WorldWideScience

Sample records for boundary layer thickness

  1. Minimum Wind Dynamic Soaring Trajectories under Boundary Layer Thickness Limits

    Science.gov (United States)

    Bousquet, Gabriel; Triantafyllou, Michael; Slotine, Jean-Jacques

    2015-11-01

    Dynamic soaring is the flight technique where a glider, either avian or manmade, extracts its propulsive energy from the non-uniformity of horizontal winds. Albatrosses have been recorded to fly an impressive 5000 km/week at no energy cost of their own. In the sharp boundary layer limit, we show that the popular image, where the glider travels in a succession of half turns, is suboptimal for travel speed, airspeed, and soaring ability. Instead, we show that the strategy that maximizes the three criteria simultaneously is a succession of infinitely small arc-circles connecting transitions between the calm and windy layers. The model is consistent with the recordings of albatross flight patterns. This lowers the required wind speed for dynamic soaring by over 50% compared to previous beliefs. In the thick boundary layer limit, energetic considerations allow us to predict a minimum wind gradient necessary for sustained soaring consistent with numerical models.

  2. Effect of Boundary Layer Thickness on Secondary Structures in a Short Inlet Curved Duct

    Science.gov (United States)

    Gartner, Jeremy; Amitay, Michael

    2013-11-01

    The flow pattern in short ducts with aggressive curvature can lead in some cases to an asymmetric flow field. In the current work, a two dimensional honeycomb mesh was added upstream of the curved duct to create a pressure drop across it, and therefore an increased velocity deficit in the boundary layer profile. This velocity deficit led to a stronger streamwise separation, overcoming the flow mechanisms that result in the asymmetric flowfield. Experiments were conducted at M = 0.2, 0.44 and 0.58 in an expanding aggressive duct with square cross section with an area ratio of 1.27. Pressure data, together with Particle Image Velocimetry (PIV), verify the symmetry of the incoming flow field. Steady pressure distributions along the lower surface of the curved duct were obtained, as well as steady and time dependent total pressure distributions at the aerodynamic interface plane, enabling the analysis of the flow characteristics throughout the duct length. The effect of inserting a honeycomb was tested by increasing its height from 0 to 2.2 times the baseline flow boundary layer thickness upstream of the curve. Crosstream flow symmetry was achieved for specific geometrical configurations with a negligible decrease in the pressure recovery.

  3. Development of the Convective Boundary Layer Capping with a Thick Neutral Layer in Badanjilin: Observations and Simulations

    Institute of Scientific and Technical Information of China (English)

    HAN Bo; L(U) Shihua; AO Yinhuan

    2012-01-01

    In this study,the development of a convective boundary layer (CBL) in the Badanjilin region was investigated by comparing the observation data of two cases.A deep neutral layer capped a CBL that occurred on 30 August 2009.This case was divided into five sublayers from the surface to higher atmospheric elevations:surface layer,mixed layer,inversion layer,neutral layer,and sub-inversion layer.The development process of the CBL was divided into three stages:S1,S2,and S3.This case was quite different from the development of the three-layer CBL observed on 31 August 2009 because the mixed layer of the five-layer CBL (CBL5) eroded the neutral layer during S2.The specific initial structure of the CBL5 was correlated to the synoptic background of atmosphere during nighttime.The three-stage development process of the CBL5 was confirmed by six simulations using National Center for Atmospheric Research (USA) large-eddy simulation (NCAR-LES),and some of its characteristics are presented in detail.

  4. High Resolution 2-D Fluoresd3nce Imaging of the Mass Boundary Layer Thickness at Free Water Surfaces

    Science.gov (United States)

    Kräuter, C.; Trofimova, D.; Kiefhaber, D.; Krah, N.; Jähne, B.

    2014-03-01

    A novel 2-D fluorescence imaging technique has been developed to visualize the thickness of the aqueous mass boundary layer at a free water surface. Fluorescence is stimulated by high-power LEDs and is observed from above with a low noise, high resolution and high-speed camera. The invasion of ammonia into water leads to an increase in pH (from a starting value of 4), which is visualized with the fluorescent dye pyranine. The flux of ammonia can be controlled by controlling its air side concentration. A higher flux leads to basic pH values (pH > 7) in a thicker layer at the water surface from which fluorescent light is emitted. This allows the investigation of processes affecting the transport of gases in different depths in the aqueous mass boundary layer. In this paper, the chemical system and optical components of the measurement method are presented and its applicability to a wind-wave tank experiment is demonstrated.

  5. Three Dimensional Separation with Spiral-Focus in a Decelerating Duct Flow (Effect of Asymmetric Inlet Boundary Layer Thickness)

    Institute of Scientific and Technical Information of China (English)

    Yoichi Kinoue; Toshiaki Setoguchi; Kenji Kaneko; Mamun Mohammad; Masahiro Inoue

    2003-01-01

    An experimental apparatus was developed to study the three dimensional separated flow with spiral-foci. The internal decelerating flow was generated by the air suction from a side wall to produce the separation on an opposite-side wall. The relation between the upstream boundary layer and the generation of spiral-foci in the separation region was observed by a tuft method. As a result, it was clarified that the spiral-focus type separation could be produced on the side wall and its behavior was closely related to the vortices supplied into the separation region from the boundary layer developing along top wall or bottom one.

  6. Computation of Boundary Layers

    Directory of Open Access Journals (Sweden)

    József Dénes

    2004-11-01

    Full Text Available This paper is the first part of a series of studies where we examine several methods for the solution of the boundary layer equation of the fluid mechanics. The first of these is the analytical or rather quasi analytical method due to Blasius. This method reduces a system of partial differential equations to a system of ordinary differential equations and these in turn are solved by numerical methods since no exact solution of the Blasius type equations is known. We determind all the Blasius equation neccessary for up to 11-th order approximation. Our further aim to study the finite difference numerical solutions of the boundary layer equation and some of the methods applying weighted residual principles and by comparing these with the ”exact” solutions arrived at by Blasius method develop a quick reliable method for solving the boundary layer equation.

  7. Microgravity Effects on Plant Boundary Layers

    Science.gov (United States)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  8. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    1974-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  9. Boundary-Layer & health

    Science.gov (United States)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  10. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    Science.gov (United States)

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  11. Modeling the urban boundary layer

    Science.gov (United States)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  12. THERMAL BOUNDARY LAYER IN CFB BOILER RISER

    Institute of Scientific and Technical Information of China (English)

    Jinwei; Wang; Xinmu; Zhao; Yu; Wang; Xing; Xing; Jiansheng; Zhang; Guangxi; Yue

    2006-01-01

    Measurement of temperature profiles of gas-solid two-phase flow at different heights in commercial-scale circulating fluidized bed (CFB) boilers was carried out. Experimental results showed that the thickness of thermal boundary layer was generally independent of the distance from the air distributor, except when close to the riser outlet. Through analysis of flow and combustion characteristics in the riser, it was found that the main reasons for the phenomena were: 1) the hydrodynamic boundary layer was thinner than the thermal layer and hardly changed along the CFB boiler height, and 2) both radial and axial mass and heat exchanges were strong in the CFB boiler. Numerical simulation of gas flow in the outlet zone confirmed that the distribution of the thermal boundary layer was dominated by the flow field characteristics.

  13. Boundary Layer Control on Airfoils.

    Science.gov (United States)

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  14. Self-similar magnetohydrodynamic boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel; Lastra, Alberto, E-mail: mnjmhd@am.uva.e [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2010-10-15

    The boundary layer created by parallel flow in a magnetized fluid of high conductivity is considered in this paper. Under appropriate boundary conditions, self-similar solutions analogous to the ones studied by Blasius for the hydrodynamic problem may be found. It is proved that for these to be stable, the size of the Alfven velocity at the outer flow must be smaller than the flow velocity, a fact that has a ready physical explanation. The process by which the transverse velocity and the thickness of the layer grow with the size of the Alfven velocity is detailed.

  15. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  16. Local boundary layer scales in turbulent Rayleigh-Benard convection

    CERN Document Server

    Scheel, Janet D

    2014-01-01

    We compute fully local boundary layer scales in three-dimensional turbulent Rayleigh-Benard convection. These scales are directly connected to the highly intermittent fluctuations of the fluxes of momentum and heat at the isothermal top and bottom walls and are statistically distributed around the corresponding mean thickness scales. The local boundary layer scales also reflect the strong spatial inhomogeneities of both boundary layers due to the large-scale, but complex and intermittent, circulation that builds up in closed convection cells. Similar to turbulent boundary layers, we define inner scales based on local shear stress which can be consistently extended to the classical viscous scales in bulk turbulence, e.g. the Kolmogorov scale, and outer scales based on slopes at the wall. We discuss the consequences of our generalization, in particular the scaling of our inner and outer boundary layer thicknesses and the resulting shear Reynolds number with respect to Rayleigh number. The mean outer thickness s...

  17. Shockwave-boundary layer interactions

    NARCIS (Netherlands)

    Glepman, R.

    2014-01-01

    Shock wave-boundary layer interactions are a very common feature in both transonic and supersonic flows. They can be encountered on compressor and turbine blades, in supersonic jet inlets, on transonic wings, on the stabilization fins of missiles and in many more situations. Because of their major i

  18. A method used to determine the upper thermal boundary of subgrade based on boundary layer theory

    Institute of Scientific and Technical Information of China (English)

    QingBo Bai; Xu Li; YaHu Tian

    2015-01-01

    In the numerical simulation of long-term subgrade temperature fields, the daily variation of soil temperature at a certain depthh is negligible. Such phenomenon is called the "boundary layer theory." Depthh is defined as the boundary layer thickness and the soil temperature athis approximately equal to a temperature increment plus the average atmosphere temperature. In the past, the boundary layer thickness and temperature increment were usually extracted from monitored data in the field. In this paper, a method is proposed to determinate the boundary layer thickness and temperature incre-ment. Based on the typical designs of highway or railway, the theoretical solution of boundary layer thickness is inferred and listed. Further, the empirical equation and design chart for determining the temperature increment are given in which the following factors are addressed, including solar radiation, equivalent thermal diffusivity and convective heat-transfer coefficient. Using these equations or design charts, the boundary layer thickness and temperature increment can be easily determined and used in the simulation of long-term subgrade temperature fields. Finally, an example is conducted and used to verify the method. The result shows that the proposed method for determining the upper thermal boundary of subgrade is accurate and practical.

  19. Instability of the stable boundary layer?

    NARCIS (Netherlands)

    Wiel, van de B.J.H.; Moene, A.F.; Steeneveld, G.J.; Holtslag, A.A.M.

    2006-01-01

    Many observations of artic boundary layers and nighttime boundary layers in general show low temperatures and weak winds near the surface. These weak wind conditions coincide with extremely low intensities of turbulence. As a result, the upper part of the boundary seems to be de-coupled from the sur

  20. Defects and boundary layers in non-Euclidean plates

    CERN Document Server

    Gemmer, John

    2012-01-01

    We investigate the behaviour of non-Euclidean plates with constant negative Gaussian curvature using the F\\"oppl-von K\\'arm\\'an reduced theory of elasticity. Motivated by recent experimental results, we focus on annuli with a periodic profile. We prove rigorous upper and lower bounds for the elastic energy that scales like the thickness squared. We also investigate the scaling with thickness of boundary layers where the stretching energy is concentrated with decreasing thickness.

  1. Investigation of Laminar Boundary Layer on Airfoil

    OpenAIRE

    林, 秀千人; 佐々木, 壮一; 児玉, 好雄; 清水, 光昭

    1999-01-01

    The development of the laminar boundary layer on the NACA symmetrical airfoils and the separation of it are simulated by using the boundary layer theory and discrete vortex method. The arrangement of the discrete vortices on the airfoil affects on the separation position very much because the separation is sensitive to the velocity gradient of the main flow. It needs the very small increment 1/500 in boundary layer simulation to get the exact position of the separation. The simulation of both...

  2. Cyclone separator having boundary layer turbulence control

    Science.gov (United States)

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  3. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar re

  4. Magnetohydrodynamic cross-field boundary layer flow

    Directory of Open Access Journals (Sweden)

    D. B. Ingham

    1982-01-01

    Full Text Available The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.

  5. Experimental investigation of wave boundary layer

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2003-01-01

    with an oscillating seabed. A brief account is given of measured quantities, measurement techniques (LDA, PIV, flow visualization) and limitations/constraints in the experimental investigation of the wave boundary layer in the laboratory. The second section concentrates on uniform oscillating boundary layers...... with a smooth bed. The boundary layer process is described over the entire range of the Reynolds number (Re from practically nil to Re = O(107)), from the laminar regime to the transitional regime and to the fully developed turbulent regime. The third section focuses on the effect of the boundary roughness......-dominated regime, is covered. Processes such as turbulence reduction/re-laminarization, and increase/decrease in the bed shear stress are presented. The fifth section considers various effects on the wave boundary layer such as the non-uniformity (that due to change in the boundary roughness and that due to change...

  6. An Analysis of the Characteristics of the Thermal Boundary Layer in Power Law Fluid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper presents a theoretical analysis of the heat transfer for the boundary layer flow on a continuous moving surface in power law fluid. The expressions of the thermal boundary layer thickness with the different heat conductivity coefficients are obtained according to the theory of the dimensional analysis of fluid dynamics and heat transfer. And the numerical results of CFD agree well with the proposed expressions. The estimate formulas can be successfully applied to giving the thermal boundary layer thickness.

  7. Plasma boundary layer and magnetopause layer of the earth's magnetosphere

    International Nuclear Information System (INIS)

    IMP 6 observations of the plasma boundary layer (PBL) and magnetopause layer (MPL) of the earth's magnetosphere indicate that plasma in the low-latitude portion of the PBL is supplied primarily by direct transport of magnetosheath plasma across the MPL and that this transport process is relatively widespread over the entire sunward magnetospheric boundary

  8. Calculation methods for compressible turbulent boundary layers

    Science.gov (United States)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1976-01-01

    Calculation procedures for non-reacting compressible two- and three-dimensional turbulent boundary layers were reviewed. Integral, transformation and correlation methods, as well as finite difference solutions of the complete boundary layer equations summarized. Alternative numerical solution procedures were examined, and both mean field and mean turbulence field closure models were considered. Physics and related calculation problems peculiar to compressible turbulent boundary layers are described. A catalog of available solution procedures of the finite difference, finite element, and method of weighted residuals genre is included. Influence of compressibility, low Reynolds number, wall blowing, and pressure gradient upon mean field closure constants are reported.

  9. Boundary-layer linear stability theory

    Science.gov (United States)

    Mack, L. M.

    1984-06-01

    Most fluid flows are turbulent rather than laminar and the reason for this was studied. One of the earliest explanations was that laminar flow is unstable, and the linear instability theory was first developed to explore this possibility. A series of early papers by Rayleigh produced many notable results concerning the instability of inviscid flows, such as the discovery of inflectional instability. Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles appeared to be stable. The investigations that led to a viscous theory of boundary layer instability was reported. The earliest application of linear stability theory to transition prediction calculated the amplitude ratio of the most amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this quantity had values between five and nine at the observed Ret. The experiment of Schubauer and Skramstad (1947) completely reversed the prevailing option and fully vindicated the Gottingen proponents of the theory. This experiment demonstrated the existence of instability waves in a boundary layer, their connection with transition, and the quantitative description of their behavior by the theory of Tollmien and Schlichting. It is generally accepted that flow parameters such as pressure gradient, suction and heat transfer qualitatively affect transition in the manner predicted by the linear theory, and in particular that a flow predicted to be stable by the theory should remain laminar. The linear theory, in the form of the e9, or N-factor is today in routine use in engineering studies of laminar flow. The stability theory to boundary layers with pressure gradients and suction was applied. The only large body of numerical results for exact boundary layer solutions before the advent of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity profiles are given. When the digital computer

  10. Turbulent boundary-layer structure of flows over freshwater biofilms

    Science.gov (United States)

    Walker, J. M.; Sargison, J. E.; Henderson, A. D.

    2013-12-01

    The structure of the turbulent boundary-layer for flows over freshwater biofilms dominated by the diatom Tabellaria flocculosa was investigated. Biofilms were grown on large test plates under flow conditions in an Australian hydropower canal for periods up to 12 months. Velocity-profile measurements were obtained using LDV in a recirculating water tunnel for biofouled, smooth and artificially sandgrain roughened surfaces over a momentum thickness Reynolds number range of 3,000-8,000. Significant increases in skin friction coefficient of up to 160 % were measured over smooth-wall values. The effective roughnesses of the biofilms, k s, were significantly higher than their physical roughness measured using novel photogrammetry techniques and consisted of the physical roughness and a component due to the vibration of the biofilm mat. The biofilms displayed a k-type roughness function, and a logarithmic relationship was found between the roughness function and roughness Reynolds number based on the maximum peak-to-valley height of the biofilm, R t. The structure of the boundary layer adhered to Townsend's wall-similarity hypothesis even though the scale separation between the effective roughness height and the boundary-layer thickness was small. The biofouled velocity-defect profiles collapsed with smooth and sandgrain profiles in the outer region of the boundary layer. The Reynolds stresses and quadrant analysis also collapsed in the outer region of the boundary layer.

  11. Boundary Layers in Laminar Vortex Flows.

    Science.gov (United States)

    Baker, Glenn Leslie

    A detailed experimental study of the flow in an intense, laminar, axisymmetric vortex has been conducted in the Purdue Tornado Vortex Simulator. The complicated nature of the flow in the boundary layer of laboratory vortices and presumably on that encountered in full-scale tornadoes has been examined. After completing a number of modifications to the existing facility to improve the quality of the flow in the simulator, hot-film anemometry was employed for making velocity-component and turbulence-intensity measurements of both the free-stream and boundary layer portions of the flow. The measurements represent the first experimental boundary layer investigation of a well-defined vortex flow to appear in the literature. These results were compared with recent theoretical work by Burggraf, Stewartson and Belcher (1971) and with an exact similarity solution for line-sink boundary layers developed by the author. A comparison is also made with the numerical simulation of Wilson (1981) in which the boundary conditions were matched to those of the present experimental investigation. Expressions for the vortex core radius, the maximum tangential velocity and the maximum pressure drop are given in terms of dimensionless modeling parameters. References. Burggraf, O. R., K. Stewartson and R. Belcher, Boundary layer. induced by a potential vortex. Phys. Fluids 14, 1821-1833 (1971). Wilson, T., M. S. thesis, Vortex Boundary Layer Dynamics, Univ. Calif. Davis (1981).

  12. Characterization of internal boundary layer capacitors

    International Nuclear Information System (INIS)

    Internal boundary layer capacitors were characterized by scanning transmission electron microscopy and by microscale electrical measurements. Data are given for the chemical and physical characteristics of the individual grains and boundaries, and their associated electric and dielectric properties. Segregated internal boundary layers were identified with resistivities of 1012-1013 Ω-cm. Bulk apparent dielectric constants were 10,000-60,000. A model is proposed to explain the dielectric behavior in terms of an equivalent n-c-i-c-n representation of ceramic microstructure, which is substantiated by capacitance-voltage analysis

  13. Gelled propellant flow: Boundary layer theory for power-law fluids in a converging planar channel

    Science.gov (United States)

    Kraynik, Andrew M.; Geller, A. S.; Glick, J. H.

    1989-10-01

    A boundary layer theory for the flow of power-law fluids in a converging planar channel has been developed. This theory suggests a Reynolds number for such flows, and following numerical integration, a boundary layer thickness. This boundary layer thickness has been used in the generation of a finite element mesh for the finite element code FIDAP. FIDAP was then used to simulate the flow of power-law fluids through a converging channel. Comparison of the analytic and finite element results shows the two to be in very good agreement in regions where entrance and exit effects (not considered in the boundary layer theory) can be neglected.

  14. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  15. Particle motion inside Ekman and Bödewadt boundary layers

    Science.gov (United States)

    Duran Matute, Matias; van der Linden, Steven; van Heijst, Gertjan

    2014-11-01

    We present results from both laboratory experiments and numerical simulations of the motion of heavy particles inside Ekman and Bödewadt boundary layers. The particles are initially at rest on the bottom of a rotating cylinder filled with water and with its axis parallel to the axis of rotation. The particles are set into motion by suddenly diminishing the rotation rate and the subsequent creation of a swirl flow with the boundary layer above the bottom plate. We consider both spherical and non-spherical particles with their size of the same order as the boundary layer thickness. It was found that the particle trajectories define a clear logarithmic spiral with its shape depending on the different parameters of the problem. Numerical simulations show good agreement with experiments and help explain the motion of the particles. This research is funded by NWO (the Netherlands) through the VENI Grant 863.13.022.

  16. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    simulation and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid......Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM...

  17. High enthalpy hypersonic boundary layer flow

    Science.gov (United States)

    Yanow, G.

    1972-01-01

    A theoretical and experimental study of an ionizing laminar boundary layer formed by a very high enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with allowance for the presence of helium driver gas is described. The theoretical investigation has shown that the use of variable transport properties and their respective derivatives is very important in the solution of equilibrium boundary layer equations of high enthalpy flow. The effect of low level helium contamination on the surface heat transfer rate is minimal. The variation of ionization is much smaller in a chemically frozen boundary layer solution than in an equilibrium boundary layer calculation and consequently, the variation of the transport properties in the case of the former was not essential in the integration. The experiments have been conducted in a free piston shock tunnel, and a detailed study of its nozzle operation, including the effects of low levels of helium driver gas contamination has been made. Neither the extreme solutions of an equilibrium nor of a frozen boundary layer will adequately predict surface heat transfer rate in very high enthalpy flows.

  18. Boundary Layer Cloudiness Parameterizations Using ARM Observations

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Albrecht

    2004-09-15

    This study used DOE ARM data and facilities to: (1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, (2) develop a scientific basis for understanding the processes responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and (3) evaluate cumulus cloud characteristics retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: (1) develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, (2) evaluate the capability and limitations of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low- signal-to-noise conditions associated with weak no n-precipitating clouds, (3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and (4) retrieve updraft and downdraft structures under precipitating conditions.

  19. THE EFFECT OF BOUNDARY SHAPE ON BOUNDARY LAYER OF P-MODEL PLATEPROBLEMS WITH HARD SIMPLY SUPPORT

    Institute of Scientific and Technical Information of China (English)

    LILIKANG; CHENJIUHUA

    1996-01-01

    The paper shows that: for a unit circular plate: Reissner-Mindlin plate model with hardsimply support does not capture the boundary, layer behaviour for the bending moment whenthe load is independent of θ, where (r,θ) is the polar coordinates in plane. In contrast p-modelshows this boundary layer, which is proved theoretically and numerically. But for the case whenthe boundary is a straight line, the boundary layer for p-model is weak and disappears as thePlate thickness tends to zero.

  20. Boundary layer physics over snow and ice

    Directory of Open Access Journals (Sweden)

    P. S. Anderson

    2007-06-01

    Full Text Available A general understanding of the physics of advection and turbulent mixing within the near surface atmosphere assists the interpretation and predictive power of air chemistry theory. The theory of the physical processes involved in diffusion of trace gas reactants in the near surface atmosphere is still incomplete. Such boundary layer theory is least understood over snow and ice covered surfaces, due in part to the thermo-optical properties of the surface. Polar boundary layers have additional aspects to consider, due to the possibility of long periods without diurnal forcing and enhanced Coriolis effects.

    This paper provides a review of present concepts in polar boundary layer meteorology, which will generally apply to atmospheric flow over snow and ice surfaces. It forms a companion paper to the chemistry review papers in this special issue of ACP.

  1. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  2. Temperature structure in the atmospheric boundary layer

    Science.gov (United States)

    Smedman, Ann-Sofi

    2010-05-01

    Temperature structure in the atmospheric boundary layer It is well established from experimental and theoretical studies that the temperature structure in the atmospheric boundary layer is depends on stability. During free convection conditions the flow is dominated by circular thermals but when stratification is becoming slightly unstable longitudinal roll structures that extend vertically throughout the entire boundary layer will be present. In close to neutral conditions on the unstable side (the UVCN regime) when the Obukhov length is much greater than the surface layer depth, it is observed that the structure of the surface layer turbulence does not accord with standard similarity theory. In particular the efficiency of the turbulent exchange of sensible and latent heat is observed to be more strongly enhanced than is consistent with the standard model. Also the profiles of dissipation of turbulent kinetic energy and temperature fluctuation variance are found to depend on the structure of the whole boundary layer (i.e. are non-local), indicating that a large-scale transport process is at work. At the same time, co-spectral analysis shows how the large scale eddy motions that determine the heat transport process near the surface are typically 1/5 of the surface layer depth. All these features are found to be similar in measurements at two marine sites, in the Baltic Sea and in Lake Ontario respectively and at several flat land sites ( around Uppsala and at the Island of Gotland), indicating that they are determined by the dynamics of the whole boundary layer rather than being simply dependent on the surface boundary conditions. The observed structures can also be interpreted as possible manifestations of a bifurcation of the large scale eddy structure towards a state in which there are quasi-steady longitudinal rolls and, on a smaller scale, unsteady detached eddies. Our interpretation of the results from the measurements is that, in the UVCN regime, the latter

  3. Boundary-layer theory for blast waves

    Science.gov (United States)

    Kim, K. B.; Berger, S. A.; Kamel, M. M.; Korobeinikov, V. P.; Oppenheim, A. K.

    1975-01-01

    It is profitable to consider the blast wave as a flow field consisting of two regions: the outer, which retains the properties of the inviscid solution, and the inner, which is governed by flow equations including terms expressing the effects of heat transfer and, concomitantly, viscosity. The latter region thus plays the role of a boundary layer. Reported here is an analytical method developed for the study of such layers, based on the matched asymptotic expansion technique combined with patched solutions.

  4. Calculation methods for compressible turbulent boundary layers, 1976

    Science.gov (United States)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  5. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    Science.gov (United States)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  6. Nonlinear Transient Growth and Boundary Layer Transition

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  7. Boundary layer control device for duct silencers

    Science.gov (United States)

    Schmitz, Fredric H. (Inventor); Soderman, Paul T. (Inventor)

    1993-01-01

    A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations.

  8. Astrophysical Boundary Layers: A New Picture

    Science.gov (United States)

    Belyaev, Mikhail; Rafikov, Roman R.; Mclellan Stone, James

    2016-04-01

    Accretion is a ubiquitous process in astrophysics. In cases when the magnetic field is not too strong and a disk is formed, accretion can proceed through the mid plane all the way to the surface of the central compact object. Unless that compact object is a black hole, a boundary layer will be formed where the accretion disk touches its surfaces. The boundary layer is both dynamically and observationally significant as up to half of the accretion energy is dissipated there.Using a combination of analytical theory and computer simulations we show that angular momentum transport and accretion in the boundary layer is mediated by waves. This breaks with the standard astrophysical paradigm of an anomalous turbulent viscosity that drives accretion. However, wave-mediated angular momentum transport is a natural consequence of "sonic instability." The sonic instability, which we describe analytically and observe in our simulations, is a close cousin of the Papaloizou-Pringle instability. However, it is very vigorous in the boundary layer due to the immense radial velocity shear present at the equator.Our results are applicable to accreting neutron stars, white dwarfs, protostars, and protoplanets.

  9. Analysis of Laminar Boundary Layer Equations

    Directory of Open Access Journals (Sweden)

    R. Yesman

    2012-01-01

    Full Text Available The paper proposes methodology for analysis and calculation of laminar fluid flow processes in a boundary layer.The presented dependences can be used for practical calculations while power carriers of various application are moving in the channels of heat and power devices. 

  10. Global stability analysis of axisymmetric boundary layers

    CERN Document Server

    Vinod, N

    2016-01-01

    This paper presents the linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inlet. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes(LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes are nega...

  11. Controls on boundary layer ventilation: Boundary layer processes and large-scale dynamics

    Science.gov (United States)

    Sinclair, V. A.; Gray, S. L.; Belcher, S. E.

    2010-06-01

    Midlatitude cyclones are important contributors to boundary layer ventilation. However, it is uncertain how efficient such systems are at transporting pollutants out of the boundary layer, and variations between cyclones are unexplained. In this study 15 idealized baroclinic life cycles, with a passive tracer included, are simulated to identify the relative importance of two transport processes: horizontal divergence and convergence within the boundary layer and large-scale advection by the warm conveyor belt. Results show that the amount of ventilation is insensitive to surface drag over a realistic range of values. This indicates that although boundary layer processes are necessary for ventilation they do not control the magnitude of ventilation. A diagnostic for the mass flux out of the boundary layer has been developed to identify the synoptic-scale variables controlling the strength of ascent in the warm conveyor belt. A very high level of correlation (R2 values exceeding 0.98) is found between the diagnostic and the actual mass flux computed from the simulations. This demonstrates that the large-scale dynamics control the amount of ventilation, and the efficiency of midlatitude cyclones to ventilate the boundary layer can be estimated using the new mass flux diagnostic. We conclude that meteorological analyses, such as ERA-40, are sufficient to quantify boundary layer ventilation by the large-scale dynamics.

  12. Wind and boundary layers in Rayleigh-Benard convection. Part 2: boundary layer character and scaling

    CERN Document Server

    van Reeuwijk, Maarten; Hanjalic, Kemo

    2007-01-01

    The effect of the wind of Rayleigh-Benard convection on the boundary layers is studied by direct numerical simulation of an L/H=4 aspect-ratio domain with periodic side boundary conditions for Ra={10^5, 10^6, 10^7} and Pr=1. It is shown that the kinetic boundary layers on the top- and bottom plate have some features of both laminar and turbulent boundary layers. A continuous spectrum, as well as significant forcing due to Reynolds stresses indicates undoubtedly a turbulent character, whereas the classical integral boundary layer parameters -- the shape factor and friction factor (the latter is shown to be dominated by the pressure gradient) -- scale with Reynolds number more akin to laminar boundary layers. This apparent dual behavior is caused by the large influence of plumes impinging onto and detaching from the boundary layer. The plume-generated Reynolds stresses have a negligible effect on the friction factor at the Rayleigh numbers we consider, which indicates that they are passive with respect to momen...

  13. DNS of stratified spatially-developing turbulent thermal boundary layers

    Science.gov (United States)

    Araya, Guillermo; Castillo, Luciano; Jansen, Kenneth

    2012-11-01

    Direct numerical simulations (DNS) of spatially-developing turbulent thermal boundary layers under stratification are performed. It is well known that the transport phenomena of the flow is significantly affected by buoyancy, particularly in urban environments where stable and unstable atmospheric boundary layers are encountered. In the present investigation, the Dynamic Multi-scale approach by Araya et al. (JFM, 670, 2011) for turbulent inflow generation is extended to thermally stratified boundary layers. Furthermore, the proposed Dynamic Multi-scale approach is based on the original rescaling-recycling method by Lund et al. (1998). The two major improvements are: (i) the utilization of two different scaling laws in the inner and outer parts of the boundary layer to better absorb external conditions such as inlet Reynolds numbers, streamwise pressure gradients, buoyancy effects, etc., (ii) the implementation of a Dynamic approach to compute scaling parameters from the flow solution without the need of empirical correlations as in Lund et al. (1998). Numerical results are shown for ZPG flows at high momentum thickness Reynolds numbers (~ 3,000) and a comparison with experimental data is also carried out.

  14. Hair receptor sensitivity to changes in laminar boundary layer shape

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, B T, E-mail: btdickinson@lifetime.oregonstate.ed [Air Force Research Laboratory, Munitions Directorate, Eglin Air Force Base, FL 32542 (United States)

    2010-03-15

    Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.

  15. Hair receptor sensitivity to changes in laminar boundary layer shape.

    Science.gov (United States)

    Dickinson, B T

    2010-03-01

    Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.

  16. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  17. Passive and active control of boundary layer transition

    Science.gov (United States)

    Nosenchuck, Daniel Mark

    It is well known that laminar-turbulent boundary layer transition is initiated by the formation of Tollmien-Schlichting laminar instability waves. The amplification rates of these waves are strongly dependent on the shape of the boundary layer velocity profile. Consequently, the transition process can be controlled by modifying the velocity profile. This can be accomplished by controlling the pressure gradient (dp/dx), using boundary layer suction, installing surface roughness elements, or by surface heating or cooling. Methods used to modify the transition process through changes in the mean velocity profile are called "passive" in this paper. There exists a large set of experiments and theory on the application of passive methods for boundary layer control. In the present work only surface heating will be addressed.Transition measurements were made on a heated flat plate in water. Results are presented for several plate wall temperature distributions. An increase by a factor of 2.5 in transition Reynolds number was observed for a 5°C isothermal wall overheat. Buoyancy effects on transition were minimal due to the small Richardson and Grashof numbers encountered in the experiments.The amplification of laminar instability waves is comparatively to process, taking place over many boundary layer thicknesses. After the slow amplification of the laminar instability waves, transition occurs by a strong three dimensional dynamic instability. It appears possible to attenuate (or reinforce) the instability waves by introducing amplitude-and phase-controlled perturbations into the laminar boundary layer using feedback control system. This method is called "active" control and forms the larger part of the research reported in this thesis.A combination of sensors, activators and feedback control electronics is required for active control. The sensors used in the experiments are flush-mounted hot film wall shear robes. A new type of activator was developed using thin, flush

  18. Quantification of retinal layer thickness changes in acute macular neuroretinopathy

    DEFF Research Database (Denmark)

    Munk, Marion R; Beck, Marco; Kolb, Simone;

    2016-01-01

    PURPOSE: To quantitatively evaluate retinal layer thickness changes in acute macular neuroretinopathy (AMN). METHODS: AMN areas were identified using near-infrared reflectance (NIR) images. Intraretinal layer segmentation using Heidelberg software was performed. The inbuilt ETDRS -grid was moved ...

  19. BUBBLE - an urban boundary layer meteorology project

    DEFF Research Database (Denmark)

    Rotach, M.W.; Vogt, R.; Bernhofer, C.;

    2005-01-01

    The Basel urban Boundary Layer Experiment (BUBBLE) was a year-long experimental effort to investigate in detail the boundary layer structure in the City of Basel, Switzerland. At several sites over different surface types (urban, sub-urban and rural reference) towers up to at least twice the main...... ground truth, as well as on urban turbulence and profiling (sodar, RASS, tethered balloon) were performed. Also tracer experiments with near-roof-level release and sampling were performed. In parallel to the experimental activities within BUBBLE, a meso-scale numerical atmospheric model, which contains...... a surface exchange parameterization, especially designed for urban areas was evaluated and further developed. Finally, the area of the full-scale tracer experiment which also contains several sites of other special projects during the IOP (street canyon energetics, satellite ground truth) is modeled using...

  20. Active control of ionized boundary layers

    CERN Document Server

    Mendes, R V

    1997-01-01

    The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.

  1. Instabilities and transition in boundary layers

    Indian Academy of Sciences (India)

    N Vinod; Rama Govindarajan

    2005-03-01

    Some recent developments in boundary layer instabilities and transition are reviewed. Background disturbance levels determine the instability mechanism that ultimately leads to turbulence. At low noise levels, the traditional Tollmien–Schlichting route is followed, while at high levels, a `by-pass' route is more likely. Our recent work shows that spot birth is related to the pattern of secondary instability in either route.

  2. Submarine design optimization using boundary layer control

    OpenAIRE

    Christopher L Warren

    1997-01-01

    Several hull designs are studied with parametric based volume and area estimates to obtain preliminary hull forms. The volume and area study includes the effects of technologies which manifest themselves in the parametric study through stack length requirements. Subsequently, the hull forms are studied using a Reynolds Averaged Navier Stokes analysis coupled with a vortex lattice propeller design code. Optimization is done through boundary layer control analysis and through studies on the eff...

  3. Coupled wake boundary layer model of windfarms

    Science.gov (United States)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  4. Boundary layer emission in luminous LMXBs

    CERN Document Server

    Gilfanov, M

    2005-01-01

    We show that aperiodic and quasiperiodic variability of bright LMXBs - atoll and Z- sources, on ~sec - msec time scales is caused primarily by variations of the boundary layer luminosity. The accretion disk emission is less variable on these time scales and its power density follows 1/f law, contributing to observed flux variation at low frequencies and low energies only. The kHz QPOs have the same origin as variability at lower frequencies - independent of the nature of the "clock", the actual luminosity modulation takes place on the NS surface. The boundary layer spectrum remains nearly constant during luminosity variations and can be represented by the Fourier frequency resolved spectrum. In the range of Mdot~(0.1-1)*Mdot_Edd it depends weakly on the global mass accretion rate and in the limit Mdot~Mdot_Edd is close to Wien spectrum with kT~2.4 keV. Its independence on the Mdot lends support to the suggestion by Inogamov & Sunyaev (1999) that the boundary layer is radiation pressure supported. Based on...

  5. Pressure gradient influence in turbulent boundary layers

    Science.gov (United States)

    Reuther, Nico; Kaehler, Christian J.

    2015-11-01

    Understanding wall-bounded turbulence is still an ongoing process. Although remarkable progress has been made in the last decades, many challenges still remain. Mean flow statistics are well understood in case of zero pressure gradient flows. However, almost all turbulent boundary layers in technical applications, such as aircrafts, are subjected to a streamwise pressure gradient. When subjecting turbulent boundary layers to adverse pressure gradients, significant changes in the statistical behavior of the near-wall flow have been observed in experimental studies conducted however the details dynamics and characteristics of these flows has not been fully resolved. The sensitivity to Reynolds number and the dependency on several parameters, including the dependence on the pressure gradient parameter, is still under debate and very little information exists about statistically averaged quantities such as the mean velocity profile or Reynolds stresses. In order to improve the understanding of wall-bounded turbulence, this work experimentally investigates turbulent boundary layer subjected to favorable and adverse pressure gradients by means of Particle Image Velocimetry over a wide range of Reynolds numbers, 4200 statistics was found to increase significantly for a flow subjected to an adverse pressure gradient.

  6. Optimum forebody shaping for axisymmetric submersibles with turbulent boundary layers and BLO (Boundary Layer Control) afterbodies

    Science.gov (United States)

    Neumann, B. J.

    1983-07-01

    One objective of the Advanced Undersea Vehicle (AUV) program is to design a low drag vehicle. The approach in this investigation is boundary layer control by means of an annular suction slot located on the afterbody. Although wind tunnel data showed significant reduction in propulsive power over conventional shapes, an attempt was made to achieve further reduction by means of forebody shaping. Two methods were used to vary the geometric parameters for this analysis. The direct method, based on the mathematical development of the Series 58 bodies, allows the definition of a shape by a fifth-order polynomial based on the four fundamental parameters of fineness ratio, nose radius of curvature, location of maximum thickness, and prismatic coefficient. The inverse method allows various velocity distributions to define the body shape. The shapes derived by this method have flat velocity distributions and show similar trends to the polynomial shapes (about 3-percent reduction in propulsive power). The range of fineness ratios analyzed was from 1 to 10 at a volume-based Reynolds number of 3.2 million. In the range of 2.5 to 8, fineness ratio did not affect propulsive power more than 6 percent. A maximum improvement of 3 percent as shown by varying the meridian section.

  7. Leaky waves in boundary layer flow

    Science.gov (United States)

    Pralits, Jan

    2005-11-01

    Linear stability analysis of boundary layer flow is traditionally performed by solving the Orr-Sommerfeld equation (OSE), either in a temporal or a spatial framework. The mode structure of the OSE is in both cases composed of a finite number of discrete modes which decay at infinity in the wall- normal direction y, and a continuous spectrum of propagating modes behaving as (±ik y) when y->∞, with real k. A peculiarity of this structure is that the number of discrete modes changes with the Reynolds number, Re. They indeed seem to disappear behind the continuous spectrum at certain Re. This phenomenon is here investigated by studying the response of the Blasius boundary layer forced instantaneously in space and time. Since the solution of the forced and homogeneous Laplace-transformed problem both depend on the free-stream boundary conditions, it is shown here that a suitable change of variables can remove the branch cut in the Laplace plane. As a result, integration of the inverse Laplace transform along the two sides of the branch cut, which gives rise to the continuous spectrum, can be replaced by a sum of residues corresponding to an additional set of discrete eigenvalues. These new modes grow at infinity in the y direction, and are analogous to the leaky waves found in the theory of optical waveguides, i.e. optical fibers, which are attenuated in the direction of the waveguide but grow unbounded in the direction perpendicular to it.

  8. A global boundary-layer height climatology

    Energy Technology Data Exchange (ETDEWEB)

    Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)

    1997-10-01

    In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)

  9. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate

    Institute of Scientific and Technical Information of China (English)

    Krishnendu Bhattacharyya; Swati Mukhopadhyay; G.C.Layek

    2011-01-01

    An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented. A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method. In the boundary slip condition no local similarity occurs. Velocity and temperature distributions within the boundary layer are presented. Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate.%@@ An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented.A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method.In the boundary slip condition no local similarity occurs.Velocity and temperature distributions within the boundary layer are presented.Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate.

  10. A Coordinate Transformation for Unsteady Boundary Layer Equations

    Directory of Open Access Journals (Sweden)

    Paul G. A. CIZMAS

    2011-12-01

    Full Text Available This paper presents a new coordinate transformation for unsteady, incompressible boundary layer equations that applies to both laminar and turbulent flows. A generalization of this coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently derived. In addition, the boundary layer equations are derived using a time linearization approach and assuming harmonically varying small disturbances.

  11. Manipulation of Turbulent Boundary Layers Using Synthetic Jets

    Science.gov (United States)

    Berger, Zachary; Gomit, Guillaume; Lavoie, Philippe; Ganapathisubramani, Bharath

    2015-11-01

    This work focuses on the application of active flow control, in the form of synthetic jet actuators, of turbulent boundary layers. An array of 2 synthetic jets are oriented in the spanwise direction and located approximately 2.7 meters downstream from the leading edge of a flat plate. Actuation is applied perpendicular to the surface of the flat plate with varying blowing ratios and reduced frequencies (open-loop). Two-component large window particle image velocimetry (PIV) was performed at the University of Southampton, in the streamwise-wall-normal plane. Complementary stereo PIV measurements were performed at the University of Toronto Institute for Aerospace Studies (UTIAS), in the spanwise-wall-normal plane. The freestream Reynolds number is 3x104, based on the boundary layer thickness. The skin friction Reynolds number is 1,200 based on the skin friction velocity. The experiments at Southampton allow for the observation of the control effects as the flow propagates downstream. The experiments at UTIAS allow for the observation of the streamwise vorticity induced from the actuation. Overall the two experiments provide a 3D representation of the flow field with respect to actuation effects. The current work focuses on the comparison of the two experiments, as well as the effects of varying blowing ratios and reduced frequencies on the turbulent boundary layer. Funded Supported by Airbus.

  12. Study on Folds of Equal Thickness Multi-layer Sandwiched in Different Thickness Media

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The theoretical model and non-homogeneous differential equation of equal thickness multi-layer folds sandwiched in different thickness and same character media are established by elastic and plastic mechanics. The special answer of the non-homogeneous differential equation and the common answer of the homogeneous differential equation are deduced by applying logistic equation and special function, and the dominant wavelength theory of equal thickness multi-layer folds sandwiched in different thickness and same character media. In addition, the experimental folding in both elastic and sticky materials proves the dominant wavelength theory.

  13. Boundary-layer and stalling characteristics of two symmetrical NACA low-drag airfoil sections

    Science.gov (United States)

    Mccullough, George B; Gault, Donald E

    1947-01-01

    Two symmetrical airfoils, an NACA 633-018 and an NACA 631-012, were investigated for the purpose of determining their stalling and boundary-layer characteristics with a view toward the eventual application of this information to the problem of boundary-layer control. Force measurements, pressure distributions, tuft studies, and boundary-layer-profile measurements were made at a value of 5,800,000 Reynolds number. It was found that the 18-percent-thick airfoil stalled progressively from the trailing edge because of separation of the turbulent boundary layer. In contrast, the12-percent-thick airfoil stalled abruptly from a separation of flow near the leading edge before the turbulent boundary layer became subject to separation. From this it was concluded that if high values of lift are to be obtained with thin, high-critical-speed sections by means of boundary-layer control, the work must be directed toward delaying the separation of flow near the leading edge. It was found that the presence of a nose flap on the 12-percent-thick section caused the airfoil to stall in a manner similar to that of the 18-percent-thick section.

  14. Compressibility Effects in Turbulent Boundary Layers

    Institute of Scientific and Technical Information of China (English)

    CAO Yu-Hui; PEI Jie; CHEN Jun; SHE Zhen-Su

    2008-01-01

    Local cascade (LC) scheme and space-time correlations are used to study turbulent structures and their convection behaviour in the near-wall region of compressible boundary layers at Ma = 0.8 and 1.3. The convection velocities of fluctuating velocity components u (streamwise) and v (vertical) are investigated by statistically analysing scale-dependent ensembles of LC structures. The results suggest that u is convected with entropy perturbations while v with an isentropic process. An abnormal thin layer distinct from the conventional viscous sub-layer is discovered in the immediate vicinity of the wall (y+≤1) in supersonic flows. While in the region 1 < y+ < 30,streamwise streaks dominate velocity, density and temperature fluctuations, the abnormal thin layer is dominated by spanwise streaks in vertical velocity and density fluctuations, where pressure and density fluctuations are strongly correlated. The LC scheme is proven to be effective in studying the nature of supersonic flows and compressibility effects on wall-bounded motions.

  15. Modeling and computation of boundary-layer flows laminar, turbulent and transitional boundary layers in incompressible and compressible flows

    CERN Document Server

    Cebeci, Tuncer

    2005-01-01

    This second edition of our book extends the modeling and calculation of boundary-layer flows to include compressible flows. The subjects cover laminar, transitional and turbulent boundary layers for two- and three-dimensional incompressible and compressible flows. The viscous-inviscid coupling between the boundary layer and the inviscid flow is also addressed. The book has a large number of homework problems.

  16. Turbulent Plasmaspheric Boundary Layer: Observables and Consequences

    Science.gov (United States)

    Mishin, Evgeny

    2014-10-01

    In situ satellite observations reveal strong lower hybrid/fast magnetosonic turbulence and broadband hiss-like VLF waves in the substorm subauroral geospace at and earthward of the electron plasmasheet boundary. These coincide with subauroral ion drifts/polarization streams (SAID/SAPS) in the plasmasphere and topside ionosphere. SAID/SAPS appear in ~10 min after the substorm onset consistent with the fast propagation of substorm injection fronts. The SAID channel follows the dispersionless cutoff of the energetic electron flux at the plasmapause. This indicates that the cold plasma maintains charge neutrality within the channel, thereby short-circuiting the injected plasma jet (injection fronts over the plasmasphere. Plasma turbulence leads to the circuit resistivity and magnetic diffusion as well as significant electron heating and acceleration. As a result, a turbulent boundary layer forms between the inner edge of the electron plasmasheet and plasmasphere. The SAID/SAPS-related VLF emissions appear to constitute a distinctive subset of substorm/storm-related VLF activity in the region co-located with freshly injected energetic ions inside the plasmasphere. Significant pitch-angle diffusion coefficients suggest that substorm SAID/SAPS-related VLF waves could be responsible for the alteration of the outer radiation belt boundary during (sub)storms. Supported by the Air Force Office of Scientific Research.

  17. Halogen chemistry in the trosopheric boundary layer

    Science.gov (United States)

    Plane, John M. C.; Mahajan, Anoop; Oetjen, Hilke

    Iodine and bromine chemistry can affect the lower troposphere in several important ways: (1), change the oxidizing capacity by destroying ozone and affecting the hydroxyl radical concentration; (2), react efficiently with dimethyl sulphide (in the marine boundary layer) and mercury (in the polar regions); and (3), form ultra-fine particles (iodine oxides are highly condensable), which may contribute to cloud condensation nuclei and hence affect climate. This paper will report measurements of IO, BrO, OIO and I2 , made by the technique of differential optical absorption spectroscopy (DOAS), in several contrasting environments: equatorial clean mid-ocean (Cape Verde); mid-latitude clean coastal (Mace Head, Ireland); polluted coastal (Roscoff, France); and the polar boundary layer (Halley Bay, Antarctica and Hudson Bay, Canada). Both IO and BrO are observed in all these locations at concentrations (> 1 pptv), and so have a major impact on (1) and (2) above. The concentrations of IO in coastal Antarctica, and coastlines rich in certain species of macro-algae, are large enough (> 10 pptv) to promote ultra-fine particle formation. Recently, the first satellite measurements of IO, using the SCIAMACHY instrument on ENVISAT, have been reported by two groups; their results will be compared with the ground-based measurements.

  18. Turbulent boundary layer over a chine.

    Science.gov (United States)

    Panchapakesan, N. R.; Joubert, P. N.

    1999-11-01

    The flow over an edge aligned with the streamwise direction is studied as a representative of the turbulent boundary layers developing over hard chines found on the hulls of ships and catamarans. We present results of a traditional experimental investigation of this geometry in a wind tunnel with pitot tubes and hot-wires. The chine model consisted of two surfaces made of varnished fibre boards with leading edges of airfoil sections and a 90 degree corner. The boundary layer was tripped with wires close to the leading edge. The model was housed in a test section of length 6.5 m in a closed circuit wind tunnel. The experiments were conducted at a unit Reynolds number of 680,000 /m corresponding to a nominal free stream velocity of 10 m/s. The mean velocity field and the associated integral parameters obtained with pitot tube measurements are presented for different streamwise locations from 0.2 to 4.7 m from the trip wire. The flow at the two farthest locations were also studied with single and 'x' hot-wires. The secondary mean flow and the turbulence field in the corner region are described with these measurements.

  19. Estimation of Damping in Layered Welded Structures with Unequal Thickness

    OpenAIRE

    Bhagat Singh; Bijoy Kumar Nanda

    2012-01-01

    The present work is focused on the study of damping mechanism in layered and welded cantilever beams with unequal thickness. It is observed that a number of vital parameters such as: thickness ratio, pressure distribution characteristics, relative slip and kinematic co-efficient of friction at the interfaces, initial amplitude of excitation, length and thickness of the beam specimen govern the damping capacity of these structures. Experiments have been conducted in order to study the effect o...

  20. Determination of thin layer thickness from alpha particle energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowicz, V.; Kvitek, J. (Ceskoslovenska Akademie Ved, Prague. Ustav pro Elektrotechniku); Rybka, V.; Krejci, P. (Tesla, Prague (Czechoslovakia). Vyzkumny Ustav pro Sdelovaci Techniku); Pelikan, L. (Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Elektrotechnicka); Mikusik, P. (Ceskoslovenska Akademie Ved, Prague. Ustav Fyzikalni Chemie a Elektrochemie J. Heyrovskeho)

    1982-10-01

    A method which uses alpha particles from the /sup 10/B(n,alpha)/sup 7/Li nuclear reaction for the determination of surface layer thicknesses is described and experimentally checked. The thickness measurements can be performed on samples implanted with boron.

  1. JKR adhesive contact for a transversely isotropic layer of finite thickness

    International Nuclear Information System (INIS)

    A frictionless contact interaction with a circular area of contact between an arbitrary axisymmetric rigid probe and a transversely isotopic elastic layer deposited on a substrate is studied in the framework of the JKR (Johnson, Kendall, and Roberts) adhesion theory. Under the assumption that the diameter of the contact area is less than the thickness of the elastic layer, the forth-order asymptotic model is explicitly written out. The effect of the layer thickness and the material anisotropy is taken into account via the asymptotic coefficients, which are integral characteristics of the elastic layer and also depend on the boundary conditions at the layer/substrate interface. A special case of an isotropic elastic layer bonded to an isotropic elastic half-space is considered in detail. (paper)

  2. Corrections for attached sidewall boundary-layer effects in 2-dimensional airfoil testing

    Science.gov (United States)

    Murthy, A. V.

    1985-01-01

    The problems of sidewall boundary-layer effects in airfoil testing is treated by considering the changes in the flow area due to boundary-layer thinning under the influence of the airfoil flowfield. Using von Karman's momentum integral equation, it is shown that the sidewall boundary-layer thickness in the region of the airfoil can reduce to about half the undisturbed value under the conditions prevailing in testing of supercritical airfoils. A Mach number correction due to this increased width of the flow passage is proposed. Using the small disturbance approximation, the effect of the sidewall boundary-layers is shown to be equivalent to a change in the test Mach number and also in the airfoil thickness. Comparison of the results of this approach with other similarity rules and correlation of the experimental data demonstrate the applicability of the analysis presented from low speeds to transonic speeds.

  3. Effects of boundary layer on flame propagation generated by forced ignition behind an incident shock wave

    Science.gov (United States)

    Ishihara, S.; Tamura, S.; Ishii, K.; Kataoka, H.

    2016-09-01

    To study the effects of the boundary layer on the deflagration to detonation transition (DDT) process, the mixture behind an incident shock wave was ignited using laser breakdown. Ignition timing was controlled so that the interaction of the resulting flame with a laminar or turbulent boundary layer could be examined. In the case of the interaction with a laminar boundary layer, wrinkling of the flame was observed after the flame reached the corner of the channel. On the other hand, interaction with the turbulent boundary layer distorted the flame front and increased the spreading rate of the flame followed by prompt DDT. The inner structure of the turbulent boundary layer plays an important role in the DDT process. The region that distorted the flame within the turbulent boundary layer was found to be the intermediate region 0.01< y/δ < 0.4, where y is the distance from the wall and δ is the boundary layer thickness. The flame disturbance by the turbulent motions is followed by the flame interaction with the inner layer near the wall, which in turn generates a secondary-ignition kernel that produced a spherical accelerating flame, which ultimately led to the onset of detonation. After the flame reached the intermediate region, the time required for DDT was independent of the ignition position. The effect of the boundary layer on the propagating flame, thus, became relatively small after the accelerating flame was generated.

  4. PIV-based pressure fluctuations in the turbulent boundary layer

    Science.gov (United States)

    Ghaemi, Sina; Ragni, Daniele; Scarano, Fulvio

    2012-12-01

    The unsteady pressure field is obtained from time-resolved tomographic particle image velocimetry (Tomo-PIV) measurement within a fully developed turbulent boundary layer at free stream velocity of U ∞ = 9.3 m/s and Reθ = 2,400. The pressure field is evaluated from the velocity fields measured by Tomo-PIV at 10 kHz invoking the momentum equation for unsteady incompressible flows. The spatial integration of the pressure gradient is conducted by solving the Poisson pressure equation with fixed boundary conditions at the outer edge of the boundary layer. The PIV-based evaluation of the pressure field is validated against simultaneous surface pressure measurement using calibrated condenser microphones mounted behind a pinhole orifice. The comparison shows agreement between the two pressure signals obtained from the Tomo-PIV and the microphones with a cross-correlation coefficient of 0.6 while their power spectral densities (PSD) overlap up to 3 kHz. The impact of several parameters governing the pressure evaluation from the PIV data is evaluated. The use of the Tomo-PIV system with the application of three-dimensional momentum equation shows higher accuracy compared to the planar version of the technique. The results show that the evaluation of the wall pressure can be conducted using a domain as small as half the boundary layer thickness (0.5δ99) in both the streamwise and the wall normal directions. The combination of a correlation sliding-average technique, the Lagrangian approach to the evaluation of the material derivative and the planar integration of the Poisson pressure equation results in the best agreement with the pressure measurement of the surface microphones.

  5. Modelling of the Evolving Stable Boundary Layer

    Science.gov (United States)

    Sorbjan, Zbigniew

    2014-06-01

    A single-column model of the evolving stable boundary layer (SBL) is tested for self-similar properties of the flow and effects of ambient forcing. The turbulence closure of the model is diagnostic, based on the K-theory approach, with a semi-empirical form of the mixing length, and empirical stability functions of the Richardson number. The model results, expressed in terms of local similarity scales, are universal functions, satisfied in the entire SBL. Based on similarity expression, a realizability condition is derived for the minimum allowable turbulent heat flux in the SBL. Numerical experiments show that the development of "horse-shoe" shaped, fixed-elevation hodographs in the interior of the SBL around sunrise is controlled by effects imposed by surface thermal forcing.

  6. Geometric invariance of compressible turbulent boundary layers

    Science.gov (United States)

    Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle

    2015-11-01

    A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.

  7. Halogen chemistry in the marine boundary layer

    Science.gov (United States)

    Plane, J. M. C.; Gomez Martin, J. C.; Kumar, R.; Mahajan, A. S.; Oetjen, H.; Saunders, R. W.

    2009-04-01

    Important atmospheric sources of iodine include the air-sea exchange of biogenic iodocarbons, and the emission of I2 from macro-algae. The major source of bromine is the release of bromide ions from sea-salt aerosol. The subsequent atmospheric chemistry of these halogens (1), changes the oxidizing capacity of the marine boundary layer by destroying ozone and changing the hydroxyl radical concentration; (2), reacts efficiently with dimethyl sulphide and mercury (in the polar regions); and (3), leads to the formation of ultra-fine particles which may contribute to cloud condensation nuclei (CCN) and hence affect climate. This paper will report observations of IO, BrO, OIO and I2 made by the technique of differential optical absorption spectroscopy, in several contrasting marine environments: the equatorial mid-Atlantic (Cape Verde); mid-latitude clean coastal (Mace Head, Ireland); polluted coastal (Roscoff, France); and the polar marine boundary layer (Hudson Bay, Canada). Both IO and BrO are observed in all these locations at significant concentrations (> 1 pptv), and so have a major impact on (1) and (2) above. To complement the field campaigns we have also carried out wide-ranging laboratory investigation. A new study of OIO photochemistry shows that absorption in the visible bands between 490 and 630 nm leads to I atom production with a quantum yield of unity, which now means that iodine is a particularly powerful ozone-depleting agent. We have also studied the formation and growth kinetics of iodine oxide nano-particles, and their uptake of water, sulphuric acid and di-carboxylic organic acids, in order to model their growth to a size where they can act as CCN. Their ice-nucleating properties will also be reported.

  8. Turbulent dispersion in cloud-topped boundary layers

    Science.gov (United States)

    Verzijlbergh, R. A.; Jonker, H. J. J.; Heus, T.; Vilöguerau de Arellano, J.

    2009-02-01

    Compared to dry boundary layers, dispersion in cloud-topped boundary layers has received less attention. In this LES based numerical study we investigate the dispersion of a passive tracer in the form of Lagrangian particles for four kinds of atmospheric boundary layers: 1) a dry convective boundary layer (for reference), 2) a "smoke" cloud boundary layer in which the turbulence is driven by radiative cooling, 3) a stratocumulus topped boundary layer and 4) a shallow cumulus topped boundary layer. We show that the dispersion characteristics of the smoke cloud boundary layer as well as the stratocumulus situation can be well understood by borrowing concepts from previous studies of dispersion in the dry convective boundary layer. A general result is that the presence of clouds enhances mixing and dispersion - a notion that is not always reflected well in traditional parameterization models, in which clouds usually suppress dispersion by diminishing solar irradiance. The dispersion characteristics of a cumulus cloud layer turn out to be markedly different from the other three cases and the results can not be explained by only considering the well-known top-hat velocity distribution. To understand the surprising characteristics in the shallow cumulus layer, this case has been examined in more detail by 1) determining the velocity distribution conditioned on the distance to the nearest cloud and 2) accounting for the wavelike behaviour associated with the stratified dry environment.

  9. Fuzzy boundary layer tuning for sliding mode systems as applied to the control of a direct drive robot

    OpenAIRE

    ERBATUR, Kemalettin; Çallı, Berk; Calli, Berk

    2008-01-01

    Chattering in the control signal is a significant problem in sliding mode control (SMC). The boundary layer approach is one of the many modifications proposed in the literature to avoid the chattering. In this approach, instead of the discontinuous sliding mode control, a continuous feedback control law is employed in a boundary layer around the sliding surface. The thickness of the boundary layer is an important design parameter. This paper proposes a fuzzy online tuning method to adjust the...

  10. Study of interaction between shock wave and unsteady boundary layer

    Institute of Scientific and Technical Information of China (English)

    董志勇; 韩肇元

    2003-01-01

    This paper reports theoretical and experimental study of a new type of interaction of a moving shock wave with an unsteady boundary layer. This type of shock wave-boundary layer interaction describes a moving shock wave interaction with an unsteady boundary layer induced by another shock wave and a rarefaction wave. So it is different from the interaction of a stationary shock wave with steady boundary layer, also different from the interaction of a reflected moving shock wave at the end of a shock tube with unsteady boundary layer induced by an incident shock. Geometrical shock dynamics is used for the theoretical analysis of the shock wave-unsteady boundary layer interaction, and a double-driver shock tube with a rarefaction wave bursting diaphragm is used for the experimental investigation in this work.

  11. A Cautionary Note on the Thermal Boundary Layer Similarity Scaling for the Turbulent Boundary Layer

    CERN Document Server

    Weyburne, David

    2016-01-01

    Wang and Castillo have developed empirical parameters for scaling the temperature profile of the turbulent boundary layer flowing over a heated wall in the paper X. Wang and L. Castillo, J. Turbul., 4, 1(2003). They presented experimental data plots that showed similarity type behavior when scaled with their new scaling parameters. However, what was actually plotted, and what actually showed similarity type behavior, was not the temperature profile but the defect profile formed by subtracting the temperature in the boundary layer from the temperature in the bulk flow. We show that if the same data and same scaling is replotted as just the scaled temperature profile, similarity is no longer prevalent. This failure to show both defect profile similarity and temperature profile similarity is indicative of false similarity. The nature of this false similarity problem is discussed in detail.

  12. Slow Manifolds and Multiple Equilibria in Stratocumulus-Capped Boundary Layers

    Directory of Open Access Journals (Sweden)

    Junya Uchida

    2010-12-01

    Full Text Available In marine stratocumulus-capped boundary layers under strong inversions, the timescale for thermodynamic adjustment is roughly a day, much shorter than the multiday timescale for inversion height adjustment. Slow-manifold analysis is introduced to exploit this timescale separation when boundary layer air columns experience only slow changes in their boundary conditions. Its essence is that the thermodynamic structure of the boundary layer remains approximately slaved to its inversion height and the instantaneous boundary conditions; this slaved structure determines the entrainment rate and hence the slow evolution of the inversion height. Slow-manifold analysis is shown to apply to mixed-layer model and large-eddy simulations of an idealized nocturnal stratocumulus- capped boundary layer; simulations with different initial inversion heights collapse onto single relationships of cloud properties with inversion height. Depending on the initial inversion height, the simulations evolve toward a shallow thin-cloud boundary layer or a deep, well-mixed thick cloud boundary layer. In the large-eddy simulations, these evolutions occur on two separate slow manifolds (one of which becomes unstable if cloud droplet concentration is reduced. Applications to analysis of stratocumulus observations and to pockets of open cells and ship tracks are proposed.

  13. The Boundary Layer Interaction with Shock Wave and Expansion Fan

    Institute of Scientific and Technical Information of China (English)

    MaratA.Goldfeld; RomanV.Nestoulia; 等

    2000-01-01

    The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented.They include the study of the shock wave and /or expansion fan action upon the boundary layer,boundary layer sepqartion and its relaxation.Complex events of paired interactions and the flow on compression convex-concave surfaces were studied.The posibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented.Different model configurations for wide range conditions were investigated.Comparison of results for different interactions was carried out.

  14. Direct numerical simulation of turbulent thermal boundary layers

    Science.gov (United States)

    Kong, Hojin; Choi, Haecheon; Lee, Joon Sik

    2000-10-01

    In this paper, a method of generating realistic turbulent temperature fluctuations at a computational inlet is proposed and direct numerical simulations of turbulent thermal boundary layers developing on a flat plate with isothermal and isoflux wall boundary conditions are carried out. Governing equations are integrated using a fully implicit fractional-step method with 352×64×128 grids for the Reynolds number of 300, based on the free-stream velocity and the inlet momentum thickness, and the Prandtl number of 0.71. The computed Stanton numbers for the isothermal and isoflux walls are in good agreement with power-law relations without transient region from the inlet. The mean statistical quantities including root-mean-square temperature fluctuations, turbulent heat fluxes, turbulent Prandtl number, and skewness and flatness of temperature fluctuations agree well with existing experimental and numerical data. A quadrant analysis is performed to investigate the coherence between the velocity and temperature fluctuations. It is shown that the behavior of the wall-normal heat flux is similar to that of the Reynolds shear stress, indicating close correlation between the streamwise velocity and temperature. The effect of different thermal boundary conditions at the wall on the near-wall turbulence statistics is also discussed.

  15. Characteristics of turbulent boundary layer flow over algal biofilm

    Science.gov (United States)

    Murphy, Elizabeth; Barros, Julio; Schultz, Michael; Steppe, Cecily; Flack, Karen; Reidenbach, Matthew

    2015-11-01

    Algal biofilms are an important fouling community on ship hulls, with severe economic consequences due to drag-induced increases in fuel use and cleaning costs. Here, we characterize the boundary layer flow structure in turbulent flow over diatomaceous slime, a type of biofilm. Diatomaceous slime composed of three species of diatoms commonly found on ship hulls was grown on acrylic test plates under shear stress. The slime averages 1.6 mm in thickness and has a high density of streamers, which are flexible elongated growths with a length on the order of 1- 2 mm located at the top of the biofilm that interact with the flow. Fouled acrylic plates were placed in a water tunnel facility specialized for detailed turbulent boundary layer measurements. High resolution Particle Image Velocimetry (PIV) data are analyzed for mean velocity profile as well as local turbulent stresses and turbulent kinetic energy (TKE) production, dissipation and transport. Quadrant analysis is used to characterize the impact of the instantaneous events of Reynolds shear stress (RSS) in the flow. To investigate the coherence of the large-scale motion in the flow two-point correlation analysis is employed. Funding provided by the Office of Naval Research and the National Science Foundation.

  16. Second Law Analysis of the Turbulent Flat Plate Boundary Layer

    Directory of Open Access Journals (Sweden)

    Dragos Isvoranu

    2000-09-01

    Full Text Available

    Until now the second law analysis of turbulent flow relied only on the irreversibilities performed by the mean velocity and mean temperature gradients. Using the Reynolds decomposition of the volumetric entropy generation rate expression we found that the dissipation rates of both, turbulent kinetic energy and fluctuating temperature variance, also represent the irreversibilities of the flow. Applying the above results, the second law analysis of the turbulent boundary layer shows that the maximum values of the "mean motion irreversibilities" (generated by the mean velocity and mean temperature gradient are located at the wall, while the maximum values of the "turbulent irreversibilities" (performed by the dissipation rate of turbulent kinetic energy and fluctuating temperature variance are located in the buffer sublayer. As a consequence, for a given location on the plate, the integral values of the "mean motion irreversibilities" are approximately constant and the "turbulent irreversibilities" grow up with the boundary layer thickness.

    •  This paper was presented at the ECOS’00 Conference in Enschede, July 5-7, 2000

  17. Determination of graphene layer thickness using optical image processing

    Science.gov (United States)

    Cook, Monica; Mani, R. G.

    2015-03-01

    Graphene, a single atomic layer of carbon arranged in a hexagonal lattice structure, is a valuable material in a wide range of research. A significant impediment to graphene research is the need to manually characterize the thickness of high-quality graphene produced via mechanical exfoliation. Traditional methods of characterizing the layer thickness of graphene, including Raman spectroscopy and atomic force microscopy, require expensive equipment and can be damaging to the graphene sample. We examine here a known alternative method for quantitatively determining the layer thickness of graphene on SiO2/Si based on optical image processing, which is quick, inexpensive, and non-invasive. Using RGB images of a candidate graphene sample and a background image, taken with a simple optical microscope and charge-coupled device (CCD) camera, we process the images with an algorithm based on Fresnel's law to obtain the contrast spectrum. Each layer of graphene exhibits a unique contrast spectrum for its particular substrate, which is measured and used for accurate layer identification. We also discuss how this algorithm can be generalized to characterize the thickness of other promising two-dimensional materials as well as more complex structures on a variety of substrates.

  18. Characteristics of the boundary layer of magnetic clouds and a new definition of the cloud boundary

    Institute of Scientific and Technical Information of China (English)

    WEI; Fengsi(魏奉思); LIU; Rui(刘睿); FAN; Quanlin(范全林); FENG; Xueshang(冯学尚)

    2003-01-01

    Based on the analysis of the boundaries of 70 magnetic clouds from 1967 to 1998, and relatively complete spacecraft observations, it is indicated that the magnetic cloud boundaries are boundary layers formed through the interaction between the magnetic clouds and the ambient medium. Most of the outer boundaries of the layers, with relatively high proton temperature, density and plasma β, are magnetic reconnection boundaries, while the inner boundaries, with low proton temperature, proton density and plasma β, separate the main body of magnetic clouds, which has not been affected by the interaction, from the boundary layers. The average time scale of the front boundary layer is 1.7 h and that of the tail boundary layer 3.1 h. It is also found that the magnetic probability distribution function undergoes significant changes across the boundary layers. This new definition, supported by the preliminary numerical simulation in principle, could qualitatively explain the observations of interplanetary magnetic clouds, and could help resolve the controversy in identifying the boundaries of magnetic clouds. Our concept of the boundary layer may provide some understanding of what underlies the observations, and a fresh train of thought in the interplanetary dynamics research.

  19. Green House Gases Flux Model in Boundary Layer

    Science.gov (United States)

    Nurgaliev, Ildus

    Analytical dynamic model of the turbulent flux in the three-layer boundary system is presented. Turbulence is described as a presence of the non-zero vorticity. The generalized advection-diffusion-reaction equation is derived for an arbitrary number of components in the flux. The fluxes in the layers are objects for matching requirements on the boundaries between the layers. Different types of transport mechanisms are dominant on the different levels of the layers.

  20. EXPERIMENTAL STUDY ON TURBULENT BOUNDARY LAYER CHARACTERISTICS OVER STREAMWISE RIBLETS

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-yong; DONG Shou-ping; DU Ya-nan

    2004-01-01

    Measurements of characteristics by means of a two-component Laser Doppler Velocimeter (LDV) were carried out in turbulent boundary layers over both a symmetric V-shaped ribbed plate and a smooth one in a low speed wind tunnel. The present results clearly indicate that the logarithmic velocity profile over the riblets surface is shifted upward with a 30.9% increase in the thickness of the viscous sublayer. Also a change in the log-law region is found. And the maximum value of streamwise velocity fluctuations is reduced by approximately 17%. The skewness and flatness factors do not show any change besides those in the region of y+<0.6. It is evident that the Reynolds shear stress over the riblets is reduced. Further more, in log-law region, the Reynolds shear stress has a larger reduction of up to 18%.

  1. Effects of large-scale free stream turbulence on a turbulent boundary layer

    Science.gov (United States)

    Sharp, N. S.; Neuscamman, S.; Warhaft, Z.

    2009-09-01

    Results of a wind tunnel experiment in which there are systematic variations of free stream turbulence above a flat-plate boundary layer are presented. Upstream of the plate, an active grid generates free stream turbulence varying in intensity from 0.25% to 10.5%. The momentum thickness Reynolds number of the boundary layer varies from 550 to nearly 3000. In all cases, the ratio of the free stream turbulence length scale to the boundary layer depth is greater than unity. Hotwire measurements show that, at high turbulence intensities, the effects of the free stream turbulence extend deep into the boundary layer, affecting the wall stress as well as the small-scale (derivative) statistics. Premultiplied energy spectra show a double peak. At very low free stream turbulence intensities these peaks are associated with the inner and outer scales of the turbulent boundary layer, but at high turbulence intensities the free stream energy peak dominates over the boundary layer's outer scale. The implications of the effect of the large free stream turbulence scales on the small, near-wall scales is discussed with reference to recent high Reynolds number experiments in a turbulent boundary layer without free stream turbulence [Hutchins and Marusic, Philos. Trans. R. Soc. London, Ser. A 365, 647 (2007)].

  2. Dependence of piezoelectric properties on layer thickness for multilayer actuators

    NARCIS (Netherlands)

    Groen, W.A.; Prijs, K.; Saeed, S.

    2010-01-01

    In general, it has been reported that the piezoelectric properties in multilayer actuators decrease for layer thicknesses below 20 microns. This has been investigated for PXE55 which is a material based on PLZT-Pb(Mg 1/2W1/2)O3 and PG01 which is a low sintering version of this material. Results show

  3. Numerical simulations of two-fluid boundary layers beneath free-stream turbulence

    Science.gov (United States)

    Jung, Seo Yoon; Zaki, Tamer

    2011-11-01

    In two-fluid boundary layers, a wall-film is sheared by an external stream with different density and viscosity. As a result, the flow becomes prone to both shear and interfacial instabilities. In this study, the evolution of two-fluid boundary layers beneath free-stream vortical forcing is investigated using DNS. The simulations employ a conservative level-set technique in conjunction with a ghost fluid approach in order to capture a sharp interface. The wall film is less viscous than the outer flow, and its thickness is 10 % of that of the boundary layer at the inlet. The choice of viscosity ratio influences the spatial development of disturbances within the boundary layer. The spatial growth of instabilities is examined into the non-linear regime, which includes the region of breakdown to turbulence. We demonstrate that, at moderate levels of free-stream turbulence intensities, appropriate choice of the viscosity ratio can yield considerable transition delay.

  4. High frequency ground temperature fluctuation in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Kleissl, J.; Lothon, M.; Lohou, F.; Pardyjak, E.; Saïd, F.; Cuxart, J.; Steeneveld, G.J.; Yaguë, C.; Derrien, S.; Alexander, D.; Villagrasa, D.M.

    2012-01-01

    To study influence of the turbulent structures in the convective boundary layer (CBL) on the ground temperature, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) observational campaign, high frequency ground temperature was recorded through infra-red imagery from 13 June - 8 J

  5. The influence of varying layer thicknesses on the color predictability of two different composite layering concepts

    NARCIS (Netherlands)

    G. Khashayar; A. Dozic; C.J. Kleverlaan; A.J. Feilzer

    2014-01-01

    Objective Optical properties of teeth are mimicked by composite layering techniques by combining a relatively opaque layer (dentin) with more translucent layers (enamel). However, the replacing material cannot always optically imitate the tooth when applied in the same thickness as that of the natur

  6. Boundary Layer to a System of Viscous Hyperbolic Conservation Laws

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, we investigate the large-time behavior of solutions to the initial-boundary value problem for nxn hyperbolic system of conservation laws with artificial viscosity in the half line (0, ∞). We first show that a boundary layer exists if the corresponding hyperbolic part contains at least one characteristic field with negative propagation speed. We further show that such boundary layer is nonlinearly stable under small initial perturbation. The proofs are given by an elementary energy method.

  7. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R. W.

    2015-03-25

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.

  8. Role of boundary layer processes on the mixed layer CO2-budget

    OpenAIRE

    D. Pino; Vilà-Guerau de Arellano, J.

    2010-01-01

    The diurnal and vertical variability of temperature, humidity and specially CO2 in the atmospheric boundary layer is studied by combining detailed observations taken at Cabauw (The Netherlands), Large-Eddy simulations (LES) and mixed layer theory. The research focus on the role played by the entrainment and other boundary layer driven processes on the distribution and diurnal evolution of CO2 in the boundary layer. The relative importance of this entrained air to ventilate CO2 will be analyze...

  9. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    Science.gov (United States)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  10. Transport of gaseous pollutants by convective boundary layer around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra;

    2015-01-01

    This study investigates the ability of the human convective boundary layer to transport pollution in a quiescent indoor environment. The impact of the source location in the vicinity of a human body is examined in relation to pollution distribution in the breathing zone and the thickness of the p...

  11. Characterization of the Martian Convective Boundary Layer

    OpenAIRE

    Martínez, Germán; Valero Rodríguez, Francisco; Vázquez Martínez, Luis

    2009-01-01

    The authors have carried out an extensive characterization of the Martian mixed layer formed under convective conditions. The values of the mixed layer height, convective velocity scale, convective temperature scale, mean temperature standard deviation, mean horizontal and vertical velocity standard deviations, and mean turbulent viscous dissipation rate have been obtained during the strongest convective hours for the mixed layer. In addition, the existing database of the surface layer has be...

  12. Effects of free layer materials and thickness on TMR behaviour in magnetic tunnel junctions

    NARCIS (Netherlands)

    Lim, Woo Chang; Park, Byong Guk; Bae, Ji Young; Lee, Taek Dong

    2004-01-01

    In order to study the effects of free layer thickness on MR ratio and switching field, we changed the free layer material and its thickness. In the regime of an extremely thin free layer, both MR ratio and switching field decreased with decreasing free layer thickness. There is a critical thickness,

  13. Influence of window layer thickness on double layer antirefiection coating for triple junction solar cells*

    Institute of Scientific and Technical Information of China (English)

    Wang Lijuan; Zhan Feng; Yu Ying; Zhu Yan; Liu Shaoqing; Huang Shesong; Ni Haiqiao; Niu Zhichuan

    2011-01-01

    The optimization of a SiO2/TiO2, SiO2/ZnS double layer antireflection coating (ARC) on Ga0.5ln0.5P/ln0.02Ga0.98As/Ge solar cells for terrestrial application is discussed. The Al0.5In0.5P window layer thickness is also taken into consideration. It is shown that the optimal parameters of double layer ARC vary with the thickness of the window layer.

  14. Influence of window layer thickness on double layer antireflection coating for triple junction solar cells

    International Nuclear Information System (INIS)

    The optimization of a SiO2/TiO2, SiO2/ZnS double layer antireflection coating (ARC) on Ga0.5In0.5P/In0.02Ga0.98As/Ge solar cells for terrestrial application is discussed. The Al0.5In0.5P window layer thickness is also taken into consideration. It is shown that the optimal parameters of double layer ARC vary with the thickness of the window layer. (semiconductor technology)

  15. Boundary Layer Ventilation Processes During a High Pressure Event

    Science.gov (United States)

    Gray, S. L.; Dacre, H. F.; Belcher, S. E.

    2006-12-01

    It is often assumed that ventilation of the atmospheric boundary layer is weak during high pressure events. But is this always true? Here we investigate the processes responsible for ventilation of the atmospheric boundary layer during a high pressure event that occured on the 9 May 2005 using the UK Met Office Unifed Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include a sea breeze circulation, turbulent mixing across the top of the boundary layer followed by large-scale ascent, and shallow convection. Vertical distributions of tracer are validated with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree impressively well. Budget calculations of tracers are performed in order to determine the relative importance of these ventilation processes. The sea breeze circulation was found to ventilate 26% of the boundary layer tracer by sunset of which 2% was above 2km. A combination of the sea breeze circulation and turbulent mixing ventilated 46% of the boundary layer tracer, of which 10% was above 2km. Finally, the sea breeze circulation, turbulent mixing and shallow convection processes together ventilated 52% of the tracer into the free troposphere, of which 26% was above 2km. Hence this study shows that signicant ventilation of the boundary layer can occur during high pressure events; turbulent mixing and convection processes can double the amount of pollution ventilated from the boundary layer.

  16. Bristled shark skin: a microgeometry for boundary layer control?

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A W; Hidalgo, P; Westcott, M [Aerospace Engineering and Mechanics Department, University of Alabama, Box 870280, Tuscaloosa, AL 35487 (United States); Motta, P [Biology Department, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)], E-mail: alang@eng.ua.edu

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  17. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    Energy Technology Data Exchange (ETDEWEB)

    Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G., E-mail: zgdeng@gmail.com

    2014-10-15

    Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  18. Characterization of a Thick Ozone Layer in Mars' Past

    CERN Document Server

    Deighan, Justin

    2013-01-01

    All three terrestrial planets with atmospheres support O3 layers of some thickness. While currently only that of Earth is substantial enough to be climatically significant, we hypothesize that ancient Mars may also have supported a thick O3 layer during volcanically quiescent periods whenthe atmosphere was oxidizing. To characterize such an O3 layer and determine the significance of its fedback on the Martian climate, we apply a 1D line-by-line radiative-convective model under clear sky conditions coupled to a simple photochemical model. The parameter space of atmospheric pressure, insolation, and O2 mixing fraction are explored to find conditions favorable to O3 formation. We find that a substantial O3 layer is most likely for surface pressures of 0.3-1.0 bar, and could produce an O3 column comparable to that of modern Earth for O2 mixing fractions approaching 1%. However, even for thinner O3 layers, significant UV shielding of the surface occurs along with feedback on both the energy budget and photochemist...

  19. Estimation of Damping in Layered Welded Structures with Unequal Thickness

    Directory of Open Access Journals (Sweden)

    Bhagat Singh

    2012-01-01

    Full Text Available The present work is focused on the study of damping mechanism in layered and welded cantilever beams with unequal thickness. It is observed that a number of vital parameters such as: thickness ratio, pressure distribution characteristics, relative slip and kinematic co-efficient of friction at the interfaces, initial amplitude of excitation, length and thickness of the beam specimen govern the damping capacity of these structures. Experiments have been conducted in order to study the effect of these parameters and validate the developed damping model. The damping model of the structure is found to be in fairly good agreement with the measured data. Finally, the results for the damping capacity are discussed and rationalized.

  20. Blow-up and control of marginally separated boundary layers.

    Science.gov (United States)

    Braun, Stefan; Kluwick, Alfred

    2005-05-15

    Interactive solutions for steady two-dimensional laminar marginally separated boundary layers are known to exist up to a critical value Gamma(c) of the controlling parameter (e.g. the angle of attack of a slender airfoil) Gamma only. Here, we investigate three-dimensional unsteady perturbations of such boundary layers, assuming that the basic flow is almost critical, i.e. in the limit Gamma(c)-Gamma-->0. It is then shown that the interactive equations governing such perturbations simplify significantly, allowing, among others, a systematic study of the blow-up phenomenon observed in earlier investigations and the optimization of devices used in boundary-layer control.

  1. Stable Boundary Layer Education (STABLE) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region, a low-level jet. To advance our understanding of the nocturnal stable boundary layer, high temporal and vertical resolution data on the temperature and wind properties are needed, along with both large-eddy simulation and cloud-resolving modeling.

  2. Size distributions of boundary-layer clouds

    Energy Technology Data Exchange (ETDEWEB)

    Stull, R.; Berg, L.; Modzelewski, H. [Univ. of Wisconsin, Madison, WI (United States)

    1996-04-01

    Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.

  3. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  4. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    International Nuclear Information System (INIS)

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated

  5. Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities

    Science.gov (United States)

    Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei

    2010-01-01

    Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.

  6. Reactive boundary layers in metallic rolling contacts

    International Nuclear Information System (INIS)

    thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 - 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 - 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates of the

  7. Reactive boundary layers in metallic rolling contacts

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, John

    2016-05-01

    more thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 - 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 - 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates

  8. Study of effect of a smooth hump on hypersonic boundary layer instability

    Science.gov (United States)

    Park, Donghun; Park, Seung O.

    2016-05-01

    Effect of a two-dimensional smooth hump on linear instability of hypersonic boundary layer is studied by using parabolized stability equations. Linear evolution of mode S over a hump is analyzed for Mach 4.5 and 5.92 flat plate and Mach 7.1 sharp cone boundary layers. Mean flow for stability analysis is obtained by solving the parabolized Navier-Stokes equations. Hump with height smaller than local boundary layer thickness is considered. The case of flat plate and sharp cone without the hump are also studied to provide comparable data. For flat plate boundary layers, destabilization and stabilization effect is confirmed for hump located at upstream and downstream of synchronization point, respectively. Results of parametric studies to examine the effect of hump height, location, etc., are also given. For sharp cone boundary layer, stabilization influence of hump is also identified for a specific range of frequency. Stabilization influence of hump on convective instability of mode S is found to be a possible cause of previous experimental observations of delaying transition in hypersonic boundary layers.

  9. Boundary Layer Ventilation by Convection and Coastal Processes

    Science.gov (United States)

    Dacre, H.

    2008-12-01

    Several observational studies measuring aerosol in the atmosphere have found multiple aerosol layers located above the marine boundary layer. It is hypothesized that the existence of these layers is influenced by the diurnal variation in the structure of the upwind continental boundary layer. Furthermore, collision between a sea breeze and the prevailing wind can result in enhanced convection at the coast which can also lead to elevated layers of pollution. In this study we investigate the processes responsible for ventilation of the atmospheric boundary layer near the coast using the UK Met Office Unified Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include shallow convection, a sea breeze circulation and coastal outflow. Vertical distributions of tracer at the coast are validated qualitatively with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree well.

  10. Change of Surface Roughness and Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1978-01-01

    The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent ...... numerical results from higher-order closure models, it is found that, even at a downwind distance such that the internal boundary layer has grown to the full height of the planetary boundary layers, the surface stress still considerably exceeds the equilibrium value......The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent...

  11. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    , is newly extended to incorporate a transitional variant of the standard two-equation k–ω turbulence closure. The developed numerical model is successfully validated against recent experimental measurements involving transient solitary wave boundary layers as well as for oscillatory flows, collectively......This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scalewaves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...

  12. On Cauchy conditions for asymmetric mixed convection boundary layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Amaouche, Mustapha [Laboratoire de Physique Theorique, Universite de Bejaia (Algeria); Kessal, Mohand [Departement Transport et Equipement Petrolier, Faculte des Hydrocarbures et de la Chimie, Universite de Boumerdes, 35000, Boumerdes (Algeria)

    2003-06-01

    The fundamental question of how and where does an asymmetric mixed convection boundary layer flow around a heated horizontal circular cylinder begin to develop is raised. We first transform the classical boundary layer equations by using an integral method of Karman-Pohlhausen type and obtain two coupled equations governing the evolutions of the dynamic and thermal boundary layers. Because of its global character, the implemented method allows to bypass the difficulty of downstream-upstream interactions. Cauchy conditions characterizing the starting of the boundary layers are found; they are obtained in a surprisingly simple manner for the limiting cases corresponding to Pr=1, Pr{yields}0 and Pr{yields}{infinity}. Otherwise, these conditions can be found by using a prediction correction algorithm. Some numerical experiments are finally performed in order to illustrate the theory. (authors)

  13. High-resolution PIV measurements of a transitional shock wave-boundary layer interaction

    Science.gov (United States)

    Giepman, R. H. M.; Schrijer, F. F. J.; van Oudheusden, B. W.

    2015-06-01

    This study investigates the effects of boundary layer transition on an oblique shock wave reflection. The Mach number was 1.7, the unit Reynolds number was 35 × 106 m-1, and the pressure ratio over the interaction was 1.35. Particle image velocimetry is used as the main flow diagnostics tool, supported by oil-flow and Schlieren visualizations. At these conditions, the thickness of the laminar boundary layer is only 0.2 mm, and seeding proved to be problematic as practically no seeding was recorded in the lower 40 % of the boundary layer. The top 60 % could, however, still be resolved with good accuracy and is found to be in good agreement with the compressible Blasius solution. Due to the effects of turbulent mixing, the near-wall seeding deficiency disappears when the boundary layer transitions to a turbulent state. This allowed the seeding distribution to be used as an indicator for the state of the boundary layer, permitting to obtain an approximate intermittency distribution for the boundary layer transition region. This knowledge was then used for positioning the oblique shock wave in the laminar, transitional (50 % intermittency) or turbulent region of the boundary layer. Separation is only recorded for the laminar and transitional interactions. For the laminar interaction, a large separation bubble is found, with a streamwise length of 96. The incoming boundary layer is lifted over the separation bubble and remains in a laminar state up to the impingement point of the shock wave. After the shock, transition starts and a turbulent profile is reached approximately 80-90 downstream of the shock. Under the same shock conditions, the transitional interaction displays a smaller separation bubble (43), and transition is found to be accelerated over the separation bubble.

  14. DESIGN OF TWO-DIMENSIONAL SUPERSONIC TURBINE ROTOR BLADES WITH BOUNDARY-LAYER CORRECTION

    Science.gov (United States)

    Goldman, L. J.

    1994-01-01

    A computer program has been developed for the design of supersonic rotor blades where losses are accounted for by correcting the ideal blade geometry for boundary layer displacement thickness. The ideal blade passage is designed by the method of characteristics and is based on establishing vortex flow within the passage. Boundary-layer parameters (displacement and momentum thicknesses) are calculated for the ideal passage, and the final blade geometry is obtained by adding the displacement thicknesses to the ideal nozzle coordinates. The boundary-layer parameters are also used to calculate the aftermixing conditions downstream of the rotor blades assuming the flow mixes to a uniform state. The computer program input consists essentially of the rotor inlet and outlet Mach numbers, upper- and lower-surface Mach numbers, inlet flow angle, specific heat ratio, and total flow conditions. The program gas properties are set up for air. Additional gases require changes to be made to the program. The computer output consists of the corrected rotor blade coordinates, the principal boundary-layer parameters, and the aftermixing conditions. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 7094. This program was developed in 1971.

  15. A note on boundary-layer friction in baroclinic cyclones

    CERN Document Server

    Boutle, I A; Belcher, S E; Plant, R S

    2008-01-01

    The interaction between extratropical cyclones and the underlying boundary layer has been a topic of recent discussion in papers by Adamson et. al. (2006) and Beare (2007). Their results emphasise different mechanisms through which the boundary layer dynamics may modify the growth of a baroclinic cyclone. By using different sea-surface temperature distributions and comparing the low-level winds, the differences are exposed and both of the proposed mechanisms appear to be acting within a single simulation.

  16. Tropical boundary layer equilibrium in the last ice age

    Science.gov (United States)

    Betts, Alan K.; Ridgway, W.

    1992-01-01

    A radiative-convective boundary layer model is used to assess the effect of changing sea surface temperature, pressure, wind speed, and the energy export from the tropics on the boundary layer equilibrium equivalent potential temperature. It remains difficult to reconcile the observations that during the last glacial maximum (18,000 yr BP) the snowline on the tropical mountains fell 950 m, while the tropical sea surface temperatures fell only 1-2 K.

  17. Numerical simulation of turbulent atmospheric boundary layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Bennes, L.; Bodnar, T.; Kozel, K.; Sladek, I. [Czech Technical Univ., Prague (Czech Republic). Dept. of Technical Mathematics; Fraunie, P. [Universite Toulon et du Var, La Garde (France). Lab. de Sondages Electromagnetiques de l' Environment Terrestre

    2001-07-01

    The work deals with the numerical solution of viscous turbulent steady flows in the atmospheric boundary layer including pollution propagation. For its description we use two different mathematical models: - a model based on the Reynolds averaged Navier-Stokes equations for incompressible flows - a model based on a system of boundary layer equations. These systems are completed by two transport equations for the concentration of passive pollutants and the potential temperature in conservative form, respectively, and by an algebraic turbulence model. (orig.)

  18. Theoretical investigation on shocklets in compressible boundary layers

    Institute of Scientific and Technical Information of China (English)

    袁湘江; 刘智勇; 沈洁; 李国良

    2014-01-01

    By the shock relationships, the wavy characteristics and the forming condi-tions of a shock wave are analyzed. The wavy characteristics of an Euler system are stud-ied theoretically. The present research focuses on the wavy characteristics of Tollmien-Schlichting (T-S) waves, the excitation conditions of shocklets in compressible boundary layers, and the viscous effect on shock. The possibility of existence of shocklets in the compressible boundary layer and the physical mechanism of formation are theoretically interpreted.

  19. LES model intercomparisons for the stable atmospheric boundary layer

    NARCIS (Netherlands)

    Moene, A.F.; Baas, P.; Bosveld, F.C.; Basu, S.

    2011-01-01

    Model intercomparisons are one possible method to gain confidence in Large-Eddy Simulation (LES) as a viable tool to study turbulence in the atmospheric boundary-layer. This paper discusses the setup and some results of two intercomparison cases focussing on the stably stratified nocturnal boundary-

  20. BOUNDARY LAYER AND VANISHING DIFFUSION LIMIT FOR NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    彭艳

    2014-01-01

    In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as the diffusion parameterαgoes to zero.

  1. Structure and Growth of the Marine Boundary Layer

    Science.gov (United States)

    Mccumber, M.

    1984-01-01

    LANDSAT visible imagery and a one-dimensional Lagrangian boundary layer model were used to hypothesize the nature and the development of the marine boundary layer during a winter episode of strong seaward cold air advection. Over-water heating and moistening of the cold, dry continental air is estimable from linear relations involving horizontal gradients of the near-surface air temperature and humidity. A line of enhanced convection paralleling the Atlantic U.S. coast from south of New York Bay to the vicinity of Virginia Beach, VA was attributed to stronger convergence at low levels. This feature was characterized as a mesoscale front. With the assistance of a three-dimensional mesoscale boundary layer model, initialized with data obtained from the MASEX, the marine boundary layer can be mapped over the entire Atlantic coastal domain and the evolution of the boundary layer can be studied as a function of different characteristics of important surface level forcings. The effects on boundary layer growth due to the magnitude and pattern of sea surface temperature, to the shape of the coastline, and to atmospheric conditions, such as the orientation of the prevailing wind are examined.

  2. Turbulent Boundary Layer at Large Re

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2016-03-01

    Full Text Available The fluids as deformable bodies without own shape, when starting from rest, experience interactions between the flowing fluid and the physical surfaces marking the bounds of flow. These interactions are a kind of impact process where there is a momentum exchange between two colliding bodies, i.e. the flow and its boundary surfaces. Within a short time of contact a post-impact shear flow occurs where two main effects are triggered off by the flow-induced collision: dramatic redistribution of the momentum and the boundary vorticity followed by the shear stress/viscosity change in the microstructure of the fluid which at the beginning behaves as linear reactive medium and latter as nonlinear dispersive medium. The disturbance of the starting flow induces the entanglement of the wall-bounded flow in the form of point-vortices or concentrated vorticity balls whence waves are emitted and propagated through flow field. The paper develops a wave mechanism for the transport of the concentrated boundary vorticity, directly related to the fascinating turbulence phenomenon, using the torsion concept of vorticity filaments associated with the hypothesis of thixotropic/nonlinear viscous fluid.

  3. Boundary Layer Flow Over a Moving Wavy Surface

    Science.gov (United States)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a

  4. Tensile strength of thin resin composite layers as a function of layer thickness.

    Science.gov (United States)

    Alster, D; Feilzer, A J; De Gee, A J; Davidson, C L

    1995-11-01

    As a rule, cast restorations do not allow for free curing contraction of the resin composite luting cement. In a rigid situation, the resulting contraction stress is inversely proportional to the resin layer thickness. Adhesive technology has demonstrated, however, that thin joints may be considerably stronger than thicker ones. To investigate the effects of layer thickness and contraction stress on the tensile strength of resin composite joints, we cured cylindrical samples of a chemically initiated resin composite (Clearfil F2) in restrained conditions and subsequently loaded them in tension. The samples had a diameter of 5.35 mm and thicknesses of 50, 100, 200, 300, 400, 500, 600, and 700 microns, 1.4 mm, or 2.7 mm. None of the samples fractured due to contraction stress prior to tensile loading. Tensile strength decreased gradually from 62 +/- 2 MPa for the 50-microns layer to 31 +/- 4 MPa for the 2.7-mm layer. The failures were exclusively cohesive in resin for layers between 50 and 400 microns thick. Between 500 and 700 microns, the failures were cohesive or mixed adhesive/cohesive, while the 1.4- and 2.7-mm layers always failed in a mixed adhesive/cohesive mode. For the resin composite tested, the contraction stress did not endanger the cohesive strength. It was concluded that if adhesion to tooth structure were improved, thinner adhesive joints might enhance the clinical success of luted restorations.

  5. Structure of a mushy layer at the inner core boundary

    Science.gov (United States)

    Deguen, R.; Huguet, L.; Bergman, M. I.; Labrosse, S.; Alboussiere, T.

    2015-12-01

    We present experimental results on the solidification of ammonium chloride from an aqueous solution, yielding a mushy zone, under hyper-gravity. A commercial centrifuge has been equipped with a slip-ring so that electric power, temperature and ultrasonic signals could be transmitted between the experimental setup and the laboratory. A Peltier element provides cooling at the bottom of the cell. Probes monitor the temperature along the height of the cell. Ultrasound measurements (2 to 6 MHz) is used to detect the position of the front of the mushy zone and to determine attenuation in the mush. A significant increase of solid fraction (or decrease of mushy layer thickness) and attenuation in the mush is observed as gravity is increased. Kinetic undercooling is significant in our experiments and has been included in a macroscopic mush model. The other ingredients of the model are conservation of energy and chemical species, along with heat/species transfer between the mush and the liquid phase: boundary-layer exchanges at the top of the mush and bulk convection within the mush (formation of chimneys). The outputs of the model compare well with our experiments. We have then run the model in a range of parameters suitable for the Earth's inner core, which has shown the role of bulk mush convection for the inner core and the reason why a solid fraction very close to unity should be expected. We have also run melting experiments: after crystallization of a mush, the liquid has been heated from above until the mush started to melt, while the bottom cold temperature was maintained. These melting experiments were motivated by the possible local melting at the inner core boundary that has been invoked to explain the formation of the anomalously slow F-layer at the bottom of the outer core or inner core hemispherical asymmetry. Oddly, the consequences of melting are an increase in solid fraction and a decrease in attenuation. It is hence possible that surface seismic velocity

  6. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    Science.gov (United States)

    Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.

    2014-10-01

    A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  7. Aerodynamic heating in gaps of thermal protection system tile arrays in laminar and turbulent boundary layers

    Science.gov (United States)

    Avery, D. E.

    1978-01-01

    An experimental heat-transfer investigation was conducted on two staggered arrays of metallic tiles in laminar and turbulent boundary layers. This investigation was conducted for two purposes. The impingement heating distribution where flow in a longitudinal gap intersects a transverse gap and impinges on a downstream blocking tile was defined. The influence of tile and gap geometries was analyzed to develop empirical relationships for impingement heating in laminar and turbulent boundary layers. Tests were conducted in a high temperature structures tunnel at a nominal Mach number of 7, a nominal total temperature of 1800 K, and free-stream unit Reynolds numbers from 1.0 x 10 million to 4.8 x 10 million per meter. The test results were used to assess the impingement heating effects produced by parameters that include gap width, longitudinal gap length, slope of the tile forward-facing wall, boundary-layer displacement thickness, Reynolds number, and local surface pressure.

  8. Theoretical Analysis of Stationary Potential Flows and Boundary Layers at High Speed

    Science.gov (United States)

    Oswaititsch, K.; Wieghardt, K.

    1948-01-01

    The present report consists of two parts. The first part deals with the two-dimensional stationary flow in the presence of local supersonic zones. A numerical method of integration of the equation of gas dynamics is developed. Proceeding from solutions at great distance from the body the flow pattern is calculated step by step. Accordingly the related body form is obtained at the end of the calculation. The second part treats the relationship between the displacement thickness of laminar and turbulent boundary layers and the pressure distribution at high speeds. The stability of the boundary layer is investigated, resulting in basic differences in the behavior of subsonic and supersonic flows. Lastly, the decisive importance of the boundary layer for the pressure distribution, particularly for thin profiles, is demonstrated.

  9. Plasma boundary layer and magnetopause layer of the earth's magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, T.E.

    1979-06-01

    IMP 6 observations of the plasma boundary layer (PBL) and magnetopause layer (MPL) of the earth's magnetosphere indicate that plasma in the low-latitude portion of the PBL is supplied primarily by direct transport of magnetosheath plasma across the MPL and that this transport process is relatively widespread over the entire sunward magnetospheric boundary.

  10. Benthic boundary layer. IOS observational and modelling programme

    International Nuclear Information System (INIS)

    Near bottom currents, measured at three sites in the N.E. Atlantic, reveal the eddying characteristics of the flow. Eddies develop, migrate and decay in ways best revealed by numerical modelling simulations. Eddies control the thickness of the bottom mixed layer by accumulating and thickening or spreading and thinning the bottom waters. At the boundaries of eddies benthic fronts form providing a path for upward displacement of the bottom water. An experiment designed to estimate vertical diffusivity is performed. The flux of heat into the bottom of the Iberian basin through Discovery Gap is deduced from year long current measurements. The flux is supposed balanced by geothermal heating through the sea floor and diapycnal diffusion in the water. A diffusivity of 1.5 to 4 cm2 s-1 is derived for the bottom few hundred meters of the deep ocean. Experiments to estimate horizontal diffusivity are described. If a tracer is discharged from the sea bed the volume of sea water in which it is found increases with time and after 20 years will fill an ocean basin of side 1000 km to a depth of only 1 to 2 km. (author)

  11. Turbulent boundary layer over a convergent and divergent superhydrophobic surface

    Science.gov (United States)

    Nadeem, Muhammad; Hwang, Jinyul; Sung, Hyung Jin

    2015-11-01

    Direct numerical simulation (DNS) of spatially developing turbulent boundary layer (TBL) over a convergent and divergent superhydrophobic surface (SHS) was performed. The convergent and divergent SHS was aligned in the streamwise direction. The SHS was modeled as a pattern of slip and no-slip surfaces. For comparison, DNS of TBL over a straight SHS was also carried out. The momentum thickness Reynolds number was varied from 800 to 1400. The gas fraction of the convergent and divergent SHS was the same as that of the straight SHS, keeping the slip area constant. The slip velocity in the convergent SHS was higher than that of the straight SHS. An optimal streamwise length of the convergent and divergent SHS was obtained. The convergent and divergent SHS gave more drag reduction than the straight SHS. The convergent and divergent SHS led to the modification of near wall-turbulent structures, resembling the narrowing and widening streaky structures near the wall. The convergent and divergent SHS had a relatively larger damping effect on near-wall turbulence than the straight SHS. These observations will be further analyzed statistically to demonstrate the effect of the convergent and divergent SHS on the interaction of inner and outer regions of TBL.

  12. Boundary Layers Associated with a Coupled Navier-Stokes/Allem-Cahn System: The Non-Characteristic Boundary Case

    Institute of Scientific and Technical Information of China (English)

    XIE Xiaoqiang

    2012-01-01

    The goal of this article is to study the boundary layer of Navier-Stokes/Allen-Cahn system in a channel at small viscosity.We prove that there exists a boundary layer at the outlet(down-wind)of thickness v,where v,is the kinematic viscosity.The convergence in L2 of the solutions of the Navier-Stokes/Allen-Cahn equations to that of the Euler/Allen-Cahn equations at the vanishing viscosity was established.In two dimensional case we are able to derive the physically relevant uniform in space and time estimates,which is derived by the idea of better control on the tangential derivative and the use of an anisotropic Sobolve imbedding.

  13. Response of neutral boundary-layers to changes of roughness

    DEFF Research Database (Denmark)

    Sempreviva, Anna Maria; Larsen, Søren Ejling; Mortensen, Niels Gylling;

    1990-01-01

    stratification, and the surface roughness is the main parameter. The analysis of wind data and two simple models, a surface layer and a planetary boundary layer (PBL) model, are described. Results from both models are discussed and compared with data analysis. Model parameters have been evaluated and the model......When air blows across a change in surface roughness, an internal boundary layer (IBL) develops within which the wind adapts to the new surface. This process is well described for short fetches, > 1 km. However, few data exist for large fetches on how the IBL grows to become a new equilibrium...... boundary layer where again the drag laws can be used to estimate the surface wind. To study this problem, data have been sampled for two years from four 30-m meteorological masts placed from 0 to 30 km inland from the North Sea coast of Jutland in Denmark. The present analysis is limited to neutral...

  14. Analysis of diabatic flow modification in the internal boundary layer

    DEFF Research Database (Denmark)

    Floors, Rogier; Gryning, Sven-Erik; Pena Diaz, Alfredo;

    2011-01-01

    is controlled by a combination of both downstream and upstream stability and surface roughness conditions. A model based on a diffusion analogy is able to predict the internal boundary layer height well. Modeling the neutral and long-term wind profile with a 3 layer linear interpolation scheme gives good......Measurements at two meteorological masts in Denmark, Horns Rev in the sea and Høvsøre near the coastline on land, are used to analyze the behaviour of the flow after a smooth-to-rough change in surface conditions. The study shows that the wind profile within the internal boundary layer...... results at Høvsøre. Based on a comparison with a numerical model and the measurements, the constants in the interpolation scheme are slightly adjusted, which yields an improvement for the description of the wind profile in the internal boundary layer....

  15. Coherent structures in wave boundary layers. Part 1. Oscillatory motion

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen

    2010-01-01

    This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i...... spots, isolated arrowhead-shaped areas close to the bed in an otherwise laminar boundary layer where the flow ‘bursts’ with violent oscillations. The emergence of the turbulent spots marks the onset of turbulence. Turbulent spots cause single or multiple violent spikes in the bed shear stress signal......) Vortex tubes, essentially two-dimensional vortices close to the bed extending across the width of the boundary-layer flow, caused by an inflectional-point shear layer instability. The imprint of these vortices in the bed shear stress is a series of small, insignificant kinks and dips. (ii) Turbulent...

  16. Boundary-layer control by electric fields A feasibility study

    CERN Document Server

    Mendes, R V

    1998-01-01

    A problem of great concern in aviation and submarine propulsion is the control of the boundary layer and, in particular, the methods to extend the laminar region as a means to decrease noise and fuel consumption. In this paper we study the flow of air along an airfoil when a layer of ionized gas and a longitudinal electric field are created in the boundary layer region. By deriving scaling solutions and more accurate numerical solutions we discuss the possibility of achieving significant boundary layer control for realistic physical parameters. Practical design formulas and criteria are obtained. We also discuss the perspectives for active control of the laminar-to-turbulent transition fluctuations by electromagnetic field modulation.

  17. Definition of Turbulent Boundary-Layer with Entropy Concept

    Directory of Open Access Journals (Sweden)

    Zhao Rui

    2016-01-01

    Full Text Available The relationship between the entropy increment and the viscosity dissipation in turbulent boundary-layer is systematically investigated. Through theoretical analysis and direct numerical simulation (DNS, an entropy function fs is proposed to distinguish the turbulent boundary-layer from the external flow. This approach is proved to be reliable after comparing its performance in the following complex flows, namely, low-speed airfoil flows with different wall temperature, supersonic cavity-ramp flow dominated by the combination of free-shear layer, larger recirculation and shocks, and the hypersonic flow past an aeroplane configuration. Moreover, fs is deduced from the point of energy, independent of any particular turbulent quantities. That is, this entropy concept could be utilized by other engineering applications related with turbulent boundary-layer, such as turbulence modelling transition prediction and engineering thermal protection.

  18. Vortex Generators to Control Boundary Layer Interactions

    Science.gov (United States)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  19. An experimental investigation of the three-dimensional boundary layer on a rotating disk

    Science.gov (United States)

    Littell, Howard Steven

    The velocity field above a large spinning disk has been studied using pressure probes and hotwire anemometers. The flowfield consists of a three-dimensional boundary layer due to a crossflow caused by centrifugal forces. The disk was 1 m in diameter and was spun at speeds up to 1500 rpm, giving momentum thickness Reynolds numbers in excess of 6000. The mean flow in both the laminar and turbulent regimes compares well with previous studies of 'infinite' smooth rotating disks. All six Reynolds stresses and the ten triple products have been measured using established crosswire anemometry techniques. These results are compared to previous three-dimensional boundary layer measurements and several key differences are noted. The ratio of the shear stress vector magnitude to the turbulent kinetic energy is a common descriptor of boundary layer flow and is used in many modeling efforts because it is usually a constant over most of a two-dimensional boundary layer. Three-dimensionality has been observed to depress this parameter near the wall in many pressure-driven boundary layers. In the disk flow, this parameter was at a maximum near the wall at close to the 2-D value, but dropped off almost linearly away from the wall. Two-point velocity correlations were also measured using a pair of crosswire anemometers to gain insight into the structure of the turbulence. These measurements were obtained at two different heights at momentum thickness Reynolds numbers of 2650 and 5000 to test for possible scaling effects. These measurements showed that the turbulence exhibits asymmetry in the crossflow direction, which cannot occur in two-dimensional boundary layers. A mechanism by which the crossflow may be modifying the turbulence structure is proposed which exhibits several features of the asymmetric two-point correlations.

  20. Ultrasonic eggshell thickness measurement for selection of layers.

    Science.gov (United States)

    Kibala, Lucyna; Rozempolska-Rucinska, Iwona; Kasperek, Kornel; Zieba, Grzegorz; Lukaszewicz, Marek

    2015-10-01

    This study aimed to develop a methodology for using ultrasonic technology (USG) to record eggshell thickness for selection of layers. Genetic correlations between eggshell strength and its thickness have been reported to be around 0.8, making shell thickness a selection index candidate element. Applying ultrasonic devices to measure shell thickness leaves an egg intact for further handling. In this study, eggs from 2 purebred populations of Rhode Island White (RIW) and Rhode Island Red (RIR) hens were collected on a single day in the 33rd week of the farm laying calendar from 2,414 RIR and 4,525 RIW hens. Beginning from the large end of the egg, measurements were taken at 5 latitudes: 0º (USG0), 45º (USG45), 90º (USG90), 135º (USG135), and 180º (USG180). To estimate the repeatability of readings, measurements were repeated at each parallel on 3 meridians. Electronic micrometer measurement ( EMM: ) were taken with an electronic micrometer predominantly at the wider end of eggs from 2,397 RIR and 4,447 RIW hens. A multiple-trait statistical model fit the fixed effect of year-of-hatch × hatch-within-year, and random effects due to repeated measurements (except EMM) and an animal's additive genetic component. The shell was thinnest in the region where chicks break it upon hatching (USG0, USG45). Heritabilities of shell thickness in different regions of the shell ranged from 0.09 to 0.19 (EMM) in RIW and from 0.12 to 0.23 (EMM) in RIR and were highest for USG45 and USG0. Because the measurement repeatabilities were all above 0.90, our recommendation for balancing egg strength against hatching ease is to take a single measurement of USG45. Due to high positive genetic correlations between shell thickness in different regions of the shell its thickness in the pointed end region will be modified accordingly, in response to selection for USG45.

  1. Nature, theory and modelling of geophysical convective planetary boundary layers

    Science.gov (United States)

    Zilitinkevich, Sergej

    2015-04-01

    Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in

  2. Layer-by-layer assembly of nanocomposite films with thickness up to hundreds of nanometers

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ling-de; YAN Yu-hua; YU Hai-hu; GU Er-dan; JIANG De-sheng

    2006-01-01

    Polyelectrolyte/polyelectrolyte, organic molecule/colloidal CdS and polyelectrolyte/MWCNT films were fabricated via the layer-by-layer assembling technique. The assembled films were characterized by UV-vis spectrophotometer, X-ray diffractometry,nano profilometer and scanning electron microscopy. The results demonstrate that the layer-by-layer assembling technique can be used to make the nanoscaled films from polyelectrolytes and thicker composite films from suitable precursor materials. Both organic molecule/colloidal CdS films and PEI/MWCNT films with thickness of hundreds of nanometers were obtained. For the organic molecule/colloidal CdS films, a reasonable explanation for the result is that both the organic molecules and the CdS particles aggregate in the films. For the PEI/MWCNT films, obviously, it is the MWCNT that makes the great contribution to the film thickness.

  3. On the voltage and distance across the low latitude boundary layer

    OpenAIRE

    Hapgood, Mike; Lockwood, Mike

    1993-01-01

    A pass of the AMPTE-UKS satellite through the low-latitude boundary layer (LLBL) at 8:30 MLT is studied in detail. The magnetosheath field is predominantly northward. It is shown that multiple transitions through part or all of the layer of antisunward flow lead to overestimation of both the voltage across this layer and its width. The voltage is estimated to be only about 3 kV and this implies that the full LLBL is about 1200 km thick, consistent with previous studies.

  4. A body-force based method to generate supersonic equilibrium turbulent boundary layer profiles

    Science.gov (United States)

    Waindim, M.; Gaitonde, D. V.

    2016-01-01

    We further develop a simple counterflow body force-based approach to generate an equilibrium spatially developing turbulent boundary layer suitable for Direct Numerical Simulations (DNS) or Large Eddy Simulations (LES) of viscous-inviscid interactions. The force essentially induces a small separated region in an incoming specified laminar boundary layer. The resulting unstable shear layer then transitions and breaks down to yield the desired unsteady profile. The effects of wall thermal conditions are explored to demonstrate the capability of the method for both fixed wall and adiabatic wall conditions. We then describe an efficient method to select parameters that ensure transition by examining precursor signatures using generalized stability variables. These precursors are shown to be evident in a computational domain spanning only a small region around the trip and can also be detected using 2D simulations. Finally, the method is tested for different Mach numbers ranging from 1.7 to 2.9, with emphasis on flow field surveys, Reynolds stresses, and energy spectra. These results provide guidance on boundary conditions for desired boundary layer thickness at each Mach number. The consequences of using a much lower Reynolds number in computation relative to experiment are evident at the higher Mach number, where a self sustaining turbulent boundary layer is more difficult to obtain.

  5. The inner core thermodynamics of the tropical cyclone boundary layer

    Science.gov (United States)

    Williams, Gabriel J.

    2016-10-01

    Although considerable progress has been made in understanding the inner-core dynamics of the tropical cyclone boundary layer (TCBL), our knowledge of the inner-core thermodynamics of the TCBL remains limited. In this study, the inner-core budgets of potential temperature (θ), specific humidity ( q), and reversible equivalent potential temperature (θ _e) are examined using a high-resolution multilevel boundary layer model. The potential temperature budgets show that the heat energy is dominated by latent heat release in the eyewall, evaporative cooling along the outer edge of the eyewall, and upward surface fluxes of sensible and latent heat from the underlying warm ocean. It is shown that the vertical θ advection overcompensates the sum of radial advective warming from the boundary layer outflow jet and latent heating for the development of cooling in the eyewall within the TCBL. The moisture budgets show the dominant upward transport of moisture in the eyewall updrafts, partly by the boundary-layer outflow jet from the bottom eye region, so that the eyewall remains nearly saturated. The θ _e budgets reveal that the TCBL is maintained thermodynamically by the upward surface flux of higher-θ _e air from the underlying warm ocean, the radial transport of low-θ _e air from the outer regions of the TCBL, and the dry adiabatic cooling associated by eyewall updrafts. These results underscore the significance of vertical motion and the location of the boundary layer outflow jet in maintaining the inner core thermal structure of the TCBL.

  6. Highly buoyant bent-over plumes in a boundary layer

    Science.gov (United States)

    Tohidi, Ali; Kaye, Nigel B.

    2016-04-01

    Highly buoyant plumes, such as wildfire plumes, in low to moderate wind speeds have initial trajectories that are steeper than many industrial waste plumes. They will rise further into the atmosphere before bending significantly. In such cases the plume's trajectory will be influenced by the vertical variation in horizontal velocity of the atmospheric boundary layer. This paper examined the behavior of a plume in an unstratified environment with a power-law ambient velocity profile. Examination of previously published experimental measurements of plume trajectory show that inclusion of the boundary layer velocity profile in the plume model often provides better predictions of the plume trajectory compared to algebraic expressions developed for uniform flow plumes. However, there are many cases in which uniform velocity profile algebraic expressions are as good as boundary layer models. It is shown that it is only important to model the role of the atmospheric boundary layer velocity profile in cases where either the momentum length (square root of source momentum flux divided by the reference wind speed) or buoyancy length (buoyancy flux divided by the reference wind speed cubed) is significantly greater than the plume release height within the boundary layer. This criteria is rarely met with industrial waste plumes, but it is important in modeling wildfire plumes.

  7. Stabilization of boundary layer streaks by plasma actuators

    International Nuclear Information System (INIS)

    A flow's transition from laminar to turbulent leads to increased levels of skin friction. In recent years, dielectric barrier discharge actuators have been shown to be able to delay the onset of turbulence in boundary layers. While the laminar to turbulent transition process can be initiated by several different instability mechanisms, so far, only stabilization of the Tollmien–Schlichting path to transition has received significant attention, leaving the stabilization of other transition paths using these actuators less explored. To fill that void, a bi-global stability analysis is used here to examine the stabilization of boundary layer streaks in a laminar boundary layer. These streaks, which are important to both transient and by-pass instability mechanisms, are damped by the addition of a flow-wise oriented plasma body force to the boundary layer. Depending on the magnitude of the plasma actuation, this damping can be up to 25% of the perturbation's kinetic energy. The damping mechanism appears to be due to highly localized effects in the immediate vicinity of the body force, and when examined using a linearized Reynolds-averaged Navier–Stokes energy balance, indicate negative production of the perturbation's kinetic energy. Parametric studies of the stabilization have also been performed, varying the magnitude of the plasma actuator's body force and the spanwise wavenumber of the actuation. Based on these parametric studies, the damping of the boundary layer streaks appears to be linear with respect to the total amount of body force applied to the flow. (paper)

  8. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    Science.gov (United States)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  9. Acoustic Receptivity of Mach 4.5 Boundary Layer with Leading- Edge Bluntness

    Science.gov (United States)

    Malik, Mujeeb R.; Balakumar, Ponnampalam

    2007-01-01

    Boundary layer receptivity to two-dimensional slow and fast acoustic waves is investigated by solving Navier-Stokes equations for Mach 4.5 flow over a flat plate with a finite-thickness leading edge. Higher order spatial and temporal schemes are employed to obtain the solution whereby the flat-plate leading edge region is resolved by providing a sufficiently refined grid. The results show that the instability waves are generated in the leading edge region and that the boundary-layer is much more receptive to slow acoustic waves (by almost a factor of 20) as compared to the fast waves. Hence, this leading-edge receptivity mechanism is expected to be more relevant in the transition process for high Mach number flows where second mode instability is dominant. Computations are performed to investigate the effect of leading-edge thickness and it is found that bluntness tends to stabilize the boundary layer. Furthermore, the relative significance of fast acoustic waves is enhanced in the presence of bluntness. The effect of acoustic wave incidence angle is also studied and it is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases by more than a factor of 4 when the incidence angle is increased from 0 to 45 deg. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle.

  10. Coherent structures in a zero-pressure-gradient and a strongly decelerated boundary layer

    Science.gov (United States)

    Simens, Mark P.; Gungor, Ayse G.; Maciel, Yvan

    2016-04-01

    Coherent structures in a strongly decelerated large-velocity-defect turbulent boundary layer (TBL) and a zero pressure gradient (ZPG) boundary layer are analysed by direct numerical simulation (DNS). The characteristics of the one-point velocity stastistics are also considered. The adverse pressure gradient (APG) TBL simulation is a new one carried out by the present authors. The APG TBL begins as a zero pressure gradient boundary layer, decelerates under a strong adverse pressure gradient, and separates near the end of the domain in the form of a very thin separation bubble. The one-point velocity statistics in the outer region of this large-defect boundary layer are compared to those of two other large-velocity-defect APG TBLs (one in dynamic equilibrium, the other in disequilibrium) and a mixing layer. In the upper half of the large-defect boundary layers, the velocity statistics are similar to those of the mixing layer. The dominant peaks of turbulence production and Reynolds stresses are located in the middle of the boundary layers. Three-dimensional spatial correlations of (u, u) and (u, v) show that coherence is lost in the streamwise and spanwise directions as the velocity defect increases. Near-wall streaks tend to disappear in the large-defect zone of the flow to be replaced by more disorganized u motions. Near-wall sweeps and ejections are also less numerous. In the outer region, the u structures tend to be shorter, less streaky, and more inclined with respect to the wall than in the ZPG TBL. The sweeps and ejections are generally bigger with respect to the boundary layer thickness in the large-defect boundary layer, even if the biggest structures are found in the ZPG TBL. Large sweeps and ejections that reach the wall region (wall-attached) are less streamwise elongated and they occupy less space than in the ZPG boundary layer. The distinction between wall-attached and wall-detached structures is not as pronounced in the large-defect TBL.

  11. Thickness of the Meniscal Lamellar Layer: Correlation with Indentation Stiffness and Comparison of Normal and Abnormally Thick Layers by Using Multiparametric Ultrashort Echo Time MR Imaging.

    Science.gov (United States)

    Choi, Ja-Young; Biswas, Reni; Bae, Won C; Healey, Robert; Im, Michael; Statum, Sheronda; Chang, Eric Y; Du, Jiang; Bydder, Graeme M; D'Lima, Darryl; Chung, Christine B

    2016-07-01

    Purpose To determine the relationship between lamellar layer thickness on ultrashort echo time (UTE) magnetic resonance (MR) images and indentation stiffness of human menisci and to compare quantitative MR imaging values between two groups with normal and abnormally thick lamellar layers. Materials and Methods This was a HIPAA-compliant, institutional review board-approved study. Nine meniscal pieces were obtained from seven donors without gross meniscal pathologic results (mean age, 57.4 years ± 14.5 [standard deviation]). UTE MR imaging and T2, UTE T2*, and UTE T1ρ mapping were performed. The presence of abnormal lamellar layer thickening was determined and thicknesses were measured. Indentation testing was performed. Correlation between the thickness and indentation stiffness was assessed, and mean quantitative MR imaging values were compared between the groups. Results Thirteen normal lamellar layers had mean thickness of 232 μm ± 85 and indentation peak force of 1.37 g ± 0.87. Four abnormally thick lamellar layers showed mean thickness of 353.14 μm ± 98.36 and peak force 0.72 g ± 0.31. In most cases, normal thicknesses showed highly positive correlation with the indentation peak force (r = 0.493-0.912; P thickness in two abnormal lamellar layers showed highly negative correlation (r = -0.90, P thick lamellar layers were increased compared with values in normal lamellar layers, although only the UTE T2* value showed significant difference (P = .010). Conclusion Variation of lamellar layer thickness in normal human menisci was evident on two-dimensional UTE images. In normal lamellar layers, thickness is highly and positively correlated with surface indentation stiffness. UTE T2* values may be used to differentiate between normal and abnormally thickened lamellar layers. (©) RSNA, 2016.

  12. Characteristics of the nocturnal boundary layer inferred from ozone measurements onboard a Zeppelin airship

    Science.gov (United States)

    Rohrer, Franz; Li, Xin; Hofzumahaus, Andreas; Ehlers, Christian; Holland, Frank; Klemp, Dieter; Lu, Keding; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    The nocturnal boundary layer (NBL) is a sublayer within the planetary boundary layer (PBL) which evolves above solid land each day in the late afternoon due to radiation cooling of the surface. It is a region of several hundred meters thickness which inhibits vertical mixing. A residual and a surface layer remain above and below the NBL. Inside the surface layer, almost all direct emissions of atmospheric constituents take place during this time. This stratification lasts until the next morning after sunrise. Then, the heating of the surface generates a new convectionally mixed layer which successively eats up the NBL from below. This process lasts until shortly before noon when the NBL disappears completely and the PBL is mixed convectionally. Ozone measurements onboard a Zeppelin airship in The Netherlands, in Italy, and in Finland are used to analyse this behaviour with respect to atmospheric constituents and consequences for the diurnal cycles observed in the surface layer, the nocturnal boundary layer, and the residual layer are discussed.

  13. On the dynamic behavior of composite panels under turbulent boundary layer excitations

    Science.gov (United States)

    Ciappi, E.; De Rosa, S.; Franco, F.; Vitiello, P.; Miozzi, M.

    2016-03-01

    In this work high Mach number aerodynamic and structural measurements acquired in the CIRA (Italian Aerospace Research Center) transonic wind tunnel and the models used to analyze the response of composite panels to turbulent boundary layer excitation are presented. The two investigated panels are CFRP (Carbon Fiber-Reinforced Polymer) composite plates and their lay-up is similar to configurations used in aeronautical structures. They differ only for the presence of an embedded viscoelastic layer. The experimental set-up has been designed to reproduce a pressure fluctuations field beneath a turbulent boundary layer as close as possible to those in flight. A tripping system, specifically conceived to this aim for this facility, has been used to generate thick turbulent boundary layers at Mach number values ranging between 0.4 and 0.8. It is shown that the designed setup provides a realistic representation of full scale size pressure spectra in the frequency range of interest for the noise component inside the fuselage, generated by turbulent boundary layer. The significant role of the viscoelastic layer at reducing panel's response is detailed and discussed. Finally, it is demonstrated that at high Mach number the aeroelastic effect cannot be neglected when analyzing the panel response, especially when composite materials are considered.

  14. Analytic Study of Magnetohydrodynamic Flow and Boundary Layer Control Over a Wedge

    Institute of Scientific and Technical Information of China (English)

    M. Chandrasekar; S. Baskaran

    2008-01-01

    A genuine variational principle developed by Gyarmati, in the field of thermodynamics of irreversible processes unifying the theoretical requirements of technical, environmental and biological sciences is employed to study the effects of uniform suction and injection on MHD flow adjacent to an isothermal wedge with pressure gradient in the presence of a transverse magnetic field. The velocity distribution inside the boundary layer has been considered as a simple polynomial function and the variational principle is formulated. The Euler-Lagrange equation is reduced to a simple polynomial equation in terms of momentum boundary layer thickness. The velocity profiles, displacement thickness and the coefficient of skin friction are calculated for various values of wedge angle parameter m, magnetic parameter ε and suction/injection parameter H. The present results are compared with known available results and the comparison is found to be satisfactory. The present study establishes high accuracy of results obtained by this variational technique.

  15. Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Safaei

    2016-09-01

    Full Text Available In the present study, the heat transfer and flow of water/FMWCNT (functionalized multi-walled carbon nanotube nanofluids over a flat plate was investigated using a finite volume method. Simulations were performed for velocity ranging from 0.17 mm/s to 1.7 mm/s under laminar regime and nanotube concentrations up to 0.2%. The 2-D governing equations were solved using an in-house FORTRAN code. For a specific free stream velocity, the presented results showed that increasing the weight percentage of nanotubes increased the Nusselt number. However, an increase in the solid weight percentage had a negligible effect on the wall shear stress. The results also indicated that increasing the free stream velocity for all cases leads to thinner boundary layer thickness, while increasing the FMWCNT concentration causes an increase in the boundary layer thickness.

  16. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    The present study covers both a numerical and experimental investigation of the processes in the oscillatory boundary layer. In the first part a direct numerical simulation (DNS) is conducted to study the vertical pressure gradient, and its role in relation to laminar to turbulent transition...... and its role in the fully turbulent boundary layer. The pressure in the flow is obtained from the flow fields of the oscillatory boundary layer. What differs, the vertical pressure gradient, from other turbulent quantities, like e.g. velocity fluctuations is that it can detect newly generated turbulence....... This is in contrast to velocity fluctuations that are diffusive, so they can also contain residual turbulence from the previous half cycle until they are dissipated. Furthermore, the magnitude of the mean value of conditionally averaged vertical pressure gradient (for −∂p∗/∂x∗ 2 > 0) is compared to the submerged...

  17. On the interaction between turbulence grids and boundary layers

    Directory of Open Access Journals (Sweden)

    Irps Thomas

    2016-01-01

    Full Text Available Turbulence grids are widely used in wind tunnels to produce representative turbulence levels when testing aerodynamic phenomena around models. Although the purpose of the grid is to introduce a desired turbulence level in the freestream flow, the wall boundary layers of the tunnel are subjected to modification due to the presence of such grids. This could have major implications to the flow around the models to be tested and hence there is a need to further understand this interaction. The study described in this paper examines wind tunnel wall boundary layer modification by turbulence grids of different mesh sizes and porosities to understand the effect of these parameters on such interaction. Experimental results are presented in the form of pressure loss coefficients, boundary layer velocity profiles and the statistics of turbulence modification.

  18. Localized travelling waves in the asymptotic suction boundary layer

    CERN Document Server

    Kreilos, Tobias; Schneider, Tobias M

    2016-01-01

    We present two spanwise-localized travelling wave solutions in the asymptotic suction boundary layer, obtained by continuation of solutions of plane Couette flow. One of the solutions has the vortical structures located close to the wall, similar to spanwise-localized edge states previously found for this system. The vortical structures of the second solution are located in the free stream far above the laminar boundary layer and are supported by a secondary shear gradient that is created by a large-scale low-speed streak. The dynamically relevant eigenmodes of this solution are concentrated in the free stream, and the departure into turbulence from this solution evolves in the free stream towards the walls. For invariant solutions in free-stream turbulence, this solution thus shows that that the source of energy of the vortical structures can be a dynamical structure of the solution itself, instead of the laminar boundary layer.

  19. Bypass transition and spot nucleation in boundary layers

    CERN Document Server

    Kreilos, Tobias; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S; Eckhardt, Bruno

    2016-01-01

    The spatio-temporal aspects of the transition to turbulence are considered in the case of a boundary layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly fitted from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  20. Bypass transition and spot nucleation in boundary layers

    Science.gov (United States)

    Kreilos, Tobias; Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S.; Eckhardt, Bruno

    2016-08-01

    The spatiotemporal aspects of the transition to turbulence are considered in the case of a boundary-layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly obtained from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  1. Validation of an immersed thick boundary method for simulating fluid-structure interactions of deformable membranes

    Science.gov (United States)

    Sigüenza, J.; Mendez, S.; Ambard, D.; Dubois, F.; Jourdan, F.; Mozul, R.; Nicoud, F.

    2016-10-01

    This paper constitutes an extension of the work of Mendez et al. (2014) [36], for three-dimensional simulations of deformable membranes under flow. An immersed thick boundary method is used, combining the immersed boundary method with a three-dimensional modeling of the structural part. The immersed boundary method is adapted to unstructured grids for the fluid resolution, using the reproducing kernel particle method. An unstructured finite-volume flow solver for the incompressible Navier-Stokes equations is coupled with a finite-element solver for the structure. The validation process relying on a number of test cases proves the efficiency of the method, and its robustness is illustrated when computing the dynamics of a tri-leaflet aortic valve. The proposed immersed thick boundary method is able to tackle applications involving both thin and thick membranes/closed and open membranes, in significantly high Reynolds number flows and highly complex geometries.

  2. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface

    Institute of Scientific and Technical Information of China (English)

    Chandaneswar Midya

    2012-01-01

    An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible Buid over a linearly shrinking surface is presented. The Row is permeated by an externally applied magnetic Geld normal to the plane of the flow. The equations governing the Row and concentration Reid are reduced into a set of nonlinear ordinary differential equations using similarity variables. Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall mass flux (PMF) as boundary conditions. The study reveals that the concentration over a shrinking sheet is signiRcantly different from that of a stretching surface. It s found that te solute boundary layer thickness is enhanced with the increasing values of the Schmidt number and the power-law index parameter, but decreases with enhanced vaJues of magnetic and reaction rate parameters for the PSC case. For the PMF case, the solute boundary layer thickness decreases with the increase of the Schmidt number, magnetic and reaction rate parameter for power-law index parameter n = 0. Negative solute boundary layer thickness is observed for the PMF case when n = 1 and 2, and these facts may not be realized in real-world applications.%An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible fluid over a linearly shrinking surface is presented.The flow is permeated by an externally applied magnetic field normal to the plane of the flow.The equations governing the flow and concentration field are reduced into a set of nonlinear ordinary differential equations using similarity variables.Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall

  3. Numerical Modeling of the Evolving Stable Boundary Layer

    Science.gov (United States)

    Sorbjan, Z.

    2013-12-01

    A single-column model of the evolving stable boundary layer is tested for the consistency of turbulence parameterization, self-similar properties of the flow, and effects of ambient forcing. The turbulence closure of the model is based on the K-theory approach, with stability functions based on empirical data, and a semi-empirical form of the mixing length. The model has one internal, governing stability parameter, the Richardson number Ri, which dynamically adjusts to the boundary conditions and to external forcing. Model results, expressed in terms of local similarity scales, are universal functions of the Richardson number, i.e. they are satisfied in the entire stable boundary layer, for all instants of time, and all kinds of external forcing. Based on similarity expression, a realizability condition is derived for the minimum turbulent heat flux in the stable boundary layer. Numerical experiments show that the development of 'horse-shoe' shaped, 'fixed-elevation' wind hodographs in the interior of the stable boundary layer are solely caused by effects imposed by surface thermal forcing, and are not related to the inertial oscillation mechanism.

  4. Non-Equilibrium Effects on Hypersonic Turbulent Boundary Layers

    Science.gov (United States)

    Kim, Pilbum

    Understanding non-equilibrium effects of hypersonic turbulent boundary layers is essential in order to build cost efficient and reliable hypersonic vehicles. It is well known that non-equilibrium effects on the boundary layers are notable, but our understanding of the effects are limited. The overall goal of this study is to improve the understanding of non-equilibrium effects on hypersonic turbulent boundary layers. A new code has been developed for direct numerical simulations of spatially developing hypersonic turbulent boundary layers over a flat plate with finite-rate reactions. A fifth-order hybrid weighted essentially non-oscillatory scheme with a low dissipation finite-difference scheme is utilized in order to capture stiff gradients while resolving small motions in turbulent boundary layers. The code has been validated by qualitative and quantitative comparisons of two different simulations of a non-equilibrium flow and a spatially developing turbulent boundary layer. With the validated code, direct numerical simulations of four different hypersonic turbulent boundary layers, perfect gas and non-equilibrium flows of pure oxygen and nitrogen, have been performed. In order to rule out uncertainties in comparisons, the same inlet conditions are imposed for each species, and then mean and turbulence statistics as well as near-wall turbulence structures are compared at a downstream location. Based on those comparisons, it is shown that there is no direct energy exchanges between internal and turbulent kinetic energies due to thermal and chemical non-equilibrium processes in the flow field. Instead, these non-equilibria affect turbulent boundary layers by changing the temperature without changing the main characteristics of near-wall turbulence structures. This change in the temperature induces the changes in the density and viscosity and the mean flow fields are then adjusted to satisfy the conservation laws. The perturbation fields are modified according to

  5. Conference on Boundary and Interior Layers : Computational and Asymptotic Methods

    CERN Document Server

    2015-01-01

    This volume offers contributions reflecting a selection of the lectures presented at the international conference BAIL 2014, which was held from 15th to 19th September 2014 at the Charles University in Prague, Czech Republic. These are devoted to the theoretical and/or numerical analysis of problems involving boundary and interior layers and methods for solving these problems numerically. The authors are both mathematicians (pure and applied) and engineers, and bring together a large number of interesting ideas. The wide variety of topics treated in the contributions provides an excellent overview of current research into the theory and numerical solution of problems involving boundary and interior layers.  .

  6. Effect of externally generated turbulence on wave boundary layer

    DEFF Research Database (Denmark)

    Fredsøe, Jørgen; Sumer, B. Mutlu; Kozakiewicz, A.;

    2003-01-01

    This experimental study deals with the effect of externally generated turbulence on the oscillatory boundary layer to simulate the turbulence in the wave boundary layer under broken waves in the swash zone. The subject has been investigated experimentally in a U-shaped, oscillating water tunnel w...... the friction coefficient. Other features related to the bed shear stress, such as transition, the friction factor and phase lead are discussed. The range of the Reynolds number studied is 10.000 - 2.000.000...

  7. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  8. Axisymmetric fundamental solutions for a finite layer with impeded boundaries

    Institute of Scientific and Technical Information of China (English)

    程泽海; 陈云敏; 凌道盛; 唐晓武

    2003-01-01

    Axisymmetric fundamental solutions that are applied in the consolidation calculations of a finite clay layer with impeded boundaries were derived. Laplace and Hankel integral transforms were utilized with respect to time and radial coordinates, respectively in the analysis. The derivation of fundamental solutions considers two boundary-value problems involving unit point loading and ring loading in the vertical. The solutions are extended to circular distributed and strip distributed normal load. The computation and analysis of settlements, vertical total stress and excess pore pressure in the consolidation layer subject to circular loading are presented.

  9. Axisymmetric fundamental solutions for a finite layer with impeded boundaries

    Institute of Scientific and Technical Information of China (English)

    程泽海; 陈云敏; 凌道盛; 唐晓武

    2003-01-01

    Axisymmetrie fundamental solutions that are applied in the consolidation calculations of a finite clay layer with impeded boundaries were derived. Laplace and Hankel integral transforms were utilized with respect to time and radial coordinates, respectively in the analysis. The derivation of fundamental solutions considers two boundary-value problems involving unit point loading and ring loading in the vertical. The solut-ions are extended to circular distributed and strip distributed normal load. The computation and analysis of set-tlements, vertical total stress and excess pore pressure in the consolidation layer subject to circular loading are presented.

  10. Oscillations of the Boundary Layer and High-frequency QPOs

    Directory of Open Access Journals (Sweden)

    Blinova A. A.

    2014-01-01

    Full Text Available We observed persistent high-frequency oscillations of the boundary layer near an accreting, weakly-magnetized star in global 3D MHD simulations. The tilted dipole magnetic field is not strong enough to open a gap between the star and the disk. Instead, it forms a highly-wrapped azimuthal field near the surface of the star which slows down rotation of the disk matter, while a small tilt of the field excites oscillations of the boundary layer with a frequency below the Keplerian frequency. This mechanism may be responsible for the high-frequency oscillations in accreting neutron stars, white dwarfs and classical T Tauri stars.

  11. MHD effect of mixed convection boundary-layer flow of Powell-Eyring fluid past nonlinear stretching surface

    Institute of Scientific and Technical Information of China (English)

    S PANIGRAHI; M REZA; A K MISHRA

    2014-01-01

    Sufficient conditions are found for the existence of similar solutions of the mixed convection flow of a Powell-Eyring fluid over a nonlinear stretching permeable sur-face in the presence of magnetic field. To achieve this, one parameter linear group trans-formation is applied. The governing momentum and energy equations are transformed to nonlinear ordinary differential equations by use of a similarity transformation. These equations are solved by the homotopy analysis method (HAM) to obtain the approximate solutions. The effects of magnetic field, suction, and buoyancy on the Powell-Eyring fluid flow with heat transfer inside the boundary layer are analyzed. The effects of the non-Newtonian fluid (Powell-Eyring model) parametersεandδ on the skin friction and local heat transfer coefficients for the cases of aiding and opposite flows are investigated and discussed. It is observed that the momentum boundary layer thickness increases and the thermal boundary layer thickness decreases with the increase inεwhereas the momentum boundary layer thickness decreases and thermal boundary layer thickness increases with the increase in δ for both the aiding and opposing mixed convection flows.

  12. Thickness-induced structural phase transformation of layered gallium telluride.

    Science.gov (United States)

    Zhao, Q; Wang, T; Miao, Y; Ma, F; Xie, Y; Ma, X; Gu, Y; Li, J; He, J; Chen, B; Xi, S; Xu, L; Zhen, H; Yin, Z; Li, J; Ren, J; Jie, W

    2016-07-28

    The thickness-dependent electronic states and physical properties of two-dimensional materials suggest great potential applications in electronic and optoelectronic devices. However, the enhanced surface effect in ultra-thin materials might significantly influence the structural stability, as well as the device reliability. Here, we report a spontaneous phase transformation of gallium telluride (GaTe) that occurred when the bulk was exfoliated to a few layers. Transmission electron microscopy (TEM) results indicate a structural variation from a monoclinic to a hexagonal structure. Raman spectra suggest a critical thickness for the structural transformation. First-principle calculations and thermodynamic analysis show that the surface energy and the interlayer interaction compete to dominate structural stability in the thinning process. A two-stage transformation process from monoclinic (m) to tetragonal (T) and then from tetragonal to hexagonal (h) is proposed to understand the phase transformation. The results demonstrate the crucial role of interlayer interactions in the structural stability, which provides a phase engineering strategy for device applications.

  13. Toward Convective Boundary Layer Parameterization: A Scalar Transport Module.

    Science.gov (United States)

    Wyngaard, John C.

    1984-06-01

    Recent results from large-eddy simulations indicate that the eddy diffusivity for scalar diffusion through the top of a convective boundary layer is different from that for diffusion through the bottom. From this, one can show that the eddy diffusivity is not well behaved in general and can have singularities.As an alternative to the high-resolution approach using eddy-diffusivity closure, we propose an improved integral method for calculating scalar transport in the convective boundary layer. Based on an analytical parameterization for the mean scalar profile, it is computationally as simple as the familiar `mixed-layer' integral method but is physically more realistic, allowing a mean scalar gradient within the mixed layer. We present sample results for the evolution of humility, CO and O3 profiles during the day.

  14. Ultrasonic measurement of water layer thickness by horizontal flow pattern profile in a KAERI HAWL

    International Nuclear Information System (INIS)

    An ultrasonic measurement technique for determining water layer thickness is presented. The technique can obtain information of the water layer thickness in a tube in the form of a horizontal flow pattern profile through the used of a correct quantitative method. The main objective of the present work is to measure the water layer thickness of the flow using an ultrasonic measurement system. Ultrasonic measurement techniques of water layer thickness are produced to measure the variations in water layer thickness in the horizontal stratified flow and vertical annular flow regimes. (author)

  15. Measuring soil layer thickness in land rearrangement with GPR data

    International Nuclear Information System (INIS)

    Accurate measurement of soil layer thickness by GPR (ground penetrating radar) is of great importance for overlay design and quality control/quality assurance for land rearrangement projects. Soil layer detection is complex because of multiple reflections and high attenuation for electromagnetic (EM) waves propagating in the soil media. This paper proposes a novel data processing method based on the reflection and refraction of the EM waves to improve the measurement accuracy. A cross-correlation sequence is introduced to align the traces, and the effects of random noise are reduced by using a forwards and backwards filtering procedure without phase delay. Additionally, the homomorphic deconvolution, namely the power cepstrum, is employed to deconvolve GPR data and, thus, to enhance its interface reflection. The results of the verification test show that the measurement can achieve high accuracy, with an error less than 10%, and the measurement performance is greatly improved by using the new method. Finally, a contour map of the research area is generated automatically for quality detection and quality control guidance. (paper)

  16. Convection and Chemistry in the Atmospheric Boundary Layer

    OpenAIRE

    A. C. Petersen

    1999-01-01

    The earth’s troposphere is the lowest layer of the atmosphere and has a thickness of about 10 km. It is the layer that contains most of the mass (80%) of the atmosphere. All weather phenomena that we experience have their origin in the troposphere. It is the stage for some well-known environmental problems: climate change, ozone smog, and acidification. These problems are related to the trace amount of gases that are emitted into the troposphere from anthropogenic sources. Alth...

  17. Finite element analysis on stresses field of normalized layer thickness within ceramic coating on aluminized steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA)and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for describing thickness ratios of HDA/PEO coatings. Then, the effect of thickness ratio on stresses field of HDA/PEO coatings subjected to uniform normal contact load was investigated by finite element method. Results show that the surface tensile stress is mainly affected by the thickness ratio of Al layer when the total thickness of coating is unchanged. With the increase of Al layer thickness, the surface tensile stress rises quickly. When Al2O3 layer thickness increases, surface tensile stress is diminished. Meanwhile, the maximum shear stress moves rapidly towards internal part of HDA/PEO coatings. Shear stress at the Al2O3/Al interface is minimal when Al2O3 layer and Al layer have the same thickness.

  18. On the Formation Mechanisms of Artificially Generated High Reynolds Number Turbulent Boundary Layers

    Science.gov (United States)

    Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.

    2016-08-01

    We investigate the evolution of an artificially thick turbulent boundary layer generated by two families of small obstacles (divided into uniform and non-uniform wall normal distributions of blockage). One- and two-point velocity measurements using constant temperature anemometry show that the canonical behaviour of a boundary layer is recovered after an adaptation region downstream of the trips presenting 150~% higher momentum thickness (or equivalently, Reynolds number) than the natural case for the same downstream distance (x≈ 3 m). The effect of the degree of immersion of the trips for h/δ ≳ 1 is shown to play a secondary role. The one-point diagnostic quantities used to assess the degree of recovery of the canonical properties are the friction coefficient (representative of the inner motions), the shape factor and wake parameter (representative of the wake regions); they provide a severe test to be applied to artificially generated boundary layers. Simultaneous two-point velocity measurements of both spanwise and wall-normal correlations and the modulation of inner velocity by the outer structures show that there are two different formation mechanisms for the boundary layer. The trips with high aspect ratio and uniform distributed blockage leave the inner motions of the boundary layer relatively undisturbed, which subsequently drive the mixing of the obstacles' wake with the wall-bounded flow (wall-driven). In contrast, the low aspect-ratio trips with non-uniform blockage destroy the inner structures, which are then re-formed further downstream under the influence of the wake of the trips (wake-driven).

  19. DNS of compressible turbulent boundary layer around a sharp cone

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20° cone angle (or 10° half-cone angle) is performed by using the mixed seventh- order up-wind biased finite difference scheme and sixth-order central difference scheme. The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch. The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer. Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow. The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations. The turbulent energy equation in the cylindrical coordinate is given and turbulent en-ergy budget is studied. The computed results show that the effect of circumferen-tial curvature on turbulence characteristics is not obvious.

  20. On the growth of turbulent regions in laminar boundary layers

    Science.gov (United States)

    Gad-El-hak, M.; Riley, J. J.; Blackwelder, R. F.

    1981-01-01

    Turbulent spots evolving in a laminar boundary layer on a nominally zero pressure gradient flat plate are investigated. The plate is towed through an 18 m water channel, using a carriage that rides on a continuously replenished oil film giving a vibrationless tow. Turbulent spots are initiated using a solenoid valve that ejects a small amount of fluid through a minute hole on the working surface. A novel visualization technique that utilizes fluorescent dye excited by a sheet of laser light is employed. Some new aspects of the growth and entrainment of turbulent spots, especially with regard to lateral growth, are inferred from the present experiments. To supplement the information on lateral spreading, a turbulent wedge created by placing a roughness element in the laminar boundary layer is also studied both visually and with probe measurements. The present results show that, in addition to entrainment, another mechanism is needed to explain the lateral growth characteristics of a turbulent region in a laminar boundary layer. This mechanism, termed growth by destabilization, appears to be a result of the turbulence destabilizing the unstable laminar boundary layer in its vicinity. To further understand the growth mechanisms, the turbulence in the spot is modulated using drag-reducing additives and salinity stratification.

  1. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.;

    2014-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...

  2. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.;

    2012-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...

  3. CISM Course on Recent Advances in Boundary Layer Theory

    CERN Document Server

    1998-01-01

    Recent advances in boundary-layer theory have shown how modern analytical and computational techniques can and should be combined to deepen the understanding of high Reynolds number flows and to design effective calculation strategies. This is the unifying theme of the present volume which addresses laminar as well as turbulent flows.

  4. A parametric study of adverse pressure gradient turbulent boundary layers

    International Nuclear Information System (INIS)

    There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure gradients and this is confounded by the large parameter space that may affect these flows. While there have been many valuable investigations conducted within this parameter space, there are still insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gradient parameter, β, the Reynolds number and the acceleration parameter, K. The statistics analyzed are limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there appears to be no measurable logarithmic region in these cases. It is also found that the large-scale motions scaling with outer variables are energised by the pressure gradient. These increasingly strong large-scale motions are found to be the dominant contributor to the increase in turbulence intensity (scaled with friction velocity) with increasing pressure gradient across the boundary layer.

  5. Boundary-Layer Wind Structure in a Landfalling Tropical Cyclone

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components of horizontal wind in the tropical cyclone boundary layer at landfall. For a steady tropical cyclone on a straight coastline at landfall, the magnitude of the radial component is greater in the offshoreflow side and the tangential component is greater over the sea, slightly offshore, therefore the greater total wind speed occurs in the offshore-flow side over the sea. The budget analysis suggests that: (1) a greater surface friction over land produces a greater inflow and the nonlinear effect advects the maximum inflow downstream, and (2) a smaller surface friction over the sea makes the decrease of the tangential wind component less than that over land. Moreover, the boundary layer wind structures in a tropical cyclone are related to the locations of the tropical cyclone relative to the coastline due to the different surface frictions. During tropical cyclone landfall, the impact of rough terrain on the cyclone increases, so the magnitude of the radial component of wind speed increases in the offshore-flow side and the tangential component outside the radius of maximum wind speed decreases gradually.

  6. Drizzle and Turbulence Variability in Stratocumulus-topped Boundary Layers

    Science.gov (United States)

    Kollias, P.; Luke, E. P.; Szyrmer, W.

    2015-12-01

    Marine stratocumulus clouds frequently produce light precipitation in the form of drizzle. The drizzle rate at the cloud base (RCB) dictates the impact of drizzle on the boundary layer turbulence and cloud organization. Here, synergistic observations from the US Department of Energy Atmospheric Radiation Measurement (ARM) program Eastern North Atlantic (ENA) site located on Graciosa Island in the Azores are used to investigate the relationship between RCB, and boundary layer turbulence and dynamics. The ARM ENA site is a heavily instrumented ground-based facility that offers new measurement capabilities in stratocumulus-topped boundary layers (STBL). The RCB is retrieved using a radar-lidar algorithm. The STBL turbulent structure is characterized using the Doppler lidar and radar observations. The profiling radar/lidar/radiometer observations are used to describe the cloud fraction and morphology. Finally, surface-based aerosol number concentration measurements are used to investigate the connection between the boundary layer turbulence, cloud morphology and aerosol loading. Preliminary correlative relationships between the aforementioned variables will be shown.

  7. Passive Control of Supersonic Rectangular Jets through Boundary Layer Swirl

    Science.gov (United States)

    Han, Sang Yeop; Taghavi, Ray R.; Farokhi, Saeed

    2013-06-01

    Mixing characteristics of under-expanded supersonic jets emerging from plane and notched rectangular nozzles are computationally studied using nozzle exit boundary layer swirl as a mean of passive flow control. The coupling of the rectangular jet instability modes, such as flapping, and the swirl is investigated. A three-dimensional unsteady Reynolds-Averaged Navier-Stokes (RANS) code with shock adaptive grids is utilized. For plane rectangular nozzle with boundary layer swirl, the flapping and spanwise oscillations are captured in the jet's small and large dimensions at twice the frequencies of the nozzles without swirl. A symmetrical oscillatory mode is also observed in the jet with double the frequency of spanwise oscillation mode. For the notched rectangular nozzle with boundary layer swirl, the flapping oscillation in the small jet dimension and the spanwise oscillation in the large jet dimension are observed at the same frequency as those without boundary layer swirl. The mass flow rates in jets at 11 and 8 nozzle heights downstream of the nozzles increased by nearly 25% and 41% for the plane and notched rectangular nozzles respectively, due to swirl. The axial gross thrust penalty due to induced swirl was 5.1% for the plane and 4.9% for the notched rectangular nozzle.

  8. Boundary Layer on a Moving Wall with Suction and Injection

    Institute of Scientific and Technical Information of China (English)

    Anuar Ishak; Roslinda Nazar; Ioan Pop

    2007-01-01

    @@ We investigate the boundary-layer flow on a moving permeable plate parallel to a moving stream. The governing equations are solved numerically by a finite-difference method. Dual solutions are found to exist when the plate and the free stream move in the opposite directions.

  9. Linear Stability of the boundary layer under a solitary wave

    CERN Document Server

    Verschaeve, Joris C G

    2013-01-01

    A theoretical and numerical analysis of the linear stability of the boundary layer flow under a solitary wave is presented. In the present work, the nonlinear boundary layer equations are solved. The result is compared to the linear boundary layer solution in Liu et al. (2007) reveal- ing that both profiles are disagreeing more than has been found before. A change of frame of reference has been used to allow for a classical linear stability analysis without the need to redefine the notion of stability for this otherwise unsteady flow. For the linear stability the Orr-Sommerfeld equation and the parabolic stability equation were used. The results are compared to key results of inviscid stability theory and validated by means of a direct numerical simulation using a Legendre-Galerkin spectral ele- ment Navier-Stokes solver. Special care has been taken to ensure that the numerical results are valid. Linear stability predicts that the boundary layer flow is unstable for the entire parameter range considered, conf...

  10. On the Effects of Surface Roughness on Boundary Layer Transition

    Science.gov (United States)

    Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack

    2009-01-01

    Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.

  11. DNS of compressible turbulent boundary layer around a sharp cone

    Institute of Scientific and Technical Information of China (English)

    LI XinLiang; FU DeXun; MA YanWen

    2008-01-01

    Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20° cone angle (or 10° half-cone angle) is performed by using the mixed seventh-order up-wind biased finite difference scheme and sixth-order central difference scheme.The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch.The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer,Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow.The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations,The turbulent energy equation in the cylindrical coordinate is given and turbulent en-ergy budget is studied.The computed results show that the effect of circumferen-tial curvature on turbulence characteristics is not obvious.

  12. Two Phases of Coherent Structure Motions in Turbulent Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Hua; JIANG Nan

    2007-01-01

    Two phases of coherent structure motion are acquired after obtaining conditional phase-averaged waveforms for longitudinal velocity of coherent structures in turbulent boundary layer based on Harr wavelet transfer. The correspondences of the two phases to the two processes (i.e. ejection and sweep) during a burst are determined.

  13. STUDIES ON RETRIEVAL OF THE TURBULIVITY OF ATMOSPHERIC BOUNDARY LAYER

    Institute of Scientific and Technical Information of China (English)

    WANG Ting-fang; HUANG Si-xun; XIANG Jie

    2006-01-01

    The variational adjoint method was applied to retrieving the turbulivity of the atmospheric Ekman boundary layer along with the regularization principle. The validity of the method was verified by using the idealized data, and then the turbulivity profile and the geostrophic wind profile were retrieved through it for real observational wind filed data.

  14. Convective boundary layers driven by nonstationary surface heat fluxes

    NARCIS (Netherlands)

    Van Driel, R.; Jonker, H.J.J.

    2011-01-01

    In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is systematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds modulate incoming solar radiation. Because the time scale of the associated change

  15. Flow visualization of swept wing boundary layer transition

    NARCIS (Netherlands)

    Serpieri, J.; Kotsonis, M.

    2015-01-01

    In this work the flow visualization of the transition pattern occurring on a swept wing in a subsonic flow is presented. This is done by means of fluorescent oil flow technique and boundary layer hot-wire scans. The experiment was performed at Reynolds number of 2:15 . 106 and at angle of attack of

  16. Boundary Layer Flows in Porous Media with Lateral Mass Flux

    DEFF Research Database (Denmark)

    Nemati, H; H, Bararnia; Noori, F;

    2015-01-01

    Solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium are presented using the Homotopy Analysis Method and Shooting Numerical Method. Homotopy Analysis Method yields an analytic solution in the form of a rapidly...

  17. Spatially developing turbulent boundary layer on a flat plate

    CERN Document Server

    Lee, J H; Hutchins, N; Monty, J P

    2012-01-01

    This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as it would form over the hull of a ship or fuselage of an aircraft. The towed plate permits visualisation of the zero-pressure-gradient turbulent boundary layer as it develops from the trip to a high Reynolds number state ($Re_\\tau \\approx 3000$). An evolving large-scale coherent structure will appear almost stationary in this frame of reference. The visualisations provide an unique view of the evolution of fundamental processes in the boundary layer (such as interfacial bulging, entrainment, vortical motions, etc.). In the more traditional laboratory frame of reference, in which fluid passes over a stationary body, it is difficult to observe the full evolution and lifetime of turbulent coherent structures. An equivalent experiment in a wind/water-tunnel would requ...

  18. Instability onset of the boundary layer on a rotating cylinder in a stratified fluid

    Science.gov (United States)

    Flor, Jan-Bert; Hirschberg, Lionel; Oostenrijk, Bart; van Heijst, Gertjan; Meige Team

    2015-11-01

    We consider the instability of the laminar shear layer on a circular cylinder that is impulsively set into rotation about its vertical axis with angular speed Ω. The outer wall of this large gap Taylor-Couette flow is at a radial distance of about 10 times the inner cylinder radius, and the gap is either filled with a homogeneous or linearly stratified fluid. In a homogeneous fluid, the thickness of the boundary layer on the cylinder, d, grows until it becomes centrifugally unstable with a wavelength that is determined by the boundary layer thickness d. In a linearly stratified fluid with stratification N, the flow instability is set by the Froude number F = Ω /N. For F>1 the onset of the centrifugal instability is well predicted by the Taylor-Görtler number and theory for homogenous fluids. When F vortex regime to a wave regime with a pure inertial wave in the boundary layer. The mechanism of instability is determined by parametric resonance and the generation of waves with subharmonic frequencies typical for Parametric Subharmonic Instability. The results are discussed in view of former results on stratified TC flow. Supported by LabEx Osug@2020 (Investissements d'avenir - ANR10LABX56).

  19. Thermocouple Rakes for Measuring Boundary Layer Flows Extremely Close to Surface

    Science.gov (United States)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.

    2001-01-01

    Of vital interest to aerodynamic researchers is precise knowledge of the flow velocity profile next to the surface. This information is needed for turbulence model development and the calculation of viscous shear force. Though many instruments can determine the flow velocity profile near the surface, none of them can make measurements closer than approximately 0.01 in. from the surface. The thermocouple boundary-layer rake can measure much closer to the surface than conventional instruments can, such as a total pressure boundary layer rake, hot wire, or hot film. By embedding the sensors (thermocouples) in the region where the velocity is equivalent to the velocity ahead of a constant thickness strut, the boundary-layer flow profile can be obtained. The present device fabricated at the NASA Glenn Research Center microsystem clean room has a heater made of platinum and thermocouples made of platinum and gold. Equal numbers of thermocouples are placed both upstream and downstream of the heater, so that the voltage generated by each pair at the same distance from the surface is indicative of the difference in temperature between the upstream and downstream thermocouple locations. This voltage differential is a function of the flow velocity, and like the conventional total pressure rake, it can provide the velocity profile. In order to measure flow extremely close to the surface, the strut is made of fused quartz with extremely low heat conductivity. A large size thermocouple boundary layer rake is shown in the following photo. The latest medium size sensors already provide smooth velocity profiles well into the boundary layer, as close as 0.0025 in. from the surface. This is about 4 times closer to the surface than the previously used total pressure rakes. This device also has the advantage of providing the flow profile of separated flow and also it is possible to measure simultaneous turbulence levels within the boundary layer.

  20. New Theories on Boundary Layer Transition and Turbulence Formation

    Directory of Open Access Journals (Sweden)

    Chaoqun Liu

    2012-01-01

    Full Text Available This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.

  1. Magnetic Domination of Recollimation Boundary Layers in Relativistic Jets

    CERN Document Server

    Kohler, Susanna

    2012-01-01

    We study the collimation of relativistic magnetohydrodynamic jets by the pressure of an ambient medium, in the limit where the jet interior loses causal contact with its surroundings. This follows up a hydrodynamic study in a previous paper, adding the effects of a toroidal magnetic field threading the jet. As the ultrarelativistic jet encounters an ambient medium with a pressure profile with a radial scaling of p ~ r^-eta where 2boundary layer with a large pressure gradient. By constructing self-similar solutions to the fluid equations within this boundary layer, we examine the structure of this layer as a function of the external pressure profile. We show that the boundary layer always becomes magnetically dominated far from the source, and that in the magnetic limit, physical self-similar solutions are admitted in which the total pressure within the layer decreases linearly with distance from the contact discontinuity inward. These sol...

  2. Trip-Induced Transition Measurements in a Hypersonic Boundary Layer Using Molecular Tagging Velocimetry

    Science.gov (United States)

    Bathel, Brett F.; Danehy, Paul M.; Jones, Stephen B.; Johansen, Craig T.; Goyne, Christopher P.

    2013-01-01

    Measurements of mean streamwise velocity, fluctuating streamwise velocity, and instantaneous streamwise velocity profiles in a hypersonic boundary layer were obtained over a 10-degree half-angle wedge model. A laser-induced fluorescence-based molecular tagging velocimetry technique was used to make the measurements. The nominal edge Mach number was 4.2. Velocity profiles were measured both in an untripped boundary layer and in the wake of a 4-mm diameter cylindrical tripping element centered 75.4 mm downstream of the sharp leading edge. Three different trip heights were investigated: k = 0.53 mm, k = 1.0 mm and k = 2.0 mm. The laminar boundary layer thickness at the position of the measurements was approximately 1 mm, though the exact thickness was dependent on Reynolds number and wall temperature. All of the measurements were made starting from a streamwise location approximately 18 mm downstream of the tripping element. This measurement region continued approximately 30 mm in the streamwise direction. Additionally, measurements were made at several spanwise locations. An analysis of flow features show how the magnitude, spatial location, and spatial growth of streamwise velocity instabilities are affected by parameters such as the ratio of trip height to boundary layer thickness and roughness Reynolds number. The fluctuating component of streamwise velocity measured along the centerline of the model increased from approximately 75 m/s with no trip to +/-225 m/s with a 0.53-mm trip, and to +/-240 m/s with a 1-mm trip, while holding the freestream Reynolds number constant. These measurements were performed in the 31-inch Mach 10 Air Tunnel at the NASA Langley Research Center.

  3. Observations of boundary layer, mixed-phase and multi-layer Arctic clouds with different lidar systems during ASTAR 2007

    Directory of Open Access Journals (Sweden)

    A. Lampert

    2009-07-01

    Full Text Available During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR, which was conducted in Svalbard in March and April 2007, tropospheric Arctic clouds were observed with two ground-based backscatter lidar systems (micro pulse lidar and Raman lidar and with an airborne elastic lidar. An increase in low-level (cloud tops below 2.5 km cloud cover from 51% to 65% was observed above Ny-Ålesund during the time of the ASTAR campaign. Four different case studies of lidar cloud observations are analyzed: With the ground-based Raman lidar, a pre-condensation layer was observed at an altitude of 2 km. The layer consisted of small droplets with a high number concentration (around 300 cm−3 at low temperatures (−30°C. Observations of a boundary layer mixed-phase cloud by airborne lidar were evaluated with the measurements of concurrent airborne in situ and spectral solar radiation sensors. Two detailed observations of multiply layered clouds in the free troposphere are presented. The first case was composed of various ice layers with different optical properties detected with the Raman lidar, the other case showed a mixed-phase double layer and was observed by airborne lidar.

    The analysis of these four cases confirmed that lidar data provide information of the whole range from subvisible to optically thick clouds. Despite the attenuation of the laser signal in optically thick clouds and multiple scattering effects, information on the geometrical boundaries of liquid water clouds were obtained. Furthermore, the dominating phase of the clouds' particles in the layer closest to the lidar system could be retrieved.

  4. Investigation of radiative effects of the optically thick dust layer over the Indian tropical region

    Directory of Open Access Journals (Sweden)

    S. K. Das

    2013-04-01

    Full Text Available Optical and physical properties of aerosols derived from multi-satellite observations (MODIS-Aqua, OMI-Aura, MISR-Terra, CALIOP-CALIPSO have been used to estimate radiative effects of the dust layer over southern India. The vertical distribution of aerosol radiative forcing and heating rates are calculated with 100 m resolution in the lower atmosphere, using temperature and relative humidity data from balloon-borne radiosonde observations. The present study investigates the optically thick dust layer of optical thickness 0.18 ± 0.06 at an altitude of 2.5 ± 0.7 km over Gadanki, transported from the Thar Desert, producing radiative forcing and heating rate of 11.5 ± 3.3 W m−2 and 0.6 ± 0.26 K day−1, respectively, with a forcing efficiency of 43 W m−2 and an effective heating rate of 4 K day−1 per unit dust optical depth. Presence of the dust layer increases radiative forcing by 60% and heating rate by 60 times at that altitude compared to non-dusty cloud-free days. Calculation shows that the radiative effects of the dust layer strongly depend on the boundary layer aerosol type and mass loading. An increase of 25% of heating by the dust layer is found over relatively cleaner regions than urban regions in southern India and further 15% of heating increases over the marine region. Such heating differences in free troposphere may have significant consequences in the atmospheric circulation and hydrological cycle over the tropical Indian region.

  5. Investigation of radiative effects of the optically thick dust layer over the Indian tropical region

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K.; Chen, J.P. [National Taiwan Univ. (China). Dept. of Atmospheric Sciences; Ratnam, M. Venkat; Jayaraman, A. [National Atmospheric Research Laboratory, Tirupati (India)

    2013-06-01

    Optical and physical properties of aerosols derived from multi-satellite observations (MODIS-Aqua, OMI-Aura, MISR-Terra, CALIOP-CALIPSO) have been used to estimate radiative effects of the dust layer over southern India. The vertical distribution of aerosol radiative forcing and heating rates are calculated with 100m resolution in the lower atmosphere, using temperature and relative humidity data from balloon-borne radiosonde observations. The present study investigates the optically thick dust layer of optical thickness 0.18 {+-} 0.06 at an altitude of 2.5 {+-} 0.7 km over Gadanki, transported from the Thar Desert, producing radiative forcing and heating rate of 11.5 {+-} 3.3 W m{sup -2} and 0.6 {+-} 0.26 K day{sup -1}, respectively, with a forcing efficiency of 43 W m{sup -2} and an effective heating rate of 4Kday-1 per unit dust optical depth. Presence of the dust layer increases radiative forcing by 60% and heating rate by 60 times at that altitude compared to nondusty cloud-free days. Calculation shows that the radiative effects of the dust layer strongly depend on the boundary layer aerosol type and mass loading. An increase of 25% of heating by the dust layer is found over relatively cleaner regions than urban regions in southern India and further 15% of heating increases over the marine region. Such heating differences in free troposphere may have significant consequences in the atmospheric circulation and hydrological cycle over the tropical Indian region. (orig.)

  6. The height of the atmospheric boundary layer during unstable conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E.

    2005-11-01

    The height of the convective atmospheric boundary layer, also called the mixed-layer, is one of the fundamental parameters that characterise the structure of the atmosphere near the ground. It has many theoretical and practical applications such as the prediction of air pollution concentrations, surface temperature and the scaling of turbulence. However, as pointed out by Builtjes (2001) in a review paper on Major Twentieth Century Milestones in Air Pollution Modelling and Its Application, the weakest point in meteorology data is still the determination of the height of the mixed-layer, the so-called mixing height. A simple applied model for the height of the mixed-layer over homogeneous terrain is suggested in chapter 2. It is based on a parameterised budget for the turbulent kinetic energy. In the model basically three terms - the spin-up term and the production of mechanical and convective turbulent kinetic energy - control the growth of the mixed layer. The interplay between the three terms is related to the meteorological conditions and the height of the mixed layer. A stable layer, the so-called entrainment zone, which is confined between the mixed layer and the free air above, caps the mixed layer. A parameterisation of the depth of the entrainment zone is also suggested, and used to devise a combined model for the height of the mixed layer and the entrainment zone. Another important aspect of the mixed layer development exists in coastal areas where an internal boundary layer forms downwind from the coastline. A model for the growth of the internal boundary layer is developed in analogy with the model for mixed layer development over homogeneous terrain. The strength of this model is that it can operate on a very fine spatial resolution with minor computer resources. Chapter 3 deals with the validation of the models. It is based in parts on data from the literature, and on own measurements. For the validation of the formation of the internal boundary layer

  7. Shear Capacity as Prognostic of Nocturnal Boundary Layer Regimes

    Science.gov (United States)

    van Hooijdonk, Ivo; Donda, Judith; Bosveld, Fred; Moene, Arnold; Clercx, Herman; van de Wiel, Bas

    2015-04-01

    After sunset the surface temperature can drop rapidly in some nights and may lead to ground frost. This sudden drop is closely related to the occurrence of fundamentally different behaviour of turbulence in the nocturnal boundary layer. Recent theoretical findings predict the appearance of two different regimes: the continuously turbulent (weakly stable) boundary layer and the relatively 'quiet' (very stable) boundary layer. Field observations from a large number of nights (approx. 4500 in total) are analysed using an ensemble averaging technique. The observations support the existence of these two fundamentally different regimes: weakly stable (turbulent) nights rapidly reach a steady state (within 2-3 hours). In contrast, very stable nights reach a steady state much later after a transition period (2-6 hours). During this period turbulence is weak and non-stationary. To characterise the regime a new parameter is introduced: the Shear Capacity. This parameter compares the actual shear after sunset with the minimum shear needed to sustain continuous turbulence. In turn, the minimum shear is dictated by the heat flux demand at the surface (net radiative cooling), so that the Shear Capacity combines flow information with knowledge on the boundary condition. It is shown that the Shear Capacity enables prediction of the flow regimes. The prognostic strength of this non-dimensional parameter appears to outperform the traditional ones like z/L and Ri as regime indicator.

  8. Breaking the boundary layer symmetry in turbulent convection using wall geometry

    CERN Document Server

    Toppaladoddi, Srikanth; Wettlaufer, John S

    2014-01-01

    We systematically probe the interaction of the boundary layer with the core flow during two-dimensional turbulent Rayleigh-B\\'{e}nard convection using numerical simulations and scaling theory. The boundary layer/core flow interaction is manipulated by configuring the top plate with a sinusoidal geometry and breaking the symmetry between the top and bottom thermal boundary layers. At long wavelength the planar results are recovered. However, at intermediate wavelengths, and for Rayleigh numbers ($Ra$) such that the amplitude of the roughness elements is larger than the boundary layer thickness, there is enhanced cold plume production at the tips of the elements. It is found that, while the interior of the flow is well mixed as in the classical theory of Malkus, the mean temperature is lower than that in the planar case. For a Prandtl number of unity and $Ra = 10^6$ to $2.5 \\times 10^9$ we find a Nusselt number ($Nu$) scaling law of $Nu = 0.052 \\times Ra^{0.34}$, in good agreement with recent experiments. The c...

  9. On determining characteristic length scales in pressure gradient turbulent boundary layers

    Science.gov (United States)

    Vinuesa, Ricardo; Örlü, Ramis; Schlatter, Philipp

    2016-04-01

    In the present work we analyze three methods used to determine the edge of pressure gradient turbulent boundary layers: two based on composite profiles, the one by Chauhan et al. (Fluid Dyn. Res. 41:021401, 2009) and the one by Nickels (J. Fluid Mech. 521:217-239, 2004), and the other one based on the condition of vanishing mean velocity gradient. Additionally, a new method is introduced based on the diagnostic plot concept by Alfredsson et al. (Phys. Fluids 23:041702, 2011). The boundary layer developing over the suction side of a NACA4412 wing profile, extracted from a direct numerical simulation at Rec = 400,000, is used as the test case. We find that all the methods produce robust results with mild or moderate pressure gradients, but stronger pressure gradients (with β larger than around 7) lead to inconsistent results in all the techniques except the diagnostic plot. This method also has the advantage of providing an objective way of defining the point where the mean streamwise velocity is 99% of the edge velocity, and shows consistent results in a wide range of pressure gradient conditions, as well as flow histories. Therefore, the technique based on the diagnostic plot is a robust method to determine the boundary layer thickness (equivalent to δ99) and edge velocity in pressure gradient turbulent boundary layers.

  10. The effect of a shear boundary layer on the stability of a capillary jet

    Science.gov (United States)

    Ganan-Calvo, Alfonso; Montanero, Jose M.; Herrada, Miguel A.

    2014-11-01

    The generic stabilization effect of a shear boundary layer over the free surface of a capillary jet is here studied from analytical (asymptotic), numerical and experimental approaches. In first place, we show the consistency of the proposed asymptotic analysis by a linear stability (numerical) analysis of the Navier-Stokes equations for a finite boundary layer thickness. We show how the convective-to-absolute instability transition departs drastically from the flat velocity profile case as the axial coordinate becomes closer to the origin of the boundary layer development. For large enough axial distances from that origin, Rayleigh's dispersion relation is recovered. A collection of experimental observations is analyzed from the perspective provided by these results. We propose a systematic framework to the dynamics of capillary jets issued from a nozzle, either by direct injection into a quiescent atmosphere or in a co-flow (e.g. gas flow-focused jets), which exhibit peculiarities now definitely attributable in first order to the formation of shear boundary layers. Partial support from the Ministry of Economy and Competitiveness, Junta de Extremadura, and Junta de Andalucia (Spain) through Grant Nos. DPI2010-21103, GR10047, P08-TEP-04128, and TEP-7465, respectively, is gratefully acknowledged.

  11. On determining characteristic length scales in pressure gradient turbulent boundary layers

    Science.gov (United States)

    Vinuesa, Ricardo; Örlü, Ramis; Schlatter, Philipp

    2016-04-01

    In the present work we analyze three methods used to determine the edge of pressure gradient turbulent boundary layers: two based on composite profiles, the one by Chauhan et al. (Fluid Dyn. Res. 41:021401, 2009) and the one by Nickels (J. Fluid Mech. 521:217–239, 2004), and the other one based on the condition of vanishing mean velocity gradient. Additionally, a new method is introduced based on the diagnostic plot concept by Alfredsson et al. (Phys. Fluids 23:041702, 2011). The boundary layer developing over the suction side of a NACA4412 wing profile, extracted from a direct numerical simulation at Rec = 400,000, is used as the test case. We find that all the methods produce robust results with mild or moderate pressure gradients, but stronger pressure gradients (with β larger than around 7) lead to inconsistent results in all the techniques except the diagnostic plot. This method also has the advantage of providing an objective way of defining the point where the mean streamwise velocity is 99% of the edge velocity, and shows consistent results in a wide range of pressure gradient conditions, as well as flow histories. Therefore, the technique based on the diagnostic plot is a robust method to determine the boundary layer thickness (equivalent to δ99) and edge velocity in pressure gradient turbulent boundary layers.

  12. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    Science.gov (United States)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  13. Preliminary Investigation on Boundary Layer Control by Means of Suction and Pressure with the U.S.A. 27 Airfoil

    Science.gov (United States)

    Reid, E G; Bamber, M J

    1928-01-01

    The tests described in this report constitute a preliminary investigation of airfoil boundary layer control, as carried out in the atmospheric wind tunnel of the Langley Memorial Aeronautical Laboratory, from February to August, 1927. Tests were made on a U.S.A. 27 airfoil section with various slot shapes and combinations, and at various amounts of pressure or suction on the slots. The lift of airfoils can be increased by removing or by accelerating the boundary layer. Removing the boundary layer by suction is more economical than to accelerate it by jet action. Gauze-covered suction slots apparently give the best results. When not in operation, all suction slots tested had a detrimental effect upon the aerodynamic characteristics of the airfoil which was not apparent with the backward-opening pressure slots. Thick, blunt-nose airfoils would seem to give best results with boundary layer control.

  14. Predicting the flow & noise of a rotor in a turbulent boundary layer using an actuator disk -- RANS approach

    Science.gov (United States)

    Buono, Armand C.

    The numerical method presented in this study attempts to predict the mean, non-uniform flow field upstream of a propeller partially immersed in a thick turbulent boundary layer with an actuator disk using CFD based on RANS in ANSYS FLUENT. Three different configurations, involving an infinitely thin actuator disk in the freestream (Configuration 1), an actuator disk near a wall with a turbulent boundary layer (Configuration 2), and an actuator disk with a hub near a wall with a turbulent boundary layer (Configuration 3), were analyzed for a variety of advance ratios ranging from J = 0.48 to J =1.44. CFD results are shown to be in agreement with previous works and validated with experimental data of reverse flow occurring within the boundary layer above the flat plate upstream of a rotor in the Virginia Tech's Stability Wind Tunnel facility. Results from Configuration 3 will be used in future aero-acoustic computations.

  15. Mechanisms of fast neutron penetration in thick layers of sodium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L.Y.

    1975-01-01

    A series of computer experiments was carried out to elucidate the penetration mechanisms of fast neutrons through thick layers of sodium such as occur in LMFBR designs. As a one-dimensional approximation of the actual situation, the calculations concentrated mainly on the flux 5 meters from a plane isotropic fission source in an infinite sodium medium. Most of the transport calculations were made with the moments-method code BMT with a 496-energy point grid. Previously developed methods for reconstructing the flux from the spatial moments were used, except that a set of biorthogonal polynomials was constructed suitable for expansion of the flux in terms of a Gaussian weight function. The moments-method technique lends itself to easy and economical changes of the input cross section data. A large number of such modified cross section sets, built around the ENDF/B-III set, were used in separate calculations designed variously to emphasize or eliminate one or more particular transport processes. It was shown that, as the energy decreases below 190 keV, the flux spectrum at 5 m is increasingly dominated by an age-diffusion process that is quantitatively close to conventional age theory if the age is suitably chosen. Conclusions from this picture of neutron penetration in sodium are made as to the types of transport calculations that can be successfully made in shield design, and the accuracies needed in future cross section measurements. 37 figures, 30 tables.

  16. Studies of stability of blade cascade suction surface boundary layer

    Institute of Scientific and Technical Information of China (English)

    DONG Xue-zhi; YAN Pei-gang; HAN Wan-jin

    2007-01-01

    Compressible boundary layers stability on blade cascade suction surface was discussed by wind tunnel experiment and numerical solution. Three dimensional disturbance wave Parabolized Stability Equations(PSE) of orthogonal Curvilinear Coordinates in compressible flow was deducted. The surface pressure of blade in wind tunnel experiment was measured. The Falkner-Skan equation was solved under the boundary conditions of experiment result, and velocity, pressure and temperature of average flow were obtained. Substituted this result for discretization of the PSE Eigenvalue Problem, the stability problem can be solved.

  17. Edge Plasma Boundary Layer Generated By Kink Modes in Tokamaks

    International Nuclear Information System (INIS)

    This paper describes the structure of the electric current generated by external kink modes at the plasma edge using the ideally conducting plasma model. It is found that the edge current layer is created by both wall touching and free boundary kink modes. Near marginal stability, the total edge current has a universal expression as a result of partial compensation of the (delta)-functional surface current by the bulk current at the edge. The resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  18. Turbulence spectra of the FIRE stratocumulus-topped boundary layers

    Science.gov (United States)

    Young, G. S.; Nucciarone, J. J.; Albrecht, Bruce A.

    1990-01-01

    There are at least four physical phenomena which contribute to the FIRE boundary layer turbulence spectra: boundary layer spanning eddies resulting from buoyant and mechanical production of turbulent kinetic energy (the microscale subrange); inertial subrange turbulence which cascades this energy to smaller scales; quasi-two dimensional mesoscale variations; and gravity waves. The relative contributions of these four phenomena to the spectra depend on the altitude of observation and variable involved (vertical velocity, temperature and moisture spectra are discussed). The physical origins of these variations in relative contribution are discussed. As expected from the theory (Kaimal et al., 1976), mixed layer scaling of the spectra (i.e., nondimensionalizing wavelength by Z(sub i) and spectral density by Z(sub i) and the dissipation rates) is successful for the microscale subrange and inertial subrange but not for the mesoscale subrange. The most striking feature of the normalized vertical velocity spectra is the lack of any significant mesoscale contribution. The spectral peak results from buoyant and mechanical production on scales similar to the boundary layer depth. The decrease in spectral density at larger scales results from the suppression of vertical velocity perturbations with large horizontal scales by the shallowness of the atmosphere. The spectral density also decreases towards smaller scales following the well known inertial subrange slope. There is a significant variation in the shape of the normalized spectra with height.

  19. Observed bottom boundary layer transport and uplift on the continental shelf adjacent to a western boundary current

    Science.gov (United States)

    Schaeffer, A.; Roughan, M.; Wood, J. E.

    2014-08-01

    Western boundary currents strongly influence the dynamics on the adjacent continental shelf and in particular the cross-shelf transport and uplift through the bottom boundary layer. Four years of moored in situ observations on the narrow southeastern Australian shelf (in water depths of between 65 and 140 m) were used to investigate bottom cross-shelf transport, both upstream (30°S) and downstream (34°S) of the separation zone of the East Australian Current (EAC). Bottom transport was estimated and assessed against Ekman theory, showing consistent results for a number of different formulations of the boundary layer thickness. Net bottom cross-shelf transport was onshore at all locations. Ekman theory indicates that up to 64% of the transport variability is driven by the along-shelf bottom stress. Onshore transport in the bottom boundary layer was more intense and frequent upstream than downstream, occurring 64% of the time at 30°S. Wind-driven surface Ekman transport estimates did not balance the bottom cross-shelf flow. At both locations, strong variability was found in bottom water transport at periods of approximately 90-100 days. This corresponds with periodicity in EAC fluctuations and eddy shedding as evidenced from altimeter observations, highlighting the EAC as a driver of variability in the continental shelf waters. Ocean glider and HF radar observations were used to identify the bio-physical response to an EAC encroachment event, resulting in a strong onshore bottom flow, the uplift of cold slope water, and elevated coastal chlorophyll concentrations.

  20. A Numerical Study of Sea-Spray Aerosol Motion in a Coastal Thermal Internal Boundary Layer

    Science.gov (United States)

    Liang, Tinghao; Yu, Xiping

    2016-08-01

    A three-dimensional large-eddy simulation model is applied to the study of sea-spray aerosol transport, dispersion and settling in the coastal thermal internal boundary layer (IBL) formed by cool airflow from the open sea to the warm land. An idealized situation with constant inflow from the ocean and constant heat flux over the coastal land is considered. The numerical results confirm that the thickness of the coastal thermal IBL increases with the distance from the coastline until the outer edge of the IBL penetrates into the capping inversion layer. The thickness increases also with time until a fully-developed thermal boundary layer is formed. In addition, the thickness of the coastal thermal IBL increases more rapidly when the heat flux over the land is greater. Existence of large-scale eddies within the thermal IBL is identified and the turbulence intensity within the thermal IBL is also found to be significantly higher than that above. It is also indicated that the vertical position of the maximum concentration does not occur at the surface but increases as sea-spray aerosols are transported inland. The vertical position of the maximum flux of sea-spray aerosols within the coastal thermal IBL is shown to coincide with that of the maximum vertical velocity fluctuations when the coastal thermal IBL is fully developed with increased distance in the airflow direction.

  1. Numerical study of the anode boundary layer in atmospheric pressure arc discharges

    Science.gov (United States)

    Semenov, I. L.; Krivtsun, I. V.; Reisgen, U.

    2016-03-01

    The anode boundary layer in atmospheric pressure arc discharges is studied numerically on the basis of the hydrodynamic (diffusion) equations for plasma components. The governing equations are formulated in a unified manner without the assumptions of thermal equilibrium, ionization equilibrium or quasi-neutrality. For comparison, a quasi-neutral model of the anode layer is also considered. The numerical computations are performed for an argon arc at typical values of the current density in anode layers (500-2000 A cm-2). The results of numerical modelling show that the common collisionless model of the sheath fails to describe the sheath region for the problem under consideration. For this reason, a detailed analysis of the anode sheath is performed using the results of unified modelling. In addition, the distributions of plasma parameters in the anode layer are analysed and the basic characteristics of the layer (anode voltage drop, sheath voltage drop, anode layer thickness, sheath thickness, heat flux to the anode) are calculated. Our results are found to be in good agreement with the existing theoretical predictions and experimental data. The dependence of the anode layer characteristics on the current density is also discussed.

  2. A Thermal Plume Model for the Martian Convective Boundary Layer

    CERN Document Server

    Colaïtis, Arnaud; Hourdin, Frédéric; Rio, Catherine; Forget, François; Millour, Ehouarn

    2013-01-01

    The Martian Planetary Boundary Layer [PBL] is a crucial component of the Martian climate system. Global Climate Models [GCMs] and Mesoscale Models [MMs] lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically-based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in Large-Eddy Simulations [LESs]. We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking ...

  3. Infrared propagation in the air-sea boundary layer

    Science.gov (United States)

    Larsen, R.; Preedy, K. A.; Drake, G.

    1990-03-01

    Over the oceans and other large bodies of water the structure of the lowest layers of the atmosphere is often strongly modified by evaporation of water vapor from the water surface. At radio wavelengths this layer will usually be strongly refracting or ducting, and the layer is commonly known as the evaporation duct. However, the refractive index of air at infrared wavelengths differs from that at radio wavelengths, and the effects of the marine boundary layer on the propagation of infrared radiation are examined. Meteorological models of the air-sea boundary layer are used to compute vertical profiles of temperature and water-vapor pressure. From these are derived profiles of atmospheric refractive index at radio wavelengths and at infrared wavelengths in the window regions of low absorption. For duct propagation to occur it is necessary that the refractivity of air decreases rapidly with increasing height above the surface. At radio wavelengths this usually occurs when there is a strong lapse of water vapor pressure with increasing height. By contrast, at infrared wavelengths the refractive index is almost independent of water vapor pressure, and it is found that an infrared duct is formed only when there is a temperature inversion.

  4. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    Science.gov (United States)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  5. Coherent structures in wave boundary layers. Part 2. Solitary motion

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Jensen, Palle Martin; Sørensen, Lone B.;

    2010-01-01

    in an oscillating water tunnel. Two kinds of measurements were made: bed shear stress measurements and velocity measurements. The experiments show that the solitary-motion boundary layer experiences three kinds of flow regimes as the Reynolds number is increased: (i) laminar regime; (ii) laminar regime where...... the boundary-layer flow experiences a regular array of vortex tubes near the bed over a short period of time during the deceleration stage; and (iii) transitional regime characterized with turbulent spots, revealed by single/multiple, or, sometimes, quite dense spikes in the bed shear stress traces....... Supplementary synchronized flow visualization tests confirmed the presence of the previously mentioned flow features. Information related to flow resistance are also given in the paper....

  6. Full-Scale Spectrum of Boundary-Layer Winds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik

    2016-01-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used...... to estimate the spectrum from about 1 yr−1 to 0.05 min−1; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day−1 to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various...... of the three velocity components over a wide range from 1 day−1 to 10 Hz, which is useful in determining the necessary sample duration when measuring turbulence statistics in the boundary layer....

  7. Amendment to "Analytical Solution for the Convectively-Mixed Atmospheric Boundary Layer": Inclusion of Subsidence

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Arellano, de J.V.G.

    2013-01-01

    In Ouwersloot and Vila-Guerau de Arellano (Boundary-Layer Meteorol. doi: 10. 1007/s10546-013-9816-z, 2013, this issue), the analytical solutions for the boundary-layer height and scalar evolutions are derived for the convective boundary layer, based on the prognostic equations of mixed-layer slab mo

  8. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    OpenAIRE

    Elena-Carmen Teleman; Radu Silion; Elena Axinte; Radu Pescaru

    2008-01-01

    The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence sca...

  9. Ozone in the Atlantic Ocean marine boundary layer

    OpenAIRE

    Patrick Boylan; Detlev Helmig; Samuel Oltmans

    2015-01-01

    Abstract In situ atmospheric ozone measurements aboard the R/V Ronald H. Brown during the 2008 Gas-Ex and AMMA research cruises were compared with data from four island and coastal Global Atmospheric Watch stations in the Atlantic Ocean to examine ozone transport in the marine boundary layer (MBL). Ozone measurements made at Tudor Hill, Bermuda, were subjected to continental outflow from the east coast of the United States, which resulted in elevated ozone levels above 50 ppbv. Ozone measurem...

  10. Pressure gradient effect in natural convection boundary layers

    OpenAIRE

    Higuera Antón, Francisco; Liñán Martínez, Amable

    1993-01-01

    The high Grashof number laminar natural convection flow around the lower stagnation point of a symmetric bowl- shaped heated body is analyzed. A region is identified where the direct effect on the flow of the component of the buoyancy force tangential to the body surface is comparable to the indirect effect of the component normal to the surface, which acts through the gradient of the nonuniform pressure that it induces in the boundary layer. Analysis of this region provides a description ...

  11. Grey zone simulations of the morning convective boundary layer development

    Science.gov (United States)

    Efstathiou, G. A.; Beare, R. J.; Osborne, S.; Lock, A. P.

    2016-05-01

    Numerical simulations of two cases of morning boundary layer development are conducted to investigate the impact of grid resolution on mean profiles and turbulent kinetic energy (TKE) partitioning from the large eddy simulation (LES) to the mesoscale limit. Idealized LES, using the 3-D Smagorinsky scheme, is shown to be capable of reproducing the boundary layer evolution when compared against measurements. However, increasing grid spacing results in the damping of resolved TKE and the production of superadiabatic temperature profiles in the boundary layer. Turbulence initiation is significantly delayed, exhibiting an abrupt onset at intermediate resolutions. Two approaches, the bounding of vertical diffusion coefficient and the blending of the 3-D Smagorinsky with a nonlocal 1D scheme, are used to model subgrid diffusion at grey zone resolutions. Simulations are compared against the coarse-grained fields from the validated LES results for each case. Both methods exhibit particular strengths and weaknesses, indicating the compromise that needs to be made currently in high-resolution numerical weather prediction. The blending scheme is able to reproduce the adiabatic profiles although turbulence is underestimated in favor of the parametrized heat flux, and the spin-up of TKE remains delayed. In contrast, the bounding approach gives an evolution of TKE that follows the coarse-grained LES very well, relying on the resolved motions for the nonlocal heat flux. However, bounding gives unrealistic static instability in the early morning temperature profiles (similar to the 3-D Smagorinsky scheme) because model dynamics are unable to resolve TKE when the boundary layer is too shallow compared to the grid spacing.

  12. Iodine monoxide in the Western Pacific marine boundary layer

    Directory of Open Access Journals (Sweden)

    K. Großmann

    2012-10-01

    Full Text Available A latitudinal cross-section and vertical profiles of iodine monoxide (IO are reported from the marine boundary layer of the Western Pacific. The measurements were taken using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS during the TransBrom cruise of the German research vessel Sonne, which led from Tomakomai, Japan (42° N, 141° E through the Western Pacific to Townsville, Australia (19° S, 146° E in October 2009. In the marine boundary layer within the tropics (between 20° N and 5° S, IO mixing ratios ranged between 1 and 2.2 ppt, whereas in the subtropics and at mid-latitudes typical IO mixing ratios were around 1 ppt in the daytime. The profile retrieval reveals that the bulk of the IO was located in the lower part of the marine boundary layer. Photochemical simulations indicate that the organic iodine precursors observed during the cruise (CH3I, CH2I2, CH2ClI, CH2BrI are not sufficient to explain the measured IO mixing ratios. Reasonable agreement between measured and modelled IO can only be achieved, if an additional sea-air flux of inorganic iodine (e.g. I2 is assumed in the model. Our observations add further evidence to previous studies that reactive iodine is an important oxidant in the marine boundary layer.

  13. Glyoxal observations in the global marine boundary layer

    OpenAIRE

    Mahajan, Anoop S.; Prados-Roman, Cristina; Hay, Timothy D.; Lampel, Johannes; Pöhler, Denis; Groβmann, Katja; Tschritter, Jens; Frieß, Udo; Platt, Ulrich; Johnston, Paul; Kreher, Karin; Wittrock, Folkard; Burrows, John P; Plane, John M. C.; Saiz-Lopez, Alfonso

    2014-01-01

    Glyoxal is an important intermediate species formed by the oxidation of common biogenic and anthropogenic volatile organic compounds such as isoprene, toluene and acetylene. Although glyoxal has been shown to play an important role in urban and forested environments, its role in the open ocean environment is still not well understood, with only a few observations showing evidence for its presence in the open ocean marine boundary layer (MBL). In this study, we report observations of glyoxal f...

  14. Plasma boundary layer with active surface. Pt. 1

    International Nuclear Information System (INIS)

    The space-charge boundary layer between plasma and wall which is normally (almost) homogeneous may become instable and may decay into largely independent spots of plasma-induced unipolar-like discharges. In Tokamaks the existence of such highly inhomogeneous boundary plasmas often has been found by observation of arc tracks and of ''hot spots'' a.s.o. In this way wall erosion and production rates of plasma impurities will be enhanced, and several special phenomena of intense wall erosion (like ''carbon blooming'') may be traced back to such effects. In this paper the influence of electron emission from the wall (i.e. of an ''active'' surface) on the parameter of the space charge sheath is investigated, applying simple balance equations, as a first step towards an explanation of the transition from a homogeneous into an inhomogeneous boundary layer. Several variations of such models are calculated, using typical plasma parameters. Essential result is the dependence of the sheath potential and of the surface power density on the emission yield and on the net current density. Irrespective of the chosen constants the potential drop between plasma and wall turns out to become the higher the lower is the electron emission and the higher is the net current. Opposite is the dependence of the energy flux to the wall which, however, passes a minimum and increases rapidly again near the maximum net current jmax (with jmax∼jis(γ-1), where jis=ion saturation current, and γ=emission yield per ion). As a consequence, the wall loading is strongly enhanced as well in case of high negative net currents and intense electron emission, as near the maximum net current. This will be infavour of an instability of the boundary layer, resulting - with high probability - in the decay of the layer into plasma-induced arc spots. As a next step in this investigation of such plasma boundary layers a careful analysis of this transition is provided for, taking the specified conditions of the

  15. Direct simulation of turbulent supersonic boundary layers by an extended temporal approach

    Science.gov (United States)

    Maeder, Thierry; Adams, Nikolaus A.; Kleiser, Leonhard

    2001-02-01

    The present paper addresses the direct numerical simulation of turbulent zero-pressure-gradient boundary layers on a flat plate at Mach numbers 3, 4.5 and 6 with momentum-thickness Reynolds numbers of about 3000. Simulations are performed with an extended temporal direct numerical simulation (ETDNS) method. Assuming that the slow streamwise variation of the mean boundary layer is governed by parabolized Navier Stokes equations, the equations solved locally in time with a temporal DNS are modified by a distributed forcing term so that the parabolized Navier Stokes equations are recovered for the spatial average. The correct mean flow is obtained without a priori knowledge, the streamwise mean-flow evolution being approximated from its upstream history. ETDNS reduces the computational effort by up to two orders of magnitude compared to a fully spatial simulation.

  16. Experimental determination of the boundary layer at air-sample inlet positions on the NASA CV 990 aircraft

    Science.gov (United States)

    Bowen, S. W.; Vedder, J. F.; Condon, E. P.

    1984-01-01

    Full-scale, in-flight measurements of the boundary-layer thickness, velocity profile, and flow angle have been made at several sample collection stations on the fuselage of the NASA CV 990. These results are given as functions of Mach number, Reynolds number, yaw, and angle of attack.

  17. Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness

    International Nuclear Information System (INIS)

    Highlights: • Parametric study of turbulent boundary layers over a converging–diverging riblet-type surface. • This unique surface roughness induces large-scale spanwise periodicity that distort the layer thickness. • Large-scale low and high speed regions form above converging and diverging regions respectively. • The converging and diverging regions also exhibit increased and reduced turbulent intensity. • These highly directional rough surfaces seem to induce large counter-rotating roll-modes. -- Abstract: The effect of converging–diverging riblet-type surface roughness (riblets arranged in a ‘herringbone’ pattern) are investigated experimentally in a zero pressure gradient turbulent boundary layer. For this initial parametric investigation three different parameters of the surface roughness are analysed in detail; the converging–diverging riblet yaw angle α, the streamwise fetch or development length over the rough surface Fx and the viscous-scaled riblet height h+. It is observed that this highly directional surface roughness pattern induces a large-scale spanwise periodicity onto the boundary layer, resulting in a pronounced spanwise modification of the boundary layer thickness. Hot-wire measurements reveal that above the diverging region, the local mean velocity increases while the turbulent intensity decreases, resulting in a thinner overall boundary layer thickness in these locations. The opposite situation occurs over the converging region, where the local mean velocity is decreased and the turbulent intensity increases, producing a locally thicker boundary layer. Increasing the converging–diverging angle or the viscous-scaled riblet height results in stronger spanwise perturbations. For the strongest convergent–divergent angle, the spanwise variation of the boundary layer thickness between the diverging and converging region is almost a factor of two. Such a large variation is remarkable considering that the riblet height is only

  18. Using UAV's to Measure the Urban Boundary Layer

    Science.gov (United States)

    Jacob, R. L.; Sankaran, R.; Beckman, P. H.

    2015-12-01

    The urban boundary layer is one of the most poorly studied regions of the atmospheric boundary layer. Since a majority of the world's population now lives in urban areas, it is becoming a more important region to measure and model. The combination of relatively low-cost unmanned aerial vehicles and low-cost sensors can together provide a new instrument for measuring urban and other boundary layers. We have mounted a new sensor and compute platform called Waggle on an off-the-shelf XR8 octo-copter from 3DRobotics. Waggle consists of multiple sensors for measuring pressure, temperature and humidity as well as trace gases such as carbon monoxide, nitrogen dioxide, sulfur dioxide and ozone. A single board computer running Linux included in Waggle on the UAV allows in-situ processing and data storage. Communication of the data is through WiFi or 3G and the Waggle software can save the data in case communication is lost during flight. The flight pattern is a deliberately simple vertical ascent and descent over a fixed location to provide vertical profiles and so flights can be confined to urban parks, industrial areas or the footprint of a single rooftop. We will present results from test flights in urban and rural areas in and around Chicago.

  19. Wave boundary layer over a stone-covered bed

    DEFF Research Database (Denmark)

    Dixen, Martin; Hatipoglu, Figen; Sumer, B. Mutlu;

    2008-01-01

    This paper summarizes the results of an experimental investigation on wave boundary layers over a bed with large roughness, simulating stone/rock/armour block cover on the sea bottom. The roughness elements used in the experiments were stones the size of 1.4cm and 3.85cm in one group of experiments...... and regular ping-pong balls the size 3.6cm in the other. The orbital-motion-amplitude-to-roughness ratio at the bed was rather small, in the range a/ks=0.6-3. The mean and turbulence properties of the boundary-layer flow were measured. Various configurations of the roughness elements were used in the ping...... for small values of a/ks. The results further show that the phase lead of the bed friction velocity over the surface elevation does not seem to change radically with a/ks, and found to be in the range 12°-23°. Furthermore the results show that the boundary-layer turbulence also is not extremely sensitive...

  20. Coupled wake boundary layer model of wind-farms

    CERN Document Server

    Stevens, Richard J A M; Meneveau, Charles

    2014-01-01

    We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall wind-farm boundary layer structure. The wake expansion/superposition model captures the effect of turbine positioning, while the top-down portion adds the interaction between the wind-turbine wakes and the atmospheric boundary layer. Each portion of the model requires specification of a parameter that is not known a-priori. For the wake model the wake expansion coefficient is required, while the top-down model requires an effective span-wise turbine spacing within which the model's momentum balance is relevant. The wake expansion coefficient is obtained by matching the predicted mean velocity at the turbine from both approaches, while the effective span-wise turbine spacing depends on turbine positioning and thus can be determined from the wake expansion...

  1. RANS Modeling of Benchmark Shockwave / Boundary Layer Interaction Experiments

    Science.gov (United States)

    Georgiadis, Nick; Vyas, Manan; Yoder, Dennis

    2010-01-01

    This presentation summarizes the computations of a set of shock wave / turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock / boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Three turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Shear Stress Transport wavenumber-angular frequency two-equation model, and an explicit algebraic stress wavenumber-angular frequency formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.!

  2. Some characteristics of bypass transition in a heated boundary layer

    Science.gov (United States)

    Sohn, K. H.; Reshotko, E.; O'Brien, J. E.

    Experimental measurements of both mean and conditionally sampled characteristics of laminar, transitional and low Reynolds number turbulent boundary layers on a heated flat plate are presented. Measurements were obtained in air over a range of freestream turbulence intensities from 0.3 percent to 6 percent with a freestream velocity of 30.5 m/s and zero pressure gradient. Conditional sampling performed in the transitional boundary layers indicate the existence of a near-wall drop in intermittency, especially pronounced at low intermittencies. Nonturbulent intervals were observed to possess large levels of low-frequency unsteadiness, and turbulent intervals had peak intensities as much as 50 percent higher than were measured at fully turbulent stations. Heat transfer results were consistent with results of previous researches and Reynolds analogy factors were found to be well predicted by laminar and turbulent correlations which accounted for unheated starting length. A small dependence of the turbulent Reynolds analogy factors on freestream turbulence level was observed. Laminar boundary layer spectra indicated selective amplification of unstable frequencies. These instabilities appear to play a dominant role in the transition process only for the lowest freestream turbulence level studied, however.

  3. High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces

    Science.gov (United States)

    Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min

    2007-11-01

    This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.

  4. Drift of scroll waves in thin layers caused by thickness features: asymptotic theory and numerical simulations.

    Science.gov (United States)

    Biktasheva, I V; Dierckx, H; Biktashev, V N

    2015-02-13

    A scroll wave in a very thin layer of excitable medium is similar to a spiral wave, but its behavior is affected by the layer geometry. We identify the effect of sharp variations of the layer thickness, which is separate from filament tension and curvature-induced drifts described earlier. We outline a two-step asymptotic theory describing this effect, including asymptotics in the layer thickness and calculation of the drift of so-perturbed spiral waves using response functions. As specific examples, we consider drift of scrolls along thickness steps, ridges, ditches, and disk-shaped thickness variations. Asymptotic predictions agree with numerical simulations.

  5. Inversion of thicknesses of multi-layered structures from eddy current testing measurements

    Institute of Scientific and Technical Information of China (English)

    黄平捷; 吴昭同

    2004-01-01

    Luquire et al. ' s impedance change model of a rectangular cross section probe coil above a structure with an arbitrary number of parallel layers was used to study the principle of measuring thicknesses of multi-layered structures in terms of eddy current testing voltage measurements. An experimental system for multi-layered thickness measurement was developed and several fitting models to formulate the relationships between detected impedance/voltage measurements and thickness are put forward using least square method. The determination of multi-layered thicknesses was investigated after inversing the voltage outputs of the detecting system. The best fitting and inversion models are presented.

  6. Inversion of thicknesses of multi-layered structures from eddy current testing measurements

    Institute of Scientific and Technical Information of China (English)

    HUANG Ping-jie(黄平捷); WU Zhao-tong(吴昭同)

    2004-01-01

    Luquire et al.'s impedance change model of a rectangular cross section probe coil above a structure with an arbitrary number of parallel layers was used to study the principle of measuring thicknesses of multi-layered structures in terms of eddy current testing voltage measurements. An experimental system for multi-layered thickness measurement was developed and several fitting models to formulate the relationships between detected impedance/voltage measurements and thickness are put forward using least square method. The determination of multi-layered thicknesses was investigated after inversing the voltage outputs of the detecting system. The best fitting and inversion models are presented.

  7. Micro vortex generator control of axisymmetric high-speed laminar boundary layer separation

    Science.gov (United States)

    Estruch-Samper, D.; Vanstone, L.; Hillier, R.; Ganapathisubramani, B.

    2015-09-01

    Interest in the development of micro vortex generators (MVGs) to control high-speed flow separation has grown in the last decade. In contrast to conventional vortex generators, MVGs are fully submerged in the boundary layer and have the potential of inducing surface flow mixing with marginal drag penalty when suitably designed. Also, they do not result in undesired reduced mass flow such as with suction methods. The flow mechanisms at the location of MVGs are not yet fully understood, and optimal designs are difficult to establish given that both numerical predictions and experiments are particularly challenged for short element heights, yet optimal MVGs are generally expected to be at least shorter than half the local boundary layer thickness. The present work aims at investigating experimentally the fundamental flow physics concerning an individual MVG element (of `canonical' or simplified geometry) at a range of near-wall heights. A fully laminar base flow is considered so as to isolate the effect of incoming turbulence as well as the more complex physics that may occur when specific and/or multiple elements are used. Tests were performed in a gun tunnel at a freestream Mach number of 8.9 and Reynolds number of /m, and the basic test model consisted of a blunt-nosed cylinder which produced an axisymmetric laminar boundary layer with an edge Mach number of 3.4 and Reynolds number of /m at the MVG location. A laminar shock-wave/boundary layer interaction with separation was induced by a flare located further downstream on the model. Measurements consisted of time-resolved surface heat transfer obtained in the axial direction immediately downstream of the MVG and along the interaction, together with simultaneous high-speed schlieren imaging. The height () of the MVG element used in a `diamond' configuration (square planform with one vertex facing the flow) was adjusted between tests ranging from = 0.03 to 0.58, where the local undisturbed boundary layer thickness

  8. Estimating the atmospheric boundary layer height over sloped, forested terrain from surface spectral analysis during BEARPEX

    Directory of Open Access Journals (Sweden)

    W. Choi

    2010-11-01

    Full Text Available In this study the atmospheric boundary layer (ABL height (zi over complex, forested terrain is estimated based on the power spectra and the integral length scale of horizontal winds obtained from a three-axis sonic anemometer during the BEARPEX (Biosphere Effects on Aerosol and Photochemistry Experiment. The zi values estimated with this technique showed very good agreement with observations obtained from balloon tether sonde (2007 and rawinsonde (2009 measurements under unstable conditions (z/L < 0 at the coniferous forest in the California Sierra Nevada. The behavior of the nocturnal boundary layer height (h and power spectra of lateral winds and temperature under stable conditions (z/L > 0 is also presented. The nocturnal boundary layer height is found to be fairly well predicted by a recent interpolation formula proposed by Zilitinkevich et al. (2007, although it was observed to only vary from 60–80 m during the experiment. Finally, significant directional wind shear was observed during both day and night with winds backing from the prevailing west-southwesterlies in the ABL (anabatic cross-valley circulation to consistent southerlies in a layer ~1 km thick just above the ABL before veering to the prevailing westerlies further aloft. We show that this is consistent with the forcing of a thermal wind driven by the regional temperature gradient directed due east in the lower troposphere.

  9. Investigation of the outer and inner low-latitude boundary layers

    Directory of Open Access Journals (Sweden)

    T. M. Bauer

    Full Text Available We analyze 22 AMPTE/IRM crossings of the day-side low-latitude boundary layer for which a dense outer part can be distinguished from a dilute inner part. Whereas the plasma in the outer boundary layer (OBL is dominated by solar wind particles, the partial densities of solar wind and magnetospheric particles are comparable in the inner boundary layer (IBL. For 11 events we find a reasonable agreement between observed plasma flows and those predicted by the tangential stress balance of an open magnetopause. Thus, we conclude that, at least in these cases, the OBL is formed by a local magnetic reconnection. The disagreement with the tangential stress balance in the other 11 cases might be due to reconnection being time-dependent and patchy. The north-south component of the proton bulk velocity in the boundary layer is, on average, directed toward high latitudes for both low and high magnetic shear across the magnetopause. This argues clearly against the possibility that the dayside low-latitude boundary layer is populated with solar wind plasma primarily from the cusps. "Warm", counterstreaming electrons that originate primarily from the magnetosheath and have a field-aligned temperature that is higher than the electron temperature in the magnetosheath by a factor of 1–5, are a characteristic feature of the IBL. Profiles of the proton bulk velocity and the density of hot ring current electrons provide evidence that the IBL is on closed field lines. Part of the IBL may be on newly opened field lines. Using the average spectra of electric and magnetic fluctuations in the boundary layer, we estimate the diffusion caused by lower hybrid drift instability, gyroresonant pitch angle scattering, or kinetic Alfvén wave turbulence. We find that cross-field diffusion cannot transport solar wind plasma into the OBL or IBL at a rate that would account for the thickness ( ~ 1000 km of these sublayers. On the duskside, the dawn-dusk component of the proton

  10. Layer thickness evaluation for transuranic transmutation in a fusion–fission system

    International Nuclear Information System (INIS)

    Highlights: • Layer thickness for transmutation in a fusion–fission system was evaluated. • The calculations were performed using MONTEBURNS code. • The results indicate the best thickness and volume ratio to induce transmutation. - Abstract: Layer thickness for transuranic transmutation in a fusion–fission system was evaluated using two different ways. In the first one, transmutation layer thicknesses were designed maintaining the fuel rod radius constant; in the second part, while the transmutation layer thickness increases, the fuel rod radius decreases maintaining ks (source-multiplication factor) ≈0.95. Spent fuel reprocessed by UREX+ method and then spiked with thorium and uranium composes the transmutation layer. The calculations were performed using MONTEBURNS code (MCNP5 and ORIGEN 2.1). The results indicate the best thickness and the volume ratio between the coolant and the fuel composition to induce transmutation

  11. CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions

    DEFF Research Database (Denmark)

    Koblitz, Tilman

    For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important to the atmo......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important...... to the atmospheric boundary-layer, are mostly ignored so far. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include atmospheric stability and the Coriolis effect. Within the present work a RANS model framework is developed and implemented...

  12. Grain-boundary layering transitions and phonon engineering

    Science.gov (United States)

    Rickman, J. M.; Harmer, M. P.; Chan, H. M.

    2016-09-01

    We employ semi-grand canonical Monte Carlo simulation to investigate layering transitions at grain boundaries in a prototypical binary alloy. We demonstrate the existence of such transitions among various interfacial states and examine the role of elastic fields in dictating state equilibria. The results of these studies are summarized in the form of diagrams that highlight interfacial state coexistence in this system. Finally, we examine the impact of layering transitions on the phononic properties of the system, as given by the specific heat and, by extension, the thermal conductivity. Thus, it is suggested that by inducing interfacial layering transitions via changes in temperature or pressure, one can thereby engineer thermodynamic and transport properties in materials.

  13. Changes in the relative thickness of individual subcutaneous adipose tissue layers in growing pigs

    DEFF Research Database (Denmark)

    McEvoy, Fintan; Strathe, Anders Bjerring; Madsen, Mads T.;

    2007-01-01

    longevity and finally to assist in the calculation of payments to producers that allow for general adiposity. Currently for reasons of tradition and ease, total adipose thickness measurements are made at one or multiple sites although it has been long recognized that up to three well defined layers (outer......Background: The thickness of the subcutaneous fat layer is an important parameter at all stages The thickness of the subcutaneous fat layer is an important parameter at all stages of pig production. It is used to inform decisions on dietary requirements to optimize growth, in gilts to promote...... (L1), middle (L2), and inner (L3)) may be present to make up the total. Various features and properties of these layers have been described. This paper examines the contribution of each layer to total adipose thickness at three time points and describes the change in thickness of each layer per unit...

  14. Identification of Lagrangian coherent structures in the turbulent boundary layer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using Finite-Time Lyapunov Exponents (FTLE) method, Lagrangian coherent structures (LCSs) in a fully developed flat-plate turbulent boundary layer are successfully identified from a two-dimensional (2D) velocity field obtained by time-resolved 2D PIV measurement. The typical LCSs in the turbulent boundary layer are hairpin-like structures, which are characterized as legs of quasi-streamwise vor- tices extending deep into the near wall region with an inclination angle θ to the wall, and heads of the transverse vortex tube located in the outer region. Statistical analysis on the characteristic shape of typical LCS reveals that the probability density distribution of θ accords well with t-distribution in the near wall region, but presents a bimodal distribution with two peaks in the outer region, corresponding to the hairpin head and the hairpin neck, respectively. Spatial correlation analysis of FTLE field is im- plemented to get the ensemble-averaged inclination angle θ R of typical LCS. θ R first increases and then decreases along the wall-normal direction, similar to that of the mean value of θ. Moreover, the most probable value of θ saturates at y+=100 with the maximum value of about 24°, suggesting that the most likely position where hairpins transit from the neck to the head is located around y+=100. The ensem- ble-averaged convection velocity Uc of typical LCS is finally calculated from temporal-spatial correla- tion analysis of FTLE field. It is found that the wall-normal profile of the convection velocity Uc(y) ac- cords well with the local mean velocity profile U(y) beyond the buffer layer, evidencing that the down- stream convection of hairpins determines the transportation properties of the turbulent boundary layer in the log-region and beyond.

  15. Identification of Lagrangian coherent structures in the turbulent boundary layer

    Institute of Scientific and Technical Information of China (English)

    PAN Chong; WANG JinJun; ZHANG Cao

    2009-01-01

    Using Finite-Time Lyapunov Exponents (FTLE) method, Lagrangian coherent structures (LCSs) in a fully developed flat-plate turbulent boundary layer are successfully identified from a two-dimensional (2D) velocity field obtained by time-resolved 2D PIV measurement. The typical LCSs in the turbulent boundary layer are hairpin-like structures, which are characterized as legs of quasi-streamwise vor-tices extending deep into the near wall region with an inclination angle θto the wall, and heads of the transverse vortex tube located in the outer region. Statistical analysis on the characteristic shape of typical LCS reveals that the probability density distribution of # accords well with t-distribution in the near wall region, but presents a bimodal distribution with two peaks in the outer region, corresponding to the hairpin head and the hairpin neck, respectively. Spatial correlation analysis of FTLE field is im-plemented to get the ensemble-averaged inclination angle θR of typical LCS. θR first increases and then decreases along the wall-normal direction, similar to that of the mean value of θ. Moreover, the most probable value of 8 saturates at Y+=100 with the maximum value of about 24°, suggesting that the most likely position where hairpins transit from the neck to the head is located around Y+=100. The ensem-ble-averaged convection velocity Uc of typical LCS is finally calculated from temporal-spatial correla-tion analysis of FTLE field. It is found that the wall-normal profile of the convection velocity Uc(Y) ac-cords well with the local mean velocity profile U(y) beyond the buffer layer, evidencing that the down-stream convection of hairpins determines the transportation properties of the turbulent boundary layer in the log-region and beyond.

  16. Numerical Analysis of Effect of Boundary Layer Characteristics on the Flow Field in S-shaped Inlet

    Directory of Open Access Journals (Sweden)

    Ren Jia

    2015-01-01

    Full Text Available In order to explore the effect of boundary layer thickness and pressure gradient on the performance of the flow field in the inlet, we design a high offset rate S-shaped inlet based on a certain unmanned aerial vehicle (UAV, and its author has analyzed the effect of boundary layer characteristics on the inlet with numerical simulation method. The suction of boundary layer which leads to separation zone not only becomes longer in the inlet, but also moves to the center plane of symmetry, the separation point of boundary layer appears in advance as pressure gradient increases. Considering the influence of the boundary layer, various performance parameters all exceeds that of the uniform entrance inlet conditions, especially the circumferential total pressure distortion of outlet increased by 58.2% at most, obviously can’t meet the engine to work properly, so we must consider and pay attention to the effect of the boundary layer characteristics on the flow field in the S-shaped inlet.

  17. On the partially reacted boundary layer in rate sticks

    Science.gov (United States)

    Partom, Y.

    2014-05-01

    Using our temperature dependent reactive flow model (TDRR) to simulate detonation in a rate stick, we observe that a partially reacted layer (PRL) is formed near the boundary. We are not aware that such a PRL has been observed in tests, and this is why we regarded it in the past as a numerical artifact. Assuming that such an artefact may be caused by the finite rise time of the detonation shock, we showed in [1] how it can be eliminated by delaying the outward boundary motion for a length of time comparable with the shock rise time. Here we revisit the PRL problem. We first show that it is not a numerical artifact but a real phenomenon. We do this by repeating the reactive flow run with a finer mesh. By looking at the PRL structure, we see that doubling the resolution affects the PRL only slightly. We then conjecture that the PRL formation has to do with the finite duration of the reaction process (or the finite extent of the reaction zone). By the time the boundary rarefaction reaches a cell near the boundary, it may be only partially reacted, and its reaction may therefore be cut off. To establish our conjecture we show how the PRL structure changes with the reaction duration.

  18. Metaporous layer to overcome the thickness constraint for broadband sound absorption

    International Nuclear Information System (INIS)

    The sound absorption of a porous layer is affected by its thickness, especially in a low-frequency range. If a hard-backed porous layer contains periodical arrangements of rigid partitions that are coordinated parallel and perpendicular to the direction of incoming sound waves, the lower bound of the effective sound absorption can be lowered much more and the overall absorption performance enhanced. The consequence of rigid partitioning in a porous layer is to make the first thickness resonance mode in the layer appear at much lower frequencies compared to that in the original homogeneous porous layer with the same thickness. Moreover, appropriate partitioning yields multiple thickness resonances with higher absorption peaks through impedance matching. The physics of the partitioned porous layer, or the metaporous layer, is theoretically investigated in this study

  19. Bi-layer functionally gradient thick film semiconducting methane sensors

    Indian Academy of Sciences (India)

    A Banerjee; A K Haldar; J Mondal; A Sen; H S Maiti

    2002-11-01

    Gas sensors based on metal oxide semiconductors like tin dioxide are widely used for the detection of toxic and combustible gases like carbon monoxide, methane and LPG. One of the problems of such sensors is their lack of sensitivity, which to some extent, can be circumvented by using different catalysts. However, highly reactive volatile organic compounds (VOC) coming from different industrial and domestic products (e.g. paints, lacquers, varnishes etc) can play havoc on such sensors and can give rise to false alarms. Any attempt to adsorb such VOCs (e.g. by using activated charcoal) results in sorption of the detecting gases (e.g. methane) too. To get round the problem, bi-layer sensors have been developed. Such tin oxide based functionally gradient bi-layer sensors have different compositions at the top and bottom layers. Here, instead of adsorbing the VOCs, they are allowed to interact and are consumed on the top layer of the sensors and a combustible gas like methane being less reactive, penetrates the top layer and interacts with the bottom layer. By modifying the chemical compositions of the top and bottom layers and by designing the electrode-lead wire arrangement properly, the top layer can be kept electrically shunted from the bottom layer and the electrical signal generated at the bottom layer from the combustible gas is collected. Such functionally gradient sensors, being very reliable, can find applications in domestic, industrial and strategic sectors.

  20. Proceedings of the 17th and 18th NAL Workshops on Investigation and Control of Boundary-Layer Transition

    OpenAIRE

    National Aerospace Laboratory; 航空宇宙技術研究所

    1996-01-01

    The following topics were discussed: vortex shedding, laminar boundary layer measurement, vortex ring, turbulent flow measurement, high Reynolds number turbulence, pulsed flow, boundary layer instability, Ekman boundary layer, sound receptivity, Tollmien-Schlichting wave in supersonic boundary layer, flow field instability, turbulent flow pattern, vorticity distribution in shear flow, turbulence wedge, streamwise vortex mixing, thermal convection, oblique wave generation in boundary layer, in...

  1. The Jovian boundary layer as formed by magnetic-anomaly effects

    Science.gov (United States)

    Dessler, A. J.

    1979-01-01

    A model is presented in which a plasma boundary layer of Jupiter is formed from plasma of internal origin. It is proposed that, unlike the Earth's boundary layer, which is thought to consist principally of solar wind plasma, Jupiter's boundary layer consists principally of sulphur and oxygen from the Io plasma torus, plus a small component of hydrogen from Jupiter's ionosphere. Fresh plasma is supplied to the boundary layer once each planetary rotation period by a convection pattern that rotates with Jupiter.

  2. Unsteady boundary layer flow and heat transfer over an exponentially shrinking sheet with suction in a copper-water nanofluid

    Institute of Scientific and Technical Information of China (English)

    Aurang Zaib; Krishnendu Bhattacharyya; Sharidan Shafie

    2015-01-01

    An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented. Water is treated as a base fluid. In the investigation, non-uniform mass suction through the porous sheet is considered. Using Keller-box method the transformed equations are solved numerically. The results of skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles are presented for different flow parameters. The results showed that the dual non-similar solutions exist only when certain amount of mass suction is applied through the porous sheet for various unsteady parameters and nanoparticle volume fractions. The ranges of suction where dual non-similar solution exists, become larger when values of unsteady parameter as well as nanoparticle volume fraction increase. So, due to unsteadiness of flow dynamics and the presence of nanoparticles in flow field, the requirement of mass suction for existence of solution of boundary layer flow past an exponentially shrinking sheet is less. Furthermore, the velocity boundary layer thickness decreases and thermal boundary layer thickness increases with increasing of nanoparticle volume fraction in both non-similar solutions. Whereas, for stronger mass suction, the velocity boundary layer thickness becomes thinner for the first solution and the effect is opposite in the case of second solution. The temperature inside the boundary layer increases with nanoparticle volume fraction and decreases with mass suction. So, for the unsteadiness and for the presence of nanoparticles, the flow separation is delayed to some extent.

  3. Radiative instabilities of atmospheric jets and boundary layers

    International Nuclear Information System (INIS)

    Complex flows occur in the atmosphere and they can be source of internal gravity waves. We focus here on the sources associated with radiative and shear (or Kelvin-Helmholtz) instabilities. Stability studies of shear layers in a stably stratified fluid concern mainly cases where shear and stratification are aligned along the same direction. In these cases, Miles (1961) and Howard (1961) found a necessary condition for stability based on the Richardson number: Ri ≥ 1/4. In this thesis, we show that this condition is not necessary when shear and stratification are not aligned: we demonstrate that a two-dimensional planar Bickley jet can be unstable for all Richardson numbers. Although the most unstable mode remains 2D, we show there exists an infinite family of 3D unstable modes exhibiting a radiative structure. A WKBJ theory is found to provide the main characteristics of these modes. We also study an inviscid and stratified boundary layer over an inclined wall with non-Boussinesq and compressible effects. We show that this flow is unstable as soon as the wall is not horizontal for all Froude numbers and that strongly stratified 3D perturbations behave exactly like compressible 2D perturbations. Applications of the results to the jet stream and the atmospheric boundary layer are proposed. (author)

  4. Vertical ozone characteristics in urban boundary layer in Beijing.

    Science.gov (United States)

    Ma, Zhiqiang; Xu, Honghui; Meng, Wei; Zhang, Xiaoling; Xu, Jing; Liu, Quan; Wang, Yuesi

    2013-07-01

    Vertical ozone and meteorological parameters were measured by tethered balloon in the boundary layer in the summer of 2009 in Beijing, China. A total of 77 tethersonde soundings were taken during the 27-day campaign. The surface ozone concentrations measured by ozonesondes and TEI 49C showed good agreement, albeit with temporal difference between the two instruments. Two case studies of nocturnal secondary ozone maxima are discussed in detail. The development of the low-level jet played a critical role leading to the observed ozone peak concentrations in nocturnal boundary layer (NBL). The maximum of surface ozone was 161.7 ppbv during the campaign, which could be attributed to abundant precursors storage near surface layer at nighttime. Vertical distribution of ozone was also measured utilizing conventional continuous analyzers on 325-m meteorological observation tower. The results showed the NBL height was between 47 and 280 m, which were consistent with the balloon data. Southerly air flow could bring ozone-rich air to Beijing, and the ozone concentrations exceeded the China's hourly ozone standard (approximately 100 ppb) above 600 m for more than 12 h.

  5. Large Eddy Simulation and Study of the Urban Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    苗世光; 蒋维楣

    2004-01-01

    Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.

  6. Three-Dimensional Waves in Tilt Thermal Boundary Layers

    Institute of Scientific and Technical Information of China (English)

    TAO Jian-Jun; YUAN Xiang-Jiang

    2009-01-01

    We numerically and theoretically study the stabilities of tilt thermal boundary layers immersed in stratified air. An interesting phenomenon is revealed: the stationary longitudinal-roll mode becomes unstable to some oscillating state even when the Grashof number is smaller than its corresponding critical value. By stability analysis, this phenomenon is explained in terms of a new three-dimensional wave mode. The effect of the tilt angle on the stability of the boundary flows is investigated. Since the new three-dimensional wave is found to be the most unstable mode when the title angle is between 30° and 64°, it is expected to play an important role in the transition to turbulence.

  7. Numerical study of wingtip shed vorticity reduction by wing Boundary Layer Control

    Science.gov (United States)

    Posada, Jose Alejandro

    computed pressure coefficient values compare very well (Figure 90). The present simulations were also validated by comparison with wake survey and balance type experimental measurements done by Chometon and Laurent on a NACA 643-018 wing. Lift, induced drag, and profile drag coefficients agree very well with Chometon and Laurent data. More than one hundred simulations were performed with different BLC suction slot geometries. Suction slots were used in the chord-wise and span-wise locations near the wing tip region. Blowing slots were evaluated at the wing center line, the wing tip upper surface, and span-wise outside of the wing tip. For an elliptically loaded wing, 50% of the bound vorticity is shed at the wing tips over a length of 7% of the wing span. The turbulent boundary layer thickness for a Cessna 206 aircraft at cruise is estimated as 0.09 ft. Theoretically the power required to remove by suction all the upper and lower surface boundary layer over the tip region for this aircraft at take-off is 2.6 HP, which would be very small compared to the 70 HP induced drag power saved. This would only be true if 100% wingtip vortex elimination could be obtained.

  8. Comments on deriving the equilibrium height of the stable boundary layer

    NARCIS (Netherlands)

    Steeneveld, G.J.; Wiel, van de B.J.H.; Holtslag, A.A.M.

    2007-01-01

    Recently, the equilibrium height of the stable boundary layer received much attention in a series of papers by Zilitinkevich and co-workers. In these studies the stable boundary-layer height is derived in terms of inverse interpolation of different boundary-layer height scales, each representing a p

  9. Turbulent thermal boundary layers with temperature-dependent viscosity

    International Nuclear Information System (INIS)

    Highlights: • Turbulent thermal boundary layers with temperature-dependent viscosity are simulated. • Effect of temperature-dependent viscosity on the statistics of the scalar field. • An identity for the Stanton number is derived and analyzed. • Effect of temperature-dependent viscosity on the statistics of scalar transfer rate. • Modification of turbulent flow field leads to an enhanced scalar transfer rate. - Abstract: Direct numerical simulations (DNS) of turbulent boundary layers (TBLs) over isothermally heated walls were performed, and the influence of the wall-heating on the thermal boundary layers was investigated. The DNS adopt an empirical relation for the temperature-dependent viscosity of water. The Prandtl number therefore changes with temperature, while the Péclet number is constant. Two wall temperatures (Tw = 70 °C and 99 °C) were considered relative to T∞ = 30 °C, and a reference simulation of TBL with constant viscosity was also performed for comparison. In the variable viscosity flow, the mean and variance of the scalar, when normalized by the friction temperature deficit, decrease relative to the constant viscosity flow. A relation for the mean scalar which takes into account the variable viscosity is proposed. Appropriate scalings for the scalar fluctuations and the scalar flux are also introduced, and are shown to be applicable for both variable and constant viscosity flows. Due to the modification of the near-wall turbulence, the Stanton number and the Reynolds analogy factor are augmented by 10% and 44%, respectively, in the variable viscosity flow. An identity for the Stanton number is derived and shows that the mean wall-normal velocity and wall-normal scalar flux cause the increase in the heat transfer coefficient. Finally, the augmented near-wall velocity fluctuations lead to an increase of the wall-normal scalar flux, which contributes favorably to the enhanced heat transfer at the wall

  10. Asymmetric Vibration of Polar Orthotropic Annular Circular Plates of Quadratically Varying Thickness with Same Boundary Conditions

    OpenAIRE

    Bhardwaj, N; Gupta, A. P.; Choong, K.K.

    2008-01-01

    In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thicknes...

  11. Surface Temperature and Surface-Layer Turbulence in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Pardyjak, E.; Steeneveld, G.J.; Kleissl, J.

    2013-01-01

    Previous laboratory and atmospheric experiments have shown that turbulence influences the surface temperature in a convective boundary layer. The main objective of this study is to examine land-atmosphere coupled heat transport mechanism for different stability conditions. High frequency infrared im

  12. Transition in Hypersonic Boundary Layers: Role of Dilatational Waves

    CERN Document Server

    Zhu, Yiding; Yuan, Huijing; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2015-01-01

    Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 quiet wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second instability acoustic mode is the key modulator of the transition process. The second mode experiences a rapid growth and a very fast annihilation due to the effect of bulk viscosity. The second mode interacts strongly with the first vorticity mode to directly promote a fast growth of the latter and leads to immediate transition to turbulence.

  13. Calculation of Turbulent Boundary Layers Using the Dissipation Integral Method

    Institute of Scientific and Technical Information of China (English)

    MatthiasBuschmann

    1999-01-01

    This paper gives an introduction into the dissipation integral method.The general integral equations for the three-dimensional case are derved.It is found that for a practical calculation algorithm the integral monentum equation and the integral energy equation are msot useful.Using Two different sets of mean velocity profiles the hyperbolical character of a dissipation integral method is shown.Test cases for two-and three-dimensional boundary layers are analysed and discussed.The paper concludes with a discussion of the advantages and limits of dissipation integral methods.

  14. Direct simulation of the turbulent boundary layer on a plate

    Science.gov (United States)

    Krupa, V. G.

    2016-08-01

    A numerical method for the integration of three-dimensional Navier-Stokes equations for compressible fluid as applied to direct numerical simulation is proposed. By way of example, the boundary layer on a plate is simulated. The computations were carried out for Reθ = 1500. The computational grid consisted of a half billion nodes. The flow region includes the laminar, transitional, and turbulent zones. The numerically obtained distributions of average velocity, friction, and pulsations are compared with experimental data and available numerical solutions.

  15. Numerical analysis of Weyl's method for integrating boundary layer equations

    Science.gov (United States)

    Najfeld, I.

    1982-01-01

    A fast method for accurate numerical integration of Blasius equation is proposed. It is based on the limit interchange in Weyl's fixed point method formulated as an iterated limit process. Each inner limit represents convergence to a discrete solution. It is shown that the error in a discrete solution admits asymptotic expansion in even powers of step size. An extrapolation process is set up to operate on a sequence of discrete solutions to reach the outer limit. Finally, this method is extended to related boundary layer equations.

  16. Large Eddy Simulation of the ventilated wave boundary layer

    DEFF Research Database (Denmark)

    Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu;

    2006-01-01

    to reproduce experimental results well. However, in case 1, the near-bed ensemble averaged velocity is underestimated during the acceleration stage, probably due to the Smagorinsky subgrid-scale model not being able to capture the physics well in that region. Also, there is a general overestimation......A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...

  17. STUDY OF SWEPT SHOCK WAVE AND BOUNDARY LAYER INTERACTIONS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    This paper presents briefly the recent progress on study of swept shock wave/boundary layer interactions with emphasis on application of zonalanalysis and correlation analysis to them. Based on the zonal analysis an overall framework of complicated interaction flow structure including both surface flowfield and space flowfield is discussed. Based on correlation analysis the conical interactions induced by four families of shock wave generators have been discussedin detail. Some control parameter and physical mechanism of conical interaction have been revealed. Finally some aspects of the problem and the prospects for future work are suggested.

  18. Experiments on the active control of transitional boundary layers

    Science.gov (United States)

    Nelson, P. A.; Rioual, J.-L.; Fisher, M. J.

    Experimental results are presented which demonstrate that the streamwise position of the transition region of a flat plate boundary layer can be actively controlled. The means of control is through the application of suction through the surface of the plate, a progressive increase in suction rate being capable of producing transition at progressively larger distances downstream from the plate leading edge. A simple digital feedback regulator based on an integral control law is shown to be most effective in regulating the position of transition, an error signal being derived from measurements of pressure fluctuations on the surface of the plate.

  19. A wavenumber-frequency spectral model for atmospheric boundary layers

    International Nuclear Information System (INIS)

    Motivated by the need to characterize power fluctuations in wind farms, we study spatio-temporal correlations of a neutral atmospheric boundary layer in terms of the joint wavenumber-frequency spectrum of the streamwise velocity fluctuations. To this end, we perform a theoretical analysis of a simple advection model featuring the advection of small- scale velocity fluctuations by the mean flow and large-scale velocity fluctuations. The model is compared to data from large-eddy simulations (LES). We find that the model captures the trends observed in LES, specifically a Doppler shift of frequencies due to the mean flow as well as a Doppler broadening due to random sweeping effects

  20. Lidar Scanning of Momentum Flux in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Mann, Jakob; Courtney, Michael;

    Momentum flux measurements are important for describing the wind profile in the atmospheric boundary layer, modeling the atmospheric flow over water, the accounting of exchange processes between air and sea, etc. It is also directly related to the friction velocity, which is a velocity scale...... turbulence measurements from a sonic anemometer, showing high agreement. In this study, a conical scanning lidar is used to derive the momentum flux, which compares well to the estimations from the bulk-derived method, but it also shows a filtering effect due to the large spatial-averaging volume...

  1. Wave phenomena in a high Reynolds number compressible boundary layer

    Science.gov (United States)

    Bayliss, A.; Maestrello, L.; Parikh, P.; Turkel, E.

    1987-01-01

    The behavior of spatially unstable waves in a high Reynolds number compressible laminar boundary layer is investigated by solution of the laminar two-dimensional compressible Navier-Stokes equations (solved to fourth-order accuracy) over a flat plate with a fluctuating disturbance generated at the inflow. A significant nonlinear distortion is produced, in qualitative agreement with experimental data. It is shown that increasing compressibility can significantly stabilize the flow over a flat plate, and that the mechanism of phase cancellation is a viable mechanism for the control of growing disturbances.

  2. Role of the vertical pressure gradient in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna;

    2014-01-01

    By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....

  3. Notes on an Internal Boundary-Layer Height Formula

    Science.gov (United States)

    Savelyev, Sergiya.; Taylor, Petera.

    The derivation of the Panofsky-Dutton internal boundary-layer(IBL) height formula has been revisited. We propose that the upwindroughness length (rather than downwind) should be used in theformula and that a turbulent vertical velocity (w) ratherthan the surface friction velocity (u*) should be considered asthe appropriate scaling for the rate of propagation ofdisturbances into the turbulent flow. A published set ofwind-tunnel and atmospheric data for neutral stratification hasbeen used to investigate the influence of the magnitude ofroughness change on the IBL height.

  4. Injection-induced turbulence in stagnation-point boundary layers

    Science.gov (United States)

    Park, C.

    1984-02-01

    A theory is developed for the stagnation point boundary layer with injection under the hypothesis that turbulence is produced at the wall by injection. From the existing experimental heat transfer rate data obtained in wind tunnels, the wall mixing length is deduced to be a product of a time constant and an injection velocity. The theory reproduces the observed increase in heat transfer rates at high injection rates. For graphite and carbon-carbon composite, the time constant is determined to be 0.0002 sec from the existing ablation data taken in an arc-jet tunnel and a balistic range.

  5. Research on Fractal-Scanning Path for Arbitrary Boundary Layer in Layered Manufacturing

    Institute of Scientific and Technical Information of China (English)

    阳佳; 宾鸿赞; 等

    2002-01-01

    The fractal curve is proposed as a novel scanning-path used in Layered Manufacturing.Aiming at a limitation that the fractal curve can only fill a square region,a method is developed to realize the trimming of fractal curve in arbitrary boundary layer by means of undging intersection points between parameterized arbitrary boundary and a FASS(space-filling,self-avoiding,simple and self-similar)fractal curve.Accordingly,the related algorithm concerning with determining intersection points has been investigated according to the recursion reature of the fractal curve,and in the process of the fractal curve traversed,the rule of udging intersection points is ascertained as well,so that the laser-scanning beam can “walk” along the fractal curve inside the desired boundary,and arbitrary contour components are fabricated.

  6. Perfectly-matched-layer boundary integral equation method for wave scattering in a layered medium

    CERN Document Server

    Lu, Wangtao; Qian, Jianliang

    2016-01-01

    For scattering problems of time-harmonic waves, the boundary integral equation (BIE) methods are highly competitive, since they are formulated on lower-dimension boundaries or interfaces, and can automatically satisfy outgoing radiation conditions. For scattering problems in a layered medium, standard BIE methods based on the Green's function of the background medium must evaluate the expensive Sommefeld integrals. Alternative BIE methods based on the free-space Green's function give rise to integral equations on unbounded interfaces which are not easy to truncate, since the wave fields on these interfaces decay very slowly. We develop a BIE method based on the perfectly matched layer (PML) technique. The PMLs are widely used to suppress outgoing waves in numerical methods that directly discretize the physical space. Our PML-based BIE method uses the Green's function of the PML-transformed free space to define the boundary integral operators. The method is efficient, since the Green's function of the PML-tran...

  7. A Tool for Local Thickness Determination and Grain Boundary Characterization by CTEM and HRTEM Techniques.

    Science.gov (United States)

    Kiss, Ákos K; Rauch, Edgar F; Pécz, Béla; Szívós, János; Lábár, János L

    2015-04-01

    A new approach for measurement of local thickness and characterization of grain boundaries is presented. The method is embodied in a software tool that helps to find and set sample orientations useful for high-resolution transmission electron microscopic (HRTEM) examination of grain boundaries in polycrystalline thin films. The novelty is the simultaneous treatment of the two neighboring grains and orienting both grains and the boundary plane simultaneously. The same metric matrix-based formalism is used for all crystal systems. Input into the software tool includes orientation data for the grains in question, which is determined automatically for a large number of grains by the commercial ASTAR program. Grain boundaries suitable for HRTEM examination are automatically identified by our software tool. Individual boundaries are selected manually for detailed HRTEM examination from the automatically identified set. Goniometer settings needed to observe the selected boundary in HRTEM are advised by the software. Operation is demonstrated on examples from cubic and hexagonal crystal systems. PMID:25801740

  8. Investigation of Top/Bottom electrode and Diffusion Barrier Layer for PZT Thick Film MEMS Sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Thomsen, Erik Vilain

    2008-01-01

    Top and bottom electrodes for screen printed piezoelectric lead zirconate titanate, Pb(ZrxTi1 - x)O3 (PZT) thick film are investigated with respect to future MEMS devices. Down to 100 nm thick E-beam evaporated Al and Pt films are patterned as top electrodes on the PZT using a lift-off process wi...... with a line width down to 3 μ m. A 700 nm thick ZrO2 layer as insolating diffusion barrier layer is found to be insufficient as barrier layer for PZT on a silicon substrate sintered at 850°C. EDX shows diffusion of Si into the PZT layer....

  9. Tomographic PIV investigation of coherent structures in a turbulent boundary layer flow

    Institute of Scientific and Technical Information of China (English)

    Zhan-Qi Tang; Nan Jiang; Andreas Schr(ǒ)der; Reinhard Geisler

    2012-01-01

    Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in the logarithmic region of the turbulent boundary layer in a water tunnel.The Reynolds number based on momentum thickness is Reθ =2 460.The instantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low speed fluid,which is flanked on either side by highspeed ones.Statistical support for the existence of hairpins is given by conditional averaged eddy within an increasing spanwise width as the distance from the wall increases,and the main vortex characteristic in different wall-normal regions can be reflected by comparing the proportion of ejection and its contribution to Reynolds stress with that of sweep event.The pre-multiplied power spectra and two-point correlations indicate the presence of large-scale motions in the boundary layer,which are consistent with what have been termed very large scale motions (VLSMs).The three dimensional spatial correlations of three components of velocity further indicate that the elongated low-speed and highspeed regions will be accompanied by a counter-rotating roll modes,as the statistical imprint of hairpin packet structures,all of which together make up the characteristic of coherent structures in the logarithmic region of the turbulent boundary layer (TBL).

  10. Large scale structures in a turbulent boundary layer and their imprint on wall shear stress

    Science.gov (United States)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2015-11-01

    Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  11. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; FU Song

    2009-01-01

    Based on Reynolds-averaged Navier-Stokes approach, a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows. The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy, ωthe specific dissipation rate and the intermittency factor γ.The particular features of the model are that: 1) k includes the non-turbulent, as well as turbulent fluctuations; 2) a transport equation for the intermittency factor γis proposed here with a source term set to trigger the transition onset; 3) through the introduction of a new length scale normal to wall, the present model employs the local variables only avoiding the use of the integral parameters, like the boundary layer thickness δ,which are often cost-ineffective with the modern CFD (Computational Fluid Dynamics) methods; 4) in the fully turbulent region, the model retreats to the well-known k-ωSST (Shear Stress Transport) model. This model is validated with a number of available experiments on boundary layer transitions including the incompressible, supersonic and hypersonic flows past flat plates, straight/flared cones at zero incidences, etc. It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition.

  12. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on Reynolds-averaged Navier-Stokes approach,a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows.The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy,ωthe specific dissipation rate and the intermittency factorγ.The particular features of the model are that:1)k includes the non-turbulent,as well as turbulent fluctuations;2)a transport equation for the intermittency factorγis proposed here with a source term set to trigger the transition onset;3)through the introduction of a new length scale normal to wall,the present model employs the local variables only avoiding the use of the integral parameters,like the boundary layer thicknessδ,which are often cost-ineffective with the modern CFD(Computational Fluid Dynamics)methods;4)in the fully turbulent region,the model retreats to the well-known k-ωSST(Shear Stress Transport)model.This model is validated with a number of available experiments on boundary layer transitions including the incompressible,supersonic and hypersonic flows past flat plates,straight/flared cones at zero incidences,etc.It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition.

  13. Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer

    Science.gov (United States)

    Zahradka, D.; Parziale, N. J.; Smith, M. S.; Marineau, E. C.

    2016-05-01

    The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the "Mach 3 Calibration Tunnel" at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 % {N}2/1 % Kr at momentum-thickness Reynolds numbers of {Re}_{\\varTheta }= 800, 1400, and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV (y/δ ≈ 0.1-0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.

  14. Marginally stable and turbulent boundary layers in low-curvature Taylor-Couette flow

    CERN Document Server

    Brauckmann, Hannes J

    2016-01-01

    Marginal stability arguments are used to describe the rotation-number dependence of torque in Taylor-Couette (TC) flow for radius ratios $\\eta \\geq 0.9$ and shear Reynolds number $Re_S=2\\times 10^4$. With an approximate representation of the mean profile by piecewise linear functions, characterized by the boundary-layer thicknesses at the inner and outer cylinder and the angular momentum in the center, profiles and torques are extracted from the requirement that the boundary layers represent marginally stable TC subsystems and that the torque at the inner and outer cylinder coincide. This model then explains the broad shoulder in the torque as a function of rotation number near $R_\\Omega\\approx 0.2$. For rotation numbers $R_\\Omega < 0.07$ the TC stability conditions predict boundary layers in which shear Reynolds numbers are very large. Assuming that the TC instability is bypassed by some shear instability, a second maximum in torque appears, in very good agreement with numerical simulations. The results s...

  15. The effect of Cr buffer layer thickness on voltage generation of thin-film thermoelectric modules

    International Nuclear Information System (INIS)

    The effect of Cr buffer layer thickness on the open-circuit voltage generated by thin-film thermoelectric modules of Bi0.5Sb1.5Te3 (p-type) and Bi2Te2.7Se0.3 (n-type) materials was investigated. A Cr buffer layer, whose thickness generally needs to be optimized to improve adhesion depending on the substrate surface condition, such as roughness, was deposited between thermoelectric thin films and glass substrates. When the Cr buffer layer was 1 nm thick, the Seebeck coefficients and electrical conductivity of 1 µm thermoelectric thin films with the buffer layers were approximately equal to those of the thermoelectric films without the buffer layers. When the thickness of the Cr buffer layer was 1 µm, the same as the thermoelectric films, the Seebeck coefficients of the bilayer films were reduced by an electrical current flowing inside the Cr buffer layer and the generation of Cr2Te3. The open-circuit voltage of the thin-film thermoelectric modules decreased with an increase in the thickness of the Cr buffer layer, which was primarily induced by the electrical current flow. The reduction caused by the Cr2Te3 generation was less than 10% of the total voltage generation of the modules without the Cr buffer layers. The voltage generation of thin-film thermoelectric modules could be controlled by the Cr buffer layer thickness. (paper)

  16. Atmospheric Boundary Layer Characteristics during BOBMEX-Pilot Experiment

    Indian Academy of Sciences (India)

    G S Bhat; S Ameenulla; M Venkataramana; K Sengupta

    2000-06-01

    The atmospheric boundary layer characteristics observed during the BOBMEX-Pilot experiment are reported. Surface meteorological data were acquired continuously through an automatic weather monitoring system and manually every three hours. High resolution radiosondes were launched to obtain the vertical thermal structure of the atmosphere. The study area was convectively active, the SSTs were high, surface air was warm and moist, and the surface air moist static energy was among the highest observed over the tropical oceans. The mean sea air temperature difference was about 1.25°C and the sea skin temperature was cooler than bucket SST by 0.5°C. The atmospheric mixed layer was shallow, fluctuated in response to synoptic conditions from 100 m to 900 m with a mean around 500 m.

  17. Interactions between the thermal internal boundary layer and sea breezes

    Energy Technology Data Exchange (ETDEWEB)

    Steyn, D.G. [The Univ. of British Columbia, Dept. of Geography, Atmospheric Science Programme, Vancouver (Canada)

    1997-10-01

    In the absence of complex terrain, strongly curved coastline or strongly varying mean wind direction, the Thermal Internal Boundary Layer (TIBL) has well known square root behaviour with inland fetch. Existing slab modeling approaches to this phenomenon indicate no inland fetch limit at which this behaviour must cease. It is obvious however that the TIBL cannot continue to grow in depth with increasing fetch, since the typical continental Mixed Layer Depths (MLD) of 1500 to 2000 m must be reached between 100 and 200 km from the shoreline. The anticyclonic conditions with attendant strong convection and light winds which drive the TIBL, also drive daytime Sea Breeze Circulations (SBC) in the coastal zone. The onshore winds driving mesoscale advection of cool air are at the core of TIBL mechanisms, and are invariably part of a SBC. It is to be expected that TIBL and SBC be intimately linked through common mechanisms, as well as external conditions. (au)

  18. Aqueous Solution Processed Photoconductive Cathode Interlayer for High Performance Polymer Solar Cells with Thick Interlayer and Thick Active Layer.

    Science.gov (United States)

    Nian, Li; Chen, Zhenhui; Herbst, Stefanie; Li, Qingyuan; Yu, Chengzhuo; Jiang, Xiaofang; Dong, Huanli; Li, Fenghong; Liu, Linlin; Würthner, Frank; Chen, Junwu; Xie, Zengqi; Ma, Yuguang

    2016-09-01

    An aqueous-solution-processed photoconductive cathode interlayer is developed, in which the photoinduced charge transfer brings multiple advantages such as increased conductivity and electron mobility, as well as reduced work function. Average power conversion efficiency over 10% is achieved even when the thickness of the cathode interlayer and active layer is up to 100 and 300 nm, respectively.

  19. The boundary layer over turbine blade models with realistic rough surfaces

    Science.gov (United States)

    McIlroy, Hugh M., Jr.

    The impact of turbine blade surface roughness on aerodynamic performance and heat loads is well known. Over time, as the turbine blades are exposed to heat loads, the external surfaces of the blades become rough. Also, for film-cooled blades, surface degradation can have a significant impact on film-cooling effectiveness. Many studies have been conducted on the effects of surface degradation/roughness on engine performance but most investigations have modeled the rough surfaces with uniform or two-dimensional roughness patterns. The objective of the present investigation is to conduct measurements that will reveal the influence of realistic surface roughness on the near-wall behavior of the boundary layer. Measurements have been conducted at the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Engineering and Environmental Laboratory with a laser Doppler velocimeter. A flat plate model of a turbine blade has been developed that produces a transitional boundary layer, elevated freestream turbulence and an accelerating freestream in order to simulate conditions on the suction side of a high-pressure turbine blade. Boundary layer measurements have been completed over a smooth plate model and over a model with a strip of realistic rough surface. The realistic rough surface was developed by scaling actual turbine blade surface data that was provided by U.S. Air Force Research Laboratory. The results indicate that bypass transition occurred very early in the flow over the model and that the boundary layer remained unstable throughout the entire length of the test plate; the boundary layer thickness and momentum thickness Reynolds numbers increased over the rough patch; and the shape factor increased over the rough patch but then decreased downstream of the patch relative to the smooth plate case; in the rough patch case the flow experienced two transition reversals with laminar-like behavior achieved by the end of the test plate; streamwise turbulence

  20. On determining characteristic length scales in pressure-gradient turbulent boundary layers

    Science.gov (United States)

    Vinuesa, R.; Bobke, A.; Örlü, R.; Schlatter, P.

    2016-05-01

    boundary layer thickness (equivalent to δ99) and the edge velocity in pressure gradient turbulent boundary layers.

  1. DNS of a spatially developing turbulent boundary layer with passive scalar transport

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiang [Linne Flow Centre, KTH Mechanics, Osquars Backe 18, SE-100 44 Stockholm (Sweden)], E-mail: qiang@mech.kth.se; Schlatter, Philipp; Brandt, Luca; Henningson, Dan S. [Linne Flow Centre, KTH Mechanics, Osquars Backe 18, SE-100 44 Stockholm (Sweden)

    2009-10-15

    A direct numerical simulation (DNS) of a spatially developing turbulent boundary layer over a flat plate under zero pressure gradient (ZPG) has been carried out. The evolution of several passive scalars with both isoscalar and isoflux wall boundary condition are computed during the simulation. The Navier-Stokes equations as well as the scalar transport equation are solved using a fully spectral method. The highest Reynolds number based on the free-stream velocity U{sub {infinity}} and momentum thickness {theta} is Re{sub {theta}}=830, and the molecular Prandtl numbers are 0.2, 0.71 and 2. To the authors' knowledge, this Reynolds number is to date the highest with such a variety of scalars. A large number of turbulence statistics for both flow and scalar fields are obtained and compared when possible to existing experimental and numerical simulations at comparable Reynolds number. The main focus of the present paper is on the statistical behaviour of the scalars in the outer region of the boundary layer, distinctly different from the channel-flow simulations. Agreements as well as discrepancies are discussed while the influence of the molecular Prandtl number and wall boundary conditions is also highlighted. A Pr scaling for various quantities is proposed in outer scalings. In addition, spanwise two-point correlation and instantaneous fields are employed to investigate the near-wall streak spacing and the coherence between the velocity and the scalar fields. Probability density functions (PDF) and joint probability density functions (JPDF) are shown to identify the intermittency both near the wall and in the outer region of the boundary layer. The present simulation data will be available online for the research community.

  2. Application of Arnoldi method to boundary layer instability

    Science.gov (United States)

    Zhang, Yong-Ming; Luo, Ji-Sheng

    2015-12-01

    The Arnoldi method is applied to boundary layer instability, and a finite difference method is employed to avoid the limit of the finite element method. This modus operandi is verified by three comparison cases, i.e., comparison with linear stability theory (LST) for two-dimensional (2D) disturbance on one-dimensional (1D) basic flow, comparison with LST for three-dimensional (3D) disturbance on 1D basic flow, and comparison with Floquet theory for 3D disturbance on 2D basic flow. Then it is applied to secondary instability analysis on the streaky boundary layer under spanwise-localized free-stream turbulence (FST). Three unstable modes are found, i.e., an inner mode at a high-speed center streak, a sinuous type outer mode at a low-speed center streak, and a sinuous type outer mode at low-speed side streaks. All these modes are much more unstable than Tollmien-Schlichting (TS) waves, implying the dominant contribution of secondary instability in bypass transition. The modes at strong center streak are more unstable than those at weak side streaks, so the center streak is ‘dangerous’ in secondary instability. Project supported by the National Natural Science Foundation of China (Grant Nos. 11202147, 11332007, 11172203, and 91216111) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032120007).

  3. Retrievals of boundary layer methane and isotope fractionation on Titan

    Science.gov (United States)

    Adamkovics, Mate; Lora, Juan M.; Mitchell, Jonathan L.

    2016-10-01

    The amount of methane in the boundary layer on Titan is an interesting diagnostic of whether or not it might be seeping out of the regolith. We know that kinetic fractionation of methane isotopes can be diagnostic of evaporation at the surface and condensation in the atmosphere. If a parcel is constrained to follow a moist adiabat while condensation occurs, we can predict the amount of fractionation that is expected (Ádámkovics & Mitchell, 2016). We will present our most recent efforts to measure boundary layer methane abundance and isotopic composition, which include our recently published Keck NIRSPAO observations from 17 July 2014 (Ádámkovics et al., 2016), as well as preliminary results from follow-up measurements made on 15 May 2016. Our measurements are tantalizingly close to being able to distinguish between different hydrological parameterizations of the polar regions in the Titan Atmospheric Model (Lora & Ádámkovics, 2016). We will discuss the systematic uncertainties that can be evaluated with the combination of these two datasets and the prospects for exceptionally high S/N observations via particularly deep integrations over multiple nights.

  4. Hypersonic boundary-layer transition on a flared cone

    Institute of Scientific and Technical Information of China (English)

    Chuan-Hong Zhang; Qing Tang; Cun-Biao Lee

    2013-01-01

    Transition on a flared cone with zero angle of attack was studied in our newly established Mach 6 quiet wind tunnel (M6QT) via wall pressure measurement and flow visualization.High-frequency pressure transducers were used to measure the second-mode waves' amplitudes and frequencies.Using pulsed schlieren diagnostic and Rayleigh scattering technique,we got a clear evolution of the second-mode disturbances.The second-mode waves exist for a long distance,which means that the second-mode waves grow linearly in a large region.Strong Mach waves are radiated from the edge of the boundary layer.With further development,the second-mode waves reach their maximum magnitude and harmonics of the second-mode instability appear.Then the disturbances grow nonlinearly.The second modes become weak and merge with each other.Finally,the nonlinear interaction of disturbance leads to a relatively quiet zone,which further breaks down,resulting in the transition of the boundary layer.Our results show that transition is determined by the second mode.The quiet zone before the final breakdown is observed in flow visualization for the first time.Eventual transition requires the presence of a quiet zone generated by nonlinear interactions.

  5. Using GPS Radio Occultation to study polar boundary layer properties

    Science.gov (United States)

    Ganeshan, M.; Wu, D. L.

    2015-12-01

    The sensitivity of GPS RO refractivity to moisture and temperature variations in polar regions is explored using radiosonde observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. A retrieval algorithm for the boundary layer inversion height and surface-based inversion (SBI) frequency is developed for dry atmospheric conditions (total precipitable water < 3.6 mm) that typically exist during polar winter, as well as in high-latitude, elevated regions such as eastern Antarctica and central Greenland. The algorithm is applied to the high-resolution refractivity profiles obtained over the polar Arctic region using the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) dataset for the period 2006-2013. The method is found useful for capturing the spatiotemporal variability in Arctic inversion properties. For the Arctic Ocean, the spatial patterns show a minimum inversion height (maximum SBI frequency) over the ice-covered Pacific sector similar to that observed in past studies. Monthly evolution of the inversion characteristics suggests a surface temperature control in the multi-year sea ice region, with the peak in SBI frequency occurring during the transition period from winter to spring. For central Greenland, the seasonal peak in SBI frequency occurs during winter. The diurnal variability in SBI frequency is forced mainly by solar heating, consistent with past observations. Despite some limitations, the RO refractivity profile is found quite useful for monitoring the Arctic boundary layer, and is able to capture the interannual variability of inversion characteristics.

  6. Delaying natural transition of a boundary layer using smooth steps

    CERN Document Server

    Xu, Hui; Sherwin, Spencer J

    2015-01-01

    The boundary layer flow over a smooth forward-facing stepped plate is studied with particular emphasis on the delay of the transition to turbulence. The interaction between the Tollmien-Schlichting (T-S) waves and the base flow over a single/two forward facing smooth steps is conducted by linear analysis indicating the amplitude of the T-S waves are attenuated in the boundary layer over a single smooth plate. Furthermore, we show that two smooth forward facing steps give rise to a further reduction of the amplitude of the T-S waves. A direct numerical simulation (DNS) is performed for the two smooth forward steps correlating favourably with the linear analysis and showing that for the investigated parameters, the K-type transition is inhibited whereas the turbulence onset of the H-type transition is postponed albeit not suppressed. Transition is indeed delayed and drag reduced for both these transition scenarios suggesting smooth forward facing steps could be leveraged as a passive flow control strategy to de...

  7. Transition Delay in Hypersonic Boundary Layers via Optimal Perturbations

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.

  8. Geostrophic convective turbulence: The effect of boundary layers

    CERN Document Server

    Ostilla-Mónico, Rodolfo; Kunnen, Rudie P J; Verzicco, Roberto; Lohse, Detlef

    2014-01-01

    This Letter presents results of the first direct numerical simulations of rotating Rayleigh--B\\'enard convection in the so-called geostrophic regime, (hence very small Ekman numbers $\\mathcal{O}(10^{-7})$ and high Rayleigh numbers~$Ra=10^{10}$ and~$5\\cdot 10^{10}$), employing the \\emph{full} Navier--Stokes equations. In the geostrophic regime the criteria of very strong rotation and large supercriticality are met simultaneously, which is true for many geophysical and astrophysical flows. Until now, numerical approaches of this regime have been based on \\emph{reduced} versions of the Navier--Stokes equations (cf. Sprague \\emph{et al.} J. Fluid Mech., \\textbf{551}, 141 (2006)), omitting the effect of the viscous (Ekman) boundary layers. By using different velocity boundary conditions at the plates, we study the effect of these Ekman layers. We find that the formation of large-scale structures (Rubio \\emph{et al.} (Phys. Rev. Lett. \\textbf{112} (2014)), which indicates the presence of an inverse energy cascade, ...

  9. Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry

    Science.gov (United States)

    Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.

    2016-10-01

    Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.

  10. Seasonal analysis of the planetary boundary-layer afternoon and evening transition through observational measurements

    Science.gov (United States)

    Sastre, Mariano; Román-Cascón, Carlos; Yagüe, Carlos; Arrillaga, Jon A.; Maqueda, Gregorio

    2016-04-01

    From a typically convective diurnal situation to a stably stratified nocturnal one, the atmospheric boundary layer (ABL) experiences the so-called afternoon and evening transition. This period is complex to study due to the presence of many different forcings, usually weak and opposite [1]. In this work, the transitional processes are studied by using 6-year data from permanent instrumentation at CIBA, a research center located in the Spanish Northern plateau. These measurements include particulate matter (PM) and turbulent records. Certain variables display a twin pattern in their time evolution for all the seasons, only differing in their absolute values. On the contrary, the air specific humidity behaves differently for each season, which is distinct to the results from a previous study at a different location [2]. Besides, a common pattern of increasing PM values near sunset is found, with a number of influences playing a role in PM concentrations: stability, turbulence and ABL thickness among others. In particular, the competing thermal and mechanical turbulent effects result in PM concentration reduction (settling on the ground or being advected) or increase, depending in each case on the specific season and particle group. Furthermore, the relative importance of the bigger PM (between 2.5 and 10 μm) is linked to the wind minimum around sunset, especially during summer. [1] Lothon, M. and coauthors (2014): The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence, Atmos. Chem. Phys., 14, 10931-10960. [2] Wingo, S. M. and Knupp, K. R. (2015): Multi-platform observations characterizing the afternoon-to-evening transition of the planetary boundary layer in Northern Alabama, USA, Boundary-Layer Meteorol., 155, 29-53.

  11. By-pass transition of flat plate boundary layers on the surfaces near the limit of admissible roughness

    International Nuclear Information System (INIS)

    Results of the experimental investigation on the development of boundary layers on flat plates with the smooth surface and with the surfaces covered by sandpapers 60-grit, 80-grit and 100-grit under external turbulent flows of various grid turbulence scales are presented. The displacement thickness Reynolds number was at the most 2000 during experiments. The investigated boundary layers belong to the class of layers close to the lower limit of admissible roughness region, k+ = 4.6, 5.7 and 8.7 respectively. It was certified that both the wall roughness and the free stream turbulence accelerate individually the boundary layer development from the laminar state of boundary layer to turbulence. Next it was ascertained that their joint effect amplifies the development of boundary layers so, that the surface roughness impact is predominating but the actions of intensity and length scale of the free stream turbulence disturbances are also significant. With the increasing roughness number the initial region with a pseudo-laminar flow structure and the transitional region become shorter.

  12. Time-domain implementation of an impedance boundary condition with boundary layer correction

    Science.gov (United States)

    Brambley, E. J.; Gabard, G.

    2016-09-01

    A time-domain boundary condition is derived that accounts for the acoustic impedance of a thin boundary layer over an impedance boundary, based on the asymptotic frequency-domain boundary condition of Brambley (2011) [25]. A finite-difference reference implementation of this condition is presented and carefully validated against both an analytic solution and a discrete dispersion analysis for a simple test case. The discrete dispersion analysis enables the distinction between real physical instabilities and artificial numerical instabilities. The cause of the latter is suggested to be a combination of the real physical instabilities present and the aliasing and artificial zero group velocity of finite-difference schemes. It is suggested that these are general properties of any numerical discretization of an unstable system. Existing numerical filters are found to be inadequate to remove these artificial instabilities as they have a too wide pass band. The properties of numerical filters required to address this issue are discussed and a number of selective filters are presented that may prove useful in general. These filters are capable of removing only the artificial numerical instabilities, allowing the reference implementation to correctly reproduce the stability properties of the analytic solution.

  13. Ultrasonic Measurement of Water Layer Thickness by Flow Pattern Profile in a Horizontal Air Water Loop

    International Nuclear Information System (INIS)

    Ultrasonic methods have the advantage, compared to other water layer thickness measurement techniques, of applicability to large volume objects, since most radiation techniques are limited by the thickness of the pipe and plate walls. The ultrasonic experiment was performed to do an analysis for cooling performance in a complete test channel by the investigation of the two phase flow that develops in an inclined gap with heating from the top. This ultrasonic technique for measuring water layer thickness measurement employ the higher relative acoustic impedance of air with respect to that of liquids. By this method it is possible to determine both liquid water distance, void fraction in a gas-liquid two-phase flow. Instantaneous measurement of the water layer thickness is useful in understanding heat and mass transfer characteristics in a two-phase separated flow. An ultrasonic measurement technique for determining water layer thickness in the wavy and slug flow regime of horizontal tube flow has been produced

  14. Heat exposure of corals: investigating the "other" diffusive boundary layer

    DEFF Research Database (Denmark)

    Jimenez, Isabel M.; Kühl, Michael; Larkum, Anthony W. D.;

    exponentially at increasing flow. Dimensionless analysis of heat transfer (Nusselt-Reynolds number plots) resulted in a heat exponent of approx. 0.5, indicative of a laminar boundary layer and consistent with predictions from engineering theory for simple geometrical objects. However, additional measurements......HEAT EXPOSURE OF CORALS: INVESTIGATING THE "OTHER" DIFFUSIVE BOUNDARY LAYER Radiant energy reaching shallow water corals can cause their temperature to increase above that of the surrounding water, an effect which is reduced as flow increases. In order to better understand the thermal exposure...... of corals under bleaching conditions, we used temperature microsensors to investigate the thermal boundary layer (TBL) of a branching and a hemispherical coral species (Stylophora pistillata and Porites lobata). The TBL thickness for both species was 2 mm at quasi stagnant flow (0.3 cm/s), and declined...

  15. The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer

    Science.gov (United States)

    Atkinson, Callum; Coudert, Sebastien; Foucaut, Jean-Marc; Stanislas, Michel; Soria, Julio

    2011-04-01

    To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Reθ = 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume "fat" light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV.

  16. Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Z. M., E-mail: zaki.saleh@aauj.edu, E-mail: zakimsaleh@yahoo.com; Nasser, H.; Özkol, E.; Günöven, M.; Abak, K. [Middle East Technical University, Center for Solar Energy Research and Applications (GÜNAM) (Turkey); Canli, S. [Middle East Technical University, Central Laboratory (Turkey); Bek, A.; Turan, R. [Middle East Technical University, Center for Solar Energy Research and Applications (GÜNAM) (Turkey)

    2015-10-15

    Plasmonic interfaces consisting of silver nanoparticles of different sizes (50–100 nm) have been processed by the self-assembled dewetting technique and integrated to hydrogenated amorphous silicon (a-Si:H) using SiNx spacer layers to investigate the dependence of optical trapping enhancement on spacer layer thickness through the enhancements in photocurrent. Samples illuminated from the a-Si:H side exhibit a localized surface plasmon resonance (LSPR) that is red-shifted with the increasing particle size and broadened into the red with the increasing spacer layer thickness. The photocurrent measured in a-Si:H is not only consistent with the red-shift and broadening of the LSPR, but exhibits critical dependence on the spacer layer thickness also. The samples with plasmonic interfaces and a SiNx spacer layer exhibit appreciable enhancement of photocurrent compared with flat a-Si:H reference depending on the size of the Ag nanoparticle. Simulations conducted on one-dimensional square structures exhibit electric fields that are localized near the plasmonic structures but extend appreciably into the higher refractive index a-Si:H. These simulations produce a clear red-shift and broadening of extinction spectra for all spacer layer thicknesses and predict an enhancement in photocurrent in agreement with experimental results. The spectral dependence of photocurrent for six plasmonic interfaces with different Ag nanoparticle sizes and spacer layer thicknesses are correlated with the optical spectra and compared with the simulations to predict an optimal spacer layer thickness.

  17. Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H

    International Nuclear Information System (INIS)

    Plasmonic interfaces consisting of silver nanoparticles of different sizes (50–100 nm) have been processed by the self-assembled dewetting technique and integrated to hydrogenated amorphous silicon (a-Si:H) using SiNx spacer layers to investigate the dependence of optical trapping enhancement on spacer layer thickness through the enhancements in photocurrent. Samples illuminated from the a-Si:H side exhibit a localized surface plasmon resonance (LSPR) that is red-shifted with the increasing particle size and broadened into the red with the increasing spacer layer thickness. The photocurrent measured in a-Si:H is not only consistent with the red-shift and broadening of the LSPR, but exhibits critical dependence on the spacer layer thickness also. The samples with plasmonic interfaces and a SiNx spacer layer exhibit appreciable enhancement of photocurrent compared with flat a-Si:H reference depending on the size of the Ag nanoparticle. Simulations conducted on one-dimensional square structures exhibit electric fields that are localized near the plasmonic structures but extend appreciably into the higher refractive index a-Si:H. These simulations produce a clear red-shift and broadening of extinction spectra for all spacer layer thicknesses and predict an enhancement in photocurrent in agreement with experimental results. The spectral dependence of photocurrent for six plasmonic interfaces with different Ag nanoparticle sizes and spacer layer thicknesses are correlated with the optical spectra and compared with the simulations to predict an optimal spacer layer thickness

  18. Effect of layer thickness on the properties of nickel thermal sprayed steel

    Science.gov (United States)

    Nurisna, Zuhri; Triyono, Muhayat, Nurul; Wijayanta, Agung Tri

    2016-03-01

    Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni-5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers were conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.

  19. FOREWORD: International Conference on Planetary Boundary Layer and Climate Change

    Science.gov (United States)

    Djolov, G.; Esau, I.

    2010-05-01

    One of the greatest achievements of climate science has been the establisment of the concept of climate change on a multitude of time scales. The Earth's complex climate system does not allow a straightforward interpretation of dependences between the external parameter perturbation, internal stochastic system dynamics and the long-term system response. The latter is usually referred to as climate change in a narrow sense (IPCC, 2007). The focused international conference "Planetary Boundary Layers and Climate Change" has addressed only time scales and dynamical aspects of climate change with possible links to the turbulent processes in the Planetary Boundary Layer (PBL). Although limited, the conference topic is by no means singular. One should clearly understand that the PBL is the layer where 99% of biosphere and human activity are concentrated. The PBL is the layer where the energy fluxes, which are followed by changes in cryosphere and other known feedbacks, are maximized. At the same time, the PBL processes are of a naturally small scale. What is the averaged long-term effect of the small-scale processes on the long-term climate dynamics? Can this effect be recognized in existing long-term paleo-climate data records? Can it be modeled? What is the current status of our theoretical understanding of this effect? What is the sensitivity of the climate model projections to the representation of small-scale processes? Are there significant indirect effects, e.g. through transport of chemical components, of the PBL processes on climate? These and other linked questions have been addressed during the conference. The Earth's climate has changed many times during the planet's history, with events ranging from ice ages to long periods of warmth. Historically, natural factors such as the amount of energy released from the Sun, volcanic eruptions and changes in the Earth's orbit have affected the Earth's climate. Beginning late in the 18th century, human activities

  20. Thickness measurement of multi-layer conductive coatings using multifrequency eddy current techniques

    Science.gov (United States)

    Zhang, Dejun; Yu, Yating; Lai, Chao; Tian, Guiyun

    2016-07-01

    To ensure the key structural performance in high-temperature and high-stress environments, thermal barrier coatings (TBCs) are often adopted in engineering. The thickness of these multi-layer conductive coatings is an important quality indicator. In order to measure the thickness of multi-layer conductive coatings, a new measurement approach is presented using eddy current testing techniques, and then, an inversion algorithm is proposed and proved efficient and applicable, of which the maximum experimental relative error is within 10%. Therefore, the new approach can be effectively applied to thickness measurement of multi-layer conductive coatings such as TBCs.

  1. A Lagrangian Study of Southeast Pacific Boundary Layer Clouds

    Science.gov (United States)

    Painter, Gallia

    concentration which extend far offshore into regions of normally very clean cloud. We use Lagrangian trajectories to investigate the source of the high droplet concentrations of the mesoscale "hooks", and evaluate whether boundary layer transport of coastal pollutants alone can account for their extent. We find that boundary layer trajectories past 85 W do not pass sufficiently close to the coastline to explain high aerosol concentrations offshore.

  2. Simulation and experimental determination of the macro-scale layer thickness distribution of electrodeposited Cu-line patterns on a wafer substrate

    DEFF Research Database (Denmark)

    Pantleon, Karen; Bossche, Bart van den; Purcar, Marius;

    2005-01-01

    on the patterned wafer, and layer thickness measurements by means of X-ray fluorescence (XRF) and atomic force microscopy (AFM). The simulations are based on a potential model approach taking into account electrolyte ohmic drop and electrode polarization effects, combined to a boundary element method (BEM...

  3. The viscous boundary layer at the free surface of a rotating baroclinic fluid

    OpenAIRE

    Hide, R.

    2011-01-01

    The properties of the viscous boundary layer at the free surface of a rotating baroclinic fluid are analyzed and compared with those of the well-known Ekman boundary layer at a rigid surface. Although the ageostrophic components of the flow in the free surface boundary layer are weaker than in the Ekman layer, there are problems of practical interest in which their effects are not negligible.DOI: 10.1111/j.2153-3490.1964.tb00188.x

  4. Physiological variation of segmented OCT retinal layer thicknesses is short-lasting.

    Science.gov (United States)

    Balk, Lisanne; Mayer, Markus; Uitdehaag, Bernard M J; Petzold, Axel

    2013-12-01

    The application of spectral domain optical coherence tomography as a surrogate for neurodegeneration in a range of neurological disorders demands better understanding of the physiological variation of retinal layer thicknesses, which may mask any value of this emerging outcome measure. A prospective study compared retinal layer thicknesses between control subjects (n = 15) and runners (n = 27) participating in a 10-km charity run. Three scans were performed using an eye-tracking function (EBF) and automated scan registration for optimal precision at (1) baseline, (2) directly after the run, and (3) following a rehydration period. Retinal layer segmentation was performed with suppression of axial retinal vessel signal artifacts. Following the run, there was an increase in the relative retinal nerve fibre layer (p = 0.018), the combined inner plexiform/ganglion cell layer (p = 0.038), and the outer nuclear layer (p = 0.018) in runners compared to controls. The initial increase of thickness in the outer nuclear layer of runners (p < 0.0001) was likely related to (noncompliant) rehydration during exercise. Following a period of rest and rehydration, the difference in thickness change for all retinal layers, except the retinal nerve fibre layer (RNFL) (p < 0.05), disappeared between the two groups. There is a quantifiable change in the axial thickness of retinal layersthat which can be explained by an increase in the cellular volume. This effect may potentially be caused by H2O volume shifts.

  5. Pavement thickness and stabilised foundation layer assessment using ground-coupled GPR

    Science.gov (United States)

    Hu, Jinhui; Vennapusa, Pavana K. R.; White, David J.; Beresnev, Igor

    2016-07-01

    Experimental results from field and laboratory investigations using a ground-coupled ground penetrating radar (GPR), dielectric measurement, magnetic imaging tomography (MIT) and dynamic cone penetrometer (DCP) tests are presented. Dielectric properties of asphalt pavement and stabilised and unstabilised pavement foundation materials were evaluated in the laboratory in frozen and unfrozen conditions. Laboratory test results showed that dielectric properties of materials back-calculated from GPR in comparison to dielectric gauge measurements are strongly correlated and repeatable. For chemically stabilised materials, curing time affected the dielectric properties of the materials. Field tests were conducted on asphalt pavement test sections with different foundation materials (stabilised and unstabilised layers), drainage conditions and layer thicknesses. GPR and MIT results were used to determine asphalt layer thicknesses and were compared with measured core thicknesses, while GPR and DCP were used to assess foundation layer profiles. Asphalt thicknesses estimated from GPR showed an average error of about 11% using the dielectric gauge values as input. The average error reduced to about 4% when calibrated with cores thicknesses. MIT results showed thicknesses that are about 9% higher than estimated using GPR. Foundation layer thicknesses could not be measured using GPR due to variations in moisture conditions between the test sections, which is partly attributed to variations in gradation and drainage characteristics of the subbase layer.

  6. Seasonal Simulations of the Planetary Boundary Layer and Boundary-Layer Stratocumulus Clouds with a General Circulation Model.

    Science.gov (United States)

    Randall, David A.; Abeles, James A.; Corsetti, Thomas G.

    1985-04-01

    The UCLA general circulation model (GCM) has been used to simulate the seasonally varying planetary boundary layer (PBL), as well as boundary-layer stratus and stratocumulus clouds. The PBL depth is a prognostic variable of the GCM, incorporated through the use of a vertical coordinate system in which the PBL is identified with the lowest model layer.Stratocumulus clouds are assumed to occur whenever the upper portion of the PBL becomes saturated, provided that the cloud-top entrainment instability does not occur. As indicated by Arakawa and Schubert, cumulus clouds are assumed to originate at the PBL top, and tend to make the PBL shallow by drawing on its mass.Results are presented from a three-year simulation, starting from a 31 December initial condition obtained from an earlier run with a different version of the model. The simulated seasonally varying climates of the boundary layer and free troposphere are realistic. The observed geographical and seasonal variations of stratocumulus cloudiness are fairly well simulated. The simulation of the stratocumulus clouds associated with wintertime cold-air outbreaks is particularly realistic. Examples are given of individual events. The positions of the subtropical marine stratocumulus regimes are realistically simulated, although their observed frequency of occurrence is seriously underpredicted. The observed summertime abundance of Arctic stratus clouds is also underpredicted.In the GCM results, the layer cloud instability appears to limit the extent of the marine subtropical stratocumulus regimes. The instability also frequently occurs in association with cumulus convection over land.Cumulus convection acts as a very significant sink of PBL mass throughout the tropics, and over the midlatitude continents in summer.Three experiments have been performed to investigate the sensitivity of the GCM results to aspects of the PBL and stratocumulus parameterizations. For all three experiments, the model was started from 1

  7. Sensored Field Oriented Control of a Robust Induction Motor Drive Using a Novel Boundary Layer Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Ali Saghafinia

    2013-12-01

    Full Text Available Physical sensors have a key role in implementation of real-time vector control for an induction motor (IM drive. This paper presents a novel boundary layer fuzzy controller (NBLFC based on the boundary layer approach for speed control of an indirect field-oriented control (IFOC of an induction motor (IM drive using physical sensors. The boundary layer approach leads to a trade-off between control performances and chattering elimination. For the NBLFC, a fuzzy system is used to adjust the boundary layer thickness to improve the tracking performance and eliminate the chattering problem under small uncertainties. Also, to eliminate the chattering under the possibility of large uncertainties, the integral filter is proposed inside the variable boundary layer. In addition, the stability of the system is analyzed through the Lyapunov stability theorem. The proposed NBLFC based IM drive is implemented in real-time using digital signal processor (DSP board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed NBLFC based IM drive at different operating conditions.

  8. Large-eddy simulation of passive shock-wave/boundary-layer interaction control

    International Nuclear Information System (INIS)

    Highlights: • The present study investigates a passive flow-control technique for shock-wave/boundary-layer interaction. • The control configuration consists of local suction and injection through a pressure feedback duct. • Implicit LES have been conducted for three different suction locations. • Suction reduces the size of the separation zone. • Turbulence amplification and reflected shock dynamics can be significantly reduced. - Abstract: We investigate a passive flow-control technique for the interaction of an oblique shock generated by an 8.8° wedge with a turbulent boundary-layer at a free-stream Mach number of Ma∞=2.3 and a Reynolds number based on the incoming boundary-layer thickness of Reδ0=60.5×103 by means of large-eddy simulation (LES). The compressible Navier–Stokes equations in conservative form are solved using the adaptive local deconvolution method (ALDM) for physically consistent subgrid scale modeling. Emphasis is placed on the correct description of turbulent inflow boundary conditions, which do not artificially force low-frequency periodic motion of the reflected shock. The control configuration combines suction inside the separation zone and blowing upstream of the interaction region by a pressure feedback through a duct embedded in the wall. We vary the suction location within the recirculation zone while the injection position is kept constant. Suction reduces the size of the separation zone with strongest effect when applied in the rear part of the separation bubble. The analysis of wall-pressure spectra reveals that all control configurations shift the high-energy low-frequency range to higher frequencies, while the energy level is significantly reduced only if suction acts in the rear part of the separated zone. In that case also turbulence production within the interaction region is significantly reduced as a consequence of mitigated reflected shock dynamics and near-wall flow acceleration

  9. Logarithmic boundary layers in highly turbulent Taylor-Couette flow

    CERN Document Server

    Huisman, Sander G; Cierpka, Christian; Kahler, Christian J; Lohse, Detlef; Sun, Chao

    2013-01-01

    We provide direct measurements of the boundary layer properties in highly turbulent Taylor-Couette flow up to $\\text{Ta}=6.2 \\times 10^{12}$ using high-resolution particle image velocimetry (PIV). We find that the mean azimuthal velocity profile at the inner and outer cylinder can be fitted by the von K\\'arm\\'an log law $u^+ = \\frac 1\\kappa \\ln y^+ +B$. The von K\\'arm\\'an constant $\\kappa$ is found to depend on the driving strength $\\text{Ta}$ and for large $\\text{Ta}$ asymptotically approaches $\\kappa \\approx 0.40$. The variance profiles of the local azimuthal velocity have a universal peak around $y^+ \\approx 12$ and collapse when rescaled with the driving velocity (and not with the friction velocity), displaying a log-dependence of $y^+$ as also found for channel and pipe flows [1,2].

  10. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    Directory of Open Access Journals (Sweden)

    Elena-Carmen Teleman

    2008-01-01

    Full Text Available The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence scales of the wind action in urban environment were conducted. The data obtained were processed and analyzed and interpreted with specific software. The results are used for a synthesis regarding the scales of turbulence of the model of flow and the actual accuracy of measurements. The paper presents some of the important elements of this synthesis.

  11. Segregation in the Atmospheric Boundary Layer - A Discussion

    Science.gov (United States)

    Dlugi, Ralph; Berger, Martina; Zelger, Michael; Hofzumahaus, Andreas; Rohrer, Franz; Holland, Frank; Lu, Keding; Tsokankunku, Anywhere; Sörgel, Matthias; Kramm, Gerhard; Mölders, Nicole

    2016-04-01

    Segregation is a well known topic in technical chemistry and means an incomplete mixing of the reactants. Incomplete mixing reduces the rate of reaction which is of utmost importance in technical chemistry but has been payed less attention in atmospheric chemistry. Different observational and modelling studies on chemical reactions in the turbulent and convective atmospheric boundary layer are analysed for the influences of segregation in the systems NO ‑ NO2 ‑ O3 and OH + V OCs (with main focus on isoprene). Also some estimates on reactions like HO2 + NO (an important recycling mechanism for OH) will be given. Especially, different terms of the intensity of segregation IS (correlation coefficients, standard deviations of mixing ratios) are compared and are related to characteristics of the flow regimes, such as mixing conditions and Damköhler numbers. Also influences of fluctuations of actinic fluxes are discussed which influence the mostly photo chemically driven reactions that were investigated.

  12. Compressible Turbulent Boundary Layers on a Strongly Heated Wall

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    This paper concerns the theoretical and experimental modelling of the flat wall,highly heated,compressible turbulent boundary layer.Its final objective is to develop a numerical Navier-Stokes solver and to conclude on its capability to correctly represent complex aerothermic viscous flows near the wall.The paper presents a constructed numerical method with particular attention given to the turbulence modelling at low Reynolds number and comparisons with supersonic and transonic experimental data.For the transonic experiment,very high wall temperature(Tw=1100K)is realized.The method of this difficult experimental set up is discussed.The comparison between experimental and computational data conducts to the first conclusion and gives some indications for the future work.

  13. Concentration Boundary Layer Model of Mortar Corrosion by Sulfuric Acid

    Institute of Scientific and Technical Information of China (English)

    SONG Zhigang; ZHANG Xuesong; MIN Hongguang

    2011-01-01

    A long time immersion experiment of mortar specimens is carried out to investigate their degradation mechanism by sulfuric acid. Water-cement ratios of mortar are ranging from 0.5 to 0.7 and the pH value of sulfuric acid is 3.5 and 4.0 respectively. The pH meter is used to monitor the soak solution and the titration sulfuric acid with given concentration is added to maintain original pH value, through which the acid consumption of mortar is recorded. A theoretical reaction rate model is also proposed based on concentration boundary layer model. The results show that theoretical model fits the experimental results well and the corrosion mechanism can be modeled by a diffusion process accompanied with an irreversible chemical reaction when pH value of soak solution is no less than 3.5.

  14. THE UNSTABLE MODES OF NATURAL CONVECTION BOUNDARY LAYER

    Institute of Scientific and Technical Information of China (English)

    Tao Jianjun; Zhuang Fenggan; Yan Dachun

    2000-01-01

    The instability of natural convection boundary layer around a vertical heated flat plate is analyzed theoretically in this paper. The results illustrate that the “loop” in the neutral curve is not a real loop but a twist of the curve is the frequencywave number-Grashof number space, and there is only one unstable mode at small Prandtl numbers. Specially, when the Prandtl number is large enough two unstable modes will be found in the “loop” region. Along the amplifying surface intersection the two unstable modes have the same Grashof number, wave number and frequency but different amplifying rates. Their instability characteristics are analyzed and the criterion for determining the existence of the multi-unstable modes is also discussed.

  15. A Qualitative Description of Boundary Layer Wind Speed Records

    CERN Document Server

    Kavasseri, R G; Nagarajan, Radhakrishnan

    2006-01-01

    The complexity of the atmosphere endows it with the property of turbulence by virtue of which, wind speed variations in the atmospheric boundary layer (ABL) exhibit highly irregular fluctuations that persist over a wide range of temporal and spatial scales. Despite the large and significant body of work on microscale turbulence, understanding the statistics of atmospheric wind speed variations has proved to be elusive and challenging. Knowledge about the nature of wind speed at ABL has far reaching impact on several fields of research such as meteorology, hydrology, agriculture, pollutant dispersion, and more importantly wind energy generation. In the present study, temporal wind speed records from twenty eight stations distributed through out the state of North Dakota (ND, USA), ($\\sim$ 70,000 square-miles) and spanning a period of nearly eight years are analyzed. We show that these records exhibit a characteristic broad multifractal spectrum irrespective of the geographical location and topography. The rapi...

  16. Aerodynamic Heating in Hypersonic Boundary Layers:\\ Role of Dilatational Waves

    CERN Document Server

    Zhu, Yiding; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2016-01-01

    The evolution of multi-mode instabilities in a hypersonic boundary layer and their effects on aerodynamic heating are investigated. Experiments are conducted in a Mach 6 wind tunnel using Rayleigh-scattering flow visualization, fast-response pressure sensors, fluorescent temperature-sensitive paint (TSP), and particle image velocimetry (PIV). Calculations are also performed based on both parabolized stability equations (PSE) and direct numerical simulations (DNS). It is found that second-mode dilatational waves, accompanied by high-frequency alternating fluid compression and expansion, produce intense aerodynamic heating in a small region that rapidly heats the fluid passing through it. As a result, the surface temperature rapidly increases and results in an overshoot over the nominal transitional value. When the dilatation waves decay downstream, the surface temperature decreases gradually until transition is completed. A theoretical analysis is provided to interpret the temperature distribution affected by ...

  17. The large Reynolds number - Asymptotic theory of turbulent boundary layers.

    Science.gov (United States)

    Mellor, G. L.

    1972-01-01

    A self-consistent, asymptotic expansion of the one-point, mean turbulent equations of motion is obtained. Results such as the velocity defect law and the law of the wall evolve in a relatively rigorous manner, and a systematic ordering of the mean velocity boundary layer equations and their interaction with the main stream flow are obtained. The analysis is extended to the turbulent energy equation and to a treatment of the small scale equilibrium range of Kolmogoroff; in velocity correlation space the two-thirds power law is obtained. Thus, the two well-known 'laws' of turbulent flow are imbedded in an analysis which provides a great deal of other information.

  18. The turning of the wind in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    at the Høvsøre site in Denmark, which is a flat farmland area with a nearly homogeneous easterly upstream sector. Therefore, within that sector, the turning of the wind is caused by a combination of atmospheric stability, Coriolis, roughness, horizontal pressure gradient and baroclinity effects. Atmospheric......Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... stability was measured using sonic anemometers placed at different heights on the mast. Horizontal pressure gradients and baroclinity are derived from outputs of a numerical weather prediction model and are used to estimate the geostrophic wind. It is found, for these specific and relatively short periods...

  19. Coherent vorticity extraction in turbulent boundary layers using orthogonal wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Khujadze, George; Oberlack, Martin [Chair of Fluid Dynamics, Technische Universitaet Darmstadt (Germany); Yen, Romain Nguyen van [Institut fuer Mathematik, Freie Universitaet Berlin (Germany); Schneider, Kai [M2P2-CNRS and CMI, Universite de Provence, Marseille (France); Farge, Marie, E-mail: khujadze@fdy.tu-darmstadt.de [LMD-IPSL-CNRS, Ecole Normale Superieure, Paris (France)

    2011-12-22

    Turbulent boundary layer data computed by direct numerical simulation are analyzed using orthogonal anisotropic wavelets. The flow fields, originally given on a Chebychev grid, are first interpolated on a locally refined dyadic grid. Then, they are decomposed using a wavelet basis, which accounts for the anisotropy of the flow by using different scales in the wall-normal direction and in the planes parallel to the wall. Thus the vorticity field is decomposed into coherent and incoherent contributions using thresholding of the wavelet coefficients. It is shown that less than 1% of the coefficients retain the coherent structures of the flow, while the majority of the coefficients corresponds to a structureless, i.e., noise-like background flow. Scale-and direction-dependent statistics in wavelet space quantify the flow properties at different wall distances.

  20. Aeroelectric structures and turbulence in the atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    S. V. Anisimov

    2013-10-01

    Full Text Available Complex electrical measurements with the use of sodar data show that electric field pulsation analysis is useful for electrodynamics/turbulence monitoring under different conditions. In particular, the number of aeroelectric structures (AES generated per hour is a convenient measure of the turbulence intensity. During convectively unstable periods, as many as 5–10 AES form per hour. Under stable conditions, AES occasionally form as well, indicating the appearance of occasional mixing events reflected in the electric field perturbations. AES magnitudes under stable conditions are relatively small, except in special cases such as high humidity and fog. The analysis of electric field (EF spectra gives additional useful information on the parameters of the atmospheric boundary layer and its turbulence. A rather sharp change in the spectrum slope takes place in the vicinity of 0.02 Hz under stable conditions. The characteristic slope of the spectrum and its change are reproduced in a simple model of EF formation.

  1. Unsteady Phenomena in Shock Wave/Boundary Layer Interaction

    Science.gov (United States)

    Dolling, D. S.

    1993-01-01

    A brief review is given of the unsteadiness of shock wave/turbulent boundary layer interaction. The focus is on interactions generated by swept and unswept compression ramps, by flares, steps and incident shock waves, by cylinders and blunt fins, and by glancing shock waves. The effects of Mach number, Reynolds number, and separated flow scale are discussed as are the physical causes of the unsteadiness. The implications that the unsteadiness has for interpreting time-average surface and flowfield data, and for comparisons of such experimental data with computation, is also briefly discussed. Finally, some suggestions for future work are given. It is clear that there are large gaps in the data base and that many aspects of such phenomena are poorly understood. Much work remains to be done.

  2. Temperature and velocity profiles in sooting free boundary layer flames

    Science.gov (United States)

    Ang, J. A.; Pagni, P. J.; Mataga, T. G.; Margle, J. M.; Lyons, V. J.

    1986-01-01

    Temperature and velocity profiles are presented for cyclohexane, n-heptane, and iso-octane free, laminar, boundary layer, sooting, diffusion flames. Temperatures are measured with 3 mil Pt/Pt-13 percent Rh thermocouples. Corrected gas temperatures are derived by performing an energy balance of convection to and radiation from the thermocouple bead incorporating the variation of air conductivity and platinum emissivity with temperature. Velocities are measured using laser doppler velocimetry techniques. Profiles are compared with previously reported analytic temperature and velocity fields. Comparison of theoretical and experimental temperature profiles suggests improvement in the analytical treatment is needed, which accounts more accurately for the local soot radiation. The velocity profiles are in good agreement, with the departure of the theory from observation partially due to the small fluctuations inherent in these free flows.

  3. FREE VIBRATION OF ISOTROPIC HALF-ELLIPTIC PLATES OF LINEARLY VARYING THICKNESS WITH CLAMPED CURVED BOUNDARY

    Directory of Open Access Journals (Sweden)

    A.P Gupta

    2010-09-01

    Full Text Available Two-dimensional boundary characteristic orthonormal polynomials are used in Rayleigh-Ritz method to study the title problem. In general, it is found that this method gives better results than the other traditional method such as boundary integral equation methods, Spline methods, Chebyshev collocation method, Frobenius method etc. The thickness is taken to be linearly varying in two orthogonal directions. Comparisons in particular cases have been made with the existing results in the literature. Convergence of frequencies of at least up to five significant figures is obtained. Results showing the variation in frequencies with taper parameters and aspect ratios are presented in tabular form. Mode shapes are shown using three-dimensional graphs of plates in displaced configurations.

  4. Rapid cycling of reactive nitrogen in the marine boundary layer

    Science.gov (United States)

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L.; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S.; Apel, Eric C.; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N.; Ortega, John; Knote, Christoph

    2016-04-01

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A ‘renoxification’ process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth’s surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  5. Spatially Developing Secondary Instabilities in Compressible Swept Airfoil Boundary Layers

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.

    2011-01-01

    Two-dimensional eigenvalue analysis is used on a massive scale to study spatial instabilities of compressible shear flows with two inhomogeneous directions. The main focus of the study is crossflow dominated swept-wing boundary layers although the methodology can also be applied to study other type of flows, such as the attachment-line flow. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed, namely, fixing the spatial growth direction unambiguously through a non-orthogonal formulation of the linearized disturbance equations. A primary test case used for parameter study corresponds to the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. Implications of this finding for transition control in swept wing boundary layers are examined.

  6. Rapid cycling of reactive nitrogen in the marine boundary layer.

    Science.gov (United States)

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S; Apel, Eric C; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N; Ortega, John; Knote, Christoph

    2016-04-28

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale. PMID:27064904

  7. EFFECTS OF NONPARALLELISM ON THE BOUNDARY LAYER STABILITY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The nonparallel effects on the stability of the boundary layer flow was investigated using the Parabolie Stability Equations (PSE). In order to improve the accuracy of the calculation which is very important for the investigation of stability, higher order expansions in orthogonal functions in normal direction and the effective algebraic mapping to deal with the problem of infinite region were used and the way to collocate the boundary point based on its characteristics was adopted. With the effective control of step size in the marching procedure, the special condition was satisfied, and the stability of calculation was assured. From the curves of the neutral stability, the growth rate, the amplitude variation and disturbed velocity profile, the effects of the nonparallelism were given accurately and analyzed detailedly. It is found that the nonparallelism of the flow amplifies the amplitude and growth rate of disturbances, especially for three-dimensional disturbances, even can change the sign of flow stability from stability to instability for some cases. Computed results are in good agreement with the classical experimental results.

  8. Shock Wave-Boundary Layer Interaction in Forced Shock Oscillations

    Institute of Scientific and Technical Information of China (English)

    Piotr Doerffer; Oskar Szulc; Franco Magagnato

    2003-01-01

    The flow in transonic diffusers as well as in supersonic air intakes becomes often unsteady due to shock wave boundary layer interaction. The oscillations may be induced by natural separation unsteadiness or may be forced by boundary conditions. Significant improvement of CFD tools, increase of computer resources as well as development of experimental methods have again.drawn the attention of researchers to this topic.To investigate the problem forced oscillations of transonic turbulent flow in asymmetric two-dimensional Laval nozzle were considered. A viscous, perfect gas flow, was numerically simulated using the Reynolds-averaged compressible Navier-Stokes solver SPARC, employing a two-equation, eddy viscosity, turbulence closure in the URANS approach.For time-dependent and stationary flow simulations, Mach numbers upstream of the shock between 1.2 and 1.4 were considered. Comparison of computed and experimental data for steady states generally gave acceptable agreement. In the case of forced oscillations, a harmonic pressure variation was prescribed at the exit plane resulting in shock wave motion. Excitation frequencies between 0 Hz and 1024 Hz were investigated at the same pressure amplitude.The main result of the work carried out is the relation between the amplitude of the shock wave motion and the excitation frequency in the investigated range. Increasing excitation frequency resulted in decreasing amplitude of the shock movement. At high frequencies a natural mode of shock oscillation (of small amplitude) was observed which is not sensitive to forced excitement.

  9. The Stokes boundary layer for a thixotropic or antithixotropic fluid

    KAUST Repository

    McArdle, Catriona R.

    2012-10-01

    We present a mathematical investigation of the oscillatory boundary layer in a semi-infinite fluid bounded by an oscillating wall (the so-called \\'Stokes problem\\'), when the fluid has a thixotropic or antithixotropic rheology. We obtain asymptotic solutions in the limit of small-amplitude oscillations, and we use numerical integration to validate the asymptotic solutions and to explore the behaviour of the system for larger-amplitude oscillations. The solutions that we obtain differ significantly from the classical solution for a Newtonian fluid. In particular, for antithixotropic fluids the velocity reaches zero at a finite distance from the wall, in contrast to the exponential decay for a thixotropic or a Newtonian fluid.For small amplitudes of oscillation, three regimes of behaviour are possible: the structure parameter may take values defined instantaneously by the shear rate, or by a long-term average; or it may behave hysteretically. The regime boundaries depend on the precise specification of structure build-up and breakdown rates in the rheological model, illustrating the subtleties of complex fluid models in non-rheometric settings. For larger amplitudes of oscillation the dominant behaviour is hysteretic. We discuss in particular the relationship between the shear stress and the shear rate at the oscillating wall. © 2012 Elsevier B.V.

  10. Turbulence transition in the asymptotic suction boundary layer

    CERN Document Server

    Kreilos, Tobias; Schneider, Tobias M; Veble, Gregor; Duguet, Yohann; Schlatter, Philipp; Henningson, Dan S; Eckhardt, Bruno

    2015-01-01

    We study the transition to turbulence in the asymptotic suction boundary layer (ASBL) by direct numerical simulation. Tracking the motion of trajectories intermediate between laminar and turbulent states we can identify the invariant object inside the laminar-turbulent boundary, the edge state. In small domains, the flow behaves like a travelling wave over short time intervals. On longer times one notes that the energy shows strong bursts at regular time intervals. During the bursts the streak structure is lost, but it reforms, translated in the spanwise direction by half the domain size. Varying the suction velocity allows to embed the flow into a family of flows that interpolate between plane Couette flow and the ASBL. Near the plane Couette limit, the edge state is a travelling wave. Increasing the suction, the travelling wave and a symmetry-related copy of it undergo a saddle-node infinite-period (SNIPER) bifurcation that leads to bursting and discrete-symmetry shifts. In wider domains, the structures loc...

  11. Measurement of a thin layers thickness using independent component analysis of ground penetrating radar data

    Institute of Scientific and Technical Information of China (English)

    LI Xiang-tang; ZHANG Xiao-ning; WANG Duan-yi

    2008-01-01

    To detect overlapped echoes due to the thin pavement layers, we present a thickness measurement approach for the very thin layer of pavement structures. The term "thin" is relative to the incident wavelength or pulse. By means of independent component analysis of noisy signals received by a single radar sensor, the over-lapped echoes can be successfully separated. Once the echoes from the top and bottom side of a thin layer have been separated, the time delay and the layer thickness determination follow immediately. Results of the simula-tion and real data re fy the feasibility of the presented method.

  12. The vertical structure of the atmospheric boundary layer over the central Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    BIAN Lingen; MA Yongfeng; LU Changgui; LIN Xiang

    2013-01-01

    The tropopause height and the atmospheric boundary layer (PBL) height as well as the variation of inversion layer above the floating ice surface are presented using GPS (global position system ) radiosonde sounding data and relevant data obtained by China’s fourth arctic scientific expedition team over the central Arctic Ocean (86◦-88◦N, 144◦-170◦W ) during the summer of 2010. The tropopause height is from 9.8 to 10.5 km, with a temperature range between-52.2 and-54.1◦C in the central Arctic Ocean. Two zones of maximum wind (over 12 m/s) are found in the wind profile, namely, low-and upper-level jets, located in the middle troposphere and the tropopause, respectively. The wind direction has a marked variation point in the two jets from the southeast to the southwest. The average PBL height determined by two methods is 341 and 453 m respectively. These two methods can both be used when the inversion layer is very low, but the results vary significantly when the inversion layer is very high. A significant logarithmic relationship exists between the PBL height and the inversion intensity, with a correlation coefficient of 0.66, indicating that the more intense the temperature inversion is, the lower the boundary layer will be. The observation results obviously differ from those of the third arctic expedition zone (80◦-85◦N). The PBL height and the inversion layer thickness are much lower than those at 87◦-88◦N, but the inversion temperature is more intense, meaning a strong ice-atmosphere interaction in the sea near the North Pole. The PBL structure is related to the weather system and the sea ice concentration, which affects the observation station.

  13. A Regularized Galerkin Boundary Element Method (RGBEM) for Simulating Potential Flow About Zero Thickness Bodies

    Energy Technology Data Exchange (ETDEWEB)

    GHARAKHANI,ADRIN; WOLFE,WALTER P.

    1999-10-01

    The prediction of potential flow about zero thickness membranes by the boundary element method constitutes an integral component of the Lagrangian vortex-boundary element simulation of flow about parachutes. To this end, the vortex loop (or the panel) method has been used, for some time now, in the aerospace industry with relative success [1, 2]. Vortex loops (with constant circulation) are equivalent to boundary elements with piecewise constant variation of the potential jump. In this case, extending the analysis in [3], the near field potential velocity evaluations can be shown to be {Omicron}(1). The accurate evaluation of the potential velocity field very near the parachute surface is particularly critical to the overall accuracy and stability of the vortex-boundary element simulations. As we will demonstrate in Section 3, the boundary integral singularities, which arise due to the application of low order boundary elements, may lead to severely spiked potential velocities at vortex element centers that are near the boundary. The spikes in turn cause the erratic motion of the vortex elements, and the eventual loss of smoothness of the vorticity field and possible numerical blow up. In light of the arguments above, the application of boundary elements with (at least) a linear variation of the potential jump--or, equivalently, piecewise constant vortex sheets--would appear to be more appropriate for vortex-boundary element simulations. For this case, two strategies are possible for obtaining the potential flow field. The first option is to solve the integral equations for the (unknown) strengths of the surface vortex sheets. As we will discuss in Section 2.1, the challenge in this case is to devise a consistent system of equations that imposes the solenoidality of the locally 2-D vortex sheets. The second approach is to solve for the unknown potential jump distribution. In this case, for commonly used C{sup o} shape functions, the boundary integral is singular at

  14. Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity.

    Digital Repository Service at National Institute of Oceanography (India)

    Felton, C.S.; Subrahmanyam, B.; Murty, V.S.N; Shriver, J.F.

    Monthly barrier layer thickness (BLT) estimates are derived from satellite measurements using a multilinear regression model (MRM) within the Indian Ocean. Sea surface salinity (SSS) from the recently launched Soil Moisture and Ocean Salinity (SMOS...

  15. High accurate thickness gauge system of zirconium and Zircaloy-2 layers for zirconium liner cladding tubes

    International Nuclear Information System (INIS)

    In boiling water reactors, zirconium(Zr)-Zircaloy cladding tubes have been put into practice for lengthening a life cycle of the cladding tube. The cladding tube is a duplex tube with an inner layer of pure Zr bonded to Zircaloy-2 layer metallurgically. The assurance of the inner and outer layer thickness is essential for a reliability of the cladding tube. A new thickness gauge system in the manufacturing process has been developed to measure the thickness of each layer over an entire tube length instead of the conventional microscopic viewing method. This system uses an eddy current method and an ultrasonic method. In this paper, the quantitative analysis of undesirable factors in eddy current method and the signal processing method for accurate measurement are described. The outline of fully automated thickness gauge system is also reported

  16. Asymmetric transmission of acoustic waves in a layer thickness distribution gradient structure using metamaterials

    Science.gov (United States)

    Chen, Jung-San; Chang, I.-Ling; Huang, Wan-Ting; Chen, Lien-Wen; Huang, Guan-Hua

    2016-09-01

    This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.

  17. Asymmetric Vibration of Polar Orthotropic Annular Circular Plates of Quadratically Varying Thickness with Same Boundary Conditions

    Directory of Open Access Journals (Sweden)

    N. Bhardwaj

    2008-01-01

    Full Text Available In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thickness profile, material orthotropy and foundation constant for all three possible combinations of clamped, simply supported and free edge conditions are shown and discussed. It is found that (a higher elastic property in circumferential direction leads to higher stiffness against lateral vibration; (b Lateral vibration characteristics of F-Fplates is more sensitive towards parametric changes in material orthotropy and foundation stiffness than C-C and S-Splates; (c Effect of quadratical thickness variation on fundamental frequency is more significant in cases of C-C and S-S plates than that of F-Fplates. Thickness profile which is convex relative to plate center-line tends to result in higher stiffness of annular plates against lateral vibration than the one which is concave and (d Fundamental mode of vibration of C-C and S-Splates is axisymmetrical while that of F-Fplates is asymmetrical.

  18. Effect of annealing on composition, structure and electrical properties of Au layers grown on different thickness Cr layers

    Institute of Scientific and Technical Information of China (English)

    Yan Huang; Hong Qiu; Liqing Pan; Yue Tian; Fengping Wang; Ping Wu

    2004-01-01

    110 nm-thick Au layers were sputter-deposited on unheated glasses coated about a 10 nm-thick and a 50 nm-thick Cr layer respectively. The Au/Cr bilayer films were annealed in a vacuum of 1 mPa at 300℃ for 2, 5 and 30 min, respectively. Auger electron spectroscopy, X-ray diffraction and Field emission scanning electron microscopy were used to analyze the composition and structure of the Au layers. The resistivity of the bilayer films was measured by using four-point probe technique. The adhesion of the bilayer films to the substrate was tested using tape tests. The amount of Cr atoms diffusing into the Au layer increases with increasing the annealing time, resulting in a decrease in lattice constant and an increase in resistivity of the Au layer. The content of Cr inside the Au layer grown on the thinner Cr layer is less than that grown on the thicker Cr layer. For the Au/Cr bilayer films, the lower resistivity and the good adhesion to the glass substrate can be obtained at a shorter annealing time for a thinner Cr layer.

  19. Monte Carlo modeling (MCML) of light propagation in skin layers for detection of fat thickness

    Science.gov (United States)

    Nilubol, Chonnipa; Treerattrakoon, Kiatnida; Mohammed, Waleed S.

    2010-05-01

    Nowadays, most activities require lesser physical actions, which could ultimately lead to accumulation of excessive body fat. The main roles of body fat are to store energy and acts as various kinds of insulators for the body. The thickness of fat layers can be measured to indicate fat-body weight ratio. Exceeding the body-mass index (BMI) could lead to many illnesses regarding obesity. Consequently, many studies have proposed various principles and techniques to measure the amount of fat within one's body. In this paper, infrared interactance in skin layers is studied for investigation of the influence of fat thickness upon photon travelling pattern in skin tissues using Monte Carlo model (MCML). Photon propagation is numerically simulated in simplified multi-layered tissues. The optical coefficients of each skin layers are accounted for different traveling paths of photons that move through random motion. The thickness of fat layer is varied, and changing in optical parameters is observed. Then the statistically obtained data are computed and analyzed for the effect of the fat layer upon reflection percentage using different wavelengths. The calculations have shown increment in the slope of change of reflection percentage versus fat thickness, when using infrared compare to visible light. This technique can be used to construct a mobile device that is capable of measuring the volume fraction of melanin and blood in the epidermis layer and dermis layer, to calculate for the necessary optical coefficients that would be necessary for measurement of fat thickness.

  20. Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3

    Science.gov (United States)

    Ringuette, Matthew J.; Wu, Minwei; Mart?N, M. Pino

    We demonstrate that data from direct numerical simulation of turbulent boundary layers at Mach 3 exhibit the same large-scale coherent structures that are found in supersonic and subsonic experiments, namely elongated, low-speed features in the logarithmic region and hairpin vortex packets. Contour plots of the streamwise mass flux show very long low-momentum structures in the logarithmic layer. These low-momentum features carry about one-third of the turbulent kinetic energy. Using Taylor's hypothesis, we find that these structures prevail and meander for very long streamwise distances. Structure lengths on the order of 100 boundary layer thicknesses are observed. Length scales obtained from correlations of the streamwise mass flux severely underpredict the extent of these structures, most likely because of their significant meandering in the spanwise direction. A hairpin-packet-finding algorithm is employed to determine the average packet properties, and we find that the Mach 3 packets are similar to those observed at subsonic conditions. A connection between the wall shear stress and hairpin packets is observed. Visualization of the instantaneous turbulence structure shows that groups of hairpin packets are frequently located above the long low-momentum structures. This finding is consistent with the very large-scale motion model of Kim & Adrian (1999).

  1. Evidence of tropospheric layering: interleaved stratospheric and planetary boundary layer intrusions

    Directory of Open Access Journals (Sweden)

    J. Brioude

    2007-01-01

    Full Text Available We present a case study of interleaving in the free troposphere of 4 layers of non-tropospheric origin, with emphasis on their residence time in the troposphere. Two layers are stratospheric intrusions at 4.7 and 2.2 km altitude with residence times of about 2 and 6.5 days, respectively. The two other layers at 7 and 3 km altitude were extracted from the maritime planetary boundary layer by warm conveyor belts associated with two extratropical lows and have residence times of about 2 and 5.75 days, respectively. The event took place over Frankfurt (Germany in February 2002 and was observed by a commercial airliner from the MOZAIC programme with measurements of ozone, carbon monoxide and water vapour. Origins and residence times in the troposphere of these layers are documented with a trajectory and particle dispersion model. The combination of forward and backward simulations of the Lagrangian model allows the period of time during which the residence time can be assessed to be longer, as shown by the capture of the stratospheric-origin signature of the lowest tropopause fold just about to be completely mixed above the planetary boundary layer. This case study is of interest for atmospheric chemistry because it emphasizes the importance of coherent airstreams that produce laminae in the free troposphere and that contribute to the average tropospheric ozone. The interleaving of these 4 layers also provides the conditions for a valuable case study for the validation of global chemistry transport models used to perform tropospheric ozone budgets.

  2. Effect of end-wall boundary layer and inlet turbulence on the flow field structures in the turbine stage

    Science.gov (United States)

    Jelinek, Tomas; Straka, Petr; Uruba, Vaclav

    2016-06-01

    The article deals with the effects of the inlet flow parameters on the flow field structures in axial turbine stage. The experiment was performed on the axial turbine stage rig with an air as a working medium. The variable inlet channel produced the different inlet turbulence intensity and different inlet end-wall boundary layer thickness, resp. different inlet velocity distribution was applied. The turbulence was measured by CTA probes. The measured parameters of the inlet velocity distribution and turbulence intensity across the inlet channel height are presented. Based on the experimental inlet parameters the CFD fully turbulent calculation of the flow field was made. The differences in outlet kinetic energy loss, outlet vane angle and the turbulence distribution in the vane mid-span section are depicted. Changes of secondary flow structures with the different inlet end-wall boundary layer thickness were observed on the vane outlet parameters.

  3. Wake structures of two side by side spheres in a tripped boundary layer flow

    Directory of Open Access Journals (Sweden)

    Canli Eyüb

    2014-03-01

    Full Text Available Two independent spheres were placed in a side by side arrangement and flow structure in the wake region of the spheres was investigated with a Particle Image Velocimetry (PIV system when the spheres were in a boundary layer over a flat plate as a special case. Reynolds number was 5000 based on the sphere diameter which was 42.5 mm. Boundary layer was tripped 8mm away from the leading edge of the flat plate with a 5 mm trip wire. The thickness of the hydrodynamically developed boundary layer was determined as 63mm which was larger than the sphere diameter of D=42.5mm. Wake region of the spheres was examined from point of flow physics for the different sphere locations in the ranges of 0≤G/D ≤1.5 and 0≤S/D ≤1.5 where G and S were the distance between the spheres and the distance between the bottom point of the spheres and the flat plate surface, respectively. Depending on the different sphere locations, instantaneous and time averaged vorticity data, scalar values of time-averaged velocity components and their root mean square (rms values and time averaged vorticity data are presented in the study for the evaluation of wake region of the spheres. It is demonstrated that the gap between the two spheres and the interaction between the gap and the boundary layer greatly affects flow pattern, especially when spheres are located near to the flat plate surface, i.e. S/D=0.1 for 0≤G/D ≤1.5. Different distances between the spheres resulted in various flow patterns as the spheres were approached to the flat plate. The distance S/D=0.1 for all gap values has the strongest effect on the wake structures. Beyond G/D=1.0, the sphere wakes tend to be similar to single sphere case. The instantaneous vorticity fields of the side by side arrangements comprised wavy structures in higher level comparing to an individual sphere case. The gap flow intensifies the occurrence of small scale eddies in the wake region. The submersion rate of the spheres

  4. The Effect of Air Pollution on Ozone Layer Thickness in Troposphere over the State of Kuwait

    Directory of Open Access Journals (Sweden)

    H. O. Al Jeran

    2009-01-01

    Full Text Available Troposphere ozone layer acts as a shield against all ultraviolet radiation approaching the planet Earth through absorption. It was noticed in mid 80s that ozone layer has thinned on the poles of the planet due to release of man-made substances commonly known as Ozone Depleting Substances, (ODS into its atmosphere. The consequences of this change are adverse as the harmful radiations reach to the surface of the earth, strongly influencing the crops yield and vegetation. These radiations are major cause of skin cancer that has long exposure to Ultra Violet (UV radiation. United States environmental protection agency and European community have imposed strict regulations to curb the emission of ODS and phase out schedules for the manufacture and use of ODS that was specified by Montreal protocol in 1987. Problem statement: This research deled with data analysis of ozone layer thickness obtained from Abu-Dhabi station and detailed measurement of air pollution levels in Kuwait. Approach: The ozone layer thickness in stratosphere had been correlated with the measured pollution levels in the State of Kuwait. The influence of import of ozone depletion substances for the last decade had been evaluated. Other factor that strongly affects the ozone layer thickness in stratosphere is local pollution levels of primary pollutants such as total hydrocarbon compounds and nitrogen oxides. Results: The dependency of ozone layer thickness on ambient pollutant levels presented in detail reflecting negative relation of both non-methane hydrocarbon and nitrogen oxide concentrations in ambient air. Conclusion: Ozone layer thickness in stratosphere had been measured for five years (1999-2004 reflecting minimum thickness in the month of December and maximum in the month of June. The ozone thickness related to the ground level concentration of non-methane hydrocarbon and can be used as an indicator of the health of ozone layer thickness in the stratosphere.

  5. The Final Stage of Gravitationally Collapsed Thick Matter Layers

    Directory of Open Access Journals (Sweden)

    Piero Nicolini

    2013-01-01

    Full Text Available In the presence of a minimal length, physical objects cannot collapse to an infinite density, singular, matter point. In this paper, we consider the possible final stage of the gravitational collapse of “thick” matter layers. The energy momentum tensor we choose to model these shell-like objects is a proper modification of the source for “noncommutative geometry inspired,” regular black holes. By using higher momenta of Gaussian distribution to localize matter at finite distance from the origin, we obtain new solutions of the Einstein equation which smoothly interpolates between Minkowski’s geometry near the center of the shell and Schwarzschild’s spacetime far away from the matter layer. The metric is curvature singularity free. Black hole type solutions exist only for “heavy” shells; that is, M ≥Me, where Me is the mass of the extremal configuration. We determine the Hawking temperature and a modified area law taking into account the extended nature of the source.

  6. Numerical simulations of coupled sea waves and boundary layer dynamics

    Science.gov (United States)

    Chalikov, D.

    2009-04-01

    Wind-wave dynamic and thermodynamic interaction belongs to one of the most important problems of geophysical fluid dynamics. At present this interaction in a parameterized form is taken into account for formulation of boundary conditions in atmospheric and oceanic models, weather forecast models, coupled ocean-atmosphere climate models and wave forecasting models. However, the accuracy of this parameterization is mostly unknown. The main difficulty in experimental and theoretical investigation of small-scale ocean-atmosphere interaction is the presence of a multi-mode (and, occasionally, non- single-valued) nonstationary interface. It makes impossible many types of measurements in close vicinity of the physical surface, and highly complicates construction of numerical models. Existing approaches on the wind-wave interaction problem are based on assumptions that a wave field can be represented as superposition of linear waves whilst the process of wind-wave interaction is a superposition of elementary processes. This assumption is acceptable only for very small amplitude waves due to: (1) wave surface cannot be represented as superposition of linear waves with random phases as a result of nonlinearity leading to formation of ‘bound' waves, focusing energy in physical space and wave breaking; (2) dynamic interactions of waves with the air (for example, long waves modify the local flow, which influences energy input into short waves, while short waves create local drag that affects the flow over large waves). In general, all waves "spring, burgeon and fall" in the environment provided by the entire spectrum; (3) energy input into waves of even moderate steepness is concentrated rather in physical space than in Fourier space. Hence, a Fourier image of the input is often not quite representative. The new approach to the problem is based on coupled 2-D modeling of waves and boundary layer in joint conformal surface-following coordinates. The wave model is based on full

  7. Influence of layer waviness on the hydrostatic response of thick composite cylinders

    OpenAIRE

    Timothy L Brown

    1992-01-01

    The influence of layer waviness in thick cross-ply composite cylinders subjected to hydrostatic pressure is investigated. The cylinders considered are graphite-epoxy with a 2: 1 ratio of circumferential to axial layers. All cylinders considered contain 104 total layers with a layup of [90/(90/0/90h71s, where a '0° 1 layer is taken to be in the axial direction. The influence of a single isolated group of wavy layers in an otherwise perfect cylinder is evaluated. Layer waviness in only the c...

  8. Uncertainties in the CO2 buget associated to boundary layer dynamics and CO2-advection

    NARCIS (Netherlands)

    Kaikkonen, J.P.; Pino, D.; Vilà-Guerau de Arellano, J.

    2012-01-01

    The relationship between boundary layer dynamics and carbon dioxide (CO2) budget in the convective boundary layer (CBL) is investigated by using mixed-layer theory. We derive a new set of analytical relations to quantify the uncertainties on the estimation of the bulk CO2 mixing ratio and the inferr

  9. Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers

    DEFF Research Database (Denmark)

    Xu, Zhang-Cheng; Zhang, Ya-Ting; Hvam, Jørn Märcher;

    2009-01-01

    The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage at 110K is observed, which...

  10. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Science.gov (United States)

    Zilitinkevich, S. S.; Esau, I. N.; Baklanov, A.

    2005-03-01

    Turbulent planetary boundary layers (PBLs) control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow). It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral) or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions) depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S were overlooked

  11. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  12. Effects of AlN buffer layer thickness on the crystallinity and surface morphology of 10-µm-thick a-plane AlN films grown on r-plane sapphire substrates

    Science.gov (United States)

    Lin, Chia-Hung; Tamaki, Shinya; Yamashita, Yasuhiro; Miyake, Hideto; Hiramatsu, Kazumasa

    2016-08-01

    10-µm-thick a-plane AlN(11\\bar{2}0) films containing a low-temperature AlN (LT-AlN) buffer layer and a high-temperature AlN (HT-AlN) film were prepared on r-plane sapphire (1\\bar{1}02) substrates. The crystallinity of all the samples with different LT-AlN buffer layer thicknesses was improved after thermal annealing and HT-AlN growth, mainly owing to the elimination of domain boundaries and the concurrent suppression of facet formation. The optimum crystallinity of HT-AlN films was obtained with full widths at half maximum of the X-ray rocking curves of 660 arcsec for AlN(11\\bar{2}0)\\parallel [1\\bar{1}00]AlN and 840 arcsec for (0002) using a 200-nm-thick LT-AlN buffer layer.

  13. MESSENGER Observations of the Dayside Low-Latitude Boundary Layer in Mercury's Magnetosphere

    Science.gov (United States)

    Liljeblad, E. I.; Karlsson, T.; Raines, J. M.; Slavin, J. A.; Kullen, A.; Sundberg, T.; Zurbuchen, T.

    2015-12-01

    Observations from MESSENGER's MAG and FIPS instruments during the first orbital year have resulted in the identification of 25 magnetopause crossings in Mercury's magnetosphere with significant low-latitude boundary layers (LLBLs). The large majority of these crossings are observed on the dawnside and for northward interplanetary magnetic field. The estimated LLBL thickness is 450±56 km, and increases with distance to noon. The Na+-group ion is sporadically present in 14 of the boundary layers, with an observed average number density of 22±11 % of the proton density. Furthermore, the average Na+-group gyroradii in the layers is 220±34 km, the same order of magnitude as the LLBL thickness. Magnetic shear, plasma β and reconnection rates have been estimated for the LLBL crossings, and compared to those of a control group (non-LLBL) of 61 distinct magnetopause crossings which show signs of nearly no plasma inside the magnetopause. The results indicate that reconnection is significantly slower, or even suppressed, for the LLBL crossings compared to the non-LLBL cases. Possible processes that form or impact the LLBL are discussed. Protons injected through the cusp or flank may be important for the formation of the LLBL. Furthermore, the opposite asymmetry in the Kelvin-Helmholtz instability (KHI) as compared to the LLBL, rules out the KHI as a dominant formation mechanism. However, the KHI and LLBL could be related to each other, either by the impact of sodium ions gyrating across the magnetopause, or by the LLBL preventing the growth of KH waves on the dawnside.

  14. MHD Free Convective Boundary Layer Flow of a Nanofluid past a Flat Vertical Plate with Newtonian Heating Boundary Condition

    OpenAIRE

    Uddin, Mohammed J.; Khan, Waqar A.; Ahmed I Ismail

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first convert...

  15. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    Science.gov (United States)

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  16. System Identification Method for Evaluating the Effect of Thickness Error on Backcalculated Pavement Layer Moduli

    Institute of Scientific and Technical Information of China (English)

    ZHONG Yan-hui; WANG Fu-ming; ZHANG Bei; CAI Ying-chun

    2004-01-01

    Based on system identification theory and FWD testing data, the effect of thickness error on backcalculating pavement layer moduli is studied and the method of singular value decomposition (SVD) is presented to solve the morbidity problem of sensitivity matrix in this paper.The results show that the thickness error has great effects on the backcalculated pavement layer moduli. The error of backcalculated moduli can be controlled within the range of ±15% by limiting the thickness error within the range of ±5%.

  17. Retinal nerve fiber layer thickness and visual hallucinations in Parkinson's Disease.

    Science.gov (United States)

    Lee, Jee-Young; Kim, Jae Min; Ahn, Jeeyun; Kim, Han-Joon; Jeon, Beom S; Kim, Tae Wan

    2014-01-01

    Defective visual information processing from both central and peripheral pathways is one of the suggested mechanisms of visual hallucination in Parkinson's disease (PD). To investigate the role of retinal thinning for visual hallucination in PD, we conducted a case-control study using spectral domain optical coherence tomography. We examined a representative sample of 61 patients with PD and 30 healthy controls who had no history of ophthalmic diseases. General ophthalmologic examinations and optical coherence tomography scans were performed in each participant. Total macular thickness and the thickness of each retinal layer on horizontal scans through the fovea were compared between the groups. In a comparison between patients with PD and healthy controls, there was significant parafoveal inner nuclear layer thinning, whereas other retinal layers, including the retinal nerve fiber layer, as well as total macular thicknesses were not different. In terms of visual hallucinations among the PD subgroups, only retinal nerve fiber layer thickness differed significantly, whereas total macular thickness and the thickness of other retinal layers did not differ. The retinal nerve fiber layer was thinnest in the group that had hallucinations without dementia, followed by the group that had hallucinations with dementia, and the group that had no hallucinations and no dementia. General ophthalmologic examinations did not reveal any significant correlation with hallucinations. There were no significant correlations between retinal thicknesses and duration or severity of PD and medication dosages. The results indicate that retinal nerve fiber layer thinning may be related to visual hallucination in nondemented patients with PD. Replication studies as well as further studies to elucidate the mechanism of thinning are warranted.

  18. Effect of layer thickness on device response of silicon heavily supersaturated with sulfur

    Directory of Open Access Journals (Sweden)

    David Hutchinson

    2016-05-01

    Full Text Available We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer’s law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.

  19. Effect of layer thickness on device response of silicon heavily supersaturated with sulfur

    Science.gov (United States)

    Hutchinson, David; Mathews, Jay; Sullivan, Joseph T.; Akey, Austin; Aziz, Michael J.; Buonassisi, Tonio; Persans, Peter; Warrender, Jeffrey M.

    2016-05-01

    We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE) is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011)] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer's law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011)], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.

  20. Mixed convection boundary layer flow adjacent to a vertical surface embedded in a stable stratified medium

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, Anuar; Nazar, Roslinda [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Pop, Ioan [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2008-07-01

    The steady mixed convection boundary layer flow through a stable stratified medium adjacent to a vertical surface is investigated. The velocity outside the boundary layer and the surface temperature are assumed to vary linearly from the leading edge of the surface. The transformed ordinary differential equations are solved numerically by the Keller-box method. It is found that dual solutions exist, and the thermal stratification delays the boundary layer separation. (author)

  1. The high frequency acoustic radiation from the boundary layer of an axisymmetric body

    Institute of Scientific and Technical Information of China (English)

    LI Fuxin; MA Lin; MA Zhiming

    2001-01-01

    The mechanism of acoustic radiation from the boundary layer of an axisymmetric body is analyzed, and its sound pressure spectrum is predicted. It is shown that the acoustic radiation results from the transition region and the turbulent boundary layer; and that the acoustic radiation from transition region is predominant at low frequencies; while the turbulent boundary layer has the decisive effect on acoustic radiation at high frequencies. The calculated values are in good agreement with the experimental data.

  2. ATMOSPHERIC BOUNDARY LAYER CONCEPT MODEL OF THE PEARL RIVER DELTA AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    FAN Shao-jia; WANG An-Yu; FAN Qi; LIU Ji; WANG Bao-min; TA Na

    2007-01-01

    Based on the geographical circumstance, climate and the boundary layer meteorology features of the Pearl River Delta, a boundary layer concept model of the Pearl River Delta was built. The concept model consists of four fundamental factors that affect the boundary layer meteorology of the Pearl River Delta and can convincingly explain the reason of the air quality change in the Pearl River Delta. The model can be used to the diffusion capability analysis, the air pollution potential forecasting or haze forecasting, etc.

  3. Effects of Weak Layer Angle and Thickness on the Stability of Rock Slopes

    Directory of Open Access Journals (Sweden)

    Garmondyu Crusoe Jr

    2016-06-01

    Full Text Available This paper researches two key factors (angle and thickness of a weak layer in relation to their influencing mechanism on slope stability. It puts forward the sliding surface angle and morphological model criteria for the control of rock slopes and realization of its failure mechanism. By comparing the Failure Modes and Safety Factors (Fs obtained from numerical analysis, the influence pattern for the weak layer angle and thickness on the stability of rock slopes is established. The result shows that the weak layer angle influences the slope by validating the existence of the “interlocking” situation. It also illustrates that as the angle of the weak layer increases, the Fs unceasingly decreases with an Fs transformation angle. The transformation interval of the Fs demonstrates the law of diminishing of a quadratic function. Analysis of the weak layer thickness on the influence pattern of slope stability reveals three decrease stages in the Fs values. The result also shows that the increase in the thickness of the weak layer increases the failure zone and influences the mode of failure. Given the theoretical and numerical analysis of a weak layer effects on the stability of rock slopes, this work provides a guiding role in understanding the influence of a weak layer on the failure modes and safety factors of rock slopes.

  4. Hybrid layer thickness and morphology: Influence of cavity preparation with air abrasion.

    Science.gov (United States)

    Barceleiro, Marcos Oliveira; de Mello, Jose Benedicto; Porto, Celso Luis de Angelis; Dias, Katia Regina Hostilio Cervantes; de Miranda, Mauro Sayao

    2011-01-01

    Dentinal surfaces prepared with air abrasion have considerably different characteristics from those prepared with conventional instruments. Different hybrid layer morphology and thickness occur, which can result in differences in the quality of restorations placed on dentinal surfaces prepared with a diamond bur compared to surfaces prepared using air abrasion. The objective of this study was to compare the hybrid layer thickness and morphology formed utilizing Scotchbond Multi-Purpose Plus (SBMP) on dentin prepared with a diamond bur in a high-speed handpiece and on dentin prepared using air abrasion. Flat dentin surfaces obtained from five human teeth were prepared using each method, then treated with the dentin adhesive system according to manufacturer's instructions. After a layer of composite was applied, specimens were sectioned, flattened, polished, and prepared for scanning electron microscopy. Ten different measurements of hybrid layer thickness were obtained along the bonded surface in each specimen. SBMP produced a 3.43 ± 0.75 µm hybrid layer in dentin prepared with diamond bur. This hybrid layer was regular and found consistently. In the air abrasion group, SBMP produced a 4.94 ± 1.28 µm hybrid layer, which was regular and found consistently. Statistical ANOVA (P = 0.05) indicated that there was a statistically significant difference between the groups. These data indicate that the air abrasion, within the parameters used in this study, provides a thick hybrid layer formation.

  5. Seasonality of mercury in the Atlantic marine boundary layer

    Science.gov (United States)

    Soerensen, Anne L.; Sunderland, Elsie; Skov, Henrik; Holmes, Christopher; Jacob, Daniel J.

    2010-05-01

    Around one third of the mercury emissions today are from primary anthropogenic sources, with the remaining two-thirds from secondary reemissions of earlier deposition and natural sources (AMAP/UNEP 2008). Mercury exchange at the air-sea interface is important for the global distribution of atmospheric mercury as parts of deposited mercury will reenter the atmosphere through evasion. The exchange at the air-sea interface also affects the amount of inorganic mercury in the ocean and thereby the conversion to the neuro-toxic methylmercury. Here we combine new cruise measurements in the atmospheric marine boundary layer (MBL) of the Atlantic Ocean (Northern Hemisphere) from the fall of 2006 and the spring of 2007 with existing data from cruises in the Atlantic Ocean since 1978. We observe from these data a seasonal cycle in Hg(0) concentrations in the Atlantic marine boundary later (MBL) that exhibits minimum concentrations during summer and high concentrations during fall to spring. These observations suggest a local, seasonally dependent Hg(0) source in the MBL that causes variability in concentrations above the open ocean. To further investigate controls on Hg(0) concentrations in the MBL, we developed an improved representation of oceanic air-sea exchange processes within the GEOS-Chem global 3-D biogeochemical mercury model. Specifically, we used new data on mercury redox reactions in the surface ocean as a function of biological and photochemical processes, and implemented new algorithms for mercury dynamics associated with suspended particles. Our coupled atmospheric-oceanic modeling results support the premise that oceanic evasion is a main driver controlling Hg(0) concentrations in the MBL. We also use the model to investigate what drivers the evasion across the air-sea interface on shorter timescales. This is done by tracking evasion rates and other model components on an hourly basis for chosen locations in the Atlantic Ocean.

  6. Heterogeneous evaporation across a turbulent internal boundary layer

    Science.gov (United States)

    Shahraeeni, Ebrahim; Vanderborght, Jan; Vereecken, Harry

    2014-05-01

    In local evaporation from sufficiently uniform and large surfaces, horizontal advection close to the changes in surface condition is not significant. Under natural condition, this assumption is often invalid and horizontal inhomogeneity is important. When partially saturated air flows from a uniform dry land surface over a wet surface, all lower boundary conditions of transport equations change abruptly. Also surface humidity and roughness are likely to be different from their upwind values. Due to these changes, the velocity profile and turbulence structure of the airflow must readjust. The vertical profiles are no longer in equilibrium and the horizontal gradients do not equal to zero. When there is more than one of these changes in the domain of interest, the interaction between different patches with a contrast in roughness, temperature or surface water content is also important. Rigorous experimental and numerical analysis of turbulent transfer of mass and momentum in the so-called internal boundary layer (the region affected by such step changes in surface condition) is the aim of this work. A combination of numerical simulations using in-house codes and commercial softwares and experimental measurements in the environmental wind tunnel is performed. We are specifically interested in correct depiction of roughness, in a more accurate representation of the turbulent velocity profile and in a better description of turbulent diffusion close to the interface. A series of simplifying assumptions in the classical representation of this problem are investigated and a sensitivity analysis is performed to identify the contribution of neglected terms. We are also interested in the parameterization of the heat and mass exchange processes for the case with different wet patches in a background of dry soil, which is of interest in several field scale applications.

  7. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  8. Ultrasonic Measurement of Interfacial Layer Thickness of Sub-Quarter-Wavelength

    International Nuclear Information System (INIS)

    This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave used in the ultrasonic pulse-echo measurements. The technique determines the thickness of a thin layer in a tapered medium from constructive interference of multiple reflection waves. The interference characteristics are derived and investigated in theoretical and experimental approaches. Modified total reflection wave g(t) defined as difference between total and first reflection waves increases in amplitude as the interfacial layer thickness decreases down to zero. A layer thickness less than one-tenth of the ultrasonic wavelength is measured using the maximum amplitude of g(t) with a good accuracy and sensitivity. The method also requires no inversion process to extract the thickness information from the waveforms of reflected waves, so that it makes possible to have the on-line thickness measurement of a thin layer such as a lubricating oil film in thrust bearings and journal bearings during manufacturing process

  9. Theoretical evaluation of critical gas layer thickness in relation to detonation wave propagation

    International Nuclear Information System (INIS)

    The study of detonation wave propagation in gas volumes of finite thickness is important for safeguarding various technological processes from explosions. Available literature includes theoretical calculation of critical gas layer thickness in relation to steady-state propagation of the deformation wave, and studies in detail gas-dynamic processes and reveals the pulsating nature of the detonation wave, but gives only a very rough description of the chemical kinetic processes. This paper aims to evaluate the critical gas layer thickness with a more realistic description of heat release processes resulting from the chemical reaction. A numerical simulation of two-dimensional detonation wave propagation is given in a gaseous layer of finite thickness for oxyhydrogen and for a stoichiometric hydrogen-air mixture. (author)

  10. Structure Identification Within a Transitioning Swept-Wing Boundary Layer

    Science.gov (United States)

    Chapman, Keith; Glauser, Mark

    1996-01-01

    Extensive measurements are made in a transitioning swept-wing boundary layer using hot-film, hot-wire and cross-wire anemometry. The crossflow-dominated flow contains stationary vortices that breakdown near mid-chord. The most amplified vortex wavelength is forced by the use of artificial roughness elements near the leading edge. Two-component velocity and spanwise surface shear-stress correlation measurements are made at two constant chord locations, before and after transition. Streamwise surface shear stresses are also measured through the entire transition region. Correlation techniques are used to identify stationary structures in the laminar regime and coherent structures in the turbulent regime. Basic techniques include observation of the spatial correlations and the spatially distributed auto-spectra. The primary and secondary instability mechanisms are identified in the spectra in all measured fields. The primary mechanism is seen to grow, cause transition and produce large-scale turbulence. The secondary mechanism grows through the entire transition region and produces the small-scale turbulence. Advanced techniques use Linear Stochastic Estimation (LSE) and Proper Orthogonal Decomposition (POD) to identify the spatio-temporal evolutions of structures in the boundary layer. LSE is used to estimate the instantaneous velocity fields using temporal data from just two spatial locations and the spatial correlations. Reference locations are selected using maximum RMS values to provide the best available estimates. POD is used to objectively determine modes characteristic of the measured flow based on energy. The stationary vortices are identified in the first laminar modes of each velocity component and shear component. Experimental evidence suggests that neighboring vortices interact and produce large coherent structures with spanwise periodicity at double the stationary vortex wavelength. An objective transition region detection method is developed using

  11. Effects of Thickness Deviation of Elastic Plates in Multi-Layered Resonance Systems on Frequency Spectra

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; ZHANG Shu-Yi; FAN Li

    2009-01-01

    A model of high-overtone bulk acoustic resonators is used to study the effects of thickness deviation of elastic plates on resonance frequency spectra in planar multi-layered systems. The resonance frequency shifts induced by the thickness deviations of the elastic plates periodically vary with the resonance order, which depends on the acoustic impedance ratios of the elastic plates to piezoelectric patches. Additionally, the center lines of the frequency shift oscillations Hnearly change with the orders of the resonance modes, and their slopes are sensitive to the thickness deviations of the plates, which can be used to quantitatively evaluate the thickness deviations.

  12. Marine boundary layer simulation and verification during BOBMEX-Pilot using NCMRWF model

    Indian Academy of Sciences (India)

    Swati Basu

    2000-06-01

    A global spectral model (T80L18) that is operational at NCMRWF is utilized to study the structure of the marine boundary layer over the Bay of Bengal during the BOBMEX-Pilot period. The vertical profiles of various meteorological parameters within the boundary layer are studied and verified against the available observations. The diurnal variation of various surface fields are also studied. The impact of non-local closure scheme for the boundary layer parameterisation is seen in simulation of the flow pattern as well as on the boundary layer structure over the oceanic region.

  13. Stereoscopic Imaging in Hypersonics Boundary Layers using Planar Laser-Induced Fluorescence

    Science.gov (United States)

    Danehy, Paul M.; Bathel, Brett; Inman, Jennifer A.; Alderfer, David W.; Jones, Stephen B.

    2008-01-01

    Stereoscopic time-resolved visualization of three-dimensional structures in a hypersonic flow has been performed for the first time. Nitric Oxide (NO) was seeded into hypersonic boundary layer flows that were designed to transition from laminar to turbulent. A thick laser sheet illuminated and excited the NO, causing spatially-varying fluorescence. Two cameras in a stereoscopic configuration were used to image the fluorescence. The images were processed in a computer visualization environment to provide stereoscopic image pairs. Two methods were used to display these image pairs: a cross-eyed viewing method which can be viewed by naked eyes, and red/blue anaglyphs, which require viewing through red/blue glasses. The images visualized three-dimensional information that would be lost if conventional planar laser-induced fluorescence imaging had been used. Two model configurations were studied in NASA Langley Research Center's 31-Inch Mach 10 Air Wind tunnel. One model was a 10 degree half-angle wedge containing a small protuberance to force the flow to transition. The other model was a 1/3-scale, truncated Hyper-X forebody model with blowing through a series of holes to force the boundary layer flow to transition to turbulence. In the former case, low flowrates of pure NO seeded and marked the boundary layer fluid. In the latter, a trace concentration of NO was seeded into the injected N2 gas. The three-dimensional visualizations have an effective time resolution of about 500 ns, which is fast enough to freeze this hypersonic flow. The 512x512 resolution of the resulting images is much higher than high-speed laser-sheet scanning systems with similar time response, which typically measure 10-20 planes.

  14. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  15. Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers

    Institute of Scientific and Technical Information of China (English)

    XU Zhang-Cheng; ZHANG Ya-Ting; J(φ)rn M. Hvam; Yoshiji Horikoshi

    2009-01-01

    The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage at 110K is observed, which can be explained by considering the resonant F(o)rster energy transfer between the wetting layer states at elevated temperatures.

  16. Boundary-layer cumulus over heterogeneous landscapes: A subgrid GCM parameterization. Final report, December 1991--November 1995

    Energy Technology Data Exchange (ETDEWEB)

    Stull, R.B. [Univ. of British Columbia, Vancouver (Canada). Dept. of Geography; Tripoli, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Atmospheric & Oceanic Sciences

    1996-01-08

    The authors developed single-column parameterizations for subgrid boundary-layer cumulus clouds. These give cloud onset time, cloud coverage, and ensemble distributions of cloud-base altitudes, cloud-top altitudes, cloud thickness, and the characteristics of cloudy and clear updrafts. They tested and refined the parameterizations against archived data from Spring and Summer 1994 and 1995 intensive operation periods (IOPs) at the Southern Great Plains (SGP) ARM CART site near Lamont, Oklahoma. The authors also found that: cloud-base altitudes are not uniform over a heterogeneous surface; tops of some cumulus clouds can be below the base-altitudes of other cumulus clouds; there is an overlap region near cloud base where clear and cloudy updrafts exist simultaneously; and the lognormal distribution of cloud sizes scales to the JFD of surface layer air and to the shape of the temperature profile above the boundary layer.

  17. Comparison of Central Corneal Thickness and Retinal Nerve Fiber Layer Thickness and Ganglion Cell Complex in Patients with Ocular Hypertension

    Directory of Open Access Journals (Sweden)

    Gamze Mumcu Taşlı

    2013-12-01

    Full Text Available Purpose: To evaluate the correlation of retinal nerve fiber layer thickness (RNFLT with ganglion cell complex and central corneal thickness (CCT measurements in patients with ocular hypertension and healthy subjects. Material and Method: Seventy-six eyes of 38 patients with ocular hypertension and 76 eyes of 38 healthy subjects were included in this study. Both groups were stratified by CCT into 579 µm (p0.05. In the control group, there was no significant correlation between CCT and RNFLT (average, superior average, inferior average measurements (p>0.05. There was no significant correlation between CCT and average, superior average, inferior average ganglion cell complex in both groups. Discussion: Ocular hypertension patients with CCT <550 µm may represent patients who have very early undetected glaucoma. This may in part explain the higher risk of these patients for progression to glaucoma. (Turk J Ophthalmol 2013; 43: 385-90

  18. The effect of capped layer thickness on switching behavior in perpendicular CoCrPt based coupled granular/continuous media

    International Nuclear Information System (INIS)

    A systematic investigation of magnetic switching behavior of CoCrPt based capped media (perpendicularly coupled granular/continuous (CGC) media consisting of granular CoCrPt:SiO2TiO2Ta2O5/capped CoCrPt(B)) is performed by varying the thickness of the capped layer from 0 to 9 nm. The microscopic structures of CGC media with different thickness of capped layer are examined by transmission electron microscope. We find out that CoCrPt magnetic grains are separated by nonmagnetic oxide grain boundaries. Grain size and grain boundary are about 8.9 nm and 2 nm, respectively. The nonmagnetic oxide grain boundaries in the granular layer do not disappear immediately at the interface between the granular and capped layers. The amorphous grain boundary phase in the granular layer propagates to the top surface of the capped layer. After capping with the CoCrPt(B) layer, the grain size at the surface of CGC structure increases and the grain boundary decreases. Both coercivity and intergranular exchange coupling of the CGC media are investigated by Polar magneto-optic Kerr effect magnetometer and alternating gradient force magnetometer. Although Hc apparently decreases at thicker capped layer, no obvious variation of macroscopic switching field distribution (SFD/Hc) is observed. We separate intrinsic switching field distribution from intergranular interactions. The investigation of reduced intrinsic SFD/Hc and increased hysteresis loop slope at coercivity, suggests that improvement of absolute switching field distribution (SFD) is caused by both strong intergranular exchange coupling and uniform grain size. Micromagnetic simulation results further verify our conclusion that the capped layer in CGC media is not uniformly continuous but has some granular nature. However, grains in the CoCrPt(B) capped layer is not absolutely isolated, strong exchange coupling exists between grains. - Highlights: • In CGC media, CoCrPt magnetic grains are separated by nonmagnetic oxide grain

  19. HYBRID LAYER THICKNESS IN PRIMARY AND PERMANENT TEETH – A COMPARISON BETWEEN TOTAL ETCH ADHESIVES

    Directory of Open Access Journals (Sweden)

    Natalia Gateva

    2012-05-01

    Full Text Available Purpose: The aim this study is to compare the hybrid layer thickness and its micromorphological characteristics in samples from primary and permanent teeth following application of total etch adhesives.Materials and methods: On intact specimens of 20 primary and 10 permanent teeth was created flat dentin surfaces. The patterns were divided in 6 groups. Two different total etch adhesive systems were used – one tree steps (OptiBond, Kerr and one two steps (Exite, VivaDent. In groups 3, 4, 5 and 6 recommended etching time was used - 15 s, in groups 1 and 2 the etching time was reduced to 7 s. After applying the adhesive, resin composite build-ups were constructed. Thus restored samples are stored in saline solution for 24 hours at temperature 37 C. Then they are subjected to thermal stress in temperature between 5 C to 55 C for 1,500 cycles and to masticatory stress – 150,000 cycles with force 100 N in intervals of 0.4 s. After that the teeth are cut through the middle in medio-distal direction with a diamond disc. SEM observation was done to investigate the thickness of the hybrid layer and the presence of microgaps. Statistical analysis was performed with ANOVA and Tukey׳s tests.Results: SEM observation showed significant differences of the hybrid layer thickness between primary and permanent teeth under equal conditions and after different etching time. Group 6 presented the highest average thickness 8.85 μ and group 1 the lowest average in hybrid layer 3.74 μ.Conclusion: In primary teeth the hybrid layer thickness increases with the increased etching time. The hybrid layer thickness in primary teeth is greater than that of the hybrid layer in permanent teeth under equal conditions. For primary teeth it is more appropriate to reduce the etching time to 7s to obtain a hybrid layer with better quality

  20. Diagnostics of boundary layer transition by shear stress sensitive liquid crystals

    Science.gov (United States)

    Shapoval, E. S.

    2016-10-01

    Previous research indicates that the problem of boundary layer transition visualization on metal models in wind tunnels (WT) which is a fundamental question in experimental aerodynamics is not solved yet. In TsAGI together with Khristianovich Institute of Theoretical and Applied Mechanics (ITAM) a method of shear stress sensitive liquid crystals (LC) which allows flow visualization was proposed. This method allows testing several flow conditions in one wind tunnel run and does not need covering the investigated model with any special heat-insulating coating which spoils the model geometry. This coating is easily applied on the model surface by spray or even by brush. Its' thickness is about 40 micrometers and it does not spoil the surface quality. At first the coating obtains some definite color. Under shear stress the LC coating changes color and this change is proportional to shear stress. The whole process can be visually observed and during the tests it is recorded by camera. The findings of the research showed that it is possible to visualize boundary layer transition, flow separation, shock waves and the flow image on the whole. It is possible to predict that the proposed method of shear stress sensitive liquid crystals is a promise for future research.

  1. Harvesting energy from turbulence in boundary layers by using piezoelectric generators

    Science.gov (United States)

    Andreopoulos, Yiannis; Akaydin, Dogus H.; Elvin, Niell

    2009-11-01

    The availability of significant kinetic energy in fluid flows distributed over a number of temporal and spatial scales creates a unique opportunity to convert this energy into electrical output by using piezoelectric generators. The unsteadiness due to turbulence can produce mechanical strain energy in the piezoelectric material which in turn can generate a build up of charge that can be used to power electronic devices. In the present work, short length piezoelectric beams were placed in a zero pressure gradient two dimensional turbulent boundary layer at Reynolds numbers based on momentum thickness up to 6500 to evaluate their performance as energy generators. The piezoelectric beam was traversed across the boundary layer to determine the location where the output power is maximized. It was found that the location of maximum power is not close to the wall where most of the turbulent activities are high but further away from the wall. The work has shown that there is a three-way coupled interaction between the fluid flow, the piezoelectric structure and its electromechanical field.

  2. Structure of the refractive index distribution of the supersonic turbulent boundary layer

    Science.gov (United States)

    Gao, Qiong; Yi, Shihe; Jiang, Zongfu; He, Lin; Wang, Xiaohu

    2013-09-01

    The refractive index field of supersonic turbulent boundary layer with Mach number 3 is measured with the nanoparticle-based planar laser scattering technique, and its structure is investigated from the viewpoints of power spectrum, structure function and correlation function. The power spectrum along streamwise direction shows evident power behavior in a broad region of wavenumber, and the power exponent varies from -1.9 to -1.7 in the logarithmic region. The dominant structures is revealed using the pre-multiplied spectrum, and the length of the largest structure is about 1.2δ (δ is the thickness of the boundary layer). The structure function of the refractive index along streamwise direction is computed and an analytic expression is suggested to fit the experimental results, which is a modification of the Tatraski model. The power spectrum is computed with the fitting expression and its behavior is analyzed. The characteristic length along normal direction is studied with the linking equation in aero-optics. This length is defined with normal integral of correlation coefficient, and the results with two slightly different definitions of correlation coefficient are compared.

  3. The Spring-Time Boundary Layer in the Central Arctic Observed during PAMARCMiP 2009

    Directory of Open Access Journals (Sweden)

    Alexander Makshtas

    2012-07-01

    Full Text Available The Arctic atmospheric boundary layer (AABL in the central Arctic was characterized by dropsonde, lidar, ice thickness and airborne in situ measurements during the international Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project (PAMARCMiP in April 2009. We discuss AABL observations in the lowermost 500 m above (A open water, (B sea ice with many open/refrozen leads (C sea ice with few leads, and (D closed sea ice with a front modifying the AABL. Above water, the AABL had near-neutral stratification and contained a high water vapor concentration. Above sea ice, a low AABL top, low near-surface temperatures, strong surface-based temperature inversions and an increase of moisture with altitude were observed. AABL properties and particle concentrations were modified by a frontal system, allowing vertical mixing with the free atmosphere. Above areas with many leads, the potential temperature decreased with height in the lowest 50 m and was nearly constant above, up to an altitude of 100–200 m, indicating vertical mixing. The increase of the backscatter coefficient towards the surface was high. Above sea ice with few refrozen leads, the stably stratified boundary layer extended up to 200–300 m altitude. It was characterized by low specific humidity and a smaller increase of the backscatter coefficient towards the surface.

  4. Appraisal of boundary layer trips for landing gear testing

    Science.gov (United States)

    McCarthy, Philip; Feltham, Graham; Ekmekci, Alis

    2013-11-01

    Dynamic similarity during scaled model testing is difficult to maintain. Forced boundary layer transition via a surface protuberance is a common method used to address this issue, however few guidelines exist for the effective tripping of complex geometries, such as aircraft landing gears. To address this shortcoming, preliminary wind tunnel tests were performed at Re = 500,000. Surface transition visualisation and pressure measurements show that zigzag type trips of a given size and location are effective at promoting transition, thus preventing the formation of laminar separation bubbles and increasing the effective Reynolds number from the critical regime to the supercritical regime. Extension of these experiments to include three additional tripping methods (wires, roughness strips, CADCUT dots) in a range of sizes, at Reynolds number of 200,000 and below, have been performed in a recirculating water channel. Analysis of surface pressure measurements and time resolved PIV for each trip device, size and location has established a set of recommendations for successful use of tripping for future, low Reynolds number landing gear testing.

  5. Coupling between roughness and freestream acceleration in turbulent boundary layers

    Science.gov (United States)

    Yuan, Junlin; Piomelli, Ugo

    2015-11-01

    To explain various rough-wall flow responses to different types of free-stream conditions previously observed, we carried out a direct numerical simulation of a spatially developing turbulent boundary layer with freestream acceleration. Unlike the equilibrium (self-similar) accelerating scenario, where a strong acceleration leads to complete laminarization and lower friction, in the present non-equilibrium case the friction coefficient increases with acceleration, due to the faster near-wall acceleration than that of the freestream. At the same time, roughness reduces the near-wall time scale of the turbulence, preventing the acceleration from linearly stretching the near-wall eddies and freezing the turbulence intensity as in the smooth case. In addition, acceleration leads to similar decrease of mean-velocity logarithmic slope on rough and smooth walls; this allows a clear definition of the roughness function in a local sense. Interestingly, this roughness function correlates with the roughness Reynolds number in the same way as in self-similar or non-accelerating flows. This study may also help develop benchmark cases for evaluating rough-wall treatments for industrial turbulence models.

  6. The decay of wake vortices in the convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Holzaepfel, F.; Gerz, T.; Frech, M.; Doernbrack, A.

    2000-03-01

    The decay of three wake vortex pairs of B-747 aircraft in a convectively driven atmospheric boundary layer is investigated by means of large-eddy simulations (LES). This situation is considered as being hazardous as the updraft velocities of a thermal may compensate the induced descent speed of the vortex pair resulting in vortices stalled in the flight path. The LES results, however, illustrate that (i) the primary rectilinear vortices are rapidly deformed on the scale of the alternating updraft and downdraft regions; (ii) parts of the vortices stay on flight level but are quickly eroded by the enhanced turbulence of an updraft; (iii) longest living sections of the vortices are found in regions of relatively calm downdraft flow which augments their descent. Strip theory calculations are used to illustrate the temporal and spatial development of lift and rolling moments experienced by a following medium weight class B-737 aircraft. Characteristics of the respective distributions are analysed. Initially, the maximum rolling moments slightly exceed the available roll control of the B-737. After 60 seconds the probability of rolling moments exceeding 50% of the roll control, a value which is considered as a threshold for acceptable rolling moments, has decreased to 1% of its initial probability. (orig.)

  7. Plasma structures inside boundary layers of magnetic clouds

    Institute of Scientific and Technical Information of China (English)

    WEI Fengsi; FENG Xueshang; YANG Fang; ZHONG Dingkun

    2004-01-01

    We analyze the plasma structures for 50 magnetic cloud boundary layers (BLs) which were observed by the spacecraft WIND from February, 1995 to June 2003. Main discoveries are: (ⅰ) The BL is a non-pressure balanced structure, its total pressure, PT,L, (the thermal pressure, Pth,L, plus the magnetic pressure, PM,L) is generally less than the total pressure PT,S and PT,C of the front solar wind (SW) and the following magnetic clouds (MC), respectively. The rising of the Pth,L inside the BLs is often not enough to compensate the declining of PM,L; (ⅱ) The ratio of electron and proton temperatures, (Te/Tp)L, inside the BLs is offen less than (Te/Tp)s and (Te/Tp)c in the SW and the MC, respectively, because the heating of proton is more obvious than that of electron; and (ⅲ) The reversal jet is observed in 80% BLs investigated, in which the reversal jets from all of three directions (±Vx, ±Vy, ±Vz), were observed in ≈25% BLs. These basic characteristics could be associated with a possible magnetic reconnection process inside the BLs. The results above suggest that the cloud BL owns the plasma structures different from those in the SW and MC. It is a manifestation for the existing significant dynamic interaction between the magnetic cloud and the solar wind.

  8. Numerical analysis and optimization of boundary layer suction on airfoils

    Directory of Open Access Journals (Sweden)

    Shi Yayun

    2015-04-01

    Full Text Available Numerical approach of hybrid laminar flow control (HLFC is investigated for the suction hole with a width between 0.5 mm and 7 mm. The accuracy of Menter and Langtry’s transition model applied for simulating the flow with boundary layer suction is validated. The experiment data are compared with the computational results. The solutions show that this transition model can predict the transition position with suction control accurately. A well designed laminar airfoil is selected in the present research. For suction control with a single hole, the physical mechanism of suction control, including the impact of suction coefficient and the width and position of the suction hole on control results, is analyzed. The single hole simulation results indicate that it is favorable for transition delay and drag reduction to increase the suction coefficient and set the hole position closer to the trailing edge properly. The modified radial basis function (RBF neural network and the modified differential evolution algorithm are used to optimize the design for suction control with three holes. The design variables are suction coefficient, hole width, hole position and hole spacing. The optimization target is to obtain the minimum drag coefficient. After optimization, the transition delay can be up to 17% and the aerodynamic drag coefficient can decrease by 12.1%.

  9. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  10. Bypass transition of the bottom boundary layer under solitary wave

    Science.gov (United States)

    Sadek, Mahmoud; Diamessis, Peter; Parras, Luis; Liu, Philip

    2015-11-01

    The transition to turbulence in the bottom boundary layer (BBL) flow driven by a soliton-like pressure gradient in an oscillating water tunnel (an approximation for the BBL under solitary waves) is investigated using hydrodynamic linear stability theory and DNS. As observed in the laboratory experiment by Sumer et al. (2010), two possible transition scenarios exist. The first scenario is associated with the classical transition resulting from the breakdown of the exponentially growing 2-D Tollmien-Schlichting waves. The alternative scenario; i.e., bypass transition; takes place through formation of localized turbulent spots. The investigation of the latter transition scenario is performed in two steps. The first step consists of reformulating the linear stability analysis in the non-modal framework for the purpose of finding the optimum disturbance characteristics which lead to the formation of those turbulent spots. In the second step, the computed optimum noise structure is inserted in the 3D DNS in order to induce the formation of the turbulent spots and effectively simulate the bypass transition observed experimentally.

  11. NOx and NOy in the Tropical Marine Boundary Layer

    Science.gov (United States)

    Reed, Chris; Evans, Mathew J.; Lee, James D.; Carpenter, Lucy J.; Read, Katie A.; Mendes, Luis N.

    2016-04-01

    Nitrogen oxides (NOx=NO+NO2) and their reservoir species (NOy) play a central role in determining the chemistry of the troposphere. Although their concentrations are low (1-100 ppt) in regions such as the remote marine boundary layer, they have a profound impact on ozone production and the oxidizing capacity. There are very few observations of NOx and NOy in remote oceanic regions due to the technical challenges of measuring such low concentrations, and thus our understanding of this background chemistry is incomplete. Here we present long term measurements of NOx (2006-2015) and more recent measurements of speciated NOy (total peroxyacetyl nitrates, PANs; alkyl nitrates, ANs; nitric acid; and aerosol analogues) made at the Cape Verde Atmospheric Observatory (CVAO; 16° 51' N, 24° 52' W) located in the tropical Atlantic Ocean. We identify potential interferences in the NO2 and NOy measurements and methods to eliminate them. Diurnal and seasonal cycles are interpreted using a box model. We find a complex chemistry with interactions between organic and inorganic chemistry, between the aerosol and gas phase, and between the very local and large scales.

  12. Iodine oxide in the global marine boundary layer

    Directory of Open Access Journals (Sweden)

    C. Prados-Roman

    2014-08-01

    Full Text Available Emitted mainly by the oceans, iodine is a halogen compound important for atmospheric chemistry due to its high ozone depletion potential and effect on the oxidizing capacity of the atmosphere. Here we present a comprehensive dataset of iodine oxide (IO measurements in the open marine boundary layer (MBL made during the Malaspina 2010 circumnavigation. Results show IO mixing ratios ranging from 0.4 to 1 pmol mol−1 and, complemented with additional field campaigns, this dataset confirms through observations the ubiquitous presence of reactive iodine chemistry in the global marine environment. We use a global model with organic (CH3I, CH2ICl, CH2I2 and CH2IBr and inorganic (HOI and I2 iodine ocean emissions to investigate the contribution of the different iodine source gases to the budget of IO in the global MBL. In agreement with previous estimates, our results indicate that, globally averaged, the abiotic precursors contribute about 75% to the iodine oxide budget. However, this work reveals a strong geographical pattern in the contribution of organic vs. inorganic precursors to reactive iodine in the global MBL.

  13. Reactive chlorine chemistry in the boundary layer of coastal Antarctica

    Science.gov (United States)

    Zielcke, Johannes; Poehler, Denis; Friess, Udo; Hay, Tim; Eger, Philipp; Kreher, Karin; Platt, Ulrich

    2015-04-01

    A unique feature of the polar troposphere is the strong impact of halogen photochemistry, in which reactive halogen species are responsible for ozone depletion as well as the oxidation of elemental mercury and dimethyl sulphide. The source, however, as well as release and recycling mechanisms of these halogen species - for some species even abundances - are far from being completely known, especially of chlorine and iodine compounds. Here we present active long-path differential optical absorption spectroscopy (LP-DOAS) measurements conducted during austral spring 2012 at Ross Island, Antarctica, observing several species (BrO, O3, NO2, IO, ClO, OBrO, OClO, OIO, I2, CHOCHO, HCHO, HONO). For the first time, ClO was detected and quantified in the marine boundary layer of coastal Antarctica, with typical mixing ratios around 20 pptv and maxima around 50 pptv. Meteorological controls on the mixing ratio of ClO as well as the interplay with other halogen compounds will be discussed, such as the lack of observed OClO (< 1 pptv). The results seem to reflect previously in chamber studies observed dependences on ozone levels and solar irradiance.

  14. Hierarchical similarity in the atmospheric boundary layer turbulence

    Institute of Scientific and Technical Information of China (English)

    LIU Gang; LI Xin; JIANG Weimei; LI Min

    2005-01-01

    The S-L (She and Leveque) scaling law, also named the hierarchical similarity theory, has been extensively tested for the turbulence made in the laboratory, but seldom been tested for the turbulence in the atmospheric boundary layer (ABL). In this paper,the S-L scaling law is applied to the turbulence in the ABL observed under unstably stratified conditions and over different types of underlying surfaces. The results of analyses show that over this type of homogeneous and flat underlying surface, such as the underlying surface in HUBEX (Huaihe River Basin Energy and Water Cycle Experiment), vertical speed and temperature fields well satisfy the S-L scaling law. For the turbulence over the homogeneous but rather rough underlying surface of forest and under unstably stratified conditions in PFRD (Park Falls Ranger District of the Chequamegon National Forest, Wisconsin, USA), the analyses show that the vertical speed and temperature fields sometimes conform sometimes do not conform to the S-L scaling law. However, at a time, either both of the vertical speed and temperature fields conform to the S-L scaling law, or both of them do not. Horizontal speed fields in both of the field experiments do not satisfy the S-L scaling law. The new explanation of the above-mentioned phenomena is given.

  15. Uranus evolution models with simple thermal boundary layers

    Science.gov (United States)

    Nettelmann, Nadine; Redmer, Ronald; Fortney, Jonathan J.; Hamel, Sebastien; Bethkenhagen, Mandy

    2016-04-01

    The strikingly low luminosity of Uranus imposes a long-standing challenge to our understanding of Ice Giant planets. Similar to the Earth, Uranus appears to evolve in equilibrium with the solar incident flux (Teq). Here we present the first Uranus structure and evolution models that are constructed to agree with both the observed low luminosity and the gravity field data. Our models make use of modern ab initio equations of state at high pressures for the icy components water, methane, and ammonia. We argue that the transition between the ice/rock-rich interior and the H/He-rich outer envelope should be stably stratified. Therefore, we introduce a simple thermal boundary layer (TBL) and adjust it to reproduce the luminosity. Due to this TBL, the deep interior of the Uranus models are up to a factor 3 warmer than adiabatic models, necessitating the presence of rocks there with a possible I:R of 1 x solar. Furthermore, we also allow for an equilibrium evolution (Teff ~ Teq) that begun prior to the present day, which would therefore no longer constitute a "special time" in Uranus' evolution. Once Teff ~ Teq happens, a shallow, subadiabatic zone in the atmosphere begins to develop. Its depth is adjusted to meet the luminosity constraint. This work provides a simple foundation for future Ice Giant structure and evolution models, that can be improved by properly treating the heat and particle fluxes in the diffusive zones.

  16. Evidence of reactive iodine chemistry in the Arctic boundary layer

    Science.gov (United States)

    Mahajan, Anoop S.; Shaw, Marvin; Oetjen, Hilke; Hornsby, Karen E.; Carpenter, Lucy J.; Kaleschke, Lars; Tian-Kunze, Xiangshan; Lee, James D.; Moller, Sarah J.; Edwards, Peter; Commane, Roisin; Ingham, Trevor; Heard, Dwayne E.; Plane, John M. C.

    2010-10-01

    Although it has recently been established that iodine plays an important role in the atmospheric chemistry of coastal Antarctica, where it occurs at levels which cause significant ozone (O3) depletion and changes in the atmospheric oxidising capacity, iodine oxides have not previously been observed conclusively in the Arctic boundary layer (BL). This paper describes differential optical absorption spectroscopy (DOAS) observations of iodine monoxide (IO), along with gas chromatographic measurements of iodocarbons, in the sub-Arctic environment at Kuujjuarapik, Hudson Bay, Canada. Episodes of elevated levels of IO (up to 3.4 ± 1.2 ppt) accompanied by a variety of iodocarbons were observed. Air mass back trajectories show that the observed iodine compounds originate from open water polynyas that form in the sea ice on Hudson Bay. A combination of long-path DOAS and multiaxis DOAS observations suggested that the IO is limited to about 100 m in height. The observations are interpreted using a one-dimensional model, which indicates that the iodocarbon sources from these exposed waters can account for the observed concentrations of IO. These levels of IO deplete O3 at rates comparable to bromine oxide (BrO) and, more importantly, strongly enhance the effect of bromine-catalyzed O3 depletion in the Arctic BL, an effect which has not been quantitatively considered hitherto. However, the measurements and modeling results indicate that the effects of iodine chemistry are on a much more localized scale than bromine chemistry in the Arctic environment.

  17. Improvement of Turbine Performance by Streamwise Boundary Layer Fences

    Directory of Open Access Journals (Sweden)

    M Govardhan

    2012-01-01

    Full Text Available In the present investigations, effect of streamwise end wall fences on the performance improvement of a turbine is studied. The fences with heights of 12 mm, 16 mm were attached normal to the end wall and at a half pitch away from the blades. A miniaturized pressure probe was traversed at the exit of the cascade from midspan to the end wall at 26 locations covering more points in the end wall region. For each spanwise location, the probe was traversed in the pitchwise direction for more than 25 points covering one blade pitch. The boundary layer fence near the end wall remains effective in changing the path of pressure side of leg of horseshoe and weaken the cross flow. The overturn in flow has reduced near the end wall when fences are incorporated while outside end wall and in loss core region, it underturns slightly as result of reduction in secondary loss. The total loss is reduced by 15%, 25% for fences of height 12 mm, and 16 mm respectively. The corresponding change was obtained in the drag and lift coefficients.

  18. Predicting growth rates of interfaces and internal layers in a turbulent boundary layer using a first order jump model

    NARCIS (Netherlands)

    Eisma, J.; Westerweel, J.; Elsinga, G.E.

    2015-01-01

    Experimental research is presented on the characteristics of interfaces and internal layers that are present in a turbulent boundary layer (TBL). Both the turbulent non-turbulent interface (T/NT) and internal shear layers are detected in snapshots of the stereo-PIV data. It turns out that the intern

  19. Wind farm performance in conventionally neutral atmospheric boundary layers with varying inversion strengths

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2014-06-01

    In this study we consider large wind farms in a conventionally neutral atmospheric boundary layer. In large wind farms the energy extracted by the turbines is dominated by downward vertical turbulent transport of kinetic energy from the airflow above the farm. However, atmospheric boundary layers are almost always capped by an inversion layer which slows down the entrainment rate and counteracts boundary layer growth. In a suite of large eddy simulations the effect of the strength of the capping inversion on the boundary layer and on the performance of a large wind farm is investigated. For simulations with and without wind turbines the results indicate that the boundary layer growth is effectively limited by the capping inversion and that the entrainment rate depends strongly on the inversion strength. The power output of wind farms is shown to decrease for increasing inversions.

  20. Measured Instantaneous Viscous Boundary Layer in Turbulent Rayleigh-B\\'{e}nard Convection

    CERN Document Server

    Zhou, Quan

    2009-01-01

    We report measurements of the instantaneous viscous boundary layer (BL) thickness $\\delta_v(t)$ in turbulent Rayleigh-B\\'{e}nard convection. It is found that $\\delta_v(t)$ obtained from the measured instantaneous two-dimensional velocity field exhibits intermittent fluctuations. For small values, $\\delta_v(t)$ obeys a lognormal distribution, whereas for large values the distribution of $\\delta_v(t)$ exhibits an exponential tail. The variation of $\\delta_v(t)$ with time is found to be driven by the fluctuations of the large-scale mean flow velocity, as expected, and the local horizontal velocities close to the plate can be used as an instant measure of this variation. It is further found that the mean velocity profile measured in the laboratory frame can now be brought into coincidence with the theoretical Blasius laminar BL profile, if it is resampled relative to the time-dependent frame of $\\delta_v(t)$.

  1. Water-side oxide layer thickness measurement of the irradiated PWR fuel rod by NDT method

    International Nuclear Information System (INIS)

    It has been known that water-side corrosion of fuel rods in nuclear reactor is accompanied with the loss of metallic wall thickness and pickup of hydrogen. This corrosion is one of the important limiting factors in the operating life of fuel rods. In connection with the fuel cladding corrosion, a device to measure the water-side oxide layer thickness by means of the eddy-current method without destructing the fuel rod was developed by KAERI. The device was installed on the multi-function testing bench in the nondestructive test hot-cell and its calibration was carried out successfully for the standard rod attached with plastic thin films whose thicknesses are predetermined. It shows good precision within about 10% error. And a PWR fuel rod, one of the J-44 assembly discharged from Kori nuclear power plant Unit-2, has been selected for oxide layer thickness measurements. With the result of data analysis, it appeared that the oxide layer thicknesses of Zircaloy cladding vary with the length of the fuel rod, and their thicknesses were compared with those of the destructive test results to confirm the real thicknesses

  2. Retinal nerve fibre layer thickness measurements in normal Indian population by optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Ramakrishnan R

    2006-01-01

    Full Text Available Purpose: To obtain retinal nerve fibre layer thickness measurements by optical coherence tomography (OCT in normal Indian population. Materials and Methods: Total of 118 randomly selected eyes of 118 normal Indian subjects of both sex and various age groups underwent retinal nerve fiber layer thickness analysis by Stratus OCT 3000 V 4.0.1. The results were evaluated and compared to determine the normal retinal nerve fiber layer thickness measurements and its variations with sex and age. Results: Mean + standard deviation retinal nerve fiber layer thickness for various quadrants of superior, inferior, nasal, temporal, and along the entire circumference around the optic nerve head were 138.2 + 21.74, 129.1 + 25.67, 85.71 + 21, 66.38 + 17.37, and 104.8 + 38.81 µm, respectively. There was no significant difference in the measurements between males and females, and no significant correlation with respect to age. Conclusion: Our results provide the normal retinal nerve fiber layer thickness measurements and its variations with age and sex in Indian population.

  3. DETERMINING THE INFLUENCE OF LAYER THICKNESS FOR RAPID PROTOTYPING WITH STEREOLITHOGRAPHY (SLA PROCESS

    Directory of Open Access Journals (Sweden)

    Raju.B.S,

    2010-07-01

    Full Text Available Stereolithography is a Rapid prototyping technique, which allows direct transformation of CAD files into epoxy resin parts for building the physical models, these are built from photo-curable thermosetting resins. Part quality in the Stereolithography process is a function of the build parameters such as hatch cure depth, layer thickness, orientation and hatch file. This paper attempts to identify and study the various process parameters governing thestereolithography system, specifically the influence of layer thickness related to the part characteristics. The part characteristics can be divided into part physical characteristics and mechanical characteristics. The part physical characteristics are surface finish, dimensional accuracy and distortion where as mechanical characteristics are flexural property, ultimate tensile strength and impact strength. Thus paper proposes to study the influence of the layer thickness (build parameters over the part quality. The study is conducted on the test samples of SL 5530, which were built on SLA5000 machine, under different sets of process parameters and tested under ASTM specified test conditions. The results have been analyzed to achieve an optimal layer at which the mechanical properties are high with minimum dimensional instability, which is found to be 100 micron layer thickness. To obtain an optimallayer thickness for the SLA parts is the end result of the paper.

  4. A study of the effect of a boundary layer profile on the dynamic response and acoustic radiation of flat panels. Ph.D. Thesis - Virginia Univ.

    Science.gov (United States)

    Mixson, J. S.

    1973-01-01

    The response of a thin, elastic plate to a harmonic force which drives the plate from below and a compressible air stream with a viscous boundary layer flowing parallel to the upper surface along the length was investigated. Equations governing the forced response of the coupled plate-aerodynamic system are derived along with appropriate boundary conditions. Calculations of basic solution parameters for a linear velocity profile and for a Blasius profile showed that the same system response could be obtained from each profile if appropriate values of boundary layer thickness were chosen for each profile.

  5. Thick growing multilayer nanobrick wall thin films: super gas barrier with very few layers.

    Science.gov (United States)

    Guin, Tyler; Krecker, Michelle; Hagen, David Austin; Grunlan, Jaime C

    2014-06-24

    Recent work with multilayer nanocoatings composed of polyelectrolytes and clay has demonstrated the ability to prepare super gas barrier layers from water that rival inorganic CVD-based films (e.g., SiOx). In an effort to reduce the number of layers required to achieve a very low oxygen transmission rate (OTR (layer-by-layer (LbL) assembly. Buffering the chitosan solution and its rinse with 50 mM Trizma base increased the thickness of these films by an order of magnitude. The OTR of a 1.6-μm-thick, six-bilayer film was 0.009 cc/m(2)·day·atm, making this the best gas barrier reported for such a small number of layers. This simple modification to the LbL process could likely be applied more universally to produce films with the desired properties much more quickly.

  6. The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, Callum [Monash University, Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Victoria (Australia); Ecole Centrale de Lille, Bd Paul Langevin, Laboratoire de Mecanique de Lille (UMR CNRS 8107), Villeneuve d' Ascq cedex (France); Coudert, Sebastien; Foucaut, Jean-Marc; Stanislas, Michel [Ecole Centrale de Lille, Bd Paul Langevin, Laboratoire de Mecanique de Lille (UMR CNRS 8107), Villeneuve d' Ascq cedex (France); Soria, Julio [Monash University, Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Victoria (Australia)

    2011-04-15

    To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Re{sub {theta}} = 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume ''fat'' light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV. (orig.)

  7. Influence of growth rate and V/III ratio on the critical layer thickness for relaxation of thick MOVPE grown InGaN layers

    International Nuclear Information System (INIS)

    To improve the quality of InGaN light emitting diodes and laser diodes InGaN was grown on GaN templates with metal-organic vapour phase epitaxy (MOVPE). Two processes occur, depending on the growth parameters. First a 2D to 3D transition is seen. Depending on the indium content and the size of Quantum dots (QD) the InGaN layer decomposes lateral. For higher indium content the layer is rather homogeneous and reaches its critical thickness for relaxation. We studied systematically the influence of the InGaN growth rates at temperatures between 700 C and 850 C. Additionally the V/III ratio was varied from 2000 to 7000 to investigate the influence of surface kinetics and chemistry on homogeneity and the critical layer thickness. Growth rates and the onset of relaxation are analysed with in-situ spectroscopic ellipsometry. Layer quality and strain state are measured ex-situ with X-ray diffraction.

  8. Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without SparkJet control

    Directory of Open Access Journals (Sweden)

    Yang Guang

    2016-06-01

    Full Text Available The efficiency and mechanism of an active control device “SparkJet” and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The numerical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were systematically validated against the available wind tunnel particle image velocimetry (PIV measurements of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator “SparkJet” was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resistant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted.

  9. Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without SparkJet control

    Institute of Scientific and Technical Information of China (English)

    Yang Guang; Yao Yufeng; Fang Jian; Gan Tian; Li Qiushi; Lu Lipeng

    2016-01-01

    The efficiency and mechanism of an active control device‘‘SparkJet”and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8? wedge and a spatially-developing Ma=2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The numerical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were sys-tematically validated against the available wind tunnel particle image velocimetry (PIV) measure-ments of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator ‘‘SparkJet” was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resis-tant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35%with control exerted.

  10. Effect of thickness variation of bituminous layer in the structural responses of flexible pavements

    Directory of Open Access Journals (Sweden)

    Juliana Pavan Vidotto

    2014-05-01

    Full Text Available In this work, a sensitivity analysis was performed to investigate the effect of thickness variation of bituminous layer in the structural responses of flexible pavements and, therefore in performance. For this, it used traffic data from a weigh station located at Km 28 of the Immigrants Highway, at state of Sao Paulo, whose data collection was realized in 2008. The loads deriving from traffic were applied to the computational program ELSYM5 to obtain structural responses related to damage such as fatigue cracks and rutting. With these values, the damage factors were calculated and then the sensitivity analysis related to the thickness variation of bituminous layer was performed. Through the obtained results was concluded that the variation of thickness of bituminous layer have an influence on structural responses, and that damage factors related to fatigue cracks were more sensitive than those factors related to rutting.

  11. Method for HVPE growth of thick crack-free GaN layers

    Science.gov (United States)

    Dam, C. E. C.; Grzegorczyk, A. P.; Hageman, P. R.; Larsen, P. K.

    2006-05-01

    Twenty-five micrometer thick GaN was grown with hydride vapor phase epitaxy (HVPE) on metal-organic chemical vapor deposition (MOCVD) grown templates on sapphire substrates with the gallium treatment step (GTS) technique with varying buffer layer thickness. The samples are studied with atomic force microscopy (AFM), etching and scanning electron microscopy (SEM), photo-luminescence (PL), X-ray diffraction (XRD) and optical microscopy. The results show that the thickness of the buffer layer is not important for the layer quality once the growth in MOCVD starts to make the transition from 3D growth to 2D growth and HVPE continues in the same growth mode. We show that the MOCVD templates with GTS technique make excellent templates for HVPE growth, allowing growth of 100-300 μm GaN without cracks in either sapphire or GaN.

  12. Effect of electrolyte temperature on the thickness of anodic aluminium oxide (AAO layer

    Directory of Open Access Journals (Sweden)

    P. Michal

    2016-07-01

    Full Text Available Effect of electrolyte temperature on the thickness of resulting oxide layer has been studied. Unlike previous published studies this article was aimed to monitor the relationship between electrolyte temperature and resulting AAO layer thickness in interaction with other input factors affecting during anodizing process under special process condition, i.e. lower concentration of sulphuric acid, oxalic acid, boric acid and sodium chloride. According to Design of Experiments (DOE 80 individual test runs of experiment were carried out. Using statistical analysis and artificial intelligence for evaluation, the computational model predicting the thickness of oxide layer in the range from 5 / μm to 15 / μm with tolerance ± 0,5 / μm was developed.

  13. Measurement of the dead layer thickness in a p-type point contact germanium detector

    Science.gov (United States)

    Jiang, Hao; Yue, Qian; Li, Yu-Lan; Kang, Ke-Jun; Li, Yuan-Jing; Li, Jin; Lin, Shin-Ted; Liu, Shu-Kui; Ma, Hao; Ma, Jing-Lu; Su, Jian; Tsz-King Wong, Henry; Yang, Li-Tao; Zhao, Wei; Zeng, Zhi

    2016-09-01

    A 994 g mass p-type PCGe detector has been deployed during the first phase of the China Dark matter EXperiment, aiming at direct searches for light weakly interacting massive particles. Measuring the thickness of the dead layer of a p-type germanium detector is an issue of major importance since it determines the fiducial mass of the detector. This work reports a method using an uncollimated 133Ba source to determine the dead layer thickness. The experimental design, data analysis and Monte Carlo simulation processes, as well as the statistical and systematic uncertainties are described. A dead layer thickness of 1.02 mm was obtained based on a comparison between the experimental data and the simulated results. Supported by National Natural Science Foundation of China (10935005, 10945002, 11275107, 11175099)

  14. Effect of Polymer Inclusion in Preparation of Thick LZO Buffer Layers for YBCO Coated Conductors

    Institute of Scientific and Technical Information of China (English)

    Vyshnavi Narayanan; Isabel Van Driessche

    2013-01-01

    In this work,water-based precursor solutions suitable for dip-coating of thick La2Zr2O7 (LZO) buffer layers for coated conductors on Ni-5%W substrates with an inclusion of polymeric polyvinyl pyrrolidone were developed.The effect of varying percentage of the polymer addition on the preparation of the deposited films with maximum crack-free thickness was investigated.This novel water-based chemical solution deposition method involving polymers in two different chelate-chemistry compositions revealed the possibility to grow single,crack-free layers with thicknesses ranging from 140 to 280 nm,with good crystallinity and epitaxial growth.The effect of increasing polymer concentrations on the morphology and the structure of the films was studied.The appropriate buffer layer action of the films in preventing Ni diffusion was studied by X-ray photoelectron spectroscopy.

  15. Effects of micro-ramps on a shock wave/turbulent boundary layer interaction

    NARCIS (Netherlands)

    Blinde, P.L.; Humble, R.A.; Van Oudheusden, B.W.; Scarano, F.

    2009-01-01

    Stereoscopic particle image velocimetry is used to investigate the effects of micro-ramp sub-boundary layer vortex generators, on an incident shock wave/boundary layer interaction at Mach 1.84. Single- and double-row arrangements of micro-ramps are considered. The micro-ramps have a height of 20% of

  16. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution

    NARCIS (Netherlands)

    Janssen, R.H.H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.N.; Kabat, P.; Jimenez, J.L.; Farmer, D.K.; Heerwaarden, van C.C.; Mammarella, I.

    2012-01-01

    We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the mod

  17. Experimental study of the boundary layer over an airfoil in plunging motion

    Science.gov (United States)

    Marzabadi, F. Rasi; Soltani, M. R.

    2012-04-01

    This is an experimental study on the boundary layer over an airfoil under steady and unsteady conditions. It specifically deals with the effect of plunging oscillation on the laminar/turbulent characteristics of the boundary layer. The wind tunnel measurements involved surfacemounted hot-film sensors and boundary-layer rake. The experiments were conducted at Reynolds numbers of 0.42×106 to 0.84 × 106 and the reduced frequency was varied from 0.01 to 0.11. The results of the quasi-wall-shear stress as well as the boundary layer velocity profiles provided important information about the state of the boundary layer over the suction surface of the airfoil in both static and dynamic cases. For the static tests, boundary layer transition occurred through a laminar separation bubble. By increasing the angle of attack, disturbances and the transition location moved toward the leading edge. For the dynamic tests, earlier transition occurred with increasing rather than decreasing effective angle of attack. The mean angle of attack and the oscillating parameters significantly affected the state of the boundary layer. By increasing the reduced frequency, the boundary layer transition was promoted to the upstroke portion of the equivalent angle of attack, but the quasi skin friction coefficient was decreased.

  18. The Boundary Layer Late Afternoon and Sunset Turbulence 2011 field experiment

    NARCIS (Netherlands)

    Lothon, M.; Lohou, F.; Durand, P.; Couvreux, F.; Hartogensis, O.K.; Legain, D.; Pardyjak, E.; Pino, D.; Vilà-Guerau de Arellano, J.; Boer, van de A.; Moene, A.F.; Steeneveld, G.J.

    2012-01-01

    BLLAST (Boundary Layer Late Afternoon and Sunset Turbulence) aims at better understanding the thermodynamical processes that occur during the late afternoon in the lower troposphere. In direct contact with the Earth surface, the atmospheric boundary layer is governed by buoyant and mechanical turbul

  19. RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Schløer, Signe; Sterner, Johanna

    2013-01-01

    of a number of local factors important within cross-shore wave boundary layer and sediment transport dynamics. The hydrodynamic model is validated for both hydraulically smooth and rough conditions, based on wave friction factor diagrams and boundary layer streaming profiles, with the results in excellent...

  20. Role of land-surface temperature feedback on model performance for the stable boundary layer

    NARCIS (Netherlands)

    Holtslag, A.A.M.; Steeneveld, G.J.; Wiel, van de B.J.H.

    2007-01-01

    At present a variety of boundary-layer schemes is in use in numerical models and often a large variation of model results is found. This is clear from model intercomparisons, such as organized within the GEWEX Atmospheric Boundary Layer Study (GABLS). In this paper we analyze how the specification o

  1. Experimental study of the boundary layer over an airfoil in plunging motion

    Institute of Scientific and Technical Information of China (English)

    F. Rasi Marzabadi; M. R. Soltani

    2012-01-01

    This is an experimental study on the boundary layer over an airfoil under steady and unsteady conditions.It specifically deals with the effect of plunging oscillation on the laminar/turbulent characteristics of the boundary layer.The wind tunnel measurements involved surfacemounted hot-film sensors and boundary-layer rake.The experiments were conducted at Reynolds numbers of 0.42 × 106 to 0.84 × 106 and the reduced frequency was varied from 0.01 to 0.1 1.The results of the quasi-wall-shear stress as well as the boundary layer velocity profiles provided important information about the state of the boundary layer over the suction surface of the airfoil in both static and dynamic cases.For the static tests,boundary layer transition occurred through a laminar separation bubble.By increasing the angle of attack,disturbances and the transition location moved toward the leading edge.For the dynamic tests,earlier transition occurred with increasing rather than decreasing effective angle of attack.The mean angle of attack and the oscillating parameters significantly affected the state of the boundary layer.By increasing the reduced frequency,the boundary layer transition was promoted to the upstroke portion of the equivalent angle of attack,but the quasi skin friction coefficient was decreased.

  2. On the Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers

    DEFF Research Database (Denmark)

    Baklanov, Alexander A.; Grisogono, Branko; Bornstein, Robert;

    2011-01-01

    The gap between our modern understanding of planetary boundary layer physics and its decades-old representations in current operational atmospheric models is widening, which has stimulated this review of the current state of the art and an analysis of the immediate needs in boundary layer theory......, measurements, and modeling....

  3. Implementation of a boundary layer heat flux parameterization into the Regional Atmospheric Modeling System (RAMS

    Directory of Open Access Journals (Sweden)

    E. L. McGrath-Spangler

    2008-07-01

    Full Text Available The response of atmospheric carbon dioxide to a given amount of surface flux is inversely proportional to the depth of the boundary layer. Overshooting thermals that entrain free tropospheric air down into the boundary layer modify the characteristics and depth of the lower layer through the insertion of energy and mass. This alters the surface energy budget by changing the Bowen ratio and thereby altering the vegetative response and the surface boundary conditions. Although overshooting thermals are important in the physical world, their effects are unresolved in most regional models. A parameterization to include the effects of boundary layer entrainment was introduced into a coupled ecosystem-atmosphere model (SiB-RAMS. The parameterization is based on a downward heat flux at the top of the boundary layer that is proportional to the heat flux at the surface. Results with the parameterization show that the boundary layer simulated is deeper, warmer, and drier than when the parameterization is turned off. These results alter the vegetative stress factors thereby changing the carbon flux from the surface. The combination of this and the deeper boundary layer change the concentration of carbon dioxide in the boundary layer.

  4. Application of Viscothermal Wave Propagation Theory for Reduction of Boundary Layer Induced Noise

    NARCIS (Netherlands)

    Wijnant, Y.H.; Hannink, M.H.C.; Boer, de A.

    2003-01-01

    Boundary layer induced noise, i.e. noise inside the aircraft resulting from the turbulent boundary layer enclosing the fuselage, is known to dominate air-cabin noise at cruise conditions. In this paper a method is described to design trim panels containing a large number of coupled tubes to effectiv

  5. Ozone in the Atlantic Ocean marine boundary layer

    Directory of Open Access Journals (Sweden)

    Patrick Boylan

    2015-04-01

    Full Text Available Abstract In situ atmospheric ozone measurements aboard the R/V Ronald H. Brown during the 2008 Gas-Ex and AMMA research cruises were compared with data from four island and coastal Global Atmospheric Watch stations in the Atlantic Ocean to examine ozone transport in the marine boundary layer (MBL. Ozone measurements made at Tudor Hill, Bermuda, were subjected to continental outflow from the east coast of the United States, which resulted in elevated ozone levels above 50 ppbv. Ozone measurements at Cape Verde, Republic of Cape Verde, approached 40 ppbv in springtime and were influenced by outflow from Northern Africa. At Ragged Point, Barbados, ozone levels were ∼ 21 ppbv; back trajectories showed the source region to be the middle of the Atlantic Ocean. Ozone measurements from Ushuaia, Argentina, indicated influence from the nearby city; however, the comparison of the daily maxima ozone mole fractions measured at Ushuaia and aboard the Gas-Ex cruise revealed that these were representative of background ozone in higher latitudes of the Southern Hemisphere. Diurnal ozone cycles in the shipborne data, frequently reaching 6–7 ppbv, were larger than most previous reports from coastal or island monitoring locations and simulations based on HOx photochemistry alone. However, these data show better agreement with recent ozone modeling that included ozone-halogen chemistry. The transport time between station and ship was estimated from HYSPLIT back trajectories, and the change of ozone mole fractions during transport in the MBL was estimated. Three comparisons showed declining ozone levels; in the subtropical and tropical North Atlantic Ocean the loss of ozone was < 1.5 ppbv day−1. Back trajectories at Ushuaia were too inconsistent to allow for this determination. Comparisons between ship and station measurements showed that ozone behavior and large-scale (∼ 1000 km multi-day transport features were well retained during transport in the MBL.

  6. The Coupling State of an Idealized Stable Boundary Layer

    Science.gov (United States)

    Acevedo, Otávio C.; Costa, Felipe D.; Degrazia, Gervásio A.

    2012-10-01

    The coupling state between the surface and the top of the stable boundary layer (SBL) is investigated using four different schemes to represent the turbulent exchange. An idealized SBL is assumed, with fixed wind speed and temperature at its top. At the surface, two cases are considered, first a constant temperature, 20 K lower than the SBL top, and later a constant 2 K h-1 cooling rate is assumed for 10 h after a neutral initial condition. The idealized conditions have been chosen to isolate the influence of the turbulence formulations on the coupling state, and the intense stratification has the purpose of enhancing such a response. The formulations compared are those that solve a prognostic equation for turbulent kinetic energy (TKE) and those that directly prescribe turbulence intensity as a function of atmospheric stability. Two TKE formulations are considered, with and without a dependence of the exchange coefficients on stability, while short and long tail stability functions (SFs) are also compared. In each case, the dependence on the wind speed at the SBL top is considered and it is shown that, for all formulations, the SBL experiences a transition from a decoupled state to a coupled state at an intermediate value of mechanical forcing. The vertical profiles of potential temperature, wind speed and turbulence intensity are shown as a function of the wind speed at the SBL top, both for the decoupled and coupled states. The formulation influence on the coupling state is analyzed and it is concluded that, in general, the simple TKE formulation has a better response, although it also tends to overestimate turbulent mixing. The consequences are discussed.

  7. The hub wall boundary layer development and losses in an axial flow compressor rotor passage

    Science.gov (United States)

    Murthy, K. N. S.; Lakshminarayana, B.

    1987-02-01

    The hub wall boundary layer development in a compressor stage including the rotor passage is experimentally investigated. A miniature five-hole probe was employed to measure the hub wall boundary layer inside the inlet guide vane passage, upstream and far downstream of the rotor. The hub wall boundary layer inside the rotor passage was acquired using a rotating miniature five-hole probe. The boundary layer is well behaved upstream and far downstream of the rotor. The migration of the hub wall boundary layer towards the suction surface corner is observed. The limiting streamline angles and static pressure distribution across the stage were also measured. The mean velocity profiles and the integral properties upstream, inside and downstream of the rotor, and the losses are presented and interpreted.

  8. Boundary-layer phenomena for the cylindrically symmetric Navier–Stokes equations of compressible heat-conducting fluids with large data at vanishing shear viscosity

    Science.gov (United States)

    Ye, Xia; Zhang, Jianwen

    2016-08-01

    This paper concerns the asymptotic behavior of the solution to an initial-boundary value problem of the cylindrically symmetric Navier–Stokes equations with large data for compressible heat-conducting ideal fluids, as the shear viscosity μ goes to zero. A suitable corrector function (the so-called boundary-layer type function) is constructed to eliminate the disparity of boundary values. As by-products, the convergence rates of the derivatives in L 2 are obtained and the boundary-layer thickness (BL-thickness) of the value O≤ft({μα}\\right) with α \\in ≤ft(0,1/2\\right) is shown by an alternative method, compared with the results proved in Jiang and Zhang (2009 SIAM J. Math. Anal. 41 237–68) and Qin et al (2015 Arch. Ration. Mech. Anal. 216 1049–86).

  9. Picard iterations of boundary-layer equations. [in singular-perturbation analysis of flightpath optimization problems

    Science.gov (United States)

    Ardema, M. D.; Yang, L.

    1985-01-01

    A method of solving the boundary-layer equations that arise in singular-perturbation analysis of flightpath optimization problems is presented. The method is based on Picard iterations of the integrated form of the equations and does not require iteration to find unknown boundary conditions. As an example, the method is used to develop a solution algorithm for the zero-order boundary-layer equations of the aircraft minimum-time-to-climb problem.

  10. Thickness measurements of zircaloy fuel cladding tube having the surface oxide layer by ultrasonic signal processing

    International Nuclear Information System (INIS)

    The purpose of this study is to develop an ultrasonic method for measuring the actual thickness of zircaloy-2 alloy tube with the thin surface oxide layer using a high frequency broadband focused transducer which can produce a short-duration echo. The main algorithm of signal processing technique for thickness measurements deals with the problem for separating of echoes very close to each other and calculating of the propagation time between these two echoes by using the cross-correlation method. A computer-implemented ultrasonic method based on this algorithm was established in this study. The results of thickness measurement in metal-wall of zircaloy tubes which were artificially plasma-sprayed with ZrO2 were presented. The comparison of ultrasonically measured thickness with the metallographically determined ones showed that the proposed method has a reasonable accuracy for the measurements of actual thin metal-wall thickness in the oxided zircaloy tubes. (author)

  11. Process analysis of characteristics of the boundary layer during a heavy haze pollution episode in an inland megacity, China.

    Science.gov (United States)

    Wang, Shan; Liao, Tingting; Wang, Lili; Sun, Yang

    2016-02-01

    Ground observation data from 8 meteorological stations in Xi'an, air mass concentration data from 13 environmental quality monitoring sites in Xi'an, as well as radiosonde observation and wind profile radar data, were used in this study. Thereby, the process, causes and boundary layer meteorological characteristics of a heavy haze episode occurring from 16 to 25 December 2013 in Xi'an were analyzed. Principal component analysis showed that this haze pollution was mainly caused by the high-intensity emission and formation of gaseous pollutants (NO2, CO and SO2) and atmospheric particles (PM2.5 (fine particles) and PM10 (respirable suspended particle). The second cause was the relative humidity and continuous low temperature. The third cause was the allocation of the surface pressure field. The presence of a near-surface temperature inversion at the boundary layer formed favorable stratification conditions for the formation and maintenance of heavy haze pollution. The persistent thick haze layer weakened the solar radiation. Meanwhile, a warming effect in the urban canopy layer and in the transition zone from the urban friction sublayer to the urban canopy was indicated. All these conditions facilitated the maintenance and reinforcement of temperature inversion. The stable atmospheric stratification finally acted on the wind field in the boundary layer, and further weakened the exchange capacity of vertical turbulence. The superposition of a wind field with the horizontal gentle wind induced the typical air stagnation and finally caused the deterioration of air quality during this haze event. PMID:26969553

  12. Process analysis of characteristics of the boundary layer during a heavy haze pollution episode in an inland megacity, China.

    Science.gov (United States)

    Wang, Shan; Liao, Tingting; Wang, Lili; Sun, Yang

    2016-02-01

    Ground observation data from 8 meteorological stations in Xi'an, air mass concentration data from 13 environmental quality monitoring sites in Xi'an, as well as radiosonde observation and wind profile radar data, were used in this study. Thereby, the process, causes and boundary layer meteorological characteristics of a heavy haze episode occurring from 16 to 25 December 2013 in Xi'an were analyzed. Principal component analysis showed that this haze pollution was mainly caused by the high-intensity emission and formation of gaseous pollutants (NO2, CO and SO2) and atmospheric particles (PM2.5 (fine particles) and PM10 (respirable suspended particle). The second cause was the relative humidity and continuous low temperature. The third cause was the allocation of the surface pressure field. The presence of a near-surface temperature inversion at the boundary layer formed favorable stratification conditions for the formation and maintenance of heavy haze pollution. The persistent thick haze layer weakened the solar radiation. Meanwhile, a warming effect in the urban canopy layer and in the transition zone from the urban friction sublayer to the urban canopy was indicated. All these conditions facilitated the maintenance and reinforcement of temperature inversion. The stable atmospheric stratification finally acted on the wind field in the boundary layer, and further weakened the exchange capacity of vertical turbulence. The superposition of a wind field with the horizontal gentle wind induced the typical air stagnation and finally caused the deterioration of air quality during this haze event.

  13. Simulation of High Re Boundary Layer Flows on Uniform Grids Using Immersed Boundaries with Vorticity Confinement

    Science.gov (United States)

    Chitta, Subhashini; Steinhoff, John

    2015-11-01

    This paper describes the use of Vorticity Confinement (VC) to efficiently treat complex blunt bodies with thin shed vortex sheets and attached boundary layers. Because these flows involve turbulence in the vortical regions, there is currently no ab initio method to treat them on current or foreseeable computers. In fact, in spite of years of turbulence modeling efforts (such as LES or RANS), serious flaws in aerodynamic design involving vortex shedding may still be left undetected until the expensive prototype or production stage. Our basic premise is that, for a class of real-world problems requiring simulating ensembles of flow conditions for overall accuracy, conventional turbulence models suffer cost constraints. For these reasons, VC is used to rapidly simulate many operating conditions, as is often done in expensive testing programs for flying prototypes, and in realistic simulations. To achieve dramatically lower computational cost, VC treats the entire flow in a uniform, coarse grid with solid surfaces ``immersed'' in the grid so that they can be quickly generated for many configurations with no requirement for adaptive or conforming fine grids. Also, the VC method has the efficiency of panel methods, but the generality and ease of use of Euler equation methods. We would like to thank Dr. Frank Caradonna for his suggestions and support.

  14. Direct anodic growth of thick WO3 mesosponge layers and characterization of their photoelectrochemical response

    International Nuclear Information System (INIS)

    Thick mesoporous tungsten oxide (WO3) layers can be formed by anodization of tungsten in a 10 wt% K2HPO4/glycerol electrolyte, if the electrolyte temperature is around 80-100 oC. At 90 oC, a regular mesoporous WO3 layer was grown up to a thickness of approximately 9 μm. This WO3 mesosponge layer consists of typical feature sizes of 20-30 nm and pore widths of 10-30 nm. The photoresponse of different layer thicknesses and different annealing treatments was characterized in a photoelectrochemical cell. The highest photocurrents were observed with a 2.5 μm thick WO3 layer annealed at 550 oC consisting of a mixture of orthorhombic, triclinic and monoclinic phases. Incident photon to current efficiencies (IPCEs) of the samples were 73.4% in a 1 M HClO4 electrolyte and 167.5% for methanol photo-oxidation in 0.1 M CH3OH/1 M HClO4 electrolyte, at 1 V vs. Ag/AgCl under illumination at a wavelength of 420 nm.

  15. Fuel decomposition and boundary-layer combustion processes of hybrid rocket motors

    Science.gov (United States)

    Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.

    1995-01-01

    Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with GOX under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from +/-20% of the localized mean pressure to an acceptable range of +/-1.5% Embedded fine-wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading-edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse-echo techniques were used to determine the instantaneous web thickness burned and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented.

  16. Laser generated guided waves and finite element modeling for the thickness gauging of thin layers

    International Nuclear Information System (INIS)

    In this paper, nondestructive testing has been performed on a thin gold layer deposited on a 2 in. silicon wafer. Guided waves were generated and studied using a laser ultrasonic setup and a two-dimensional fast Fourier transform technique was employed to obtain the dispersion curves. A gold layer thickness of 1.33 μm has been determined with a ±5% margin of error using the shape of the two first propagating modes, assuming for the substrate and the layer an uncertainty on the elastic parameters of ±2.5%. A finite element model has been implemented to validate the data post-treatment and the experimental results. A good agreement between the numerical simulation, the analytical modeling and the experimentations has been observed. This method was considered suitable for thickness layer higher than 0.7 μm.

  17. Micrometer-Thick Graphene Oxide-Layered Double Hydroxide Nacre-Inspired Coatings and Their Properties.

    Science.gov (United States)

    Yan, You-Xian; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2016-02-10

    Robust, functional, and flame retardant coatings are attractive in various fields such as building construction, food packaging, electronics encapsulation, and so on. Here, strong, colorful, and fire-retardant micrometer-thick hybrid coatings are reported, which can be constructed via an enhanced layer-by-layer assembly of graphene oxide (GO) nanosheets and layered double hydroxide (LDH) nanoplatelets. The fabricated GO-LDH hybrid coatings show uniform nacre-like layered structures that endow them good mechanic properties with Young's modulus of ≈ 18 GPa and hardness of ≈ 0.68 GPa. In addition, the GO-LDH hybrid coatings exhibit nacre-like iridescence and attractive flame retardancy as well due to their well-defined 2D microstructures. This kind of nacre-inspired GO-LDH hybrid thick coatings will be applied in various fields in future due to their high strength and multifunctionalities.

  18. Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron

    OpenAIRE

    Srikanth eRamaswamy; Henry eMarkram

    2015-01-01

    The thick-tufted layer 5 (TTL5) pyramidal neuron is one of the most extensively studied neuron types in the mammalian neocortex and has become a benchmark for understanding information processing in excitatory neurons. By virtue of having the widest local axonal and dendritic arborization, the TTL5 neuron encompasses various local neocortical neurons and thereby defines the dimensions of neocortical microcircuitry. The TTL5 neuron integrates input across all neocortical layers and is the prin...

  19. The Study of Retinal Nerve Fiber Layer Thickness of Normal Eyes Using Scanning Laser Polarimetry

    Institute of Scientific and Technical Information of China (English)

    Xing Liu; Jingjing Huang; Jian Ge; Yunlan Ling; Xiaoping Zheng

    2006-01-01

    Purpoe: To evaluate retinal nerve fiber layer (RNFL) thickness measurements in local normal Chinese subjects of different age groups and analyse the correlation of RNFL thickness with age using scanning laser polarimetry (SLP, GDxVCC). To assess the reproducibility of RNFL thickness measurement with GDxVCC.Methods: The RNFL thickness of 67 normal subjects (123 eyes) were measured by GDxVCC. The average TSNIT parameters were calculated. The differences of RNFL thickness between sex, right and left eyes, superior and inferior were compared. The relationship between RNFL thickness and age was analyzed with correlation analysis and linear regression analysis. The intraclass correlation coefficients (ICC) of three images in every eye were calculated.Results: The average peripapillary RNFL thickness at the superior, inferior and whole ellipse regions in 123 eyes of 67 normal subjects were (70.30±6.76)μm, (67.35±6.77) μm and (56.87±4.53) μm, respectively. The average TNSIT standard deviation was 23.68±4.61 and the average inter-eye symmetric value was 0.86±0.11. There were significant difference of RNFL thickness between superior and inferior (t=4.952,P <0.001 ). There were significant difference of inferior RNFL thickness and TNSIT standard deviation between right and left eyes (P=0.005 and 0.002),while not significant difference of superior RNFL thickness and whole mean RNFL thickness between right and left eye (P=0.086 and 0.529). There was no significant difference in TSNIT parameters between different genders. There was a slight negative correlation average RNFL thickness in superior sector with age (decreased approximately 0.15 microns per year,P=0.047) in the subjects aged below 60 years old. The ICC values of RNFL thickness were >0.8 in superior, inferior and global.Conclusions: The RNFL thickness can be measured accurately by GDxVCC and the reproducibility of RNFL thickness measurement by GDxVCC is good. There was a slight negative correlation between

  20. A Note on the bottom shear stress in oscillatory planetary boundary layer flow

    Directory of Open Access Journals (Sweden)

    Dag Myrhaug

    1988-07-01

    Full Text Available A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974 measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.

  1. The effect of magnetic layer thickness on magnetic properties of Fe/Cu multilayer nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Almasi-Kashi, M., E-mail: almac@kashanu.ac.ir [Department of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Ramazani, A. [Department of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Kheyri, F.; Jafari-Khamse, E. [Department of Physics, University of Kashan, Kashan (Iran, Islamic Republic of)

    2014-04-01

    Fe/Cu multilayer nanowires were ac-pulse electrodeposited into the anodic aluminum oxide templates prepared by a two-step mild anodization technique. Transmission electron microscopy images showed the distinct layers with a relatively high contrast. A highly pure layer (∼99%) was achieved by tuning the proper ions ratio and optimizing the off-time between pulses of each layer in the single electrodeposition bath. Fe/Cu multilayer nanowires with 38 nm diameter were obtained. The effect of reducing the Fe layer thickness on the magnetic properties of Fe/Cu multilayer nanowires was investigated. It was seen that reducing the Fe layer thickness, thereby variation of rode- to disc-like multilayer nanowires, caused to rotate the magnetic easy axis from parallel to perpendicular to the wires axis. - Highlights: • Changing off-time and ac voltage enables control in segments of multilayer nanowire. • As TEM images show thickness of alternative layers was adjustable by pulse numbers. • A new technique was introduced to grow compositionally-modulated multilayer nanowire. • Two distinct Fe and Cu diffraction peaks indicates formation of two distinct phases. • Identical coercivity in IP and OOP configurations ascribed vanishing shape anisotropy.

  2. Physiological variation of retinal layer thickness is not caused by hydration: a randomised trial.

    Science.gov (United States)

    Balk, Lisanne J; Oberwahrenbrock, Timm; Uitdehaag, Bernard M J; Petzold, Axel

    2014-09-15

    There is evidence for physiological variation of retinal thicknesses as determined by optical coherence tomography (OCT). We tested if such changes could be explained by hydration and would exceed what may be expected from normal ageing. Subjects (n=26) of a previous study were re-assessed and were randomised to 3 groups of a hydration escalation trial (no hydration, 1× hydration, 2× hydration). Automated retinal layer segmentations were performed for the macular retinal nerve fibre layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL) and outer nuclear layer (ONL). The averaged volumes were calculated for the central foveola, 3 mm and 6 mm circles of the ETDRS grid. Following oral hydration there were no significant differences of retinal layer thicknesses between the three randomised groups in any of the ETDRS regions at any time-point. Ageing related changes were significant over an 18 month period for the GCL. The negative outcome of this trial implies that, until the causes for the observed variation are resolved, investigators may need to accept, and include into trial power calculations, a small degree of variation (<1%) of quantitative SD-OCT imaging either due to human physiology or instrument/software related factors.

  3. Shipborne measurements of mercury in the marine boundary layer

    Science.gov (United States)

    Soerensen, A. L.; Skov, H.; Christensen, J.; Glasius, M.; Soerensen, B. T.; Steffen, A.; Jensen, B.; Christoffersen, C.; Madsen, H. W.; Johnson, M. S.

    2008-12-01

    Mercury accumulates in the human body, for example when consumed through fish and other aquatic animals. While it is poisonous to adults, only low doses are sufficient to cause severe effects in the development of foetuses where the source of mercury is through the mother's blood. From once being a problem restricted to certain populations, the negative effects of mercury consumption are becoming a global problem due to high anthropogenic emissions, long range transport in the atmosphere and bioaccumulation in the food chain after deposition. It is therefore important to understand the atmospheric photochemical pathways of mercury from source to sink. We have used a TEKRAN 2537A mercury vapor analyzer with a TEKRAN 1130 mercury speciation unit to measure gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) during an eight month circumnavigation of the Earth. This is the longest single track time series of mercury concentrations that we know of. This has offered the opportunity to give a global overview of the marine boundary layer (MBL) distribution of both GEM and RGM. Supplemented with earlier cruise measurements, we now have a broader knowledge of global GEM and RGM concentration in the MBL. The Galathea 3 cruise data offers new knowledge of the mechanisms causing the distribution patterns of GEM and RGM in the MBL. The first analysis of the Galathea 3 data indicates that measurements show a concentration difference between the northern and the southern hemispheres. In the northern hemisphere, the mean concentration in the free ocean is 2.06 ng/m3 and, including values down wind of Western Europe, an average value of 2.47 ng/m3 was found. Measurements in the southern hemisphere show a mean concentration of 1.24 ng/m3 and 1.57 ng/m3 where values close to the coast of West Africa are included. In contrast, the concentration levels of RGM are similar for the two hemispheres (northern hemisphere 3.40 pg/m3, southern hemisphere 3.95 pg/m3). Some

  4. Inorganic bromine in the marine boundary layer: a critical review

    Directory of Open Access Journals (Sweden)

    R. Sander

    2003-06-01

    Full Text Available The cycling of inorganic bromine in the marine boundary layer (mbl has received increased attention in recent years. Bromide, a constituent of sea water, is injected into the atmosphere in association with sea-salt aerosol by breaking waves on the ocean surface. Measurements reveal that supermicrometer sea-salt aerosol is depleted in bromine by about 50% relative to conservative tracers, whereas marine submicrometer aerosol is often enriched in bromine. Model calculations, laboratory studies, and field observations strongly suggest that these depletions reflect the chemical transformation of particulate bromide to reactive inorganic gases that influence the processing of ozone and other important constituents of marine air. However, currently available techniques cannot reliably quantify many chem{Br}-containing compounds at ambient concentrations and, consequently, our understanding of inorganic Br cycling over the oceans and its global significance are uncertain. To provide a more coherent framework for future research, we have reviewed measurements in marine aerosol, the gas phase, and in rain. We also summarize sources and sinks, as well as model and laboratory studies of chemical transformations. The focus is on inorganic bromine over the open oceans, excluding the polar regions. The generation of sea-salt aerosol at the ocean surface is the major tropospheric source producing about 6.2 Tg/a of bromide. The transport of  Br from continents (as mineral aerosol, and as products from biomass-burning and fossil-fuel combustion can be of local importance. Transport of degradation products of long-lived Br-containing compounds from the stratosphere and other sources contribute lesser amounts. Available evidence suggests that, following aerosol acidification, sea-salt bromide reacts to form Br2 and BrCl that volatilize to the gas phase and photolyze in daylight to produce atomic Br and Cl. Subsequent transformations can destroy

  5. Simultaneous profiling of the Arctic Atmospheric Boundary Layer

    Science.gov (United States)

    Mayer, S.; Jonassen, M.; Reuder, J.

    2009-09-01

    The structure of the Arctic atmospheric boundary layer (AABL) and the heat and moisture fluxes between relatively warm water and cold air above non-sea-ice-covered water (such as fjords, leads and polynyas) are of great importance for the sensitive Arctic climate system (e.g. Andreas and Cash, 1999). So far, such processes are not sufficiently resolved in numerical weather prediction (NWP) and climate models (e.g. Tjernström et al., 2005). Especially for regions with complex topography as the Svalbard mountains and fjords the state and diurnal evolution of the AABL is not well known yet. Knowledge can be gained by novel and flexible measurement techniques such as the use of an unmanned aerial vehicle (UAV). An UAV can perform vertical profiles as well as horizontal surveys of the mean meteorological parameters: temperature, relative humidity, pressure and wind. A corresponding UAV, called Small Unmanned Meteorological Observer (SUMO), has been developed at the Geophysical Institute at the University of Bergen in cooperation with Müller Engineering (www.pfump.org) and the Paparazzi Project (http://paparazzi.enac.fr). SUMO has been used under Arctic conditions at Longyear airport, Spitsbergen in March/April 2009. Besides vertical profiles up to 1500 m and horizontal surveys at flight levels of 100 and 200 m, SUMO could measure vertical profiles for the first time simultaneously in a horizontal distance of 1 km; one over the ice and snow-covered land surface and the other one above the open water of Isfjorden. This has been the first step of future multiple UAV operations in so called "swarms” or "flocks”. With this, corresponding measurements of the diurnal evolution of the AABL can be achieved with minimum technical efforts and costs. In addition, the Advanced Research Weather Forecasting model (AR-WRF version 3.1) has been run in high resolution (grid size: 1 km). First results of a sensitivity study where ABL schemes have been tested and compared with

  6. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

    KAUST Repository

    Cheng, W.

    2015-11-11

    © 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number Reθ based on the momentum boundary-layer thickness θ. Comparison with data from the first case at demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, Reθ, the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger Reθ = 11000 of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.

  7. Thickness Considerations of Two-Dimensional Layered Semiconductors for Transistor Applications.

    Science.gov (United States)

    Zhang, Youwei; Li, Hui; Wang, Haomin; Xie, Hong; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-01-01

    Layered two-dimensional semiconductors have attracted tremendous attention owing to their demonstrated excellent transistor switching characteristics with a large ratio of on-state to off-state current, Ion/Ioff. However, the depletion-mode nature of the transistors sets a limit on the thickness of the layered semiconductor films primarily determined by a given Ion/Ioff as an acceptable specification. Identifying the optimum thickness range is of significance for material synthesis and device fabrication. Here, we systematically investigate the thickness-dependent switching behavior of transistors with a wide thickness range of multilayer-MoS2 films. A difference in Ion/Ioff by several orders of magnitude is observed when the film thickness, t, approaches a critical depletion width. The decrease in Ion/Ioff is exponential for t between 20 nm and 100 nm, by a factor of 10 for each additional 10 nm. For t larger than 100 nm, Ion/Ioff approaches unity. Simulation using technical computer-aided tools established for silicon technology faithfully reproduces the experimentally determined scaling behavior of Ion/Ioff with t. This excellent agreement confirms that multilayer-MoS2 films can be approximated as a homogeneous semiconductor with high surface conductivity that tends to deteriorate Ion/Ioff. Our findings are helpful in guiding material synthesis and designing advanced field-effect transistors based on the layered semiconductors. PMID:27403803

  8. Thickness Considerations of Two-Dimensional Layered Semiconductors for Transistor Applications

    Science.gov (United States)

    Zhang, Youwei; Li, Hui; Wang, Haomin; Xie, Hong; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-07-01

    Layered two-dimensional semiconductors have attracted tremendous attention owing to their demonstrated excellent transistor switching characteristics with a large ratio of on-state to off-state current, Ion/Ioff. However, the depletion-mode nature of the transistors sets a limit on the thickness of the layered semiconductor films primarily determined by a given Ion/Ioff as an acceptable specification. Identifying the optimum thickness range is of significance for material synthesis and device fabrication. Here, we systematically investigate the thickness-dependent switching behavior of transistors with a wide thickness range of multilayer-MoS2 films. A difference in Ion/Ioff by several orders of magnitude is observed when the film thickness, t, approaches a critical depletion width. The decrease in Ion/Ioff is exponential for t between 20 nm and 100 nm, by a factor of 10 for each additional 10 nm. For t larger than 100 nm, Ion/Ioff approaches unity. Simulation using technical computer-aided tools established for silicon technology faithfully reproduces the experimentally determined scaling behavior of Ion/Ioff with t. This excellent agreement confirms that multilayer-MoS2 films can be approximated as a homogeneous semiconductor with high surface conductivity that tends to deteriorate Ion/Ioff. Our findings are helpful in guiding material synthesis and designing advanced field-effect transistors based on the layered semiconductors.

  9. Analysis of thick, non-planar boundaries using the discontinuity analyser

    Directory of Open Access Journals (Sweden)

    M. W. Dunlop

    Full Text Available The advent of missions comprised of phased arrays of spacecraft, with separation distances ranging down to at least mesoscales, provides the scientific community with an opportunity to accurately analyse the spatial and temporal dependencies of structures in space plasmas. Exploitation of the multi-point data sets, giving vastly more information than in previous missions, thereby allows unique study of their small-scale physics. It remains an outstanding problem, however, to understand in what way comparative information across spacecraft is best built into any analysis of the combined data. Different investigations appear to demand different methods of data co-ordination. Of the various multi-spacecraft data analysis techniques developed to affect this exploitation, the discontinuity analyser has been designed to investigate the macroscopic properties (topology and motion of boundaries, revealed by multi-spacecraft magnetometer data, where the possibility of at least mesoscale structure is considered. It has been found that the analysis of planar structures is more straightforward than the analysis of non-planar boundaries, where the effects of topology and motion become interwoven in the data, and we argue here that it becomes necessary to customise the analysis for non-planar events to the type of structure at hand. One issue central to the discontinuity analyser, for instance, is the calculation of normal vectors to the structure. In the case of planar and `thin' non-planar structures, the method of normal determination is well-defined, although subject to uncertainties arising from unwanted signatures. In the case of `thick', non-planar structures, however, the method of determination becomes particularly sensitive to the type of physical sampling that is present. It is the purpose of this article to firstly review the discontinuity analyser technique and secondly, to discuss the analysis of the normals to thick non

  10. Boundary-layer transition prediction using a simplified correlation-based model

    Institute of Scientific and Technical Information of China (English)

    Xia Chenchao; Chen Weifang

    2016-01-01

    This paper describes a simplified transition model based on the recently developed correlation-based c ? Reht transition model. The transport equation of transition momentum thick-ness Reynolds number is eliminated for simplicity, and new transition length function and critical Reynolds number correlation are proposed. The new model is implemented into an in-house com-putational fluid dynamics (CFD) code and validated for low and high-speed flow cases, including the zero pressure flat plate, airfoils, hypersonic flat plate and double wedge. Comparisons between the simulation results and experimental data show that the boundary-layer transition phenomena can be reasonably illustrated by the new model, which gives rise to significant improvements over the fully laminar and fully turbulent results. Moreover, the new model has comparable features of accuracy and applicability when compared with the original c ? Reht model. In the meantime, the newly proposed model takes only one transport equation of intermittency factor and requires fewer correlations, which simplifies the original model greatly. Further studies, especially on separation-induced transition flows, are required for the improvement of the new model.

  11. Indirect restorations for severe tooth wear: Fracture risk and layer thickness

    NARCIS (Netherlands)

    Hamburger, J.T.; Opdam, N.J.M.; Bronkhorst, E.M.; Huysmans, M.C.D.N.J.M.

    2014-01-01

    OBJECTIVES: This in vitro study investigated static failure risk related to restoration layer thickness for different indirect materials and compare them to direct composites. METHODS: Two ceramics (IPS e-max CAD, EmpressCAD (Ivoclar Vivadent)), two indirect composites (Estenia (Kuraray), Sinfony (3

  12. Quantification of the effect of oil layer thickness on entrainment of surface oil

    NARCIS (Netherlands)

    Zeinstra-Helfrich, M.; Koops, W.; Dijkstra, K.; Murk, A.J.

    2015-01-01

    This study quantifies the effect of oil layer thickness on entrainment and dispersion of oil into seawater, using a plunging jet with a camera system. In contrast to what is generally assumed, we revealed that for the low viscosity “surrogate MC252 oil” we used, entrainment rate is directly proporti

  13. Magnetic Behaviour of Tb/Si Nanoscale Multilayers with Small Thickness of Rare Earth Layers

    Institute of Scientific and Technical Information of China (English)

    A.V.Svalov; V.O.Vas'kovskiy; G.V.Kurlyandskaya; J.M.Barandiaran; N.N.Schegoleva; A.N.Sorokin

    2007-01-01

    We report the magnetic properties of Tb/Si multilayers obtained by rf-sputtering at the Tb layer thickness LTb = 3 nm. Analysis of the magnetization processes indicates more complex behaviour than canonical spin-glass transition. It is more probable that these multilayers contain both Tb superparamagnetic particles and Tb-Si spin-glass alloys.

  14. Retinal nerve fiber layer thickness is associated with lesion length in acute optic neuritis

    DEFF Research Database (Denmark)

    Kallenbach, K; Simonsen, Helle Juhl; Sander, B;

    2010-01-01

    included 41 patients with unilateral optic neuritis and 19 healthy volunteers. All patients were evaluated and examined within 28 days of onset of symptoms. The peripapillary retinal nerve fiber layer thickness (RNFLT), an objective quantitative measure of optic nerve head edema, was measured by optical...

  15. Accuracy of bone surface size and cortical layer thickness measurements using cone beam computerized tomography

    NARCIS (Netherlands)

    Gerlach, N.L.; Meijer, G.J.; Borstlap, W.A.; Bronkhorst, E.M.; Berge, S.J.; Maal, T.J.J.

    2013-01-01

    OBJECTIVES: The purpose of this study was to determine the accuracy of Cone Beam Computerized Tomography (CBCT) reconstructions in displaying bone surface size and cortical layer thickness. MATERIALS AND METHODS: Two fresh frozen cadaver heads were scanned using a CBCT (i-CAT() 3D Imaging System; Im

  16. Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface.

    Science.gov (United States)

    Brown, Matthew A; Goel, Alok; Abbas, Zareen

    2016-03-01

    The chemistry and physics of charged interfaces is regulated by the structure of the electrical double layer (EDL). Herein we quantify the average thickness of the Stern layer at the silica (SiO2 ) nanoparticle/aqueous electrolyte interface as a function of NaCl concentration following direct measurement of the nanoparticles' surface potential by X-ray photoelectron spectroscopy (XPS). We find the Stern layer compresses (becomes thinner) as the electrolyte concentration is increased. This finding provides a simple and intuitive picture of the EDL that explains the concurrent increase in surface charge density, but decrease in surface and zeta potentials, as the electrolyte concentration is increased. PMID:26880184

  17. Advances in Unsteady Boundary Layer Transition Research, Part I: Theory and Modeling

    Directory of Open Access Journals (Sweden)

    M. T. Schobeiri

    2003-01-01

    Full Text Available This two-part article presents recent advances in boundary layer research that deal with the unsteady boundary layer transition modeling and its validation. A new unsteady boundary layer transition model was developed based on a universal unsteady intermittency function. It accounts for the effects of periodic unsteady wake flow on the boundary layer transition. To establish the transition model, an inductive approach was implemented; the approach was based on the results of comprehensive experimental and theoretical studies of unsteady wake flow and unsteady boundary layer flow. The experiments were performed on a curved plate at a zero streamwise pressure gradient under a periodic unsteady wake flow, where the frequency of the periodic unsteady flow was varied. To validate the model, systematic experimental investigations were performed on the suction and pressure surfaces of turbine blades integrated into a high-subsonic cascade test facility, which was designed for unsteady boundary layer investigations. The analysis of the experiment's results and comparison with the model's prediction confirm the validity of the model and its ability to predict accurately the unsteady boundary layer transition.

  18. Effect of Pulsed Plasma Jets on the Recovering Boundary Layer Downstream of a Reflected Shock Interaction

    Science.gov (United States)

    Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus

    2015-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.

  19. Impacts of sea spray on the boundary layer structure of Typhoon Imbudo

    Institute of Scientific and Technical Information of China (English)

    TANG Jie; LI Weibiao; CHEN Shumin; WANG Lei

    2013-01-01

    High winds in a typhoon over the ocean can produce substantial amounts of spray in the lower part of the atmospheric boundary layer, which can modify the transfer of momentum, heat, and moisture across the air-sea interface. However, the consequent effects on the boundary layer structure and the evolution of the typhoon are largely unknown. The focus of this paper is on the role of sea spray on the storm intensity and the structure of the atmospheric boundary layer. The case study is Typhoon Imbudo in July 2003. The results show that sea spray tends to intensify storms by increasing the sea surface heat fluxes. Moreover, the effects of sea spray are mainly felt in boundary layer. Spray evaporation causes the atmospheric boundary layer to experience cooling and moistening. Sea spray can cause significant effects on the structure of boundary layer. The boundary-layer height over the eyewall area east to the center of Typhoon Imbudo was increased with a maximum up to about 550 m due to sea spray, which is closely related with the enhancements of the heat fluxes, upward motions, and horizontal winds in this region due to sea spray.

  20. Boundary layer correctors and generalized polarization tensor for periodic rough thin layers. A review for the conductivity problem

    Directory of Open Access Journals (Sweden)

    Poignard Clair

    2012-09-01

    Full Text Available We study the behaviour of the steady-state voltage potential in a material composed of a two-dimensional object surrounded by a rough thin layer and embedded in an ambient medium. The roughness of the layer is supposed to be εα–periodic, ε being the magnitude of the mean thickness of the layer, and α a positive parameter describing the degree of roughness. For ε tending to zero, we determine the appropriate boundary layer correctors which lead to approximate transmission conditions equivalent to the effect of the rough thin layer. We also provide an explicit characterization of the polarization tensor as defined by Capdeboscq and Vogelius in [9]. The present paper revisits the previous works of the author [11, 13, 16, 17], and it also provides new results for the very rough case α > 1. Dans cet article, nous considérons le problème de conduction dans un domaine bidimensionnel composé d’une fine membrane rugueuse entourant un domaine conducteur, le tout plongé dans un milieu ambiant de conductivité différente. La rugosité de la membrane est supposée εα–périodique, ε étant l’épaisseur moyenne de la membrane, et α un paramètre positif décrivant le degré de rugosité. Nous déterminons des correcteurs de couche limite conduisant à la construction de conditions de transmission approchées lorsque le paramètre ε tend vers zero. Nous donnons aussi une caractérisation explicite du tenseur de polarisation défini par Capdeboscq and Vogelius dans [9]. Cet article revisite des résultats précédents de l’auteur obtenus dans [11, 13, 16, 17], et présente de nouveaux résultats pour le cas très rugueux α > 1.