employ a realistic equation of state and include both cooling from the disk surfaces and radiation transport in radial and azimuthal direction. The viscosity in the disk is treated by the {\\alpha}-model; in the BL there is no v...

  17. Proper orthogonal decomposition of a decelerating turbulent boundary layer

    Science.gov (United States)

    Tutkun, Murat

    2010-11-01

    Our analysis is based only on streamwise component of velocity fluctuations since the data were simultaneously obtained using a hot-wire rake of 143 single wire probes. The experiment was carried out in the large wind tunnel of Laboratoire de M'ecanique de Lille whose test section is 20 m long, 2 m wide and 1 m high. A 2D bump was used to create converging-diverging flow inside the test section. The thickness of the boundary layer was 25 cm at the measurement location and Reynolds number based on momentum thickness, Reθ, was 17:100 for 10 m s-1 external free stream velocity measured before the bump. Eigenvalue distribution over POD modes shows that approximately 90% of turbulence kinetic energy due to streamwise fluctuations within the domain was captured by the first 5 POD modes. The first POD mode carried more than 45% of turbulence kinetic energy. Resulting eigenspectra are studied for different frequencies and spanwise Fourier indices in order to reduce the number of modes used in reconstructed velocity fields.

  18. Plasma structures inside boundary layers of magnetic clouds

    Institute of Scientific and Technical Information of China (English)

    WEI Fengsi; FENG Xueshang; YANG Fang; ZHONG Dingkun

    2004-01-01

    We analyze the plasma structures for 50 magnetic cloud boundary layers (BLs) which were observed by the spacecraft WIND from February, 1995 to June 2003. Main discoveries are: (ⅰ) The BL is a non-pressure balanced structure, its total pressure, PT,L, (the thermal pressure, Pth,L, plus the magnetic pressure, PM,L) is generally less than the total pressure PT,S and PT,C of the front solar wind (SW) and the following magnetic clouds (MC), respectively. The rising of the Pth,L inside the BLs is often not enough to compensate the declining of PM,L; (ⅱ) The ratio of electron and proton temperatures, (Te/Tp)L, inside the BLs is offen less than (Te/Tp)s and (Te/Tp)c in the SW and the MC, respectively, because the heating of proton is more obvious than that of electron; and (ⅲ) The reversal jet is observed in 80% BLs investigated, in which the reversal jets from all of three directions (±Vx, ±Vy, ±Vz), were observed in ≈25% BLs. These basic characteristics could be associated with a possible magnetic reconnection process inside the BLs. The results above suggest that the cloud BL owns the plasma structures different from those in the SW and MC. It is a manifestation for the existing significant dynamic interaction between the magnetic cloud and the solar wind.

  19. Ion beams in the plasma sheet boundary layer

    Science.gov (United States)

    Birn, J.; Hesse, M.; Runov, A.; Zhou, X.-Z.

    2015-09-01

    We explore characteristics of energetic particles in the plasma sheet boundary layer associated with dipolarization events, based on simulations and observations. The simulations use the electromagnetic fields of an MHD simulation of magnetotail reconnection and flow bursts as basis for test particle tracing. They are complemented by self-consistent fully electrodynamic particle-in-cell (PIC) simulations. The test particle simulations confirm that crescent-shaped earthward flowing ion velocity distributions with strong perpendicular anisotropy can be generated as a consequence of near-tail reconnection, associated with earthward flows and propagating magnetic field dipolarization fronts. Both PIC and test particle simulations show that the ion distribution in the outflow region close to the reconnection site also consist of a beam superposed on an undisturbed population, which, however, does not show strong perpendicular anisotropy. This suggests that the crescent shape is created by quasi-adiabatic deformation from ion motion along the magnetic field toward higher field strength. The simulation results compare favorably with "Time History of Events and Macroscale Interactions during Substorms" observations.

  20. Iodine oxide in the global marine boundary layer

    Directory of Open Access Journals (Sweden)

    C. Prados-Roman

    2014-08-01

    Full Text Available Emitted mainly by the oceans, iodine is a halogen compound important for atmospheric chemistry due to its high ozone depletion potential and effect on the oxidizing capacity of the atmosphere. Here we present a comprehensive dataset of iodine oxide (IO measurements in the open marine boundary layer (MBL made during the Malaspina 2010 circumnavigation. Results show IO mixing ratios ranging from 0.4 to 1 pmol mol−1 and, complemented with additional field campaigns, this dataset confirms through observations the ubiquitous presence of reactive iodine chemistry in the global marine environment. We use a global model with organic (CH3I, CH2ICl, CH2I2 and CH2IBr and inorganic (HOI and I2 iodine ocean emissions to investigate the contribution of the different iodine source gases to the budget of IO in the global MBL. In agreement with previous estimates, our results indicate that, globally averaged, the abiotic precursors contribute about 75% to the iodine oxide budget. However, this work reveals a strong geographical pattern in the contribution of organic vs. inorganic precursors to reactive iodine in the global MBL.

  1. Evidence of reactive iodine chemistry in the Arctic boundary layer

    Science.gov (United States)

    Mahajan, Anoop S.; Shaw, Marvin; Oetjen, Hilke; Hornsby, Karen E.; Carpenter, Lucy J.; Kaleschke, Lars; Tian-Kunze, Xiangshan; Lee, James D.; Moller, Sarah J.; Edwards, Peter; Commane, Roisin; Ingham, Trevor; Heard, Dwayne E.; Plane, John M. C.

    2010-10-01

    Although it has recently been established that iodine plays an important role in the atmospheric chemistry of coastal Antarctica, where it occurs at levels which cause significant ozone (O3) depletion and changes in the atmospheric oxidising capacity, iodine oxides have not previously been observed conclusively in the Arctic boundary layer (BL). This paper describes differential optical absorption spectroscopy (DOAS) observations of iodine monoxide (IO), along with gas chromatographic measurements of iodocarbons, in the sub-Arctic environment at Kuujjuarapik, Hudson Bay, Canada. Episodes of elevated levels of IO (up to 3.4 ± 1.2 ppt) accompanied by a variety of iodocarbons were observed. Air mass back trajectories show that the observed iodine compounds originate from open water polynyas that form in the sea ice on Hudson Bay. A combination of long-path DOAS and multiaxis DOAS observations suggested that the IO is limited to about 100 m in height. The observations are interpreted using a one-dimensional model, which indicates that the iodocarbon sources from these exposed waters can account for the observed concentrations of IO. These levels of IO deplete O3 at rates comparable to bromine oxide (BrO) and, more importantly, strongly enhance the effect of bromine-catalyzed O3 depletion in the Arctic BL, an effect which has not been quantitatively considered hitherto. However, the measurements and modeling results indicate that the effects of iodine chemistry are on a much more localized scale than bromine chemistry in the Arctic environment.

  2. Coupling between roughness and freestream acceleration in turbulent boundary layers

    Science.gov (United States)

    Yuan, Junlin; Piomelli, Ugo

    2015-11-01

    To explain various rough-wall flow responses to different types of free-stream conditions previously observed, we carried out a direct numerical simulation of a spatially developing turbulent boundary layer with freestream acceleration. Unlike the equilibrium (self-similar) accelerating scenario, where a strong acceleration leads to complete laminarization and lower friction, in the present non-equilibrium case the friction coefficient increases with acceleration, due to the faster near-wall acceleration than that of the freestream. At the same time, roughness reduces the near-wall time scale of the turbulence, preventing the acceleration from linearly stretching the near-wall eddies and freezing the turbulence intensity as in the smooth case. In addition, acceleration leads to similar decrease of mean-velocity logarithmic slope on rough and smooth walls; this allows a clear definition of the roughness function in a local sense. Interestingly, this roughness function correlates with the roughness Reynolds number in the same way as in self-similar or non-accelerating flows. This study may also help develop benchmark cases for evaluating rough-wall treatments for industrial turbulence models.

  3. Reactive chlorine chemistry in the boundary layer of coastal Antarctica

    Science.gov (United States)

    Zielcke, Johannes; Poehler, Denis; Friess, Udo; Hay, Tim; Eger, Philipp; Kreher, Karin; Platt, Ulrich

    2015-04-01

    A unique feature of the polar troposphere is the strong impact of halogen photochemistry, in which reactive halogen species are responsible for ozone depletion as well as the oxidation of elemental mercury and dimethyl sulphide. The source, however, as well as release and recycling mechanisms of these halogen species - for some species even abundances - are far from being completely known, especially of chlorine and iodine compounds. Here we present active long-path differential optical absorption spectroscopy (LP-DOAS) measurements conducted during austral spring 2012 at Ross Island, Antarctica, observing several species (BrO, O3, NO2, IO, ClO, OBrO, OClO, OIO, I2, CHOCHO, HCHO, HONO). For the first time, ClO was detected and quantified in the marine boundary layer of coastal Antarctica, with typical mixing ratios around 20 pptv and maxima around 50 pptv. Meteorological controls on the mixing ratio of ClO as well as the interplay with other halogen compounds will be discussed, such as the lack of observed OClO (< 1 pptv). The results seem to reflect previously in chamber studies observed dependences on ozone levels and solar irradiance.

  4. NOx and NOy in the Tropical Marine Boundary Layer

    Science.gov (United States)

    Reed, Chris; Evans, Mathew J.; Lee, James D.; Carpenter, Lucy J.; Read, Katie A.; Mendes, Luis N.

    2016-04-01

    Nitrogen oxides (NOx=NO+NO2) and their reservoir species (NOy) play a central role in determining the chemistry of the troposphere. Although their concentrations are low (1-100 ppt) in regions such as the remote marine boundary layer, they have a profound impact on ozone production and the oxidizing capacity. There are very few observations of NOx and NOy in remote oceanic regions due to the technical challenges of measuring such low concentrations, and thus our understanding of this background chemistry is incomplete. Here we present long term measurements of NOx (2006-2015) and more recent measurements of speciated NOy (total peroxyacetyl nitrates, PANs; alkyl nitrates, ANs; nitric acid; and aerosol analogues) made at the Cape Verde Atmospheric Observatory (CVAO; 16° 51' N, 24° 52' W) located in the tropical Atlantic Ocean. We identify potential interferences in the NO2 and NOy measurements and methods to eliminate them. Diurnal and seasonal cycles are interpreted using a box model. We find a complex chemistry with interactions between organic and inorganic chemistry, between the aerosol and gas phase, and between the very local and large scales.

  5. Subgrid-scale turbulence in shock-boundary layer flows

    Science.gov (United States)

    Jammalamadaka, Avinash; Jaberi, Farhad

    2015-04-01

    Data generated by direct numerical simulation (DNS) for a Mach 2.75 zero-pressure gradient turbulent boundary layer interacting with shocks of different intensities are used for a priori analysis of subgrid-scale (SGS) turbulence and various terms in the compressible filtered Navier-Stokes equations. The numerical method used for DNS is based on a hybrid scheme that uses a non-dissipative central scheme in the shock-free turbulent regions and a robust monotonicity-preserving scheme in the shock regions. The behavior of SGS stresses and their components, namely Leonard, Cross and Reynolds components, is examined in various regions of the flow for different shock intensities and filter widths. The backscatter in various regions of the flow is found to be significant only instantaneously, while the ensemble-averaged statistics indicate no significant backscatter. The budgets for the SGS kinetic energy equation are examined for a better understanding of shock-tubulence interactions at the subgrid level and also with the aim of providing useful information for one-equation LES models. A term-by-term analysis of SGS terms in the filtered total energy equation indicate that while each term in this equation is significant by itself, the net contribution by all of them is relatively small. This observation is consistent with our a posteriori analysis.

  6. Boundary layer parameterizations and long-range transport

    International Nuclear Information System (INIS)

    A joint work group between the American Meteorological Society (AMS) and the EPA is perusing the construction of an air quality model that incorporates boundary layer parameterizations of dispersion and transport. This model could replace the currently accepted model, the Industrial Source Complex (ISC) model. The ISC model is a Gaussian-plume multiple point-source model that provides for consideration of fugitive emissions, aerodynamic wake effects, gravitational settling and dry deposition. A work group of several Federal and State agencies is perusing the construction of an air quality modeling system for use in assessing and tracking visibility impairment resulting from long-range transport of pollutants. The modeling system is designed to use the hourly vertical profiles of wind, temperature and moisture resulting from a mesoscale meteorological processor that employs four dimensional data assimilation (FDDA). FDDA involves adding forcing functions to the governing model equations to gradually ''nudge'' the model state toward the observations (12-hourly upper air observations of wind, temperature and moisture, and 3-hourly surface observations of wind and moisture). In this way it is possible to generate data sets whose accuracy, in terms of transport, precipitation, and dynamic consistency is superior to both direct interpolation of synoptic-scale analyses of observations and purely predictive mode model result. (AB) ( 19 refs.)

  7. Improvement of Turbine Performance by Streamwise Boundary Layer Fences

    Directory of Open Access Journals (Sweden)

    M Govardhan

    2012-01-01

    Full Text Available In the present investigations, effect of streamwise end wall fences on the performance improvement of a turbine is studied. The fences with heights of 12 mm, 16 mm were attached normal to the end wall and at a half pitch away from the blades. A miniaturized pressure probe was traversed at the exit of the cascade from midspan to the end wall at 26 locations covering more points in the end wall region. For each spanwise location, the probe was traversed in the pitchwise direction for more than 25 points covering one blade pitch. The boundary layer fence near the end wall remains effective in changing the path of pressure side of leg of horseshoe and weaken the cross flow. The overturn in flow has reduced near the end wall when fences are incorporated while outside end wall and in loss core region, it underturns slightly as result of reduction in secondary loss. The total loss is reduced by 15%, 25% for fences of height 12 mm, and 16 mm respectively. The corresponding change was obtained in the drag and lift coefficients.

  8. Benthic boundary layer. IOS observational and modelling programme

    International Nuclear Information System (INIS)

    Near bottom currents, measured at three sites in the N.E. Atlantic, reveal the eddying characteristics of the flow. Eddies develop, migrate and decay in ways best revealed by numerical modelling simulations. Eddies control the thickness of the bottom mixed layer by accumulating and thickening or spreading and thinning the bottom waters. At the boundaries of eddies benthic fronts form providing a path for upward displacement of the bottom water. An experiment designed to estimate vertical diffusivity is performed. The flux of heat into the bottom of the Iberian basin through Discovery Gap is deduced from year long current measurements. The flux is supposed balanced by geothermal heating through the sea floor and diapycnal diffusion in the water. A diffusivity of 1.5 to 4 cm2 s-1 is derived for the bottom few hundred meters of the deep ocean. Experiments to estimate horizontal diffusivity are described. If a tracer is discharged from the sea bed the volume of sea water in which it is found increases with time and after 20 years will fill an ocean basin of side 1000 km to a depth of only 1 to 2 km. (author)

  9. Sensitivity of African easterly waves to boundary layer conditions

    Directory of Open Access Journals (Sweden)

    A. Lenouo

    2008-06-01

    Full Text Available A linearized version of the quasi-geostrophic model (QGM with an explicit Ekman layer and observed static stability parameter and profile of the African easterly jet (AEJ, is used to study the instability properties of the environment of the West African wave disturbances. It is found that the growth rate, the propagation velocity and the structure of the African easterly waves (AEW can be well simulated. Two different lower boundary conditions are applied. One assumes a lack of vertical gradient of perturbation stream function and the other assumes zero wind perturbation at the surface. The first case gives more realistic results since in the absence of horizontal diffusion, growth rate, phase speed and period have values of 0.5 day−1, 10.83 m s−1 and 3.1 day, respectively. The zero wind perturbation at the surface case leads to values of these parameters that are 50 percent lower. The analysis of the sensitivity to diffusion shows that the magnitude of the growth rate decreases with this parameter. Modelled total relative vorticity has its low level maximum around 900 hPa under no-slip, and 700 hPa under free slip condition.

  10. Sensitivity of African easterly waves to boundary layer conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lenouo, A. [Douala Univ. (Cameroon). Dept. of Physics; Mkankam Kamga, F. [Yaounde I Univ. (Cameroon). LEMAP, Dept. of Physics

    2008-07-01

    A linearized version of the quasi-geostrophic model (QGM) with an explicit Ekman layer and observed static stability parameter and profile of the African easterly jet (AEJ), is used to study the instability properties of the environment of the West African wave disturbances. It is found that the growth rate, the propagation velocity and the structure of the African easterly waves (AEW) can be well simulated. Two different lower boundary conditions are applied. One assumes a lack of vertical gradient of perturbation stream function and the other assumes zero wind perturbation at the surface. The first case gives more realistic results since in the absence of horizontal diffusion, growth rate, phase speed and period have values of 0.5 day{sup -1}, 10.83 m s{sup -1} and 3.1 day, respectively. The zero wind perturbation at the surface case leads to values of these parameters that are 50 percent lower. The analysis of the sensitivity to diffusion shows that the magnitude of the growth rate decreases with this parameter. Modelled total relative vorticity has its low level maximum around 900 hPa under no-slip, and 700 hPa under free slip condition. (orig.)

  11. Wind farm performance in conventionally neutral atmospheric boundary layers with varying inversion strengths

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2014-06-01

    In this study we consider large wind farms in a conventionally neutral atmospheric boundary layer. In large wind farms the energy extracted by the turbines is dominated by downward vertical turbulent transport of kinetic energy from the airflow above the farm. However, atmospheric boundary layers are almost always capped by an inversion layer which slows down the entrainment rate and counteracts boundary layer growth. In a suite of large eddy simulations the effect of the strength of the capping inversion on the boundary layer and on the performance of a large wind farm is investigated. For simulations with and without wind turbines the results indicate that the boundary layer growth is effectively limited by the capping inversion and that the entrainment rate depends strongly on the inversion strength. The power output of wind farms is shown to decrease for increasing inversions.

  12. Turbulent combined-convection boundary layer with aiding flows along a heated vertical flat plate at higher freestream velocity

    Science.gov (United States)

    Abedina, Mohammad Zoynal; Islam, Mohammed Moinul; Hanif, Md. Abu; Alam, Md. Jahangir

    2016-07-01

    A numerical investigation is performed in the turbulent combined-convection boundary layer with aiding flows in air along a heated vertical flat plate at a higher freestream velocity (Reδ0 = 600) by time-developing direct numerical simulation (DNS). At higher freestream velocity, the transition from laminar to turbulent delays for aiding flows and relatively a lower and higher heat transfer rates are observed, respectively, in the laminar and turbulent region compared to that of lower freestream velocity. The wall shear stresses are higher in the laminar region compared to that in the turbulent region, and at higher freestream velocity, the wall shear stress in the transition region shows a higher peak value. The intensity of velocity and temperature fluctuations for aiding flows with higher freestream velocity become appreciably lower than that for lower freestream velocity due to the laminarization of the boundary layer.

  13. Round Pipe Flow Linear Stability Famous Century-Old Paradox Resolving and the New Boundary Layer Turbulence Arising Theory

    CERN Document Server

    Chefranov, Sergey G

    2010-01-01

    For Gagen-Poiseuille flow, we show that exponential instability (to extremely small, axially symmetric disturbances represented by Galerkin's approximation) is possible only if there exists conditionally periodic variability of the disturbances along the pipe axis when the threshold Reynolds number depends on the ratio of two longitudinal periods. Absolute minimum (for) is obtained that corresponds to the observed conditions of transition from the laminar resistance law to the turbulent one and Tollmien-Schlichting waves exciting in the boundary layer.

  14. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate

    Institute of Scientific and Technical Information of China (English)

    Krishnendu Bhattacharyya; Swati Mukhopadhyay; G.C.Layek

    2011-01-01

    An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented. A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method. In the boundary slip condition no local similarity occurs. Velocity and temperature distributions within the boundary layer are presented. Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate.%@@ An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented.A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method.In the boundary slip condition no local similarity occurs.Velocity and temperature distributions within the boundary layer are presented.Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate.

  15. Effect of plate permeability on nonlinear stability of the asymptotic suction boundary layer.

    Science.gov (United States)

    Wedin, Håkan; Cherubini, Stefania; Bottaro, Alessandro

    2015-07-01

    The nonlinear stability of the asymptotic suction boundary layer is studied numerically, searching for finite-amplitude solutions that bifurcate from the laminar flow state. By changing the boundary conditions for disturbances at the plate from the classical no-slip condition to more physically sound ones, the stability characteristics of the flow may change radically, both for the linearized as well as the nonlinear problem. The wall boundary condition takes into account the permeability K̂ of the plate; for very low permeability, it is acceptable to impose the classical boundary condition (K̂=0). This leads to a Reynolds number of approximately Re(c)=54400 for the onset of linearly unstable waves, and close to Re(g)=3200 for the emergence of nonlinear solutions [F. A. Milinazzo and P. G. Saffman, J. Fluid Mech. 160, 281 (1985); J. H. M. Fransson, Ph.D. thesis, Royal Institute of Technology, KTH, Sweden, 2003]. However, for larger values of the plate's permeability, the lower limit for the existence of linear and nonlinear solutions shifts to significantly lower Reynolds numbers. For the largest permeability studied here, the limit values of the Reynolds numbers reduce down to Re(c)=796 and Re(g)=294. For all cases studied, the solutions bifurcate subcritically toward lower Re, and this leads to the conjecture that they may be involved in the very first stages of a transition scenario similar to the classical route of the Blasius boundary layer initiated by Tollmien-Schlichting (TS) waves. The stability of these nonlinear solutions is also investigated, showing a low-frequency main unstable mode whose growth rate decreases with increasing permeability and with the Reynolds number, following a power law Re(-ρ), where the value of ρ depends on the permeability coefficient K̂. The nonlinear dynamics of the flow in the vicinity of the computed finite-amplitude solutions is finally investigated by direct numerical simulations, providing a viable scenario for

  16. Effects of micro-ramps on a shock wave/turbulent boundary layer interaction

    NARCIS (Netherlands)

    Blinde, P.L.; Humble, R.A.; Van Oudheusden, B.W.; Scarano, F.

    2009-01-01

    Stereoscopic particle image velocimetry is used to investigate the effects of micro-ramp sub-boundary layer vortex generators, on an incident shock wave/boundary layer interaction at Mach 1.84. Single- and double-row arrangements of micro-ramps are considered. The micro-ramps have a height of 20% of

  17. Implementation of a boundary layer heat flux parameterization into the Regional Atmospheric Modeling System (RAMS

    Directory of Open Access Journals (Sweden)

    E. L. McGrath-Spangler

    2008-07-01

    Full Text Available The response of atmospheric carbon dioxide to a given amount of surface flux is inversely proportional to the depth of the boundary layer. Overshooting thermals that entrain free tropospheric air down into the boundary layer modify the characteristics and depth of the lower layer through the insertion of energy and mass. This alters the surface energy budget by changing the Bowen ratio and thereby altering the vegetative response and the surface boundary conditions. Although overshooting thermals are important in the physical world, their effects are unresolved in most regional models. A parameterization to include the effects of boundary layer entrainment was introduced into a coupled ecosystem-atmosphere model (SiB-RAMS. The parameterization is based on a downward heat flux at the top of the boundary layer that is proportional to the heat flux at the surface. Results with the parameterization show that the boundary layer simulated is deeper, warmer, and drier than when the parameterization is turned off. These results alter the vegetative stress factors thereby changing the carbon flux from the surface. The combination of this and the deeper boundary layer change the concentration of carbon dioxide in the boundary layer.

  18. A note on turbulent spots over a rough bed in wave boundary layers

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    This study is a continuation of the investigation of turbulent spots in wave boundary layers over a smooth wall reported by Carstensen et al. [J. Fluid Mech. 646, 169–206 (2010)]. The present paper summarises the results of an experimental investigation of turbulent spots in wave boundary layers ...

  19. Application of Viscothermal Wave Propagation Theory for Reduction of Boundary Layer Induced Noise

    NARCIS (Netherlands)

    Wijnant, Y.H.; Hannink, M.H.C.; Boer, de A.

    2003-01-01

    Boundary layer induced noise, i.e. noise inside the aircraft resulting from the turbulent boundary layer enclosing the fuselage, is known to dominate air-cabin noise at cruise conditions. In this paper a method is described to design trim panels containing a large number of coupled tubes to effectiv

  20. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution

    NARCIS (Netherlands)

    Janssen, R.H.H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.N.; Kabat, P.; Jimenez, J.L.; Farmer, D.K.; Heerwaarden, van C.C.; Mammarella, I.

    2012-01-01

    We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the mod

  1. On the Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers

    DEFF Research Database (Denmark)

    Baklanov, Alexander A.; Grisogono, Branko; Bornstein, Robert;

    2011-01-01

    The gap between our modern understanding of planetary boundary layer physics and its decades-old representations in current operational atmospheric models is widening, which has stimulated this review of the current state of the art and an analysis of the immediate needs in boundary layer theory...

  2. Wave mediated angular momentum transport in astrophysical boundary layers

    Science.gov (United States)

    Hertfelder, Marius; Kley, Wilhelm

    2015-07-01

    Context. Disk accretion onto weakly magnetized stars leads to the formation of a boundary layer (BL) where the gas loses its excess kinetic energy and settles onto the star. There are still many open questions concerning the BL, for instance the transport of angular momentum (AM) or the vertical structure. Aims: It is the aim of this work to investigate the AM transport in the BL where the magneto-rotational instability (MRI) is not operating owing to the increasing angular velocity Ω(r) with radius. We will therefore search for an appropriate mechanism and examine its efficiency and implications. Methods: We perform 2D numerical hydrodynamical simulations in a cylindrical coordinate system (r,ϕ) for a thin, vertically integrated accretion disk around a young star. We employ a realistic equation of state and include both cooling from the disk surfaces and radiation transport in radial and azimuthal direction. The viscosity in the disk is treated by the α-model; in the BL there is no viscosity term included. Results: We find that our setup is unstable to the sonic instability which sets in shortly after the simulations have been started. Acoustic waves are generated and traverse the domain, developing weak shocks in the vicinity of the BL. Furthermore, the system undergoes recurrent outbursts where the activity in the disk increases strongly. The instability and the waves do not die out for over 2000 orbits. Conclusions: There is indeed a purely hydrodynamical mechanism that enables AM transport in the BL. It is efficient and wave mediated; however, this renders it a non-local transport method, which means that models of a effective local viscosity like the α-viscosity are probably not applicable in the BL. A variety of further implications of the non-local AM transport are discussed.

  3. Ozone in the Atlantic Ocean marine boundary layer

    Directory of Open Access Journals (Sweden)

    Patrick Boylan

    2015-04-01

    Full Text Available Abstract In situ atmospheric ozone measurements aboard the R/V Ronald H. Brown during the 2008 Gas-Ex and AMMA research cruises were compared with data from four island and coastal Global Atmospheric Watch stations in the Atlantic Ocean to examine ozone transport in the marine boundary layer (MBL. Ozone measurements made at Tudor Hill, Bermuda, were subjected to continental outflow from the east coast of the United States, which resulted in elevated ozone levels above 50 ppbv. Ozone measurements at Cape Verde, Republic of Cape Verde, approached 40 ppbv in springtime and were influenced by outflow from Northern Africa. At Ragged Point, Barbados, ozone levels were ∼ 21 ppbv; back trajectories showed the source region to be the middle of the Atlantic Ocean. Ozone measurements from Ushuaia, Argentina, indicated influence from the nearby city; however, the comparison of the daily maxima ozone mole fractions measured at Ushuaia and aboard the Gas-Ex cruise revealed that these were representative of background ozone in higher latitudes of the Southern Hemisphere. Diurnal ozone cycles in the shipborne data, frequently reaching 6–7 ppbv, were larger than most previous reports from coastal or island monitoring locations and simulations based on HOx photochemistry alone. However, these data show better agreement with recent ozone modeling that included ozone-halogen chemistry. The transport time between station and ship was estimated from HYSPLIT back trajectories, and the change of ozone mole fractions during transport in the MBL was estimated. Three comparisons showed declining ozone levels; in the subtropical and tropical North Atlantic Ocean the loss of ozone was < 1.5 ppbv day−1. Back trajectories at Ushuaia were too inconsistent to allow for this determination. Comparisons between ship and station measurements showed that ozone behavior and large-scale (∼ 1000 km multi-day transport features were well retained during transport in the MBL.

  4. Picard iterations of boundary-layer equations. [in singular-perturbation analysis of flightpath optimization problems

    Science.gov (United States)

    Ardema, M. D.; Yang, L.

    1985-01-01

    A method of solving the boundary-layer equations that arise in singular-perturbation analysis of flightpath optimization problems is presented. The method is based on Picard iterations of the integrated form of the equations and does not require iteration to find unknown boundary conditions. As an example, the method is used to develop a solution algorithm for the zero-order boundary-layer equations of the aircraft minimum-time-to-climb problem.

  5. Simulation of High Re Boundary Layer Flows on Uniform Grids Using Immersed Boundaries with Vorticity Confinement

    Science.gov (United States)

    Chitta, Subhashini; Steinhoff, John

    2015-11-01

    This paper describes the use of Vorticity Confinement (VC) to efficiently treat complex blunt bodies with thin shed vortex sheets and attached boundary layers. Because these flows involve turbulence in the vortical regions, there is currently no ab initio method to treat them on current or foreseeable computers. In fact, in spite of years of turbulence modeling efforts (such as LES or RANS), serious flaws in aerodynamic design involving vortex shedding may still be left undetected until the expensive prototype or production stage. Our basic premise is that, for a class of real-world problems requiring simulating ensembles of flow conditions for overall accuracy, conventional turbulence models suffer cost constraints. For these reasons, VC is used to rapidly simulate many operating conditions, as is often done in expensive testing programs for flying prototypes, and in realistic simulations. To achieve dramatically lower computational cost, VC treats the entire flow in a uniform, coarse grid with solid surfaces ``immersed'' in the grid so that they can be quickly generated for many configurations with no requirement for adaptive or conforming fine grids. Also, the VC method has the efficiency of panel methods, but the generality and ease of use of Euler equation methods. We would like to thank Dr. Frank Caradonna for his suggestions and support.

  6. Slow Manifolds and Multiple Equilibria in Stratocumulus-Capped Boundary Layers

    Directory of Open Access Journals (Sweden)

    Junya Uchida

    2010-12-01

    Full Text Available In marine stratocumulus-capped boundary layers under strong inversions, the timescale for thermodynamic adjustment is roughly a day, much shorter than the multiday timescale for inversion height adjustment. Slow-manifold analysis is introduced to exploit this timescale separation when boundary layer air columns experience only slow changes in their boundary conditions. Its essence is that the thermodynamic structure of the boundary layer remains approximately slaved to its inversion height and the instantaneous boundary conditions; this slaved structure determines the entrainment rate and hence the slow evolution of the inversion height. Slow-manifold analysis is shown to apply to mixed-layer model and large-eddy simulations of an idealized nocturnal stratocumulus- capped boundary layer; simulations with different initial inversion heights collapse onto single relationships of cloud properties with inversion height. Depending on the initial inversion height, the simulations evolve toward a shallow thin-cloud boundary layer or a deep, well-mixed thick cloud boundary layer. In the large-eddy simulations, these evolutions occur on two separate slow manifolds (one of which becomes unstable if cloud droplet concentration is reduced. Applications to analysis of stratocumulus observations and to pockets of open cells and ship tracks are proposed.

  7. Dynamics and statics of interphase and domain boundaries at diffusionless phase transitions

    International Nuclear Information System (INIS)

    We consider the interface dynamics of diffusionless first-order phase transitions in the case of an arbitrary dimension. We examine the generalized dynamics of interphase boundaries in the presence of mechanical stress. The displacement patterns due to interphase and domain boundaries are calculated in the case of martensitic phase transitions

  8. Turbulent Suspension Mechanics in Sediment-Laden Boundary Layers

    Science.gov (United States)

    Kiger, K.

    2013-05-01

    Accurate prediction of benthic sediment transport is a challenging problem due the two-phase nature of the flow near the mobile bed, as well as the large difference in scales between the meso-scale flow and smaller-scale structures interacting with the sediment bed. Of particular importance is the parameterization of the physics at the bottom boundary. This requires estimation of key quantities such as effective bed stress and sediment flux based on the on the outer regional-scale velocity field. An appropriate turbulence/sediment parameterization is needed to specify the correct bottom momentum and sediment flux. Prior work has shown the shortcoming of standard models to properly predict such behavior, which is speculated to result from the dominant role played by large-scale coherent structures in the generation of the bed morphology, suspension of particulates, and important particle-fluid coupling effects. The goal of the current work is to elucidate such relationships through a combination of direct simulation and laboratory-scale experiment, the latter of which will be the primary focus of this paper. Specifically, two-phase PIV is used to provide a novel quantitative description of both phases, allowing for a detailed examination of the flow behavior and particle-turbulence coupling. Experiments were conducted in both a steady, fully-developed turbulent channel flow and an oscillatory boundary layer in order to examine the fundamental behaviour of the suspension and particle coupling mechanisms. The turbulent channel flow measurements indicated an increase in the effective wall stress due to the presence of the sediment on the order of 7%. The sediment suspension was directly correlated with the ejection dynamics of prototypical hairpin structures, but were found to settle back towards the bed in a manner uncorrelated with the fluid structure. In contrast, the measurements of the oscillatory flow reveal it to be dominated by alternating streaming motions and

  9. A Note on the bottom shear stress in oscillatory planetary boundary layer flow

    Directory of Open Access Journals (Sweden)

    Dag Myrhaug

    1988-07-01

    Full Text Available A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974 measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.

  10. A Note on the bottom shear stress in oscillatory planetary boundary layer flow

    OpenAIRE

    Dag Myrhaug

    1988-01-01

    A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974) measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.

  11. Boundary layer stability acts to ballast the mass of the Greenland Ice Sheet

    Science.gov (United States)

    Berkelhammer, M. B.; Noone, D. C.; Steen-Larsen, H. C.; O'Neill, M.; Raudzens Bailey, A.; Cox, C.; Schneider, D. P.

    2014-12-01

    The mass of the Greenland Ice Sheet has been reduced over recent decades as a consequence of warming, the impact of which is already detectable on global sea level. However, temperature projections suggest that at interior high-altitude sites on the ice it could be decades or more before warming forces these regions to transition from a dry to wet snow facies. Shifts in boundary layer dynamics, including atmosphere-ice sheet hydrological exchange and cloud radiative forcing could expedite or delay this transition. These processes are important with respect to future ice sheet stability, yet they remain difficult to constrain. Using continuous in situ measurements of vertical profiles of the isotopic composition of water vapor at Summit Camp, the highest observatory on the ice sheet, we document the presence of a hydrologic balance between surface sublimation and condensation fluxes. This exists because of a nearly persistent temperature inversion, which hinders the efficiency with which surface water vapor mixes into the free atmosphere. In the presence of a strong temperature inversion, fog and ice particles form near the ice-atmosphere interface from surface moisture fluxes. When this condensate precipitates on or settles to the surface, it ballasts the ice sheet's mass. A decade-long trend towards lower annual accumulation at Summit may therefore reflect continuous replacement of the near surface atmosphere due to reduced atmospheric stability. If this tendency toward destabilization continues, it could accelerate mass loss at interior sites on the ice sheet. The role of boundary layer stability in ice sheet hydrological budgets discussed here is applicable beyond the accumulation zone of the Greenland Ice Sheet.

  12. Total Solar Eclipses and Atmospheric Boundary Layer Response

    Science.gov (United States)

    Stoev, A.; Stoeva, P.; Kuzin, S.

    2012-11-01

    The effect of three total solar eclipses on meteorological parameters is discussed in the paper. Measurements were conducted at the village of Ravnets,General Toshevo municipality, Bulgaria, 1999,in Manavgat, near Antalya, Turkey, 2006 and in Tian Huang Ping, China, 2009. The observed decrease of the sky illumination (incoming solar radiation) during the eclipses was proportional to the percentage of solar coverage. The after eclipse sky illumination level is due to the effect of the natural change of the solar elevation angle. For the 1999 TSE it did not regain its pre eclipse value, it has exactly the same value for the 2006 TSE, and, It is three times larger than the pre eclipse value for the 2009 TSE. This fact can be easily explained by the Local Time of the maximum of the eclipses: LT 13:12, LT 12:58, and LT 09:34, respectively. Measurements showed significant changes in the surface air temperature. The minimum of the air temperature during the 2009 TSE (Tmin=4.5°C) was measured 6 min after the end of the total phase. This minimal temperature drop and larger time lag can be explained with the huge artificial lake near the place of observation, which minimizes the temperature response due to its larger heat capacity. During the 1999 TSE, minimal temperature (Tmin=6.4°C) is measured 7 min 30 s after the total phase, and for the 2006 TSE (Tmin=5°C) - 5 min. It is in accordance with the fact that the temperature minima at residential/commercial stations occurred in general, before the minima at stations in agricultural terrains. In 2006 we were at the yard of the hotel, and in 1999 in the countryside. The wind velocity drops during the total phase as a result of the cooling and stabilization of the atmospheric boundary layer. The wind direction during the total phase changes and the wind begins to blow in the same direction as the direction of motion of the lunar shadow on the earth. Cirrus and cirrostratus clouds were observed during the 2006 total solar

  13. Simultaneous profiling of the Arctic Atmospheric Boundary Layer

    Science.gov (United States)

    Mayer, S.; Jonassen, M.; Reuder, J.

    2009-09-01

    The structure of the Arctic atmospheric boundary layer (AABL) and the heat and moisture fluxes between relatively warm water and cold air above non-sea-ice-covered water (such as fjords, leads and polynyas) are of great importance for the sensitive Arctic climate system (e.g. Andreas and Cash, 1999). So far, such processes are not sufficiently resolved in numerical weather prediction (NWP) and climate models (e.g. Tjernström et al., 2005). Especially for regions with complex topography as the Svalbard mountains and fjords the state and diurnal evolution of the AABL is not well known yet. Knowledge can be gained by novel and flexible measurement techniques such as the use of an unmanned aerial vehicle (UAV). An UAV can perform vertical profiles as well as horizontal surveys of the mean meteorological parameters: temperature, relative humidity, pressure and wind. A corresponding UAV, called Small Unmanned Meteorological Observer (SUMO), has been developed at the Geophysical Institute at the University of Bergen in cooperation with Müller Engineering (www.pfump.org) and the Paparazzi Project (http://paparazzi.enac.fr). SUMO has been used under Arctic conditions at Longyear airport, Spitsbergen in March/April 2009. Besides vertical profiles up to 1500 m and horizontal surveys at flight levels of 100 and 200 m, SUMO could measure vertical profiles for the first time simultaneously in a horizontal distance of 1 km; one over the ice and snow-covered land surface and the other one above the open water of Isfjorden. This has been the first step of future multiple UAV operations in so called "swarms” or "flocks”. With this, corresponding measurements of the diurnal evolution of the AABL can be achieved with minimum technical efforts and costs. In addition, the Advanced Research Weather Forecasting model (AR-WRF version 3.1) has been run in high resolution (grid size: 1 km). First results of a sensitivity study where ABL schemes have been tested and compared with

  14. Assimilation of Thermodynamic and Dynamic Boundary Layer Profiler Data

    Science.gov (United States)

    Crowell, S.; Turner, D. D.; Otkin, J.

    2012-12-01

    In 2009, the National Research Council issued a report stating that a fundamental limitation to our understanding of mesoscale meteorological phenomena is the absence of adequate observations in the atmospheric boundary layer. In Otkin et al (2011) and Hartung et al (2011), an Observing Systems Simulation Experiment was described that concluded that the inclusion of thermodynamic retrievals from instruments like the Atmospheric Emitted Radiance Interferometer, together with wind observations from a Doppler lidar, could improve precipitation forecast skill scores using an ensemble Kalman filter (DART) together with the Weather Research and Forecasting Model (WRF). Here we discuss a second set of experiments in which the density of the proposed profiler network was doubled. Surprisingly, the results were only marginally better, and in some cases were degraded. This can be seen to be an effect of decreasing spread in the location of the strongest atmospheric gradients. An alternate set of experiments was performed with the 3D Variational framework, with the background error correlation length scales being tuned to match the EnKF localization as closely as possible. Interestingly, the 3DVar solutions exhibit qualitatively different responses to the assimilation of the observations than the EnKF solutions, with the placement and magnitude of the precipitation being improved, as determined by examining model precipitation on transects passing orthogonal to the front. A second case study will also be presented, in which we explore the relative importance of model error and observations for a springtime convective cased modeled on the May 24, 2011 tornado outbreak that passed through Texas, Oklahoma and Kansas. The sensitivity of convective processes to subgrid physics parameterizations can be seen to be a challenging problem for a data assimilation system, regardless of the quality of the observations being assimilated. Rather than using precipitation as the metric for

  15. Intermittent Behavior of the Separated Boundary Layer along the Suction Surface of a Low Pressure Turbine Blade under Periodic Unsteady Flow Conditions

    Science.gov (United States)

    Oeztuerk, B; Schobeiri, M. T.; Ashpis, David E.

    2005-01-01

    The paper experimentally and theoretically studies the effects of periodic unsteady wake flow and aerodynamic characteristics on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experiments were carried out at Reynolds number of 110,000 (based on suction surface length and exit velocity). For one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, intermittency behaviors were experimentally and theoretically investigated. The current investigation attempts to extend the intermittency unsteady boundary layer transition model developed in previously to the LPT cases, where separation occurs on the suction surface at a low Reynolds number. The results of the unsteady boundary layer measurements and the intermittency analysis were presented in the ensemble-averaged and contour plot forms. The analysis of the boundary layer experimental data with the flow separation, confirms the universal character of the relative intermittency function which is described by a Gausssian function.

  16. Impacts of sea spray on the boundary layer structure of Typhoon Imbudo

    Institute of Scientific and Technical Information of China (English)

    TANG Jie; LI Weibiao; CHEN Shumin; WANG Lei

    2013-01-01

    High winds in a typhoon over the ocean can produce substantial amounts of spray in the lower part of the atmospheric boundary layer, which can modify the transfer of momentum, heat, and moisture across the air-sea interface. However, the consequent effects on the boundary layer structure and the evolution of the typhoon are largely unknown. The focus of this paper is on the role of sea spray on the storm intensity and the structure of the atmospheric boundary layer. The case study is Typhoon Imbudo in July 2003. The results show that sea spray tends to intensify storms by increasing the sea surface heat fluxes. Moreover, the effects of sea spray are mainly felt in boundary layer. Spray evaporation causes the atmospheric boundary layer to experience cooling and moistening. Sea spray can cause significant effects on the structure of boundary layer. The boundary-layer height over the eyewall area east to the center of Typhoon Imbudo was increased with a maximum up to about 550 m due to sea spray, which is closely related with the enhancements of the heat fluxes, upward motions, and horizontal winds in this region due to sea spray.

  17. Parameterization of Land Surface Processes to Study Boundary Layer Characteristics over a Semiarid Region in Northwest India.

    Science.gov (United States)

    Satyanarayana, A. N. V.; Lykossov, V. N.; Mohanty, U. C.; Machul'Skaya, E. E.

    2003-04-01

    The atmospheric boundary layer and land surface processes play a crucial role and affect large-scale phenomena such as monsoons. A comprehensive soil-vegetation parameterization scheme has been developed to understand the complex interaction of the transfer processes, such as heat and moisture within the atmospheric surface layer and the active land layer. In this scheme, attention is given to the accurate representation of soil heat and moisture by considering all three states of water and their phase transitions. This scheme is incorporated in a one-dimensional multilevel boundary layer model for accurate representation of energy exchange processes to study the boundary layer characteristics. Numerical experiments are carried out with this model using special datasets obtained from the Land Surface Processes Experiment (LASPEX-97) at Anand (22.4°N, 72.6°E), a semiarid region of the state of Gujarat in northwest India. For this study, a dry simulation in February 1997 and a wet situation in July 1997 are considered. The model-simulated temporal variation of the fluxes of sensible heat, latent heat, and net radiation and soil temperatures are compared with the available observations. The results suggest that this model is suitable for better representation of land surface processes and the PBL in large-scale atmospheric models.

  18. Process analysis of characteristics of the boundary layer during a heavy haze pollution episode in an inland megacity, China.

    Science.gov (United States)

    Wang, Shan; Liao, Tingting; Wang, Lili; Sun, Yang

    2016-02-01

    Ground observation data from 8 meteorological stations in Xi'an, air mass concentration data from 13 environmental quality monitoring sites in Xi'an, as well as radiosonde observation and wind profile radar data, were used in this study. Thereby, the process, causes and boundary layer meteorological characteristics of a heavy haze episode occurring from 16 to 25 December 2013 in Xi'an were analyzed. Principal component analysis showed that this haze pollution was mainly caused by the high-intensity emission and formation of gaseous pollutants (NO2, CO and SO2) and atmospheric particles (PM2.5 (fine particles) and PM10 (respirable suspended particle). The second cause was the relative humidity and continuous low temperature. The third cause was the allocation of the surface pressure field. The presence of a near-surface temperature inversion at the boundary layer formed favorable stratification conditions for the formation and maintenance of heavy haze pollution. The persistent thick haze layer weakened the solar radiation. Meanwhile, a warming effect in the urban canopy layer and in the transition zone from the urban friction sublayer to the urban canopy was indicated. All these conditions facilitated the maintenance and reinforcement of temperature inversion. The stable atmospheric stratification finally acted on the wind field in the boundary layer, and further weakened the exchange capacity of vertical turbulence. The superposition of a wind field with the horizontal gentle wind induced the typical air stagnation and finally caused the deterioration of air quality during this haze event. PMID:26969553

  19. Fuel decomposition and boundary-layer combustion processes of hybrid rocket motors

    Science.gov (United States)

    Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.

    1995-01-01

    Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with GOX under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from +/-20% of the localized mean pressure to an acceptable range of +/-1.5% Embedded fine-wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading-edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse-echo techniques were used to determine the instantaneous web thickness burned and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented.

  20. PASSIVE CONTROL OF BOUNDARY LAYER TRANSITION AND SEPARATION

    Czech Academy of Sciences Publication Activity Database

    Popelka, Lukáš; Matějka, M.; Šimurda, David; Součková, Natálie

    Vol. 1. Liberec: Technical University of Liberec, 2010 - (Vít, T.; Dančová, P.), s. 534-544 ISBN 978-80-7372-670-6. [International Conference Experimental Fluid Mechanics 2010. Liberec (CZ), 24.11.2010-26.11.2010] R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR(CZ) IAA200760614; GA ČR GA103/09/0977; GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : passive flow control * airfoils and wings * CFD and experiment synthesis Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts

  1. Multilevel Model of Planetary Boundary-layer Suitable for use with Mesoscale Dynamic Models

    DEFF Research Database (Denmark)

    Busch, N. E.; Chang, S. W.; Anthes, R. A.

    1976-01-01

    In this paper a simple model of the planetary boundary layer (PBL) is proposed. The surface layer is modeled according to established similarity theory. Above the surface layer a prognostic equation for the mixing length is introduced. The time-dependent mixing length is a function of the PBL...

  2. Magnetohydrodynamic Boundary Layer Slip Flow and Heat Transfer of Power Law Fluid over a Flat Plate

    Directory of Open Access Journals (Sweden)

    Jacob Hirschhorn

    2016-01-01

    Full Text Available In this paper, we consider the magnetohydrodynamic (MHD boundary layer flow and heat transfer of power law fluid over a flat plate with slip boundary conditions. We use a similarity transformation to convert the governing nonlinear partial differential equations into a system of ordinary differential equations and solve the resulting system numerically using MATLAB’s boundary value solver, bvp4c, and the shooting method. We present velocity and temperature profiles within the boundary layer and demonstrate the effect of changing the magnetic parameter, Prandtl number, and slip parameters.

  3. 3D microstructure modelling of coating layers including grain boundaries

    OpenAIRE

    Yashchuk, Ivan

    2016-01-01

    Nowadays, coatings have a significant role in increasing the lifetime of manufactured products. A coating layer applied to the surface of a product increases its corrosion and wear resistance. As with any other materials, coatings are subjected to damage phenomena. The damage of the coating layer usually happens because of delamination and crack propagation inside the coating layer. In order to know how to improve the coating resistance the fracture behavior is studied using finite element an...

  4. A model for turbulent dissipation rate in a constant pressure boundary layer

    Indian Academy of Sciences (India)

    J DEY; P PHANI KUMAR

    2016-04-01

    Estimation of the turbulent dissipation rate in a boundary layer is a very involved process.Experimental determination of either the dissipation rate or the Taylor microscale, even in isotropic turbulence,which may occur in a portion of the turbulent boundary layer, is known to be a difficult task. For constant pressure boundary layers, a model for the turbulent dissipation rate is proposed here in terms of the local mean flow quantities. Comparable agreement between the estimated Taylor microscale and Kolmogorov length scale with other data in the logarithmic region suggests usefulness of this model in obtaining these quantitiesexperimentally

  5. Evaluation of WRF Boundary Layer Profiles against Radiosoundings in Northern Greenland in winter conditions

    DEFF Research Database (Denmark)

    Kirova, Hristina; Batchvarova, Ekaterina; Gryning, Sven-Erik;

    2014-01-01

    The boundary-layer processes in High Arctic area are studied based on consecutive radiosoundings and numerical simulations with Weather Research and Forecasting (WRF) model version 3.3.1 during a late winter period. The measurements consist of about 30 radiosondings performed every 12 hours in...... WRF were performed using Mellor – Yamada – Janjic scheme for planetary boundary processes with corresponding Monin – Obukhov (Janjic Eta) the surface layer scheme and the Noah land surface model. The variability of the correlation coefficient with height for all studied meteorological fields...... - 500 m. The modelled boundary-layer height is compared to its expert evaluation from measurements....

  6. To definition of theory of boundary layer connected with motion on free liquid surface

    International Nuclear Information System (INIS)

    A modified theory of a boundary layer associated with a periodic capillary-gravitational motion on the free surface of an infinitely deep viscous liquid is proposed. The flow in the boundary layer is described in terms of a simplified (compared with the complete statement) model problem a solution to which correctly reflects the main features of an exact asymptotic solution: the rapid decay of the flow eddy part with depth of the liquid and insignificance of some terms appearing in the complete statement. The boundary layer thickness at which the discrepancy between the exact asymptotic solution and model solution is within a given margin is estimated

  7. A Note Concerning the Turbulent Boundary Layer Drag at Large Reynolds Numbers

    OpenAIRE

    Barenblatt, G.I.; Chorin, A.J.; Prostokishin, V. M.

    2000-01-01

    A correlation is obtained for the drag coefficient $c '_f$ of the turbulent boundary layer as a function of the effective boundary layer Reynolds number $Re$ that we previously introduced. A comparison is performed also with another correlation for the drag coefficient as a function of the traditional Reynolds number $Re_{\\th}$, based on the momentum thickness of the boundary layer proposed recently by R.D.Watson, R.M.Hall and J.B.Anders (NASA Langley Research Center) on the basis of differen...

  8. Integral method for the calculation of three-dimensional, laminar and turbulent boundary layers

    Science.gov (United States)

    Stock, H. W.

    1978-01-01

    The method for turbulent flows is a further development of an existing method; profile families with two parameters and a lag entrainment method replace the simple entrainment method and power profiles with one parameter. The method for laminar flows is a new development. Moment of momentum equations were used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings were calculated. The influence of wing tapering on the boundary layer development was shown. The turbulent boundary layer for a revolution ellipsoid is calculated for 0 deg and 10 deg incidence angles.

  9. Stabilization of the hypersonic boundary layer by finite-amplitude streaks

    Science.gov (United States)

    Ren, Jie; Fu, Song; Hanifi, Ardeshir

    2016-02-01

    Stabilization of two-dimensional disturbances in hypersonic boundary layer flows by finite-amplitude streaks is investigated using nonlinear parabolized stability equations. The boundary-layer flows at Mach numbers 4.5 and 6.0 are studied in which both first and second modes are supported. The streaks considered here are driven either by the so-called optimal perturbations (Klebanoff-type) or the centrifugal instability (Görtler-type). When the streak amplitude is in an appropriate range, i.e., large enough to modulate the laminar boundary layer but low enough to not trigger secondary instability, both first and second modes can effectively be suppressed.

  10. Boundary-layer effects in composite laminates: Free-edge stress singularities, part 6

    Science.gov (United States)

    Wanag, S. S.; Choi, I.

    1981-01-01

    A rigorous mathematical model was obtained for the boundary-layer free-edge stress singularity in angleplied and crossplied fiber composite laminates. The solution was obtained using a method consisting of complex-variable stress function potentials and eigenfunction expansions. The required order of the boundary-layer stress singularity is determined by solving the transcendental characteristic equation obtained from the homogeneous solution of the partial differential equations. Numerical results obtained show that the boundary-layer stress singularity depends only upon material elastic constants and fiber orientation of the adjacent plies. For angleplied and crossplied laminates the order of the singularity is weak in general.

  11. New formulations on the finite element method for boundary value problems with internal/external boundary layers

    International Nuclear Information System (INIS)

    New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)

  12. Assessment of boundary layer profiling formulas using tower, sodar and balloon data

    Energy Technology Data Exchange (ETDEWEB)

    Paine, R.J. [ENSR Consulting and Engineering, Inc., Acton, MA (United States); Kendall, S.B. [Phelps Dodge Corp., Phoenix, AZ (United States)

    1994-12-31

    The accuracy of an air quality dispersion model is largely dependent upon the availability of representative meteorological data for the simulation of plume rise, transport, and dispersion. In many cases where tall stacks and/or buoyant plumes are involved, the available meteorological measurements do not extend to plume height. Air quality models contend with these situations by either assuming no change of meteorological variables with elevation or by applying a profiling relationship based upon theoretical or empirical relationships. The latter treatment is employed in recently-developed models such as CTDMPLUS, and HPDM, and OML. In the well-mixed convective boundary layer, meteorological variables such as wind direction, wind speed, and turbulence do not vary substantially above the surface layer (about 0.1 z{sub i}, the mixed-layer height). Above the surface layer, behavior on an hourly average basis is fairly well parameterized by boundary-layer formulations. However, models are sensitive to the height of the convective boundary layer, z{sub i}, which affects the magnitude of the convective velocity scale, w., and is important for simulating plume trapping and plume penetration into the stable layer aloft. In the stable boundary layer, plumes are often released at heights above the stable boundary layer, the height of which is often hard to define. Models are sensitive to the manner in which wind direction, wind speed, temperature and turbulence are profiled with height in stable conditions.

  13. Decoupled phase transitions and grain-boundary melting in supported phospholipid bilayers

    DEFF Research Database (Denmark)

    Keller, D.; Larsen, N.B.; Møller, I.M.;

    2005-01-01

    and the mica support. The transition temperature of the proximal monolayer is increased and this transition occurs over a narrower temperature range. Both transitions occur via grain-boundary melting and the variation of the width of the interfacial zone with temperature is consistent with mean-field theory....

  14. Velocity Spectra in the Unstable Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Højstrup, Jørgen

    1982-01-01

    Models for velocity spectra of all three components in the lower half of the unstable PBL are presented. The model spectra are written as a sum of two parts, nS(n) = A(fi, z/zi)w*2 + B(f, z/zi)u*02, a mixed layer part with a stability dependence, and a surface layer part without stability...

  15. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A direct numerical simulation of the shock/turbulent boundary layer interaction flow in a supersonic 24-degree compression ramp is conducted with the free stream Mach number 2.9.The blow-and-suction disturbance in the upstream wall boundary is used to trigger the transition.Both the mean wall pressure and the velocity profiles agree with those of the experimental data,which validates the simulation.The turbulent kinetic energy budget in the separation region is analyzed.Results show that the turbulent production term increases fast in the separation region,while the turbulent dissipation term reaches its peak in the near-wall region.The turbulent transport term contributes to the balance of the turbulent conduction and turbulent dissipation.Based on the analysis of instantaneous pressure in the downstream region of the mean shock and that in the separation bubble,the authors suggest that the low frequency oscillation of the shock is not caused by the upstream turbulent disturbance,but rather the instability of separation bubble.

  16. The Small Unmanned Meteorological Observer SUMO: Recent developments and applications of a micro-UAS for atmospheric boundary layer research

    Science.gov (United States)

    Reuder, Joachim; Jonassen, Marius; Ólafsson, Haraldur

    2012-10-01

    During the last 5 years, the Small Unmanned Meteorological Observer SUMO has been developed as a flexible tool for atmospheric boundary layer (ABL) research to be operated as sounding system for the lowest 4 km of the atmosphere. Recently two main technical improvements have been accomplished. The integration of an inertial measurement unit (IMU) into the Paparazzi autopilot system has expanded the environmental conditions for SUMO operation. The implementation of a 5-hole probe for determining the 3D flow vector with 100 Hz resolution and a faster temperature sensor has enhanced the measurement capabilities. Results from two recent field campaigns are presented. During the first one, in Denmark, the potential of the system to study the effects of wind turbines on ABL turbulence was shown. During the second one, the BLLAST field campaign at the foothills of the Pyrenees, SUMO data proved to be highly valuable for studying the processes of the afternoon transition of the convective boundary layer.

  17. Marine boundary layer cloud regimes and POC formation in an LES coupled to a bulk aerosol scheme

    Directory of Open Access Journals (Sweden)

    A. H. Berner

    2013-07-01

    Full Text Available A large-eddy simulation (LES coupled to a new bulk aerosol scheme is used to study long-lived regimes of aerosol-boundary layer cloud-precipitation interaction and the development of pockets of open cells (POCs in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single log-normal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by cloud and rain. The LES with the aerosol scheme is applied to a range of steadily-forced simulations idealized from a well-observed POC case. The long-term system evolution is explored with extended two-dimensional simulations of up to 20 days, mostly with diurnally-averaged insolation. One three-dimensional two-day simulation confirms the initial development of the corresponding two-dimensional case. With weak mean subsidence, an initially aerosol-rich mixed layer deepens, the capping stratocumulus cloud slowly thickens and increasingly depletes aerosol via precipitation accretion, then the boundary layer transitions within a few hours into an open-cell regime with scattered precipitating cumuli, in which entrainment is much weaker. The inversion slowly collapses for several days until the cumulus clouds are too shallow to efficiently precipitate. Inversion cloud then reforms and radiatively drives renewed entrainment, allowing the boundary layer to deepen and become more aerosol-rich, until the stratocumulus layer thickens enough to undergo another cycle of open-cell formation. If mean subsidence is stronger, the stratocumulus never thickens enough to initiate drizzle and settles into a steady state. With lower initial aerosol concentrations, this system quickly transitions into open cells, collapses, and redevelops into a different steady state with a shallow, optically thin cloud layer. In these steady states, interstitial scavenging by cloud droplets is the main sink of

  18. Marine boundary-layer height estimated from the HIRLAM model

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.

    2002-01-01

    -number estimates based on output from the operational numerical weather prediction model HIRLAM (a version of SMHI with a grid resolution of 22.5 km x 22.5 km). For southwesterly winds it was found that a relatively large island (Bornholm) lying 20 km upwind of the measuring site influences the boundary...

  19. Review of magnetospheric boundary layer phenomena and relations to current theories

    International Nuclear Information System (INIS)

    Recent observations on the magnetopause and boundary layer are reviewed. A region with magnetosheath-like plasma is found in an entry layer inside the magnetopause, at least partly on closed field lines. There is no enhanced flow near the magnetopause, in contrast to what would be expected on the basis of reconnection theories. Inside the magnetopause there is a boundary layer, which must be polarized. Parallel electric fields and currents are involved, thus invalidating the mapping of the electric field along magnetic field lines. Access to the entry layer must be impulsive or diffusive in nature. (author)

  20. An investigation of the effects of the propeller slipstream of a laminar wing boundary layer

    Science.gov (United States)

    Howard, R. M.; Miley, S. J.; Holmes, B. J.

    1985-01-01

    A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.

  1. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    Science.gov (United States)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  2. Marine boundary layer and turbulent fluxes over the Baltic Sea: Measurements and modelling

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.

    2002-01-01

    Two weeks of measurements of the boundary-layer height over a small island (Christianso) in the Baltic Sea are discussed. The meteorological conditions are characterised by positive heat flux over the sea. The boundary-layer height was simulated with two models, a simple applied high-resolution (2...... km x 2 km) model, and the operational numerical weather prediction model HIRLAM (grid resolution of 22.5 km x 22.5 km). For southwesterly winds it was found that a relatively large island (Bornholm) lying 20-km upwind of the measuring site influences the boundary-layer height. In this situation the...... high-resolution simple applied model reproduces the characteristics of the boundary-layer height over the measuring site. Richardson-number based methods using data from simulations with the HIRLAM model fail, most likely because the island and the water fetch to the measuring site are about the size...

  3. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    The behavior of a two-phase gas bubble-liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 450 to 1350 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined. The predicted boundary layer thickness is found to be in good agreement with the experimental results. The calculated axial liquid velocity and the void fraction in the two-phase region are also presented along with the observed flow behavior

  4. Space and Astrophysical Plasmas : Sun–Earth connection: Boundary layer waves and auroras

    Indian Academy of Sciences (India)

    G S Lakhina; B T Tsurutani; J K Arballo; C Galvan

    2000-11-01

    Boundary layers are the sites where energy and momentum are exchanged between two distinct plasmas. Boundary layers occurring in space plasmas can support a wide spectrum of plasma waves spanning a frequency range of a few mHz to 100 kHz and beyond. The main characteristics of the broadband plasma waves (with frequencies > 1 Hz) observed in the magnetopause, polar cap, and plasma sheet boundary layers are described. The rapid pitch angle scattering of energetic particles via cyclotron resonant interactions with the waves can provide sufficient precipitated energy flux to the ionosphere to create the diffused auroral oval. The broadband plasma waves may also play an important role in the processes of local heating/acceleration of the boundary layer plasma.

  5. On similarity and pseudo-similarity solutions of Falkner-Skan boundary layers

    CERN Document Server

    Guedda, Mohamed

    2008-01-01

    The present work deals with the two-dimensional incompressible,laminar, steady-state boundary layer equations. First, we determinea family of velocity distributions outside the boundary layer suchthat these problems may have similarity solutions. Then, we examenin detail new exact solutions, called Pseudo--similarity, where the external velocity varies inversely-linear with the distance along the surface $ (U_e(x) = U_\\infty x^{-1}). The present work deals with the two-dimensional incompressible, laminar, steady-state boundary layer equations. First, we determine a family of velocity distributions outside the boundary layer such that these problems may have similarity solutions. Then, we examenin detail new exact solutions. The analysis shows that solutions exist only for a lateral suction. For specified conditions, we establish the existence of an infinite number of solutions, including monotonic solutions and solutions which oscillate an infinite number of times and tend to a certain limit. The properties o...

  6. The impact of horizontal model grid resolution on the boundary layer structure over an idealized valley

    Science.gov (United States)

    Wagner, Johannes; Gohm, Alexander; Rotach, Mathias; Leukauf, Daniel; Posch, Christian

    2014-05-01

    The role of horizontal model grid resolution on the development of the daytime boundary layer over mountainous terrain is studied. A simple idealized valley topography with a cross-valley width of 20~km, a valley depth of 1.5~km and a constant surface heat flux forcing is used to generate upslope flows in a warming valley boundary layer. The goal of this study is to investigate differences in the upslope flow and boundary layer structure of the valley when its topography is either fully resolved, smoothed or not resolved by the numerical model. This is done by performing both large-eddy (LES) and kilometer-scale simulations with mesh sizes of 50, 1000, 2000, 4000, 5000 and 10000~m. In LES mode a valley inversion layer develops, which separates two vertically stacked circulation cells in an upper and lower boundary layer. These structures weaken with decreasing horizontal model grid resolution and change to a convective boundary layer similar to the one over an elevated flat plain when the valley is no longer resolved. Mean profiles of the LES run, which are obtained by horizontal averaging over the valley show a three-layer thermal structure and a secondary heat flux maximum at ridge height. Strong smoothing of the valley topography prevents the development of a valley inversion layer with stacked circulation cells and leads to higher valley temperatures due to smaller valley volumes. This investigation shows that a parameterization is needed in coarse resolution models to capture exchange processes over mountainous terrain.

  7. Convection and Chemistry in the Atmospheric Boundary Layer

    OpenAIRE

    A. C. Petersen

    1999-01-01

    The earth’s troposphere is the lowest layer of the atmosphere and has a thickness of about 10 km. It is the layer that contains most of the mass (80%) of the atmosphere. All weather phenomena that we experience have their origin in the troposphere. It is the stage for some well-known environmental problems: climate change, ozone smog, and acidification. These problems are related to the trace amount of gases that are emitted into the troposphere from anthropogenic sources. Alth...

  8. Numerical simulations and linear stability analysis of a boundary layer developed on wavy surfaces

    Science.gov (United States)

    Siconolfi, Lorenzo; Camarri, Simone; Fransson, Jens H. M.

    2015-11-01

    The development of passive methods leading to a laminar to turbulent transition delay in a boundary layer (BL) is a topic of great interest both for applications and academic research. In literature it has been shown that a proper and stable spanwise velocity modulation can reduce the growth rate of Tollmien-Schlichting (TS) waves and delay transition. In this study, we investigate numerically the possibility of obtaining a stabilizing effect of the TS waves through the use of a spanwise sinusoidal modulation of a flat plate. This type of control has been already successfully investigated experimentally. An extensive set of direct numerical simulations is carried out to study the evolution of a BL flow developed on wavy surfaces with different geometric characteristics, and the results will be presented here. Moreover, since this configuration is characterized by a slowly-varying flow field in streamwise direction, a local stability analysis is applied to define the neutral stability curves for the BL flow controlled by this type of wall modifications. These results give the possibility of investigating this control strategy and understanding the effect of the free parameters on the stabilization mechanism.

  9. Boundary-layer stability analysis of Langley Research Center 8-foot LFC experimental data

    Science.gov (United States)

    Berry, Scott; Dagenhart, J. Ray; Brooks, Cuyler W., Jr.; Harris, Charles D.

    1987-01-01

    An analytical study of linear-amplifying instabilities of a laminar boundary layer as found in the experimental data of the LaRC/8-foot laminar-flow control (LFC) experiment was completed and the results are presented. The LFC airfoil used for this experiment was a swept, supercritical design which removed suction air through spanwise slots. The amplification of small disturbances by linear processes on a swept surface such as this can be due to either Tollmien-Schlichting (TS) and/or crossflow (CF) mechanisms. This study consists of the examination of these two instabilities by both the commonly used incompressible (SALLY and MARIA) analysis and the more involved compressible (COSAL) analysis. A wide range of experimental test conditions with variations in Mach number, Reynolds number, and suction distributions were available for this study. Experimentally determined transition locations were found from thin-film techniques and were used to correlate the n-factors at transition for the range of test cases.

  10. A simple method to determine evaporation duct height in the sea surface boundary layer

    Science.gov (United States)

    Musson-Genon, Luc; Gauthier, Sylvie; Bruth, Eric

    1992-09-01

    A formulation to determine the evaporation duct height in the sea surface boundary layer is presented. This formulation is based upon the theory of similarity of Monin Obukhov by using analytical solutions currently used in the field of numerical weather prediction. The proposed solution is simple, coherent with the surface boundary layer parameterization used in the Meteo France and European Centre for Medium-Range Weather Forecasts weather prediction models and gives good results when compared to more traditional methods.

  11. Enhanced air pollution via aerosol-boundary layer feedback in China

    OpenAIRE

    Petäjä, T.; Järvi, L.; V.-M. Kerminen; Ding, A. J.; J. N. Sun; Nie, W.; Kujansuu, J.; A. Virkkula; Yang, X.; C. B. Fu; S. Zilitinkevich; Kulmala, M.

    2016-01-01

    Severe air pollution episodes have been frequent in China during the recent years. While high emissions are the primary reason for increasing pollutant concentrations, the ultimate cause for the most severe pollution episodes has remained unclear. Here we show that a high concentration of particulate matter (PM) will enhance the stability of an urban boundary layer, which in turn decreases the boundary layer height and consequently cause further increases in PM concentrations. We estimate the...

  12. UK-ADMS - a new approach to modelling dispersion in the earth's atmospheric boundary layer

    International Nuclear Information System (INIS)

    The UK Atmospheric Dispersion Modelling System is described in considerable detail. The principle modules are dealt with. A key to the methodology is that vertical profiles of mean velocity, temperature and turbulence in the boundary layer depend on the relative values of the height above the ground, the height of the boundary layer, and a length scale determined by the friction velocity and the heat flux and air temperature at the surface. The models can be used at any location. (AB) (15 refs.)

  13. Boundary Layer Measurements of the NACA0015 and Implications for Noise Modeling

    OpenAIRE

    Bertagnolio, Franck

    2011-01-01

    A NACA0015 airfoil section instrumented with an array of high frequency microphones flush-mounted beneath its surface was measured in the wind tunnel at LM Wind Power in Lunderskov. Various inflow speeds and angles of attack were investigated. In addition, a hot-wire device system was used to measure the velocity profiles and turbulence characteristics in the boundary layer near the trailing edge of the airfoil. The measured boundary layer data are presented in this report and compared with C...

  14. Experiments on the wave train development in 3D boundary layer at Mach 2

    International Nuclear Information System (INIS)

    Stability experiments of controlled disturbances in 3D supersonic boundary layer on the thin swept wing at low unit Reynolds numbers are considered in the paper. The results of the linear evolution of stationary and traveling disturbances in supersonic boundary layer on swept wing at controlled conditions are presented. Wave characteristics of traveling disturbances are obtained. Stabilizing effect on the wave train evolution due to periodic micro roughnesses is demonstrated.

  15. DNS and the theory of receptivity of a supersonic boundary layer to free-stream disturbances

    International Nuclear Information System (INIS)

    Direct numerical simulation (DNS) of receptivity of a boundary layer over flat plate is carried out. The free stream Mach number is equal to 6. The following two-dimensional disturbances are introduced into the free-stream flow: fast and slow acoustic waves, temperature spottiness. A theoretical model describing the excitation of unstable waves in the boundary layer is developed using the biorthogonal eigenfunction decomposition method. The DNS results agree with the theoretical predictions.

  16. Turbulent Transport of 222-Rn and its Short-lived Daughters in Convective Boundary Layers

    OpenAIRE

    VINUESA JEAN; GALMARINI STEFANO

    2006-01-01

    222Rn is a natural radioactive compound with a half-life of 3.8 days. Because of its noble gas nature, it is a suitable tracer in studies of atmospheric boundary layers. Ground-based measurements and vertical distributions of 222Rn and its daughters have been extensively studied in the past, e.g., to characterize the turbulent properties of the atmospheric boundary layer, to perform regional and global circulation model benchmarking and to estimate regional surface flu...

  17. Development of a laminar boundary layer model for curved wall jets

    OpenAIRE

    Valeriu DRĂGAN

    2013-01-01

    The paper addresses the issue of thin jets subjected to the Coandă effect and in particular the boundary layer modeling. An existing semi-empirical Coandă effect mathematical model is modified, with a more complex boundary layer model, in order to allow the estimative calculation of the detachment point and of other parameters such as friction coefficients, wall shear stress and the momentum and displacement integral thicknesses. The method used is analytical, based on the Rodman-Wood-Roberts...

  18. Distributed Propulsion featuring Boundary Layer Ingestion Engines for the Blended Wing Body Subsonic Transport

    OpenAIRE

    Kok, H.J.M.; Voskuijl, M.; Van Tooren, M.J.L.

    2010-01-01

    The blended wing body aircraft is one of the promising contenders for the next generation large transport aircraft. This aircraft is particularly suitable for the use of boundary layer ingestion engines. Results published in literature suggest that it might be beneficial to have a large number of these engines (distributed propulsion). A conceptual design study is therefore performed to determine the potential benefits of boundary layer ingestion engines for a conventional number of engines i...

  19. On similarity and pseudo-similarity solutions of Falkner-Skan boundary layers

    OpenAIRE

    Guedda, Mohamed; Hammouch, Zakia

    2006-01-01

    The present work deals with the two-dimensional incompressible,laminar, steady-state boundary layer equations. First, we determinea family of velocity distributions outside the boundary layer suchthat these problems may have similarity solutions. Then, we examenin detail new exact solutions, called Pseudo--similarity, where the external velocity varies inversely-linear with the distance along the surface $ (U_e(x) = U_\\infty x^{-1}). The present work deals with the two-dimensional incompressi...

  20. Modeling the diurnal cycle of conserved and reactive species in the convective boundary layer

    Directory of Open Access Journals (Sweden)

    D. H. Lenschow

    2015-10-01

    Full Text Available We have developed a one-dimensional second-order closure numerical model to study the vertical turbulent transport of trace reactive species in the convective (daytime planetary boundary layer (CBL, which we call the Second-Order Model for Conserved and Reactive Unsteady Scalars (SOMCRUS. The temporal variation of the CBL depth is calculated using a simple mixed-layer model with a constant entrainment coefficient and zero-order discontinuity at the CBL top. We then calculate time-varying continuous profiles of mean concentrations and vertical turbulent fluxes, variances, and covariances of both conserved and chemically-reactive scalars in a diurnally-varying CBL. The set of reactive species is the O3–NO–NO2 triad. The results for both conserved and reactive species are compared with large-eddy simulations (LES for the same free-convection case using the same boundary and initial conditions. For the conserved species, we compare three cases with different combinations of surface fluxes, and CBL and free-troposphere concentrations. We find good agreement of SOMCRUS with LES for the mean concentrations and fluxes of both conserved and reactive species except near the CBL top, where SOMCRUS predicts a somewhat shallower depth, and has sharp transitions in both the mean and turbulence variables, in contrast to more smeared out variations in the LES due to horizontal averaging. Furthermore, SOMCRUS generally underestimates the variances and species-species covariances. SOMCRUS predicts temperature-species covariances similar to LES near the surface, but much smaller magnitude peak values near the CBL top, and a change in sign of the covariances very near the CBL top, while the LES predicts a change in sign of the covariances in the lower half of the CBL. SOMCRUS is also able to estimate the intensity of segregation (the ratio of the species-species covariance to the product of their means, which can alter the rates of second-order chemical