WorldWideScience

Sample records for boundary layer thickness

  1. Boundary layer thickness effect on boattail drag

    Science.gov (United States)

    Blaha, B. J.; Chamberlain, R.; Bober, L. J.

    1976-01-01

    A combined experimental and analytical program was conducted to investigate the effects of boundary layer changes on the flow over high angle boattail nozzles. The tests were run on an isolated axisymmetric sting mounted model. Various boattail geometries were investigated at high subsonic speeds over a range of boundary layer thicknesses. In general, boundary layer effects were small at speeds up to Mach 0.8. However, at higher speeds significant regions of separated flow were present on the boattail. When separation was present large reductions in boattail drag resulted with increasing boundary layer thickness. The analysis predicts both of these trends.

  2. Hydromagnetic free convection currents effects on boundary layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Kwanza, J.K., E-mail: kwanzakioko@yahoo.co [Department of Pure and Applied Mathematics, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi (Kenya); Marigi, E.M.; Kinyanjui, M. [Department of Pure and Applied Mathematics, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi (Kenya)

    2010-06-15

    In this study we discuss an unsteady free convection MHD flow past semi-infinite vertical porous plate. We have considered the flow in the presence of a strong magnetic field and therefore the electromagnetic force is very large. This brings in the phenomenon of Hall and Ion-slip currents. The effects of these two parameters together with that of viscous dissipation and radiation absorption among others on velocity, temperature and concentration profiles are presented. The profiles are presented graphically. As the partial differential equations governing this problem are highly non-linear they are solved numerically by a finite difference method. It is found that in presence of heating of the plate by free convection current the velocity boundary layer thickness decreases.

  3. Boundary layer thickness effect on boattail drag. [wind tunnel tests for drag reduction

    Science.gov (United States)

    Blaha, B. J.; Chamberlin, R.; Bober, L. J.

    1976-01-01

    A combined experimental and analytical program has been conducted at the NASA Lewis Research Center, to investigate the effects of boundary layer changes on the flow over high angle boattail nozzles. The tests were run on an isolated axisymmetric sting mounted model. Various boattail geometries were investigated at high subsonic speeds over a range of boundary layer thicknesses. In general, boundary layer effects were small at speeds up to Mach 0.8. However, at higher speeds significant regions of separated flow were present on the boattail. When separation was present large reductions in boattail drag resulted with increasing boundary layer thickness. The analysis predicts both of these trends.

  4. Effect of Boundary Layer Thickness on Secondary Structures in a Short Inlet Curved Duct

    Science.gov (United States)

    Gartner, Jeremy; Amitay, Michael

    2013-11-01

    The flow pattern in short ducts with aggressive curvature can lead in some cases to an asymmetric flow field. In the current work, a two dimensional honeycomb mesh was added upstream of the curved duct to create a pressure drop across it, and therefore an increased velocity deficit in the boundary layer profile. This velocity deficit led to a stronger streamwise separation, overcoming the flow mechanisms that result in the asymmetric flowfield. Experiments were conducted at M = 0.2, 0.44 and 0.58 in an expanding aggressive duct with square cross section with an area ratio of 1.27. Pressure data, together with Particle Image Velocimetry (PIV), verify the symmetry of the incoming flow field. Steady pressure distributions along the lower surface of the curved duct were obtained, as well as steady and time dependent total pressure distributions at the aerodynamic interface plane, enabling the analysis of the flow characteristics throughout the duct length. The effect of inserting a honeycomb was tested by increasing its height from 0 to 2.2 times the baseline flow boundary layer thickness upstream of the curve. Crosstream flow symmetry was achieved for specific geometrical configurations with a negligible decrease in the pressure recovery.

  5. The Thermal And Hydrodynamic Behavior of Thick, Rough-Wall, Turbulent Boundary Layers,

    Science.gov (United States)

    1979-08-01

    34match point") and then extrap - olating to x = 0, the virtual origin of the hydrodynamic flow field. The values of L for the artificially thickened...boundary layers developing over rough sur- faces is important for the design of many engineering components, including reentry vehicles, nuclear reactors

  6. Dust devil height and spacing with relation to the martian planetary boundary layer thickness

    Science.gov (United States)

    Fenton, Lori K.; Lorenz, Ralph

    2015-11-01

    In most remote and unmonitored places, little is known about the characteristics of daytime turbulent activity. Few processes render the optically transparent atmospheres of Earth and Mars visible; put more plainly, without clever instruments it is difficult to "see the unseen". To address this, we present a pilot study of images of martian dust devils (DDs) testing the hypothesis that DD height and spacing correlates with the thickness of the planetary boundary layer (PBL), h. The survey includes Context Camera (CTX) images from a 580 × 590 km2 area (196-208°E, 30-40°N) in northern Amazonis Planitia, spanning ∼3.6 Mars Years (MY) from Ls = 134.55°, MY 28 (13 November 2006) to Ls = 358.5°, MY 31 (28 July 2013). DD activity follows a repeatable seasonal pattern similar to that found in previous surveys, with a distinct "on" season during local summer, beginning shortly before the northern spring equinox (Ls = 0°) and lasting until just after the northern fall equinox (Ls = 180°). DD heights measured from shadow lengths varied considerably, with median values peaking at local midsummer. Modeled PBL heights, constrained by those measured from radio occultation data, follow a similar seasonal trend, and correlation of the two suggests that the martian PBL thickness is approximately 5 times the median DD height. These results compare favorably to the limited terrestrial data available. DD spacing was measured using nearest neighbor statistics, following the assumption that because convection cell widths have been measured to be ∼1.2 ± 0.2h (Willis, G.E., Deardorff, J.W. [1979]. J. Geophys. Res. 84(C1), 295-302), a preference for DD formation at vertices of convection cells intersections could be used to estimate the PBL height. During local spring and summer, the DD average nearest neighbor (ANN) ranged from ∼1 to 2h, indicating that DD spacing does indeed correlate with PBL height. However, this result is complicated by two factors: (1) convection cell

  7. Boundary layer model to account for thick mask effects in photolithography

    Science.gov (United States)

    Tirapu-Azpiroz, Jaione; Burchard, Paul; Yablonovitch, Eli

    2003-06-01

    The lack of transparent optical components at short wavelengths limits the available wavelengths in Deep Ultraviolet lithography, while the required minimum feature on wafer continues to shrink towards deeper sub-wavelength scales. This places a serious limitation on Kirchhoff boundary conditions that replace the field on the mask openings by the incident field, since this approximation fails to account for the increasingly important topographical effects (thick mask effects) in the computation of the lithographic image. In this paper we present a sophisticated various on Kirchhoff approximation capable of modeling rigorous near field effects while retaining the simplicity of the scalar model. Our model is based on a comparison of the fields produced by both the thick and ideal thin masks on the wafer. Polarization and edge diffraction effects as well as phase and transmission errors, are included in our model.

  8. Effects of Boundary-Layer Thickness on Unsteady Flow Characteristics Inside Open Cavities at Subsonic and Transonic Speeds

    Science.gov (United States)

    Yang, Dang-Guo; Li, Jian-Qiang; Fan, Zhao-Lin; Luo, Xin-Fu

    An experimental study was conducted in a 0.6m by 0.6m wind-tunnel to analyze effects of boundary-layer thickness on unsteady flow characteristics inside a rectangular open cavity at subsonic and transonic speeds. The sound pressure level (SPL) distributions at the centerline of the cavity floor and Sound pressure frequency spectrum (SPFS) characteristics on some measurement positions presented herein was obtained with cavity length-to-depth ratio (L/D) of 8 over Mach numbers (Ma) of 0.6 and 1.2 at a Reynolds numbers (Re) of 1.23 × 107 and 2.02 × 107 per meter under different boundary-layer thickness to cavity-depth ratios (δ/D). The experimental angle of attack, yawing and rolling angles were 0°. The results indicate that decrease in δ/D leads to severe flow separation and unsteady pressure fluctuation, which induces increase in SPL at same measurement points inside the cavity at Ma of 0.6. At Ma of 1.2, decrease in δ/D results in enhancing compressible waves. Generally, decrease in δ/D induces more flow self-sustained oscillation frequencies. It also makes severer aerodynamic noise inside the open cavity.

  9. Boundary-layer transition and displacement thickness effects on zero-lift drag of a series of power-law bodies at Mach 6

    Science.gov (United States)

    Ashby, G. C., Jr.; Harris, J. E.

    1974-01-01

    Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.

  10. A Method to Predict the Thickness of Poorly-Bonded Material Along Spray and Spray-Layer Boundaries in Cold Spray Deposition

    Science.gov (United States)

    Li, Yangfan; Hamada, Yukitaka; Otobe, Katsunori; Ando, Teiichi

    2017-02-01

    Multi-traverse CS provides a unique means for the production of thick coatings and bulk materials from powders. However, the material along spray and spray-layer boundaries is often poorly bonded as it is laid by the leading and trailing peripheries of the spray that carry powder particles with insufficient kinetic energy. For the same reason, the splats in the very first layer deposited on the substrate may not be bonded well either. A mathematical spray model was developed based on an axisymmetric Gaussian mass flow rate distribution and a stepped deposition yield to predict the thickness of such poorly-bonded layers in multi-traverse CS deposition. The predicted thickness of poorly-bonded layers in a multi-traverse Cu coating falls in the range of experimental values. The model also predicts that the material that contains poorly bonded splats could exceed 20% of the total volume of the coating.

  11. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  12. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  13. The Bottom Boundary Layer.

    Science.gov (United States)

    Trowbridge, John H; Lentz, Steven J

    2018-01-03

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  14. Boundary-layer theory

    CERN Document Server

    Schlichting (Deceased), Hermann

    2017-01-01

    This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

  15. Superfluid Boundary Layer.

    Science.gov (United States)

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  16. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    1974-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  17. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  18. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere.

    Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  19. Boundary-Layer & health

    Science.gov (United States)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  20. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    Science.gov (United States)

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  1. Boundary Layer Control on Airfoils.

    Science.gov (United States)

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  2. The laminar boundary layer equations

    CERN Document Server

    Curle, N

    2017-01-01

    Thorough introduction to boundary layer problems offers an ordered, logical presentation accessible to undergraduates. The text's careful expositions of the limitations and accuracy of various methods will also benefit professionals. 1962 edition.

  3. Thickness and Clapeyron slope of the post-perovskite boundary.

    Science.gov (United States)

    Catalli, Krystle; Shim, Sang-Heon; Prakapenka, Vitali

    2009-12-10

    The thicknesses and Clapeyron slopes of mantle phase boundaries strongly influence the seismic detectability of the boundaries and convection in the mantle. The unusually large positive Clapeyron slope found for the boundary between perovskite (Pv) and post-perovskite (pPv) (the 'pPv boundary') would destabilize high-temperature anomalies in the lowermost mantle, in disagreement with the seismic observations. Here we report the thickness of the pPv boundary in (Mg(0.91)Fe(2+)(0.09))SiO(3) and (Mg(0.9)Fe(3+)(0.1))(Al(0.1)Si(0.9))O(3) as determined in a laser-heated diamond-anvil cell under in situ high-pressure (up to 145 GPa), high-temperature (up to 3,000 K) conditions. The measured Clapeyron slope is consistent with the D'' discontinuity. In both systems, however, the pPv boundary thickness increases to 400-600 +/- 100 km, which is substantially greater than the thickness of the D'' discontinuity (<30 km). Although the Fe(2+) buffering effect of ferropericlase could decrease the pPv boundary thickness, the boundary may remain thick in a pyrolitic composition because of the effects of Al and the rapid temperature increase in the D'' layer. The pPv boundary would be particularly thick in regions with an elevated Al content and/or a low Mg/Si ratio, reducing the effects of the large positive Clapeyron slope on the buoyancy of thermal anomalies and stabilizing compositional heterogeneities in the lowermost mantle. If the pPv transition is the source of the D'' discontinuity, regions with sharp discontinuities may require distinct compositions, such as a higher Mg/Si ratio or a lower Al content.

  4. The Ocean Boundary Layer beneath Hurricane Frances

    Science.gov (United States)

    Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.

    2006-12-01

    The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.

  5. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  6. Tropical cyclone boundary layer shocks

    OpenAIRE

    Slocum, Christopher J.; Williams, Gabriel J.; Taft, Richard K.; Wayne H. Schubert

    2014-01-01

    This paper presents numerical solutions and idealized analytical solutions of axisymmetric, $f$-plane models of the tropical cyclone boundary layer. In the numerical model, the boundary layer radial and tangential flow is forced by a specified pressure field, which can also be interpreted as a specified gradient balanced tangential wind field $v_{\\rm gr}(r)$ or vorticity field $\\zeta_{\\rm gr}(r)$. When the specified $\\zeta_{\\rm gr}(r)$ field is changed from one that is radially concentrated i...

  7. 2007 Program of Study: Boundary Layers

    Science.gov (United States)

    2008-06-01

    zero. The stream function multiplied by the boundary layer thickness is negligible close to the right hand side. This gives, for we = we(y), 0 = xewe ...δsψx(0)− δ3mψ (0). (2) The first derivative of ψ is zero at the left boundary due to the no slip condition. This gives 0 = xewe + δ3mψ (0), (3...which means that the vorticity inserted by the Ekman pumping must be dissipated by the sublayer. We verify that (1.20) is a solution to Eq. 3 xewe

  8. Hundred years of the boundary layer – Some aspects

    Indian Academy of Sciences (India)

    2005-08-02

    Aug 2, 2005 ... at the Third International Congress of Mathematics held in Heidelberg and published in the. Proceedings of the Congress ..... Work on boundary layers is going on in many organizations in India. The above ... Rao G N V 1967 The law of the wall in thick axisymmetric turbulent boundary layers. J. Appl. Mech.

  9. Effect of the boundary layer thickness on the hydrodynamic instabilities of coaxial atomization under harmonic flow rate and swirl ratio fluctuations

    Science.gov (United States)

    Jorajuria, Corentin; Machicoane, Nathanael; Osuna, Rodrigo; Aliseda, Alberto

    2017-11-01

    Break-up of a liquid jet by a high speed coaxial gas jet is a frequently-used configuration to generate a high quality spray. Despite its extended use in engineering and natural processes, the instabilities that control the liquid droplet size and their spatio-temporal distribution in the spray are not completely understood. We present an experimental measurements of the near field in a canonical coaxial gas-liquid atomizer. The liquid Reynolds number is constant at 103, while the gas jet Reynolds number is varied from 104-106. The liquid injection rate and the swirl ratio are harmonically modulated to understand the effect of unsteadiness on the interfacial instability that triggers primary break-up. The gas velocity is measured using a combination of hot-wire anemometry and 3D PIV, resolving the gas boundary layer and the three-dimensionality of the flow, particularly in the cases with swirl. The development of the hydrodynamic instabilities on the liquid-gas interface is quantified using high speed visualizations at the exit of the nozzle and related to the frequency and growth rates predicted by stability analysis of this boundary layer flow. The resulting droplet size distribution is measured at the end of the break-up process via Particle Phase Doppler Anemometry and compared to stability analysis predictions statistics.

  10. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime...

  11. Thickness and Clapeyron slope of the post-perovskite boundary

    Energy Technology Data Exchange (ETDEWEB)

    Catalli, K.; Shim, S.-H.; Prakapenka, V.; (MIT); (UC)

    2009-12-10

    The thicknesses and Clapeyron slopes of mantle phase boundaries strongly influence the seismic detectability of the boundaries and convection in the mantle. The unusually large positive Clapeyron slope found for the boundary between perovskite (Pv) and post-perovskite (pPv) (the 'pPv boundary') would destabilize high-temperature anomalies in the lowermost mantle, in disagreement with the seismic observations. Here we report the thickness of the pPv boundary in (Mg{sub 0.91}Fe{sub 0.09}{sup 2+})SiO{sub 3} and (Mg{sub 0.9}Fe{sub 0.1}{sup 3+})(Al{sub 0.1}Si{sub 0.9})O{sub 3} as determined in a laser-heated diamond-anvil cell under in situ high-pressure (up to 145 GPa), high-temperature (up to 3,000 K) conditions. The measured Clapeyron slope is consistent with the D'' discontinuity. In both systems, however, the pPv boundary thickness increases to 400-600 {+-} 100 km, which is substantially greater than the thickness of the D'' discontinuity (<30 km). Although the Fe{sup 2+} buffering effect of ferropericlase could decrease the pPv boundary thickness, the boundary may remain thick in a pyrolitic composition because of the effects of Al and the rapid temperature increase in the D'' layer. The pPv boundary would be particularly thick in regions with an elevated Al content and/or a low Mg/Si ratio, reducing the effects of the large positive Clapeyron slope on the buoyancy of thermal anomalies and stabilizing compositional heterogeneities in the lowermost mantle. If the pPv transition is the source of the D'' discontinuity, regions with sharp discontinuities may require distinct compositions, such as a higher Mg/Si ratio or a lower Al content.

  12. A barotropic planetary boundary layer

    Science.gov (United States)

    Yordanov, D.; Syrakov, D.; Djolov, G.

    1983-04-01

    The temperature and wind profiles in the planetary boundary layer (PBL) are investigated. Assuming stationary and homogeneous conditions, the turbulent state in the PBL is uniquely determined by the external Rossby number and the stratification parameters. In this study, a simple two-layer barotropic model is proposed. It consists of a surface (SL) and overlying Ekman-type layer. The system of dynamic and heat transfer equations is closed using K theory. In the SL, the turbulent exchange coefficient is consistent with the results of similarity theory while in the Ekman layer, it is constant. Analytical solutions for the wind and temperature profiles in the PBL are obtained. The SL and thermal PBL heights are properly chosen functions of the stratification so that from the solutions for wind and temperature, the PBL resistance laws can be easily deduced. The internal PBL characteristics necessary for the calculation (friction velocity, angle between surface and geostrophic winds and internal stratification parameter) are presented in terms of the external parameters. Favorable agreement with experimental data and model results is demonstrated. The simplicity of the model allows it to be incorporated in large-scale weather prediction models as well as in the solution of various other meteorological problems.

  13. Boundaries of dreams, boundaries of dreamers: thin and thick boundaries as a new personality measure.

    Science.gov (United States)

    Hartmann, E

    1989-11-01

    Previous work by the author and his collaborators on frequent nightmare sufferers demonstrated that these people had striking personality characteristics which could be called "thin boundaries" in a number of different senses. In order to measure thin and thick boundaries, a 145-item questionnaire, the Boundary Questionnaire, has been developed which has now been taken by over 1,000 persons. Preliminary results are presented indicating that, as predicted a priori, several new groups of nightmare sufferers and groups of art students scored usually "thin," whereas a group of naval officers had usually "thick" boundaries. Overall, thinness on the Boundary Questionnaire correlated highly positively (r = .40) with frequency of dream recall and also significantly (r = .16) with length of sleep.

  14. An interactive boundary layer modelling methodology for aerodynamic flows

    CSIR Research Space (South Africa)

    Smith, L

    2013-01-01

    Full Text Available is used. The artificial compressibility formulation allows for a finite value of c2 to be used for incompressible flows, calculated as per Malan et al. (2002). 3.2. Boundary layer solution 7 To ensure numerical stability, the Crank... � Similarity coordinate � Momentum thickness m � * Kinetic energy thickness � Dynamic viscosity kg.m-1.s-1 � Density kg.m-3 � Shear stress N.m-2 Kinematic viscosity m2.s-1 Coordinate parallel to the boundary layer m...

  15. Experimental investigation of wave boundary layer

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2003-01-01

    A review is presented of experimental investigation of wave boundary layer. The review is organized in six main sections. The first section describes the wave boundary layer in a real-life environment and its simulation in the laboratory in an oscillating water tunnel and in a water tank...... with an oscillating seabed. A brief account is given of measured quantities, measurement techniques (LDA, PIV, flow visualization) and limitations/constraints in the experimental investigation of the wave boundary layer in the laboratory. The second section concentrates on uniform oscillating boundary layers...... with a smooth bed. The boundary layer process is described over the entire range of the Reynolds number (Re from practically nil to Re = O(107)), from the laminar regime to the transitional regime and to the fully developed turbulent regime. The third section focuses on the effect of the boundary roughness...

  16. Critical Layer Thickness in Exponentially Graded Heteroepitaxial Layers

    Science.gov (United States)

    Sidoti, D.; Xhurxhi, S.; Kujofsa, T.; Cheruku, S.; Reed, J.; Bertoli, B.; Rago, P. B.; Suarez, E. N.; Jain, F. C.; Ayers, J. E.

    2010-08-01

    Exponentially graded semiconductor layers are of interest for use as buffers in heteroepitaxial devices because of their tapered dislocation density and strain profiles. Here we have calculated the critical layer thickness for the onset of lattice relaxation in exponentially graded In x Ga1- x As/GaAs (001) heteroepitaxial layers. Upwardly convex grading with x = x_{infty } left( {1 - e^{ - γ /y} } right) was considered, where y is the distance from the GaAs interface, γ is a grading length constant, and x ∞ is the limiting mole fraction of In. For these structures the critical layer thickness was determined by an energy-minimization approach and also by consideration of force balance on grown-in dislocations. The force balance calculations underestimate the critical layer thickness unless one accounts for the fact that the first misfit dislocations are introduced at a finite distance above the interface. The critical layer thickness determined by energy minimization, or by a detailed force balance model, is approximately h_{{c}} ≈ 0.243μ {m}left( {γ /1μ {m}} right)^{0.5} left( {x_{infty } /0.1} right)^{ -0.54} . Although these results were developed for exponentially graded In x Ga1- x As/GaAs (001), they may be generalized to other material systems for application to the design of exponentially graded buffer layers in metamorphic device structures such as modulation-doped field-effect transistors and light-emitting diodes.

  17. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar

  18. BUBBLE - an urban boundary layer meteorology project

    DEFF Research Database (Denmark)

    Rotach, M.W.; Vogt, R.; Bernhofer, C.

    2005-01-01

    The Basel urban Boundary Layer Experiment (BUBBLE) was a year-long experimental effort to investigate in detail the boundary layer structure in the City of Basel, Switzerland. At several sites over different surface types (urban, sub-urban and rural reference) towers up to at least twice the main...

  19. Magnetohydrodynamic cross-field boundary layer flow

    Directory of Open Access Journals (Sweden)

    D. B. Ingham

    1982-01-01

    Full Text Available The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.

  20. Transparent layer thickness measurement using low-coherence interference microscopy

    Science.gov (United States)

    Kühnhold, P.; Nolvi, A.; Tereschenko, S.; Kassamakov, I.; Hæggström, E.; Lehmann, P.

    2015-05-01

    The investigation of transparent optical layers is a growing field of application of white-light interferometry. Robust algorithms exist that extract the signal components from different layers inside a transparent structure. The separated signal contributions are then evaluated individually. Two contradicting situations have to be accounted for when low-coherence interferometry is used to measure layer structures. First, with a low NA system and a short coherence light source, the optical path difference between the layers is measured. Second, if a high NA interferometer and a long coherence light source is used, the limited depth of focus limits the correlogram width. In this case, the layer thickness is underestimated. In this paper a 2.2 μm thick reference layer is studied. This layer was measured with different interferometric systems: Michelson and Mirau interferometers with magnifications from 5x to 100x. Furthermore, light sources with different temporal coherence length were used. If lateral resolution is unimportant, the combination of a low NA measuring system and a low coherence length light source provides a larger distance between the signal contributions from different boundary layers and therefore better separation, bias correction, and higher accuracy, compared to a high NA system. The interferometer system can be calibrated by measuring the layer thickness of a small structure with respect to a substrate. Such a calibration permits performing measurements with a high NA interferometer and a low coherence light source. The main contribution of this paper is to compare and discuss results of these different options of layer thickness measurement with respect to measurement accuracy and uncertainty influences.

  1. A global climatology of boundary layer ventilation

    Science.gov (United States)

    McNamara, David; Plant, Robert; Belcher, Stephen

    2013-04-01

    The general circulation pattern of the Earth's atmosphere is well known, however there has been relatively little effort to quantify the climatological effects of the buffer zone known as the atmospheric boundary layer. Turbulent motions in the atmospheric boundary layer act to mix the layer along with its constituent pollutants, below a temperature inversion which separates it from the free troposphere. Exchanges between the boundary layer and free troposphere can occur through the mechanisms of convection, isentropic uplift, and coastal and orographic venting. In particular the rate at which pollutants are removed from the atmosphere can be different depending on whether or not they are resident within the boundary layer or the free troposphere. Thus the limiting factor on the concentrations of, for example, certain eg NOx, pollutants in the free troposphere will be the rate at which they are vented from the boundary layer. A global climatology (spanning 10 years between 1995 and 2005) of boundary layer venting is presented here using the ERA-interim dataset which has a grid scale resolution of 0.7 degrees x 0.7 degrees. The boundary layer height is first calculated using a bulk Richardson number method and then an associated vertical velocity is found by linearly interpolating between the two model levels either side of the boundary layer height. This value along with the change in height of the boundary layer over a 3 hour period is used to give an estimate of the rate of venting. The climatology of this rate allows us to describe and quantify the areas of the globe that are responsible for boundary layer entrainment and boundary layer venting, which could be used as a basis for further comparisons with other suitable datasets. We will also present results for the climatology of the boundary layer height itself. [possibly? That could be attractive for a BL audience anyway] Furthermore we will present and discuss results from a method designed to isolate the

  2. Turbulent boundary layer in high Rayleigh number convection in air.

    Science.gov (United States)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  3. Integral analysis of boundary layer flows with pressure gradient

    Science.gov (United States)

    Wei, Tie; Maciel, Yvan; Klewicki, Joseph

    2017-09-01

    This Rapid Communication investigates boundary layer flows with a pressure gradient using a similarity/integral analysis of the continuity equation and momentum equation in the streamwise direction. The analysis yields useful analytical relations for Ve, the mean wall-normal velocity at the edge of the boundary layer, and for the skin friction coefficient Cf in terms of the boundary layer parameters and in particular βRC, the Rotta-Clauser pressure gradient parameter. The analytical results are compared with experimental and numerical data and are found to be valid. One of the main findings is that for large positive βRC (an important effect of an adverse pressure gradient), the friction coefficient is closely related to βRC as Cf∝1 /βRC , because δ /δ1,δ1/δ2=H , and d δ /d x become approximately constant. Here, δ is the boundary layer thickness, δ1 is the displacement thickness, δ2 is the momentum thickness, and H is the shape factor. Another finding is that the mean wall-normal velocity at the edge of the boundary layer is related to other flow variables as UeVe/uτ2=H +(1 +δ /δ1+H ) βRC , where Ue is the streamwise velocity at the edge of the boundary layer. At zero pressure gradient, this relation reduces to U∞V∞/uτ2=H , as recently derived by Wei and Klewicki [Phys. Rev. Fluids 1, 082401 (2016), 10.1103/PhysRevFluids.1.082401].

  4. On the modeling of electrical boundary layer (electrode layer) and ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 1. On the modeling of electrical boundary layer (electrode layer) and derivation of atmospheric electrical profiles, eddy diffusion coeffcient and scales of electrode layer. Madhuri N Kulkarni. Volume 119 Issue 1 February 2010 pp 75-86 ...

  5. Rough-wall turbulent boundary layers with constant skin friction

    KAUST Repository

    Sridhar, A.

    2017-03-28

    A semi-empirical model is presented that describes the development of a fully developed turbulent boundary layer in the presence of surface roughness with length scale ks that varies with streamwise distance x . Interest is centred on flows for which all terms of the von Kármán integral relation, including the ratio of outer velocity to friction velocity U+∞≡U∞/uτ , are streamwise constant. For Rex assumed large, use is made of a simple log-wake model of the local turbulent mean-velocity profile that contains a standard mean-velocity correction for the asymptotic fully rough regime and with assumed constant parameter values. It is then shown that, for a general power-law external velocity variation U∞∼xm , all measures of the boundary-layer thickness must be proportional to x and that the surface sand-grain roughness scale variation must be the linear form ks(x)=αx , where x is the distance from the boundary layer of zero thickness and α is a dimensionless constant. This is shown to give a two-parameter (m,α) family of solutions, for which U+∞ (or equivalently Cf ) and boundary-layer thicknesses can be simply calculated. These correspond to perfectly self-similar boundary-layer growth in the streamwise direction with similarity variable z/(αx) , where z is the wall-normal coordinate. Results from this model over a range of α are discussed for several cases, including the zero-pressure-gradient ( m=0 ) and sink-flow ( m=−1 ) boundary layers. Trends observed in the model are supported by wall-modelled large-eddy simulation of the zero-pressure-gradient case for Rex in the range 108−1010 and for four values of α . Linear streamwise growth of the displacement, momentum and nominal boundary-layer thicknesses is confirmed, while, for each α , the mean-velocity profiles and streamwise turbulent variances are found to collapse reasonably well onto z/(αx) . For given α , calculations of U+∞ obtained from large-eddy simulations are streamwise

  6. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    Science.gov (United States)

    Sarlak, H.; Sørensen, J. N.; Mikkelsen, R.

    2012-09-01

    Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically required for such problems.

  7. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM......) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation...... and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically...

  8. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  9. On the modeling of electrical boundary layer (electrode layer) and ...

    Indian Academy of Sciences (India)

    The profiles of atmospheric electric field and electrical conductivity are also derived and a new term named as electrode layer constant is ... electrical conductivity and thickness of electrode layer (Willett 1978). A new simple method ... variation of the coefficient of eddy diffusivity. In all his calculations he had assumed the ...

  10. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  11. Coupled vs. decoupled boundary layers in VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. R. Jones

    2011-07-01

    Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture and temperature stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150 m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.

    We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the "mixed layer cloud thickness", defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling.

    In the deeper boundary layers observed well offshore, there was frequently nearly 100 % boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.

  12. Efficient modelling of aerodynamic flows in the boundary layer for high performance computing

    CSIR Research Space (South Africa)

    Smith, L

    2011-01-01

    Full Text Available A unique technique to couple boundary-layer solutions with an inviscid solver is introduced. The boundary-layer solution is obtained using the two-integral method to solve displacement thickness with Newton’s method, at a fraction of the cost of a...

  13. Numerical experiments in the stability of leading edge boundary layer flow. A two-dimensional study

    NARCIS (Netherlands)

    Theofilis, Vassilios; Theofilis, V.

    1993-01-01

    A numerical study is performed in order to gain insight to the stability of the infinite swept attachment line boundary layer. The basic flow is taken to be of the Hiemenz class with an added cross-flow giving rise to a constant thickness boundary layer along the attachment line. The full

  14. Unsteady turbulent boundary layers in swimming rainbow trout.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2015-05-01

    The boundary layers of rainbow trout, Oncorhynchus mykiss, swimming at 1.02±0.09 L s(-1) (mean±s.d., N=4), were measured by the particle image velocimetry (PIV) technique at a Reynolds number of 4×10(5). The boundary layer profile showed unsteadiness, oscillating above and beneath the classical logarithmic law of the wall with body motion. Across the entire surface regions that were measured, local Reynolds numbers based on momentum thickness, which is the distance that is perpendicular to the fish surface through which the boundary layer momentum flows at free-stream velocity, were greater than the critical value of 320 for the laminar-to-turbulent transition. The skin friction was dampened on the convex surface while the surface was moving towards a free-stream flow and increased on the concave surface while retreating. These observations contradict the result of a previous study using different species swimming by different methods. Boundary layer compression accompanied by an increase in local skin friction was not observed. Thus, the overall results may not support absolutely the Bone-Lighthill boundary layer thinning hypothesis that the undulatory motions of swimming fish cause a large increase in their friction drag because of the compression of the boundary layer. In some cases, marginal flow separation occurred on the convex surface in the relatively anterior surface region, but the separated flow reattached to the fish surface immediately downstream. Therefore, we believe that a severe impact due to induced drag components (i.e. pressure drag) on the swimming performance, an inevitable consequence of flow separation, was avoided. © 2015. Published by The Company of Biologists Ltd.

  15. Orbiter Boundary Layer Transition Prediction Tool Enhancements

    Science.gov (United States)

    Berry, Scott A.; King, Rudolph A.; Kegerise, Michael A.; Wood, William A.; McGinley, Catherine B.; Berger, Karen T.; Anderson, Brian P.

    2010-01-01

    Updates to an analytic tool developed for Shuttle support to predict the onset of boundary layer transition resulting from thermal protection system damage or repair are presented. The boundary layer transition tool is part of a suite of tools that analyze the local aerothermodynamic environment to enable informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each d agmea site or repair, the expected time (and thus Mach number) of transition onset is predicted to help define proper environments for use in subsequent thermal and stress analysis of the thermal protection system and structure. The boundary layer transition criteria utilized within the tool were updated based on new local boundary layer properties obtained from high fidelity computational solutions. Also, new ground-based measurements were obtained to allow for a wider parametric variation with both protuberances and cavities and then the resulting correlations were calibrated against updated flight data. The end result is to provide correlations that allow increased confidence with the resulting transition predictions. Recently, a new approach was adopted to remove conservatism in terms of sustained turbulence along the wing leading edge. Finally, some of the newer flight data are also discussed in terms of how these results reflect back on the updated correlations.

  16. Measurements of a Separating Turbulent Boundary Layer.

    Science.gov (United States)

    1980-04-01

    the uncertainties of most of the dominant terms are less than 30% 40% at many points. In general, the terms involving derivatives with re spect to y...34 DISA Information, no. 13, pp. 29-33. Perry, A.E. and Schofield, W.H. 1973 "Mean Velocity and Shear Stress Distribu- tions in Turbulent Boundary Layers

  17. Nonlinear Transient Growth and Boundary Layer Transition

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  18. Diagnosis of boundary-layer circulations.

    Science.gov (United States)

    Beare, Robert J; Cullen, Michael J P

    2013-05-28

    Diagnoses of circulations in the vertical plane provide valuable insights into aspects of the dynamics of the climate system. Dynamical theories based on geostrophic balance have proved useful in deriving diagnostic equations for these circulations. For example, semi-geostrophic theory gives rise to the Sawyer-Eliassen equation (SEE) that predicts, among other things, circulations around mid-latitude fronts. A limitation of the SEE is the absence of a realistic boundary layer. However, the coupling provided by the boundary layer between the atmosphere and the surface is fundamental to the climate system. Here, we use a theory based on Ekman momentum balance to derive an SEE that includes a boundary layer (SEEBL). We consider a case study of a baroclinic low-level jet. The SEEBL solution shows significant benefits over Ekman pumping, including accommodating a boundary-layer depth that varies in space and structure, which accounts for buoyancy and momentum advection. The diagnosed low-level jet is stronger than that determined by Ekman balance. This is due to the inclusion of momentum advection. Momentum advection provides an additional mechanism for enhancement of the low-level jet that is distinct from inertial oscillations.

  19. Instabilities and transition in boundary layers

    Indian Academy of Sciences (India)

    Abstract. Some recent developments in boundary layer instabilities and transition are reviewed. Background disturbance levels determine the instability mechanism that ulti- mately leads to turbulence. At low noise levels, the traditional Tollmien–Schlichting route is followed, while at high levels, a 'by-pass' route is more ...

  20. Numerical methods for hypersonic boundary layer stability

    Science.gov (United States)

    Malik, M. R.

    1990-01-01

    Four different schemes for solving compressible boundary layer stability equations are developed and compared, considering both the temporal and spatial stability for a global eigenvalue spectrum and a local eigenvalue search. The discretizations considered encompass: (1) a second-order-staggered finite-difference scheme; (2) a fourth-order accurate, two-point compact scheme; (3) a single-domain Chebychev spectral collocation scheme; and (4) a multidomain spectral collocation scheme. As Mach number increases, the performance of the single-domain collocation scheme deteriorates due to the outward movement of the critical layer; a multidomain spectral method is accordingly designed to furnish superior resolution of the critical layer.

  1. Viscous drag reduction in boundary layers

    Science.gov (United States)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  2. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  3. Turbulent dispersion in cloud-topped boundary layers

    NARCIS (Netherlands)

    Verzijlbergh, R.A.; Jonker, H.J.J.; Heus, T.; Vilà-Guerau de Arellano, J.

    2009-01-01

    Compared to dry boundary layers, dispersion in cloud-topped boundary layers has received less attention. In this LES based numerical study we investigate the dispersion of a passive tracer in the form of Lagrangian particles for four kinds of atmospheric boundary layers: 1) a dry convective boundary

  4. Thickness and dielectric constant determination of thin dielectric layers

    NARCIS (Netherlands)

    de Bruijn, H.E.; de Bruijn, Helene E.; Minor, Marcel; Kooyman, R.P.H.; Greve, Jan

    1993-01-01

    We derive a method for the determination of the dielectric constant and thickness of a thin dielectric layer, deposited on top of a thick dielectric layer which is in turn present on a metal film. Reflection of p- and s-polarized light from the metal layer yields minima for certain angles of

  5. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers

    Science.gov (United States)

    Choudhari, Meelan; Streett, Craig L.

    1990-01-01

    The process by which the boundary layer internalizes the environmental disturbances in the form of instability waves is known as the boundary-layer receptivity. The paper discusses the importance of receptivity in transition research. The receptivity scenario for three-dimensional and high-speed boundary layers is examined. It is found that, while receptivity mechanisms present in the low-speed case are also operative in these complex flows, certain uniquely 'compressible' receptivity mechanisms may come into play as well. Both numerical, and where convenient, asymptotic procedures are utilized to develop quantitative predictions of the localized generation of a variety of instability types (Tollmien-Schlichting, inflectional, higher modes, crossflow vortices) in boundary layer flows relevant to the National Aero-Space Plane (NASP).

  6. Active control of ionized boundary layers

    CERN Document Server

    Mendes, R V

    1997-01-01

    The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.

  7. Experimental studies on transitional separated boundary layers

    OpenAIRE

    Serna Serrano, José

    2013-01-01

    Separated transitional boundary layers appear on key aeronautical processes such as the flow around wings or turbomachinery blades. The aim of this thesis is the study of these flows in representative scenarios of technological applications, gaining knowledge about phenomenology and physical processes that occur there and, developing a simple model for scaling them. To achieve this goal, experimental measurements have been carried out in a low speed facility, ensuring the flow homogeneity and...

  8. Boundary Layer Transition Results From STS-114

    Science.gov (United States)

    Berry, Scott A.; Horvath, Thomas J.; Cassady, Amy M.; Kirk, Benjamin S.; Wang, K. C.; Hyatt, Andrew J.

    2006-01-01

    The tool for predicting the onset of boundary layer transition from damage to and/or repair of the thermal protection system developed in support of Shuttle Return to Flight is compared to the STS-114 flight results. The Boundary Layer Transition (BLT) Tool is part of a suite of tools that analyze the aerothermodynamic environment of the local thermal protection system to allow informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each damage site or repair, the expected time of transition onset is predicted to help determine the proper aerothermodynamic environment to use in the subsequent thermal and stress analysis of the local structure. The boundary layer transition criteria utilized for the tool was developed from ground-based measurements to account for the effect of both protuberances and cavities and has been calibrated against flight data. Computed local boundary layer edge conditions provided the means to correlate the experimental results and then to extrapolate to flight. During STS-114, the BLT Tool was utilized and was part of the decision making process to perform an extravehicular activity to remove the large gap fillers. The role of the BLT Tool during this mission, along with the supporting information that was acquired for the on-orbit analysis, is reviewed. Once the large gap fillers were removed, all remaining damage sites were cleared for reentry as is. Post-flight analysis of the transition onset time revealed excellent agreement with BLT Tool predictions.

  9. Clidar Mountain Boundary Layer Case Studies

    Directory of Open Access Journals (Sweden)

    Sharma Nimmi C. P.

    2016-01-01

    Full Text Available A CCD Camera Lidar system called the CLidar system images a vertically pointing laser from the side with a spatially separated CCD camera and wide angle optics. The system has been used to investigate case studies of aerosols in mountain boundary layers in in the times following sunset. The aerosols detected by the system demonstrate the wide variation of near ground aerosol structure and capabilities of the CLidar system.

  10. Boundary-layer theory. 9. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Schlichting, Hermann [Technische Univ. Braunschweig (Germany). Inst. fuer Stroemungsmechanik; Gersten, Klaus [Bochum Univ. (Germany). Lehrstuhl fuer Thermodynamik und Stroemungsmechanik

    2017-03-01

    This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

  11. Coupled wake boundary layer model of windfarms

    Science.gov (United States)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  12. A global boundary-layer height climatology

    Energy Technology Data Exchange (ETDEWEB)

    Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)

    1997-10-01

    In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)

  13. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    Science.gov (United States)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  14. A Coordinate Transformation for Unsteady Boundary Layer Equations

    Directory of Open Access Journals (Sweden)

    Paul G. A. CIZMAS

    2011-12-01

    Full Text Available This paper presents a new coordinate transformation for unsteady, incompressible boundary layer equations that applies to both laminar and turbulent flows. A generalization of this coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently derived. In addition, the boundary layer equations are derived using a time linearization approach and assuming harmonically varying small disturbances.

  15. Modeling and computation of boundary-layer flows laminar, turbulent and transitional boundary layers in incompressible and compressible flows

    CERN Document Server

    Cebeci, Tuncer

    2005-01-01

    This second edition of our book extends the modeling and calculation of boundary-layer flows to include compressible flows. The subjects cover laminar, transitional and turbulent boundary layers for two- and three-dimensional incompressible and compressible flows. The viscous-inviscid coupling between the boundary layer and the inviscid flow is also addressed. The book has a large number of homework problems.

  16. Optimal Growth in Hypersonic Boundary Layers

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous- inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow.

  17. Flow Visualization in Supersonic Turbulent Boundary Layers.

    Science.gov (United States)

    Smith, Michael Wayne

    This thesis is a collection of novel flow visualizations of two different flat-plate, zero pressure gradient, supersonic, turbulent boundary layers (M = 2.8, Re _theta ~ 82,000, and M = 2.5, Re_ theta ~ 25,000, respectively). The physics of supersonic shear flows has recently drawn increasing attention with the renewed interest in flight at super and hypersonic speeds. This work was driven by the belief that the study of organized, Reynolds -stress producing turbulence structures will lead to improved techniques for the modelling and control of high-speed boundary layers. Although flow-visualization is often thought of as a tool for providing qualitative information about complex flow fields, in this thesis an emphasis is placed on deriving quantitative results from image data whenever possible. Three visualization techniques were applied--'selective cut-off' schlieren, droplet seeding, and Rayleigh scattering. Two experiments employed 'selective cut-off' schlieren. In the first, high-speed movies (40,000 fps) were made of strong density gradient fronts leaning downstream at between 30^circ and 60^ circ and travelling at about 0.9U _infty. In the second experiment, the same fronts were detected with hot-wires and imaged in real time, thus allowing the examination of the density gradient fronts and their associated single-point mass -flux signals. Two experiments employed droplet seeding. In both experiments, the boundary layer was seeded by injecting a stream of acetone through a single point in the wall. The acetone is atomized by the high shear at the wall into a 'fog' of tiny (~3.5mu m) droplets. In the first droplet experiment, the fog was illuminated with copper-vapor laser sheets of various orientations. The copper vapor laser pulses 'froze' the fog motion, revealing a variety of organized turbulence structures, some with characteristic downstream inclinations, others with large-scale roll-up on the scale of delta. In the second droplet experiment, high

  18. Exploring Isothermal Layers in the Stable Atmospheric Boundary Layer

    Science.gov (United States)

    Wilkins, Joseph

    2011-03-01

    Simulating the stable atmospheric boundary-layer presents a significant challenge to numerical models due to the interactions of several processes with widely varying scales. The goal of this project is to more clearly define the cause of isothermal layers observed during the Meteorological Experiment in Arizona's Meteor Crater and to test the National Taiwan University/Purdue University (NTU/P) model in stable environments with complex terrain. The NTU/P model is able to utilize the actual terrain data with minimal smoothing for stability. We have found that isothermal profiles can be generated by the standing wave that develops due to weak wind flowing over the crater. However, the horizontal heterogeneity is greater than observed. Continued effort will explore enhancing horizontal mixing due to turbulence and radiative transfer. Louis Stokes Alliances for Minority Participation Program, Summer Research Opportunities Program.

  19. HIFiRE-5 Boundary Layer Transition and HIFiRE-1 Shock Boundary Layer Interaction

    Science.gov (United States)

    2015-10-01

    ballistic trajectory , with no active attitude control. The elliptic cone test article remained attached to the second stage booster at all times...Page Figure 1 Rollup of Boundary-layer into Streamwise Vortex on 2:1 Sharp Elliptic Cone, Similar to HIFiRE-5 (from Ref...Bulge of 2:1 Elliptic Cone13 ..............6 Figure 4 Photograph of Model

  20. Role of residual layer and large-scale phenomena on the evolution of the boundary layer

    NARCIS (Netherlands)

    Blay, E.; Pino, D.; Vilà-Guerau de Arellano, J.; Boer, van de A.; Coster, de O.; Faloona, I.; Garrouste, O.; Hartogensis, O.K.

    2012-01-01

    Mixed-layer theory and large-eddy simulations are used to analyze the dynamics of the boundary layer on two intensive operational periods during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign: 1st and 2nd of July 2011, when convective boundary layers (CBLs) were observed.

  1. Development of a Flow Field for Testing a Boundary-Layer-Ingesting Propulsor

    Science.gov (United States)

    Hirt, Stefanie M.; Arend, David J.; Wolter, John D.

    2017-01-01

    The test section of the 8- by 6-Foot Supersonic Wind Tunnel at NASA Glenn Research Center was modified to produce the test conditions for a boundary-layer-ingesting propulsor. A test was conducted to measure the flow properties in the modified test section before the propulsor was installed. Measured boundary layer and freestream conditions were compared to results from computational fluid dynamics simulations of the external surface for the reference vehicle. Testing showed that the desired freestream conditions and boundary layer thickness could be achieved; however, some non-uniformity of the freestream conditions, particularly the total temperature, were observed.

  2. Helicity in the atmospheric boundary layer

    Science.gov (United States)

    Kurgansky, Michael; Koprov, Boris; Koprov, Victor; Chkhetiani, Otto

    2017-04-01

    An overview is presented of recent direct field measurements at the Tsimlyansk Scientific Station of A.M. Obukhov Institute of Atmospheric Physics in Moscow of turbulent helicity (and potential vorticity) using four acoustic anemometers positioned, within the atmospheric surface-adjacent boundary layer, in the vertices of a rectangular tetrahedron, with an approximate 5 m distance between the anemometers and a 5.5 m elevation of the tetrahedron base above the ground surface (Koprov, Koprov, Kurgansky and Chkhetiani. Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol.51, 565-575). The same ideology was applied in a later field experiment in Tsimlyansk with the tetrahedron's size of 0.7 m and variable elevation over the ground from 3.5 to 25 m. It is illustrated with examples of the statistical distribution of instantaneous (both positive and negative) turbulent helicity values. A theory is proposed that explains the measured mean turbulent helicity sign, including the sign of contribution to helicity from the horizontal and vertical velocity & vorticity components, respectively, and the sign of helicity buoyant production term. By considering a superposition of the classic Ekman spiral solution and a jet-like wind profile that mimics a shallow breeze circulation over a non-uniformly heated Earth surface, a possible explanation is provided, why the measured mean turbulent helicity sign is negative. The pronounced breeze circulation over the Tsimlyansk polygon which is located nearby the Tsimlyansk Reservoir was, indeed, observed during the measurements period. Whereas, essentially positive helicity is injected into the boundary layer from the free atmosphere in the Northern Hemisphere.

  3. Analytical solution for the convectively-mixed atmospheric boundary layer

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.

    2013-01-01

    Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation

  4. Simulation of Wind turbines in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    Large eddy simulation of an arbitrary wind farm is studied in the neutral and thermally stratified atmospheric boundary Layer. Large eddy simulations of industrial flows usually requires full resolution of the flow near the wall and this is believed to be one of the main deficiencies of LES because...... layer. In the current study, another approach has been implemented to simulate the flow in a fully developed wind farm boundary layer. The approach is based on Immersed Boundary Method and involves implementation of an arbitrary prescribed initial boundary layer. An initial boundary layer is enforced...... through the whole domain, without wind turbines included, while the body forces that are required to maintain that flow field is calculated. The body forces are then stored and applied on the domain through the simulation of wind turbine and the boundary layer shape will be modified based on the turbine...

  5. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    Science.gov (United States)

    2016-12-16

    AFRL-AFOSR-UK-TR-2017-0007 Boundary - layer bypass transition over large-scale bodies Pierre Ricco UNIVERSITY OF SHEFFIELD, DEPARTMENT OF PSYCHOLOGY...REPORT TYPE Final 3. DATES COVERED (From - To) 01 Sep 2013 to 31 Aug 2016 4. TITLE AND SUBTITLE Boundary - layer bypass transition over large-scale...shape of the streamwise velocity profile compared to the flat-plate boundary layer . The research showed that the streamwise wavenumber plays a key role

  6. Methods and results of boundary layer measurements on a glider

    Science.gov (United States)

    Nes, W. V.

    1978-01-01

    Boundary layer measurements were carried out on a glider under natural conditions. Two effects are investigated: the effect of inconstancy of the development of static pressure within the boundary layer and the effect of the negative pressure difference in a sublaminar boundary layer. The results obtained by means of an ion probe in parallel connection confirm those results obtained by means of a pressure probe. Additional effects which have occurred during these measurements are briefly dealt with.

  7. Castings Dimensions Influence on the Alloyed Layer Thickness

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2014-03-01

    Full Text Available The paper presents the results of simulation of alloy layer formation process on the model casting. The first aim of this study was to determine the influence of the location of the heat center on alloy layer’s thickness with the use of computer simulation. The second aim of this study was to predict the thickness of the layer. For changes of technological parameters, the distribution of temperature in the model casting and temperature changes in the characteristic points of the casting were found for established changes of technological parameters. Numerical calculations were performed using programs NovaFlow&Solid. The process of obtaining the alloy layer with good quality and proper thickness depends on: pouring temperature, time of premould hold at the temperature above 1300°C. The obtained results of simulation were loaded to authorial program Preforma 1.1 in order to determine the predicted thickness of the alloy casting.

  8. Secondary flows in turbulent boundary layers over longitudinal surface roughness

    Science.gov (United States)

    Hwang, Hyeon Gyu; Lee, Jae Hwa

    2018-01-01

    Direct numerical simulations of turbulent boundary layers over longitudinal surface roughness are performed to investigate the impact of the surface roughness on the mean flow characteristics related to counter-rotating large-scale secondary flows. By systematically changing the two parameters of the pitch (P) and width (S) for roughness elements in the ranges of 0.57 ≤P /δ ≤2.39 and 0.15 ≤S /δ ≤1.12 , where δ is the boundary layer thickness, we find that the size of the secondary flow in each case is mostly determined by the value of P - S, i.e., the valley width, over the ridge-type roughness. However, the strength of the secondary flows on the cross-stream plane relative to the flow is increased when the value of P increases or when the value of S decreases. In addition to the secondary flows, additional tertiary and quaternary flows are observed both above the roughness crest and in the valley as the values of P and S increase further. Based on an analysis using the turbulent kinetic energy transport equation, it is shown that the secondary flow over the ridge-type roughness is both driven and sustained by the anisotropy of turbulence, consistent with previous observations of a turbulent boundary layer over strip-type roughness [Anderson et al., J. Fluid Mech. 768, 316 (2015), 10.1017/jfm.2015.91]. Careful inspection of the turbulent kinetic energy budget reveals that the opposite rotational sense of the secondary flow between the ridge- and strip-type roughness elements is primarily attributed to the local imbalance of energy budget created by the strong turbulent transport term over the ridge-type roughness. The active transport of the kinetic energy over the ridge-type roughness is closely associated with the upward deflection of spanwise motions in the valley, mostly due to the roughness edge.

  9. Pre-LBA Rondonia Boundary Layer Experiment (RBLE) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The atmospheric boundary layer (ABL) is the layer of air closest to the ground which is directly influenced on a daily basis by the heating and cooling of the...

  10. Pre-LBA Rondonia Boundary Layer Experiment (RBLE) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The atmospheric boundary layer (ABL) is the layer of air closest to the ground which is directly influenced on a daily basis by the heating and cooling of...

  11. Competing disturbance amplification mechanisms in two-fluid boundary layers

    Science.gov (United States)

    Saha, Sandeep; Page, Jacob; Zaki, Tamer

    2015-11-01

    The linear stability of boundary layers above a thin wall film of lower viscosity is analyzed. Appropriate choice of the film thickness and viscosity excludes the possibility of interfacial instabilities. Transient amplification of disturbances is therefore the relevant destabilizing influence, and can take place via three different mechanisms in the two-fluid configuration. Each is examined in detail by solving an initial value problem whose initial condition comprises a pair of appropriately chosen eigenmodes from the discrete, continuous and interface modes. Two regimes are driven by the lift-up mechanism: (i) The response to a streamwise vortex and (ii) the normal vorticity generated by a stable Tollmien-Schlichting wave. Both are damped due to the film. The third regime is associated with the wall-normal vorticity that is generated by the interface displacement. It can lead to appreciable streamwise velocity disturbances in the near-wall region at relatively low viscosity ratios. The results demonstrate that a wall film can stabilize the early linear stages of boundary-layer transition, and explain the observations from the recent nonlinear direct numerical simulations of this configuration by Jung & Zaki (J. Fluid Mech., vol 772, 2015, 330-360).

  12. Characteristics of turbulent boundary layer flow over algal biofilm

    Science.gov (United States)

    Murphy, Elizabeth; Barros, Julio; Schultz, Michael; Steppe, Cecily; Flack, Karen; Reidenbach, Matthew

    2015-11-01

    Algal biofilms are an important fouling community on ship hulls, with severe economic consequences due to drag-induced increases in fuel use and cleaning costs. Here, we characterize the boundary layer flow structure in turbulent flow over diatomaceous slime, a type of biofilm. Diatomaceous slime composed of three species of diatoms commonly found on ship hulls was grown on acrylic test plates under shear stress. The slime averages 1.6 mm in thickness and has a high density of streamers, which are flexible elongated growths with a length on the order of 1- 2 mm located at the top of the biofilm that interact with the flow. Fouled acrylic plates were placed in a water tunnel facility specialized for detailed turbulent boundary layer measurements. High resolution Particle Image Velocimetry (PIV) data are analyzed for mean velocity profile as well as local turbulent stresses and turbulent kinetic energy (TKE) production, dissipation and transport. Quadrant analysis is used to characterize the impact of the instantaneous events of Reynolds shear stress (RSS) in the flow. To investigate the coherence of the large-scale motion in the flow two-point correlation analysis is employed. Funding provided by the Office of Naval Research and the National Science Foundation.

  13. Vortex properties in turbulent boundary layers

    Science.gov (United States)

    Gao, Qi; Saikrishnan, Neelakantan; Ortiz-Duenas, Cecilia; Longmire, Ellen

    2008-11-01

    Swirl strength was used to identify vortices in turbulent boundary layers. Dual-plane PIV data at Reτ 1100 with coarser (Ganapathisubramani et al., 2006) and finer resolution (Saikrishnan et al., 2007) as well as DNS data at Reτ=590 (Moser et al., 1999) and Reτ=934 (del álamo et al., 2004) were analyzed. A new core-combination algorithm was developed to improve identification of in- and out-of-plane vortices. Core orientation was determined by the eigenvector of the velocity gradient tensor, and core radii were characterized. The effects of wall normal location, Reynolds number, and spatial resolution were studied. In general, the PDF of swirl magnitude is affected by both in- and out-of-plane spatial resolution as well as the wall normal location. Scaling of swirl will be discussed in the presentation. The results show that, in the logarithmic region, the mean angle between the eigenvector and the vorticity vector decreases and the mean core radius increases with wall normal distance. Joint PDFs show linear increases in circulation with core radius, as well as correlations between core inclination angle and circulation. Convection velocities of strong cores are typically smaller than the local mean velocity.

  14. Boundary-layer effects in droplet splashing.

    Science.gov (United States)

    Riboux, Guillaume; Gordillo, José Manuel

    2017-07-01

    A drop falling onto a solid substrate will disintegrate into smaller parts when its impact velocity V exceeds the so-called critical velocity for splashing, i.e., when V>V^{*}. Under these circumstances, the very thin liquid sheet, which is ejected tangentially to the solid after the drop touches the substrate, lifts off as a consequence of the aerodynamic forces exerted on it. Subsequently, the growth of capillary instabilities breaks the toroidal rim bordering the ejecta into smaller droplets, violently ejected radially outward, provoking the splash [G. Riboux and J. M. Gordillo, Phys. Rev. Lett. 113, 024507 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.024507. In this contribution, the effect of the growth of the boundary layer is included in the splash model presented in Phys. Rev. Lett. 113, 024507 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.024507, obtaining very good agreement between the measured and the predicted values of V^{*} for wide ranges of liquid and gas material properties, atmospheric pressures, and substrate wettabilities. Our description also modifies the way at when the liquid sheet is first ejected, which can now be determined in a much more straightforward manner than that proposed in Phys. Rev. Lett. 113, 024507 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.024507.

  15. Human convective boundary layer and its impact on personal exposure

    DEFF Research Database (Denmark)

    Licina, Dusan

    in inaccurate exposure prediction. This highlights the importance of a detailed understanding of the complex air movements that take place in the vicinity of the human body and their impact on personal exposure. The two objectives of the present work are: (i) to examine the extent to which the room air...... temperature, ventilation flow, body posture, clothing insulation/design, table positioning and chair design affect the airflow characteristics (velocity, turbulence and temperature) around the human body; and (ii) to examine the pollution distribution within the human convective boundary layer (CBL....../s in front of the seated manikin. Dressing the nude manikin in a thin-tight clothing ensemble reduced the peak velocity in the breathing zone by 17%, and by 40% for a thick-loose ensemble. A lack of hair on the head increased the peak velocity from 0.17 to 0.187 m/s. Apart from their thermal insulation...

  16. Motion of particles in a thermal boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Agrawal, Y.; Cheng, R.K.; Robben, F.; Talbot, L.

    1978-06-15

    In the course of using laser Doppler velocimetry to study combustion in a thermal boundary layer, the particle count rate was found to decrease abruptly to zero inside the boundary layer. Experimental and theoretical investigation of this phenomenon was carried out. The motion of the particles may be due to the combined effects of thermophoresis and radiative heating.

  17. Numerical Simulation of tsunami-scale wave boundary layers

    NARCIS (Netherlands)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scale waves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations,

  18. Coherent structures in wave boundary layers. Part 2. Solitary motion

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Jensen, Palle Martin; Sørensen, Lone B.

    2010-01-01

    This study continues the investigation of wave boundary layers reported by Carstensen, Sumer & Fredsøe (J. Fluid Mech., 2010, part 1 of this paper). The present paper summarizes the results of an experimental investigation of turbulent solitary wave boundary layers, simulated by solitary motion...

  19. Characterization of the atmospheric boundary layer from radiosonde ...

    Indian Academy of Sciences (India)

    moisture) or substances originating from the sur- face. It is usually flatter than the boundary layer, but fills the whole ABL in the deep convective boundary layers ..... Wea. Rev. 92 235–242. Holzworth G C 1967 Mixing depths, wind speeds and air pollution potential for selected locations in the United. States; J. Appl. Meteorol.

  20. Coupled wake boundary layer model of wind-farms

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Gayme, Dennice F.; Meneveau, Charles

    2015-01-01

    We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. This model couples the traditional, industry-standard wake model approach with a “top-down” model for the overall wind-farm boundary layer structure. The wake model

  1. The turning of the wind in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... winds underpredict the turning of the wind and the boundary-layer winds in general....

  2. Marine boundary layer simulation and verification during BOBMEX ...

    Indian Academy of Sciences (India)

    Abstract. A global spectral model (T80L18) that is operational at NCMRWF is utilized to study the structure of the marine boundary layer over the Bay of Bengal during the BOBMEX-Pilot period. The vertical profiles of various meteorological parameters within the boundary layer are studied and verified against the available ...

  3. Numerical simulation of the marine boundary layer characteristics ...

    Indian Academy of Sciences (India)

    A one-dimensional multi- level atmospheric boundary layer with TKE- closure scheme is employed to study the marine boundary layer characteristics. In this study two synoptic situations are chosen: one represents an active convection case and the other a suppressed convection. In the present article the marine ...

  4. On the application of mixed-layer theory to the stratocumulus-topped boundary layer

    Science.gov (United States)

    Zhang, Yunyan

    In this dissertation, we explore the applicability of mixed-layer theory to represent stratocumulus-topped boundary layer (STBL). Mixed-layer theory is used to study the STBL diurnal cycle. Our results show that the diurnal evolution of cloud thickness is sensitive to the entrainment efficiency. Specifically with low entrainment efficiencies, the cloud thickness evolution is in a better agreement with observations. We explain these effects through a consideration of the equilibrium state of cloud boundaries and their adjustment timescales. The susceptibility of cloud albedo to droplet number density dominates the entrainment effects. This suggests that estimates of aerosol indirect effects from stratocumulus clouds will not be particularly sensitive to the way entrainment is represented in large-scale models. The low-cloud amount (LCA) is diagnosed based on the equilibrium solutions of the mixed-layer model (MLM). ECMWF Reanalysis (ERA-40) data serve as large-scale boundary conditions. Results are compared to the International Satellite Cloud Climatology Project D2 data, especially in light of the relationship between the LCA and the lower-troposphere stability (LTS). Our results show that the synoptic variability in divergence contributes to LCA climatology. This climatology reproduced from MLM is more sensitive to processes that redistribute the mass field as compared to heat and moisture. Other large-scale conditions contribute to LCA depending on their correlation with the LTS and the strength of the LTS signal in individual regions. An autoregressive noise model is proposed to represent the synoptic variability in divergence based on analysis of ERA-40 data. Using this model, the equilibrium cloud fraction is shown as a function of the mean divergence value, the noise level, and the noise autocorrelation time scale. Mixed-layer model with such noise produces a reasonable comparison to observations in LCA climatology. An interaction rule is specified based on

  5. Retinal peripapillary nerve fiber layer thickness in neuromyelitis optica.

    Science.gov (United States)

    Merle, Harold; Olindo, Stéphane; Donnio, Angélique; Richer, Raymond; Smadja, Didier; Cabre, Philippe

    2008-10-01

    To measure the thickness of retinal peripapillary nerve fibers throughout the course of neuromyelitis optica (NMO). This study was of a cross-sectional design, examining the thickness of the retinal peripapillary nerve fiber layer by optical coherence tomography, in patients with NMO (n = 15; 30 eyes), patients with multiple sclerosis (MS; n = 15; 30 eyes), and a control group (n = 23; 46 eyes). The thicknesses were acquired according to protocol with the fast RNFL (Retinal Nerve Fiber Layer) procedure. The study of visual function includes for each eye a determination of refraction, measurement of visual acuity, measurement of contrast vision, an analysis of color vision, and a frequency-doubling technology perimetry (FDTP). The main outcome measurements were the thickness of the retinal peripapillary nerve fibers, visual acuity, and scores of contrast vision. The average thickness of retinal peripapillary nerve fibers was respectively in the NMO, MS, and control group: 65.44 +/- 24.19, 83.85 +/- 24.12, and 106.24 +/- 12.46 microm (P = 0.01). The average thickness of retinal peripapillary nerve fibers correlated to visual acuity, the scores of contrast vision, the scores of FDTP, and the number of episodes per patient (r = -0.58, P = 0.03). This is the first study to produce measurements of the thickness of retinal peripapillary nerve fibers during optic neuropathies of NMO. The optic neuropathies of NMO are also accompanied by an acute and chronic axonal loss, as clearly illustrated by the OCT.

  6. Effect of Pressure Gradients on Plate Response and Radiation in a Supersonic Turbulent Boundary Layer

    Science.gov (United States)

    Frendi, Abdelkader

    1997-01-01

    Using the model developed by the author for zero-pressure gradient turbulent boundary layers, results are obtained for adverse and favorable pressure gradients. It is shown that when a flexible plate is located in an adverse pressure gradient area, it vibrates more than if it were in a favorable pressure gradient one. Therefore the noise generated by the plate in an adverse pressure gradient is much greater than that due to the plate in a favorable pressure gradient. The effects of Reynolds number and boundary layer thickness are also analyzed and found to have the same effect in both adverse and favorable pressure gradient cases. Increasing the Reynolds number is found to increase the loading on the plate and therefore acoustic radiation. An increase in boundary layer thickness is found to decrease the level of the high frequencies and therefore the response and radiation at these frequencies. The results are in good qualitative agreement with experimental measurements.

  7. Linear stability analysis of interactions between mixing layer and boundary layer flows

    Directory of Open Access Journals (Sweden)

    Fengjun LIU

    2017-08-01

    Full Text Available The linear instabilities of incompressible confluent mixing layer and boundary layer were analyzed. The mixing layers include wake, shear layer and their combination. The mean velocity profile of confluent flow is taken as a superposition of a hyperbolic and exponential function to model a mixing layer and the Blasius similarity solution for a flat plate boundary layer. The stability equation of confluent flow was solved by using the global numerical method. The unstable modes associated with both the mixing and boundary layers were identified. They are the boundary layer mode, mixing layer mode 1 (nearly symmetrical mode and mode 2 (nearly anti-symmetrical mode. The interactions between the mixing layer stability and the boundary layer stability were examined. As the mixing layer approaches the boundary layer, the neutral curves of the boundary layer mode move to the upper left, the resulting critical Reynolds number decreases, and the growth rate of the most unstable mode increases. The wall tends to stabilize the mixing layer modes at low frequency. In addition, the mode switching behavior of the relative level of the spatial growth rate between the mixing layer mode 1 and mode 2 with the velocity ratio is found to occur at low frequency.

  8. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R. W.

    2015-03-25

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.

  9. Effects on the Benthic Diffusive Boundary-Layer Imposed by Microelectrodes

    DEFF Research Database (Denmark)

    GLUD, RN; GUNDERSEN, JK; REVSBECH, NP

    1994-01-01

    Oxygen microgradients and fluxes were studied in a 0.3-0.6-mm-thick diffusive boundary layer (DBL) of aquatic sediments by the use of O2 microelectrodes with sensing tips of 5 mum. One microelectrode was introduced vertically from above while another was introduced along the same vertical axis fr...

  10. The influence of varying layer thicknesses on the color predictability of two different composite layering concepts

    NARCIS (Netherlands)

    Khashayar, G.; Dozic, A.; Kleverlaan, C.J.; Feilzer, A.J.

    2014-01-01

    Objective Optical properties of teeth are mimicked by composite layering techniques by combining a relatively opaque layer (dentin) with more translucent layers (enamel). However, the replacing material cannot always optically imitate the tooth when applied in the same thickness as that of the

  11. The thickness of the HI gas layer in spiral galaxies

    NARCIS (Netherlands)

    Sicking, Floris Jan

    1997-01-01

    In the present study, in two inclined spiral galaxies, NGC 3198 and NGC 2403, the HI random velocity dispersion and layer thickness will be measured simultaneously. This will be done from the HI velocity dispersion field (the distribution on the sky of the observed HI line of sight velocity

  12. Effect of free-stream turbulence on boundary layer transition.

    Science.gov (United States)

    Goldstein, M E

    2014-07-28

    This paper is concerned with the transition to turbulence in flat plate boundary layers due to moderately high levels of free-stream turbulence. The turbulence is assumed to be generated by an (idealized) grid and matched asymptotic expansions are used to analyse the resulting flow over a finite thickness flat plate located in the downstream region. The characteristic Reynolds number Rλ based on the mesh size λ and free-stream velocity is assumed to be large, and the turbulence intensity ε is assumed to be small. The asymptotic flow structure is discussed for the generic case where the turbulence Reynolds number εRλ and the plate thickness and are held fixed (at O(1) and O(λ), respectively) in the limit as [Formula: see text] and ε→0. But various limiting cases are considered in order to explain the relevant transition mechanisms. It is argued that there are two types of streak-like structures that can play a role in the transition process: (i) those that appear in the downstream region and are generated by streamwise vorticity in upstream flow and (ii) those that are concentrated near the leading edge and are generated by plate normal vorticity in upstream flow. The former are relatively unaffected by leading edge geometry and are usually referred to as Klebanoff modes while the latter are strongly affected by leading edge geometry and are more streamwise vortex-like in appearance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Bristled shark skin: a microgeometry for boundary layer control?

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A W; Hidalgo, P; Westcott, M [Aerospace Engineering and Mechanics Department, University of Alabama, Box 870280, Tuscaloosa, AL 35487 (United States); Motta, P [Biology Department, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)], E-mail: alang@eng.ua.edu

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  14. Change of Surface Roughness and Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1978-01-01

    The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent...... numerical results from higher-order closure models, it is found that, even at a downwind distance such that the internal boundary layer has grown to the full height of the planetary boundary layers, the surface stress still considerably exceeds the equilibrium value...

  15. Large Eddy Simulation of the ventilated wave boundary layer

    DEFF Research Database (Denmark)

    Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2006-01-01

    A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean bed shear stress...

  16. Effect of externally generated turbulence on wave boundary layer

    DEFF Research Database (Denmark)

    Fredsøe, Jørgen; Sumer, B. Mutlu; Kozakiewicz, A.

    2003-01-01

    This experimental study deals with the effect of externally generated turbulence on the oscillatory boundary layer to simulate the turbulence in the wave boundary layer under broken waves in the swash zone. The subject has been investigated experimentally in a U-shaped, oscillating water tunnel...... results. The mean and turbulence quantities in the outer flow region are increased substantially with the introduction of the grids. It is shown that the externally generated turbulence is able to penetrate the bed boundary layer, resulting in an increase in the bed shear stress, and therefore...

  17. Stable Boundary Layer Education (STABLE) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region, a low-level jet. To advance our understanding of the nocturnal stable boundary layer, high temporal and vertical resolution data on the temperature and wind properties are needed, along with both large-eddy simulation and cloud-resolving modeling.

  18. Effects of Refractive Index and Diffuse or Specular Boundaries on a Radiating Isothermal Layer

    Science.gov (United States)

    Siegel, R.; Spuckler, C. M.

    1994-01-01

    Equilibrium temperatures of an absorbing-emitting layer were obtained for exposure to incident radiation and with the layer boundaries either specular or diffuse. For high refractive indices the surface condition can influence the radiative heat balance if the layer optical thickness is small. Hence for a spectrally varying absorption coefficient the layer temperature is affected if there is significant radiative energy in the spectral range with a small absorption coefficient. Similar behavior was obtained for transient radiative cooling of a layer where the results are affected by the initial temperature and hence the fraction of energy radiated in the short wavelength region where the absorption coefficient is small. The results are a layer without internal scattering. If internal scattering is significant, the radiation reaching the internal surface of a boundary is diffused and the effect of the two different surface conditions would become small.

  19. Overview of Boundary Layer Transition Research in Support of Orbiter Return To Flight

    Science.gov (United States)

    Berry, Scott A.; Horvath, Thomas J.; Greene, Francis A.; Kinder, Gerald R.; Wang, K. C.

    2006-01-01

    A predictive tool for estimating the onset of boundary layer transition resulting from damage to and/or repair of the thermal protection system was developed in support of Shuttle Return to Flight. The boundary layer transition tool is part of a suite of tools that analyze the aerothermodynamic environment to the local thermal protection system to allow informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each damage site or repair, the expected time (and thus Mach number) at transition onset is predicted to help define the aerothermodynamic environment to use in the subsequent thermal and stress analysis of the local thermal protection system and structure. The boundary layer transition criteria utilized for the tool was developed from ground-based measurements to account for the effect of both protuberances and cavities and has been calibrated against select flight data. Computed local boundary layer edge conditions were used to correlate the results, specifically the momentum thickness Reynolds number over the edge Mach number and the boundary layer thickness. For the initial Return to Flight mission, STS-114, empirical curve coefficients of 27, 100, and 900 were selected to predict transition onset for protuberances based on height, and cavities based on depth and length, respectively.

  20. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  1. Investigation of turbulent boundary layer structures using Tomographic PIV

    Science.gov (United States)

    Saikrishnan, Neelakantan; Longmire, Ellen; Wieneke, Bernd

    2008-11-01

    Tomographic particle image velocimetry (TPIV) data were acquired in the logarithmic region of a zero pressure gradient turbulent boundary layer flow at friction Reynolds number Reτ = 1160. Experiments were conducted in a suction type wind tunnel seeded with olive oil particles of diameter ˜ 1μm. The volume of interest was illuminated by two Nd:YAG laser beams expanded with appropriate optics into sheets of 8mm thickness in the wall-normal direction (z). Images were acquired by four 2k x 2k pixel cameras, and correlation of reconstructed fields provided the full velocity gradient tensor in a volume of 0.7δ x 0.7δ x 0.07δ, which resolved the region z^+ = 70-150 in the log layer. Various vortex identification techniques, such as Galilean decomposition and iso-surfaces of two- and three-dimensional swirl, were utilized to visualize and analyze the eddy structures present in instantaneous fields. The results of the present study will be compared to results from earlier experimental studies that relied on planar PIV data only to identify vortices and vortex packets as well as from a direct numerical simulation of fully developed channel flow at comparable Reτ.

  2. Studies of planetary boundary layer by infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  3. Fuselage boundary-layer refraction of fan tones radiated from an installed turbofan aero-engine.

    Science.gov (United States)

    Gaffney, James; McAlpine, Alan; Kingan, Michael J

    2017-03-01

    A distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is extended to include the refraction effects caused by the fuselage boundary layer. The model is a simple representation of an installed turbofan, where fan tones are represented in terms of spinning modes radiated from a semi-infinite circular duct, and the aircraft's fuselage is represented by an infinitely long, rigid cylinder. The distributed source is a disk, formed by integrating infinitesimal volume sources located on the intake duct termination. The cylinder is located adjacent to the disk. There is uniform axial flow, aligned with the axis of the cylinder, everywhere except close to the cylinder where there is a constant thickness boundary layer. The aim is to predict the near-field acoustic pressure, and in particular, to predict the pressure on the cylindrical fuselage which is relevant to assess cabin noise. Thus no far-field approximations are included in the modelling. The effect of the boundary layer is quantified by calculating the area-averaged mean square pressure over the cylinder's surface with and without the boundary layer included in the prediction model. The sound propagation through the boundary layer is calculated by solving the Pridmore-Brown equation. Results from the theoretical method show that the boundary layer has a significant effect on the predicted sound pressure levels on the cylindrical fuselage, owing to sound radiation of fan tones from an installed turbofan aero-engine.

  4. Size distributions of boundary-layer clouds

    Energy Technology Data Exchange (ETDEWEB)

    Stull, R.; Berg, L.; Modzelewski, H. [Univ. of Wisconsin, Madison, WI (United States)

    1996-04-01

    Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.

  5. Influences on the Height of the Stable Boundary Layer as seen in LES

    Energy Technology Data Exchange (ETDEWEB)

    Kosovic, B; Lundquist, J

    2004-06-15

    Climate models, numerical weather prediction (NWP) models, and atmospheric dispersion models often rely on parameterizations of planetary boundary layer height. In the case of a stable boundary layer, errors in boundary layer height estimation can result in gross errors in boundary-layer evolution and in prediction of turbulent mixing within the boundary layer.

  6. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    Energy Technology Data Exchange (ETDEWEB)

    Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G., E-mail: zgdeng@gmail.com

    2014-10-15

    Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  7. Reactive boundary layers in metallic rolling contacts

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, John

    2016-05-01

    more thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 - 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 - 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates

  8. Viscous boundary layers in rotating fluids driven by periodic flows

    Science.gov (United States)

    Bergstrom, R. W.; Cogley, A. C.

    1976-01-01

    The paper analyzes the boundary layers formed in a rotating fluid by an oscillating flow over an infinite half plate, with particular attention paid to the effects of unsteadiness, the critical latitude effect and the structure of the solution to the boundary layer equations at resonance. The Navier-Stokes boundary layer equations are obtained through an asymptotic expansion with the incorporation of the Rossby and Ekman numbers and are analyzed as the sum of a nonlinear steady solution and a linearized unsteady solution. The solution is predominantly composed of two inertial wave vector components, one circularly polarized to the left and the other circularly polarized to the right. The problem considered here has relevance in oceanography and meteorology, with special reference to the unsteady atmospheric boundary layer.

  9. Coherent structures in wave boundary layers. Part 1. Oscillatory motion

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen

    2010-01-01

    This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i) ...

  10. Boundary Layer of Photon Absorption Applied to Heterogeneous Photocatalytic Solar Flat Plate Reactor Design

    Directory of Open Access Journals (Sweden)

    Héctor L. Otálvaro-Marín

    2014-01-01

    Full Text Available This study provides information to design heterogeneous photocatalytic solar reactors with flat plate geometry used in treatment of effluents and conversion of biomass to hydrogen. The concept of boundary layer of photon absorption taking into account the efficient absorption of radiant energy was introduced; this concept can be understood as the reactor thickness measured from the irradiated surface where 99% of total energy is absorbed. Its thickness and the volumetric rate of photons absorption (VRPA were used as design parameters to determine (i reactor thickness, (ii maximum absorbed radiant energy, and (iii the optimal catalyst concentration. Six different commercial brands of titanium dioxide were studied: Evonik-Degussa P-25, Aldrich, Merck, Hombikat, Fluka, and Fisher. The local volumetric rate of photon absorption (LVRPA inside the reactor was described using six-flux absorption-scattering model (SFM applied to solar radiation. The radiation field and the boundary layer thickness of photon absorption were simulated with absorption and dispersion effects of catalysts in water at different catalyst loadings. The relationship between catalyst loading and reactor thickness that maximizes the absorption of radiant energy was obtained for each catalyst by apparent optical thickness. The optimum concentration of photocatalyst Degussa P-25 was 0.2 g/l in 0.86 cm of thickness, and for photocatalyst Aldrich it was 0.3 g/l in 0.80 cm of thickness.

  11. Diffusive boundary layers and photosynthesis of the epilithic algal community of coral reefs

    DEFF Research Database (Denmark)

    Larkum, Anthony W.D.; Koch, Eva-Maria W.; Kühl, Michael

    2003-01-01

    : the Gulf of Aqaba, Eilat (Israel), and One Tree Reef on the Great Barrier Reef (Australia). Microsensors were used to measure O2 and pH at the EAC surface and above. Oxygen profiles in the light and dark indicated a diffusive boundary layer (DBL) thickness of 180–590 µm under moderate flow (~0.08 m s-1......The effects of mass transfer resistance due to the presence of a diffusive boundary layer on the photosynthesis of the epilithic algal community (EAC) of a coral reef were studied. Photosynthesis and respiration of the EAC of dead coral surfaces were investigated for samples from two locations...

  12. Resistance Laws For Stable Baroclinic Boundary Layers Revisited

    Science.gov (United States)

    Zilitinkevich, S.; Baklanov, A.; Djolov, G.; Esau, I.

    An advanced theoretical model is proposed including the effects of the free-flow sta- bility and baroclinicity in the resistance law for stable boundary layers. Theoretical predictions are verified against LES and experimental data. This new development ex- plains low accuracy of all earlier resistance law formulation and opens up fresh oppor- tunities for improved parameterisation of stable boundary layers in general circulation models.

  13. MPLNET V3 Cloud and Planetary Boundary Layer Detection

    Science.gov (United States)

    Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.

    2016-01-01

    The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.

  14. GLAS/ICESat L2 Global Planetary Boundary Layer & Elevated Aerosol Layer Heights V033

    Data.gov (United States)

    National Aeronautics and Space Administration — The level 2 planetary boundary layer and elevated aerosol layer height data will be provided at a minimum of once per 4 seconds. Data granules will contain...

  15. GLAS/ICESat L2 Global Planetary Boundary Layer & Elevated Aerosol Layers (HDF5) V033

    Data.gov (United States)

    National Aeronautics and Space Administration — The level 2 planetary boundary layer and elevated aerosol layer height data will be provided at a minimum of once per 4 seconds. Data granules will contain...

  16. Boundary-Layer Linear Stability Theory

    Science.gov (United States)

    1984-06-01

    tae vela &ity profile ia a ft feaaa-’z-v layer» «alia* a 2D baaadary layer, depends oa the dlreetlea, there la a different atablllty prablea te eel...ooaataat-phaae llama are given In Fig. 12.7. Vortex lo. 11 la tne one that ooaes Froa tbe point souroe, aad it la the only one with as amplitude

  17. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    Science.gov (United States)

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  18. Analysis and Modeling of Boundary Layer Separation Method (BLSM).

    Science.gov (United States)

    Pethő, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-09-01

    Nowadays rules of environmental protection strictly regulate pollution material emission into environment. To keep the environmental protection laws recycling is one of the useful methods of waste material treatment. We have developed a new method for the treatment of industrial waste water and named it boundary layer separation method (BLSM). We apply the phenomena that ions can be enriched in the boundary layer of the electrically charged electrode surface compared to the bulk liquid phase. The main point of the method is that the boundary layer at correctly chosen movement velocity can be taken out of the waste water without being damaged, and the ion-enriched boundary layer can be recycled. Electrosorption is a surface phenomenon. It can be used with high efficiency in case of large electrochemically active surface of electrodes. During our research work two high surface area nickel electrodes have been prepared. The value of electrochemically active surface area of electrodes has been estimated. The existence of diffusion part of the double layer has been experimentally approved. The electrical double layer capacity has been determined. Ion transport by boundary layer separation has been introduced. Finally we have tried to estimate the relative significance of physical adsorption and electrosorption.

  19. Turbulent Boundary Layer at Large Re

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2016-03-01

    Full Text Available The fluids as deformable bodies without own shape, when starting from rest, experience interactions between the flowing fluid and the physical surfaces marking the bounds of flow. These interactions are a kind of impact process where there is a momentum exchange between two colliding bodies, i.e. the flow and its boundary surfaces. Within a short time of contact a post-impact shear flow occurs where two main effects are triggered off by the flow-induced collision: dramatic redistribution of the momentum and the boundary vorticity followed by the shear stress/viscosity change in the microstructure of the fluid which at the beginning behaves as linear reactive medium and latter as nonlinear dispersive medium. The disturbance of the starting flow induces the entanglement of the wall-bounded flow in the form of point-vortices or concentrated vorticity balls whence waves are emitted and propagated through flow field. The paper develops a wave mechanism for the transport of the concentrated boundary vorticity, directly related to the fascinating turbulence phenomenon, using the torsion concept of vorticity filaments associated with the hypothesis of thixotropic/nonlinear viscous fluid.

  20. Marine boundary-layer height estimated from the HIRLAM model

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.

    2002-01-01

    -number estimates based on output from the operational numerical weather prediction model HIRLAM (a version of SMHI with a grid resolution of 22.5 km x 22.5 km). For southwesterly winds it was found that a relatively large island (Bornholm) lying 20 km upwind of the measuring site influences the boundary...... to the measuring site is about 100 km and the Richardson methods reproduce the height of the marine boundary layer. This suggests that the HIRLAM model adequately resolves a water fetch of 100 km with respect to predictions of the height of the marine boundary layer....

  1. Shock-Wave Boundary Layer Interactions

    Science.gov (United States)

    1986-02-01

    presentees et discutees en profondeur. Gelles-ci comprennent: les methodes globales dont I’objectif est de calculer le changement brutal que les...presented. These last methods allow a more local description of the flow and the use of more sophisticated turbulence models, even though it be at the cost ...prescribed displacement thickness. However, it can be applied to the case of specified wall shear stress distribution at the cost of minor changes. Two

  2. Sun–Earth connection: Boundary layer waves and auroras

    Indian Academy of Sciences (India)

    G S Lakhina et al. Figure 1. Schematics of the Earth's magnetosphere with various boundary layers. The plasma mantle, the exterior cusp, the entry layer, the .... The univer- sal time (UT), radial distance from the center of the earth (R ), magnetic latitude (λЕ), magnetic local time (MLT), and approximate L-shell value, are ...

  3. Plasma boundary layer and magnetopause layer of the earth's magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, T.E.

    1979-06-01

    IMP 6 observations of the plasma boundary layer (PBL) and magnetopause layer (MPL) of the earth's magnetosphere indicate that plasma in the low-latitude portion of the PBL is supplied primarily by direct transport of magnetosheath plasma across the MPL and that this transport process is relatively widespread over the entire sunward magnetospheric boundary.

  4. Boundary-Layer Effects on Acoustic Transmission Through Narrow Slit Cavities.

    Science.gov (United States)

    Ward, G P; Lovelock, R K; Murray, A R J; Hibbins, A P; Sambles, J R; Smith, J D

    2015-07-24

    We explore the slit-width dependence of the resonant transmission of sound in air through both a slit array formed of aluminum slats and a single open-ended slit cavity in an aluminum plate. Our experimental results accord well with Lord Rayleigh's theory concerning how thin viscous and thermal boundary layers at a slit's walls affect the acoustic wave across the whole slit cavity. By measuring accurately the frequencies of the Fabry-Perot-like cavity resonances, we find a significant 5% reduction in the effective speed of sound through the slits when an individual viscous boundary layer occupies only 5% of the total slit width. Importantly, this effect is true for any airborne slit cavity, with the reduction being achieved despite the slit width being on a far larger scale than an individual boundary layer's thickness. This work demonstrates that the recent prevalent loss-free treatment of narrow slit cavities within acoustic metamaterials is unrealistic.

  5. Development of examination technique for oxide layer thickness measurement of irradiated fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Koo, D. S.; Park, S. W.; Kim, J. H.; Seo, H. S.; Min, D. K.; Kim, E. K.; Chun, Y. B.; Bang, K. S

    1999-06-01

    Technique for oxide layer thickness measurement of irradiated fuel rods was developed to measure oxide layer thickness and study characteristic of fuel rods. Oxide layer thickness of irradiated fuels were measured, analyzed. Outer oxide layer thickness of 3 cycle-irradiated fuel rods were 20 - 30 {mu}m, inner oxide layer thickness 0 - 10 {mu}m and inner oxide layer thickness on cracked cladding about 30 {mu}m. Oxide layer thickness of 4 cycle-irradiated fuel rods were about 2 times as thick as those of 1 cycle-irradiated fuel rods. Oxide layer on lower region of irradiated fuel rods was thin and oxide layer from lower region to upper region indicated gradual increase in thickness. Oxide layer thickness from 2500 to 3000 mm showed maximum and oxide layer thickness from 3000 to top region of irradiated fuel rods showed decreasing trend. Inner oxide layer thicknesses of 4 cycle-irradiated fuel rod were about 8 {mu}m at 750 - 3500 mm from the bottom end of fuel rod. Outer oxide layer thickness were about 8 {mu}m at 750 - 1000 mm from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel. Oxide layer thickness technique will apply safety evaluation and study of reactor fuels. (author). 6 refs., 14 figs.

  6. Influence of the angle between the wind and the isothermal surfaces on the boundary layer structures in turbulent thermal convection.

    Science.gov (United States)

    Shishkina, Olga; Wagner, Sebastian; Horn, Susanne

    2014-03-01

    We derive the asymptotes for the ratio of the thermal to viscous boundary layer thicknesses for infinite and infinitesimal Prandtl numbers Pr as functions of the angle β between the large-scale circulation and an isothermal heated or cooled surface for the case of turbulent thermal convection with laminar-like boundary layers. For this purpose, we apply the Falkner-Skan ansatz, which is a generalization of the Prandtl-Blasius one to a nonhorizontal free-stream flow above the viscous boundary layer. Based on our direct numerical simulations (DNS) of turbulent Rayleigh-Bénard convection for Pr=0.1, 1, and 10 and moderate Rayleigh numbers up to 108 we evaluate the value of β that is found to be around 0.7π for all investigated cases. Our theoretical predictions for the boundary layer thicknesses for this β and the considered Pr are in good agreement with the DNS results.

  7. Thermal Boundary Layer Effects on Line-of-Sight Tunable Diode Laser Absorption Spectroscopy (TDLAS) Gas Concentration Measurements.

    Science.gov (United States)

    Qu, Zhechao; Werhahn, Olav; Ebert, Volker

    2018-01-01

    The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO 2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.

  8. A numerical simulation of longitudinal vortex in turbulent boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.S.; Lee, K.B. [Pusan National University, Pusan (Korea)

    2000-06-01

    This paper represents numerical computations of the interaction between the longitudinal vortex and a flat plate 3-D turbulent boundary layer. In the present study, the main interest is in the behavior of longitudinal vortices introduced in turbulent boundary layers. The flow field behind vortex generator is modeled by the information that is available from studies on the delta winglet. Also, the Reynolds-averaged Navier-Stoke equations for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, is solved by the method of pseudo compressibility. The present results show that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall, and have a good agreement with the experimental data. (author). 12 refs., 12 figs.

  9. Definition of Turbulent Boundary-Layer with Entropy Concept

    Directory of Open Access Journals (Sweden)

    Zhao Rui

    2016-01-01

    Full Text Available The relationship between the entropy increment and the viscosity dissipation in turbulent boundary-layer is systematically investigated. Through theoretical analysis and direct numerical simulation (DNS, an entropy function fs is proposed to distinguish the turbulent boundary-layer from the external flow. This approach is proved to be reliable after comparing its performance in the following complex flows, namely, low-speed airfoil flows with different wall temperature, supersonic cavity-ramp flow dominated by the combination of free-shear layer, larger recirculation and shocks, and the hypersonic flow past an aeroplane configuration. Moreover, fs is deduced from the point of energy, independent of any particular turbulent quantities. That is, this entropy concept could be utilized by other engineering applications related with turbulent boundary-layer, such as turbulence modelling transition prediction and engineering thermal protection.

  10. Analysis of diabatic flow modification in the internal boundary layer

    DEFF Research Database (Denmark)

    Floors, Rogier; Gryning, Sven-Erik; Pena Diaz, Alfredo

    2011-01-01

    Measurements at two meteorological masts in Denmark, Horns Rev in the sea and Høvsøre near the coastline on land, are used to analyze the behaviour of the flow after a smooth-to-rough change in surface conditions. The study shows that the wind profile within the internal boundary layer...... is controlled by a combination of both downstream and upstream stability and surface roughness conditions. A model based on a diffusion analogy is able to predict the internal boundary layer height well. Modeling the neutral and long-term wind profile with a 3 layer linear interpolation scheme gives good...... results at Høvsøre. Based on a comparison with a numerical model and the measurements, the constants in the interpolation scheme are slightly adjusted, which yields an improvement for the description of the wind profile in the internal boundary layer....

  11. Study of turbulent boundary layer structures using Tomographic PIV

    Science.gov (United States)

    Gao, Qi; Longmire, Ellen; Ortiz-Duenas, Cecilia

    2009-11-01

    Tomographic-PIV was applied to investigate vortical structures in the logarithmic region of turbulent boundary layers. Measurements were performed in a water channel facility with δ 110 mm for Reτ 2400 and 2900. Laser sheets with thickness up to 7mm were aligned parallel to the bounding surface. Four cameras with 2k x 2k pixels were placed in a rectangular array facing the measurement volume with tilt angle ˜30 to the wall normal direction. Magnification was ˜0.05 mm/pixel. The resulting measurement volumes were 0.8δ x 0.8δ in the streamwise and spanwise directions and 0.065δ or 120 viscous units in the wall-normal direction. Correlations were performed on 64^3 voxel volumes with 75% overlap yielding a vector spacing of 25^3 viscous units. The data were probed using swirl strength and direction as well as convection velocity to identify and characterize relatively large scale eddies and structures within the volumes. The results will be discussed and compared with results at similar wall-normal locations in lower Reynolds number DNS channel (Reτ=590, 934 of Moser et al., 1999 and del 'Alamo et al., 2004) and wind tunnel (Reτ=1160) flows.

  12. Nature, theory and modelling of geophysical convective planetary boundary layers

    Science.gov (United States)

    Zilitinkevich, Sergej

    2015-04-01

    Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in

  13. Human Chorioretinal Layer Thicknesses Measured in Macula-wide, High-Resolution Histologic Sections

    Science.gov (United States)

    Messinger, Jeffrey D.; Sloan, Kenneth R.; Mitra, Arnab; McGwin, Gerald; Spaide, Richard F.

    2011-01-01

    Purpose. To provide a comprehensive description of chorioretinal layer thicknesses in the normal human macula, including two-layer pairs that can produce a combined signal in some optical coherence tomography (OCT) devices (ganglion cell [GCL] and inner plexiform [IPL] layers and outer plexiform [OPL] and outer nuclear [ONL] layers). Methods. In 0.8-μm-thick, macula-wide sections through the foveola of 18 donors (age range, 40–92 years), 21 layers were measured at 25 locations by a trained observer and validated by a second observer. Tissue volume changes were assessed by comparing total retinal thickness in ex vivo OCT and in sections. Results. Median tissue shrinkage was 14.5% overall and 29% in the fovea. Histologic laminar boundaries resembled those in SD-OCT scans, but the shapes of the foveolar OPL and ONL differed. Histologic GCL, IPL, and OPLHenle were thickest at 0.8. to 1, 1.5, and 0.4 mm eccentricity, respectively. ONL was thickest in an inward bulge at the foveal center. At 1 mm eccentricity, GCL, INL, and OPLHenle represented 17.3% to 21.1%, 18.0% to 18.5%, and 14.2% to 16.6% of total retinal thickness, respectively. In donors ≥70 years of age, the RPE and choroid were 17.1% and 29.6% thinner and OPLHenle was 20.8% thicker than in donors macula were generated. Newer OCT systems can separate GCL from IPL and OPLHenle from ONL, with good agreement for the proportion of retinal thickness occupied by OPLHenle in OCT and histology. The thickening of OPLHenle in older eyes may reflect Müller cell hypertrophy associated with rod loss. PMID:21421869

  14. Vortex Generators to Control Boundary Layer Interactions

    Science.gov (United States)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  15. Derivation of Zagarola-Smits scaling in zero-pressure-gradient turbulent boundary layers

    Science.gov (United States)

    Wei, Tie; Maciel, Yvan

    2018-01-01

    This Rapid Communication derives the Zagarola-Smits scaling directly from the governing equations for zero-pressure-gradient turbulent boundary layers (ZPG TBLs). It has long been observed that the scaling of the mean streamwise velocity in turbulent boundary layer flows differs in the near surface region and in the outer layer. In the inner region of small-velocity-defect boundary layers, it is generally accepted that the proper velocity scale is the friction velocity, uτ, and the proper length scale is the viscous length scale, ν /uτ . In the outer region, the most generally used length scale is the boundary layer thickness, δ . However, there is no consensus on velocity scales in the outer layer. Zagarola and Smits [ASME Paper No. FEDSM98-4950 (1998)] proposed a velocity scale, U ZS=(δ1/δ ) U∞ , where δ1 is the displacement thickness and U∞ is the freestream velocity. However, there are some concerns about Zagarola-Smits scaling due to the lack of a theoretical base. In this paper, the Zagarola-Smits scaling is derived directly from a combination of integral, similarity, and order-of-magnitude analysis of the mean continuity equation. The analysis also reveals that V∞, the mean wall-normal velocity at the edge of the boundary layer, is a proper scale for the mean wall-normal velocity V . Extending the analysis to the streamwise mean momentum equation, we find that the Reynolds shear stress in ZPG TBLs scales as U∞V∞ in the outer region. This paper also provides a detailed analysis of the mass and mean momentum balance in the outer region of ZPG TBLs.

  16. On the Explicit Expression for Plasma Layer Thickness

    CERN Document Server

    Sharma, R K

    2004-01-01

    The marginal zone theory is used to account for the observed Fahreus Linquist effect when the viscoity of blood changes with the diameter of the capillary. An attributable cause is the axial accumulation of cells. The discharge rate from Hagen Poiseulle law at steady state was derived by Haynes (1960) for the core and plasma layer and a total discharge rate was expressed as a function of the pressure drop along the capillary, quartic dependence on the radius of the capillary and quartic dependence on the dimensionless marginal zone thickness. The apparent of viscosity of the blood is expressed as a function of the ratio of the core layer viscosity and the plasma layer viscosity. In order to back out a marginal zone thickness from a given set of information, the Charm and Kurland expression (1974) for the viscosity and hematocrit variation and the temperature dependence parameter of the hematocrit alpha can be used to develop two transcendental equations and two un! knowns. This is the recommended procedure us...

  17. On a Explicit Expresion for Plasma Layer Thickness

    CERN Document Server

    Sharma, R K

    2004-01-01

    The marginal zone theory is used to account for the observed Fahreus Linquist effect when the viscoity of blood changes with the diameter of the capillary. An attributable cause is the axial accumulation of cells. The discharge rate from Hagen Poiseulle law at steady state was derived by Haynes (1960) for the core and plasma layer and a total discharge rate was expressed as a function of the pressure drop along the capillary, quartic dependence on the radius of the capillary and quartic dependence on the dimensionless marginal zone thickness. The apparent of viscosity of the blood is expressed as a function of the ratio of the core layer viscosity and the plasma layer viscosity. In order to back out a marginal zone thickness from a given set of information, the Charm and Kurland expression (1974) for the viscosity and hematocrit variation and the temperature dependence parameter of the hematocrit alpha can be used to develop two transcendental equations and two un! knowns. This is the recommended procedure us...

  18. Cubulated groups: thickness, relative hyperbolicity, and simplicial boundaries

    OpenAIRE

    Behrstock, Jason; Hagen, Mark F.

    2012-01-01

    Let G be a group acting geometrically on a CAT(0) cube complex X. We prove first that G is hyperbolic relative to the collection P of subgroups if and only if the simplicial boundary of X is the disjoint union of a nonempty discrete set, together with a pairwise-disjoint collection of subcomplexes corresponding, in the appropriate sense, to elements of P. As a special case of this result is a new proof, in the cubical case, of a Theorem of Hruska--Kleiner regarding Tits boundaries of relative...

  19. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment.

    Science.gov (United States)

    Zhang, Chao; Liao, Qiang; Chen, Rong; Zhu, Xun

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Characteristics of the nocturnal boundary layer inferred from ozone measurements onboard a Zeppelin airship

    Science.gov (United States)

    Rohrer, Franz; Li, Xin; Hofzumahaus, Andreas; Ehlers, Christian; Holland, Frank; Klemp, Dieter; Lu, Keding; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    The nocturnal boundary layer (NBL) is a sublayer within the planetary boundary layer (PBL) which evolves above solid land each day in the late afternoon due to radiation cooling of the surface. It is a region of several hundred meters thickness which inhibits vertical mixing. A residual and a surface layer remain above and below the NBL. Inside the surface layer, almost all direct emissions of atmospheric constituents take place during this time. This stratification lasts until the next morning after sunrise. Then, the heating of the surface generates a new convectionally mixed layer which successively eats up the NBL from below. This process lasts until shortly before noon when the NBL disappears completely and the PBL is mixed convectionally. Ozone measurements onboard a Zeppelin airship in The Netherlands, in Italy, and in Finland are used to analyse this behaviour with respect to atmospheric constituents and consequences for the diurnal cycles observed in the surface layer, the nocturnal boundary layer, and the residual layer are discussed.

  1. On the dynamic behavior of composite panels under turbulent boundary layer excitations

    Science.gov (United States)

    Ciappi, E.; De Rosa, S.; Franco, F.; Vitiello, P.; Miozzi, M.

    2016-03-01

    In this work high Mach number aerodynamic and structural measurements acquired in the CIRA (Italian Aerospace Research Center) transonic wind tunnel and the models used to analyze the response of composite panels to turbulent boundary layer excitation are presented. The two investigated panels are CFRP (Carbon Fiber-Reinforced Polymer) composite plates and their lay-up is similar to configurations used in aeronautical structures. They differ only for the presence of an embedded viscoelastic layer. The experimental set-up has been designed to reproduce a pressure fluctuations field beneath a turbulent boundary layer as close as possible to those in flight. A tripping system, specifically conceived to this aim for this facility, has been used to generate thick turbulent boundary layers at Mach number values ranging between 0.4 and 0.8. It is shown that the designed setup provides a realistic representation of full scale size pressure spectra in the frequency range of interest for the noise component inside the fuselage, generated by turbulent boundary layer. The significant role of the viscoelastic layer at reducing panel's response is detailed and discussed. Finally, it is demonstrated that at high Mach number the aeroelastic effect cannot be neglected when analyzing the panel response, especially when composite materials are considered.

  2. The Atmospheric boundary layer over Arctic fjords

    Energy Technology Data Exchange (ETDEWEB)

    Kilpelaeinen, Tiina

    2011-07-01

    Arctic fjords represent one of the most challenging environments in the world for weather prediction and climate models. This is due to complex interactions between the large-scale weather conditions, land, sea, sea ice and surrounding topography consisting of mountains, valleys and glaciers. This thesis describes some special characteristics of the lowest part of the atmosphere over fjords in Svalbard. The main research topics are 1) the exchange of energy between the atmosphere and sea, 2) vertical structure of temperature, humidity and wind, 3) spatial variability of the meteorological variables and 4) identifying the main challenges for the weather prediction models. Kilpelaeinen has collected data using weather masts and tethered balloons at the coasts of fjords in Svalbard. In addition, she has made high-resolution simulations of the meteorological conditions over Svalbard fjords with a weather prediction model. Kilpelaeinens investigations show that the vertical profiles of temperature, humidity and wind over Arctic fjords are complex and therefore challenging for the weather prediction models to capture. Layers with a temperature and humidity increase with height are commonly found over Svalbard fjords, often even on multiple levels. A weather prediction model does not realistically capture these layers, which leads to fairly large errors in the modeled surface variables. Further, she found that a wind maximum at a low altitude is also a typical feature over Arctic fjords. The height of this wind maximum depends on the sea-ice conditions, being highest when sea ice is present. The thesis points out that due to the complex topography and the surface types (sea ice and water), spatial variability of meteorological variables within a fjord is very large and can reach levels comparable to the temporal variability. Hence, a high horizontal resolution in the order of 1 km is needed in the weather prediction models to realistically simulate all the significant

  3. Interaction Between Aerothermally Compliant Structures and Boundary-Layer Transition in Hypersonic Flow

    Science.gov (United States)

    Riley, Zachary Bryce

    The use of thin-gauge, light-weight structures in combination with the severe aero-thermodynamic loading makes reusable hypersonic cruise vehicles prone to fluid-thermal-structural interactions. These interactions result in surface perturbations in the form of temperature changes and deformations that alter the stability and eventual transition of the boundary layer. The state of the boundary layer has a significant effect on the aerothermodynamic loads acting on a hypersonic vehicle. The inherent relationship between boundary-layer stability, aerothermodynamic loading, and surface conditions make the interaction between the structural response and boundary-layer transition an important area of study in high-speed flows. The goal of this dissertation is to examine the interaction between boundary layer transition and the response of aerothermally compliant structures. This is carried out by first examining the uncoupled problems of: (1) structural deformation and temperature changes altering boundary-layer stability and (2) the boundary layer state affecting structural response. For the former, the stability of boundary layers developing over geometries that typify the response of surface panels subject to combined aerodynamic and thermal loading is numerically assessed using linear stability theory and the linear parabolized stability equations. Numerous parameters are examined including: deformation direction, deformation location, multiple deformations in series, structural boundary condition, surface temperature, the combined effect of Mach number and altitude, and deformation mode shape. The deformation-induced pressure gradient alters the boundary-layer thickness, which changes the frequency of the most-unstable disturbance. In regions of small boundary-layer growth, the disturbance frequency modulation resulting from a single or multiple panels deformed into the flowfield is found to improve boundary-layer stability and potentially delay transition. For the

  4. Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Safaei

    2016-09-01

    Full Text Available In the present study, the heat transfer and flow of water/FMWCNT (functionalized multi-walled carbon nanotube nanofluids over a flat plate was investigated using a finite volume method. Simulations were performed for velocity ranging from 0.17 mm/s to 1.7 mm/s under laminar regime and nanotube concentrations up to 0.2%. The 2-D governing equations were solved using an in-house FORTRAN code. For a specific free stream velocity, the presented results showed that increasing the weight percentage of nanotubes increased the Nusselt number. However, an increase in the solid weight percentage had a negligible effect on the wall shear stress. The results also indicated that increasing the free stream velocity for all cases leads to thinner boundary layer thickness, while increasing the FMWCNT concentration causes an increase in the boundary layer thickness.

  5. Boundary layer effects on particle impaction and capture

    Science.gov (United States)

    Rosner, D. E.; Fernandez De La Mora, J.

    1984-01-01

    The inertial impaction and deposition of small particles on larger bodies with viscous boundary layers are considered theoretically, in a detailed comment on a paper by Menguturk et al. (1983). Topics addressed include cushion effects, the dimensionless groups corresponding to the diameter range (3-6 microns) examined by Menguturk et al. in a numerical example, analogous effects of particle-gas energy and mass exchange in boundary layers, and the combined effects of particle inertia and diffusion. It is argued that the inertial effects can be characterized in terms of a body, boundary-layer, or sublayer Stokes number. In a reply by Menguturk et al., the focus is on the application of the theoretical model to the erosion of blade surfaces in large gas turbines; the Stokes number is found to be of limited practical value in these cases, because the particle motion is not primarily normal to the blade surfaces.

  6. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scalewaves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...... duration, bottom roughness, and associated Reynolds numbers. For this purpose, three different “synthetic” (idealised) tsunami wave descriptions are considered i.e., invoking: (1) single wave (solitary-like, but with independent period and wave height),(2) sinusoidal, and (3) N-wave descriptions. The flow...

  7. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.

    2012-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...... development was examined. Three VG geometries were investigated: rectangular, triangular and cambered. The various VG geometries tested are seen to produce different impacts on the boundary layer flow. Helical symmetry of the generated vortices is confirmed for all investigated VG geometries in this high...... Reynolds number boundary layer. From the parameters resulting from this analysis, it is observed at the most upstream measurement position that the rectangular and triangular VGs produce vortices of similar size, strength and velocity induction whilst the cambered VGs produce smaller and weaker vortices...

  8. Boundary-layer temperatures in high accretion rate cataclysmic variables

    Energy Technology Data Exchange (ETDEWEB)

    Hoare, M.G.; Drew, J.E. (Oxford Univ. (UK). Dept. of Physics Oxford Univ. (UK). Dept. of Astrophysics)

    1991-04-01

    We use the Zanstra method to derive limits on boundary-layer temperatures in eclipsing dwarf novae during outburst and nova-like variables, using the observed He II {lambda}1640 and {lambda}4686 recombination lines. It is assumed that all the emission is produced in the wind rather than the accretion disc. This method constrains the boundary-layer temperatures to between 50 000 and 100 000 K depending on the degree of wind bipolarity. These estimates are lower than the T>or approx200 000 K predicted theoretically. Possible explanations include rapid rotation of the white dwarf and spreading of the boundary layer over the entire white-dwarf surface. (author).

  9. Entropy Generation in Steady Laminar Boundary Layers with Pressure Gradients

    Directory of Open Access Journals (Sweden)

    Donald M. McEligot

    2014-07-01

    Full Text Available In an earlier paper in Entropy [1] we hypothesized that the entropy generation rate is the driving force for boundary layer transition from laminar to turbulent flow. Subsequently, with our colleagues we have examined the prediction of entropy generation during such transitions [2,3]. We found that reasonable predictions for engineering purposes could be obtained for flows with negligible streamwise pressure gradients by adapting the linear combination model of Emmons [4]. A question then arises—will the Emmons approach be useful for boundary layer transition with significant streamwise pressure gradients as by Nolan and Zaki [5]. In our implementation the intermittency is calculated by comparison to skin friction correlations for laminar and turbulent boundary layers and is then applied with comparable correlations for the energy dissipation coefficient (i.e., non-dimensional integral entropy generation rate. In the case of negligible pressure gradients the Blasius theory provides the necessary laminar correlations.

  10. Laminar boundary layers with uniform shear cross flow

    Science.gov (United States)

    Weidman, Patrick

    2017-03-01

    Laminar boundary layers with fully developed uniform shear cross flows are considered. The first streamwise laminar flow is a Blasius boundary layer flow, the second is uniform shear flow over a semi-infinite plate, and the third is the flow induced by a power-law stretching surface. In the first two cases, the effect of streamwise plate motion is taken into account by the parameter λ. In each case, the similarity solutions reduce the governing boundary layer equations to a primary ordinary differential equation for the streamwise flow and a secondary linear equation coupled to the primary solution for the cross flow. It is found that an infinity of solutions exist in each problem and the unique solution in each case is found by applying the Glauert criterion. In some instances, a simple exact solution for the cross flow is presented. Results for the wall shear stresses and velocity profiles are given in graphical form.

  11. DNS of Turbulent Boundary Layers under Highenthalpy Conditions

    Science.gov (United States)

    Duan, Lian; Martín, Pino

    2010-11-01

    To study real-gas effects and turbulence-chemistry interaction, direct numerical simulations (DNS) of hypersonic boundary layers are conducted under typical hypersonic conditions. We consider the boundary layer on a lifting-body consisting of a flat plate at an angle of attack, which flies at altitude 30km with a Mach number 21. Two different inclined angles, 35^o and 8^o, are considered,representing blunt and slender bodies. Both noncatalytic and supercatalytic wall conditions are considered. The DNS data are studied to assess the validity of Morkovin's hypothesis, the strong Reynolds analogy, as well as the behaviors of turbulence structures under high-enthalpy conditions.Relative to low-enthalpy conditions [1], significant differences in typical scalings are observed. [4pt] [1] L. Duan and I. Beekman and M. P. Mart'in, Direct numerical simulation of hypersonic turbulent boundary layers. Part 2: Effect of temperature, J. Fluid Mech. 655 (2010), 419-445.

  12. An Optimized Combined Wave and Current Bottom Boundary Layer Model for Arbitrary Bed Roughness

    Science.gov (United States)

    2017-06-30

    first-order correction to the definition of the wave boundary layer thickness produces accurate estimates of both the measured friction factor and...presence of surface waves reemphasizes the fact that wave-current effects are important on storm- dominated continental shelves. In addition to these...and current friction factor ( / / )cwσ f1 2 ,  is a measure of the relative contribution from the current to the total stress, and μ is a measure

  13. Page 1 Three Dimensional Boundary Layer on Yawed Semi-Infinite ...

    Indian Academy of Sciences (India)

    (i) Suction shifts the point of separation away from the leading edge and injection shifts it towards the leading edge, as is evident from the com- parison table given below: M 0 —1 --1. Jºs 0.127 0.181 0.0914. (ii) Suction increases the ratio k of the two boundary layer thicknesses and the skin friction, whereas injection ...

  14. Carbon vaporization into a nonequilibrium, stagnation-point boundary layer

    Science.gov (United States)

    Suzuki, T.

    1978-01-01

    The heat transfer to the stagnation point of an ablating carbonaceous heat shield, where both the gas-phase boundary layer and the heterogeneous surface reactions are not in chemical equilibrium, is examined. Specifically, the nonequilibrium changes in the mass fraction profiles of carbon species calculated for frozen flow are studied. A set of equations describing the steady-state, nonequilibrium laminar boundary layer in the axisymmetric stagnation region, over an ablating graphite surface, is solved, with allowance for the effects of finite rate of carbon vaporization.

  15. Oscillations of the Boundary Layer and High-frequency QPOs

    Directory of Open Access Journals (Sweden)

    Blinova A. A.

    2014-01-01

    Full Text Available We observed persistent high-frequency oscillations of the boundary layer near an accreting, weakly-magnetized star in global 3D MHD simulations. The tilted dipole magnetic field is not strong enough to open a gap between the star and the disk. Instead, it forms a highly-wrapped azimuthal field near the surface of the star which slows down rotation of the disk matter, while a small tilt of the field excites oscillations of the boundary layer with a frequency below the Keplerian frequency. This mechanism may be responsible for the high-frequency oscillations in accreting neutron stars, white dwarfs and classical T Tauri stars.

  16. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  17. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    and its role in the fully turbulent boundary layer. The pressure in the flow is obtained from the flow fields of the oscillatory boundary layer. What differs, the vertical pressure gradient, from other turbulent quantities, like e.g. velocity fluctuations is that it can detect newly generated turbulence....... The experiment is conducted in a oscillating water tunnel, for both smooth bed and rough bed. The particle motion is determined by utilizing particle tracking base on a video recording of the particle motion in the flow. In the oscillatory flow, in contrast to steady current, the particle motion is a function...

  18. Analysis of differential infrared thermography for boundary layer transition detection

    Science.gov (United States)

    Gardner, A. D.; Eder, C.; Wolf, C. C.; Raffel, M.

    2017-09-01

    This paper presents an analysis of the differential infrared thermography (DIT) technique, a contactless method of measuring the unsteady movement of the boundary layer transition position on an unprepared surface. DIT has been shown to measure boundary layer transition positions which correlate well with those from other measurement methods. In this paper unsteady aerodynamics from a 2D URANS solution are used and the resulting wall temperatures computed. It is shown that the peak of the temperature difference signal correlates well with the boundary layer transition position, but that the start and end of boundary layer transition cannot be extracted. A small systematic time-lag cannot be reduced by using different surface materials, but the signal strength can be improved by reducing the heat capacity and heat transfer of the surface layer, for example by using a thin plastic coating. Reducing the image time separation used to produce the difference images reduces the time-lag and also the signal level, thus the optimum is when the signal to noise ratio is at the minimum which can be evaluated.

  19. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent

    2016-01-04

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  20. The turbulent plasmasphere boundary layer and the outer radiation belt boundary

    Science.gov (United States)

    Mishin, Evgeny; Sotnikov, Vladimir

    2017-12-01

    We report on observations of enhanced plasma turbulence and hot particle distributions in the plasmasphere boundary layer formed by reconnection-injected hot plasma jets entering the plasmasphere. The data confirm that the electron pressure peak is formed just outward of the plasmapause in the premidnight sector. Free energy for plasma wave excitation comes from diamagnetic ion currents near the inner edge of the boundary layer due to the ion pressure gradient, electron diamagnetic currents in the entry layer near the electron plasma sheet boundary, and anisotropic (sometimes ring-like) ion distributions revealed inside, and further inward of, the inner boundary. We also show that nonlinear parametric coupling between lower oblique resonance and fast magnetosonic waves significantly contributes to the VLF whistler wave spectrum in the plasmasphere boundary layer. These emissions represent a distinctive subset of substorm/storm-related VLF activity in the region devoid of substorm injected tens keV electrons and could be responsible for the alteration of the outer radiation belt boundary during (sub)storms.

  1. Roles of Engineering Correlations in Hypersonic Entry Boundary Layer Transition Prediction

    Science.gov (United States)

    Campbell, Charles H.; King, Rudolph A.; Kergerise, Michael A.; Berry, Scott A.; Horvath, Thomas J.

    2010-01-01

    prediction capability will be utilized to establish a fresh perspective on this role, to illustrate how quantitative statistical evaluations of empirical correlations can and should be used to assess accuracy and to discuss what the authors' perceive as a recent heightened interest in the application of high fidelity numerical modeling of boundary layer transition. Concrete results will also be developed related to empirical boundary layer transition onset correlations. This will include assessment of the discrete protuberance boundary layer transition onset data assembled for the Orbiter configuration during post-Columbia Return To Flight. Assessment of these data will conclude that momentum thickness Reynolds number based correlations have superior coefficients and uncertainty in comparison to roughness height based Reynolds numbers, aka Re(sub k) or Re(sub kk). In addition, linear regression results from roughness height Reynolds number based correlations will be evaluated, leading to a hypothesis that non-continuum effects play a role in the processes associated with incipient boundary layer transition on discrete protuberances.

  2. The Temporal Behavior of the Atmospheric Boundary Layer in Israel.

    Science.gov (United States)

    Dayan, Uri; Rodnizki, Jacob

    1999-06-01

    Upper-air measurements collected for three consecutive years (1987-89) from the Israel Meteorological Service permanent sounding site, in Beit-Dagan, Israel, enabled the temporal behavior of the atmospheric boundary layer over Israel to be characterized. Data analyzed consisted of the layer depth, the thermal gradient within the layer, and occurrence frequency of radiative and elevated inversions. To adequately represent the multiyear seasonal and diurnal behavior, the 3-yr databases were merged based on the tested hypothesis that the month sample in each individual year comes from the same population. The analysis shows that the depth of the radiative ground-based inversion, its frequency, as well as its thermal profile are maximal during spring and early summer. The upper-inversion layer is well defined during the summer, its lowest base (0.5-1 km MSL) indicating a sharp interface layer formed between the marine turbulent boundary layer at the shallow layer of the atmosphere and the subsiding downward motion caused by the subtropical high pressure system. During the other three seasons a significant temporal variation of the upper-inversion base is observed as a result of the frequent larger-scale synoptic weather systems. The diurnal variation of the mixed-layer depth is most evident during the summer because it is mainly governed by heat fluxes and the daily sea-breeze cycle that are most intensive then. Henceforth, the layer minimal depth, along the coast, usually occurs during late afternoon hours when the wind speed of the cool sea breeze reaches its minimal rate and heat fluxes dissipate rapidly, leading to a decrease of the marine turbulent boundary layer.

  3. Effects of coastal forcing on turbulence and boundary- layer structure

    Science.gov (United States)

    Strom, Linda Maria Viktoria

    Coastal mountains of significant elevation impose constraints for the surrounding flow. The aim of this study is to describe the modifications of the marine atmospheric boundary layer that occur offshore of the west coast of the United States. Aircraft measurements, up to 1000 km off the coast from two experiments, are used. This boundary layer is capped by a subsidence inversion, which slopes down toward the coast and produces large thermal winds. Low-level wind maxima (i.e. jets) are typical for these conditions, commonly a 40-50% increase relative to the 30 m wind speed. The effects of coastal forcing on low-level winds cancel in average when no regard is taken for position relative a cape or point. The variability of the low-level wind speed increases nevertheless significantly toward the coast, the standard deviation is +/-40% of the offshore value. The scale of the adjustment downstream of a cape or point is specifically addressed. Some measurements support a formulation of the coastal extent based on an inviscid shallow-water concept; mean variables (i.e. 30 m wind speed and boundary-layer depth) and turbulent parameters (i.e. dissipation and shear production of turbulent kinetic energy) vary in a uniform, predicted manner. The effects of coastal forcing on winds result in cold sea surface temperatures at the coast, due to upwelling. Stability becomes a function of offshore distance. Surface-layer turbulence statistics and spectra (and cospectra) of turbulence variables are presented. Across- and along-wind sampled spectra (and cospectra) show that large wind shear and shallow boundary layer affect the scales of the turbulence eddies. The relation between the standard deviations of wind components are affected. The turbulence appears to be non-local in some aspects, entrainment fluxes are proposed to be important due to a shallow boundary layer with a sharp, sloping inversion and a low-level jet.

  4. Boundary layer models for calving marine outlet glaciers

    Science.gov (United States)

    Schoof, Christian; Davis, Andrew D.; Popa, Tiberiu V.

    2017-10-01

    We consider the flow of marine-terminating outlet glaciers that are laterally confined in a channel of prescribed width. In that case, the drag exerted by the channel side walls on a floating ice shelf can reduce extensional stress at the grounding line. If ice flux through the grounding line increases with both ice thickness and extensional stress, then a longer shelf can reduce ice flux by decreasing extensional stress. Consequently, calving has an effect on flux through the grounding line by regulating the length of the shelf. In the absence of a shelf, it plays a similar role by controlling the above-flotation height of the calving cliff. Using two calving laws, one due to Nick et al. (2010) based on a model for crevasse propagation due to hydrofracture and the other simply asserting that calving occurs where the glacier ice becomes afloat, we pose and analyse a flowline model for a marine-terminating glacier by two methods: direct numerical solution and matched asymptotic expansions. The latter leads to a boundary layer formulation that predicts flux through the grounding line as a function of depth to bedrock, channel width, basal drag coefficient, and a calving parameter. By contrast with unbuttressed marine ice sheets, we find that flux can decrease with increasing depth to bedrock at the grounding line, reversing the usual stability criterion for steady grounding line location. Stable steady states can then have grounding lines located on retrograde slopes. We show how this anomalous behaviour relates to the strength of lateral versus basal drag on the grounded portion of the glacier and to the specifics of the calving law used.

  5. Boundary layer models for calving marine outlet glaciers

    Directory of Open Access Journals (Sweden)

    C. Schoof

    2017-10-01

    Full Text Available We consider the flow of marine-terminating outlet glaciers that are laterally confined in a channel of prescribed width. In that case, the drag exerted by the channel side walls on a floating ice shelf can reduce extensional stress at the grounding line. If ice flux through the grounding line increases with both ice thickness and extensional stress, then a longer shelf can reduce ice flux by decreasing extensional stress. Consequently, calving has an effect on flux through the grounding line by regulating the length of the shelf. In the absence of a shelf, it plays a similar role by controlling the above-flotation height of the calving cliff. Using two calving laws, one due to Nick et al. (2010 based on a model for crevasse propagation due to hydrofracture and the other simply asserting that calving occurs where the glacier ice becomes afloat, we pose and analyse a flowline model for a marine-terminating glacier by two methods: direct numerical solution and matched asymptotic expansions. The latter leads to a boundary layer formulation that predicts flux through the grounding line as a function of depth to bedrock, channel width, basal drag coefficient, and a calving parameter. By contrast with unbuttressed marine ice sheets, we find that flux can decrease with increasing depth to bedrock at the grounding line, reversing the usual stability criterion for steady grounding line location. Stable steady states can then have grounding lines located on retrograde slopes. We show how this anomalous behaviour relates to the strength of lateral versus basal drag on the grounded portion of the glacier and to the specifics of the calving law used.

  6. The influence of varying layer thicknesses on the color predictability of two different composite layering concepts.

    Science.gov (United States)

    Khashayar, G; Dozic, A; Kleverlaan, C J; Feilzer, A J; Roeters, J

    2014-05-01

    Optical properties of teeth are mimicked by composite layering techniques by combining a relatively opaque layer (dentin) with more translucent layers (enamel). However, the replacing material cannot always optically imitate the tooth when applied in the same thickness as that of the natural tissues. The natural layering composite system is available in 2 concepts: (1) dentin (D) and enamel (E) have the same shade but with different translucencies; (2) D and E have different shades where E is always the same high translucent shade. The objective was to evaluate the influence of varying thicknesses of E and D composites on the overall color and on the translucency for both concepts. For each concept three composite brands were tested; Concept 1: Clearfil Photo Bright (Kuraray), Herculite XRV Ultra (Kerr), Venus Diamond (Heraeus Kulzer); Concept 2: Amaris (VOCO), CeramX Duo (DENTSPLY) and Point4 (Kerr). Two specimens of each shade (A1-A3) per composite were made of standardized thicknesses with a poly-acrylic mold and Teflon cover, making 36 specimens of wedge-like dimension. The L*a*b* values were measured three times against a white and black background (n=216). Student's t-tests revealed significant levels between the average ΔE* values of the 3 areas for each composite. Statistically significant differences (pconcepts. Concept 2 showed greater variations in ΔE* with increased thicknesses. Concept 2 composites are more sensitive to layer thickness changes, which implicates less predictability in a daily clinical routine. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Understanding and prediction of stable atmospheric boundary layers over land

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2007-01-01

    The main objective of this thesis is to contribute to further understanding of the stable boundary layer (SBL) over land, and its representation in atmospheric models. A SBL develops during night due to radiative surface cooling. Observations in the SBL are difficult since many different physical

  8. Page 1 Shock-wave-turbulent-boundary-layer interaction & its ...

    Indian Academy of Sciences (India)

    shock .. rehabilitation shock with a turbulent boundary phase asºn: phase layer: M., + 1.47 (from Seddon. p x / So 1960). al 1977). Figures 16 and 17 show some of the important features of the separated flow and the surface pressure distributions as observed by Seddon (1960). The strong normal shock wave bifurcates near ...

  9. On the marine atmospheric boundary layer characteristics over Bay ...

    Indian Academy of Sciences (India)

    Detailed measurements were carried out in the Marine Atmospheric Boundary Layer (MABL) during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) which covered both Arabian Sea and Bay of Bengal during March to May 2006. In this paper, we present the meteorological observations made ...

  10. Boundary Layer Flows in Porous Media with Lateral Mass Flux

    DEFF Research Database (Denmark)

    Nemati, H; H, Bararnia; Noori, F

    2015-01-01

    Solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium are presented using the Homotopy Analysis Method and Shooting Numerical Method. Homotopy Analysis Method yields an analytic solution in the form of a rapidly...

  11. Influences of the boundary layer evolution on surface ozone ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 4. Influences of the boundary layer evolution on surface ozone variations at a tropical rural site in India. K K Reddy M Naja N Ojha P Mahesh S Lal. Volume 121 Issue 4 August 2012 pp 911-922 ...

  12. Body surface adaptations to boundary-layer dynamics

    NARCIS (Netherlands)

    Videler, J.J.

    1995-01-01

    Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins,

  13. Turbulent Boundary Layer on a Cylinder in Axial Flow

    Science.gov (United States)

    1988-09-29

    wall- norma 6caling or Rao’s wall-normal scaling. Other measurements of the mean velocity in a cylindrical boundary layer should be mentioned for...located near the wall at three azimuthal locations that w𔃽re 900 apa ,-t and at several streamwise spacings for flow conditions resulting in 8/a=8

  14. The collapse of turbulence in the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wiel, B J H; Clercx, H J H [Department of Physics, Eindhoven University of Technology (Netherlands); Moene, A F [Department of Meteorology and Air Quality, Wageningen University and Research Centre (Netherlands); Jonker, H J J, E-mail: b.j.h.v.d.wiel@tue.nl [Department of Multi-scale Pysics, Delft University of Technology (Netherlands)

    2011-12-22

    A well-known phenomenon in the atmospheric boundary layer is the fact that winds may become very weak in the evening after a clear sunny day. In these quiet conditions usually hardly any turbulence is present. Consequently this type of boundary layer is referred to as the quasi-laminar boundary layer. In spite of its relevance, the appearance of laminar boundary layers is poorly understood and forms a long standing problem in meteorological research. Here we investigate an analogue problem in the form of a stably stratified channel flow. The flow is studied with a simplified atmospheric model as well as with Direct Numerical Simulations. Both models show remarkably similar behaviour with respect to the mean variables such as temperature and wind speed. The similarity between both models opens new way for understanding and predicting the laminarization process. Mathematical analysis on the simplified model shows that relaminarization can be understood from the existence of a definite limit in the maximum sustainable heat flux under stably stratified conditions. This fascinating aspect will be elaborated in future work.

  15. Workshop on Coherent Structure of Turbulent Boundary Layers.

    Science.gov (United States)

    1978-11-01

    trying to investigate what you can visually determine within the boundary layer. In regard to the first of your questions, I am familiae with your work at...experiment like a nuclear physicist would do or you can do it in a more general fluid mechanical way. I just think I’ll leave it at that, interacting spots

  16. Response of neutral boundary-layers to changes of roughness

    DEFF Research Database (Denmark)

    Sempreviva, Anna Maria; Larsen, Søren Ejling; Mortensen, Niels Gylling

    1990-01-01

    When air blows across a change in surface roughness, an internal boundary layer (IBL) develops within which the wind adapts to the new surface. This process is well described for short fetches, > 1 km. However, few data exist for large fetches on how the IBL grows to become a new equilibrium boun...

  17. Thermal Internal Boundary Layer characteristics at a tropical coastal ...

    Indian Academy of Sciences (India)

    ... Prabha1 R Venkatesan2 Erich Mursch-Radlgruber3 G Rengarajan3 N Jayanthi4. Crop and Soil Sciences, University of Georgia, GA, USA. Health and Safety Division, SHINE Group, IGCAR, Kalpakkam, India 603 102. Boundary Layer Meteorology Division, Institut fuer Meteorologie und Physik (IMP-BOKU), Wien, Austria.

  18. Flow visualization of swept wing boundary layer transition

    NARCIS (Netherlands)

    Serpieri, J.; Kotsonis, M.

    2015-01-01

    In this work the flow visualization of the transition pattern occurring on a swept wing in a subsonic flow is presented. This is done by means of fluorescent oil flow technique and boundary layer hot-wire scans. The experiment was performed at Reynolds number of 2:15 . 106 and at angle of attack of

  19. Atmospheric boundary layer evening transitions over West Texas

    Science.gov (United States)

    A systemic analysis of the atmospheric boundary layer behavior during some evening transitions over West Texas was done using the data from an extensive array of instruments which included small and large aperture scintillometers, net radiometers, and meteorological stations. The analysis also comp...

  20. Effects of mussel filtering activity on boundary layer structure

    NARCIS (Netherlands)

    Van Duren, L.A.; Herman, P.M.J.; Sandee, A.J.J.; Heip, C.H.R.

    2006-01-01

    The structure of the benthic boundary layer over a bed of mussels (Mytilus edulis) was investigated in a large racetrack flume. Flow was observed to be modified both by the physical roughness of the mussel bed and by the momentum input of the exhalent jets of the mussels. Particularly when the

  1. Radio wave propagation in the marine boundary layer

    National Research Council Canada - National Science Library

    Kukushkin, Alexander

    2004-01-01

    ... boundary layer. Two basic mathematical methods have been used, depending on the ease of obtaining a closed analytical solution: 1. 2. Expansion of the quantum-mechanical amplitude of the transition into a complete and orthogonal set of eigen functions of the continuous spectrum. The Feynman path integral. It is not intended to provide a full ste...

  2. The use of a wave boundary layer model in SWAN

    DEFF Research Database (Denmark)

    Du, Jianting; Bolaños, Rodolfo; Larsén, Xiaoli Guo

    2017-01-01

    A Wave Boundary Layer Model (WBLM) is implemented in the third-generation ocean wave model SWAN to improve the wind-input source function under idealized, fetch-limited condition. Accordingly, the white capping dissipation parameters are re-calibrated to fit the new wind-input source function...

  3. The role of boundary layer momentum advection in the mean ...

    Indian Academy of Sciences (India)

    A simple three-way balance between the pressure gradients, Coriolis force and effective Rayleigh friction has been classically used to diagnose the location of maximum boundary layer convergence in the near equatorial ITCZ. If such a balance can capture the dynamics of off-equatorial convergence was not known.

  4. Influence of micrometeorological features on coastal boundary layer ...

    Indian Academy of Sciences (India)

    Characteristics of aerosols in the Atmospheric Boundary Layer (ABL) obtained from a bistatic CW lidar at Trivandrum for the last one decade are used to investigate the role of ABL micro- meteorological processes in controlling the altitude distribution and size spectrum. The altitude structure of number density shows three ...

  5. Characterization of the atmospheric boundary layer from radiosonde ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, a comparison of two methods for the calculation of the height of atmospheric boundary layer (ABL), using balloon-borne GPS radiosonde data is presented. ABL has been characterized using vertical profiles of meteorological parameter. The gradient of virtual potential temperature (v) profile for the ...

  6. Analytical solution of the transpiration on the boundary layer flow ...

    African Journals Online (AJOL)

    An analysis is carried out to study the effects that blowing/injection and suction on the steady mixed convection or combined forced and free convection boundary layer flows over a vertical slender cylinder with a mainstream velocity and a wall surface temperature proportional to the axial distance along the surface of the ...

  7. Thermal Internal Boundary Layer characteristics at a tropical coastal ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    examined with the help of measurements carried out with a mini-SODAR (SOund Detection And ..... moisture upwards and periodic intrusion of mar- ..... Ocean System 2. 351–362. Kunhikrishnan P K, Gupta K S, Ramachandran R, Prakash. J W, Nair K N 1993 Study on thermal internal boundary layer structure over Thumba, ...

  8. Temperature boundary layer profiles in turbulent Rayleigh-Benard convection

    Science.gov (United States)

    Ching, Emily S. C.; Emran, Mohammad S.; Horn, Susanne; Shishkina, Olga

    2017-11-01

    Classical boundary-layer theory for steady flows cannot adequately describe the boundary layer profiles in turbulent Rayleigh-Benard convection. We have developed a thermal boundary layer equation which takes into account fluctuations in terms of an eddy thermal diffusivity. Based on Prandtl's mixing length ideas, we relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal boundary layer equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters: θ(ξ) =1/b∫0b ξ [ 1 +3a3/b3(η - arctan(η)) ] - c dη , where ξ is the similarity variable and the parameters a, b, and c are related by the condition θ(∞) = 1 . With a proper choice of the parameters, our predictions of the temperature profile are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers (Pr), from Pr=0.01 to Pr=2547.9. OS, ME and SH acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grants Sh405/4-2 (Heisenberg fellowship), Sh405/3-2 and Ho 5890/1-1, respectively.

  9. Global instabilities and transient growth in Blasius boundary-layer ...

    Indian Academy of Sciences (India)

    We develop a hybrid of computational and theoretical approaches suited to study the fluid–structure interaction (FSI) of a compliant panel, flush between rigid upstream and downstream wall sections, with a Blasius boundary-layer flow. The ensuing linear-stability analysis is focused upon global instability and transient ...

  10. Conserved variable analysis of the marine boundary layer and air ...

    Indian Academy of Sciences (India)

    The present study is based on the observed features of the MBL (Marine Boundary Layer) during the Bay of Bengal and Monsoon Experiment (BOBMEX) - Pilot phase. Conserved Variable Analysis (CVA) of the conserved variables such as potential temperature, virtual potential temperature, equivalent potential temperature ...

  11. Mechanisms of boundary layer transition induced by isolated roughnes

    NARCIS (Netherlands)

    Ye, Q.

    2017-01-01

    Boundary layer transition is a relevant phenomenon in many aerodynamic and aero-thermodynamic problems and has been extensively investigated from the past century till recent times. Among the factors affecting the transition process, surface roughness plays a key role. When a roughness element with

  12. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  13. Characteristics of the near-tail dawn magnetopause and boundary layer

    Directory of Open Access Journals (Sweden)

    G. Paschmann

    2005-06-01

    Full Text Available The paper discusses properties of the near-tail dawnside and boundary layer, as obtained from Cluster plasma and magnetic field measurements during a single skimming orbit on 4 and 5 July 2001 that included 24 well-defined crossings by all four spacecraft. As a result of variations of the interplanetary magnetic field, the magnetic shear across the local varied between ~0° and ~180°. Using an improved method, which takes into account acceleration and thickness variation, we have determined the orientation, speed, thickness and current for the 96 individual crossings. The orientations show clear evidence of surface waves. Magnetopause thicknesses range from ~100 to ~2500km, with an average of 753km. The speeds range from less than 10up to more than 300, with an average of 48. Both results are consistent with earlier ISEE and AMPTE results obtained for the dayside magnetopause. Importantly, scaling the thicknesses to the ion gyro radius or the ion inertial length did not reduce the large dynamic range. There is also no significant dependence of thickness on magnetic shear. Current densities range from ~0.01 up to ~0.3uA, with an average value of 0.05 . By including some extra crossings that did not involve all four spacecraft, we were able to apply the Walén test to a total of 60 by Cluster 1 and 3, and have classified 19 cases as rotational discontinuities (RDs, of which 12 and 7 were sunward and tailward of an X-line, respectively. Of these 60 crossings, 26 show no trace of a boundary layer. The only with substantial boundary layers are into the plasma mantle. Of the 26 without a boundary layer, 8 were identified as RDs. Since reconnection produces wedge-shaped boundary layers emanating from the X-line, RDs without may be considered close to the X-line, in which case the observed magnetic shear and Alfvén Mach number should be representative of the conditions at the X-line itself. It is therefore important that four of the eight cases had

  14. Linear segmentation algorithm for detecting layer boundary with lidar.

    Science.gov (United States)

    Mao, Feiyue; Gong, Wei; Logan, Timothy

    2013-11-04

    The automatic detection of aerosol- and cloud-layer boundary (base and top) is important in atmospheric lidar data processing, because the boundary information is not only useful for environment and climate studies, but can also be used as input for further data processing. Previous methods have demonstrated limitations in defining the base and top, window-size setting, and have neglected the in-layer attenuation. To overcome these limitations, we present a new layer detection scheme for up-looking lidars based on linear segmentation with a reasonable threshold setting, boundary selecting, and false positive removing strategies. Preliminary results from both real and simulated data show that this algorithm cannot only detect the layer-base as accurate as the simple multi-scale method, but can also detect the layer-top more accurately than that of the simple multi-scale method. Our algorithm can be directly applied to uncalibrated data without requiring any additional measurements or window size selections.

  15. Baroclinic Planetary Boundary Layer Model: Neutral and Stable Stratification Conditions

    Science.gov (United States)

    Yordanov, D.; Djolov, G.; Syrakov, D.

    1998-01-01

    The temperature and wind profiles in a baroclinic Planetary Boundary Layer (PBL) are investigated. Assuming stationarity, the turbulent state in the PBL at stable and neutral conditions is uniquely determined by the Rossby number, the external stratification parameter and two external baroclinic parameters. A simple two-layer baroclinic model is developed. It consists of a Surface Layer (SL) and overlying Ekman type layer. The system of dynamic and heat transfer equations is close using the K-theory. In SL the turbulent exchange coefficient is consistent with the results of similarity theory while in the Ekman layer it is constant. The universal functions in the resistance, heat and humidity transfer laws can be deduced from the model. The internal PBL characteristics, necessary for the model calculations, are presented in terms of the external parameters. Favourable agreement of model results with experimental data is demonstrated.

  16. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    Science.gov (United States)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  17. Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle

    Science.gov (United States)

    Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.

  18. Experimental investigation of a supercritical airfoil boundary layer in pitching motion

    Energy Technology Data Exchange (ETDEWEB)

    Masdari, Mehran; Tabrizian, Arshia [Faculty of New Science and Technology, University of Tehran, Tehran (Iran, Islamic Republic of); Jahanmiri, Mohsen; Gorji, Mohamamd [Dept. of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Soltani, Mohammad Reza [Dept. of Aerospace Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2017-01-15

    In this study, the boundary layer velocity profile on the upper surface of a supercritical airfoil in a forced sinusoidal pitching motion was measured and experimentally investigated. Measurements were performed using a boundary layer rake, including total pressure tubes positioned at 25 % of the chord far from the leading edge on the upper surface. For static measurements, the effects of the angle of attack between −3° and 14° and free-stream velocity between 40 m/s and 70 m/s were investigated; for dynamic measurements, the effects of oscillation amplitude variation between ±3° and ±10°, reduced frequency from 0.007 to 0.0313, and mean angle of attack between −3° and 6° were studied during one oscillation cycle. Results indicated that the boundary layer thickness decreased in upstroke motion. Increasing the oscillation frequency led to the extension of hysteresis loops. Fast Fourier transform was used on pressure signals to study the amplitude of the dominant frequency in the velocity profile. Spectral analysis showed that the dominant forced frequency of oscillation in the boundary layer and the amplitude of this frequency were varied by increasing the reduced frequency and other parameters.

  19. Plasma-based actuators for turbulent boundary layer control in transonic flow

    Science.gov (United States)

    Budovsky, A. D.; Polivanov, P. A.; Vishnyakov, O. I.; Sidorenko, A. A.

    2017-10-01

    The study is devoted to development of methods for active control of flow structure typical for the aircraft wings in transonic flow with turbulent boundary layer. The control strategy accepted in the study was based on using of the effects of plasma discharges interaction with miniature geometrical obstacles of various shapes. The conceptions were studied computationally using 3D RANS, URANS approaches. The results of the computations have shown that energy deposition can significantly change the flow pattern over the obstacles increasing their influence on the flow in boundary layer region. Namely, one of the most interesting and promising data were obtained for actuators basing on combination of vertical wedge with asymmetrical plasma discharge. The wedge considered is aligned with the local streamlines and protruding in the flow by 0.4-0.8 of local boundary layer thickness. The actuator produces negligible distortion of the flow at the absence of energy deposition. Energy deposition along the one side of the wedge results in longitudinal vortex formation in the wake of the actuator providing momentum exchange in the boundary layer. The actuator was manufactured and tested in wind tunnel experiments at Mach number 1.5 using the model of flat plate. The experimental data obtained by PIV proved the availability of the actuator.

  20. Porous and Microporous Honeycomb Composites as Potential Boundary-Layer Bleed Materials

    Science.gov (United States)

    Davis, D. O.; Willis, B. P.; Schoenenberger, M.

    1997-01-01

    Results of an experimental investigation are presented in which the use of porous and microporous honeycomb composite materials is evaluated as an alternate to perforated solid plates for boundary-layer bleed in supersonic aircraft inlets. The terms "porous" and "microporous," respectively, refer to bleed orifice diameters roughly equal to and much less than the displacement thickness of the approach boundary-layer. A Baseline porous solid plate, two porous honeycomb, and three microporous honeycomb configurations are evaluated. The performance of the plates is characterized by the flow coefficient and relative change in boundary-layer profile parameters across the bleed region. The tests were conducted at Mach numbers of 1.27 and 1.98. The results show the porous honeycomb is not as efficient at removing mass compared to the baseline. The microporous plates were about equal to the baseline with one plate demonstrating a significantly higher efficiency. The microporous plates produced significantly fuller boundary-layer profiles downstream of the bleed region for a given mass flow removal rate than either the baseline or the porous honeycomb plates.

  1. Boundary Layer Effect on Behavior of Discrete Models

    Directory of Open Access Journals (Sweden)

    Jan Eliáš

    2017-02-01

    Full Text Available The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson’s ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.

  2. Boundary Layer Effect on Behavior of Discrete Models.

    Science.gov (United States)

    Eliáš, Jan

    2017-02-10

    The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson's ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.

  3. The Spatial Development of the Magnetospheric Low-Latitude Boundary Layer

    Science.gov (United States)

    Manuel, John R.

    The low-latitude boundary layer (LLBL) comprises a large fraction of the magnetospheric boundary layer making it a potentially important site for transport of mass, momentum and energy from the high-speed magnetosheath plasma into the magnetosphere. I have examined, by computer simulation, the processes involved in the spatial development of a 6.4 R_{rm E} (Earth radii) long section of the dayside LLBL from a thin and laminar boundary layer to a broad and turbulent one capable of significant transport. The computer simulation developed for this purpose is based on the full set of ideal magnetohydrodynamic (MHD) equations that govern the dynamics of most magnetospheric plasmas and uses a two-dimensional nonperiodic simulation geometry to permit the realistic downstream development of the boundary layer. Simulations started from several realistic initial conditions all exhibit the formation of a LLBL that broadens with downstream distance, from an upstream thickness of 0.12 R_{E} to as much as ~0.7 R_{E } downstream, and reproduces many of the observed boundary layer characteristics. The broadening occurs through the action of Reynold and Maxwell stresses generated by the Kelvin-Helmholtz (KH) instability in the boundary layer which deposit momentum and energy into the LLBL. The KH instability also transports mass into the LLBL by mixing plasma across the boundary layer through continuous vortex roll-ups and mergings and also appears capable of aiding diffusive transport processes by steepening density gradients at the magnetopause enough to trigger any of a number of possible diffusion processes. Simulations have also shown that the downstream development of the boundary layer may be slowed and possibly stopped in the presence of a flow-aligned component of the magnetosheath magnetic field. For example, for a magnetosheath magnetic field which is initialized to tilt 30 ^circ away from perpendicular to the flow, the KH instability still develops, but fails to

  4. Convection and reaction in a diffusive boundary layer in a porous medium: nonlinear dynamics.

    Science.gov (United States)

    Andres, Jeanne Therese H; Cardoso, Silvana S S

    2012-09-01

    We study numerically the nonlinear interactions between chemical reaction and convective fingering in a diffusive boundary layer in a porous medium. The reaction enhances stability by consuming a solute that is unstably distributed in a gravitational field. We show that chemical reaction profoundly changes the dynamics of the system, by introducing a steady state, shortening the evolution time, and altering the spatial patterns of velocity and concentration of solute. In the presence of weak reaction, finger growth and merger occur effectively, driving strong convective currents in a thick layer of solute. However, as the reaction becomes stronger, finger growth is inhibited, tip-splitting is enhanced and the layer of solute becomes much thinner. Convection enhances the mass flux of solute consumed by reaction in the boundary layer but has a diminishing effect as reaction strength increases. This nonlinear behavior has striking differences to the density fingering of traveling reaction fronts, for which stronger chemical kinetics result in more effective finger merger owing to an increase in the speed of the front. In a boundary layer, a strong stabilizing effect of reaction can maintain a long-term state of convection in isolated fingers of wavelength comparable to that at onset of instability.

  5. Simulation and optimal control of wind-farm boundary layers

    Science.gov (United States)

    Meyers, Johan; Goit, Jay

    2014-05-01

    In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a

  6. A Thermal Plume Model for the Martian Convective Boundary Layer

    CERN Document Server

    Colaïtis, Arnaud; Hourdin, Frédéric; Rio, Catherine; Forget, François; Millour, Ehouarn

    2013-01-01

    The Martian Planetary Boundary Layer [PBL] is a crucial component of the Martian climate system. Global Climate Models [GCMs] and Mesoscale Models [MMs] lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically-based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in Large-Eddy Simulations [LESs]. We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking ...

  7. Conference on Boundary and Interior Layers : Computational and Asymptotic Methods

    CERN Document Server

    Stynes, Martin; Zhang, Zhimin

    2017-01-01

    This volume collects papers associated with lectures that were presented at the BAIL 2016 conference, which was held from 14 to 19 August 2016 at Beijing Computational Science Research Center and Tsinghua University in Beijing, China. It showcases the variety and quality of current research into numerical and asymptotic methods for theoretical and practical problems whose solutions involve layer phenomena. The BAIL (Boundary And Interior Layers) conferences, held usually in even-numbered years, bring together mathematicians and engineers/physicists whose research involves layer phenomena, with the aim of promoting interaction between these often-separate disciplines. These layers appear as solutions of singularly perturbed differential equations of various types, and are common in physical problems, most notably in fluid dynamics. This book is of interest for current researchers from mathematics, engineering and physics whose work involves the accurate app roximation of solutions of singularly perturbed diffe...

  8. Three-Dimensional Vibration Analysis of Rectangular Thick Plates on Pasternak Foundation with Arbitrary Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Huimin Liu

    2017-01-01

    Full Text Available This paper presents the first known vibration characteristic of rectangular thick plates on Pasternak foundation with arbitrary boundary conditions on the basis of the three-dimensional elasticity theory. The arbitrary boundary conditions are obtained by laying out three types of linear springs on all edges. The modified Fourier series are chosen as the basis functions of the admissible function of the thick plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges. The exact solution is obtained based on the Rayleigh–Ritz procedure by the energy functions of the thick plate. The excellent accuracy and reliability of current solutions are demonstrated by numerical examples and comparisons with the results available in the literature. In addition, the influence of the foundation coefficients as well as the boundary restraint parameters is also analyzed, which can serve as the benchmark data for the future research technique.

  9. Amendment to "Analytical Solution for the Convectively-Mixed Atmospheric Boundary Layer": Inclusion of Subsidence

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Arellano, de J.V.G.

    2013-01-01

    In Ouwersloot and Vila-Guerau de Arellano (Boundary-Layer Meteorol. doi: 10. 1007/s10546-013-9816-z, 2013, this issue), the analytical solutions for the boundary-layer height and scalar evolutions are derived for the convective boundary layer, based on the prognostic equations of mixed-layer slab

  10. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    Science.gov (United States)

    Berri, Guillermo J.; Bertossa, Germán

    2018-01-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  11. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    Science.gov (United States)

    Berri, Guillermo J.; Bertossa, Germán

    2017-08-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  12. Lidar Scanning of Momentum Flux in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Mann, Jakob; Courtney, Michael

    Momentum flux measurements are important for describing the wind profile in the atmospheric boundary layer, modeling the atmospheric flow over water, the accounting of exchange processes between air and sea, etc. It is also directly related to the friction velocity, which is a velocity scale...... required for wind engineering. Estimations of friction velocity over the sea can be performed by combining wind speed measurements, a sea roughness length formulation and the surface-layer wind profile, i.e. a bulk-derived method. This method was tested in Peña et al. (2008) by comparison with direct...

  13. Turbulent boundary layer under the control of different schemes

    Science.gov (United States)

    Qiao, Z. X.; Zhou, Y.; Wu, Z.

    2017-06-01

    This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed.

  14. Turbulence structures in a strongly decelerated boundary layer

    Science.gov (United States)

    Gungor, Ayse G.; Maciel, Yvan; Simens, Mark P.

    2014-11-01

    The characteristics of three-dimensional intense Reynolds shear stress structures (Qs) are presented from a direct numerical simulation of an adverse pressure gradient boundary layer at Reθ = 1500 -2175. The intense Q2 (ejections) and Q4 (sweeps) structures separate into two groups: wall-attached and wall-detached structures. In the region where turbulent activity is maximal, between 0 . 2 δ and 0 . 6 δ , 94 % of the structures are detached structures. In comparison to canonical wall flows, the large velocity defect turbulent boundary layers are less efficient in extracting turbulent energy from the mean flow. There is, furthermore, much less turbulence activity and less velocity coherence near the wall. Additionally, the wall-detached structures are more frequent and carry a much larger amount of Reynolds shear stress. Funded in part by ITU, NSERC of Canada, and Multiflow program of the ERC.

  15. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    duration, bottom roughness, and associated Reynolds numbers. For this purpose, three different “synthetic” (idealised) tsunami wave descriptions are considered i.e., invoking: (1) single wave (solitary-like, but with independent period and wave height),(2) sinusoidal, and (3) N-wave descriptions. The flow......, is newly extended to incorporate a transitional variant of the standard two-equation k–ω turbulence closure. The developed numerical model is successfully validated against recent experimental measurements involving transient solitary wave boundary layers as well as for oscillatory flows, collectively...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...

  16. Boundary-layer turbulence as a kangaroo process

    Science.gov (United States)

    Dekker, H.; de Leeuw, G.; Maassen van den Brink, A.

    1995-09-01

    A nonlocal mixing-length theory of turbulence transport by finite size eddies is developed by means of a novel evaluation of the Reynolds stress. The analysis involves the contruct of a sample path space and a stochastic closure hypothesis. The simplifying property of exhange (strong eddies) is satisfied by an analytical sampling rate model. A nonlinear scaling relation maps the path space onto the semi-infinite boundary layer. The underlying near-wall behavior of fluctuating velocities perfectly agrees with recent direct numerical simulations. The resulting integro-differential equation for the mixing of scalar densities represents fully developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type of stochastic process. The model involves a scaling exponent ɛ (with ɛ-->∞ in the diffusion limit). For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields ɛ~=0.58.

  17. Optimal control of wind turbines in a turbulent boundary layer

    Science.gov (United States)

    Yilmaz, Ali Emre; Meyers, Johan

    2016-11-01

    In recent years, optimal control theory was combined with large-eddy simulations to study the optimal control of wind farms and their interaction with the atmospheric boundary layer. The individual turbine's induction factors were dynamically controlled in time with the aim of increasing overall power extraction. In these studies, wind turbines were represented using an actuator disk method. In the current work, we focus on optimal control on a much finer mesh (and a smaller computational domain), representing turbines with an actuator line method. Similar to Refs., optimization is performed using a gradient-based method, and gradients are obtained employing an adjoint formulation. Different cases are investigated, that include a single and a double turbine case both with uniform inflow, and with turbulent-boundary-layer inflow. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  18. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2012-01-01

    Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear...... viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where......, as expected in boundary layers, the angular frequency increases with radius. In order to shed light on physically viable mechanisms for angular momentum transport in this inner disk region, we examine the generation of hydromagnetic stresses and energy density in differentially rotating backgrounds...

  19. Turbulent boundary layer under the control of different schemes.

    Science.gov (United States)

    Qiao, Z X; Zhou, Y; Wu, Z

    2017-06-01

    This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed.

  20. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    Science.gov (United States)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  1. Transport of gaseous pollutants by convective boundary layer around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra

    2015-01-01

    This study investigates the ability of the human convective boundary layer to transport pollution in a quiescent indoor environment. The impact of the source location in the vicinity of a human body is examined in relation to pollution distribution in the breathing zone and the thickness...... of the pollution boundary layer. The study, in addition, evaluates the effects of the room air temperature, table positioning, and seated body inclination. The human body is represented by a thermal manikin that has a body shape, size, and surface temperature that resemble those of a real person. The results show...... at the upper back or behind the chair. The results also indicate that a decrease in personal exposure to pollutants released from or around the human body increases the extent to which the pollution spreads to the surroundings. Reducing the room air temperature or backward body inclination intensifies...

  2. Magnetohydrodynamic Boundary Layer Flow of Nanofluid over an Exponentially Stretching Permeable Sheet

    Directory of Open Access Journals (Sweden)

    Krishnendu Bhattacharyya

    2014-01-01

    Full Text Available A mathematical model of the steady boundary layer flow of nanofluid due to an exponentially permeable stretching sheet with external magnetic field is presented. In the model, the effects of Brownian motion and thermophoresis on heat transfer and nanoparticle volume friction are considered. Using shooting technique with fourth-order Runge-Kutta method the transformed equations are solved. The study reveals that the governing parameters, namely, the magnetic parameter, the wall mass transfer parameter, the Prandtl number, the Lewis number, Brownian motion parameter, and thermophoresis parameter, have major effects on the flow field, the heat transfer, and the nanoparticle volume fraction. The magnetic field makes enhancement in temperature and nanoparticle volume fraction, whereas the wall mass transfer through the porous sheet causes reduction of both. For the Brownian motion, the temperature increases and the nanoparticle volume fraction decreases. Heat transfer rate becomes low with increase of Lewis number. For thermophoresis effect, the thermal boundary layer thickness becomes larger.

  3. Measurement Science of the Intermittent Atmospheric Boundary Layer

    Science.gov (United States)

    2014-01-01

    investigate intermittency fluxes of clear-air radar reflectivity inthe atmospheric boundary layer, 2013 IEEE International Symposium on Antennas and...meridionally by 40 m), eight ultrasonic anemometers, two low-response thermometers, two low-response hygrometers, three quartz-crystal barometers, and...vertically spaced sonics can be used for post-facto calibration (Muschinski and Ayvazian, 2014) of relative biases in a pair of ultrasonic

  4. Scaling laws and turbulence closures for stable boundary layers

    Science.gov (United States)

    Zilitinkevich, S.; Esau, I.; Baklanov, A.; Djolov, G.

    2003-04-01

    This paper presents a recently developed theory of non-local turbulence in the stably stratified planetary boundary layers (PBLs): basic theoretical results, new LES code specifically designed for LES of stably stratified flows, and comparison of theoretical predictions with LES and experimental data. The paper includes improved formulations for the PBL depth and resistance laws and outlines an advanced turbulence closure accounting for the transport properties of internal gravity waves.

  5. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    OpenAIRE

    Teleman, Elena-Carmen; Silion, Radu; Axinte, Elena; Pescaru, Radu

    2008-01-01

    The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence sca...

  6. Boundary Layer Study. Experimental Validation Test Plan. Phase 4

    Science.gov (United States)

    1990-11-01

    profile aceros the boundary layer. Also included are the measurement of surface properties including pressure, temperature, heat transfer rate, and...the sninplos charged either by fric~tion or byy exposure to passes. The. voimelor owWj is displayed As the turntabie rotates. the sample a corona . N...When the Corona -charginig arm inso.e arm. After about 150 seconlds aale ur rors introducec! by variationis among tost levied, 11 Is exiendead to the

  7. Partially exposed polymer dispersed liquid crystals for boundary layer investigations

    Science.gov (United States)

    Parmar, Devendra S.; Singh, Jag J.

    1992-01-01

    A new configuration termed partially exposed polymer dispersed liquid crystal in which the liquid crystal microdroplets dispersed in a rigid polymer matrix are partially entrapped on the free surface of the thin film deposited on a glass substrate is reported. Optical transmission characteristics of the partially exposed polymer dispersed liquid crystal thin film in response to an air flow induced shear stress field reveal its potential as a sensor for gas flow and boundary layer investigations.

  8. Ozone in the Atlantic Ocean marine boundary layer

    OpenAIRE

    Patrick Boylan; Detlev Helmig; Samuel Oltmans

    2015-01-01

    Abstract In situ atmospheric ozone measurements aboard the R/V Ronald H. Brown during the 2008 Gas-Ex and AMMA research cruises were compared with data from four island and coastal Global Atmospheric Watch stations in the Atlantic Ocean to examine ozone transport in the marine boundary layer (MBL). Ozone measurements made at Tudor Hill, Bermuda, were subjected to continental outflow from the east coast of the United States, which resulted in elevated ozone levels above 50 ppbv. Ozone measurem...

  9. Combined Wave and Current Bottom Boundary Layers: A Review

    Science.gov (United States)

    2016-03-01

    wave mechanics for engineers and scientists. New Jersey: World Scientific . Dingler, J. R., and D. L. Inman. 1976. Wave-formed ripples in nearshore...sediment transport. New York: World Scientific . Papanicolaou, A. N., M. Elhakeem, G. Krallis, S. Prakash, and J. Edinger. 2008. Sediment transport...Boundary layers, Models, Near-shore processes, Review article , Sediment transport, Wave and current interaction 16. SECURITY CLASSIFICATION OF

  10. The curved kinetic boundary layer of active matter.

    Science.gov (United States)

    Yan, Wen; Brady, John F

    2018-01-03

    A body submerged in active matter feels the swim pressure through a kinetic accumulation boundary layer on its surface. The boundary layer results from a balance between translational diffusion and advective swimming and occurs on the microscopic length scale . Here , D T is the Brownian translational diffusivity, τ R is the reorientation time and l = U 0 τ R is the swimmer's run length, with U 0 the swim speed [Yan and Brady, J. Fluid. Mech., 2015, 785, R1]. In this work we analyze the swim pressure on arbitrary shaped bodies by including the effect of local shape curvature in the kinetic boundary layer. When δ ≪ L and l ≪ L, where L is the body size, the leading order effects of curvature on the swim pressure are found analytically to scale as J S λδ 2 /L, where J S is twice the (non-dimensional) mean curvature. Particle-tracking simulations and direct solutions to the Smoluchowski equation governing the probability distribution of the active particles show that λδ 2 /L is a universal scaling parameter not limited to the regime δ, l ≪ L. The net force exerted on the body by the swimmers is found to scale as F net /(n ∞ k s T s L 2 ) = f(λδ 2 /L), where f(x) is a dimensionless function that is quadratic when x ≪ 1 and linear when x ∼ 1. Here, k s T s = ζU 0 2 τ R /6 defines the 'activity' of the swimmers, with ζ the drag coefficient, and n ∞ is the uniform number density of swimmers far from the body. We discuss the connection of this boundary layer to continuum mechanical descriptions of active matter and briefly present how to include hydrodynamics into this purely kinetic study.

  11. Numerical Simulation of Roughness Induced Boundary Layer Transition

    Science.gov (United States)

    2016-03-30

    901-918. 18. ZHENG Yun, LI Hongyang, LIU Daxiang. “Application and Analysis of γ-Reθ Transition Model in Hypersonic Flow”, Journal of Propulsion ...making the simulated result more accurate. Xiao [25] used a three-equation k-ω- γ transition model to study hypersonic flow around single roughness...point RANS Approach”, Journal of Turbomachinery, 2004, 126(1):193-202. 14. FU Song, WANG Liang. “Simulation of Hypersonic Boundary-Layer Transition

  12. Relation between the Atmospheric Boundary Layer and Impact Factors under Severe Surface Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Yinhuan Ao

    2017-01-01

    Full Text Available This paper reported a comprehensive analysis on the diurnal variation of the Atmospheric Boundary Layer (ABL in summer of Badain Jaran Desert and discussed deeply the effect of surface thermal to ABL, including the Difference in Surface-Air Temperature (DSAT, net radiation, and sensible heat, based on limited GPS radiosonde and surface observation data during two intense observation periods of experiments. The results showed that (1 affected by topography of the Tibetan Plateau, the climate provided favorable external conditions for the development of Convective Boundary Layer (CBL, (2 deep CBL showed a diurnal variation of three- to five-layer structure in clear days and five-layer ABL structure often occurred about sunset or sunrise, (3 the diurnal variation of DSAT influenced thickness of ABL through changes of turbulent heat flux, (4 integral value of sensible heat which rapidly converted by surface net radiation had a significant influence on the growth of CBL throughout daytime. The cumulative effect of thick RML dominated the role after CBL got through SBL in the development stage, especially in late summer, and (5 the development of CBL was promoted and accelerated by the variation of wind field and distribution of warm advection in high and low altitude.

  13. Review of Orbiter Flight Boundary Layer Transition Data

    Science.gov (United States)

    Mcginley, Catherine B.; Berry, Scott A.; Kinder, Gerald R.; Barnell, maria; Wang, Kuo C.; Kirk, Benjamin S.

    2006-01-01

    In support of the Shuttle Return to Flight program, a tool was developed to predict when boundary layer transition would occur on the lower surface of the orbiter during reentry due to the presence of protuberances and cavities in the thermal protection system. This predictive tool was developed based on extensive wind tunnel tests conducted after the loss of the Space Shuttle Columbia. Recognizing that wind tunnels cannot simulate the exact conditions an orbiter encounters as it re-enters the atmosphere, a preliminary attempt was made to use the documented flight related damage and the orbiter transition times, as deduced from flight instrumentation, to calibrate the predictive tool. After flight STS-114, the Boundary Layer Transition Team decided that a more in-depth analysis of the historical flight data was needed to better determine the root causes of the occasional early transition times of some of the past shuttle flights. In this paper we discuss our methodology for the analysis, the various sources of shuttle damage information, the analysis of the flight thermocouple data, and how the results compare to the Boundary Layer Transition prediction tool designed for Return to Flight.

  14. Dry intrusions: Lagrangian climatology and impact on the boundary layer

    Science.gov (United States)

    Raveh-Rubin, Shira; Wernli, Heini

    2017-04-01

    Dry air intrusions (DIs) are large-scale descending airstreams. A DI is typically referred to as a coherent airstream in the cold sector of an extratropical cyclone. Emerging evidence suggests that DIs are linked to severe surface wind gusts. However, there is yet no strict Lagrangian definition of DIs, and so their climatological frequency, dynamical characteristics as well as their seasonal and spatial distributions are unknown. Furthermore, the dynamical interaction between DIs and the planetary boundary layer is not fully understood. Here, we suggest a Lagrangian definition for DI air parcels, namely a minimum pressure increase along a trajectory of 400 hPa in 48 hours. Based on this criterion, the open questions are addressed by: (i) a novel global Lagrangian climatology for the ECMWF ERA-Interim reanalysis dataset for the years 1979-2014; (ii) a case study illustrating the interaction between DIs and the boundary layer. We find that DIs occur predominantly in winter. DIs coherently descend from the upper troposphere (their stratospheric origin is small), to the mid- and low levels, where they mix with their environment and diverge. Different physical characteristics typify DIs in the different regions and seasons. Finally, we demonstrate the different mechanisms by which DIs can destabilize the boundary layer and facilitate the formation of strong surface winds.

  15. RANS Modeling of Benchmark Shockwave / Boundary Layer Interaction Experiments

    Science.gov (United States)

    Georgiadis, Nick; Vyas, Manan; Yoder, Dennis

    2010-01-01

    This presentation summarizes the computations of a set of shock wave / turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock / boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Three turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Shear Stress Transport wavenumber-angular frequency two-equation model, and an explicit algebraic stress wavenumber-angular frequency formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.!

  16. Evidence for renoxification in the tropical marine boundary layer

    Science.gov (United States)

    Reed, Chris; Evans, Mathew J.; Crilley, Leigh R.; Bloss, William J.; Sherwen, Tomás; Read, Katie A.; Lee, James D.; Carpenter, Lucy J.

    2017-03-01

    We present 2 years of NOx observations from the Cape Verde Atmospheric Observatory located in the tropical Atlantic boundary layer. We find that NOx mixing ratios peak around solar noon (at 20-30 pptV depending on season), which is counter to box model simulations that show a midday minimum due to OH conversion of NO2 to HNO3. Production of NOx via decomposition of organic nitrogen species and the photolysis of HNO3 appear insufficient to provide the observed noontime maximum. A rapid photolysis of nitrate aerosol to produce HONO and NO2, however, is able to simulate the observed diurnal cycle. This would make it the dominant source of NOx at this remote marine boundary layer site, overturning the previous paradigm according to which the transport of organic nitrogen species, such as PAN, is the dominant source. We show that observed mixing ratios (November-December 2015) of HONO at Cape Verde (˜ 3.5 pptV peak at solar noon) are consistent with this route for NOx production. Reactions between the nitrate radical and halogen hydroxides which have been postulated in the literature appear to improve the box model simulation of NOx. This rapid conversion of aerosol phase nitrate to NOx changes our perspective of the NOx cycling chemistry in the tropical marine boundary layer, suggesting a more chemically complex environment than previously thought.

  17. Improving Wind-Ramp Forecasts in the Stable Boundary Layer

    Science.gov (United States)

    Jahn, David E.; Takle, Eugene S.; Gallus, William A.

    2017-06-01

    The viability of wind-energy generation is dependent on highly accurate numerical wind forecasts, which are impeded by inaccuracies in model representation of boundary-layer processes. This study revisits the basic theory of the Mellor, Yamada, Nakanishi, and Niino (MYNN) planetary boundary-layer parametrization scheme, focusing on the onset of wind-ramp events related to nocturnal low-level jets. Modifications to the MYNN scheme include: (1) calculation of new closure parameters that determine the relative effects of turbulent energy production, dissipation, and redistribution; (2) enhanced mixing in the stable boundary layer when the mean wind speed exceeds a specified threshold; (3) explicit accounting of turbulent potential energy in the energy budget. A mesoscale model is used to generate short-term (24 h) wind forecasts for a set of 15 cases from both the U.S.A. and Germany. Results show that the new set of closure parameters provides a marked forecast improvement only when used in conjunction with the new mixing length formulation and only for cases that are originally under- or over-forecast (10 of the 15 cases). For these cases, the mean absolute error (MAE) of wind forecasts at turbine-hub height is reduced on average by 17%. A reduction in MAE values on average by 26% is realized for these same cases when accounting for the turbulent potential energy together with the new mixing length. This last method results in an average reduction by at least 13% in MAE values across all 15 cases.

  18. Wave boundary layer over a stone-covered bed

    DEFF Research Database (Denmark)

    Dixen, Martin; Hatipoglu, Figen; Sumer, B. Mutlu

    2008-01-01

    This paper summarizes the results of an experimental investigation on wave boundary layers over a bed with large roughness, simulating stone/rock/armour block cover on the sea bottom. The roughness elements used in the experiments were stones the size of 1.4cm and 3.85cm in one group of experiments...... and regular ping-pong balls the size 3.6cm in the other. The orbital-motion-amplitude-to-roughness ratio at the bed was rather small, in the range a/ks=0.6-3. The mean and turbulence properties of the boundary-layer flow were measured. Various configurations of the roughness elements were used in the ping...... for small values of a/ks. The results further show that the phase lead of the bed friction velocity over the surface elevation does not seem to change radically with a/ks, and found to be in the range 12°-23°. Furthermore the results show that the boundary-layer turbulence also is not extremely sensitive...

  19. Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows

    Science.gov (United States)

    Raayai-Ardakani, Shabnam; McKinley, Gareth H.

    2017-09-01

    Inspired by the design of the ribbed structure of shark skin, passive drag reduction methods using stream-wise riblet surfaces have previously been developed and tested over a wide range of flow conditions. Such textures aligned in the flow direction have been shown to be able to reduce skin friction drag by 4%-8%. Here, we explore the effects of periodic sinusoidal riblet surfaces aligned in the flow direction (also known as a "wrinkled" texture) on the evolution of a laminar boundary layer flow. Using numerical analysis with the open source Computational Fluid Dynamics solver OpenFOAM, boundary layer flow over sinusoidal wrinkled plates with a range of wavelength to plate length ratios ( λ / L ), aspect ratios ( 2 A / λ ), and inlet velocities are examined. It is shown that in the laminar boundary layer regime, the riblets are able to retard the viscous flow inside the grooves creating a cushion of stagnant fluid that the high-speed fluid above can partially slide over, thus reducing the shear stress inside the grooves and the total integrated viscous drag force on the plate. Additionally, we explore how the boundary layer thickness, local average shear stress distribution, and total drag force on the wrinkled plate vary with the aspect ratio of the riblets as well as the length of the plate. We show that riblets with an aspect ratio of close to unity lead to the highest reduction in the total drag, and that because of the interplay between the local stress distribution on the plate and stream-wise evolution of the boundary layer the plate has to exceed a critical length to give a net decrease in the total drag force.

  20. Investigation of Materials for Boundary Layer Control in a Supersonic Wind Tunnel

    Science.gov (United States)

    Braafladt, Alexander; Lucero, John M.; Hirt, Stefanie M.

    2013-01-01

    During operation of the NASA Glenn Research Center 15- by 15-Centimeter Supersonic Wind Tunnel (SWT), a significant, undesirable corner flow separation is created by the three-dimensional interaction of the wall and floor boundary layers in the tunnel corners following an oblique-shock/ boundary-layer interaction. A method to minimize this effect was conceived by connecting the wall and floor boundary layers with a radius of curvature in the corners. The results and observations of a trade study to determine the effectiveness of candidate materials for creating the radius of curvature in the SWT are presented. The experiments in the study focus on the formation of corner fillets of four different radii of curvature, 6.35 mm (0.25 in.), 9.525 mm (0.375 in.), 12.7 mm (0.5 in.), and 15.875 mm (0.625 in.), based on the observed boundary layer thickness of 11.43 mm (0.45 in.). Tests were performed on ten candidate materials to determine shrinkage, surface roughness, cure time, ease of application and removal, adhesion, eccentricity, formability, and repeatability. Of the ten materials, the four materials which exhibited characteristics most promising for effective use were the heavy body and regular type dental impression materials, the basic sculpting epoxy, and the polyurethane sealant. Of these, the particular material which was most effective, the heavy body dental impression material, was tested in the SWT in Mach 2 flow, and was observed to satisfy all requirements for use in creating the corner fillets in the upcoming experiments on shock-wave/boundary-layer interaction.

  1. Mechanisms of fast neutron penetration in thick layers of sodium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L.Y.

    1975-01-01

    A series of computer experiments was carried out to elucidate the penetration mechanisms of fast neutrons through thick layers of sodium such as occur in LMFBR designs. As a one-dimensional approximation of the actual situation, the calculations concentrated mainly on the flux 5 meters from a plane isotropic fission source in an infinite sodium medium. Most of the transport calculations were made with the moments-method code BMT with a 496-energy point grid. Previously developed methods for reconstructing the flux from the spatial moments were used, except that a set of biorthogonal polynomials was constructed suitable for expansion of the flux in terms of a Gaussian weight function. The moments-method technique lends itself to easy and economical changes of the input cross section data. A large number of such modified cross section sets, built around the ENDF/B-III set, were used in separate calculations designed variously to emphasize or eliminate one or more particular transport processes. It was shown that, as the energy decreases below 190 keV, the flux spectrum at 5 m is increasingly dominated by an age-diffusion process that is quantitatively close to conventional age theory if the age is suitably chosen. Conclusions from this picture of neutron penetration in sodium are made as to the types of transport calculations that can be successfully made in shield design, and the accuracies needed in future cross section measurements. 37 figures, 30 tables.

  2. Combustion characteristics of methane hydrate in a laminar boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y.; Katsuki, R.; Yokomori, T.; Ohmura, R.; Ueda, T. [Keio Univ., Yokohama (Japan). Dept. of Mechanical Engineering; Takahashi, M.; Iwasaki, T.; Uchida, K. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    2008-07-01

    The combustion characteristics of methane hydrates in a laminar boundary layer were investigated in order to examine the flame propagation speed of methane hydrates. The experiments were performed under atmospheric pressure using methane hydrate crystals previously stored at a liquid-nitrogen temperature. A wind tunnel was used to form an air laminar boundary layer. The crystals were packed in an insulated rectangular cell to ensure that the hydrate layer was level with a horizontal flat plate. The surface of the dissociating hydrate crystals was ignited using a pilot flame at the downstream end of the hydrate crystals. Flame location was measured using a video camera. Results showed that after the flame was extinguished, the methane hydrate crystals were not completely dissociated. The flame was extinguished by an ice layer that had formed over the methane hydrate crystals. Propagation rates were measured in order to explore the relationship between the flame propagation rate and free-stream velocity. 8 refs., 2 tabs., 10 figs.

  3. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows

    Directory of Open Access Journals (Sweden)

    Kazutaka Yanase

    2016-12-01

    Full Text Available The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L (mean±s.d.; N=6], swimming at 1.6±0.09 L s−1 (N=6 in an experimental flow channel (Reynolds number, Re=4×105 with medium turbulence (5.6% intensity were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, lx=71±8 mm, N=3, and lx=110±13 mm, N=4, respectively were approximated by a laminar boundary layer model, the Falkner−Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (lx=163±22 mm, N=3. The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment.

  4. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2016-12-15

    The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L) (mean±s.d.); N=6], swimming at 1.6±0.09 L s -1 (N=6) in an experimental flow channel (Reynolds number, Re=4×10 5 ) with medium turbulence (5.6% intensity) were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, l x =71±8 mm, N=3, and l x =110±13 mm, N=4, respectively) were approximated by a laminar boundary layer model, the Falkner-Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (l x =163±22 mm, N=3). The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment. © 2016. Published by The Company of Biologists Ltd.

  5. Determination of crystallization as a function of Mo layer thickness in Mo/Si multilayers

    DEFF Research Database (Denmark)

    Abdali, Salim; Gerward, Leif; Yakshin, A.E.

    2002-01-01

    information on the crystalline phases, average size and crystallite formation. Comparison of these parameters for the samples examined provided novel results, especially regarding the in-plane and in-depth average sizes of the crystallites. The most important result is that crystallization takes place already......Mo/Si multilayer samples with different Mo layer thickness were deposited by electron beam evaporation, while Kr+ ions (300 eV) were used for polishing the Si layers. Crystallization as a function of the Mo layer thickness deposited was investigated by grazing incidence X-ray diffraction, giving...... when a 1 nm thick Mo layer has been deposited. Moreover, the average in-plane size of the crystallites was found to be independent of the layer thickness, while the average in-depth size corresponded to the thickness of the Mo layer. Depositions consist of polished Si layers were found to give a larger...

  6. Proceedings of the 17th and 18th NAL Workshops on Investigation and Control of Boundary-Layer Transition

    OpenAIRE

    National Aerospace Laboratory; 航空宇宙技術研究所

    1996-01-01

    The following topics were discussed: vortex shedding, laminar boundary layer measurement, vortex ring, turbulent flow measurement, high Reynolds number turbulence, pulsed flow, boundary layer instability, Ekman boundary layer, sound receptivity, Tollmien-Schlichting wave in supersonic boundary layer, flow field instability, turbulent flow pattern, vorticity distribution in shear flow, turbulence wedge, streamwise vortex mixing, thermal convection, oblique wave generation in boundary layer, in...

  7. Competitive separation of di- vs. mono-valent cations in electrodialysis: effects of the boundary layer properties.

    Science.gov (United States)

    Kim, Younggy; Walker, W Shane; Lawler, Desmond F

    2012-05-01

    In electrodialysis desalination, the boundary layer near ion-exchange membranes is the limiting region for the overall rate of ionic separation due to concentration polarization over tens of micrometers in that layer. Under high current conditions, this sharp concentration gradient, creating substantial ionic diffusion, can drive a preferential separation for certain ions depending on their concentration and diffusivity in the solution. Thus, this study tested a hypothesis that the boundary layer affects the competitive transport between di- and mono-valent cations, which is known to be governed primarily by the partitioning with cation-exchange membranes. A laboratory-scale electrodialyzer was operated at steady state with a mixture of 10mM KCl and 10mM CaCl(2) at various flow rates. Increased flows increased the relative calcium transport. A two-dimensional model was built with analytical solutions of the Nernst-Planck equation. In the model, the boundary layer thickness was considered as a random variable defined with three statistical parameters: mean, standard deviation, and correlation coefficient between the thicknesses of the two boundary layers facing across a spacer. Model simulations with the Monte Carlo method found that a greater calcium separation was achieved with a smaller mean, greater standard deviation, or more negative correlation coefficient. The model and experimental results were compared for the cationic transport number as well as the current and potential relationship. The mean boundary layer thickness was found to decrease from 40 to less than 10 μm as the superficial water velocity increased from 1.06 to 4.24 cm/s. The standard deviation was greater than the mean thickness at slower water velocities and smaller at faster water velocities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction.

    Science.gov (United States)

    Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren

    2017-05-01

    In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors' knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St + = 24 and the particle Reynolds number Re p = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y + = 60 and 2/3 of the boundary-layer thickness are the most influenced.

  9. Effect of layer thickness on the elution of bulk-fill composite components.

    Science.gov (United States)

    Rothmund, Lena; Reichl, Franz-Xaver; Hickel, Reinhard; Styllou, Panorea; Styllou, Marianthi; Kehe, Kai; Yang, Yang; Högg, Christof

    2017-01-01

    An increment layering technique in a thickness of 2mm or less has been the standard to sufficiently convert (co)monomers. Bulk fill resin composites were developed to accelerate the restoration process by enabling up to 4mm thick increments to be cured in a single step. The aim of the present study is to investigate the effect of layer thickness on the elution of components from bulk fill composites. The composites ELS Bulk fill, SDR Bulk fill and Venus Bulkfill were polymerized according to the instruction of the manufacturers. For each composite three groups with four samples each (n=4) were prepared: (1) samples with a layer thickness of 2mm; (2) samples with a layer thickness of 4mm and (3) samples with a layer thickness of 6mm. The samples were eluted in methanol and water for 24h and 7 d. The eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). A total of 11 different elutable substances have been identified from the investigated composites. Following methacrylates showed an increase of elution at a higher layer thickness: TEGDMA (SDR Bulk fill, Venus Bulk fill), EGDMA (Venus Bulk fill). There was no significant difference in the elution of HEMA regarding the layer thickness. The highest concentration of TEGDMA was 146μg/mL for SDR Bulk fill at a layer thickness of 6mm after 7 d in water. The highest HEMA concentration measured at 108μg/mL was detected in the methanol eluate of Venus Bulk fill after 7 d with a layer thickness of 6mm. A layer thickness of 4mm or more can lead to an increased elution of some bulk fill components, compared to the elution at a layer thickness of 2mm. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Numerical study of wingtip shed vorticity reduction by wing Boundary Layer Control

    Science.gov (United States)

    Posada, Jose Alejandro

    computed pressure coefficient values compare very well (Figure 90). The present simulations were also validated by comparison with wake survey and balance type experimental measurements done by Chometon and Laurent on a NACA 643-018 wing. Lift, induced drag, and profile drag coefficients agree very well with Chometon and Laurent data. More than one hundred simulations were performed with different BLC suction slot geometries. Suction slots were used in the chord-wise and span-wise locations near the wing tip region. Blowing slots were evaluated at the wing center line, the wing tip upper surface, and span-wise outside of the wing tip. For an elliptically loaded wing, 50% of the bound vorticity is shed at the wing tips over a length of 7% of the wing span. The turbulent boundary layer thickness for a Cessna 206 aircraft at cruise is estimated as 0.09 ft. Theoretically the power required to remove by suction all the upper and lower surface boundary layer over the tip region for this aircraft at take-off is 2.6 HP, which would be very small compared to the 70 HP induced drag power saved. This would only be true if 100% wingtip vortex elimination could be obtained.

  11. Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections

    National Research Council Canada - National Science Library

    Curcio, Christine A; Messinger, Jeffrey D; Sloan, Kenneth R; Mitra, Arnab; McGwin, Gerald; Spaide, Richard F

    2011-01-01

    To provide a comprehensive description of chorioretinal layer thicknesses in the normal human macula, including two-layer pairs that can produce a combined signal in some optical coherence tomography (OCT) devices (ganglion cell [GCL...

  12. Modelling the Arctic Stable boundary layer and its coupling to the surface

    NARCIS (Netherlands)

    Steeneveld, G.J.; Wiel, van de B.J.H.; Holtslag, A.A.M.

    2006-01-01

    The impact of coupling the atmosphere to the surface energy balance is examined for the stable boundary layer, as an extension of the first GABLS (GEWEX Atmospheric Boundary-Layer Study) one-dimensional model intercomparison. This coupling is of major importance for the stable boundary-layer

  13. Thermographic analysis of turbulent non-isothermal water boundary layer

    CERN Document Server

    Znamenskaya, Irina A

    2015-01-01

    The paper is devoted to the investigation of the turbulent water boundary layer in the jet mixing flows using high-speed infrared (IR) thermography. Two turbulent mixing processes were studied: a submerged water jet impinging on a flat surface and two intersecting jets in a round disc-shaped vessel. An infrared camera (FLIR Systems SC7700) was focused on the window transparent for IR radiation; it provided high-speed recordings of heat fluxes from a thin water layer close to the window. Temperature versus time curves at different points of water boundary layer near the wall surface were acquired using the IR camera with the recording frequency of 100 Hz. The time of recording varied from 3 till 20 min. The power spectra for the temperature fluctuations at different points on the hot-cold water mixing zone were calculated using the Fast Fourier Transform algorithm. The obtained spectral behavior was compared to the Kolmogorov "-5/3 spectrum" (a direct energy cascade) and the dual-cascade scenario predicted for...

  14. Layer thickness evaluation for transuranic transmutation in a fusion–fission system

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, Carlos E., E-mail: carlosvelcab@eng-nucl.mest.ufmg.br [Departamento de Engenharia Nuclear—Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 Campus UFMG, 31.270-90, Belo Horizonte, MG (Brazil); Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq, Rio de Janeiro, RJ (Brazil); Rede Nacional de Fusão (FINEP/CNPq), Rio de Janeiro, RJ (Brazil); Pereira, Claubia, E-mail: claubia@nuclear.ufmg.br [Departamento de Engenharia Nuclear—Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 Campus UFMG, 31.270-90, Belo Horizonte, MG (Brazil); Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq, Rio de Janeiro, RJ (Brazil); Rede Nacional de Fusão (FINEP/CNPq), Rio de Janeiro, RJ (Brazil); Veloso, Maria Auxiliadora F., E-mail: dora@nuclear.ufmg.br [Departamento de Engenharia Nuclear—Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 Campus UFMG, 31.270-90, Belo Horizonte, MG (Brazil); Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq, Rio de Janeiro, RJ (Brazil); Rede Nacional de Fusão (FINEP/CNPq), Rio de Janeiro, RJ (Brazil); Costa, Antonella L., E-mail: antonella@nuclear.ufmg.br [Departamento de Engenharia Nuclear—Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 Campus UFMG, 31.270-90, Belo Horizonte, MG (Brazil); Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq, Rio de Janeiro, RJ (Brazil); Rede Nacional de Fusão (FINEP/CNPq), Rio de Janeiro, RJ (Brazil)

    2015-05-15

    Highlights: • Layer thickness for transmutation in a fusion–fission system was evaluated. • The calculations were performed using MONTEBURNS code. • The results indicate the best thickness and volume ratio to induce transmutation. - Abstract: Layer thickness for transuranic transmutation in a fusion–fission system was evaluated using two different ways. In the first one, transmutation layer thicknesses were designed maintaining the fuel rod radius constant; in the second part, while the transmutation layer thickness increases, the fuel rod radius decreases maintaining k{sub s} (source-multiplication factor) ≈0.95. Spent fuel reprocessed by UREX+ method and then spiked with thorium and uranium composes the transmutation layer. The calculations were performed using MONTEBURNS code (MCNP5 and ORIGEN 2.1). The results indicate the best thickness and the volume ratio between the coolant and the fuel composition to induce transmutation.

  15. Characteristics of vortex packets in a boundary layer

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen; Marusic, Ivan

    2002-11-01

    Stereo PIV was used to measure all three velocity components in streamwise-spanwise (x-y) planes of a turbulent boundary layer at Re_τ = 1060. Datasets were obtained in the log layer and beyond. The vector fields in the log layer (z^+ = 92 and 150, z - wall normal direction) revealed signatures of vortex packets similar to those found by Adrian and co-workers in their PIV experiments. Groups of legs of hairpin vortices appeared to be coherently arranged along the x direction. These regions also generated substantial Reynolds shear stress (-uw), sometimes as high as 40U_τ^2. A feature extraction algorithm was developed to automate the identification and characterization of these packets of hairpin vortices. Identified patches contributed 28% to the total -uw while occupying less than 5% of the total area in the log layer. Beyond the log layer (z^+ = 198, 530), the spatial organization into packets breaks down. Instead, large individual vortex cores and spanwise strips of positive and negative wall-normal velocity were observed. Supported by NSF (ACI-9982774, CTS-9983933).

  16. Heat exposure of corals: investigating the "other" diffusive boundary layer

    DEFF Research Database (Denmark)

    Jimenez, Isabel M.; Kühl, Michael; Larkum, Anthony W. D.

    of corals under bleaching conditions, we used temperature microsensors to investigate the thermal boundary layer (TBL) of a branching and a hemispherical coral species (Stylophora pistillata and Porites lobata). The TBL thickness for both species was 2 mm at quasi stagnant flow (0.3 cm/s), and declined...... exponentially at increasing flow. Dimensionless analysis of heat transfer (Nusselt-Reynolds number plots) resulted in a heat exponent of approx. 0.5, indicative of a laminar boundary layer and consistent with predictions from engineering theory for simple geometrical objects. However, additional measurements...

  17. Preparation and properties of thick not intentionally doped GaInP(As)/GaAs layers

    CERN Document Server

    Nohavica, D; Zdansky, K

    1999-01-01

    We report on liquid-phase epitaxial growth of thick layers of GaInP(As), lattice matched to GaAs. Layers with thicknesses up to 10 mu m were prepared in a multi-melt bin, step-cooling, one-phase configuration. Unintentionally doped layers, grown from moderate purity starting materials, show a significant decrease in the residual impurity level when erbium is added to the melt. Fundamental electrical and optical properties of the layers were investigated. (author)

  18. Surface Temperature and Surface-Layer Turbulence in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Pardyjak, E.; Steeneveld, G.J.; Kleissl, J.

    2013-01-01

    Previous laboratory and atmospheric experiments have shown that turbulence influences the surface temperature in a convective boundary layer. The main objective of this study is to examine land-atmosphere coupled heat transport mechanism for different stability conditions. High frequency infrared

  19. Boundary layer polarization and voltage in the 14 MLT region

    Science.gov (United States)

    Lundin, R.; Yamauchi, M.; Woch, J.; Marklund, G.

    1995-05-01

    Viking midlatitude observations of ions and electrons in the postnoon auroral region show that field-aligned acceleration of electrons and ions with energies up to a few kiloelectron volts takes place. The characteristics of the upgoing ion beams and the local transverse electric field observed by Viking indicate that parallel ion acceleration is primarily due to a quasi-electrostatic field-aligned acceleration process below Viking altitudes, i.e., below 10,000-13,500 km. A good correlation is found between the maximum upgoing ion beam energy and the depth of the local potential well determined by the Viking electric field experiment within dayside 'ion inverted Vs.' The total transverse potential throughout the entire region near the ion inverted Vs. is generally much higher than the field-aligned potential and may reach well above 10 kV. However, the detailed mapping of the transverse potential out to the boundary layer, a fundamental issue which remains controversial, was not attempted here. An important finding in this study is the strong correlation between the maximum up going ion beam energy of dayside ion inverted Vs and the solar wind velocity. This suggests a direct coupling of the solar wind plasma dynamo/voltage generator to the region of field-aligned particle acceleration. The fact that the center of dayside ion inverted Vs coincide with convection reversals/flow stagnation and upward Birkeland currents on what appears to be closed field lines (Woch et al., 1993), suggests that field-aligned potential structures connect to the inner part of an MHD dyanmo in the low-latitude boundary layer. Thus the Viking observations substantiate the idea of a solar wind induced boundary layer polarization where negatively charged perturbations in the postnoon sector persistently develops along the magnetic field lines, establishing accelerating potential drops along the geomagnetic field lines in the 0.5-10 kV range.

  20. Modelling wave-boundary layer interaction for wind power applications

    Science.gov (United States)

    Jenkins, A. D.; Barstad, I.; Gupta, A.; Adakudlu, M.

    2012-04-01

    Marine wind power production facilities are subjected to direct and indirect effects of ocean waves. Direct effects include forces due to wave orbital motions and slamming of the water surface under breaking wave conditions, corrosion and icing due to sea spray, and the effects of wave-generated air bubbles. Indirect effects include include the influence of waves on the aerodynamic sea-surface roughness, air turbulence, the wind velocity profile, and air velocity oscillations, wave-induced currents and sediment transport. Field observations within the boundary layers from floating measurement may have to be corrected to account for biases induced as a result of wave-induced platform motions. To estimate the effect of waves on the atmospheric boundary layer we employ the WRF non-hydrostatic mesoscale atmosphere model, using the default YSU planetary boundary layer (PBL) scheme and the WAM spectral wave model, running simultaneously and coupled using the open-source coupler MCEL which can interpolate between different model grids and timesteps. The model is driven by the WRF wind velocity at 10 m above the surface. The WRF model receives from WAM updated air-sea stress fields computed from the wind input source term, and computes new fields for the Charnock parameter and marine surface aerodynamic roughness. Results from a North Atlantic and Nordic Seas simulation indicate that the two-way coupling scheme alters the 10 metre wind predicted by WRF by up to 10 per cent in comparison with a simulation using a constant Charnock parameter. The changes are greatest in developing situations with passages of fronts, moving depressions and squalls. This may be directly due to roughness length changes, or may be due to changes in the timing of front/depression/squall passages. Ongoing work includes investigating the effect of grid refinement/nesting, employing different PBL schemes, and allowing the wave field to change the direction of the total air-sea stress.

  1. Organic field effect transistors - Study of performance parameters for different dielectric layer thickness

    Science.gov (United States)

    Assis, Anu; Shahul Hameed T., A.; Predeep, P.

    2017-06-01

    Mobility and current handling capabilities of Organic Field Effect Transistor (OFET) are vitally important parameters in the electrical performance where the material parameters and thickness of different layers play significant role. In this paper, we report the simulation of an OFET using multi physics tool, where the active layer is pentacene and Poly Methyl Methacrylate (PMMA) forms the dielectric. Electrical characterizations of the OFET on varying the thickness of the dielectric layer from 600nm to 400nm are simulated and drain current, transconductance and mobility are analyzed. In the study it is found that even though capacitance increases with reduction in dielectric layer thickness, the transconductance effect is reflected many more times in the mobility which in turn could be attributed to the variations in transverse electric field. The layer thickness below 300nm may result in gate leakage current points to the requirement of optimizing the thickness of different layers for better performance.

  2. Fluid Mechanics and Heat Transfer in Transitional Boundary Layers

    Science.gov (United States)

    Wang, Ting

    2007-01-01

    Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.

  3. Earth's magnetosphere formed by the low-latitude boundary layer

    CERN Document Server

    Heikkila, W J

    2011-01-01

    The author argues that, after five decades of debate about the interactive of solar wind with the magnetosphere, it is time to get back to basics. Starting with Newton's law, this book also examines Maxwell's equations and subsidiary equations such as continuity, constitutive relations and the Lorentz transformation; Helmholtz' theorem, and Poynting's theorem, among other methods for understanding this interaction. Includes chapters on prompt particle acceleration to high energies, plasma transfer event, and the low latitude boundary layer More than 200 figures illustrate the text Includes a color insert.

  4. The Physics of Boundary-Layer Aero-Optic Effects

    Science.gov (United States)

    2012-09-01

    Mach-number-dependent function, )(1 ∞ MF for the modified model Eq. (23) and [ ] 2/3 222 2 )/(12 11)( − ∞∞∞∞       − − += UUrMMMF c γ for the...model Eq. (20). To calculate )(1 ∞ MF from (24), experimentally-measured velocity profiles for a M = 0.5 boundary layer were used; Figure 17 shows the...Optical Engineering: The Design of Optical Systems, McGraw- Hill, NY, 1966, Chap. 3, pp. 49-71. [16] S. Gordeyev, E. Jumper, T. Ng and A. Cain , "Aero

  5. Streaming effect of wall oscillation to boundary layer separation

    Science.gov (United States)

    Wu, X. H.; Wu, J. Z.; Wu, J. M.

    1991-01-01

    This paper presents a preliminary theoretical result on the time averaged streaming effect of local forcing excitation to the boundary layer separation from smooth surface. The problem is formulated as a periodic disturbance to a basic steady breakaway separating flow, for which the data are taken from a numerical triple-deck solution. The ratio of Strouhal number St and Reynolds number Re plays an important role, both being assumed sufficiently high. The analytical and numerical results show that this streaming effect is quite strong at proper values of St/Re exp 1/4, which may delay or even suppress the separation.

  6. Injection-induced turbulence in stagnation-point boundary layers

    Science.gov (United States)

    Park, C.

    1984-01-01

    A theory is developed for the stagnation point boundary layer with injection under the hypothesis that turbulence is produced at the wall by injection. From the existing experimental heat transfer rate data obtained in wind tunnels, the wall mixing length is deduced to be a product of a time constant and an injection velocity. The theory reproduces the observed increase in heat transfer rates at high injection rates. For graphite and carbon-carbon composite, the time constant is determined to be 0.0002 sec from the existing ablation data taken in an arc-jet tunnel and a balistic range.

  7. Effects of compressibility on boundary-layer turbulence

    Science.gov (United States)

    Acharya, M.

    1976-01-01

    A series of turbulence measurements in a subsonic compressible turbulent boundary-layer flow in the Mach number range of 0.1 to 0.7 is described. Measurements include detailed surveys of the turbulence intensities and Reynolds shear stresses, and other quantities such as the turbulent kinetic energy. These data are examined to bring out the effects of compressibility and show that the stream-wise and transverse fluctuations and the turbulent shear stress follow a universal scaling law. A preliminary attempt is made to examine some of the assumptions made in turbulence models commonly used in numerical codes for the calculation of compressible flows.

  8. Control of Boundary Layers for Aero-optical Applications

    Science.gov (United States)

    2015-06-23

    Tunnel ( TWT ) facility located in Hessert Laboratory for Aerospace Research at the University of 8 Notre Dame. The TWT is composed of an inlet...4.2 Results One set of measurements were conducted in the Hessert Transonic Wind Tunnel ( TWT ) at the University of Notre Dame. The total length...Boundary Layer Wall Heating Conditions Facility V∞ [m/s] M δ [cm] Reθ ΔT [K] fsamp [kHz] Caltech MWT 9.4 0.03 2.7 1,700 21 30 ND TWT 64.8 0.18 1.2

  9. Numerical simulation of convective boundary layer above polynyas and leads.

    Science.gov (United States)

    Debolskiy, Andrey; Stepanenko, Victor

    2013-04-01

    Arctic region is very important as one of drivers for global atmosphere circulation. Meanwhile, results of modern global atmospheric models, both climatic and weather forecasting differs significantly from each other and observations in this region. One of the reasons for these uncertainties can be inaccurate simulation of ice and snow cover distribution, which accuracy depends in turn on variety of factors. Among others, appropriate parameterizations of atmospheric boundary layer over inhomogeneous surface, not explicitly resolved at the atmospheric model grid, can decrease these inaccuracies. The main objective of these parameterizations is to calculate surface heat and water vapor fluxes, averaged over the whole model cell. However, due to great differences in structure of boundary layers formed over cold ice and relatively warm open water, which cause nonlinear dependencies,the parameterizations suggested to the moment can hardly be regarded as applicable for "complete" set of synoptic scenarios . The present paper attempts to improve standard mosaic method of flux aggregation, which is still common in climate models [1]. The main idea is to derive heat fluxes using data from numerical experiments, explicitly reproducing most of sub grid (for global models) turbulence motions spectra, and compare with fluxes calculated using mosaic method implying the part of model domain to be a global model cell. The study is based on idealized high resolution (~10 m) experiments with typically observed surface parameters (temperature and roughness), ice-open water distribution, initial temperature and wind profiles distribution included in Large Eddy Simulation model of Insitute of Numerical Mathematics RAS [2],[3]. Analysis of other boundary layer characteristics such as its height, eddy diffusivity profiles, kinetic energy is presented. The modeling results are compared with field experiments' data gathered at White Sea. References: 1. V.M. Stepanenko, P.M. Miranda, V

  10. Hypersonic boundary layer stabilization by using a wavy surface

    Science.gov (United States)

    Kirilovskiy, S. V.; Poplavskaya, T. V.

    2017-10-01

    Numerical simulation of hypersonic (M∞=6) flow and evolution of disturbances on a smooth plate and a shallow grooved plate was performed by solving two-dimensional Navier– Stokes equations. Computational soft-ware verification was conducted by comparison with existing data of pressure pulsations on plates surface. It was showed that wavy surface significantly decrease pressure pulsations on plate surface and does not increase the value of mean heat fluxes. Data about effect of wavy surfaces with different form on the disturbances intensity in hypersonic boundary layer was obtained.

  11. Depth and Thickness of the Post-Perovskite Boundary in a MORB Composition

    Science.gov (United States)

    Catalli, K.; Shim, S.; Prakapenka, V.

    2010-12-01

    Our recent work (Catalli et al., 2009) has shown that systems with realistic Fe2+ and Al contents for pyrolite increase the thickness of the post-perovskite boundary to 400-600 km in the binary and ternary systems, which is significantly larger than the thickness of the D” discontinuity, challenging the isochemical phase transition model for the D” discontinuity. More recent work directly on pyrolite by our group (Shim, Grocholski et al., 2010, presented at AGU) reveals that the post-perovskite transition may occur at greater depths than the core-mantle boundary in this composition. In efforts to identify compositions that can make the post-perovskite boundary seismically detectable in the lower mantle, we have studied a MORB composition. In-situ X-ray diffraction measurements were conducted with an Au pressure scale under Ar or Ne medium in the laser-heated diamond-anvil cell up to 135 GPa and 3500 K. The phase transition was measured along both forward and reverse paths in order to reduce kinetic effects. Much denser data coverage was achieved in this study compared with previous studies on similar compositions. The MORB mineralogy at lowermost mantle pressures includes Mg-silicate (perovskite and/or post-perovskite), silica (CaCl2- and/or α-PbO2-type structures), Ca-silicate perovskite, and the Ca-ferrite-type Na-Al phase. The thickness of the phase boundary in MORB was found to be ~150±100 km, beginning ~500±100 km above the core-mantle boundary. This result is in good agreement with previous studies on MORB (Ohta et al., 2008). Silica appears to transform from the CaCl2-type to the α-PbO2-type phase concurrent with the post-perovskite transition. The post-perovskite boundary in MORB is narrower and shallower than the aforementioned ternary and binary systems and pyrolite we measured, even though MORB contains much more Al which increases the thickness and depth of the post-perovskite transition in pyrolite. However, unlike pyrolite where Mg-silicate is

  12. Retinal nerve fibre layer thickness values and their associations with ...

    African Journals Online (AJOL)

    analysis showed that thicker mean global RNFL thickness was significantly associated with younger age, shorter axial length (AL) ... Mean RNFL thickness decreased by approximately 0.11 µm per year of aging life, and by 1.02 µm ... assessing factors that influence this parameter and diagnosing diseases affecting it.

  13. Large-Eddy Simulation of Shock-Wave Boundary Layer Interaction and its Control Using Sparkjet

    Science.gov (United States)

    Yang, Guang; Yao, Yufeng; Fang, Jian; Gan, Tian; Lu, Lipeng

    2016-06-01

    Large-eddy simulation (LES) of an oblique shock-wave generated by an 8° sharp wedge impinging onto a spatially-developing Mach 2.3 turbulent boundary layer and their interactions has been carried out in this study. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20,000. The detailed numerical approaches are described and the inflow turbulence is generated using the digital filter method to avoid artificial temporal or streamwise periodicity. Numerical results are compared with the available wind tunnel PIV measurements of the same flow conditions. Further LES study on the control of flow separation due to the strong shock-viscous interaction is also conducted by using an active control actuator “SparkJet” concept. The single-pulsed characteristics of the control device are obtained and compared with the experiments. Instantaneous flowfield shows that the “SparkJet” promotes the flow mixing in the boundary layer and enhances its ability to resist the flow separation. The time and spanwise averaged skin friction coefficient distribution demonstrates that the separation bubble length is reduced by maximum 35% with the control exerted.

  14. Separation control in a hypersonic shock wave / turbulent boundary-layer interaction

    Science.gov (United States)

    Schreyer, Anne-Marie; Bermejo-Moreno, Ivan; Kim, Jeonglae; Urzay, Javier

    2016-11-01

    Hypersonic vehicles play a key role for affordable access to space. The associated flow fields are strongly affected by shock wave/turbulent boundary-layer interactions, and the inherent separation causes flow distortion and low-frequency unsteadiness. Microramp sub-boundary layer vortex generators are a promising means to control separation and diminish associated detrimental effects. We investigate the effect of a microramp on the low-frequency unsteadiness in a fully separated interaction. A large eddy simulation of a 33 ∘ -compression-ramp interaction was performed for an inflow Mach number of 7.2 and a Reynolds number based on momentum thickness of Reθ = 3500 , matching the experiment of Schreyer et al. (2011). For the control case, we introduced a counter-rotating vortex pair, as induced by a single microramp, into the boundary layer through the inflow conditions. We applied a dynamic mode decomposition (DMD) on both cases to identify coherent structures that are responsible for the dynamic behavior. Based on the DMD, we discuss the reduction of the separation zone and the stabilization of the shock motion achieved by the microramp, and contribute to the description of the governing mechanisms. Pursued during the 2016 CTR Summer Program at Stanford University.

  15. An Experimental Study of Roughness-Induced Instabilities in a Supersonic Boundary Layer

    Science.gov (United States)

    Kegerise, Michael A.; King, Rudolph A.; Choudhari, Meelan; Li, Fei; Norris, Andrew

    2014-01-01

    Progress on an experimental study of laminar-to-turbulent transition induced by an isolated roughness element in a supersonic laminar boundary layer is reported in this paper. Here, the primary focus is on the effects of roughness planform shape on the instability and transition characteristics. Four different roughness planform shapes were considered (a diamond, a circle, a right triangle, and a 45 degree fence) and the height and width of each one was held fixed so that a consistent frontal area was presented to the oncoming boundary layer. The nominal roughness Reynolds number was 462 and the ratio of the roughness height to the boundary layer thickness was 0.48. Detailed flow- field surveys in the wake of each geometry were performed via hot-wire anemometry. High- and low-speed streaks were observed in the wake of each roughness geometry, and the modified mean flow associated with these streak structures was found to support a single dominant convective instability mode. For the symmetric planform shapes - the diamond and circular planforms - the instability characteristics (mode shapes, growth rates, and frequencies) were found to be similar. For the asymmetric planform shapes - the right-triangle and 45 degree fence planforms - the mode shapes were asymmetrically distributed about the roughness-wake centerline. The instability growth rates for the asymmetric planforms were lower than those for the symmetric planforms and therefore, transition onset was delayed relative to the symmetric planforms.

  16. Effects of flow and colony morphology on the thermal boundary layer of corals

    Science.gov (United States)

    Jimenez, Isabel M.; Kühl, Michael; Larkum, Anthony W. D.; Ralph, Peter J.

    2011-01-01

    The thermal microenvironment of corals and the thermal effects of changing flow and radiation are critical to understanding heat-induced coral bleaching, a stress response resulting from the destruction of the symbiosis between corals and their photosynthetic microalgae. Temperature microsensor measurements at the surface of illuminated stony corals with uneven surface topography (Leptastrea purpurea and Platygyra sinensis) revealed millimetre-scale variations in surface temperature and thermal boundary layer (TBL) that may help understand the patchy nature of coral bleaching within single colonies. The effect of water flow on the thermal microenvironment was investigated in hemispherical and branching corals (Porites lobata and Stylophora pistillata, respectively) in a flow chamber experiment. For both coral types, the thickness of the TBL decreased exponentially from 2.5 mm at quasi-stagnant flow (0.3 cm s−1), to 1 mm at 5 cm s−1, with an exponent approximately 0.5 consistent with predictions from the heat transfer theory for simple geometrical objects and typical of laminar boundary layer processes. Measurements of mass transfer across the diffusive boundary layer using O2 microelectrodes revealed a greater exponent for mass transfer when compared with heat transfer, indicating that heat and mass transfer at the surface of corals are not exactly analogous processes. PMID:21602322

  17. Investigation of Gas Seeding for Planar Laser-Induced Fluorescence in Hypersonic Boundary Layers

    Science.gov (United States)

    Arisman, C. J.; Johansen, C. T.; Bathel, B. F.; Danehy, P. M.

    2015-01-01

    Numerical simulations of the gas-seeding strategies required for planar laser-induced fluorescence in a Mach 10 (approximately Mach 8.2 postshock) airflow were performed. The work was performed to understand and quantify the adverse effects associated with gas seeding and to assess various types of seed gas that could potentially be used in future experiments. In prior experiments, NO and NO2 were injected through a slot near the leading edge of a flatplate wedge model used in NASA Langley Research Center's 31 in. Mach 10 air tunnel facility. In this paper, nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulations showing the deflection of the velocity boundary layer for each of the cases are presented. Streamwise distributions of velocity and concentration boundary-layer thicknesses, as well as vertical distributions of velocity, temperature, and mass distributions, are presented for each of the cases. A comparison between simulated streamwise velocity profiles and experimentally obtained molecular tagging velocimetry profiles using a nitric oxide seeding strategy is performed to verify the influence of such a strategy on the boundary layer. The relative merits of the different seeding strategies are discussed. The results from a custom solver based on OpenFOAM version 2.2.1 are compared against results obtained from ANSYS® Fluent version 6.3.

  18. The decay of forced rescaling modes in a Mach 3 turbulent boundary layer

    Science.gov (United States)

    Kan, Yin-Chiu; Beekman, Izaak; Priebe, Stephan; Martin, Pino

    2010-11-01

    We introduce a new, Mach 3, compressible, turbulent boundary layer (TBL) spatial direct numerical simulation (SDNS), with a streamwise length of 50δinlet. The simulation has an inlet Reθ of 2500, increasing to 4000 at the outlet, with the boundary layer thickness, δ, nearly doubling from the inlet to the outlet. The inflow is computed using an auxiliary DNS with a rescaling length of 8δ. We examine the evolution of turbulence statistics as the boundary layer grows. In particular, we scrutinize the effects of rescaling and the non-stationarity of the flow. We wish to determine how far downstream the flow must travel to sufficiently "forget" the effects of rescaling. The effect of rescaling is of particular interest when investigating low frequency and large scale phenomena, such as coherent flow structures. These large coherent structures are on the order of 10δ in streamwise extent, and have been found at similar conditions to the present study.ootnotetextRinguette, Wu & Mart'in J. Fluid Mech., 594:59-69, 2008. With this data set we will address and quantify the role of rescaling and the rate at which the flow will forget this artificial forcing.

  19. Nanodiamonds in the Younger Dryas boundary sediment layer.

    Science.gov (United States)

    Kennett, D J; Kennett, J P; West, A; Mercer, C; Hee, S S Que; Bement, L; Bunch, T E; Sellers, M; Wolbach, W S

    2009-01-02

    We report abundant nanodiamonds in sediments dating to 12.9 +/- 0.1 thousand calendar years before the present at multiple locations across North America. Selected area electron diffraction patterns reveal two diamond allotropes in this boundary layer but not above or below that interval. Cubic diamonds form under high temperature-pressure regimes, and n-diamonds also require extraordinary conditions, well outside the range of Earth's typical surficial processes but common to cosmic impacts. N-diamond concentrations range from approximately 10 to 3700 parts per billion by weight, comparable to amounts found in known impact layers. These diamonds provide strong evidence for Earth's collision with a rare swarm of carbonaceous chondrites or comets at the onset of the Younger Dryas cool interval, producing multiple airbursts and possible surface impacts, with severe repercussions for plants, animals, and humans in North America.

  20. Interactions between the thermal internal boundary layer and sea breezes

    Energy Technology Data Exchange (ETDEWEB)

    Steyn, D.G. [The Univ. of British Columbia, Dept. of Geography, Atmospheric Science Programme, Vancouver (Canada)

    1997-10-01

    In the absence of complex terrain, strongly curved coastline or strongly varying mean wind direction, the Thermal Internal Boundary Layer (TIBL) has well known square root behaviour with inland fetch. Existing slab modeling approaches to this phenomenon indicate no inland fetch limit at which this behaviour must cease. It is obvious however that the TIBL cannot continue to grow in depth with increasing fetch, since the typical continental Mixed Layer Depths (MLD) of 1500 to 2000 m must be reached between 100 and 200 km from the shoreline. The anticyclonic conditions with attendant strong convection and light winds which drive the TIBL, also drive daytime Sea Breeze Circulations (SBC) in the coastal zone. The onshore winds driving mesoscale advection of cool air are at the core of TIBL mechanisms, and are invariably part of a SBC. It is to be expected that TIBL and SBC be intimately linked through common mechanisms, as well as external conditions. (au)

  1. Metaporous layer to overcome the thickness constraint for broadband sound absorption

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jieun [Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Lee, Joong Seok [Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Yoon Young, E-mail: yykim@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2015-05-07

    The sound absorption of a porous layer is affected by its thickness, especially in a low-frequency range. If a hard-backed porous layer contains periodical arrangements of rigid partitions that are coordinated parallel and perpendicular to the direction of incoming sound waves, the lower bound of the effective sound absorption can be lowered much more and the overall absorption performance enhanced. The consequence of rigid partitioning in a porous layer is to make the first thickness resonance mode in the layer appear at much lower frequencies compared to that in the original homogeneous porous layer with the same thickness. Moreover, appropriate partitioning yields multiple thickness resonances with higher absorption peaks through impedance matching. The physics of the partitioned porous layer, or the metaporous layer, is theoretically investigated in this study.

  2. Oxide-Based Solar Cell: Impact of Layer Thicknesses on the Device Performance.

    Science.gov (United States)

    Panigrahi, Shrabani; Nunes, Daniela; Calmeiro, Tomás; Kardarian, Kasra; Martins, Rodrigo; Fortunato, Elvira

    2017-02-13

    A ZnO/Cu2O-based combinatorial heterojunction device library was successfully fabricated by a simple spray pyrolysis technique using ITO-coated glass as the substrate. The combinatorial approach was introduced to analyze the impact of the ZnO and Cu2O layer thicknesses on the performance of the solar cells. The thickness of the ZnO layer was varied from ∼50 to 320 nm, and the Cu2O layer was deposited orthogonal to the ZnO thickness gradient. In the case of Cu2O, the thickness varied from ∼200 to 800 nm. The photovoltaic performance of the cells is strongly dependent on the absorber layer thickness for a particular window layer thickness and reaches a maximum short-circuit current density of 3.9 mA/cm(2) when the absorber layer thickness just crosses ∼700 nm. Reducing the thicknesses of the active layers leads to a sharp decrease in the device performance. It is shown that the entire built-in bias of the heterojunction is created in the absorber layer due to low carrier density. The poor performance of the devices having lower thicknesses is attributed to different interfacial phenomena such as optical losses due to the thin Cu2O layer, back-contact recombination of the carriers due to the low layer thickness because a minimum heterojunction thickness is required for the formation of the full built-in bias that slows down the recombination of the carriers, and other factors.

  3. Characteristics of vortex packets in turbulent boundary layers

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen K.; Marusic, Ivan

    2003-03-01

    Stereoscopic particle image velocimetry (PIV) was used to measure all three instantaneous components of the velocity field in streamwise spanwise planes of a turbulent boundary layer at Re[tau]=1060 (Re[theta]=2500). Datasets were obtained in the logarithmic layer and beyond. The vector fields in the log layer (z+=92 and 150) revealed signatures of vortex packets similar to those proposed by Adrian and co-workers in their PIV experiments. Groups of legs of hairpin vortices appeared to be coherently arranged in the streamwise direction. These regions also generated substantial Reynolds shear stress, sometimes as high as 40 times [minus sign]uw. A feature extraction algorithm was developed to automate the identification and characterization of these packets of hairpin vortices. Identified patches contributed 28% to [minus sign]uw while occupying only 4% of the total area at z+=92. At z+=150, these patches occupied 4.5% of the total area while contributing 25% to [minus sign]uw. Beyond the log layer (z+=198 and 530), the spatial organization into packets is seen to break down.

  4. Optimization of an organic photovoltaic device via modulation of thickness of photoactive and optical spacer layers

    Science.gov (United States)

    Li, Qi; Yoon, Won Jung; Ju, Heongkyu

    2014-09-01

    We examine the modulation effects of thicknesses of both a photoactive layer (a bulk-heterojunction (BHJ) of poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM)) and an optical spacer of a transparent metal oxide, for power conversion efficiency optimization of organic photovoltaic devices. The redistribution of the optical intensity at the photoactive layer via the thickness modulation of both layers is taken into account, to produce three-dimensional (3D) plots as a function of both layer thicknesses of 0 to 400 nm range (5 nm step), for the device efficiency optimization. The modulation pattern of absorption is produced in the 3D plot as scanning the thicknesses of both layers as a result of modulation of interference between incoming and reflected light, which can be secured by changing the effective optical path length between two electrodes of a photovoltaic device. It is also seen that the case of inserting the spacer of the higher refractive index demands finer adjustment of the spacer layer thickness to achieve the optimum device efficiency. In addition, the series resistance of the photoactive layer of the thickness range of 0 to 70 nm is taken into account to provide the 3D plots as a function of the scanned thicknesses of both layers. Inclusion of the series resistance of the photoactive layer, which is also the function of its thickness, in the simulation, indicates that the series resistance can influence qualitatively the dependence of power conversion efficiency (PCE) on the thicknesses of both layers. We also find that minimization of series resistance, e.g., by device annealing, allows not only the relevant voltage to increase but also the optimum thickness of the photoactive layer to increase, leading to more absorption of light.

  5. Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows

    Science.gov (United States)

    Scheel, Janet D.; Schumacher, Jörg

    2017-12-01

    We discuss two aspects of turbulent Rayleigh-Bénard convection (RBC) on the basis of high-resolution direct numerical simulations in a unique setting: a closed cylindrical cell of aspect ratio of one. First, we present a comprehensive comparison of statistical quantities such as energy dissipation rates and boundary layer thickness scales. Data are used from three simulation run series at Prandtl numbers Pr that cover two orders of magnitude. In contrast to most previous studies in RBC the focus of the present work is on convective turbulence at very low Prandtl numbers including Pr=0.021 for liquid mercury or gallium and Pr=0.005 for liquid sodium. In this parameter range of RBC, inertial effects cause a dominating turbulent momentum transport that is in line with highly intermittent fluid turbulence both in the bulk and in the boundary layers and thus should be able to trigger a transition to the fully turbulent boundary layers of the ultimate regime of convection for higher Rayleigh number. Second, we predict the ranges of Rayleigh numbers for which the viscous boundary layer will transition to turbulence and the flow as a whole will cross over into the ultimate regime. These transition ranges are obtained by extrapolation from our simulation data. The extrapolation methods are based on the large-scale properties of the velocity profile. Two of the three methods predict similar ranges for the transition to ultimate convection when their uncertainties are taken into account. All three extrapolation methods indicate that the range of critical Rayleigh numbers Rac is shifted to smaller magnitudes as the Prandtl number becomes smaller.

  6. Orientation and circulation of vortices in a turbulent boundary layer

    Science.gov (United States)

    Gao, Qi; Ortiz-Dueñas, Cecilia; Longmire, Ellen

    2007-11-01

    The strengths of individual vortices are important in determining the generation and development of surrounding vortices in turbulent boundary layers. The dual-plane PIV data at z^+ = 110 and z/δ = 0.53 in a turbulent boundary layer at Reτ=1160 obtained by Ganapathisubramani et al. (2006) were investigated. 3D swirl strength was used to identify vortex cores. The eigenvector of the velocity gradient tensor was used to determine the orientation of each core, and the resulting eigenvector direction was compared with the average vorticity direction. Circulation of the cores was calculated using the vorticity vector only and using the vorticity vector projected onto the eigenvector. The probability distribution of the angle between the eigenvector and the vorticity vector indicated a peak at 15-20 degrees. The eigenvector angle distributions indicate that at z^+=110, more hairpin legs cross the measurement plane while at z/δ = 0.53, more heads are evident. Details of the orientation and circulation distributions will be discussed in the presentation.

  7. Recovery of vortex packet organization in perturbed turbulent boundary layers

    Science.gov (United States)

    Tan, Yan Ming; Longmire, Ellen K.

    2017-10-01

    Turbulent boundary layers with R eτ=2500 were perturbed by an array of cylinders projecting outward from the wall, and the flow organization downstream was investigated at multiple measurement heights in the logarithmic region. Two array heights were considered: H =0.2 δ , extending through the log region and H =δ , extending to the top of the boundary layer. Results from instantaneous PIV in wall-parallel planes and a vortex packet identification algorithm clearly showed a bottom-up mechanism for packet recovery downstream of the H =δ array, even though streamwise velocity statistics remained strongly perturbed. In contrast, some indications of top-down recovery were observed for the flow perturbed by the shorter H =0.2 δ (H+=500 ) array. In this case, however, packet structures closer to the wall at z+=125 remained altered beyond the end of the measurement domain 7δ downstream of the cylinders even though streamwise velocity statistics relaxed nearly to the unperturbed values.

  8. Transition Delay in Hypersonic Boundary Layers via Optimal Perturbations

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.

  9. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  10. Geostrophic convective turbulence: The effect of boundary layers

    CERN Document Server

    Ostilla-Mónico, Rodolfo; Kunnen, Rudie P J; Verzicco, Roberto; Lohse, Detlef

    2014-01-01

    This Letter presents results of the first direct numerical simulations of rotating Rayleigh--B\\'enard convection in the so-called geostrophic regime, (hence very small Ekman numbers $\\mathcal{O}(10^{-7})$ and high Rayleigh numbers~$Ra=10^{10}$ and~$5\\cdot 10^{10}$), employing the \\emph{full} Navier--Stokes equations. In the geostrophic regime the criteria of very strong rotation and large supercriticality are met simultaneously, which is true for many geophysical and astrophysical flows. Until now, numerical approaches of this regime have been based on \\emph{reduced} versions of the Navier--Stokes equations (cf. Sprague \\emph{et al.} J. Fluid Mech., \\textbf{551}, 141 (2006)), omitting the effect of the viscous (Ekman) boundary layers. By using different velocity boundary conditions at the plates, we study the effect of these Ekman layers. We find that the formation of large-scale structures (Rubio \\emph{et al.} (Phys. Rev. Lett. \\textbf{112} (2014)), which indicates the presence of an inverse energy cascade, ...

  11. Dynamics of Under Ice Boundary Layers Below Floating Ice Shelves

    Science.gov (United States)

    Shaw, W. J.; Stanton, T. P.

    2016-02-01

    Pine Island Glacier (PIG), a major outlet stream of the Western Antarctic Ice Sheet, has dramatically thinned and accelerated in recent decades. It is believed that a weakening of the floating portion of the glacier, known as the ice shelf, due to increased ocean thermal forcing is a primary cause of the observed increasing discharge of PIG. In order to better understand the controls on the exchange of heat between the PIG shelf and the underlying ocean cavity, a numerical model, MITgcm, has been configured to study the dynamics of the sloping, meltwater-forced, buoyant boundary layer below the ice shelf A 2-D approximation allows for high vertical resolution that resolves well the under shelf ocean boundary layer. We are particularly interested in the dynamical balance between buoyancy along the sloping ice shelf base, drag, and entrainment/detrainment and the associated feedback of basal melting of the ice shelf. Numerical results will be compared to in-situ observations obtained through a field campaign in 2013.

  12. Coherent structures of a self-similar adverse pressure gradient turbulent boundary layer

    Science.gov (United States)

    Sekimoto, Atsushi; Kitsios, Vassili; Atkinson, Callum; Jiménez, Javier; Soria, Julio

    2016-11-01

    The turbulence statistics and structures are studied in direct numerical simulation (DNS) of a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL). The self-similar APG-TBL at the verged of separation is achieved by a modification of the far-field boundary condition to produce the desired pressure gradient. The turbulence statistics in the self-similar region collapse by using the scaling of the external velocity and the displacement thickness. The coherent structures of the APG-TBL are investigated and compared to those of zero-pressure gradient case and homogeneous shear flow. The support of the ARC, NCI and Pawsey SCC funded by the Australian and Western Australian governments as well as the support of PRACE funded by the European Union are gratefully acknowledged.

  13. Retinal nerve fibre layer thickness values and their associations with ...

    African Journals Online (AJOL)

    Multivariate analysis showed that thicker mean global RNFL thickness was significantly associated with younger age, shorter axial length (AL) and hyperopia (p < 0.001). Mean RNFL thickness decreased by approximately 0.11 μm per year of aging life, and by 1.02 μm for each 1-mm of axial elongation. There was a 0.62 μm ...

  14. Analytical investigation of boundary layer growth and swirl intensity decay rate in a pipe

    Energy Technology Data Exchange (ETDEWEB)

    Maddahian, Reza; Kebriaee, Azadeh; Farhanieh, Bijan; Firoozabadi, Bahar [Sharif University of Technology, School of Mechanical Engineering, Tehran (Iran, Islamic Republic of)

    2011-04-15

    In this research, the developing turbulent swirling flow in the entrance region of a pipe is investigated analytically by using the boundary layer integral method. The governing equations are integrated through the boundary layer and obtained differential equations are solved with forth-order Adams predictor-corrector method. The general tangential velocity is applied at the inlet region to consider both free and forced vortex velocity profiles. The comparison between present model and available experimental data demonstrates the capability of the model in predicting boundary layer parameters (e.g. boundary layer growth, shear rate and swirl intensity decay rate). Analytical results showed that the free vortex velocity profile can better predict the boundary layer parameters in the entrance region than in the forced one. Also, effects of pressure gradient inside the boundary layer is investigated and showed that if pressure gradient is ignored inside the boundary layer, results deviate greatly from the experimental data. (orig.)

  15. Effect of age and sex on retinal layer thickness and volume in normal eyes.

    Science.gov (United States)

    Won, Jae Yon; Kim, Sung Eun; Park, Young-Hoon

    2016-11-01

    The aim of the study was to evaluate the effect of sex and age on the thickness of the retinal layer in normal eyes using spectral-domain optical coherence tomography (SD-OCT).Fifty healthy subjects between the ages of 20 and 80 had their retinal layers measured using SD-OCT at Seoul St. Mary's Hospital. Mean thickness and volume were measured for 9 retinal layers in the fovea, the pericentral ring, and the peripheral ring. The differences of sex- and age-related thickness and volume in each retinal layer were analyzed.The retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), and outer plexiform layer (OPL) were thinnest in the fovea area, whereas the outer nuclear layer (ONL), photoreceptor layer (PHL), and retinal pigment epithelium (RPE) were thickest at similar locations. Mean thickness of the RNFL, GCL, IPL, and OPL was significantly greater in men than women. However, mean thickness of the ONL was greater in women than in men. When compared between patients 60 years of age, the thickness and volume of peripheral RNFL, GCL, and pericentral and peripheral IPL were significantly larger in the younger group than the older group. Conversely, the thickness and volume of foveal INL and IR were larger in the older group than in the younger group.The thickness and volume of the retinal layer in normal eyes significantly vary depending on age and sex. These results should be considered when evaluating layer analysis in retinal disease.

  16. CONVECTIVE HEAT AND MASS TRANSFER IN THE COMBUSTION OF CHEMICALLY ACTIVE SUBSTANCES IN THE BOUNDARY LAYER ON A POROUS SURFACE.

    Science.gov (United States)

    COOLING, *POROUS MATERIALS), (*HEAT TRANSFER, *COMBUSTION), (* MASS TRANSFER , COMBUSTION), CONVECTION(HEAT TRANSFER), GAS FLOW, INJECTION, CHEMICAL REACTIONS, LAMINAR BOUNDARY LAYER, TURBULENT BOUNDARY LAYER, THERMAL INSULATION, USSR

  17. Large eddy simulation of zero-pressure-gradient turbulent boundary layer based on different scaling laws

    Science.gov (United States)

    Cheng, Wan; Samtaney, Ravi

    2013-11-01

    We present results of large eddy simulation (LES) for a smooth-wall, zero-pressure-gradient turbulent boundary layer. We employ the stretched vortex sub-grid-scale model in the simulations augmented by a wall model. Our wall model is based on the virtual-wall model introduced by Chung & Pullin (J. Fluid Mech 2009). An essential component of their wall model is an ODE governing the local wall-normal velocity gradient obtained using inner-scaling ansatz. We test two variants of the wall model based on different similarity laws: one is based on a log-law and the other on a power-law. The specific form of the power law scaling utilized is that proposed by George & Castillo (Appl. Mech. Rev. 1997), dubbed the ``GC Law''. Turbulent inflow conditions are generated by a recycling method, and applying scaling laws corresponding to the two variants of the wall model, and a uniform way to determine the inlet friction velocity. For Reynolds number based on momentum thickness, Reθ , ranging from 104 to 1012 it is found that the velocity profiles generally follow the log law form rather than the power law. For large Reynolds number asymptotic behavior, LES based on different scaling laws the boundary layer thickness and turbulent intensities do not show much difference. Supported by a KAUST funded project on large eddy simulation of turbulent flows. The IBM Blue Gene P Shaheen at KAUST was utilized for the simulations.

  18. Diffusion or advection? Mass transfer and complex boundary layer landscapes of the brown algaFucus vesiculosus.

    Science.gov (United States)

    Lichtenberg, Mads; Nørregaard, Rasmus Dyrmose; Kühl, Michael

    2017-03-01

    The role of hyaline hairs on the thallus of brown algae in the genus Fucus is long debated and several functions have been proposed. We used a novel motorized set-up for two-dimensional and three-dimensional mapping with O 2 microsensors to investigate the spatial heterogeneity of the diffusive boundary layer (DBL) and O 2 flux around single and multiple tufts of hyaline hairs on the thallus of Fucus vesiculosus. Flow was a major determinant of DBL thickness, where higher flow decreased DBL thickness and increased O 2 flux between the algal thallus and the surrounding seawater. However, the topography of the DBL varied and did not directly follow the contour of the underlying thallus. Areas around single tufts of hyaline hairs exhibited a more complex mass-transfer boundary layer, showing both increased and decreased thickness when compared with areas over smooth thallus surfaces. Over thallus areas with several hyaline hair tufts, the overall effect was an apparent increase in the boundary layer thickness. We also found indications for advective O 2 transport driven by pressure gradients or vortex shedding downstream from dense tufts of hyaline hairs that could alleviate local mass-transfer resistances. Mass-transfer dynamics around hyaline hair tufts are thus more complex than hitherto assumed and may have important implications for algal physiology and plant-microbe interactions. © 2017 The Author(s).

  19. Influence of boundary on the effect of double-layer polarization and the electrophoretic behavior of soft biocolloids.

    Science.gov (United States)

    Yeh, Li-Hsien; Fang, Kuo-Ying; Hsu, Jyh-Ping; Tseng, Shiojenn

    2011-12-01

    The electrophoresis of a soft particle comprising a rigid core and a charged porous membrane layer in a narrow space is modeled. This simulates, for example, the capillary electrophoresis of biocolloids such as cells and microorganisms, and biosensor types of device. We show that, in addition to the boundary effect, the effects of double-layer polarization (DLP) and the electroosmotic retardation flow can be significant, yielding interesting electrophoretic behaviors. For example, if the friction coefficient of the membrane layer and/or the boundary is large, then the DLP effect can be offset by the electroosmotic retardation flow, making the particle mobility to decrease with increasing double layer thickness, which is qualitatively consistent with many experimental observations in the literature, but has not been explained clearly in previous analyses. In addition, depending upon the thickness of double layer, the friction of the membrane layer of a particle can either retard or accelerate its movement, an interesting result which has not been reported previously. This work is the first attempt to show solid evidence for the influence of a boundary on the effect of DLP and the electrophoretic behavior of soft particles. The model proposed is verified by the experimental data in the literature. The results of numerical simulation provide valuable information for the design of bio-analytical apparatus such as nanopore-based sensing applications and for the interpretation of relevant experimental data. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. FOREWORD: International Conference on Planetary Boundary Layer and Climate Change

    Science.gov (United States)

    Djolov, G.; Esau, I.

    2010-05-01

    One of the greatest achievements of climate science has been the establisment of the concept of climate change on a multitude of time scales. The Earth's complex climate system does not allow a straightforward interpretation of dependences between the external parameter perturbation, internal stochastic system dynamics and the long-term system response. The latter is usually referred to as climate change in a narrow sense (IPCC, 2007). The focused international conference "Planetary Boundary Layers and Climate Change" has addressed only time scales and dynamical aspects of climate change with possible links to the turbulent processes in the Planetary Boundary Layer (PBL). Although limited, the conference topic is by no means singular. One should clearly understand that the PBL is the layer where 99% of biosphere and human activity are concentrated. The PBL is the layer where the energy fluxes, which are followed by changes in cryosphere and other known feedbacks, are maximized. At the same time, the PBL processes are of a naturally small scale. What is the averaged long-term effect of the small-scale processes on the long-term climate dynamics? Can this effect be recognized in existing long-term paleo-climate data records? Can it be modeled? What is the current status of our theoretical understanding of this effect? What is the sensitivity of the climate model projections to the representation of small-scale processes? Are there significant indirect effects, e.g. through transport of chemical components, of the PBL processes on climate? These and other linked questions have been addressed during the conference. The Earth's climate has changed many times during the planet's history, with events ranging from ice ages to long periods of warmth. Historically, natural factors such as the amount of energy released from the Sun, volcanic eruptions and changes in the Earth's orbit have affected the Earth's climate. Beginning late in the 18th century, human activities

  1. Ellipsometric and reflectometric characterization of thin films exhibiting thickness non-uniformity and boundary roughness

    Science.gov (United States)

    Ohlídal, Ivan; Franta, Daniel; Nečas, David

    2017-11-01

    In this paper epitaxial ZnSe thin films prepared by molecular beam epitaxy onto GaAs single crystal substrates exhibiting two defects, i.e. boundary roughness and thickness non-uniformity, are optically characterized using a combination of spectroscopic ellipsometry and near-normal spectroscopic reflectometry. The influence of boundary roughness is included into optical quantity formulae by the combination of the scalar diffraction theory and Rayleigh-Rice theory. Very thin overalyers modelled by rough thin films with identically rough boundaries are taken into account on the upper boundaries of the ZnSe thin films. Two approximations are used to express the local reflection coefficient of the rough ZnSe thin films covered with the overlayers within combination of both the theories. Thickness non-uniformity is incorporated by means of averaging the elements of the unnormalized Mueller matrices. The universal dispersion model of the optical constants of the ZnSe thin films based on parametrization of the joint density of electronic states is used. The spectral dependencies of the optical constants of the ZnSe thin films are determined within the wide spectral range (0.12-8.7 eV). Moreover, the mean thickness of the ZnSe thin films and thickness of overlayers are determined together with the other structural parameters characterizing the defects. The values of roughness parameters, determined by the optical method, are verified by a comparison with results achieved by atomic force microscopy. It is also shown that the approximations of the local reflection coefficient presented are usable for processing the experimental data.

  2. Boundary-layer turbulence modeling and vorticity dynamics: I. A kangaroo-process mixing model of boundary-layer turbulence

    Science.gov (United States)

    Dekker, H.; de Leeuw, G.; van den Brink, A. Maassen

    A nonlocal turbulence transport theory is presented by means of a novel analysis of the Reynolds stress, inter alia involving the construct of a sample path space and a stochastic hypothesis. An analytical sampling rate model (satisfying exchange) and a nonlinear scaling relation (mapping the path space onto the boundary layer) lead to an integro-differential equation for the mixing of scalar densities, which represents fully-developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type stochastic process. The underlying near-wall behavior (i.e. for y +→0) of fluctuating velocities fully agrees with recent direct numerical simulations. The model involves a scaling exponent ɛ, with ɛ→∞ in the diffusion limit. For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields ɛ≈0.58. The significance of ɛ as a turbulence Cantor set dimension (in the logarithmic profile region, i.e. for y +→∞) is discussed.

  3. Thickness of the Post-Perovskite Boundary in Fe2+ and Fe3+ Bearing Systems

    Science.gov (United States)

    Shim, S.; Catalli, K.; Prakapenka, V.

    2008-12-01

    Combined with seismic observations of the D" region, the perovskite (Pv) to postperovskite (PPv) transition provides new opportunities to constrain important parameters at the core-mantle boundary, such as heat flux from the core through the observation of the double crossing between the geotherm and the PPv transition. In the mantle, the PPv boundary should have a finite thickness. We have determined the PPv boundary thickness in 0.9MgSiO3-0.1FeSiO3 and 0.9MgSiO3-0.1Fe2O3 in the laser-heated diamond cell combined with in situ X-ray diffraction. In order to reduce thermal and pressure gradients, we use argon as a medium. In order to reduce the kinetic effect, we measured the boundary along both forward (from Pv to PPv) and reverse (from PPv to Pv) paths. Our data tightly constrain the transition depth and Clapeyron slope (+6.7±0.5 MPa/K in Fe2+ and +8.4±1.0 MPa/K in Fe3+) and the results are consistent with seismological observations. However, 10 mol% Fe2+ increases the thickness to 450±50 km which is significantly larger than the thickness of the D" discontinuity (≤80 km), whereas 10 mol% Fe3+ increases the thickness to only about 100±50 km. The discrepancy with the seismic observation for Fe2+ can be reconciled by assuming strong partitioning of Fe to ferropericlase (Fp) such that PPv is much more depleted in Fe than Pv. However, the partitioning of Fe among Pv, PPv, and Fp is highly controversial. An Fe3+-enriched lower mantle provides a natural explanation for the thickness of the D" discontinuity. These two models can be further examined for the high electrical conductivity required by the observation of the Earth's nutation. The low Fe2+ in Pv and PPv and high Fe2+ in Fp would result in very low electrical conductivity. However, an Fe3+-enriched lower mantle would have high electrical conductivity because Fe3+--O bonding becomes metallic in the PPv structure and the coexistence of Fe2+ and Fe3+ will enhance electron hopping between these two. Therefore

  4. One Year of Doppler Lidar Observations Characterizing Boundary Layer Wind, Turbulence, and Aerosol Structure During the Indianapolis Flux Experiment

    Science.gov (United States)

    Hardesty, R. M.; Brewer, A.; Shepson, P. B.; Cambaliza, M. O. L.; Salmon, O. E.; Heimburger, A. M. F.; Davis, K. J.; Lauvaux, T.; McGowan, L. E.; Miles, N. L.; Richardson, S.; Sarmiento, D. P.; Karion, A.; Sweeney, C.; Iraci, L. T.; Hillyard, P. W.; Podolske, J. R.; Gurney, K. R.; Razlivanov, I. N.; Song, Y.; Turnbull, J. C.; Whetstone, J. R.; Possolo, A.; Prasad, K.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) is aimed at improving methods for estimation of greenhouse gas emissions at urban scales. INFLUX observational components include several-times-per-month aircraft measurements of gas concentrations and meteorological parameters, as well as a number of towers observing CO2, CH4, and CO and a single continuously operating Doppler lidar to estimate wind, turbulence and aerosol structure in the boundary layer. The observations are used to develop top-down emissions estimates from the aircraft measurements and as input to inversion models. The Doppler lidar provides information on boundary layer structure for both the aircraft and inversion studies. A commercial Doppler lidar characterized by low pulse energy and high pulse repetition rate has operated for well over a year at a site NE of downtown Indianapolis. The lidar produces profiles of horizontal wind speed, vertical velocity variance, and aerosol structure two to three times per hour. These data are then used to investigate boundary layer mixing and thickness and horizontal transport as inputs for the flux calculations. During its one year deployment the lidar generally operated reliably with few outages. Comparisons with aircraft spirals over the site and with the NOAA High Resolution research Doppler lidar deployed to Indianapolis for one month during May, 2014, were used to assess the performance of the INFLUX lidar. Measurements agreed quite well when aerosol loading was sufficient for lidar observations throughout the boundary layer. However, low aerosol loading during some periods limited the range of the lidar and precluded characterization of the full boundary layer. We present an overall assessment of the commercial Doppler lidar for providing the needed information on boundary layer structure for emission estimations, and show variability of the boundary layer observations over diurnal, seasonal, and annual cycles. Recommendations on system design changes to

  5. Heat transfer and fluid mechanics measurements in transitional boundary layer flows

    Science.gov (United States)

    Wang, T.; Simon, T. W.; Buddhavarapu, J.

    1985-01-01

    Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68 percent and 2.0 percent free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.

  6. A Lagrangian Study of Southeast Pacific Boundary Layer Clouds

    Science.gov (United States)

    Painter, Gallia

    concentration which extend far offshore into regions of normally very clean cloud. We use Lagrangian trajectories to investigate the source of the high droplet concentrations of the mesoscale "hooks", and evaluate whether boundary layer transport of coastal pollutants alone can account for their extent. We find that boundary layer trajectories past 85 W do not pass sufficiently close to the coastline to explain high aerosol concentrations offshore.

  7. Sensored Field Oriented Control of a Robust Induction Motor Drive Using a Novel Boundary Layer Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Ali Saghafinia

    2013-12-01

    Full Text Available Physical sensors have a key role in implementation of real-time vector control for an induction motor (IM drive. This paper presents a novel boundary layer fuzzy controller (NBLFC based on the boundary layer approach for speed control of an indirect field-oriented control (IFOC of an induction motor (IM drive using physical sensors. The boundary layer approach leads to a trade-off between control performances and chattering elimination. For the NBLFC, a fuzzy system is used to adjust the boundary layer thickness to improve the tracking performance and eliminate the chattering problem under small uncertainties. Also, to eliminate the chattering under the possibility of large uncertainties, the integral filter is proposed inside the variable boundary layer. In addition, the stability of the system is analyzed through the Lyapunov stability theorem. The proposed NBLFC based IM drive is implemented in real-time using digital signal processor (DSP board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed NBLFC based IM drive at different operating conditions.

  8. Sensored Field Oriented Control of a Robust Induction Motor Drive Using a Novel Boundary Layer Fuzzy Controller

    Science.gov (United States)

    Saghafinia, Ali; Ping, Hew Wooi; Uddin, Mohammad Nasir

    2013-01-01

    Physical sensors have a key role in implementation of real-time vector control for an induction motor (IM) drive. This paper presents a novel boundary layer fuzzy controller (NBLFC) based on the boundary layer approach for speed control of an indirect field-oriented control (IFOC) of an induction motor (IM) drive using physical sensors. The boundary layer approach leads to a trade-off between control performances and chattering elimination. For the NBLFC, a fuzzy system is used to adjust the boundary layer thickness to improve the tracking performance and eliminate the chattering problem under small uncertainties. Also, to eliminate the chattering under the possibility of large uncertainties, the integral filter is proposed inside the variable boundary layer. In addition, the stability of the system is analyzed through the Lyapunov stability theorem. The proposed NBLFC based IM drive is implemented in real-time using digital signal processor (DSP) board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed NBLFC based IM drive at different operating conditions.

  9. Role of Cu layer thickness on the magnetic anisotropy of pulsed electrodeposited Ni/Cu/Ni tri-layer

    Science.gov (United States)

    Dhanapal, K.; Prabhu, D.; Gopalan, R.; Narayanan, V.; Stephen, A.

    2017-07-01

    The Ni/Cu/Ni tri-layer film with different thickness of Cu layer was deposited using pulsed electrodeposition method. The XRD pattern of all the films show the formation of fcc structure of nickel and copper. This shows the orientated growth in the (2 2 0) plane of the layered films as calculated from the relative intensity ratio. The layer formation in the films were observed from cross sectional view using FE-SEM and confirms the decrease in Cu layer thickness with decreasing deposition time. The magnetic anisotropy behaviour was measured using VSM with two different orientations of layered film. This shows that increasing anisotropy energy with decreasing Cu layer thickness and a maximum of  -5.13  ×  104 J m-3 is observed for copper deposited for 1 min. From the K eff.t versus t plot, development of perpendicular magnetic anisotropy in the layered system is predicted below 0.38 µm copper layer thickness.

  10. Active layer thickness and ground temperatures, Svea, Svalbard, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Snow and soil temperature records for January 1988 - May 1996 are presented. Included are snow depth and weight measurements, snow density (calculated), active layer...

  11. Evaluating Langmuir turbulence parameterizations in the ocean surface boundary layer

    Science.gov (United States)

    Sutherland, G.; Christensen, K. H.; Ward, B.

    2014-03-01

    It is expected that surface gravity waves play an important role in the dynamics of the ocean surface boundary layer (OSBL), quantified with the turbulent Langmuir number (La=u*/us0, where u* and us0 are the friction velocity and surface Stokes drift, respectively). However, simultaneous measurements of the OSBL dynamics along with accurate measurements of the wave and atmospheric forcing are lacking. Measurements of the turbulent dissipation rate ɛ were collected using the Air-Sea Interaction Profiler (ASIP), a freely rising microstructure profiler. Two definitions for the OSBL depth are used: the mixed layer derived from measurements of density >(hρ>), and the mixing layer >(hɛ>) determined from direct measurements of ɛ. When surface buoyancy forces are relatively small, ɛ∝La-2 only near the surface with no dependency on La at mid-depths of the OSBL when using hρ as the turbulent length scale. However, if hɛ is used then the dependence of ɛ with La-2 is more uniform throughout the OSBL. For relatively high destabilizing surface buoyancy forces, ɛ is proportional to the ratio of the OSBL depth against the Langmuir stability length LL. During destabilizing conditions, the mixed and mixing layer depths are nearly identical, but we have relatively few measurements under these conditions, rather than any physical implications. Observations of epsilon are compared with the OSBL regime diagram of Belcher et al. (2012) and are generally within an order of magnitude, but there is an improved agreement if hɛ is used as the turbulent length scale rather than hρ.

  12. Small particle transport across turbulent nonisothermal boundary layers

    Science.gov (United States)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  13. Modelling Unsteady Wall Pressures Beneath Turbulent Boundary Layers

    Science.gov (United States)

    Ahn, B-K.; Graham, W. R.; Rizzi, S. A.

    2004-01-01

    As a structural entity of turbulence, hairpin vortices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work we focus on fully developed typical hairpin vortices and estimate the associated surface pressure distributions and their corresponding spectra. On the basis of the attached eddy model, we develop a representation of the overall surface pressure spectra in terms of the eddy size distribution. Instantaneous wavenumber spectra and spatial correlations are readily derivable from this representation. The model is validated by comparison of predicted wavenumber spectra and cross-correlations with existing emperical models and experimental data.

  14. Radiative transfer in a polluted urban planetary boundary layer

    Science.gov (United States)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.

  15. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    Directory of Open Access Journals (Sweden)

    Elena-Carmen Teleman

    2008-01-01

    Full Text Available The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence scales of the wind action in urban environment were conducted. The data obtained were processed and analyzed and interpreted with specific software. The results are used for a synthesis regarding the scales of turbulence of the model of flow and the actual accuracy of measurements. The paper presents some of the important elements of this synthesis.

  16. The large Reynolds number - Asymptotic theory of turbulent boundary layers.

    Science.gov (United States)

    Mellor, G. L.

    1972-01-01

    A self-consistent, asymptotic expansion of the one-point, mean turbulent equations of motion is obtained. Results such as the velocity defect law and the law of the wall evolve in a relatively rigorous manner, and a systematic ordering of the mean velocity boundary layer equations and their interaction with the main stream flow are obtained. The analysis is extended to the turbulent energy equation and to a treatment of the small scale equilibrium range of Kolmogoroff; in velocity correlation space the two-thirds power law is obtained. Thus, the two well-known 'laws' of turbulent flow are imbedded in an analysis which provides a great deal of other information.

  17. Shock Wave Turbulent Boundary Layer Interaction in Hypersonic Flow

    Science.gov (United States)

    1975-06-01

    WORDS (Conllnum on rtvmf tldm II nocfmry Td Idmnllly by block number) Turbulent boundary layers Skin friction, heat transfer and pressure High... tD t{> • y rp < J -o ill ... |i| ;| ilh |I ti i llii ffPtffin i ini I ! til. ;■ ; ’ ! ’ : in •■•: \\1’. T ill j i i i...III [lii 5 ft" t H "H— im BJITT i’i 1 i Mt- B ianj ii ( !l!l Mi IF Ii ig| M»-H J , ■*« J J j 1JJ J 4^ Ul CD S D Z V) D -I O z > Ul QC

  18. Boundary layer height estimation by sodar and sonic anemometer measurements

    Energy Technology Data Exchange (ETDEWEB)

    Contini, D; Cava, D; Martano, P; Donateo, A; Grasso, F M [CNR - Istituto di Scienze dell' Atmosfera e del Clima, U. O. di Lecce Str. Prv. Lecce-Monteroni km 1.2, 73100, Lecce (Italy)], E-mail: d.contini@isac.cnr.it

    2008-05-01

    In this paper an analysis of different methods for the calculation of the boundary layer height (BLH) using sodar and ultrasonic anemometer measurements is presented. All the methods used are based on single point surface measurements. In particular the automatic spectral routine developed for Remtech sodar is compared with the results obtained with the parameterization of the vertical velocity variance, with the calculation of a prognostic model and with a parameterization based on horizontal velocity spectra. Results indicate that in unstable conditions the different methods provide similar pattern, with BLH relatively low, even if the parameterization of the vertical velocity variance is affected by a large scatter that limits its efficiency in evaluating the BLH. In stable nocturnal conditions the performances of the Remtech routine are lower with respect to the ones in unstable conditions. The spectral method, applied to sodar or sonic anemometer data, seems to be the most promising in order to develop an efficient routine for BLH determination.

  19. Spatially Developing Secondary Instabilities in Compressible Swept Airfoil Boundary Layers

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.

    2011-01-01

    Two-dimensional eigenvalue analysis is used on a massive scale to study spatial instabilities of compressible shear flows with two inhomogeneous directions. The main focus of the study is crossflow dominated swept-wing boundary layers although the methodology can also be applied to study other type of flows, such as the attachment-line flow. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed, namely, fixing the spatial growth direction unambiguously through a non-orthogonal formulation of the linearized disturbance equations. A primary test case used for parameter study corresponds to the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. Implications of this finding for transition control in swept wing boundary layers are examined.

  20. Rapid cycling of reactive nitrogen in the marine boundary layer.

    Science.gov (United States)

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S; Apel, Eric C; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N; Ortega, John; Knote, Christoph

    2016-04-28

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  1. The Effect of Axial Length on the Thickness of Intraretinal Layers of the Macula.

    Science.gov (United States)

    Szigeti, Andrea; Tátrai, Erika; Varga, Boglárka Enikő; Szamosi, Anna; DeBuc, Delia Cabrera; Nagy, Zoltán Zsolt; Németh, János; Somfai, Gábor Márk

    2015-01-01

    The aim of this study was to evaluate the effect of axial length (AL) on the thickness of intraretinal layers in the macula using optical coherence tomography (OCT) image analysis. Fifty three randomly selected eyes of 53 healthy subjects were recruited for this study. The median age of the participants was 29 years (range: 6 to 67 years). AL was measured for each eye using a Lenstar LS 900 device. OCT imaging of the macula was also performed by Stratus OCT. OCTRIMA software was used to process the raw OCT scans and to determine the weighted mean thickness of 6 intraretinal layers and the total retina. Partial correlation test was performed to assess the correlation between the AL and the thickness values. Total retinal thickness showed moderate negative correlation with AL (r = -0.378, p = 0.0007), while no correlation was observed between the thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer (GCC), retinal pigment epithelium (RPE) and AL. Moderate negative correlation was observed also between the thickness of the ganglion cell layer and inner plexiform layer complex (GCL+IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL) and AL which were more pronounced in the peripheral ring (r = -0.402, p = 0.004; r = -0.429, p = 0.002; r = -0.360, p = 0.01; r = -0.448, p = 0.001). Our results have shown that the thickness of the nuclear layers and the total retina is correlated with AL. The reason underlying this could be the lateral stretching capability of these layers; however, further research is warranted to prove this theory. Our results suggest that the effect of AL on retinal layers should be taken into account in future studies.

  2. Coherence of simulated atmospheric boundary-layer turbulence

    Science.gov (United States)

    Jiadong, Zeng; Zhiguo, Li; Mingshui, Li

    2017-12-01

    The coherences in a plane perpendicular to incoming flow are measured in wind tunnel simulations of atmospheric turbulent flow. The measured coherences are compared with analytical expressions tailored to field measurements and with theoretical coherence models which assume homogeneous turbulence and the von Kármán’s spectrum. The comparison indicates that the simulated atmospheric boundary layer flow is approximately horizontally homogeneous turbulence. Based on the above assumption and the systematic analysis of lateral coherence, it can be concluded that the lateral coherences of simulated atmospheric boundary turbulence can be determined accurately using the von Kármán spectrum and the turbulence parameters measured by a few measurement points. The measured results also show that the spatial characteristics of vertical coherences are closely related to the dimensionless parameter {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The vertical coherence at two heights can be roughly estimated by the ratio to {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The relationship between the phase angles of u-, v- and w-components and the vertical separation distance and the height from the ground is further analyzed. Finally, the roles of the type of land surface roughness, the height from the ground, the turbulence intensity and the integral length scale in lateral and vertical coherences are also discussed in this study.

  3. The Stokes boundary layer for a thixotropic or antithixotropic fluid

    KAUST Repository

    McArdle, Catriona R.

    2012-10-01

    We present a mathematical investigation of the oscillatory boundary layer in a semi-infinite fluid bounded by an oscillating wall (the so-called \\'Stokes problem\\'), when the fluid has a thixotropic or antithixotropic rheology. We obtain asymptotic solutions in the limit of small-amplitude oscillations, and we use numerical integration to validate the asymptotic solutions and to explore the behaviour of the system for larger-amplitude oscillations. The solutions that we obtain differ significantly from the classical solution for a Newtonian fluid. In particular, for antithixotropic fluids the velocity reaches zero at a finite distance from the wall, in contrast to the exponential decay for a thixotropic or a Newtonian fluid.For small amplitudes of oscillation, three regimes of behaviour are possible: the structure parameter may take values defined instantaneously by the shear rate, or by a long-term average; or it may behave hysteretically. The regime boundaries depend on the precise specification of structure build-up and breakdown rates in the rheological model, illustrating the subtleties of complex fluid models in non-rheometric settings. For larger amplitudes of oscillation the dominant behaviour is hysteretic. We discuss in particular the relationship between the shear stress and the shear rate at the oscillating wall. © 2012 Elsevier B.V.

  4. Simulation and experimental determination of the macro-scale layer thickness distribution of electrodeposited Cu-line patterns on a wafer substrate

    DEFF Research Database (Denmark)

    Pantleon, Karen; Bossche, Bart van den; Purcar, Marius

    2005-01-01

    on the patterned wafer, and layer thickness measurements by means of X-ray fluorescence (XRF) and atomic force microscopy (AFM). The simulations are based on a potential model approach taking into account electrolyte ohmic drop and electrode polarization effects, combined to a boundary element method (BEM...

  5. Increased thickness uniformity of large-area nanofibrous layers by electrodynamic spinning

    Science.gov (United States)

    Pokorný, Marek; Klemeš, Jan; Kotzianová, Adéla; Kohoutek, Tomáš; Velebný, Vladimír

    2017-10-01

    This paper studies the causes of thickness inhomogeneities in continuously deposited large-area nanofibrous layers, introduces a new method of their rapid analysis and suggests technical measures to ensure greater thickness uniformity of produced nanofibrous layers. The thickness uniformity of nanofibrous layers over large surface areas and its testing have recently appeared as very important issues following the scale up of the production of nanofibrous layers from laboratory to industrial levels, i.e. from point-to-plate arrangement to roll-to-roll processing. The basic electrostatic spinning method produces layers with thickness distribution corresponding to the bivariate Gaussian distribution. However, increasing production and scaling-up processes often results in variations in the thickness of deposited nanofibrous layers even up to the order of tens of percent. But for most applications, inhomogeneities in the thickness are a critical and even limiting factor. Our results show that by using the method of electrodynamic spinning with moving electrodes, we were able to achieve 30% greater thickness uniformity within the observed area (100 x 26) cm2 than with the electrostatic method. Electrodynamic spinning can therefore be considered a very promising technology for the industrial production. We also demonstrated the digital image analysis as a new and efficient tool to optically determine the thickness uniformity of electrospun layers by analyzing the intensity of transmitted light through the layer on 26 x 22 cm2 sample area. This unique approach brings benefits of non-destructive, rapid and reproducible evaluation of the thickness uniformity of the nanofibrous layers over decimeter-square surface areas at the same time.

  6. Turbulence radiation coupling in boundary layers of heavy-duty diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-05

    The lack of accurate submodels for in-cylinder radiation and heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Recent measurements of wall layers in engines show discrepancies of up to 100% with respect to standard CFD boundary-layer models. And recent analysis of in-cylinder radiation based on the most recent spectral property databases and high-fidelity radiative transfer equation (RTE) solvers has shown that at operating pressures and exhaust-gas recirculation levels typical of modern heavy-duty compression-ignition engines, radiative emission can be as high as 40% of the wall heat losses, that molecular gas radiation (mainly CO2 and H2O) can be more important than soot radiation, and that a significant fraction of the emitted radiation can be reabsorbed before reaching the walls. That is, radiation not only contributes to heat losses, but also changes the in-cylinder temperature distribution, which in turn affects combustion and emissions. The goal of this research is to develop models that explicitly account for the potentially strong coupling between radiative and turbulent boundary layer heat transfer. For example, for optically thick conditions, a simple diffusion model might be formulated in terms of an absorption-coefficient-dependent turbulent Prandtl number.

  7. Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy.

    Science.gov (United States)

    Francis, Andrew W; Wanek, Justin; Lim, Jennifer I; Shahidi, Mahnaz

    2015-01-01

    To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR.

  8. Wake structures of two side by side spheres in a tripped boundary layer flow

    Directory of Open Access Journals (Sweden)

    Canli Eyüb

    2014-03-01

    Full Text Available Two independent spheres were placed in a side by side arrangement and flow structure in the wake region of the spheres was investigated with a Particle Image Velocimetry (PIV system when the spheres were in a boundary layer over a flat plate as a special case. Reynolds number was 5000 based on the sphere diameter which was 42.5 mm. Boundary layer was tripped 8mm away from the leading edge of the flat plate with a 5 mm trip wire. The thickness of the hydrodynamically developed boundary layer was determined as 63mm which was larger than the sphere diameter of D=42.5mm. Wake region of the spheres was examined from point of flow physics for the different sphere locations in the ranges of 0≤G/D ≤1.5 and 0≤S/D ≤1.5 where G and S were the distance between the spheres and the distance between the bottom point of the spheres and the flat plate surface, respectively. Depending on the different sphere locations, instantaneous and time averaged vorticity data, scalar values of time-averaged velocity components and their root mean square (rms values and time averaged vorticity data are presented in the study for the evaluation of wake region of the spheres. It is demonstrated that the gap between the two spheres and the interaction between the gap and the boundary layer greatly affects flow pattern, especially when spheres are located near to the flat plate surface, i.e. S/D=0.1 for 0≤G/D ≤1.5. Different distances between the spheres resulted in various flow patterns as the spheres were approached to the flat plate. The distance S/D=0.1 for all gap values has the strongest effect on the wake structures. Beyond G/D=1.0, the sphere wakes tend to be similar to single sphere case. The instantaneous vorticity fields of the side by side arrangements comprised wavy structures in higher level comparing to an individual sphere case. The gap flow intensifies the occurrence of small scale eddies in the wake region. The submersion rate of the spheres

  9. Experimental study of wind turbine wakes in a convective boundary layer

    Science.gov (United States)

    Zhang, W.; Markfort, C. D.; Porte-Agel, F.

    2010-12-01

    Understanding the interaction of atmospheric boundary layer (ABL) flows with wind turbines is important for optimizing the design of wind farms (maximizing energy output and mitigating fatigue loads) and improving the parameterization of wind farms in weather and climate models. Field observations have suggested that atmospheric stability affects ABL flow and its interaction with wind turbines, which in turn affects wind farm performance. However, the fluid mechanics involved has not been fully understood, highlighting the need of acquiring high quality data in clearly defined conditions. Well-controlled wind tunnel experiments of the wake of wind turbines immersed in thermally stratified or convective boundary layers are very limited. In this study, we investigate the wake structure of a miniature three-blade wind turbine model placed in a convective boundary layer (CBL) in the Saint Anthony Falls Laboratory wind tunnel. The objectives of this study are: 1) to understand how the CBL flow affects the wake behind a wind turbine in terms of tip vortices distribution, mean velocity deficit, turbulence intensities, Reynolds shear stress and heat flux modification; 2) to provide reliable data sets for validating and developing new parameterizations of turbulent fluxes and turbine-induced forces in numerical models, such as large-eddy simulation (LES). The CBL was generated by cooling the free stream air flow to 13 οC and heating up the test section floor to 80 οC. The free stream speed was set at 2.5 m/s, resulting in the Obukhov stability of δ/L=-3.15 and the bulk Richardson number about -0.16. The wake of a wind turbine model, whose height is about 1/3 the boundary layer thickness, was systematically studied using Stereo Particle Image Velocimetry (SPIV) and a hot-wire/cold-wire anemometer. Results revealed the top tip vortices (in Fig.1), noticeably degraded velocity deficit and significantly enhanced turbulence. Turbulent momentum and heat fluxes were also

  10. Effect of diabetic macular edema on peripapillary retinal nerve fiber layer thickness profiles.

    Science.gov (United States)

    Hwang, Duck Jin; Lee, Eun Ji; Lee, Sang Yoon; Park, Kyu Hyung; Woo, Se Joon

    2014-05-15

    To investigate both the effect of diabetic macular edema (DME) on measured peripapillary retinal nerve fiber layer (RNFL) thickness and the effect of intravitreal bevacizumab injection on RNFL thickness using spectral-domain optical coherence tomography (SD-OCT) in patients with diabetic retinopathy. We compared the SD-OCT RNFL thickness profiles between eyes with and without DME (DME [n = 42]; without DME [n = 53]) and conducted an interventional study for evaluating the effect of DME on RNFL thickness. Six sectorial and the global RNFL (gRNFL) thicknesses were compared between the two groups. To evaluate the intraindividual effect of DME on RNFL thickness, 1-month follow-up OCT data of 42 eyes that received an intravitreal bevacizumab injection were compared with preinjection data. The six sectorial and gRNFL thicknesses were greater in the DME group than the non-DME group (P thickness significantly correlated with the central foveal thickness (CFT) (R = 0.470, P thickness (P thickness and RNFL thickness were significantly correlated (R = 0.576, P thickness was generally increased in patients with DME, and the increment correlated with the degree of macular edema. While long-lasting DME resulted in RNFL thickening in all sectors, short-term DME resolution mainly influenced the temporal and nasal RNFL thicknesses. Cautious interpretation is recommended for evaluation of glaucoma using RNFL thickness in diabetic patients, especially patients with DME. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  11. Uncertainties in the CO2 buget associated to boundary layer dynamics and CO2-advection

    NARCIS (Netherlands)

    Kaikkonen, J.P.; Pino, D.; Vilà-Guerau de Arellano, J.

    2012-01-01

    The relationship between boundary layer dynamics and carbon dioxide (CO2) budget in the convective boundary layer (CBL) is investigated by using mixed-layer theory. We derive a new set of analytical relations to quantify the uncertainties on the estimation of the bulk CO2 mixing ratio and the

  12. A Study of the Drag Characteristics and Polymer Diffusion in the Boundary Layer of an Axisymmetric Body

    Science.gov (United States)

    1976-03-12

    February 1970. White, A., "Some Observations on the Flow Characteristics of Certain Dilute Macromolecular Solutions," Hendon College of Technology...External Bodies by Polymer Additives," AIAA Paper No. 68-127, AIAA 6th Aerospace Sciences Meeting, 1968. White, F. M. and G. H. Christoph , "A...and G. H. Christoph , "Analysis of Tur- bulent Skin Friction in Thick Axisymmetric Boundary Layers," University of Rhode Island, Kingston, R. I

  13. Optimization of intrinsic layer thickness, dopant layer thickness and concentration for a-SiC/a-SiGe multilayer solar cell efficiency performance using Silvaco software

    Science.gov (United States)

    Yuan, Wong Wei; Natashah Norizan, Mohd; Salwani Mohamad, Ili; Jamalullail, Nurnaeimah; Hidayah Saad, Nor

    2017-11-01

    Solar cell is expanding as green renewable alternative to conventional fossil fuel electricity generation, but compared to other land-used electrical generators, it is a comparative beginner. Many applications covered by solar cells starting from low power mobile devices, terrestrial, satellites and many more. To date, the highest efficiency solar cell is given by GaAs based multilayer solar cell. However, this material is very expensive in fabrication and material costs compared to silicon which is cheaper due to the abundance of supply. Thus, this research is devoted to develop multilayer solar cell by combining two different layers of P-I-N structures with silicon carbide and silicon germanium. This research focused on optimising the intrinsic layer thickness, p-doped layer thickness and concentration, n-doped layer thickness and concentration in achieving the highest efficiency. As a result, both single layer a-SiC and a-SiGe showed positive efficiency improvement with the record of 27.19% and 9.07% respectively via parametric optimization. The optimized parameters is then applied on both SiC and SiGe P-I-N layers and resulted the convincing efficiency of 33.80%.

  14. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  15. Adhesive Layer Thickness and Porosity Criteria for Bonded Joints

    Science.gov (United States)

    1982-12-01

    ALUMINUM REPRESENTING ADHESIVE SHEAR FAILURES JADHERENDS 20 3 SPECIAL DAMMIN4G DURING FABRICATIONABOVE~~ 0 010I 80 IN ALUMINUM DOUBE LP 6R9!1AOHE RE NOS 16...the problem than to provide quality assurance r- *standards. TENSION IN BAG SQUEEZES OUT )II ADHESIVE SPLICE OR DOUBLER WIRE A BAG, SPLICE OR DOUBE ...MOOULUSE C POISSON S RATIO (10 JOINT GEOMETRY ... .. . - - -- T WVY PEEL STRESS DISTRIBU rION £ A A & A A £ V THROUGH THICKNESS (Ec ACCOUNTS FOR

  16. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    Science.gov (United States)

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  17. The turbulent boundary layer on a porous plate: An experimental study of the heat transfer behavior with adverse pressure gradients

    Science.gov (United States)

    Blackwell, B. F.; Kays, W. M.; Moffat, R. J.

    1972-01-01

    An experimental investigation of the heat transfer behavior of the near equilibrium transpired turbulent boundary layer with adverse pressure gradient has been carried out. Stanton numbers were measured by an energy balance on electrically heated plates that form the bottom wall of the wind tunnel. Two adverse pressure gradients were studied. Two types of transpiration boundary conditions were investigated. The concept of an equilibrium thermal boundary layer was introduced. It was found that Stanton number as a function of enthalpy thickness Reynolds number is essentially unaffected by adverse pressure gradient with no transpiration. Shear stress, heat flux, and turbulent Prandtl number profiles were computed from mean temperature and velocity profiles. It was concluded that the turbulent Prandtl number is greater than unity in near the wall and decreases continuously to approximately 0.5 at the free stream.

  18. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    Directory of Open Access Journals (Sweden)

    Abid Hussanan

    Full Text Available In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  19. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection

    Science.gov (United States)

    2014-06-01

    boundary-layer flow with gas injection 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Alexander V. Fedorov ...distribution unlimited Stability analysis of high-speed boundary-layer flow with gas injection Alexander V. Fedorov * and Vitaly G. Soudakov...Laminar Flow, AGARD Report Number 709, 1984. 2. Fedorov , A., “Transition and Stability of High-Speed Boundary Layers,” Annu. Rev. Fluid Mech., Vol

  20. Boundary layer friction of solvate ionic liquids as a function of potential.

    Science.gov (United States)

    Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob

    2017-07-01

    Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.

  1. HYPERSONIC BOUNDARY LAYER TRANSITION EXPERIMENTS- HYPERSONIC INTERNATIONAL FLIGHT RESEARCH EXPERIMENTATION 5 (HIFIRE-5) AND CIRCULAR CONE

    Science.gov (United States)

    2016-10-01

    AFRL-RQ-WP-TR-2017-0098 HYPERSONIC BOUNDARY LAYER TRANSITION EXPERIMENTS - HYPERSONIC INTERNATIONAL FLIGHT RESEARCH EXPERIMENTATION 5 (HiFIRE-5...DATES COVERED (From - To) October 2016 Interim 01 April 2015 – 13 June 2016 4. TITLE AND SUBTITLE HYPERSONIC BOUNDARY LAYER TRANSITION EXPERIMENTS...during fiscal year 2016. The objective of this task is to better understand boundary layer transition in hypersonic flowfields with spanwise

  2. Pre-ABoVE: Remotely Sensed Active Layer Thickness, Barrow, Alaska, 2006-2011

    Data.gov (United States)

    National Aeronautics and Space Administration — Active layer thickness (ALT) is a critical parameter for monitoring the status of permafrost that is typically measured at specific locations using probing, in situ...

  3. Global 1-km Gridded Thickness of Soil, Regolith, and Sedimentary Deposit Layers

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides high-resolution estimates of the thickness of the permeable layers above bedrock (soil, regolith, and sedimentary deposits) within a global...

  4. Asymmetric transmission of acoustic waves in a layer thickness distribution gradient structure using metamaterials

    Directory of Open Access Journals (Sweden)

    Jung-San Chen

    2016-09-01

    Full Text Available This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.

  5. Pre-ABoVE: Remotely Sensed Active Layer Thickness, Prudhoe Bay, Alaska, 1992-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — Active layer thickness (ALT) is a critical parameter for monitoring the status of permafrost that is typically measured at specific locations using probing, in situ...

  6. Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers

    DEFF Research Database (Denmark)

    Xu, Zhang-Cheng; Zhang, Ya-Ting; Hvam, Jørn Märcher

    2009-01-01

    The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage at 110K is observed, which...

  7. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  8. CFD simulation of neutral ABL flows; Atmospheric Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong Zhang

    2009-04-15

    This work is to evaluate the CFD prediction of Atmospheric Boundary Layer flow field over different terrains employing Fluent 6.3 software. How accurate the simulation could achieve depend on following aspects: viscous model, wall functions, agreement of CFD model with inlet wind velocity profile and top boundary condition. Fluent employ wall function roughness modifications based on data from experiments with sand grain roughened pipes and channels, describe wall adjacent zone with Roughness Height (Ks) instead of Roughness Length (z{sub 0}). In a CFD simulation of ABL flow, the mean wind velocity profile is generally described with either a logarithmic equation by the presence of aerodynamic roughness length z{sub 0} or an exponential equation by the presence of exponent. As indicated by some former researchers, the disagreement between wall function model and ABL velocity profile description will result in some undesirable gradient along flow direction. There are some methods to improve the simulation model in literatures, some of them are discussed in this report, but none of those remedial methods are perfect to eliminate the streamwise gradients in mean wind speed and turbulence, as EllipSys3D could do. In this paper, a new near wall treatment function is designed, which, in some degree, can correct the horizontal gradients problem. Based on the corrected model constants and near wall treatment function, a simulation of Askervein Hill is carried out. The wind condition is neutrally stratified ABL and the measurements are best documented until now. Comparison with measured data shows that the CFD model can well predict the velocity field and relative turbulence kinetic energy field. Furthermore, a series of artificial complex terrains are designed, and some of the main simulation results are reported. (au)

  9. Heterogeneous evaporation across a turbulent internal boundary layer

    Science.gov (United States)

    Shahraeeni, Ebrahim; Vanderborght, Jan; Vereecken, Harry

    2014-05-01

    In local evaporation from sufficiently uniform and large surfaces, horizontal advection close to the changes in surface condition is not significant. Under natural condition, this assumption is often invalid and horizontal inhomogeneity is important. When partially saturated air flows from a uniform dry land surface over a wet surface, all lower boundary conditions of transport equations change abruptly. Also surface humidity and roughness are likely to be different from their upwind values. Due to these changes, the velocity profile and turbulence structure of the airflow must readjust. The vertical profiles are no longer in equilibrium and the horizontal gradients do not equal to zero. When there is more than one of these changes in the domain of interest, the interaction between different patches with a contrast in roughness, temperature or surface water content is also important. Rigorous experimental and numerical analysis of turbulent transfer of mass and momentum in the so-called internal boundary layer (the region affected by such step changes in surface condition) is the aim of this work. A combination of numerical simulations using in-house codes and commercial softwares and experimental measurements in the environmental wind tunnel is performed. We are specifically interested in correct depiction of roughness, in a more accurate representation of the turbulent velocity profile and in a better description of turbulent diffusion close to the interface. A series of simplifying assumptions in the classical representation of this problem are investigated and a sensitivity analysis is performed to identify the contribution of neglected terms. We are also interested in the parameterization of the heat and mass exchange processes for the case with different wet patches in a background of dry soil, which is of interest in several field scale applications.

  10. FREE VIBRATION OF ISOTROPIC HALF-ELLIPTIC PLATES OF LINEARLY VARYING THICKNESS WITH CLAMPED CURVED BOUNDARY

    Directory of Open Access Journals (Sweden)

    A.P Gupta

    2010-09-01

    Full Text Available Two-dimensional boundary characteristic orthonormal polynomials are used in Rayleigh-Ritz method to study the title problem. In general, it is found that this method gives better results than the other traditional method such as boundary integral equation methods, Spline methods, Chebyshev collocation method, Frobenius method etc. The thickness is taken to be linearly varying in two orthogonal directions. Comparisons in particular cases have been made with the existing results in the literature. Convergence of frequencies of at least up to five significant figures is obtained. Results showing the variation in frequencies with taper parameters and aspect ratios are presented in tabular form. Mode shapes are shown using three-dimensional graphs of plates in displaced configurations.

  11. Optimally growing boundary layer disturbances in a convergent nozzle preceded by a circular pipe

    Science.gov (United States)

    Uzun, Ali; Davis, Timothy B.; Alvi, Farrukh S.; Hussaini, M. Yousuff

    2017-06-01

    We report the findings from a theoretical analysis of optimally growing disturbances in an initially turbulent boundary layer. The motivation behind this study originates from the desire to generate organized structures in an initially turbulent boundary layer via excitation by disturbances that are tailored to be preferentially amplified. Such optimally growing disturbances are of interest for implementation in an active flow control strategy that is investigated for effective jet noise control. Details of the optimal perturbation theory implemented in this study are discussed. The relevant stability equations are derived using both the standard decomposition and the triple decomposition. The chosen test case geometry contains a convergent nozzle, which generates a Mach 0.9 round jet, preceded by a circular pipe. Optimally growing disturbances are introduced at various stations within the circular pipe section to facilitate disturbance energy amplification upstream of the favorable pressure gradient zone within the convergent nozzle, which has a stabilizing effect on disturbance growth. Effects of temporal frequency, disturbance input and output plane locations as well as separation distance between output and input planes are investigated. The results indicate that optimally growing disturbances appear in the form of longitudinal counter-rotating vortex pairs, whose size can be on the order of several times the input plane mean boundary layer thickness. The azimuthal wavenumber, which represents the number of counter-rotating vortex pairs, is found to generally decrease with increasing separation distance. Compared to the standard decomposition, the triple decomposition analysis generally predicts relatively lower azimuthal wavenumbers and significantly reduced energy amplification ratios for the optimal disturbances.

  12. Structure of high and low shear-stress events in a turbulent boundary layer

    Science.gov (United States)

    Gomit, G.; de Kat, R.; Ganapathisubramani, B.

    2018-01-01

    Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.

  13. Structure Identification Within a Transitioning Swept-Wing Boundary Layer

    Science.gov (United States)

    Chapman, Keith; Glauser, Mark

    1996-01-01

    Extensive measurements are made in a transitioning swept-wing boundary layer using hot-film, hot-wire and cross-wire anemometry. The crossflow-dominated flow contains stationary vortices that breakdown near mid-chord. The most amplified vortex wavelength is forced by the use of artificial roughness elements near the leading edge. Two-component velocity and spanwise surface shear-stress correlation measurements are made at two constant chord locations, before and after transition. Streamwise surface shear stresses are also measured through the entire transition region. Correlation techniques are used to identify stationary structures in the laminar regime and coherent structures in the turbulent regime. Basic techniques include observation of the spatial correlations and the spatially distributed auto-spectra. The primary and secondary instability mechanisms are identified in the spectra in all measured fields. The primary mechanism is seen to grow, cause transition and produce large-scale turbulence. The secondary mechanism grows through the entire transition region and produces the small-scale turbulence. Advanced techniques use Linear Stochastic Estimation (LSE) and Proper Orthogonal Decomposition (POD) to identify the spatio-temporal evolutions of structures in the boundary layer. LSE is used to estimate the instantaneous velocity fields using temporal data from just two spatial locations and the spatial correlations. Reference locations are selected using maximum RMS values to provide the best available estimates. POD is used to objectively determine modes characteristic of the measured flow based on energy. The stationary vortices are identified in the first laminar modes of each velocity component and shear component. Experimental evidence suggests that neighboring vortices interact and produce large coherent structures with spanwise periodicity at double the stationary vortex wavelength. An objective transition region detection method is developed using

  14. Effect of initial conditions, boundary conditions and thickness on the moisture buffering capacity of spruce plywood

    Energy Technology Data Exchange (ETDEWEB)

    Osanyintola, O. F.; Talukdar, P.; Simonson, C. J. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Sask. (China)

    2006-07-01

    In this paper, the moisture buffering capacity of spruce plywood is measured by recording the change in mass of a test specimen when the air relative humidity (RH) is changed between 33% RH and 75% RH. The aim is to represent diurnal cycles in indoor humidity with 33% RH maintained for 16 h and 75% RH maintained for 8 h. Measurements are taken using two different apparatuses, which provide different convective transfer coefficients between the air and the plywood, and the results are compared to a numerical model for validation. The validated numerical model is then used to investigate the effect of initial conditions, boundary conditions and thickness on the moisture buffering capacity of plywood. The results show that the buffering capacity of plywood depends on the initial conditions and thickness of the plywood as well as the surface film coefficient and humidity cycle. (author)

  15. The Final Stage of Gravitationally Collapsed Thick Matter Layers

    Directory of Open Access Journals (Sweden)

    Piero Nicolini

    2013-01-01

    Full Text Available In the presence of a minimal length, physical objects cannot collapse to an infinite density, singular, matter point. In this paper, we consider the possible final stage of the gravitational collapse of “thick” matter layers. The energy momentum tensor we choose to model these shell-like objects is a proper modification of the source for “noncommutative geometry inspired,” regular black holes. By using higher momenta of Gaussian distribution to localize matter at finite distance from the origin, we obtain new solutions of the Einstein equation which smoothly interpolates between Minkowski’s geometry near the center of the shell and Schwarzschild’s spacetime far away from the matter layer. The metric is curvature singularity free. Black hole type solutions exist only for “heavy” shells; that is, M ≥Me, where Me is the mass of the extremal configuration. We determine the Hawking temperature and a modified area law taking into account the extended nature of the source.

  16. Asymmetric Vibration of Polar Orthotropic Annular Circular Plates of Quadratically Varying Thickness with Same Boundary Conditions

    Directory of Open Access Journals (Sweden)

    N. Bhardwaj

    2008-01-01

    Full Text Available In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thickness profile, material orthotropy and foundation constant for all three possible combinations of clamped, simply supported and free edge conditions are shown and discussed. It is found that (a higher elastic property in circumferential direction leads to higher stiffness against lateral vibration; (b Lateral vibration characteristics of F-Fplates is more sensitive towards parametric changes in material orthotropy and foundation stiffness than C-C and S-Splates; (c Effect of quadratical thickness variation on fundamental frequency is more significant in cases of C-C and S-S plates than that of F-Fplates. Thickness profile which is convex relative to plate center-line tends to result in higher stiffness of annular plates against lateral vibration than the one which is concave and (d Fundamental mode of vibration of C-C and S-Splates is axisymmetrical while that of F-Fplates is asymmetrical.

  17. STACKiNG SEQUENCE OPTiMiZATiON OF COMPOSiTE BEAMS WiTH DiFFERENT LAYER THiCKNESSES

    Directory of Open Access Journals (Sweden)

    Fatih Karaçam

    2015-05-01

    Full Text Available In this study, stacking sequence optimization of composite beams with different layer thicknesses is investigated for various boundary conditions. A unified shear deformation theory is used for analytical solution. The optimization process is carried out in order to obtain the minimum deflection parameters for Clamped-Free (C-F, Clamped-Clamped (C-C and simply supported (S-S boundary conditions under a uniform distributed load by use of genetic algorithm for a specific number of population and generation. Finally, among all possible combinations of layer thicknesses, the one giving the minimum deflection parameter and corresponding stacking sequence is chosen. The minimum values and corresponding stacking sequences are presented for different boundary conditions.

  18. Boundary-layer height detection with a ceilometer at a coastal site in western Denmark

    DEFF Research Database (Denmark)

    Hannesdóttir, Ásta; Hansen, Aksel Walle

    with those from turbulence measurements of a wind lidar and the two methods are in good agreement. It is found that detecting the boundary-layer height from turbulence kinetic energy considerations with the wind lidar is not recommendable for detecting the boundary layer height during the presence of clouds......One year of data from ceilometer measurements is used to estimate the atmospheric boundary-layer height at the coastal site Høvsøre in western Denmark. The atmospheric boundary-layer height is a fundamental parameter for the evaluation of the wind speed profile, and an essential parameter...... in atmospheric transport- and dispersion models. A new method of filtering clouds from the ceilometer data is presented. This allows for the inclusion of more than half of the data in the subsequent analysis, as the presence of clouds would otherwise complicate the boundary-layer height estimations. The boundary...

  19. The vertical structure of the boundary layer around compact objects

    Science.gov (United States)

    Hertfelder, Marius; Kley, Wilhelm

    2017-09-01

    Context. Mass transfer due to Roche lobe overflow leads to the formation of an accretion disk around a weakly magnetized white dwarf (WD) in cataclysmic variables. At the inner edge of the disk, the gas comes upon the surface of the WD and has to get rid of its excess kinetic energy in order to settle down on the more slowly rotating outer stellar layers. This region is known as the boundary layer (BL). Aims: In this work we investigate the vertical structure of the BL, which is still poorly understood. We shall provide details of the basic structure of the two-dimensional (2D) BL and how it depends on parameters such as stellar mass and rotation rate, as well as the mass-accretion rate. We further investigate the destination of the disk material and compare our results with previous one-dimensional (1D) simulations. Methods: We solve the 2D equations of radiation hydrodynamics in a spherical (r-ϑ) geometry using a parallel grid-based code that employs a Riemann solver. The radiation energy is considered in the two-temperature approach with a radiative flux given by the flux-limited diffusion approximation. Results: The BL around a non-rotating WD is characterized by a steep drop in angular velocity over a width of only 1% of the stellar radius, a heavy depletion of mass, and a high temperature ( 500 000 K) as a consequence of the strong shear. Variations in Ω∗,M∗, and Ṁ influence the extent of the changes of the variables in the BL but not the general structure. Depending on Ω∗, the disk material travels up to the poles or is halted at a certain latitude. The extent of mixing with the stellar material also depends on Ω∗. We find that the 1D approximation matches the 2D data well, apart from an underestimated temperature.

  20. Shallow marine cloud topped boundary layer in atmospheric models

    Science.gov (United States)

    Janjic, Zavisa

    2017-04-01

    A common problem in many atmospheric models is excessive expansion over cold water of shallow marine planetary boundary layer (PBL) topped by a thin cloud layer. This phenomenon is often accompanied by spurious light precipitation. The "Cloud Top Entrainment Instability" (CTEI) was proposed as an explanation of the mechanism controlling this process in reality thereby preventing spurious enlargement of the cloudy area and widely spread light precipitation observed in the models. A key element of this hypothesis is evaporative cooling at the PBL top. However, the CTEI hypothesis remains controversial. For example, a recent direct simulation experiment indicated that the evaporative cooling couldn't explain the break-up of the cloudiness as hypothesized by the CTEI. Here, it is shown that the cloud break-up can be achieved in numerical models by a further modification of the nonsingular implementation of the Mellor-Yamada Level 2.5 turbulence closure model (MYJ) developed at the National Centers for Environmental Prediction (NCEP) Washington. Namely, the impact of moist convective instability is included into the turbulent energy production/dissipation equation if (a) the stratification is stable, (b) the lifting condensation level (LCL) for a particle starting at a model level is below the next upper model level, and (c) there is enough turbulent kinetic energy so that, due to random vertical turbulent motions, a particle starting from a model level can reach its LCL. The criterion (c) should be sufficiently restrictive because otherwise the cloud cover can be completely removed. A real data example will be shown demonstrating the ability of the method to break the spurious cloud cover during the day, but also to allow its recovery over night.

  1. Effect of Immersed Wall-Bounded Cylinders on Turbulent Boundary Layer Structure

    Science.gov (United States)

    Zheng, Shaokai; Longmire, Ellen; Hallberg, Michael; Ryan, Mitchell

    2012-11-01

    Single spanwise arrays of wall-mounted cylinders with H/ δ <= 0.2, where H is the cylinder height and δ is the boundary layer thickness, were used to modify turbulent boundary layers (Reτ=2500) in an attempt to affect the organization of the coherent structures in the logarithmic and outer regions. Flow downstream of several array spacings was investigated and compared against an unperturbed case. Instantaneous and averaged velocity fields in streamwise-spanwise planes were obtained by stereo PIV. The PIV cameras and laser sheet optics could be traversed at the local mean flow speed in order to track the evolution of larger structures in the flow. The results are analyzed to determine the streamwise evolution of dominant spanwise modes. Different array spacings are shown to either inhibit or reinforce the organization of vortex packet structures over streamwise distances up to 8 δ. The flying stereo PIV measurements suggest also that dominant structures upstream of the arrays can strongly affect the organization and location of structures downstream. supported by NSF CBET-0933341.

  2. Confinement effects in shock/turbulent-boundary-layer interaction through wall-modeled LES

    Science.gov (United States)

    Bermejo-Moreno, Ivan; Campo, Laura; Larsson, Johan; Bodart, Julien; Helmer, David; Eaton, John

    2016-11-01

    Wall-modeled large-eddy simulations (WMLES) are used to investigate three-dimensional effects imposed by lateral confinement on the interaction of oblique shock waves impinging on turbulent boundary layers (TBLs) developed along the walls of a nearly-square duct. A constant Mach number, M = 2 . 05 , of the incoming air stream is considered, with a Reynolds number based on the incoming turbulent boundary layer momentum thickness Reθ 14 , 000 . The strength of the impinging shock is varied by increasing the height of a compression wedge located at a constant streamwise location that spans the top wall of the duct at a 20° angle. Simulation results are first validated with particle image velocimetry (PIV) experimental data obtained at several vertical planes. Emphasis is placed on the study of the instantaneous and time-averaged structure of the flow for the stronger-interaction case, which shows mean flow reversal. By performing additional spanwise-periodic simulations, it is found that the structure and location of the shock system and separation bubble are significantly modified by the lateral confinement. Low-frequency unsteadiness and downstream evolution of corner flows are also investigated. Financial support from the United States Department of Energy under the PSAAP program is gratefully acknowledged.

  3. Experimental investigation of vortex properties in a turbulent boundary layer

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen K.; Marusic, Ivan

    2006-05-01

    Dual-plane particle image velocimetry experiments were performed in a turbulent boundary layer with Reτ=1160 to obtain all components of the velocity gradient tensor. Wall-normal locations in the logarithmic and wake region were examined. The availability of the complete gradient tensor facilitates improved identification of vortex cores and determination of their orientation and size. Inclination angles of vortex cores were computed using statistical tools such as two-point correlations and joint probability density functions. Also, a vortex identification technique was employed to identify individual cores and to compute inclination angles directly from instantaneous fields. The results reveal broad distributions of inclination angles at both locations. The results are consistent with the presence of many hairpin vortices which are most frequently inclined downstream at an angle of 45∘ with the wall. According to the probability density functions, a relatively small percentage of cores are inclined upstream. The number density of forward leaning cores decreases from the logarithmic to the outer region while the number density of backward-leaning cores remains relatively constant. These trends, together with the correlation statistics, suggest that the backward-leaning cores are part of smaller, weaker structures that have been distorted and convected by larger, predominantly forward-leaning eddies associated with the local shear.

  4. Investigation of Boundary Layer Structure by Dual-Plane PIV

    Science.gov (United States)

    Longmire, E. K.; Ganapathisubramani, B.; Marusic, I.

    2004-11-01

    Dual-plane PIV was employed in a turbulent boundary layer at Re_τ ˜ 1100 to study the nature of the vortical structures there. Laser sheets separated by 1 mm were aligned in streamwise-spanwise (x,y) planes, and the scattered light was captured by three cameras: two in a stereo configuration and one in a normal configuration. All velocity gradient components were determined for fields in the log (z^+ = 125) and outer (z/δ = 0.5) regions. Three-dimensional swirl strength was used to isolate vortex cores, and the vorticity direction of individual swirl centers was determined. Instantaneous fields in the log region reveal signatures of hairpin vortex packets consistent with previous results. The packets contain evidence of smaller hairpin heads embedded within the long low-speed regions surrounded by larger hairpins. The data set at z^+ = 125 yielded a most probable hairpin inclination angle of 32^rc and an average inclination angle of 57^rc. In the presentation, these results will be contrasted with those at z/δ = 0.5.

  5. Nonmethane hydrocarbon chemistry in the remote marine boundary layer

    Science.gov (United States)

    Donahue, Neil M.; Prinn, Ronald G.

    1990-01-01

    A photochemical model of the remote marine boundary layer (MBL) is presented, with focus placed on the role of reactive nonmethane hydrocarbons (NMHC). A wide range of NMHC air-sea fluxes with various relative distributions of NMHC regions are considered. In particular, the flux magnitude at which NMHC emissions become significant, and then dominant, players in MBL chemistry is identified. Emphasis is placed on diurnal variability, diurnal ozone variations and sensitivity to NMHC emission fluxes, to CO, O3, H2O, and UV light, and to kinetics and isometric composition. Model runs indicate that, in the range consistent with current observations, the NMHCs may either dominate MBL chemistry, or simply be contributors at the 10-percent level. These model runs also show that existing observations of NMHCs in ocean water find them to scarce for fluxes from bulk-flux air-sea gas exchange models to be consistent with the fluxes needed in the proposed model to maintain the lowest observed MBL NMHC.

  6. Numerical analysis and optimization of boundary layer suction on airfoils

    Directory of Open Access Journals (Sweden)

    Shi Yayun

    2015-04-01

    Full Text Available Numerical approach of hybrid laminar flow control (HLFC is investigated for the suction hole with a width between 0.5 mm and 7 mm. The accuracy of Menter and Langtry’s transition model applied for simulating the flow with boundary layer suction is validated. The experiment data are compared with the computational results. The solutions show that this transition model can predict the transition position with suction control accurately. A well designed laminar airfoil is selected in the present research. For suction control with a single hole, the physical mechanism of suction control, including the impact of suction coefficient and the width and position of the suction hole on control results, is analyzed. The single hole simulation results indicate that it is favorable for transition delay and drag reduction to increase the suction coefficient and set the hole position closer to the trailing edge properly. The modified radial basis function (RBF neural network and the modified differential evolution algorithm are used to optimize the design for suction control with three holes. The design variables are suction coefficient, hole width, hole position and hole spacing. The optimization target is to obtain the minimum drag coefficient. After optimization, the transition delay can be up to 17% and the aerodynamic drag coefficient can decrease by 12.1%.

  7. The decay of wake vortices in the convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Holzaepfel, F.; Gerz, T.; Frech, M.; Doernbrack, A.

    2000-03-01

    The decay of three wake vortex pairs of B-747 aircraft in a convectively driven atmospheric boundary layer is investigated by means of large-eddy simulations (LES). This situation is considered as being hazardous as the updraft velocities of a thermal may compensate the induced descent speed of the vortex pair resulting in vortices stalled in the flight path. The LES results, however, illustrate that (i) the primary rectilinear vortices are rapidly deformed on the scale of the alternating updraft and downdraft regions; (ii) parts of the vortices stay on flight level but are quickly eroded by the enhanced turbulence of an updraft; (iii) longest living sections of the vortices are found in regions of relatively calm downdraft flow which augments their descent. Strip theory calculations are used to illustrate the temporal and spatial development of lift and rolling moments experienced by a following medium weight class B-737 aircraft. Characteristics of the respective distributions are analysed. Initially, the maximum rolling moments slightly exceed the available roll control of the B-737. After 60 seconds the probability of rolling moments exceeding 50% of the roll control, a value which is considered as a threshold for acceptable rolling moments, has decreased to 1% of its initial probability. (orig.)

  8. Boundary Layer Instabilities Generated by Freestream Laser Perturbations

    Science.gov (United States)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled, laser-generated, freestream perturbation was created in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT). The freestream perturbation convected downstream in the Mach-6 wind tunnel to interact with a flared cone model. The geometry of the flared cone is a body of revolution bounded by a circular arc with a 3-meter radius. Fourteen PCB 132A31 pressure transducers were used to measure a wave packet generated in the cone boundary layer by the freestream perturbation. This wave packet grew large and became nonlinear before experiencing natural transition in quiet flow. Breakdown of this wave packet occurred when the amplitude of the pressure fluctuations was approximately 10% of the surface pressure for a nominally sharp nosetip. The initial amplitude of the second mode instability on the blunt flared cone is estimated to be on the order of 10 -6 times the freestream static pressure. The freestream laser-generated perturbation was positioned upstream of the model in three different configurations: on the centerline, offset from the centerline by 1.5 mm, and offset from the centerline by 3.0 mm. When the perturbation was offset from the centerline of a blunt flared cone, a larger wave packet was generated on the side toward which the perturbation was offset. The offset perturbation did not show as much of an effect on the wave packet on a sharp flared cone as it did on a blunt flared cone.

  9. Full-Scale Spectrum of Boundary-Layer Winds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik

    2016-01-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used...... to estimate the spectrum from about 1 yr−1 to 0.05 min−1; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day−1 to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various...... spectral ranges,including the spectral gap, are revisited. Following the seasonal peak at 1 yr−1, the frequency spectrum f S( f ) increases with f +1 and gradually reaches a peak at about 0.2 day−1. From this peak to about 1 hr−1, the spectrum f S( f ) decreases with frequency with a −2 slope...

  10. Meteodrones - Meteorological Planetary Boundary Layer Measurements by Vertical Drone Soundings

    Science.gov (United States)

    Lauer, Jonas; Fengler, Martin

    2017-04-01

    As of today, there is a gap in the operational data collection of meteorological observations in the Planetary Boundary Layer (PBL). This lack of spatially and temporally reliable knowledge of PBL conditions and energy fluxes with the surface causes shortcomings in the prediction of micro- and mesoscale phenomena such as convection, temperature inversions, local wind systems or fog. The currently used remote sensing instruments share the drawback of only partially covering necessary variables. To fill this data gap, since 2012, Meteomatics has been developing a drone measurement system, the Meteodrone, to measure the parameters wind speed, wind direction, dewpoint, temperature and air pressure of the PBL up to 1.5 km above ground. Both the data quality and the assimilation into a regional numerical weather model could be determined in several pilot studies. Besides, a project in cooperation with the NSSL (National Severe Storms Laboratory) was launched in October 2016 with the goal of capturing pre-convective conditions for improved severe storm forecasts in Oklahoma. Also, related measurements, such as air pollution measurements in the Misox valley to determine LDSP values, were successfully conducted. The main goal of the project is the operational data collection of PBL measurements and the assimilation of this data into regional numerical weather forecast models. Considering the high data quality indicated in all conducted studies as well as the trouble-free execution, this goal is both worthwhile and realistic.

  11. Computational modeling of unsteady loads in tidal boundary layers

    Science.gov (United States)

    Alexander, Spencer R.

    As ocean current turbines move from the design stage into production and installation, a better understanding of oceanic turbulent flows and localized loading is required to more accurately predict turbine performance and durability. In the present study, large eddy simulations (LES) are used to measure the unsteady loads and bending moments that would be experienced by an ocean current turbine placed in a tidal channel. The LES model captures currents due to winds, waves, thermal convection, and tides, thereby providing a high degree of physical realism. Probability density functions, means, and variances of unsteady loads are calculated, and further statistical measures of the turbulent environment are also examined, including vertical profiles of Reynolds stresses, two-point correlations, and velocity structure functions. The simulations show that waves and tidal velocity had the largest impact on the strength of off-axis turbine loads. By contrast, boundary layer stability and wind speeds were shown to have minimal impact on the strength of off- axis turbine loads. It is shown both analytically and using simulation results that either transverse velocity structure functions or two-point transverse velocity spatial correlations are good predictors of unsteady loading in tidal channels.

  12. Subgrid-scale turbulence in shock-boundary layer flows

    Science.gov (United States)

    Jammalamadaka, Avinash; Jaberi, Farhad

    2015-04-01

    Data generated by direct numerical simulation (DNS) for a Mach 2.75 zero-pressure gradient turbulent boundary layer interacting with shocks of different intensities are used for a priori analysis of subgrid-scale (SGS) turbulence and various terms in the compressible filtered Navier-Stokes equations. The numerical method used for DNS is based on a hybrid scheme that uses a non-dissipative central scheme in the shock-free turbulent regions and a robust monotonicity-preserving scheme in the shock regions. The behavior of SGS stresses and their components, namely Leonard, Cross and Reynolds components, is examined in various regions of the flow for different shock intensities and filter widths. The backscatter in various regions of the flow is found to be significant only instantaneously, while the ensemble-averaged statistics indicate no significant backscatter. The budgets for the SGS kinetic energy equation are examined for a better understanding of shock-tubulence interactions at the subgrid level and also with the aim of providing useful information for one-equation LES models. A term-by-term analysis of SGS terms in the filtered total energy equation indicate that while each term in this equation is significant by itself, the net contribution by all of them is relatively small. This observation is consistent with our a posteriori analysis.

  13. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    Science.gov (United States)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-inch diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a nominally-laminar boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a Blasius-like mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  14. An Automatic Algorithm for Segmentation of the Boundaries of Corneal Layers in Optical Coherence Tomography Images using Gaussian Mixture Model.

    Science.gov (United States)

    Jahromi, Mahdi Kazemian; Kafieh, Raheleh; Rabbani, Hossein; Dehnavi, Alireza Mehri; Peyman, Alireza; Hajizadeh, Fedra; Ommani, Mohammadreza

    2014-07-01

    Diagnosis of corneal diseases is possible by measuring and evaluation of corneal thickness in different layers. Thus, the need for precise segmentation of corneal layer boundaries is inevitable. Obviously, manual segmentation is time-consuming and imprecise. In this paper, the Gaussian mixture model (GMM) is used for automatic segmentation of three clinically important corneal boundaries on optical coherence tomography (OCT) images. For this purpose, we apply the GMM method in two consequent steps. In the first step, the GMM is applied on the original image to localize the first and the last boundaries. In the next step, gradient response of a contrast enhanced version of the image is fed into another GMM algorithm to obtain a more clear result around the second boundary. Finally, the first boundary is traced toward down to localize the exact location of the second boundary. We tested the performance of the algorithm on images taken from a Heidelberg OCT imaging system. To evaluate our approach, the automatic boundary results are compared with the boundaries that have been segmented manually by two corneal specialists. The quantitative results show that the proposed method segments the desired boundaries with a great accuracy. Unsigned mean errors between the results of the proposed method and the manual segmentation are 0.332, 0.421, and 0.795 for detection of epithelium, Bowman, and endothelium boundaries, respectively. Unsigned mean errors of the inter-observer between two corneal specialists have also a comparable unsigned value of 0.330, 0.398, and 0.534, respectively.

  15. The effects of the metal temperature and wall thickness on flake graphite layer in ductile iron

    Directory of Open Access Journals (Sweden)

    M. Górny

    2015-01-01

    Full Text Available This article addresses the effect of mold filling and wall thickness on the flake graphite layer in ductile iron. The research was conducted for castings with different wall thickness (3-8 mm and using molding sand with furan resin. A thermal analysis has been performed along the length of the castings to determine the initial temperature of the metal in the mold cavity and the contact time of the liquid metal with the mold. Results demonstrated the strong influence of the temperature decrease of the metal in the mold cavity on the occurrence and the thickness of the flake graphite in the surface layer in ductile iron.

  16. Impact of skin-subcutaneous fat layer thickness on electrical impedance myography measurements: an initial assessment.

    Science.gov (United States)

    Tarulli, A W; Chin, A B; Lee, K S; Rutkove, S B

    2007-11-01

    To determine the impact of skin-subcutaneous fat layer thickness on electrical impedance myography (EIM) measurements. Linear 50 kHz EIM was performed on quadriceps of 62 healthy subjects (mean age 52.2+/-20.6 years) with a wide variety of skin-subcutaneous fat layer (SFL) thicknesses, as measured by ultrasound. Correlations were sought between the main EIM outcome parameter phase (theta) and SFL thickness. A multiple regression analysis was also performed for theta with SFL thickness and age as independent variables. Mean skin-fat thickness was significantly different (p<0.01) between men (0.76+/-0.23 cm) and women (1.43+/-0.51 cm). Neither linear nor quadratic fits produced significant correlations between theta and SFL thickness. A significant but weak positive correlation (r(2)=0.14, p<0.05) was seen between age and SFL thickness in women, but not in men. A strong negative correlation between age and theta was observed for both men (r(2)=0.48, p<0.01) and women (r(2)=0.68, p<0.01). In multiple regression analysis, age but not SFL thickness was found to have a significant association with theta. SFL thickness does not contribute substantially to the phase measured by linear-EIM. EIM data can be interpreted confidently in individuals with varying SFL thickness.

  17. Effect of layer thickness on device response of silicon heavily supersaturated with sulfur

    Directory of Open Access Journals (Sweden)

    David Hutchinson

    2016-05-01

    Full Text Available We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer’s law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.

  18. The influence of porcelain layer thickness on the final shade of ceramic restorations.

    Science.gov (United States)

    Dozić, Alma; Kleverlaan, Cornelis Johannes; Meegdes, Marcel; van der Zel, Jef; Feilzer, Albert Joseph

    2003-12-01

    Ceramic restorations should be made of porcelain layers of different opacity, shade, and thickness in order to provide a natural appearance. By means of CAD/CAM layering technology such as CICERO, it is feasible to produce all-ceramic crowns with porcelain layers of predetermined thickness. However, it is not yet known whether changes in thickness of these porcelain layers within the clinically available space can perceivably influence the overall shade of the restoration. The purpose of this study was to determine, quantitatively, the effect of different thickness ratios of opaque porcelain (OP) and translucent porcelain (TP) layers on the overall shade of all-ceramic specimens. The CIELAB values of 5 assembled specimens, each consisting of 2 or 3 discs (CORE 0.70 mm/OP--0, 0.25, 0.50, 0.75, or 1.00 mm/TP 1.00, 0.75, 0.50, 0.25, or 0 mm) were determined with a spectrophotometer for the Vita shades A1, A2, and A3. Distilled water was used to attain optical contact between the layers. Black or white backgrounds were used to assess the influence of the background on the final shade. Color differences (DeltaE) between layered specimens were determined. Correlation between the thickness ratio and the L*, a*, and b* values was calculated by 2-tailed Spearman correlation analysis. The results indicated that small changes in OP/TP thickness ratio can perceivably influence the final shade of the layered specimens (DeltaE>1). Redness a* and yellowness b* increased with the thickness of OP for all shades. Redness a* (P<.01 for all shades) correlated more strongly with thickness than yellowness b* (P<.01 for A1 and A3; P<.05 for A2). The lightness (L*) was shade dependent. The correlation (r) between OP/TP thickness and L* was 0.975 (P<.01) for shade A1, 0.700 (not statistically significant) for shade A2, and 0.900 (P<.05) for shade A3. Small changes in thickness and shade of opaque and translucent porcelain layers can influence the final shade of the layered porcelain

  19. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes

    NARCIS (Netherlands)

    van Dijk, Hille W.; Verbraak, Frank D.; Kok, Pauline H. B.; Garvin, Mona K.; Sonka, Milan; Lee, Kyungmoo; DeVries, J. Hans; Michels, Robert P. J.; van Velthoven, Mirjam E. J.; Schlingemann, Reinier O.; Abràmoff, Michael D.

    2010-01-01

    PURPOSE. To determine which retinal layers are most affected by diabetes and contribute to thinning of the inner retina and to investigate the relationship between retinal layer thickness (LT) and diabetes duration, diabetic retinopathy (DR) status, age, glycosylated hemoglobin (HbA1c), and the sex

  20. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes

    NARCIS (Netherlands)

    Dijk, Hille W. van; Verbraak, Frank D.; Kok, Pauline H. B.; Garvin, Mona K.; Sonka, Milan; Lee, Kyungmoo; DeVries, J. Hans; Michels, Robert P. J.; Velthoven, Mirjam E. J. van; Schlingemann, Reinier O.; Abramoff, M.D.

    2010-01-01

    Purpose. To determine which retinal layers are most affected by diabetes and contribute to thinning of the inner retina and to investigate the relationship between retinal layer thickness (LT) and diabetes duration, diabetic retinopathy (DR) status, age, glycosylated hemoglobin (HbA1c), and the sex

  1. Thickness and composition of ultrathin SiO2 layers on Si

    NARCIS (Netherlands)

    van der Marel, C; Verheijen, M.A.; Tamminga, Y; Pijnenburg, RHW; Tombros, N; Cubaynes, F

    2004-01-01

    Ultrathin SiO2 layers are of importance for the semiconductor industry. One of the techniques that can be used to determine the chemical composition and thickness of this type of layers is x-ray photoelectron spectroscopy (XPS). As shown by Seah and Spencer [Surf. Interface Anal. 33, 640 (2002)], it

  2. Changes in the relative thickness of individual subcutaneous adipose tissue layers in growing pigs

    DEFF Research Database (Denmark)

    McEvoy, Fintan; Strathe, Anders Bjerring; Madsen, Mads T.

    2007-01-01

    in thickness per unit change in body weight was greatest for L2, followed by L1 and L3. Conclusion: These results demonstrate that subcutaneous adipose layers grow at different rates These results demonstrate that subcutaneous adipose layers grow at different rates relative to each other and to change in body...... weight and indicate that ultrasound can be used to track these differences....

  3. Identification and analysis of boundary layer structures in Tomographic PIV data

    Science.gov (United States)

    Ortiz-Duenas, Cecilia; Saikrishnan, Neelakantan; Longmire, Ellen

    2009-11-01

    Tomographic particle image velocimetry data were acquired in a turbulent boundary layer flow generated in a wind tunnel facility. The friction Reynolds number Reτ was 1160. Measurement volumes of streamwise and spanwise dimension 0.7δ and wall normal thickness 0.07δ, which resolved the range z^+ = 70-150, were analyzed using custom software. Various criteria, including streamwise velocity, two- and three-dimensional swirl, individual vorticity components, and Reynolds shear stress, in combination with region growing and coincidence algorithms, were employed to identify and characterize coherent structures present in instantaneous fields. The results of the present study will be described and also compared with results from earlier experiments by Ganapathisubramani et al., 2003, 2006, that relied on planar PIV data only.

  4. Numerical Investigation of PLIF Gas Seeding for Hypersonic Boundary Layer Flows

    Science.gov (United States)

    Johanson, Craig T.; Danehy, Paul M.

    2012-01-01

    Numerical simulations of gas-seeding strategies required for planar laser-induced fluorescence (PLIF) in a Mach 10 air flow were performed. The work was performed to understand and quantify adverse effects associated with gas seeding and to compare different flow rates and different types of seed gas. The gas was injected through a slot near the leading edge of a flat plate wedge model used in NASA Langley Research Center's 31- Inch Mach 10 Air Tunnel facility. Nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulation results showing the deflection of the velocity field for each of the cases are presented. Streamwise distributions of velocity and concentration boundary layer thicknesses as well as vertical distributions of velocity, temperature, and mass distributions are presented for each of the cases. Relative merits of the different seeding strategies are discussed.

  5. Physical Limitations of Phosphor layer thickness and concentration for White LEDs.

    Science.gov (United States)

    Tan, Cher Ming; Singh, Preetpal; Zhao, Wenyu; Kuo, Hao-Chung

    2018-02-05

    Increasing phosphor layer thickness and concentration can enhance the lumen flux of white LED (W-LED). In this work, we found that increasing the phosphor layer thickness and concentration can increase its temperature, and there is also a maximum thickness and concentration beyond which their increase will not lead to lumen increase, but only temperature increase. Higher thickness and higher concentration also results in warm light instead of White light. The maximum thickness and concentration are found to be limited by the scattering of light rays with higher % decrease of blue light rays than the yellow light rays. The results obtained in this work can also be used to compute the temperature and thermo-mechanical stress distribution of an encapsulated LED, demonstrating its usefulness to the design of encapsulated LED packages. Simulation software like ANSYS and TracePro are used extensively to verify the root cause mechanisms.

  6. pH gradients in the diffusive boundary layer of subarctic macrophytes

    KAUST Repository

    Hendriks, Iris E.

    2017-06-20

    Highly productive macrophytes produce diurnal and seasonal cycles in CO concentrations modulated by metabolic activity, which cause discrepancies between pH in the bulk water and near seaweed blades, especially when entering the diffusion boundary layer (DBL). Calcifying epiphytic organisms living in this environment are therefore exposed to a different pH environment than that of the water column. To evaluate the actual pH environment on blade surfaces, we measured the thickness of the DBL and pH gradients within it for six subarctic macrophytes: Fucus vesiculosus, Ascophyllum nodosum, Ulva lactuca, Zostera marina, Saccharina longicruris, and Agarum clathratum. We measured pH under laboratory conditions at ambient temperatures (2–3 °C) and slow, stable flow over the blade surface at five light intensities (dark, 30, 50, 100 and 200 µmol photons m s). Boundary layer thickness ranged between 511 and 1632 µm, while the maximum difference in pH (∆pH) between the blade surface and the water column ranged between 0.4 ± 0.14 (average ± SE; Zostera) and 1.2 ± 0.13 (average ± SE; Ulva) pH units. These differences in pH are larger than predictions for pH changes in the bulk water by the end of the century. A simple quadratic model best described the relationship between light intensity and maximum ∆pH, pointing at relatively low optimum PAR of between 28 and 139 µmol photons m s to reach maximum ∆pH. Elevated pH at the blade surface may provide chemical “refugia” for calcifying epiphytic organisms, especially during summer at higher latitudes where photoperiods are long.

  7. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  8. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    Science.gov (United States)

    Rosikhin, Ahmad; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-12-01

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical - simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO2 in which the silicon thickness varied at 20 - 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO2 layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  9. Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without SparkJet control

    Directory of Open Access Journals (Sweden)

    Yang Guang

    2016-06-01

    Full Text Available The efficiency and mechanism of an active control device “SparkJet” and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The numerical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were systematically validated against the available wind tunnel particle image velocimetry (PIV measurements of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator “SparkJet” was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resistant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted.

  10. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields.

    Science.gov (United States)

    König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen

    2013-03-19

    To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.

  11. Numerical and experimental investigation of multiple shock wave/turbulent boundary layer interactions in a rectangular duct

    Science.gov (United States)

    Dutton, J. C.; Carroll, B. F.

    1988-01-01

    Multiple shock wave/turbulent boundary layer interactions in constant or nearly constant area supersonic duct flows occur in a variety of devices including scramjet inlets, gas ejectors, and supersonic wind tunnels. For sufficiently high duct exit pressures, a multiple shock wave/turbulent boundary layer interaction or shock train may form in the duct and cause a highly nonuniform, and possibly unsteady, flow at the duct exit. In this report, the mean flow characteristics of two shock train interactions, one with an initial Mach number of 2.5 the other at Mach 1.6, are investigated using spark Schlieren photography, surface oil flow visualization, and mean wall pressure measurements. The Mach 2.5 interaction was oblique and asymmetric in nature. A large separation occurs after the first oblique shock. The top and bottom wall boundary layer separation has been investigated, revealing that the shape of the reattachment lines and surface flow patterns for the two separation regions are quite different. This oblique shock flow pattern occurs in a neurally stable fashion with each type of opposing separation region alternately existing on either the top or bottom wall during the course of a run. A small scale unsteadiness in the shock train location, with movement on the order of a boundary layer thickness, is also observed.

  12. Decreased Retinal Ganglion Cell Layer Thickness in Patients with Type 1 Diabetes

    OpenAIRE

    van Dijk, Hille W.; Verbraak, Frank D.; Kok, Pauline H. B.; Garvin, Mona K.; Sonka, Milan; Lee, Kyungmoo; DeVries, J. Hans; Michels, Robert P. J.; van Velthoven, Mirjam E. J.; Schlingemann, Reinier O.; Abràmoff, Michael D.

    2010-01-01

    Purpose. To determine which retinal layers are most affected by diabetes and contribute to thinning of the inner retina and to investigate the relationship between retinal layer thickness (LT) and diabetes duration, diabetic retinopathy (DR) status, age, glycosylated hemoglobin (HbA1c), and the sex of the individual, in patients with type 1 diabetes who have no or minimal DR. Methods. Mean LT was calculated for the individual retinal layers after automated segmentation of spectral domain-opti...

  13. An Aircraft Investigation of a Convective Boundary Layer Over Lake Michigan

    Science.gov (United States)

    1989-05-01

    convective boundary layer and the capping inversion, as a result of the exchange of air parcels between the inversion and boundary layer. Figure 1.2...une nappe liquids transportant de la chaleur par convection en regime permanent. Ann. Chim. Phys., 23, 62-144. Braham, R.R., and R.D. Kelly, 1982

  14. Stochastic Theory of Turbulence Mixing by Finite Eddies in the Turbulent Boundary Layer

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    Turbulence mixing is treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic hypothesis. The theory simplifies for mixing by exchange (strong-eddies) and is then applied to the boundary layer (involving scaling). This maps boundary layer turbulence onto

  15. On the Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers

    DEFF Research Database (Denmark)

    Baklanov, Alexander A.; Grisogono, Branko; Bornstein, Robert

    2011-01-01

    The gap between our modern understanding of planetary boundary layer physics and its decades-old representations in current operational atmospheric models is widening, which has stimulated this review of the current state of the art and an analysis of the immediate needs in boundary layer theory......, measurements, and modeling....

  16. Quantum boundary layer: a non-uniform density distribution of an ideal gas in thermodynamic equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Sisman, A. [Energy Institute, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)]. E-mail: sismanal@itu.edu.tr; Ozturk, Z.F. [Energy Institute, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey); Firat, C. [Energy Institute, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)

    2007-02-19

    Density distribution of an ideal Maxwellian gas confined in a finite domain is not uniform even in thermodynamic equilibrium. Near to the boundaries, there is a layer in which the density goes to zero. Existence of this boundary layer explains the shape and size dependence of the thermodynamic quantities in nano scale.

  17. Motion of a sphere in an oscillatory boundary layer: an optical ...

    Indian Academy of Sciences (India)

    Shankar Ghosh

    2006-11-12

    Introduction. Motion of a sphere in an oscillatory boundary layer: an optical tweezer based study. Shankar Ghosh. November 12, 2006. Tata Institute of Fundamental Research. Co-workers : S. Bhattacharya and Prerna Sharma. Shankar Ghosh. Motion of a sphere in an oscillatory boundary layer: an optical tweezer based ...

  18. Shooting method for solution of boundary-layer flows with massive blowing

    Science.gov (United States)

    Liu, T.-M.; Nachtsheim, P. R.

    1973-01-01

    A modified, bidirectional shooting method is presented for solving boundary-layer equations under conditions of massive blowing. Unlike the conventional shooting method, which is unstable when the blowing rate increases, the proposed method avoids the unstable direction and is capable of solving complex boundary-layer problems involving mass and energy balance on the surface.

  19. On boundary layer flow of a sisko fluid over a stretching sheet | Khan ...

    African Journals Online (AJOL)

    In this paper, the steady boundary layer flow of a non-Newtonian fluid over a nonlinear stretching sheet is investigated. The Sisko fluid model, which is combination of power-law and Newtonian fluids in which the fluid may exhibit shear thinning/thickening behaviors, is considered. The boundary layer equations are derived ...

  20. Early Warning Signals for Regime Transition in the Stable Boundary Layer : A Model Study

    NARCIS (Netherlands)

    van Hooijdonk, I.G.S.; Moene, A. F.; Scheffer, M.; Clercx, H. J H; van de Wiel, B.J.H.

    2017-01-01

    The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically

  1. Marine boundary layer investigations in the False Bay, supported by optical refraction and scintillation measurements

    NARCIS (Netherlands)

    Jong, A.N. de; Eijk, A.M.J. van; Benoist, K.W.; Gunter, W.H.; Vrahimis, G.; October, F.J.

    2011-01-01

    Knowledge on the marine boundary layer is of importance for the prediction of the optical image quality obtained from long range targets. One property of the boundary layer, that can be studied rather easily by means of optical refraction measurements, is the vertical temperature profile. This

  2. Retinal nerve fiber layer thickness and neuropsychiatric manifestations in systemic lupus erythematosus.

    Science.gov (United States)

    Shulman, S; Shorer, R; Wollman, J; Dotan, G; Paran, D

    2017-11-01

    Background Cognitive impairment is frequent in systemic lupus erythematosus. Atrophy of the corpus callosum and hippocampus have been reported in patients with systemic lupus erythematosus, and diffusion tensor imaging studies have shown impaired white matter integrity, suggesting that white matter damage in systemic lupus erythematosus may underlie the cognitive impairment as well as other neuropsychiatric systemic lupus erythematosus manifestations. Retinal nerve fiber layer thickness, as assessed by optical coherence tomography, has been suggested as a biomarker for white matter damage in neurologic disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Retinal nerve fiber layer thinning may occur early, even in patients with mild clinical symptoms. Aim The objective of this study was to assess the association of retinal nerve fiber layer thickness, as a biomarker of white matter damage in systemic lupus erythematosus patients, with neuropsychiatric systemic lupus erythematosus manifestations, including cognitive impairment. Methods Twenty-one consecutive patients with systemic lupus erythematosus underwent neuropsychological testing using a validated computerized battery of tests as well as the Rey-Auditory verbal learning test. All 21 patients, as well as 11 healthy, age matched controls, underwent optical coherence tomography testing to assess retinal nerve fiber layer thickness. Correlations between retinal nerve fiber layer thickness and results in eight cognitive domains assessed by the computerized battery of tests as well as the Rey-Auditory verbal learning test were assessed in patients with systemic lupus erythematosus, with and without neuropsychiatric systemic lupus erythematosus, and compared to retinal nerve fiber layer thickness in healthy controls. Results No statistically significant correlation was found between retinal nerve fiber layer thickness in patients with systemic lupus erythematosus as compared to healthy

  3. Properties of electrodeposited CoFe/Cu multilayers: The effect of Cu layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Turgut, E-mail: stsahin4@hotmail.com [Deparment of Physics, Science and Literature Faculty, Balikesir University, 10100 Balikesir (Turkey); Kockar, Hakan, E-mail: hkockar@balikesir.edu.tr [Deparment of Physics, Science and Literature Faculty, Balikesir University, 10100 Balikesir (Turkey); Alper, Mursel, E-mail: malper@uludag.edu.tr [Deparment of Physics, Science and Literature Faculty, Uludag University, 16059 Gorukle, Bursa (Turkey)

    2015-01-01

    CoFe/Cu multilayers were potentiostatically electrodeposited on Ti substrates as a function of different non-magnetic (Cu) layer thicknesses, and their characterizations were investigated. The compositional analysis performed by energy dispersive X-ray spectroscopy disclosed that the Cu content in the multilayers increased and the Co content decreased as non-magnetic layer was increased. However, the Fe content was almost stable. The scanning electron microscopy studies showed that the surface morphology of the films is strongly affected by the non-magnetic layer thickness, and X-ray diffraction was used to analyse the structural properties of the multilayers and revealed that the multilayers have face-centred cubic (fcc) structure and their preferred orientations change depending on the Cu layer thickness. In the case of magnetoresistance measurements of the multilayers performed at room temperature, the highest giant magnetoresistance (GMR) values exhibited for the films with the Cu layer thickness (6.0 nm) whereas the lowest GMR magnitudes were observed for the films without Cu layer. Therefore, the variations of the Cu layer thicknesses were observed to have a significant effect on the GMR of multilayers. The differences observed in the magnetotransport properties were attributed to the microstructural changes caused by the Cu layer thickness. - Highlights: • CoFe/Cu multilayers were potentiostatically electrodeposited on Ti substrates. • Microstructural and magnetoresistance properties of CoFe/Cu multilayers were investigated. • All films had a face-centred cubic structure irrespective of the multilayer content. • All samples exhibited GMR and the maximum GMR value was 11%.

  4. HYBRID LAYER THICKNESS IN PRIMARY AND PERMANENT TEETH – A COMPARISON BETWEEN TOTAL ETCH ADHESIVES

    Directory of Open Access Journals (Sweden)

    Natalia Gateva

    2012-05-01

    Full Text Available Purpose: The aim this study is to compare the hybrid layer thickness and its micromorphological characteristics in samples from primary and permanent teeth following application of total etch adhesives.Materials and methods: On intact specimens of 20 primary and 10 permanent teeth was created flat dentin surfaces. The patterns were divided in 6 groups. Two different total etch adhesive systems were used – one tree steps (OptiBond, Kerr and one two steps (Exite, VivaDent. In groups 3, 4, 5 and 6 recommended etching time was used - 15 s, in groups 1 and 2 the etching time was reduced to 7 s. After applying the adhesive, resin composite build-ups were constructed. Thus restored samples are stored in saline solution for 24 hours at temperature 37 C. Then they are subjected to thermal stress in temperature between 5 C to 55 C for 1,500 cycles and to masticatory stress – 150,000 cycles with force 100 N in intervals of 0.4 s. After that the teeth are cut through the middle in medio-distal direction with a diamond disc. SEM observation was done to investigate the thickness of the hybrid layer and the presence of microgaps. Statistical analysis was performed with ANOVA and Tukey׳s tests.Results: SEM observation showed significant differences of the hybrid layer thickness between primary and permanent teeth under equal conditions and after different etching time. Group 6 presented the highest average thickness 8.85 μ and group 1 the lowest average in hybrid layer 3.74 μ.Conclusion: In primary teeth the hybrid layer thickness increases with the increased etching time. The hybrid layer thickness in primary teeth is greater than that of the hybrid layer in permanent teeth under equal conditions. For primary teeth it is more appropriate to reduce the etching time to 7s to obtain a hybrid layer with better quality

  5. The Accretion Disk and the Boundary Layer of the Symbiotic Recurrent Nova T Corona Borealis

    Science.gov (United States)

    Mukai, Koji; Luna, Gerardo; Nelson, Thomas; Sokoloski, Jennifer L.; Lucy, Adrian; Nuñez, Natalia

    2017-08-01

    T Corona Borealis is one of four known Galactic recurrent symbiotic novae, red giant-white dwarf binaries from which multiple thermonuclear runaway (TNR) events, or nova eruptions, have been observed. TNR requires high pressure at the base of the accreted envelope, and a recurrence time of less than a century almost certainly requires both high white dwarf mass and high accretion rate. The eruptions of T CrB were observed in 1866 and 1946; if the 80 year interval is typical, the next eruption would be expected within the next decade or two. Optical observations show that T CrB has entered a super-active state starting in 2015, similar to that seen in 1938, 8 years before the last eruption. In quiescence, T CrB is a known, bright hard X-ray source that has been detected in the Swift/BAT all-sky survey. Here we present the result of our NuSTAR observation of T CrB in 2015, when it had started to brighten but had not yet reached the peak of the super-active state. We were able to fit the spectrum with an absorbed cooling flow model with reflection, with a reflection amplitude of 1.0. We also present recent Swift and XMM-Newton observations during the peak of the super-active state, when T CrB had faded dramatically in the BAT band. T CrB is found to be much more luminous in the UV, while the X-ray spectrum became complex including a soft, optically thick component. We present our interpretation of the overall variability as due to instability of a large disk, and of the X-rays as due to emission from the boundary layer. In our view, the NuSTAR observation was performed when the boundary layer was optically thin, and the reflection was only from the white dwarf surface that subtended 2π steradian of the sky as seen from the emission region. With these assumptions, we infer the white dwarf in the T CrB system to have a mass of ~1.2 Msun. During the very active state, the boundary layer had turned partially optically thick and produced the soft X-ray component, while

  6. Planetary boundary layer and circulation dynamics at Gale Crater, Mars

    Science.gov (United States)

    Fonseca, Ricardo M.; Zorzano-Mier, María-Paz; Martín-Torres, Javier

    2018-03-01

    The Mars implementation of the Planet Weather Research and Forecasting (PlanetWRF) model, MarsWRF, is used here to simulate the atmospheric conditions at Gale Crater for different seasons during a period coincident with the Curiosity rover operations. The model is first evaluated with the existing single-point observations from the Rover Environmental Monitoring Station (REMS), and is then used to provide a larger scale interpretation of these unique measurements as well as to give complementary information where there are gaps in the measurements. The variability of the planetary boundary layer depth may be a driver of the changes in the local dust and trace gas content within the crater. Our results show that the average time when the PBL height is deeper than the crater rim increases and decreases with the same rate and pattern as Curiosity's observations of the line-of-sight of dust within the crater and that the season when maximal (minimal) mixing is produced is Ls 225°-315° (Ls 90°-110°). Thus the diurnal and seasonal variability of the PBL depth seems to be the driver of the changes in the local dust content within the crater. A comparison with the available methane measurements suggests that changes in the PBL depth may also be one of the factors that accounts for the observed variability, with the model results pointing towards a local source to the north of the MSL site. The interaction between regional and local flows at Gale Crater is also investigated assuming that the meridional wind, the dynamically important component of the horizontal wind at Gale, anomalies with respect to the daily mean can be approximated by a sinusoidal function as they typically oscillate between positive (south to north) and negative (north to south) values that correspond to upslope/downslope or downslope/upslope regimes along the crater rim and Mount Sharp slopes and the dichotomy boundary. The smallest magnitudes are found in the northern crater floor in a region that

  7. Computer program to calculate three-dimensional boundary layer flows over wings with wall mass transfer

    Science.gov (United States)

    Mclean, J. D.; Randall, J. L.

    1979-01-01

    A system of computer programs for calculating three dimensional transonic flow over wings, including details of the three dimensional viscous boundary layer flow, was developed. The flow is calculated in two overlapping regions: an outer potential flow region, and a boundary layer region in which the first order, three dimensional boundary layer equations are numerically solved. A consistent matching of the two solutions is achieved iteratively, thus taking into account viscous-inviscid interaction. For the inviscid outer flow calculations, the Jameson-Caughey transonic wing program FLO 27 is used, and the boundary layer calculations are performed by a finite difference boundary layer prediction program. Interface programs provide communication between the two basic flow analysis programs. Computed results are presented for the NASA F8 research wing, both with and without distributed surface suction.

  8. Advances in Unsteady Boundary Layer Transition Research, Part II: Experimental Verification

    Directory of Open Access Journals (Sweden)

    M. T. Schobeiri

    2003-01-01

    Full Text Available This two-part article presents recent advances in boundary layer research into the unsteady boundary layer transition modeling and its validation. This, Part II, deals with the results of an inductive approach based on comprehensive experimental and theoretical studies of unsteady wake flow and unsteady boundary layer flow. The experiments were performed on a curved plate at a zero streamwise pressure gradient under periodic unsteady wake flow, in which the frequency of the periodic unsteady flow was varied. To validate the model, systematic experimental investigations were performed on the suction and pressure surfaces of turbine blades integrated into a high-subsonic cascade test facility, which was designed for unsteady boundary layer investigations. The analysis of the experiment's results and comparison with the model's prediction confirm the validity of the model and its ability to predict accurately the unsteady boundary layer transition.

  9. Current Challenges in Understanding and Forecasting Stable Boundary Layers over Land and Ice

    Directory of Open Access Journals (Sweden)

    Gert-Jan eSteeneveld

    2014-10-01

    Full Text Available Understanding and prediction of the stable atmospheric boundary layer is challenging. Many physical processes come into play in the stable boundary layer, i.e. turbulence, radiation, land surface coupling and heterogeneity, orographic turbulent and gravity wave drag. The development of robust stable boundary-layer parameterizations for weather and climate models is difficult because of the multiplicity of processes and their complex interactions. As a result, these models suffer from biases in key variables, such as the 2-m temperature, boundary-layer depth and wind speed. This short paper briefly summarizes the state-of-the-art of stable boundary layer research, and highlights physical processes that received only limited attention so far, in particular orographically-induced gravity wave drag, longwave radiation divergence, and the land-atmosphere coupling over a snow-covered surface. Finally, a conceptual framework with relevant processes and particularly their interactions is proposed.

  10. Picard iterations of boundary-layer equations. [in singular-perturbation analysis of flightpath optimization problems

    Science.gov (United States)

    Ardema, M. D.; Yang, L.

    1985-01-01

    A method of solving the boundary-layer equations that arise in singular-perturbation analysis of flightpath optimization problems is presented. The method is based on Picard iterations of the integrated form of the equations and does not require iteration to find unknown boundary conditions. As an example, the method is used to develop a solution algorithm for the zero-order boundary-layer equations of the aircraft minimum-time-to-climb problem.

  11. Modelling wall pressure fluctuations under a turbulent boundary layer

    Science.gov (United States)

    Doisy, Yves

    2017-07-01

    The derivation of the wave vector-frequency (w-f) spectrum of wall pressure fluctuations below a turbulent boundary layer developed over a rigid flat plate is re-considered. The Lighthill's equation for pressure fluctuations is derived in a frame of reference fix with respect to the plate, at low Mach numbers, and transformed into the convected frame moving with the flow. To model the source terms of the Lighthill equation, it is assumed that in the inertial range, the turbulence is locally isotropic in the convected frame. The w-f spectrum of isotropic turbulence is obtained from symmetry considerations by extending the isotropy to space time, based on the concept of sweeping velocity. The resulting solution for the pressure w-f spectrum contains a term (the mean shear-turbulence term) which does not fulfill the Kraichnan Philipps theorem, due to the form of the selected turbulent velocity spectrum. The viscous effects are accounted for by a cut-off depending on wall distance; this procedure allows extending the model beyond the inertial range contribution. The w-f pressure spectrum is derived and compared to the experimental low wavenumber data of Farabee and Geib (1991) [8] and Bonness et al. (2010) [5], for which a good agreement is obtained. The derived expression is also compared to Chase theoretical model Chase (1987) [6] and found to agree well in the vicinity of the convective ridge of the subsonic domain and to differ significantly both in supersonic and subsonic low wavenumber limits. The pressure spectrum derived from the model and its scaling are discussed and compared to experimental data and to the empirical model of Goody (2002) [23], which results from the compilation of a large set of experimental data. Very good agreement is obtained, except at vanishing frequencies where it is claimed that the experimental results lack of significance due to the limited size of the experimental facilities. This hypothesis supported by the results obtained from

  12. Comparison of Central Corneal Thickness and Retinal Nerve Fiber Layer Thickness and Ganglion Cell Complex in Patients with Ocular Hypertension

    Directory of Open Access Journals (Sweden)

    Gamze Mumcu Taşlı

    2013-12-01

    Full Text Available Purpose: To evaluate the correlation of retinal nerve fiber layer thickness (RNFLT with ganglion cell complex and central corneal thickness (CCT measurements in patients with ocular hypertension and healthy subjects. Material and Method: Seventy-six eyes of 38 patients with ocular hypertension and 76 eyes of 38 healthy subjects were included in this study. Both groups were stratified by CCT into 579 µm (p0.05. In the control group, there was no significant correlation between CCT and RNFLT (average, superior average, inferior average measurements (p>0.05. There was no significant correlation between CCT and average, superior average, inferior average ganglion cell complex in both groups. Discussion: Ocular hypertension patients with CCT <550 µm may represent patients who have very early undetected glaucoma. This may in part explain the higher risk of these patients for progression to glaucoma. (Turk J Ophthalmol 2013; 43: 385-90

  13. Analysis of Retinal Layer Thicknesses and Their Clinical Correlation in Patients with Traumatic Optic Neuropathy.

    Directory of Open Access Journals (Sweden)

    Ju-Yeun Lee

    Full Text Available The aims of this study were 1 To evaluate retinal nerve fiber layer (fRNFL thickness and ganglion cell layer plus inner plexiform layer (GCIPL thickness at the fovea in eyes affected with traumatic optic neuropathy (TON compared with contralateral normal eyes, 2 to further evaluate these thicknesses within 3 weeks following trauma (defined as "early TON", and 3 to investigate the relationship between these retinal layer thicknesses and visual function in TON eyes. Twenty-nine patients with unilateral TON were included. Horizontal and vertical spectral-domain optical coherence tomography (SD-OCT scans of the fovea were taken in patients with unilateral TON. The main outcome measure was thickness of the entire retina, fRNFL, and GCIPL in eight areas. Thickness of each retinal layer was compared between affected and unaffected eyes. The correlation between the thickness of each retinal layer and visual function parameters, including best corrected visual acuity, color vision, P100 latency, and P100 amplitude in visual evoked potential (VEP, mean deviation (MD and visual field index (VFI in Humphrey visual field analysis in TON eyes was analyzed. Thicknesses of the entire retina, fRNFL, and GCIPL in SD-OCT were significantly thinner (3-36% in all measurement areas of TON eyes compared to those in healthy eyes (all p<0.05. Whereas, only GCIPL in the outer nasal, superior, and inferior areas was significantly thinner (5-10% in the early TON eyes than that in the control eyes (all p<0.01. A significant correlation was detected between retinal layer thicknesses and visual function parameters including color vision, P100 latency and P100 amplitude in VEP, MD, and VFI (particularly P100 latency, MD, and VFI (r = -0.70 to 0.84. Among the retinal layers analyzed in this study, GCIPL (particularly in the superior and inferior areas was most correlated with these five visual function parameters (r = -0.70 to 0.71. Therefore, evaluation of morphological change

  14. Peripapillary retinal nerve fiber layer and choroidal thickness in cirrhosis patients

    Directory of Open Access Journals (Sweden)

    M.Orcun Akdemir

    2015-12-01

    Full Text Available ABSTRACT Purpose: To evaluate the effect of cirrhosis on peripapillary retinal nerve fiber layer and choroidal thickness with enhanced depth imaging optical coherence tomography. Methods: This cross sectional, single center study was undertaken at Bulent Ecevit University Ophthalmology department with the participation of internal medicine, Gastroenterology department. Patients who were treated with the diagnosis of cirrhosis (n=75 were examined in the ophthalmology clinic. Age and sex matched patients (n=50 who were healthy and met the inclusion, exclusion criteria were included in the study. Complete ophthalmological examination included visual acuity with Snellen chart, intraocular pressure measurement with applanation tonometry, biomicroscopy of anterior and posterior segments, gonioscopy, axial length measurement, visual field examination, peripapillary retinal nerve fiber layer, central macular and subfoveal choroidal thickness measurements. Results: The difference between intraocular pressure values was not statistically significant between cirrhosis and control group (p=0.843. However, mean peripapillary retinal nerve fiber layer thickness was significantly thinner in cirrhosis group in all regions (p<0.001 and subfoveal choroidal thickness was significantly thinner in cirrhosis group also (p<0.001. Moreover, central macular thickness of cirrhosis group was significantly thicker than the control group (p=0.001. Conclusion: Peripapillary retinal nerve fiber layer and subfoveal choroidal thickness was significantly thinner in cirrhosis patients.

  15. Effect of surface chemistry and metallic layer thickness on the clustering of metallodielectric Janus spheres.

    Science.gov (United States)

    Shemi, Onajite; Solomon, Michael J

    2014-12-30

    The noncovalent binding of the gold hemispheres of polystyrene/gold colloidal Janus spheres in aqueous solution was found to depend more significantly on the deposition thickness of the particle's gold layer than the chemistry of a covalently affixed self-assembled monolayer on the gold. By means of two-channel confocal laser scanning microscopy, salt-induced clustering was observed and quantified for Janus particles with gold hemispheres functionalized with a thiol self-assembled monolayer that varied in hydrophobicity and chain length. The thickness of the gold layer on the Janus particles was also varied from 10 to 40 nm. The measured cluster distributions were strongly salt dependent, with clustering absent at 1 mM salt but present at salt concentrations in the range of 2-3 mM. For Janus spheres with a 40 nm thick gold hemisphere, the effects of both thiol monolayer hydrophobicity and chain length were modest. Varying the gold layer thickness from 10 to 40 nm, however, had a significant effect on the cluster distribution; the most abundant cluster size shifted from one to seven particles as the gold layer thickness increased from 10 to 40 nm. Thus, the gold layer thickness had an effect stronger than that of either self-assembled monolayer hydrophobicity or chain length on the self-assembly of metallodielectric Janus particles into clusters. The dominant effect of the metallic layer thickness suggests that van der Waals forces between metallic surfaces are more important than hydrophobic interactions in determining the pair potential interactions of metallodielectric Janus particles.

  16. Thin layer thickness measurements by zero group velocity Lamb mode resonances

    Science.gov (United States)

    Cès, Maximin; Clorennec, Dominique; Royer, Daniel; Prada, Claire

    2011-11-01

    Local and non-contact measurements of the thickness of thin layers deposited on a thick plate have been performed by using zero group velocity (ZGV) Lamb modes. It was shown that the shift of the resonance frequency is proportional to the mass loading through a factor which depends on the mechanical properties of the layer and of the substrate. In the experiments, ZGV Lamb modes were generated by a Nd:YAG pulsed laser and the displacement normal to the plate surface was measured by an optical interferometer. Measurements performed at the same point that the generation on the non-coated face of the plate demonstrated that thin gold layers of a few hundred nanometers were detected through a 1.5-mm thick Duralumin plate. The shift of the resonance frequency (1.9 MHz) of the fundamental ZGV mode is proportional to the layer thickness: typically 10 kHz per μm. Taking into account the influence of the temperature, a 240-nm gold layer was measured with a ±4% uncertainty. This thickness has been verified on the coated face with an optical profiling system.

  17. The polarization of a nanoparticle surrounded by a thick electric double layer.

    Science.gov (United States)

    Zhao, Hui; Bau, Haim H

    2009-05-15

    The polarization of a charged, dielectric, nanoparticle enveloped by a thick electric double layer and subjected to a uniform, alternating electric field is studied theoretically with the standard model (the Poisson-Nernst-Planck PNP equations). The dipole coefficient (f) is calculated as a function of the electric field's frequency and the double layer's thickness (lambda(D)). For a weakly charged particle with a small zeta potential zeta, an approximate, analytic expression for the dipole moment coefficient, accurate within O(zeta(2)), is derived. Two processes contribute to the dipole moment: the ion transport in the electric double layer under the action of the electric field and the particle's electrophoretic motion. As the thickness of the electric double layer increases so does the importance of the latter. In contrast to the case of the thin electric double layer, the particle with the thick double layer exhibits only high-frequency dispersion. The theoretical predictions are compared and favorably agree with experimental data, leading one to conclude that the standard, PNP based-model adequately represents the behavior of nanoparticles subject to electric fields.

  18. Analytic Approximate Solutions to the Boundary Layer Flow Equation over a Stretching Wall with Partial Slip at the Boundary.

    Science.gov (United States)

    Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan

    2016-01-01

    Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.

  19. A Note on the bottom shear stress in oscillatory planetary boundary layer flow

    Directory of Open Access Journals (Sweden)

    Dag Myrhaug

    1988-07-01

    Full Text Available A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974 measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.

  20. Influence of water layer thickness on hard tissue ablation with pulsed CO2 laser.

    Science.gov (United States)

    Zhang, Xianzeng; Zhan, Zhenlin; Liu, Haishan; Zhao, Haibin; Xie, Shusen; Ye, Qing

    2012-03-01

    The theory of hard tissue ablation reported for IR lasers is based on a process of thermomechanical interaction, which is explained by the absorption of the radiation in the water component of the tissue. The microexplosion of the water is the cause of tissue fragments being blasted from hard tissue. The aim of this study is to evaluate the influence of the interdependence of water layer thickness and incident radiant exposure on ablation performance. A total of 282 specimens of bovine shank bone were irradiated with a pulse CO(2) laser. Irradiation was carried out in groups: without a water layer and with a static water layer of thickness ranging from 0.2 to 1.2 mm. Each group was subdivided into five subgroups for different radiant exposures ranging from 18 to 84 J/cm(2), respectively. The incision geometry, surface morphology, and microstructure of the cut walls as well as thermal injury were examined as a function of the water layer thickness at different radiant exposures. Our results demonstrate that the additional water layer is actually a mediator of laser-tissue interaction. There exists a critical thickness of water layer for a given radiant exposure, at which the additional water layer plays multiple roles, not only acting as a cleaner to produce a clean cut but also as a coolant to prevent bone heating and reduce thermal injury, but also helping to improve the regularity of the cut shape, smooth the cut surface, and enhance ablation rate and efficiency. The results suggest that desired ablation results depend on optimal selection of both water layer thickness and radiant exposure. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).

  1. Effect of ferrite layer thickness on the magnetic properties of SnO2/Cu-Zn ferrite multilayer

    Science.gov (United States)

    Saipriya, S.; Kurian, Joji; Singh, R.

    2012-06-01

    Multilayers of SnO2/Cu-Zn ferrite were deposited using rf-sputtering. The resonance field and the interlayer coupling decrease with increasing CZF layer thickness. The saturation magnetization initially increases and then saturates with increasing CZF layer thickness. The dead layer thickness and the bulk magnetization values estimated using dead layer model are 8 nm and 56 emu/cc respectively.

  2. Radiation effect on boundary layer flow of an Eyring–Powell fluid over an exponentially shrinking sheet

    Directory of Open Access Journals (Sweden)

    Asmat Ara

    2014-12-01

    Full Text Available The aim of this paper was to examine the steady boundary layer flow of an Eyring–Powell model fluid due to an exponentially shrinking sheet. In addition, the heat transfer process in the presence of thermal radiation is considered. Using usual similarity transformations the governing equations have been transformed into non-linear ordinary differential equations. Homotopy analysis method (HAM is employed for the series solutions. The convergence of the obtained series solutions is carefully analyzed. Numerical values of the temperature gradient are presented and discussed. It is observed that velocity increases with an increase in mass suction S. In addition, for the temperature profiles opposite behavior is observed for increment in suction. Moreover, the thermal boundary layer thickness decreases due to increase in Prandtl number Pr and thermal radiation R.

  3. BOUNDARY LAYER AND AMPLIFIED GRID EFFECTS ON AERODYNAMIC PERFORMANCES OF S809 AIRFOIL FOR HORIZONTAL AXIS WIND TURBINE (HAWT

    Directory of Open Access Journals (Sweden)

    YOUNES EL KHCHINE

    2017-11-01

    Full Text Available The design of rotor blades has a great effect on the aerodynamics performances of horizontal axis wind turbine and its efficiency. This work presents the effects of mesh refinement and boundary layer on aerodynamic performances of wind turbine S809 rotor. Furthermore, the simulation of fluid flow is taken for S809 airfoil wind turbine blade using ANSYS/FLUENT software. The problem is solved by the conservation of mass and momentum equations for unsteady and incompressible flow using advanced SST k-ω turbulence model, in order to predict the effects of mesh refinement and boundary layer on aerodynamics performances. Lift and drag coefficients are the most important parameters in studying the wind turbine performance, these coefficients are calculated for four meshes refinement and different angles of attacks with Reynolds number is 106. The study is applied to S809 airfoil which has 21% thickness, specially designed by NREL for horizontal axis wind turbines.

  4. Aerodynamic optimization of the flat-plate leading edge for experimental studies of laminar and transitional boundary layers

    Science.gov (United States)

    Hanson, Ronald E.; Buckley, Howard P.; Lavoie, Philippe

    2012-10-01

    This work is concerned with the design of a leading edge for a flat-plate model used to study laminar and transitional boundary layers. For this study, the flow over the complete boundary-layer model, including leading edge, flat section, and trailing-edge flap, is modeled. The effect of important geometrical features of the leading edge on the resulting pressure distribution, starting from the well-known symmetric modified super ellipse, is investigated. A minimal pressure gradient on the measurement side of the plate is achieved using an asymmetrical configuration of modified super ellipses, with a thickness ratio of 7/24. An aerodynamic shape optimization is performed to obtain a novel leading edge shape that greatly reduces the length of the non-zero pressure gradient region and the adverse pressure gradient region compared to geometries defined by ellipses. Wind tunnel testing is used to validate the numerical solutions.

  5. A method of detection to the grinding wheel layer thickness based on computer vision

    Science.gov (United States)

    Ji, Yuchen; Fu, Luhua; Yang, Dujuan; Wang, Lei; Liu, Changjie; Wang, Zhong

    2018-01-01

    This paper proposed a method of detection to the grinding wheel layer thickness based on computer vision. A camera is used to capture images of grinding wheel layer on the whole circle. Forward lighting and back lighting are used to enables a clear image to be acquired. Image processing is then executed on the images captured, which consists of image preprocessing, binarization and subpixel subdivision. The aim of binarization is to help the location of a chord and the corresponding ring width. After subpixel subdivision, the thickness of the grinding layer can be calculated finally. Compared with methods usually used to detect grinding wheel wear, method in this paper can directly and quickly get the information of thickness. Also, the eccentric error and the error of pixel equivalent are discussed in this paper.

  6. Effect of electrolyte temperature on the thickness of anodic aluminium oxide (AAO layer

    Directory of Open Access Journals (Sweden)

    P. Michal

    2016-07-01

    Full Text Available Effect of electrolyte temperature on the thickness of resulting oxide layer has been studied. Unlike previous published studies this article was aimed to monitor the relationship between electrolyte temperature and resulting AAO layer thickness in interaction with other input factors affecting during anodizing process under special process condition, i.e. lower concentration of sulphuric acid, oxalic acid, boric acid and sodium chloride. According to Design of Experiments (DOE 80 individual test runs of experiment were carried out. Using statistical analysis and artificial intelligence for evaluation, the computational model predicting the thickness of oxide layer in the range from 5 / μm to 15 / μm with tolerance ± 0,5 / μm was developed.

  7. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

    KAUST Repository

    Cheng, W.

    2015-11-11

    © 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number Reθ based on the momentum boundary-layer thickness θ. Comparison with data from the first case at demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, Reθ, the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger Reθ = 11000 of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.

  8. Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp

    Science.gov (United States)

    Tong, Fulin; Li, Xinliang; Duan, Yanhui; Yu, Changping

    2017-12-01

    Numerical investigations on a supersonic turbulent boundary layer over a longitudinal curved compression ramp are conducted using direct numerical simulation for a free stream Mach number M∞ = 2.9 and Reynolds number Reθ = 2300. The total turning angle is 24°, and the concave curvature radius is 15 times the thickness of the incoming turbulent boundary layer. Under the selected conditions, the shock foot is transferred to a fan of the compression wave because of the weaker adverse pressure gradient. The time-averaged flow-field in the curved ramp is statistically attached where the instantaneous flow-field is close to the intermittent transitory detachment state. Studies on coherent vortex structures have shown that large-scale vortex packets are enhanced significantly when the concave curvature is aligned in the spanwise direction. Consistent with findings of previous experiments, the effect of the concave curvature on the logarithmic region of the mean velocity profiles is found to be small. The intensity of the turbulent fluctuations is amplified across the curved ramp. Based on the analysis of the Reynolds stress anisotropy tensor, the evolutions of the turbulence state in the inner and outer layers of the boundary layer are considerably different. The curvature effect on the transport mechanism of the turbulent kinetic energy is studied using the balance analysis of the contributing terms in the transport equation. Furthermore, the Görtler instability in the curved ramp is quantitatively analyzed using a stability criterion. The instantaneous streamwise vorticity confirms the existence of the Görtler-like structures. These structures are characterized by an unsteady motion. In addition, the dynamic mode decomposition analysis of the instantaneous flow field at the spanwise/wall-normal plane reveals that four dynamical relevant modes with performance loss of 16% provide an optimal low-order representation of the essential characteristics of the numerical

  9. Scalings for unsteady natural convection boundary layers on an evenly heated plate with time-dependent heating flux

    Science.gov (United States)

    Lin, Wenxian; Armfield, S. W.

    2013-12-01

    It is of fundamental significance, especially with regard to application, to fully understand the flow behavior of unsteady natural convection boundary layers on a vertical plate heated by a time-dependent heat flux. Such an understanding is currently scarce. In this paper, the scaling analysis by Lin et al. [Phys. Rev. E 79, 066313 (2009), 10.1103/PhysRevE.79.066313] using a simple three-region structure for the unsteady natural convection boundary layer of a homogeneous Newtonian fluid with Pr >1 under isothermal heating was substantially extended for the case when the heating is due to a time-varying sinusoidal heat flux. A series of scalings was developed for the thermal boundary thickness, the plate temperature, the viscous boundary thicknesses, and the maximum vertical velocity within the boundary layer, which are the major parameters representing the flow behavior, in terms of the governing parameters of the flow, i.e., the Rayleigh number Ra, the Prandtl number Pr, and the dimensionless natural frequency fn of the time-varying sinusoidal heat flux, at the start-up stage, at the transition time scale which represents the ending of the start-up stage and the beginning of the transitional stage of the boundary-layer development, and at the quasi-steady stage. These scalings were validated by comparison to 10 full numerical solutions of the governing equations with Ra, Pr, and fn in the ranges 106≤Ra≤109, 3≤Pr≤100, and 0.01≤fn≤0.1 and were shown in general to provide an accurate description of the flow at different development stages, except for high-Pr runs in which a further, although weak, Pr dependence is present, which cannot be accurately predicted by the current scaling analysis using the simple three-region structure, attributed to the non-boundary-layer nature of the velocity field with high-Pr fluids. Some scalings at the transition time scale and at the quasi-steady stage also produce noticeable deviations from the numerical results when

  10. Designing and adjusting the thickness of polyvinylpyrrolidone waveguide layer on plasmonic nanofilm for humidity sensing

    Science.gov (United States)

    Feng, Zhiqing; Bai, Lan; Guo, Lijiao; Cao, Baosheng; Wu, Jinlei; He, Yangyang

    2017-01-01

    We developed a fast response and high-resolution plasmonic waveguide sensor for sensing environmental humidity by converting the optical signal in the visible light region. The sensor was designed as a layer-on-layer film structure in which the hydrophilic polymer of polyvinylpyrrolidone (PVP) film served as the waveguide layer and was dip-coated onto the plasmonic gold (Au) nanofilm for sensing the environmental humidity. The amount of the absorbed water molecules on the PVP layer could affect the refractive index and thickness of the PVP, leading to a shift of the surface plasmon resonance peak position of Au nanofilm at the different order modes of the waveguide. The theoretic calculations indicated that the optimal thickness of the waveguide layer on the Au nanofilm ranged from 550 to 650 nm. By adjusting the thickness of the PVP layer to 560 nm, the high-resolution optical signals were observed in the visible light region with the humidity shifts ranging from 11% to 85% relative humidity (RH). Our work details a successful attempt to design and prepare the plasmonic waveguide sensor with the lost-cost polymer as the sensing layer for real-time detection of environmental humidity.

  11. Modelling of active layer thickness evolution on James Ross Island in 2006-2015

    Science.gov (United States)

    Hrbáček, Filip; Uxa, Tomáš

    2017-04-01

    Antarctic Peninsula region has been considered as one of the most rapidly warming areas on the Earth. However, the recent studies (Turner et al., 2016; Oliva et al., 2017) showed that significant air temperature cooling began around 2000 and has continued until present days. The climate cooling led to reduction of active layer thickness in several parts of Antarctic Peninsula region during decade 2006-2015, but the information about spatiotemporal variability of active layer thickness across the region remains largely incoherent due to lack of active layer temperature data from deeper profiles. Valuable insights into active layer thickness evolution in Antarctic Peninsula region can be, however, provided by thermal modelling techniques. These have been widely used to study the active layer dynamics in different regions of Arctic since 1990s. By contrast, they have been employed much less in Antarctica. In this study, we present our first results from two equilibrium models, the Stefan and Kudryavtsev equations, that were applied to calculate the annual active layer thickness based on ground temperature data from depth of 5 cm on one site on James Ross Island, Eastern Antarctic Peninsula, in period 2006/07 to 2014/15. Study site (Abernethy Flats) is located in the central part of the major ice-free area of James Ross Island called Ulu Peninsula. Monitoring of air temperature 2 m above ground surface and ground temperature in 50 cm profile began on January 2006. The profile was extended under the permafrost table down to 75 cm in February 2012, which allowed precise determination of active layer thickness, defined as a depth of 0°C isotherm, in period 2012 to 2015. The active layer thickness in the entire observation period was reconstructed using the Stefan and Kudryavtsev models, which were driven by ground temperature data from depth of 5 cm and physical parameters of the ground obtained by laboratory analyses (moisture content and bulk density) and calculations

  12. Boundary layer photochemistry during a total solar eclipse

    Directory of Open Access Journals (Sweden)

    Peter Fabian

    2001-05-01

    Full Text Available Simultaneous measurements of radiation, photolysis frequencies, O3, CO, OH, PAN and NOx species were carried out in the boundary layer, along with pertinent meteorological parameters, under total solar eclipse conditions. This experiment performed at about 34 solar zenith angle and noontime conditions thus provided a case study about the interactions between radiation and photochemistry under fast ''day-night'' and ''night-day'' transitions, at high solar elevation. The results reveal a close correlation of photolysis frequencies jO(1D and jNO2with the UV radiation flux. All three parameters show, due to the decreasing fraction of direct radiation at shorter wavelengths, much weaker cloud shading effects than global solar radiation. NO and OH concentrations decrease to essentially zero during totality. Subsequently, NO and OH concentrations increased almost symmetrically to their decrease preceding totality. The NO/NO2 ratio was proportional to jNO2over 30 min before and after totality indicating that the partitioning of NOx species is determined by jNO2. Simple box model simulations show the effect of reduced solar radiation on the photochemical production of O3 and PAN. WÄhrend der totalen Sonnenfinsternis am 11. August 1999 wurden simultane und kontinuierliche Messungen von O3, CO, OH, PAN and NOx, Strahlung, Photolysefrequenzen und relevanten meteorologischen Parametern durchgefÜhrt. Dieses Experiment, durchgefÜhrt etwa am Mittag, bei 34 Zenithwinkel der Sonne, ermöglichte die Untersuchung der Interaktion von Strahlung und Photochemie fÜr schnelle Tag-Nacht und Nacht-Tag-ÜbergÄnge bei hohem Sonnenstand. Die Ergebnisse zeigen eine enge Korrelation der Photolysefrequenzen jO(1D und jNO2 mit dem UV-Strahlungsfluss. Alle drei Parameter zeigen, wegen des abnehmenden Anteils direkter Sonnenstrahlung bei kurzen WellenlÄngen, erheblich geringere AbschwÄchung durch Wolken als die Globalstrahlung. NO und OH gehen wÄhrend der

  13. Inviscid/Boundary-Layer Aeroheating Approach for Integrated Vehicle Design

    Science.gov (United States)

    Lee, Esther; Wurster, Kathryn E.

    2017-01-01

    A typical entry vehicle design depends on the synthesis of many essential subsystems, including thermal protection system (TPS), structures, payload, avionics, and propulsion, among others. The ability to incorporate aerothermodynamic considerations and TPS design into the early design phase is crucial, as both are closely coupled to the vehicle's aerodynamics, shape and mass. In the preliminary design stage, reasonably accurate results with rapid turn-representative entry envelope was explored. Initial results suggest that for Mach numbers ranging from 9-20, a few inviscid solutions could reasonably sup- port surface heating predictions at Mach numbers variation of +/-2, altitudes variation of +/-10 to 20 kft, and angle-of-attack variation of +/- 5. Agreement with Navier-Stokes solutions was generally found to be within 10-15% for Mach number and altitude, and 20% for angle of attack. A smaller angle-of-attack increment than the 5 deg around times for parametric studies and quickly evolving configurations are necessary to steer design decisions. This investigation considers the use of an unstructured 3D inviscid code in conjunction with an integral boundary-layer method; the former providing the flow field solution and the latter the surface heating. Sensitivity studies for Mach number, angle of attack, and altitude, examine the feasibility of using this approach to populate a representative entry flight envelope based on a limited set of inviscid solutions. Each inviscid solution is used to generate surface heating over the nearby trajectory space. A subset of a considered in this study is recommended. Results of the angle-of-attack sensitivity studies show that smaller increments may be needed for better heating predictions. The approach is well suited for application to conceptual multidisciplinary design and analysis studies where transient aeroheating environments are critical for vehicle TPS and thermal design. Concurrent prediction of aeroheating

  14. Spatial characteristics of secondary flow in a turbulent boundary layer over longitudinal surface roughness

    Science.gov (United States)

    Hwang, Hyeon Gyu; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulations of turbulent boundary layers (TBLs) over spanwise heterogeneous surface roughness are performed to investigate the characteristics of secondary flow. The longitudinal surface roughness, which features lateral change in bed elevation, is described by immersed boundary method. The Reynolds number based on the momentum thickness is varied in the range of Reθ = 300-900. As the TBLs over the roughness elements spatially develop in the streamwise direction, a secondary flow emerges in a form of counter-rotating vortex pair. As the spanwise spacing between the roughness elements and roughness width vary, it is shown that the size of the secondary flow is determined by the valley width between the roughness elements. In addition, the strength of the secondary flow is mostly affected by the spanwise distance between the cores of the secondary flow. Analysis of the Reynolds-averaged turbulent kinetic energy transport equation reveals that the energy redistribution terms in the TBLs over-the ridge type roughness play an important role to derive low-momentum pathways with upward motion over the roughness crest, contrary to the previous observation with the strip-type roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  15. Partially coherent light propagation in stratified media containing an optically thick anisotropic layer

    Science.gov (United States)

    Nichols, Shane M.; Arteaga, Oriol; Martin, Alexander T.; Kahr, Bart

    2017-11-01

    Methods used to compute the reflection or transmission Mueller matrix of stratified media assume light is a monochromatic plane wave, but measurements with spectroscopic devices invariably involve a finite distribution of wavelengths and incidence angles. Consequently, there can be stark disagreement between calculation and experiment, especially when the specimen includes a thick non-opaque layer. To accurately model specimens with a thick layer, it is sometimes necessary to explicitly include the coherence of the light in models. For anisotropic and/or optically active media, we distinguish between five regimes of coherence. Algebraic expressions valid for all regimes are given. Experimental data spanning multiple regimes is modeled.

  16. Fracture Toughness of Thick Boride Layers Estimated by the Cross-Sectioned Scratch Test

    Science.gov (United States)

    Campos-Silva, I.; Flores-Jiménez, M.; Bravo-Bárcenas, D.; Rodríguez-Castro, G.; Martínez-Trinidad, J.; Meneses-Amador, A.

    2018-01-01

    New results about the fracture toughness (K c) of thick boride layers estimated by the cross-sectioned scratch test are presented in this study. The FeB-Fe2B layers developed at the surface of borided AISI 1018 and AISI 1045 steels and the Fe2B layer formed on the borided AISI 1045 steel exposed to a diffusion annealing process (DAP) were used for this purpose. The cross-sectioned scratch tests were performed with a Vickers diamond stylus drawn across the thick boride layer under a constant load to produce a half-cone-shaped fracture near to the top surface of the borided steels. The height of the half-cone-shaped fracture as a function of the cross-sectioned scratch loads was used to determine the fracture toughness of the FeB and Fe2B layers. The results showed a fracture resistance of ˜2.8 {MPa}√ m for the FeB layer formed at the surface of borided AISI 1045 steel. Likewise, the effect of the DAP on the surface of the borided AISI 1045 steel promoted the formation of an exclusively Fe2B layer, with an increase in the fracture toughness of the whole boride layer around 5 {MPa}√ m . Finally, the principle of the technique can be used to minimize the influence of the anisotropic properties on the fracture toughness along the depth of boride layers.

  17. Advances in Unsteady Boundary Layer Transition Research, Part I: Theory and Modeling

    Directory of Open Access Journals (Sweden)

    M. T. Schobeiri

    2003-01-01

    Full Text Available This two-part article presents recent advances in boundary layer research that deal with the unsteady boundary layer transition modeling and its validation. A new unsteady boundary layer transition model was developed based on a universal unsteady intermittency function. It accounts for the effects of periodic unsteady wake flow on the boundary layer transition. To establish the transition model, an inductive approach was implemented; the approach was based on the results of comprehensive experimental and theoretical studies of unsteady wake flow and unsteady boundary layer flow. The experiments were performed on a curved plate at a zero streamwise pressure gradient under a periodic unsteady wake flow, where the frequency of the periodic unsteady flow was varied. To validate the model, systematic experimental investigations were performed on the suction and pressure surfaces of turbine blades integrated into a high-subsonic cascade test facility, which was designed for unsteady boundary layer investigations. The analysis of the experiment's results and comparison with the model's prediction confirm the validity of the model and its ability to predict accurately the unsteady boundary layer transition.

  18. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    Science.gov (United States)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  19. Surface boundary layer evolution and near-inertial wind power input

    Science.gov (United States)

    Kilbourne, B. F.; Girton, J. B.

    2015-11-01

    Deep weakly stratified surface layers in the Southern Ocean complicate the identification of the mixed-layer base, which is critical in estimating the wind power input through the ocean surface. Typically used mixed-layer depth criteria often ignore weak stratification, which traps momentum near the surface and significantly enhances the near-inertial-band wind power input. The thickness of the active mixing-layer, the turbulent layer in contact with wind stress, is needed to accurately estimate wind power input. A fine-density-threshold criterion of 0.005 kg m-3, just above the noise floor of most autonomous instruments, was applied to observed profiles of potential density to estimate the thickness of the actively mixing-layer. Vertical shear, Langmuir cells, and buoyant convection are investigated as possible mechanisms maintaining turbulence within the mixing-layer. Over 90% of the observed variance of the mixing-layer thickness is explained by either shear-driven entrainment, which is simulated using the Price-Weller-Pinkel model, or by a parameterization of downwelling plumes due to Langmuir cell convergence. In general, surface buoyancy fluxes are too weak to drive mixed-layer turbulence. Comparison of National Oceanographic Data Center (NODC) climatological mixed-layer thickness to those determined using the 0.005 kg m-3 density threshold suggests a multiplicative seasonally varying correction of 1.5-3.5 should be applied to wind work estimates made using the NODC climatological mixed-layer thickness in the Southern Ocean.

  20. Electrical resistivity of assembled transparent inorganic oxide nanoparticle thin layers: influence of silica, insulating impurities, and surfactant layer thickness.

    Science.gov (United States)

    Bubenhofer, Stephanie B; Schumacher, Christoph M; Koehler, Fabian M; Luechinger, Norman A; Sotiriou, Georgios A; Grass, Robert N; Stark, Wendelin J

    2012-05-01

    The electrical properties of transparent, conductive layers prepared from nanoparticle dispersions of doped oxides are highly sensitive to impurities. Production of cost-effective thin conducting films for consumer electronics often employs wet processing such as spin and/or dip coating of surfactant-stabilized nanoparticle dispersions. This inherently results in entrainment of organic and inorganic impurities into the conducting layer leading to largely varying electrical conductivity. Therefore, this study provides a systematic investigation on the effect of insulating surfactants, small organic molecules and silica in terms of pressure dependent electrical resistivity as a result of different core/shell structures (layer thickness). Application of high temperature flame synthesis gives access to antimony-doped tin oxide (ATO) nanoparticles with high purity. This well-defined starting material was then subjected to representative film preparation processes using organic additives. In addition ATO nanoparticles were prepared with a homogeneous inorganic silica layer (silica layer thickness from 0.7 to 2 nm). Testing both organic and inorganic shell materials for the electronic transport through the nanoparticle composite allowed a systematic study on the influence of surface adsorbates (e.g., organic, insulating materials on the conducting nanoparticle's surface) in comparison to well-known insulators such as silica. Insulating impurities or shells revealed a dominant influence of a tunneling effect on the overall layer resistance. Mechanical relaxation phenomena were found for 2 nm insulating shells for both large polymer surfactants and (inorganic) SiO(2) shells.

  1. The Effect of Pseudoexfoliation Syndrome on the Retinal Nerve Fiber Layer and Choroid Thickness.

    Science.gov (United States)

    Demircan, Süleyman; Yılmaz, Uğur; Küçük, Erkut; Ulusoy, M Döndü; Ataş, Mustafa; Gülhan, Ahmet; Zararsız, Gökmen

    2017-01-01

    To investigate thickness of the retinal nerve fiber layer (RNFL) and choroid thickness in patients with pseudoexfoliation syndrome (PEX) and pseudoexfoliation glaucoma (PXG) compared to healthy volunteers. This cross-sectional, prospective study included 43 patients with PXG, 45 patients with PEX syndrome, and 48 healthy volunteers. The RNFL and macular thickness were analyzed with standard OCT protocol while choroidal thickness was analyzed with EDI protocol in all subjects. The RNFL thickness was higher in the PEX and control groups compared to the PXG group (pthickness was significantly higher in the control group compared to the PXG and PEX groups (p<0.05). No significant difference was detected between the both groups. PEX might weaken choroid circulation by accumulating in choroid vessels. The thinner choroid in the PXG group suggests that ischemia affects the duration of PEX and has a role in the development of glaucoma.

  2. Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data

    Science.gov (United States)

    Caicedo, Vanessa; Rappenglück, Bernhard; Lefer, Barry; Morris, Gary; Toledo, Daniel; Delgado, Ruben

    2017-04-01

    Three algorithms for estimating the boundary layer heights are assessed: an aerosol gradient method, a cluster analysis method, and a Haar wavelet method. Over 40 daytime clear-sky radiosonde profiles are used to compare aerosol backscatter boundary layer heights retrieved by a Vaisala CL31 ceilometer. Overall good agreement between radiosonde- and aerosol-derived boundary layer heights was found for all methods. The cluster method was found to be particularly sensitive to noise in ceilometer signals and lofted aerosol layers (48.8 % of comparisons), while the gradient method showed limitations in low-aerosol-backscatter conditions. The Haar wavelet method was demonstrated to be the most robust, only showing limitations in 22.5 % of all observations. Occasional differences between thermodynamically and aerosol-derived boundary layer heights were observed.

  3. Geologic Basin Boundaries (Basins_GHGRP) GIS Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a coverage shapefile of geologic basin boundaries which are used by EPA's Greenhouse Gas Reporting Program. For onshore production, the "facility" includes...

  4. Decomposition Methods For a Piv Data Analysis with Application to a Boundary Layer Separation Dynamics

    Directory of Open Access Journals (Sweden)

    Václav URUBA

    2010-12-01

    Full Text Available Separation of the turbulent boundary layer (BL on a flat plate under adverse pressure gradient was studied experimentally using Time-Resolved PIV technique. The results of spatio-temporal analysis of flow-field in the separation zone are presented. For this purpose, the POD (Proper Orthogonal Decomposition and its extension BOD (Bi-Orthogonal Decomposition techniques are applied as well as dynamical approach based on POPs (Principal Oscillation Patterns method. The study contributes to understanding physical mechanisms of a boundary layer separation process. The acquired information could be used to improve strategies of a boundary layer separation control.

  5. Integral method for the calculation of three-dimensional, laminar and turbulent boundary layers

    Science.gov (United States)

    Stock, H. W.

    1978-01-01

    The method for turbulent flows is a further development of an existing method; profile families with two parameters and a lag entrainment method replace the simple entrainment method and power profiles with one parameter. The method for laminar flows is a new development. Moment of momentum equations were used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings were calculated. The influence of wing tapering on the boundary layer development was shown. The turbulent boundary layer for a revolution ellipsoid is calculated for 0 deg and 10 deg incidence angles.

  6. Marine boundary layer wind structure over the Bay of Bengal during MONEX79

    Energy Technology Data Exchange (ETDEWEB)

    SethuRaman, S.

    1981-01-01

    A marine boundary layer experiment was conducted at Digha, West Bengal, India, to determine the role of the atmospheric boundary layer on the Bay of Bengal cyclogenesis. The boundary layer experiment at Digha consisted of three main components: (1) a 10 m micrometeorological tower at the beach with instruments to observe turbulent fluxes of heat and momentum over the ocean; (2) a weather station that continuously recorded mean parameters; and (3) pilot balloon observations to a height of about 1000 m. The purpose of this paper is to discuss some of the preliminary results obtained through the analysis of the data.

  7. Boundary layer and fundamental problems of hydrodynamics (compatibility of a logarithmic velocity profile in a turbulent boundary layer with the experience values)

    Science.gov (United States)

    Zaryankin, A. E.

    2017-11-01

    The compatibility of the semiempirical turbulence theory of L. Prandtl with the actual flow pattern in a turbulent boundary layer is considered in this article, and the final calculation results of the boundary layer is analyzed based on the mentioned theory. It shows that accepted additional conditions and relationships, which integrate the differential equation of L. Prandtl, associating the turbulent stresses in the boundary layer with the transverse velocity gradient, are fulfilled only in the near-wall region where the mentioned equation loses meaning and are inconsistent with the physical meaning on the main part of integration. It is noted that an introduced concept about the presence of a laminar sublayer between the wall and the turbulent boundary layer is the way of making of a physical meaning to the logarithmic velocity profile, and can be defined as adjustment of the actual flow to the formula that is inconsistent with the actual boundary conditions. It shows that coincidence of the experimental data with the actual logarithmic profile is obtained as a result of the use of not particular physical value, as an argument, but function of this value.

  8. Survey of Nerve Fiber Layer Thickness in Anisometropic and Strabismic Amblyopia.

    Science.gov (United States)

    Soltani Moghaddam, Reza; Medghalchi, Abdolreza; Alizadeh, Yousef

    2017-01-01

    . To investigate the effect of anisometropic and strabismic amblyopia on the nerve fiber layer thickness. This cross-sectional study was done on 54 amblyopic subjects, equally in both strabismic and anisometropic groups. The thickness otonerve fiber layer measured in superior, inferior, nasal, temporal quadrants and as a whole in both eyes of both groups. The means of thickness were compared in amblyopic and sound eyes. In strabismus group, the average nerve fiber layer thickness of the sound eye , in superior, inferior, nasal and temporal quadrants and as a whole were 113.23±14, 117.37±25, 68.96±6, 69.55±14 and 93.40±8 microns respectively. In amblyopic eyes of the same group, these measurements were 103.11±18, 67.74±11, and 69.59±16 and 89.59±12 microns in superior, inferior, nasal, temporal quadrants and as whole respectively. In anisometropic groups, the sound eye measurements were as 130.96±22, 129.07±29, 80.62±12, and 83.88±20 and 107.7±13 microns in superior, inferior, nasal and temporal quadrants and as a whole orderly. In amblyopic eyes of this group the mean thicknesses were 115.63±29, 133.15±25, 78.8±15, 80.2±16 and 109.17±21 microns in superior, inferior, nasal, temporal quadrants and as a whole respectively. Statistically, there were no significant differences between amblyopic and sound eyes (P>0.5). Our study did not support any significant change in a nerve fiber layer thickness of amblyopic patients; however, decreased thickness in superior and nasal quadrants of strabismic amblyopia and except inferior quadrant and as a whole. These measurements may be a clue for management and prognosis of amblyopia in old age.

  9. Survey of Nerve Fiber Layer Thickness in Anisometropic and Strabismic Amblyopia

    Directory of Open Access Journals (Sweden)

    Reza Soltani Moghaddam

    2017-02-01

    Full Text Available . To investigate the effect of anisometropic and strabismic amblyopia on the nerve fiber layer thickness. This cross-sectional study was done on 54 amblyopic subjects, equally in both strabismic and anisometropic groups. The thickness otonerve fiber layer measured in superior, inferior, nasal, temporal quadrants and as a whole in both eyes of both groups. The means of thickness were compared in amblyopic and sound eyes. In strabismus group, the average nerve fiber layer thickness of the sound eye , in superior, inferior, nasal and temporal quadrants and as a whole were 113.23±14, 117.37±25, 68.96±6, 69.55±14 and 93.40±8 microns respectively. In amblyopic eyes of the same group, these measurements were 103.11±18, 67.74±11, and 69.59±16 and 89.59±12 microns in superior, inferior, nasal, temporal quadrants and as whole respectively. In anisometropic groups, the sound eye measurements were as 130.96±22, 129.07±29, 80.62±12, and 83.88±20 and 107.7±13 microns in superior, inferior, nasal and temporal quadrants and as a whole orderly. In amblyopic eyes of this group the mean thicknesses were 115.63±29, 133.15±25, 78.8±15, 80.2±16 and 109.17±21 microns in superior, inferior, nasal, temporal quadrants and as a whole respectively. Statistically, there were no significant differences between amblyopic and sound eyes (P>0.5. Our study did not support any significant change in a nerve fiber layer thickness of amblyopic patients; however, decreased thickness in superior and nasal quadrants of strabismic amblyopia and except inferior quadrant and as a whole. These measurements may be a clue for management and prognosis of amblyopia in old age.

  10. Benchmark Solution for Free Vibration of Moderately Thick Functionally Graded Sandwich Sector Plates on Two-Parameter Elastic Foundation with General Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Haichao Li

    2017-01-01

    Full Text Available The free vibration analysis of moderately thick functionally graded (FG sector plates resting on two-parameter elastic foundation with general boundary conditions is presented via Fourier-Ritz method, which is composed of the modified Fourier series approach and the Ritz procedure. The material properties are assumed to vary continuously along the thickness according to the power-law distribution. The bilayered and single-layered functionally graded sector plates are obtained as the special cases of sandwich plates. The first-order shear deformation theory (FSDT is adopted to construct the theoretical model. Under current framework, regardless of boundary conditions, each displacement and each rotation of plates is represented by the modified Fourier series consisting of a standard Fourier cosine series and several closed-form auxiliary functions introduced to ensure and accelerate the convergence of the series representation. Then, the accurate solutions are obtained by using the Ritz procedure based on the energy function of sector plates. The present method shows good convergence, reliability, and accuracy by comprehensive investigation with some selected classical boundary conditions. Numerous new vibration results for moderately thick FG sandwich sector plates are provided. The effects of the elastic restraint parameters and so forth on free vibration characteristic of sector plates are presented.

  11. Retinal ganglion cell/inner plexiform layer thickness in patients with Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Maja Živković

    2017-06-01

    Full Text Available Introduction: The aim of the paper was to analyze the changes in the macular ganglion cell layer and inner plexiform layer (GCL-IPL thickness in patients with Parkinson’s disease. Material and methods : The study enrolled 46 patients with established diagnosis of Parkinson’s disease and 46 healthy subjects. Both groups were age- and gender-matched. An OCT protocol, namely standardized Ganglion Cell Analysis algorithm was used to measure the thickness of the macular GCL-IPL layer. The average, minimum, and six sectoral (superotemporal, superior, superonasal, inferonasal, inferior, inferotemporal GCL-IPL thicknesses were measured from the elliptical annulus centered on the fovea. Results : The mean value of the clinical severity of Parkinson’s disease was between 2 and 3, according to the Hoehn and Yahr scale. Statistically significant thinning of the GCL-IPL layer was registered in average and minimum GCL-IPL thickness, as well as in the sectoral layer thicknesses in patients with Parkinson’s disease in comparison to the controls. There was no correlation between structural changes in the retina and disease duration or severity. A statistically significant difference in thickness between the different stages of the disease was registered only in the inferior sector. Conclusions : Parkinson’s disease is accompanied by thinning of the GCL-IPL complex of macula even in the earliest stages. This may indicate a possible retinal dopaminergic neurodegeneration. There is no correlation between duration or severity of Parkinson’s disease with thinning of the GCL-IPL complex.

  12. A numerical solution of a singular boundary value problem arising in boundary layer theory.

    Science.gov (United States)

    Hu, Jiancheng

    2016-01-01

    In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.

  13. Influence of thickness and position of the individual layer on the permeability of the stratified soil

    Directory of Open Access Journals (Sweden)

    Priyank Gupta

    2016-09-01

    Full Text Available Flow of fluid through a porous media is a very important phenomenon that occurs largely in many physical situations such as flow in an aquifer, flow through filters for water purification in sewage treatment plant, flow in packed bed chemical reactor, etc. Permeability is a characteristic parameter for a porous media and it tells about the ease with which water flows through the interconnected voids. Since it directly influences the rate of flow of water in a soil, it has a decisive effect on problems involving excavations of open cuts in sand below water table, seepage through embankment dams, sub-grade drainage, rate of consolidation of compressible soil, etc. In a soil profile, each layer may have its own properties which may or may not be same as compared to the layer below or above it. The relative position and the thickness of a soil layer of a stratified soil system are some of the important parameters which affect the permeability of the composite soil layer. In the present study the experiments have, therefore, been conducted to investigate the influence of position and thickness of the individual layer on the permeability of the composite soil. It has been found that thickness of end layer has significant effect on the permeability of stratified soils.

  14. Space-time measurements in a shock wave/turbulent boundary layer interaction

    Science.gov (United States)

    Schreyer, Anne-Marie; Dupont, Pierre

    2014-11-01

    We study a reflected shock interaction with separation at Mach 2, contributing to a better understanding of rocket engine nozzle flows. The flow field contains a wide range of characteristic frequencies between O (100) Hz for the oscillation of the reflected shock and O (100) kHz for the turbulent microscales. To explain the origin and interdependence of the physical phenomena in the interaction, we need access to the spatio-temporal links. We thus require a measurement technique allowing the resolution of the entire frequency range while also providing sufficient spatial resolution and a large field of view. Our newly developed Dual-PIV system satisfies these requirements. First measurements with this system in an interaction flow field were performed in the continuous hypo-turbulent wind-tunnel at IUSTI at a momentum thickness Reynolds number of Reθ = 5024 and a deflection angle of θ = 8 .75° . We present a detailed characterization of the flow field including turbulence measurements. From measurements at a range of temporal delays, we determined autocorrelations at crucial points in the flow field (incoming boundary layer, mixing layer, relaxation zone). From these, spatio-temporal information like the integral scales and the convection velocity are deduced. This work received financial support by the CNES within the research program ATAC and also the ANR within the program DECOMOS. This support is gratefully acknowledged.

  15. Ganglion Cell-Inner Plexiform Layer Thickness in Different Glaucoma Stages Measured by Optical Coherence Tomography.

    Science.gov (United States)

    Zivkovic, Maja; Dayanir, Volkan; Zlatanovic, Marko; Zlatanovic, Gordana; Jaksic, Vesna; Jovanovic, Predrag; Radenkovic, Marija; Djordjevic-Jocic, Jasmina; Stankovic-Babic, Gordana; Jovanovic, Svetlana

    2017-09-07

    To compare ganglion cell (GCL) and inner plexiform layer (IPL) thickness in patients at different stages of primary open-angle glaucoma (POAG), determine their sensitivity and specificity values, and correlate thickness values with mean deviations (MD). This prospective, cross- sectional study was conducted in a group of patients with confirmed POAG who were compared to an age- and gender-matched control group. Glaucomatous damage was classified according to the Hodapp-Parrish-Anderson scale: glaucoma stage 1 (early), glaucoma stage 2 (moderate), and glaucoma stage 3 (severe). The average, minimum, and all 6 sectoral (superotemporal, superior, superonasal, inferonasal, inferior, and inferotemporal) GCL + IPL thicknesses were measured and compared between groups. The average GCL + IPL thickness of 154 eyes of 93 patients in glaucoma stages 1, 2, 3, and 94 eyes of 47 persons in the control group were 76.79 ± 8.05, 65.90 ± 7.92, 57.38 ± 10.00, and 86.01 ± 3.68 μm, respectively. There were statistically significant differences in the average, minimum, and all 6 sectoral GCL + IPL values among the groups. The areas under the receiver operating characteristic curve for average and minimum GCL + IPL thickness values were 0.93 and 0.94, respectively, sensitivity 91.5 and 88.3%, and specificity 98.9 and 100%, respectively. Both thickness values showed significant correlations with MD. Each micrometer decrease in the average GCL + IPL thickness was associated with a 0.54-dB loss in MD. GCL + IPL layer thickness is a highly specific and sensitive parameter in differentiating glaucomatous from healthy eyes showing progressive damage as glaucoma worsens. Loss of this layer is highly correlated with overall loss of visual field sensitivity. © 2017 S. Karger AG, Basel.

  16. Effect of TiO 2 particle size and layer thickness on mesoscopic perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Geon; Kim, Min-cheol; Kim, Byeong Jo; Kim, Dong Hoe; Lee, Sang Myeong; Choi, Mansoo; Lee, Sangwook; Jung, Hyun Suk

    2017-11-01

    Mesoporous TiO2 (mp-TiO2) layers are commonly used as electron transport layers in perovskite solar cells, which help to extract electrons from the perovskite light-absorbing layer and transport them to the electrodes. We investigated the effects of the layer thickness of mp-TiO2 and particle size of TiO2 on photovoltaic properties, in terms of the surface area of the mp-layer and the interfacial areas of the TiO2 nanoparticles in the mp-layer. Various mp-TiO2 layers with thicknesses of 150, 250, and 400 nm and particle sizes of 25 nm and 41 nm were prepared to compare the photovoltaic properties of such layer-containing perovskite solar cells. Time-resolved photoluminescence decay and impedance studies showed that interfacial resistance as well as perovskite-to-TiO2 charge injection are important factors affecting photovoltaic performance. The deterioration of the photovoltaic parameters with increasing TiO2/TiO2 interfacial area also confirms that the interfacial series resistance that arises from these connections should be reduced to enhance the performance of mesoscopic perovskite solar cells.

  17. Performance of High Layer Thickness in Selective Laser Melting of Ti6Al4V.

    Science.gov (United States)

    Shi, Xuezhi; Ma, Shuyuan; Liu, Changmeng; Chen, Cheng; Wu, Qianru; Chen, Xianping; Lu, Jiping

    2016-12-01

    To increase building rate and save cost, the selective laser melting (SLM) of Ti6Al4V with a high layer thickness (200 μm) and low cost coarse powders (53 μm-106 μm) at a laser power of 400 W is investigated in this preliminary study. A relatively large laser beam with a diameter of 200 μm is utilized to produce a stable melt pool at high layer thickness, and the appropriate scanning track, which has a smooth surface with a shallow contact angle, can be obtained at the scanning speeds from 40 mm/s to 80 mm/s. By adjusting the hatch spacings, the density of multi-layer samples can be up to 99.99%, which is much higher than that achieved in previous studies about high layer thickness selective laser melting. Meanwhile, the building rate can be up to 7.2 mm³/s, which is about 2 times-9 times that of the commercial equipment. Besides, two kinds of defects are observed: the large un-melted defects and the small spherical micropores. The formation of the un-melted defects is mainly attributed to the inappropriate overlap rates and the unstable scanning tracks, which can be eliminated by adjusting the processing parameters. Nevertheless, the micropores cannot be completely eliminated. It is worth noting that the high layer thickness plays a key role on surface roughness rather than tensile properties during the SLM process. Although a sample with a relatively coarse surface is generated, the average values of yield strength, ultimate tensile strength, and elongation are 1050 MPa, 1140 MPa, and 7.03%, respectively, which are not obviously different than those with the thin layer thickness used in previous research; this is due to the similar metallurgical bonding and microstructure.

  18. Performance of High Layer Thickness in Selective Laser Melting of Ti6Al4V

    Directory of Open Access Journals (Sweden)

    Xuezhi Shi

    2016-12-01

    Full Text Available To increase building rate and save cost, the selective laser melting (SLM of Ti6Al4V with a high layer thickness (200 μm and low cost coarse powders (53 μm–106 μm at a laser power of 400 W is investigated in this preliminary study. A relatively large laser beam with a diameter of 200 μm is utilized to produce a stable melt pool at high layer thickness, and the appropriate scanning track, which has a smooth surface with a shallow contact angle, can be obtained at the scanning speeds from 40 mm/s to 80 mm/s. By adjusting the hatch spacings, the density of multi-layer samples can be up to 99.99%, which is much higher than that achieved in previous studies about high layer thickness selective laser melting. Meanwhile, the building rate can be up to 7.2 mm3/s, which is about 2 times–9 times that of the commercial equipment. Besides, two kinds of defects are observed: the large un-melted defects and the small spherical micropores. The formation of the un-melted defects is mainly attributed to the inappropriate overlap rates and the unstable scanning tracks, which can be eliminated by adjusting the processing parameters. Nevertheless, the micropores cannot be completely eliminated. It is worth noting that the high layer thickness plays a key role on surface roughness rather than tensile properties during the SLM process. Although a sample with a relatively coarse surface is generated, the average values of yield strength, ultimate tensile strength, and elongation are 1050 MPa, 1140 MPa, and 7.03%, respectively, which are not obviously different than those with the thin layer thickness used in previous research; this is due to the similar metallurgical bonding and microstructure.

  19. The Modelling of Particle Resuspension in a Turbulent Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan

    2011-10-20

    uncorrelated curve-fitted model. In view of recent numerical data for lift and drag forces in turbulent boundary layers, the lift and drag we have con sidered and the impact of these data on predictions made by the non-Gaussian R'n'R model are compared with those based on O'Neill formula. The results indicate that, in terms of the long-term resuspension fraction, the difference is minor. It is concluded that as the particle size decreases the L and B method will lead to less-and-less long-term resuspension. Finally the ultimate model that has been developed in this work is a hybrid version of the R'n'R model adapted for application to multilayer deposits based on the Friess and Yadigaroglu multilayer approach. The deposit is modelled in several overlying layers where the coverage effect (masking) of the deposit layers has been studied; in the first instance a monodisperse deposit with a coverage ratio factor was modelled where this was subsequently replaced by the more general case of a polydisperse deposit with a particle size distribution.

  20. Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron.

    Science.gov (United States)

    Helber, Bernd; Chazot, Olivier; Hubin, Annick; Magin, Thierry E

    2016-06-09

    Ablative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions. Ground testing in plasma wind-tunnels is currently the only affordable possibility for both material qualification and validation of material response codes. The subsonic 1.2MW Inductively Coupled Plasmatron facility at the von Karman Institute for Fluid Dynamics is able to reproduce a wide range of reentry environments. This protocol describes a procedure for the study of the gas/surface interaction on ablative materials in high enthalpy flows and presents sample results of a non-pyrolyzing, ablating carbon fiber precursor. With this publication, the authors envisage the definition of a standard procedure, facilitating comparison with other laboratories and contributing to ongoing efforts to improve heat shield reliability and reduce design uncertainties. The described core techniques are non-intrusive methods to track the material recession with a high-speed camera along with the chemistry in the reactive boundary layer, probed by emission spectroscopy. Although optical emission spectroscopy is limited to line-of-sight measurements and is further constrained to electronically excited atoms and molecules, its simplicity and broad applicability still make it the technique of choice for analysis of the reactive boundary layer. Recession of the ablating sample further requires that the distance of the measurement location with respect to the surface is known at all times during the experiment. Calibration of the optical system of the applied three spectrometers allowed quantitative comparison. At the fiber scale

  1. The effects of laser plasma discharge on a separating boundary layer

    Science.gov (United States)

    Browne, Kevin Patrick

    Modification of the separation and drag characteristics of a laminar airfoil using a remotely located high-power laser was experimentally investigated in a low speed, low-turbulence wind tunnel. It was proposed that pulsed laser energy could be used to cause a disturbance in the boundary layer of a laminar airfoil thus modifying the flow by inducing a cross exchange of momentum within the boundary layer. The result is a unique zero net mass flux and zero net momentum flux actuator for delaying separation. A 500 mm chord length laminar airfoil was designed and fabricated to closely emulate in the wind tunnel the flight characteristics of a Cessna 177 at cruise speed. At zero degrees angle of attack the airfoil was determined to have an incipient laminar separation bubble on its lifting surface between 67 and 80% chord. By focusing the collimated laser beam emitted from a 900mW Q-switched YAG laser a strong plasma pulse was generated from the optical breakdown of the air. The plasma was focused to a location approximately 2 mm in front of the airfoil. High temperature plasma produced by each pulse generates a shockwave and volume of heated turbulent air which interacts with the airfoil and travels along its lifting surface. Particle Image Velocimetry (PIV) system was used as the primary data collection method. Determining the effects of the plasma on the flow over the airfoil requires measuring the behavior deep within the boundary layer which is typically less than 2 mm thick. Custom optics were used to capture flow behavior in a 6 mm x 6 mm field of view along the centerline of the airfoil. The PIV system was electronically triggered by the plasma laser. By varying the trigger delay time a range of data captured the onset, peak and decay of the plasma with fine spatial resolution. Results of this investigation show that a burst of turbulence generated by the pulsed plasma exchanges significant momentum between the freestream and the incipient separation bubble

  2. Plasma wave characteristics of the Jovian magnetopause boundary layer: Relationship to the Jovian aurora?

    Energy Technology Data Exchange (ETDEWEB)

    Tsurutani, B.T.; Arballo, J.K.; Goldstein, B.E.; Ho, C.M.; Lakhina, G.S.; Smith, E.J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California (United States); Cornilleau-Wehrlin, N. [Centre dEtude des Environnements Terrestre et Planetaires/Universite Versailles-Saint-Quentin, Velizy (France); Prange, R. [Institute d`Astrophysique Spatiale, University of Paris XI, Orsay (France); Lin, N.; Kellogg, P. [University of Minnesota, School of Physics and Astronomy, Minneapolis, Minnesota (United States); Phillips, J.L. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Balogh, A. [Blackette Laboratory, Imperial College of Science and Technology, London (England); Krupp, N. [Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany); Kane, M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland (United States)

    1997-03-01

    The Jovian magnetopause boundary layer (BL) plasma wave spectra from 10{sup {minus}3} to 10{sup 2}Hz have been measured for the first time. For one intense event the magnetic (B{prime}) and electric (E{prime}) spectra were 2{times}10{sup {minus}4}f{sup {minus}2.4}nT{sup 2}/Hz and 4{times}10{sup {minus}9}f{sup {minus}2.4}V{sup 2}/m{sup 2}Hz, respectively. Although no measurable wave amplitudes were detected above the electron gyrofrequency, {approximately}140Hz, this finding may be due to the low signal strength characteristic of this region. The B{prime}/E{prime} ratio is relatively frequency independent. It is possible that waves are obliquely propagating whistler mode waves. The B{prime} and E{prime} spectra are broadband with no obvious spectral peaks. The waves are sufficiently intense to cause cross-field diffusion of magnetosheath plasma to create the BL itself. A BL thickness of 10,700 km is predicted, consistent with past in situ measurements. The Jovian boundary layer wave properties are quite similar to the BL waves at Earth (however, the Jovian waves are orders of magnitude less intense). It appears that the solar wind/magnetosphere dynamos at the two planets are similar enough to be consistent with a common wave generation mechanism. The predicted ionospheric latitudinal width of the BL of {approximately}100{endash}200km is quite similar to the Jovian auroral high-latitude ring. The location of the BL at and inside the foot point of the last closed field line may place the boundary layer and the aurora on approximately the same magnetic field lines. The Jovian BL waves are sufficiently intense to cause strong pitch angle diffusion for {lt}5-keV electrons and 1-keV to 1-MeV protons. The estimated energy precipitation rate from this interaction {lt}1ergcm{sup {minus}2}s{sup {minus}1}, sufficient for a weak high-latitude auroral ring. This intensity is 2 to 3 orders of magnitude too low to cause the main aurora ring, however. (Abstract Truncated)

  3. Crystal structure of Co/Cu multilayers prepared by pulse potential electrodeposition with precisely controlled ultrathin layer thickness

    Directory of Open Access Journals (Sweden)

    Naoto Takane

    2013-02-01

    Full Text Available Co/Cu multilayers were electrodeposited in a single electrolyte using the pulse potential method and the layer thickness was precisely controlled in accordance with Faraday's law. X-ray diffraction revealed that multilayers with layer thicknesses in the range of 25–100 nm consisted of fcc-Co and fcc-Cu phases. For layers thinner than 10 nm, the fcc-Co and fcc-Cu phases merged to form a single crystal phase. When the layers were <1 nm, one diffraction peak of the single crystal phase became proportionally higher as the layer became thinner. The surface structure of multilayers also varied with the layer thickness.

  4. Optical density filters modeling media opacities cause decreased SD-OCT retinal layer thickness measurements with inter- and intra-individual variation.

    Science.gov (United States)

    Darma, Stanley; Kok, Pauline H B; van den Berg, Thomas J T P; Abràmoff, Michael D; Faber, Dirk J; Hulsman, Caroline A; Zantvoord, Frank; Mourits, Maarten P; Schlingemann, Reinier O; Verbraak, Frank D

    2015-06-01

    To assess the effect of media opacities on thickness measurements of the peripapillary retinal nerve fibre layer (pRNFL) and macular inner retinal layer (mIRL) performed with spectral-domain optical coherence tomography (SD-OCT) using a set of filters with known optical density. Spectral-domain optical coherence tomography volume scans of the optic disc and the macular area were performed in 18 healthy volunteers, using Topcon-3DOCT-1000 Mark II. A set of five filters with optical density ranging from 0.04 to 0.69 was used. The correlation was calculated between the percentage change in thickness measurements (%ΔpRNFL and %ΔmIRL) and the change in optical density. All scans and measurements were performed in duplicate by one operator. Eighteen right eyes of 18 healthy volunteers were included in this study. Percentage decrease in pRNFL and mIRL thickness correlated with change in optical density (Spearman's rho r = 0.82; p measured decrease in pRNFL thickness differed from the decrease in mIRL thickness, not only between individuals, but also within the same individual. Optical coherence tomography thickness measurements of both pRNFL and mIRL are influenced by image degradation caused by optical density filters as a model for media opacities. An underestimation of the thickness of these layers was observed, caused by a shift of retinal layer boundary placement due to image quality loss. This underestimation is not the same for each individual and also differed between the pRNFL and mIRL thickness measurements. These individual and interindividual differences demonstrate that an individual approach will be necessary to correct for this underestimation per layer. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. Relationship between Outer Retinal Layers Thickness and Visual Acuity in Diabetic Macular Edema.

    Science.gov (United States)

    Wong, Raymond L M; Lee, Jacky W Y; Yau, Gordon S K; Wong, Ian Y H

    2015-01-01

    To investigate the correlation of outer retinal layers (ORL) thickness and visual acuity (VA) in patients with diabetic macular edema (DME). Consecutive DME patients seen at the Retina Clinic of The University of Hong Kong were recruited for OCT assessment. The ORL thickness was defined as the distance between external limiting membrane (ELM) and retinal pigment epithelium (RPE) at the foveal center. The correlation between total retinal thickness, ORL thickness, and vision was calculated. 78 patients with DME were recruited. The mean age was 58.1 years (±11.5 years) and their mean visual acuity measured with Snellen chart was 0.51 (±0.18). The correlation coefficient between total retinal thickness and visual acuity was 0.34 (P ORL thickness and visual acuity (P ORL thickness correlates better with vision than the total retinal thickness. It is a novel OCT parameter in the assessment of DME. Moreover, it could be a potential long term visual prognostic factor for patients with DME.

  6. Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer

    Science.gov (United States)

    Celic, Alan; Zilliac, Gregory G.

    1998-01-01

    The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.

  7. Indirect restorations for severe tooth wear: Fracture risk and layer thickness

    NARCIS (Netherlands)

    Hamburger, J.T.; Opdam, N.J.M.; Bronkhorst, E.M.; Huysmans, M.C.D.N.J.M.

    2014-01-01

    OBJECTIVES: This in vitro study investigated static failure risk related to restoration layer thickness for different indirect materials and compare them to direct composites. METHODS: Two ceramics (IPS e-max CAD, EmpressCAD (Ivoclar Vivadent)), two indirect composites (Estenia (Kuraray), Sinfony

  8. Quantification of the effect of oil layer thickness on entrainment of surface oil

    NARCIS (Netherlands)

    Marieke Zeinstra-Helfrich; Wierd Koops; Klaas Dijkstra; Albertinka J. Murk

    2015-01-01

    This study quantifies the effect of oil layer thickness on entrainment and dispersion of oil into seawater, using a plunging jet with a camera system. In contrast to what is generally assumed, we revealed that for the low viscosity “surrogate MC252 oil” we used, entrainment rate is directly

  9. Reduction in Retinal Nerve Fiber Layer Thickness in Young Adults with Autism Spectrum Disorders

    Science.gov (United States)

    Emberti Gialloreti, Leonardo; Pardini, Matteo; Benassi, Francesca; Marciano, Sara; Amore, Mario; Mutolo, Maria Giulia; Porfirio, Maria Cristina; Curatolo, Paolo

    2014-01-01

    Recent years have seen an increase in the use of retinal nerve fiber layer (RNFL) evaluation as an easy-to-use, reproducible, proxy-measure of brain structural abnormalities. Here, we evaluated RNFL thickness in a group of subjects with high functioning autism (HFA) or with Asperger Syndrome (AS) to its potential as a tool to study autism…

  10. Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance

    NARCIS (Netherlands)

    de Bruijn, H.E.; de Bruijn, Helene E.; Altenburg, Bert S.F.; Kooyman, R.P.H.; Greve, Jan

    1991-01-01

    The determination of the thickness and dielectric constant of thin dielectric layers by means of surface plasmon resonance is discussed. It appears to be impossible to determine these parameters from one surface plasmon response experiment. This is illustrated theoretically. Variation of the

  11. Factors influencing the layer thickness of poly-L-glutamates grafted from self-assembled monolayers

    NARCIS (Netherlands)

    Menzel, H.; Heise, A.; Yim, H.; Foster, M.D.; Wieringa, R.H.; Schouten, A.J.; Frank, C.W.

    1998-01-01

    Factors influencing the thickness of polypeptide layers grafted from self-assembled monolayers were investigated by varying the initiator site density and the reactivity of the N-carboxyanhydride monomer. To vary the density of initiating sites and to match the steric requirements of the growing

  12. Formation of nickel germanides from Ni layers with thickness below 10 nm

    Energy Technology Data Exchange (ETDEWEB)

    Jablonka, Lukas; Kubart, Tomas; Primetzhofer, Daniel; Abedin, Ahmad; Hellström, Per-Erik; Östling, Mikael; Jordan-Sweet, Jean; Lavoie, Christian; Zhang, Shi-Li; Zhang, Zhen

    2017-03-01

    The authors have studied the reaction between a Ge (100) substrate and thin layers of Ni ranging from 2 to 10 nm in thickness. The formation of metal-rich Ni5Ge3Ni5Ge3 was found to precede that of the monogermanide NiGe by means of real-time in situ x-ray diffraction during ramp-annealing and ex situ x-ray pole figure analyses for phase identification. The observed sequential growth of Ni5Ge3Ni5Ge3 and NiGe with such thin Ni layers is different from the previously reported simultaneous growth with thicker Ni layers. The phase transformation from Ni5Ge3Ni5Ge3 to NiGe was found to be nucleation-controlled for Ni thicknesses <5 nm<5 nm, which is well supported by thermodynamic considerations. Specifically, the temperature for the NiGe formation increased with decreasing Ni (rather Ni5Ge3Ni5Ge3) thickness below 5 nm. In combination with sheet resistance measurement and microscopic surface inspection of samples annealed with a standard rapid thermal processing, the temperature range for achieving morphologically stable NiGe layers was identified for this standard annealing process. As expected, it was found to be strongly dependent on the initial Ni thickness

  13. Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field

    Science.gov (United States)

    Bohleber, Pascal; Sold, Leo; Hardy, Douglas R.; Schwikowski, Margit; Klenk, Patrick; Fischer, Andrea; Sirguey, Pascal; Cullen, Nicolas J.; Potocki, Mariusz; Hoffmann, Helene; Mayewski, Paul

    2017-02-01

    Although its Holocene glacier history is still subject to debate, the ongoing iconic decline of Kilimanjaro's largest remaining ice body, the Northern Ice Field (NIF), has been documented extensively based on surface and photogrammetric measurements. The study presented here adds, for the first time, ground-penetrating radar (GPR) data at centre frequencies of 100 and 200 MHz to investigate bed topography, ice thickness and internal stratigraphy at NIF. The direct comparison of the GPR signal to the visible glacier stratigraphy at NIF's vertical walls is used to validate ice thickness and reveals that the major internal reflections seen by GPR can be associated with dust layers. Internal reflections can be traced consistently within our 200 MHz profiles, indicating an uninterrupted, spatially coherent internal layering within NIF's central flat area. We show that, at least for the upper 30 m, it is possible to follow isochrone layers between two former NIF ice core drilling sites and a sampling site on NIF's vertical wall. As a result, these isochrone layers provide constraints for future attempts at linking age-depth information obtained from multiple locations at NIF. The GPR profiles reveal an ice thickness ranging between (6.1 ± 0.5) and (53.5 ± 1.0) m. Combining these data with a very high resolution digital elevation model we spatially extrapolate ice thickness and give an estimate of the total ice volume remaining at NIF's southern portion as (12.0 ± 0.3) × 106 m3.

  14. Investigation of Top/bottom Electrode and Diffusion Barrier Layer for PZT thick film MEMS Sensors

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Hindrichsen, Christian Carstensen; Lou-Møller, R.

    2007-01-01

    In this work screen printed piezoelectric Ferroperm PZ26 lead zirconate titanate (PZT) thick film is used for two MEMS devices. A test structure is used to investigate several aspects regarding bottom and top electrodes. 450 nm ZrO2 thin film is found to be an insufficient diffusion barrier layer...

  15. Impact of paint matrix composition and thickness of paint layer on the activity of photocatalytic paints

    Directory of Open Access Journals (Sweden)

    Homa Piotr

    2017-03-01

    Full Text Available Silicate, acrylic and latex photocatalytic paints were analyzed in regards to impact of paint matrix composition and paint layer’s thickness on performance in two photocatalytic tests. These included performances in photocatalytic decomposition of benzo[a]pyrene (BaP and assessment of photocatalytic activity through use of smart ink test. Silicate photocatalytic paints displayed lower photocatalytic activity in comparison to acrylic and latex photocatalytic paints in both tests, despite the similar content of nanocrystalline TiO2. Measurements of depth of UV light penetration through the paints layer were performed and it appeared, that more porous structure of coating resulted in deeper penetration of UV light. In the case of acrylic paint, the thickness of the photocatalytic layer was around 9 μm, but for silicate paint DR this thickness was higher, around 21 μm.

  16. Fabrication and characterization of micro-inductors deposited on magnetic thin and thick layers

    Directory of Open Access Journals (Sweden)

    A. Désiré

    2014-02-01

    Full Text Available This paper presents two fabrication techniques of spiral integrated inductors based on magnetic materials. For the first one, the magnetic core is a thin film deposited by RF magnetron sputtering, for the second technique the magnetic core is a thick layer of YIG obtained by micromachining. The addition of the magnetic material is expected to improve the performances of the integrated structure with electromagnetic shield. Low and high frequency equipment are used to characterize the manufactured components. A good correlation is obtained between the results by simulation and measurements for the two manufacturing techniques. These results show that the inductance increases when the thickness of the magnetic layer increases, we can double the inductance value for a thickness sufficiently high.

  17. The use of Bowman's layer vertical topographic thickness map in the diagnosis of keratoconus.

    Science.gov (United States)

    Abou Shousha, Mohamed; Perez, Victor L; Fraga Santini Canto, Ana Paula; Vaddavalli, Pravin K; Sayyad, Fouad E; Cabot, Florence; Feuer, William J; Wang, Jianhua; Yoo, Sonia H

    2014-05-01

    To evaluate the use of Bowman's layer (BL) vertical topographic thickness maps in diagnosing keratoconus (KC). Prospective, case control, interventional case series. A total of 42 eyes: 22 eyes of 15 normal subjects and 20 eyes of 15 patients with KC. Bowman's layer 2-dimensional 9-mm vertical topographic thickness maps were created using custom-made ultra high-resolution optical coherence tomography. Bowman's layer average and minimum thicknesses of the inferior half of the cornea, Bowman's ectasia index (BEI; defined as BL minimum thickness of the inferior half of the cornea divided by BL average thickness of the superior half of the cornea multiplied by 100), BEI-Max (defined as BL minimum thickness of the inferior half of the cornea divided by BL maximum thickness of the superior half of the cornea multiplied by 100), keratometric astigmatism (Ast-K) of patients with KC, and average keratometric (Avg-K) readings. In patients with KC, BL vertical thickness maps disclosed localized relative inferior thinning of the BL. Inferior BL average thickness (normal = 15±2, KC = 12±3 μm), inferior BL minimum thickness (normal = 13±2, KC = 7±3 μm), BEI (normal = 91±7, KC = 48±14), and BEI-Max (normal = 75±8; KC = 40±13) all showed highly significant differences in KC compared with normal subjects (P< 0.001). Receiver operating characteristic (ROC) curve analysis showed excellent predictive accuracy for BEI and BEI-Max with 100% sensitivity and specificity (area under the curve [AUC] of 1) with cutoff values of 80 and 60, respectively. The AUC of inferior BL average thickness and minimum thickness were 0.87 and 0.96 with a sensitivity of 80% and 93%, respectively, and a specificity of 93% and 93%, respectively. Inferior BL average thickness, inferior BL minimum thickness, BEI, and BEI-Max correlated highly to Ast-K (R = -0.72, -0.82, -0.84, and -0.82, respectively; P< 0.001) and to Avg-K (R = -0.62, P< 0.001; R = -0.59, P = 0.001; R = -0.60, P< 0.001; and R

  18. New-particle formation events in a continental boundary layer: first results from the SATURN experiment

    Directory of Open Access Journals (Sweden)

    F. Stratmann

    2003-01-01

    Full Text Available During the SATURN experiment, which took place from 27 May to 14 June 2002, new particle formation in the continental boundary layer was investigated. Simultaneous ground-based and tethered-balloon-borne measurements were performed, including meteorological parameters, particle number concentrations and size distributions, gaseous precursor concentrations and SODAR and LIDAR observations. Newly formed particles were observed inside the residual layer, before the break-up process of the nocturnal inversion, and inside the mixing layer throughout the break-up of the nocturnal inversion and during the evolution of the planetary boundary layer.

  19. Coastal Stratocumulus-Topped Boundary Layers and the Role of Cloud-Top Entrainment

    National Research Council Canada - National Science Library

    Eleuterio, Daniel

    2004-01-01

    ...) to accurately forecast the height and structure of the Marine Boundary Layer (MBL) in the coastal zone is analyzed and compared to surface and aircraft observations from the Dynamics and Evolution of Coastal Stratus (DECS...

  20. Turbulence Models: Data from Other Experiments: Shock Wave / Turbulent Boundary Layer Flows at High Mach Numbers

    Data.gov (United States)

    National Aeronautics and Space Administration — Shock Wave / Turbulent Boundary Layer Flows at High Mach Numbers. This web page provides data from experiments that may be useful for the validation of turbulence...