The computation of thick axisymmetric boundary layers and wakes around bodies of revolution
Markatos, N. C.
The paper is concerned with the computational investigation of thick, axisymmetric, turbulent boundary layers and wakes around bodies of revolution. The procedures employed take full account of the influence of longitudinal and transverse surface curvatures and normal pressure gradients on the development of the boundary layer and wake, and also the viscous-inviscid interaction in the tail region of the body. The method makes it possible to calculate the static pressure and the velocity profiles along the body as well as the drag components; and it is applicable to both two- and three-dimensional situations, enabling, for example, the prediction of flows around ships' and submarines' hulls to be made. The application of the fully-elliptic calculation procedure to a body of revolution is described, and comparisons made between predictions and experimental measurements. The calculated axial variation of skin friction and pressure coefficient, and the velocity profiles are shown to be in fair agreement with experimental values.
Effect of Boundary Layer Thickness on Secondary Structures in a Short Inlet Curved Duct
Gartner, Jeremy; Amitay, Michael
2013-11-01
The flow pattern in short ducts with aggressive curvature can lead in some cases to an asymmetric flow field. In the current work, a two dimensional honeycomb mesh was added upstream of the curved duct to create a pressure drop across it, and therefore an increased velocity deficit in the boundary layer profile. This velocity deficit led to a stronger streamwise separation, overcoming the flow mechanisms that result in the asymmetric flowfield. Experiments were conducted at M = 0.2, 0.44 and 0.58 in an expanding aggressive duct with square cross section with an area ratio of 1.27. Pressure data, together with Particle Image Velocimetry (PIV), verify the symmetry of the incoming flow field. Steady pressure distributions along the lower surface of the curved duct were obtained, as well as steady and time dependent total pressure distributions at the aerodynamic interface plane, enabling the analysis of the flow characteristics throughout the duct length. The effect of inserting a honeycomb was tested by increasing its height from 0 to 2.2 times the baseline flow boundary layer thickness upstream of the curve. Crosstream flow symmetry was achieved for specific geometrical configurations with a negligible decrease in the pressure recovery.
Dambrine, M.; Greff, I.; Harbrecht, H.; Puig, B.
2017-02-01
The present article is dedicated to the numerical solution of homogeneous Neumann boundary value problems on domains with a thin layer of different conductivity and of random thickness. By changing the boundary condition, the boundary value problem given on the random domain can be transformed into a boundary value problem on a fixed domain. The randomness is then contained in the coefficients of the new boundary condition. This thin coating can be expressed by a random Ventcell boundary condition and yields a second order accurate solution in the scale parameter ε of the layer's thickness. With the help of the Karhunen-Loève expansion, we transform this random boundary value problem into a deterministic, parametric one with a possibly high-dimensional parameter y. Based on the decay of the random fluctuations of the layer's thickness, we prove rates of decay of the derivatives of the random solution with respect to this parameter y which are robust in the scale parameter ε. Numerical results validate our theoretical findings.
Institute of Scientific and Technical Information of China (English)
HAN Bo; L(U) Shihua; AO Yinhuan
2012-01-01
In this study,the development of a convective boundary layer (CBL) in the Badanjilin region was investigated by comparing the observation data of two cases.A deep neutral layer capped a CBL that occurred on 30 August 2009.This case was divided into five sublayers from the surface to higher atmospheric elevations:surface layer,mixed layer,inversion layer,neutral layer,and sub-inversion layer.The development process of the CBL was divided into three stages:S1,S2,and S3.This case was quite different from the development of the three-layer CBL observed on 31 August 2009 because the mixed layer of the five-layer CBL (CBL5) eroded the neutral layer during S2.The specific initial structure of the CBL5 was correlated to the synoptic background of atmosphere during nighttime.The three-stage development process of the CBL5 was confirmed by six simulations using National Center for Atmospheric Research (USA) large-eddy simulation (NCAR-LES),and some of its characteristics are presented in detail.
Institute of Scientific and Technical Information of China (English)
Yoichi Kinoue; Toshiaki Setoguchi; Kenji Kaneko; Mamun Mohammad; Masahiro Inoue
2003-01-01
An experimental apparatus was developed to study the three dimensional separated flow with spiral-foci. The internal decelerating flow was generated by the air suction from a side wall to produce the separation on an opposite-side wall. The relation between the upstream boundary layer and the generation of spiral-foci in the separation region was observed by a tuft method. As a result, it was clarified that the spiral-focus type separation could be produced on the side wall and its behavior was closely related to the vortices supplied into the separation region from the boundary layer developing along top wall or bottom one.
Li, Yangfan; Hamada, Yukitaka; Otobe, Katsunori; Ando, Teiichi
2017-02-01
Multi-traverse CS provides a unique means for the production of thick coatings and bulk materials from powders. However, the material along spray and spray-layer boundaries is often poorly bonded as it is laid by the leading and trailing peripheries of the spray that carry powder particles with insufficient kinetic energy. For the same reason, the splats in the very first layer deposited on the substrate may not be bonded well either. A mathematical spray model was developed based on an axisymmetric Gaussian mass flow rate distribution and a stepped deposition yield to predict the thickness of such poorly-bonded layers in multi-traverse CS deposition. The predicted thickness of poorly-bonded layers in a multi-traverse Cu coating falls in the range of experimental values. The model also predicts that the material that contains poorly bonded splats could exceed 20% of the total volume of the coating.
Li, Yangfan; Hamada, Yukitaka; Otobe, Katsunori; Ando, Teiichi
2016-12-01
Multi-traverse CS provides a unique means for the production of thick coatings and bulk materials from powders. However, the material along spray and spray-layer boundaries is often poorly bonded as it is laid by the leading and trailing peripheries of the spray that carry powder particles with insufficient kinetic energy. For the same reason, the splats in the very first layer deposited on the substrate may not be bonded well either. A mathematical spray model was developed based on an axisymmetric Gaussian mass flow rate distribution and a stepped deposition yield to predict the thickness of such poorly-bonded layers in multi-traverse CS deposition. The predicted thickness of poorly-bonded layers in a multi-traverse Cu coating falls in the range of experimental values. The model also predicts that the material that contains poorly bonded splats could exceed 20% of the total volume of the coating.
Schlichting (Deceased), Hermann
2017-01-01
This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
Boundary layer transition studies
Watmuff, Jonathan H.
1995-02-01
A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated
Irshad, Ranah; Bowles, N. E.; Calcutt, S. B.; Hurley, J.
2010-10-01
The Boundary Layer Radiometer is a small, low mass (<1kg) radiometer with only a single moving part - a scan/calibration mirror. The instrument consists of a three mirror telescope system incorporating an intermediate focus for use with miniature infrared and visible filters. It also has an integrated low power blackbody calibration target to provide long-term calibration stability The instrument may be used as an upward looking boundary layer radiometer for both the terrestrial and Martian atmospheres with appropriate filters for the mid-infrared carbon dioxide band, as well as a visible channel for the detection of aerosol components such as dust. The scan mirror may be used to step through different positions from the local horizon to the zenith, allowing the vertical temperature profile of the atmosphere to be retrieved. The radiometer uses miniature infrared filter assemblies developed for previous space-based instruments by Oxford, Cardiff and Reading Universities. The intermediate focus allows for the use of upstream blocking filters and baffles, which not only simplifies the design of the filters and focal plane assembly, but also reduces the risk of problems due to stray light. Combined with the calibration target this means it has significant advantages over previous generations of small radiometers.
The Plasmasphere Boundary Layer
Directory of Open Access Journals (Sweden)
D. L. Carpenter
2004-12-01
Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere.
Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities
Analysis of turbulent boundary layers
Cebeci, Tuncer
1974-01-01
Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati
Costigliola, V.
2010-09-01
It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate
Hurricane Boundary-Layer Theory
2010-01-01
2501. Kundu PK. 1990. Fluid Mechanics . Academic Press: San Diego, USA. Kuo HL. 1982. Vortex boundary layer under quadratic surface stress. Boundary...identification of two mechanisms for the spin-up of the mean tangential circulation of a hurricane. The first involves convergence of absolute angular...momentum above the boundary layer, where this quantity is approximately conserved. This mechanism acts to spin up the outer circulation at radii
Boundary layers in stochastic thermodynamics.
Aurell, Erik; Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo
2012-02-01
We study the problem of optimizing released heat or dissipated work in stochastic thermodynamics. In the overdamped limit these functionals have singular solutions, previously interpreted as protocol jumps. We show that a regularization, penalizing a properly defined acceleration, changes the jumps into boundary layers of finite width. We show that in the limit of vanishing boundary layer width no heat is dissipated in the boundary layer, while work can be done. We further give an alternative interpretation of the fact that the optimal protocols in the overdamped limit are given by optimal deterministic transport (Burgers equation).
THERMAL BOUNDARY LAYER IN CFB BOILER RISER
Institute of Scientific and Technical Information of China (English)
Jinwei; Wang; Xinmu; Zhao; Yu; Wang; Xing; Xing; Jiansheng; Zhang; Guangxi; Yue
2006-01-01
Measurement of temperature profiles of gas-solid two-phase flow at different heights in commercial-scale circulating fluidized bed (CFB) boilers was carried out. Experimental results showed that the thickness of thermal boundary layer was generally independent of the distance from the air distributor, except when close to the riser outlet. Through analysis of flow and combustion characteristics in the riser, it was found that the main reasons for the phenomena were: 1) the hydrodynamic boundary layer was thinner than the thermal layer and hardly changed along the CFB boiler height, and 2) both radial and axial mass and heat exchanges were strong in the CFB boiler. Numerical simulation of gas flow in the outlet zone confirmed that the distribution of the thermal boundary layer was dominated by the flow field characteristics.
Self-similar magnetohydrodynamic boundary layers
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel; Lastra, Alberto, E-mail: mnjmhd@am.uva.e [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)
2010-10-15
The boundary layer created by parallel flow in a magnetized fluid of high conductivity is considered in this paper. Under appropriate boundary conditions, self-similar solutions analogous to the ones studied by Blasius for the hydrodynamic problem may be found. It is proved that for these to be stable, the size of the Alfven velocity at the outer flow must be smaller than the flow velocity, a fact that has a ready physical explanation. The process by which the transverse velocity and the thickness of the layer grow with the size of the Alfven velocity is detailed.
Alpha models and boundary-layer turbulence
Cheskidov, Alexey
We study boundary-layer turbulence using the Navier-Stokes-alpha model obtaining an extension of the Prandtl equations for the averaged flow in a turbulent boundary layer. In the case of a zero pressure gradient flow along a flat plate, we derive a nonlinear fifth-order ordinary differential equation, an extension of the Blasius equation. We study it analytically and prove the existence of a two-parameter family of solutions satisfying physical boundary conditions. From this equation we obtain a theoretical prediction of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce the maximal value of the skin-friction coefficient in the turbulent boundary layer. The two-parameter family of solutions to the equation matches experimental data in the transitional boundary layers with different free stream turbulence intensity. A one-parameter sub-family of solutions, obtained using our skin-friction coefficient law, matches experimental data in the turbulent boundary layer for moderately large Reynolds numbers.
The Ocean Boundary Layer beneath Hurricane Frances
Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.
2006-12-01
The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.
Thermocouple Boundary Layer Rake
Hwang, Danny P. (Inventor); Will, Herbert A. (Inventor); Fralick, Gustave C. (Inventor)
2002-01-01
Apparatus and method for providing a velocity flow profile near a reference surface. A measuring device utilizes a plurality of thermojunction pairs to provide the velocity flow profile in accordance with behavior of a gas relative to a constant thickness strut which stands vertically from the reference surface such that the span is normal to the surface, and the chord is parallel to the surface along the initial flow direction. Each thermojunction is carried on either side of a heater formed on a measuring surface in a constant thickness portion of a strut. Additionally, each thermojunction of a given pair is located at a predetermined height from the reference surface. Gas velocity data obtained from temperature differentials from one side of the heater to the other at each successive height is utilized to generate the velocity and turbulence level profiles.
Analytic prediction for planar turbulent boundary layers
Chen, Xi
2016-01-01
Analytic predictions of mean velocity profile (MVP) and streamwise ($x$) development of related integral quantities are presented for flows in channel and turbulent boundary layer (TBL), based on a symmetry analysis of eddy length and total stress. Specific predictions are the friction velocity $u_\\tau$: ${ U_e/u_\\tau }\\approx 2.22\\ln Re_x+2.86-3.83\\ln(\\ln Re_x)$; the boundary layer thickness $\\delta_e$: $x/\\delta_e \\approx 7.27\\ln Re_x-5.18-12.52\\ln(\\ln Re_x)$; the momentum thickness Reynolds number: $Re_x/Re_\\theta=4.94[{(\\ln {{\\mathop{\\rm Re}\
Asymptotic analysis and boundary layers
Cousteix, Jean
2007-01-01
This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...
Nonparallel stability of boundary layers
Nayfeh, Ali H.
1987-01-01
The asymptotic formulations of the nonparallel linear stability of incompressible growing boundary layers are critically reviewed. These formulations can be divided into two approaches. The first approach combines a numerical method with either the method of multiple scales, or the method of averaging, of the Wentzel-Kramers-Brillouin (WKB) approximation; all these methods yield the same result. The second approach combined a multi-structure theory with the method of multiple scales. The first approach yields results that are in excellent agreement with all available experimental data, including the growth rates as well as the neutral stability curve. The derivation of the linear stability of the incompressible growing boundary layers is explained.
Turbulent Boundary Layer Flow over Superhydrophobic Surfaces
2013-05-10
Figure 1 were a highly viscous fluid, such as honey , the boundary layer would be thick while if the fluid were water, a low-viscosity fluid, the boundary...drag has become even more important. In response to this need, and with the benefit of modern technology, the drag-reduction field is replete with...manufactured with “riblets,” small ridges on the order of fractions of millimeters, built-into the hull or skin that seek to reduce frictional drag. The
the Martian atmospheric boundary layer
DEFF Research Database (Denmark)
Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling
2011-01-01
The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime...
Stability of Boundary Layer Flow.
1980-03-01
and Teske (1975). We can conclude (as in the case of ducting) that theoretical models of boundary layer structure and associated radar structure...FI33 (Secret). Hitney, (1978) "Surface Duct Effects," Naval Ocean Systems Center, San Diego, Calif., Report No. TD144. Lewellen, W. S., and M. E. Teske
Shockwave-boundary layer interactions
Glepman, R.
2014-01-01
Shock wave-boundary layer interactions are a very common feature in both transonic and supersonic flows. They can be encountered on compressor and turbine blades, in supersonic jet inlets, on transonic wings, on the stabilization fins of missiles and in many more situations. Because of their major i
Stability of compressible boundary layers
Nayfeh, Ali H.
1989-01-01
The stability of compressible 2-D and 3-D boundary layers is reviewed. The stability of 2-D compressible flows differs from that of incompressible flows in two important features: There is more than one mode of instability contributing to the growth of disturbances in supersonic laminar boundary layers and the most unstable first mode wave is 3-D. Whereas viscosity has a destabilizing effect on incompressible flows, it is stabilizing for high supersonic Mach numbers. Whereas cooling stabilizes first mode waves, it destabilizes second mode waves. However, second order waves can be stabilized by suction and favorable pressure gradients. The influence of the nonparallelism on the spatial growth rate of disturbances is evaluated. The growth rate depends on the flow variable as well as the distance from the body. Floquet theory is used to investigate the subharmonic secondary instability.
Turbulent boundary layer over flexible plates
Rostami, Parand; Ioppolo, Tindaro
2016-11-01
This research describes the structure of a turbulent boundary layer flow with a zero pressure gradient over elastic plates. The elastic plates made of a thin aluminum sheets with thickness between 50 and 500 microns were placed on the floor of a subsonic wind tunnel and exposed to a turbulent boundary layer flow with a free stream velocity between 20m/s and 100m/s. The ceiling of the test section of the wind tunnel is adjustable so that a nearly zero pressure gradient is obtained in the test section. Hot-wire anemometry was used to measure the velocity components. Mean, fluctuating velocities and Reynolds stresses will be presented and compared with the values of a rigid plate.
Boundary layer control of rotating convection systems.
King, Eric M; Stellmach, Stephan; Noir, Jerome; Hansen, Ulrich; Aurnou, Jonathan M
2009-01-15
Turbulent rotating convection controls many observed features of stars and planets, such as magnetic fields, atmospheric jets and emitted heat flux patterns. It has long been argued that the influence of rotation on turbulent convection dynamics is governed by the ratio of the relevant global-scale forces: the Coriolis force and the buoyancy force. Here, however, we present results from laboratory and numerical experiments which exhibit transitions between rotationally dominated and non-rotating behaviour that are not determined by this global force balance. Instead, the transition is controlled by the relative thicknesses of the thermal (non-rotating) and Ekman (rotating) boundary layers. We formulate a predictive description of the transition between the two regimes on the basis of the competition between these two boundary layers. This transition scaling theory unifies the disparate results of an extensive array of previous experiments, and is broadly applicable to natural convection systems.
Transition in hypersonic boundary layers
Directory of Open Access Journals (Sweden)
Chuanhong Zhang
2015-10-01
Full Text Available Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second-mode instability is a key modulator of the transition process. Although the second-mode is primarily an acoustic wave, it causes the formation of high-frequency vortical waves, which triggers a fast transition to turbulence.
New layer thickness parameterization of diffusive convection in the ocean
Zhou, Sheng-Qi; Lu, Yuan-Zheng; Song, Xue-Long; Fer, Ilker
2016-03-01
In the present study, a new parameterization is proposed to describe the convecting layer thickness in diffusive convection. By using in situ observational data of diffusive convection in the lakes and oceans, a wide range of stratification and buoyancy flux is obtained, where the buoyancy frequency N varies between 10-4 and 0.1 s-1 and the heat-related buoyancy flux qT varies between 10-12 and 10-7 m2 s-3. We construct an intrinsic thickness scale, H0 =[qT3 / (κTN8) ] 1 / 4, here κT is the thermal diffusivity. H0 is suggested to be the scale of an energy-containing eddy and it can be alternatively represented as H0 = ηRebPr1/4, here η is the dissipation length scale, Reb is the buoyant Reynolds number, and Pr is the Prandtl number. It is found that the convective layer thickness H is directly linked to the stability ratio Rρ and H0 with the form of H ∼ (Rρ - 1)2H0. The layer thickness can be explained by the convective instability mechanism. To each convective layer, its thickness H reaches a stable value when its thermal boundary layer develops to be a new convecting layer.
Boundary-layer predictions for small low-speed contractions
Mehta, Rabindra D.; Bell, James H.
1989-01-01
The present scheme for the prediction of boundary-layer development in small, low-speed wind tunnel contraction sections proceeds by calculating the wall pressure distributions, and hence the wall velocity distributions, by means of a three-dimensional potential-flow method. For the family of contractions presently treated, the assumption of a laminar boundary layer appears to be justified; the measured boundary layer momentum thicknesses at the exit of the four contractions were found to lie within 10 percent of predicted values.
Aerosol fluxes in the marine boundary layer
Petelski, Tomasz; Zieliński, Tymon; Makuch, Przemysław; Kowalczyk, Jakub; Ponczkowska, Agnieszka; Drozdowska, Violetta; Piskozub, Jacek
2010-05-01
We present aerosol emission fluxes and concentrations calculated from in-situ measurement in the Nordic Sea from R/V Oceania. We compare vertical fluxes calculated with the eddy correlation and gradient methods. We use the results to test the hypothesis that marine aerosol emitted from the sea surface helps to clear the boundary layer from other aerosol particles. As the emitted droplets do not dry out in the highly humid surface layer air and because of their sizes most of them are deposited quickly at the sea surface. Therefore marine aerosol has many features of rain meaning that the deposition in the marine boundary layer in high wind events is controlled not only by the "dry" processes but also by the "wet" scavenging. We have estimated the effectiveness of the process using our own measurements of vertical aerosol fluxes in the Nordic Seas. This process could explain observed phenomenon of lower Arctic aerosol optical thickness (AOT) when the air masses moved over open sea than over sea-ice. We show a negative correlation between the sea-ice coverage in the seas adjacent to Svalbard and monthly AOT values in Ny Alesund.
Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height
Allaerts, Dries; Meyers, Johan
2015-11-01
In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.
Experimental investigation of wave boundary layer
DEFF Research Database (Denmark)
Sumer, B. Mutlu
2003-01-01
A review is presented of experimental investigation of wave boundary layer. The review is organized in six main sections. The first section describes the wave boundary layer in a real-life environment and its simulation in the laboratory in an oscillating water tunnel and in a water tank...... with an oscillating seabed. A brief account is given of measured quantities, measurement techniques (LDA, PIV, flow visualization) and limitations/constraints in the experimental investigation of the wave boundary layer in the laboratory. The second section concentrates on uniform oscillating boundary layers...... with a smooth bed. The boundary layer process is described over the entire range of the Reynolds number (Re from practically nil to Re = O(107)), from the laminar regime to the transitional regime and to the fully developed turbulent regime. The third section focuses on the effect of the boundary roughness...
Boundary layer effects on liners for aircraft engines
Gabard, Gwénaël
2016-10-01
The performance of acoustic treatments installed on aircraft engines is strongly influenced by the boundary layer of the grazing flow on the surface of the liner. The parametric study presented in this paper illustrates the extent of this effect and identifies when it is significant. The acoustic modes of a circular duct with flow are calculated using a finite difference method. The parameters are representative of the flow conditions, liners and sound fields found in current turbofan engines. Both the intake and bypass ducts are considered. Results show that there is a complex interplay between the boundary layer thickness, the direction of propagation and the liner impedance and that the boundary layer can have a strong impact on liner performance for typical configurations (including changes of the order of 30 dB on the attenuation of modes associated with tonal fan noise). A modified impedance condition including the effect of a small but finite boundary layer thickness is considered and compared to the standard Myers condition based on an infinitely thin boundary layer. We show how this impedance condition can be implemented in a mode calculation method by introducing auxiliary variables. This condition is able to capture the trends associated with the boundary layer effects and in most cases provides improved predictions of liner performance.
Some measurements in synthetic turbulent boundary layers
Savas, O.
1980-01-01
Synthetic turbulent boundary layers are examined which were constructed on a flat plate by generating systematic moving patterns of turbulent spots in a laminar flow. The experiments were carried out in a wind tunnel at a Reynolds number based on plate length of 1,700,000. Spots were generated periodically in space and time near the leading edge to form a regular hexagonal pattern. The disturbance mechanism was a camshaft which displaced small pins momentarily into the laminar flow at frequencies up to 80 Hz. The main instrumentation was a rake of 24 hot wires placed across the flow in a line parallel to the surface. The main measured variable was local intermittency; i.e., the probability of observing turbulent flow at a particular point in space and time. The results are reported in x-t diagrams showing the evolution of various synthetic flows along the plate. The dimensionless celerity or phase velocity of the large eddies is found to be 0.88, independent of eddy scale. All patterns with sufficiently small scales eventually showed loss of coherence as they moved downstream. A novel phenomenon called eddy transposition was observed in several flows which contained appreciable laminar regions. The large eddies shifted in formation to new positions, intermediate to their original ones, while preserving their hexagonal pattern. The present results, together with some empirical properties of a turbulent spot, are used to estimate the best choice of scales for constructing a synthetic boundary layer suitable for detailed study. The values recommended are: spanwise scale/thickness = 2.5, streamwise scale/thickness = 8.
Modelling stable atmospheric boundary layers over snow
Sterk, H.A.M.
2015-01-01
Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar re
Introduction to computational techniques for boundary layers
Energy Technology Data Exchange (ETDEWEB)
Blottner, F.G.
1979-09-01
Finite-difference procedures to solve boundary layer flows in fluid mechanics are explained. The governing equations and the transformations utilized are described. Basic solution techniques are illustrated with the similar boundary layer equations. Nonsimilar solutions are developed for the incompressible equations. Various example problems are solved, and the numerical results in the Fortran listing of the computer codes are presented.
Magnetohydrodynamic cross-field boundary layer flow
Directory of Open Access Journals (Sweden)
D. B. Ingham
1982-01-01
Full Text Available The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.
Structure of relaminarizing turbulent boundary layers
Ramesh, O.; Patwardhan, Saurabh
2014-11-01
Relaminarization of a turbulent boundary layer in a strongly accelerated flow has received a great attention in recent times. It has been found that such relaminarization is a general and regularly occurring phenomenon in the leading-edge region of a swept wing of an airplane (van Dam et al., 1993). In this work, we investigate the effect of initial Reynolds number on the process of relaminarization in turbulent boundary layers. The experimental and numerical investigation of relaminarizing turbulent boundary layers undergoing same history reveals that the boundary layer with higher initial Reynolds number relaminarizes at a lower pressure gradient value compared to the one with lower Reynolds number. This effect can be explained on the inviscid theory proposed earlier in the literature. Further, various parameter criteria proposed to predict relaminarization, are assessed and the structure of relaminarizing boundary layers is investigated. A mechanism for stabilization of near-wall low speed streaks is proposed.
An Analysis of the Characteristics of the Thermal Boundary Layer in Power Law Fluid
Institute of Scientific and Technical Information of China (English)
2008-01-01
This paper presents a theoretical analysis of the heat transfer for the boundary layer flow on a continuous moving surface in power law fluid. The expressions of the thermal boundary layer thickness with the different heat conductivity coefficients are obtained according to the theory of the dimensional analysis of fluid dynamics and heat transfer. And the numerical results of CFD agree well with the proposed expressions. The estimate formulas can be successfully applied to giving the thermal boundary layer thickness.
Rabbani, Hossein; Kafieh, Rahele; Kazemian Jahromi, Mahdi; Jorjandi, Sahar; Mehri Dehnavi, Alireza; Hajizadeh, Fedra; Peyman, Alireza
2016-01-01
Optical Coherence Tomography (OCT) is one of the most informative methodologies in ophthalmology and provides cross sectional images from anterior and posterior segments of the eye. Corneal diseases can be diagnosed by these images and corneal thickness maps can also assist in the treatment and diagnosis. The need for automatic segmentation of cross sectional images is inevitable since manual segmentation is time consuming and imprecise. In this paper, segmentation methods such as Gaussian Mixture Model (GMM), Graph Cut, and Level Set are used for automatic segmentation of three clinically important corneal layer boundaries on OCT images. Using the segmentation of the boundaries in three-dimensional corneal data, we obtained thickness maps of the layers which are created by these borders. Mean and standard deviation of the thickness values for normal subjects in epithelial, stromal, and whole cornea are calculated in central, superior, inferior, nasal, and temporal zones (centered on the center of pupil). To evaluate our approach, the automatic boundary results are compared with the boundaries segmented manually by two corneal specialists. The quantitative results show that GMM method segments the desired boundaries with the best accuracy.
Linear theory of the Kelvin-Helmholtz instability in the low-latitude boundary layer
Rajaram, R.; Sibeck, D. G.; Mcentire, R. W.
1991-01-01
The feasibility is examined of establishing characteristic profiles across the magnetospheric low-latitude boundary layer for the Kelvin-Helmholtz mode so that these profiles can be compared with satellite observations or a latitudinal chain of ground stations. An anisotropic collisionless fluid model is used instead of conventional MHD, and the finite thickness of the boundary layer and the thickness and position of the current layer are taken into account. The instability is found to be enhanced by a decrease in the thickness of the shear layer and of the current layer and by the proximity of the 'current layer' to the outer edge of the shear layer. The velocity threshold for the onset of instability is insensitive to the thickness. Characteristic profiles of the variation of plasma and field parameters across the boundary are obtained, and the importance of parameters specifying the current layer position and thickness is demonstrated.
Boundary Layers in Laminar Vortex Flows.
Baker, Glenn Leslie
A detailed experimental study of the flow in an intense, laminar, axisymmetric vortex has been conducted in the Purdue Tornado Vortex Simulator. The complicated nature of the flow in the boundary layer of laboratory vortices and presumably on that encountered in full-scale tornadoes has been examined. After completing a number of modifications to the existing facility to improve the quality of the flow in the simulator, hot-film anemometry was employed for making velocity-component and turbulence-intensity measurements of both the free-stream and boundary layer portions of the flow. The measurements represent the first experimental boundary layer investigation of a well-defined vortex flow to appear in the literature. These results were compared with recent theoretical work by Burggraf, Stewartson and Belcher (1971) and with an exact similarity solution for line-sink boundary layers developed by the author. A comparison is also made with the numerical simulation of Wilson (1981) in which the boundary conditions were matched to those of the present experimental investigation. Expressions for the vortex core radius, the maximum tangential velocity and the maximum pressure drop are given in terms of dimensionless modeling parameters. References. Burggraf, O. R., K. Stewartson and R. Belcher, Boundary layer. induced by a potential vortex. Phys. Fluids 14, 1821-1833 (1971). Wilson, T., M. S. thesis, Vortex Boundary Layer Dynamics, Univ. Calif. Davis (1981).
Simon, T. W.; Moffat, R. J.
1979-01-01
Measurements have been made of the heat transfer through a turbulent boundary layer on a convexly curved isothermal wall and on a flat plate following the curved section. Data were taken for one free-stream velocity and two different ratios of boundary layer thickness to radius of curvature delta/R = 0.051 and delta/R = 0.077. Only small differences were observed in the distribution of heat transfer rates for the two boundary layer thicknesses tested, although differences were noted in the temperature distributions within the boundary layer
Gelled propellant flow: Boundary layer theory for power-law fluids in a converging planar channel
Kraynik, Andrew M.; Geller, A. S.; Glick, J. H.
1989-10-01
A boundary layer theory for the flow of power-law fluids in a converging planar channel has been developed. This theory suggests a Reynolds number for such flows, and following numerical integration, a boundary layer thickness. This boundary layer thickness has been used in the generation of a finite element mesh for the finite element code FIDAP. FIDAP was then used to simulate the flow of power-law fluids through a converging channel. Comparison of the analytic and finite element results shows the two to be in very good agreement in regions where entrance and exit effects (not considered in the boundary layer theory) can be neglected.
DEFF Research Database (Denmark)
Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming
2012-01-01
Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM......) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation...... and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically...
Modeling the summertime Arctic cloudy boundary layer
Energy Technology Data Exchange (ETDEWEB)
Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)
1996-04-01
Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.
Surface modes in sheared boundary layers over impedance linings
Brambley, E. J.
2013-08-01
Surface modes, being duct modes localized close to the duct wall, are analysed within a lined cylindrical duct with uniform flow apart from a thin boundary layer. As well as full numerical solutions of the Pridmore-Brown equation, simplified mathematical models are given where the duct lining and boundary layer are lumped together and modelled using a single boundary condition (a modification of the Myers boundary condition previously proposed by the author), from which a surface mode dispersion relation is derived. For a given frequency, up to six surface modes are shown to exist, rather than the maximum of four for uniform slipping flow. Not only is the different number and behaviour of surface modes important for frequency-domain mode-matching techniques, which depend on having found all relevant modes during matching, but the thin boundary layer is also shown to lead to different convective and absolute stability than for uniform slipping flow. Numerical examples are given comparing the predictions of the surface mode dispersion relation to full solutions of the Pridmore-Brown equation, and the accuracy with which surface modes are predicted is shown to be significantly increased compared with the uniform slipping flow assumption. The importance of not only the boundary layer thickness but also its profile (tanh or linear) is demonstrated. A Briggs-Bers stability analysis is also performed under the assumption of a mass-spring-damper or Helmholtz resonator impedance model.
THE EFFECT OF BOUNDARY SHAPE ON BOUNDARY LAYER OF P-MODEL PLATEPROBLEMS WITH HARD SIMPLY SUPPORT
Institute of Scientific and Technical Information of China (English)
LILIKANG; CHENJIUHUA
1996-01-01
The paper shows that: for a unit circular plate: Reissner-Mindlin plate model with hardsimply support does not capture the boundary, layer behaviour for the bending moment whenthe load is independent of θ, where (r,θ) is the polar coordinates in plane. In contrast p-modelshows this boundary layer, which is proved theoretically and numerically. But for the case whenthe boundary is a straight line, the boundary layer for p-model is weak and disappears as thePlate thickness tends to zero.
Stability of separating subsonic boundary layers
Masad, Jamal A.; Nayfeh, Ali H.
1994-01-01
The primary and subharmonic instabilities of separating compressible subsonic two-dimensional boundary layers in the presence of a two-dimensional roughness element on a flat plate are investigated. The roughness elements considered are humps and forward- and backward-facing steps. The use of cooling and suction to control these instabilities is studied. The similarities and differences between the instability characteristics of separating boundary layers and those of the boundary layer over a flat plate with a zero pressure gradient are pointed out and discussed. The theoretical results agree qualitatively and quantitatively with the experimental data of Dovgal and Kozlov. Cooling and suction decrease the growth rates of primary and subharmonic waves in the attached-flow regions but increase them in the separated-flow regions.
Boundary layer physics over snow and ice
Directory of Open Access Journals (Sweden)
P. S. Anderson
2007-06-01
Full Text Available A general understanding of the physics of advection and turbulent mixing within the near surface atmosphere assists the interpretation and predictive power of air chemistry theory. The theory of the physical processes involved in diffusion of trace gas reactants in the near surface atmosphere is still incomplete. Such boundary layer theory is least understood over snow and ice covered surfaces, due in part to the thermo-optical properties of the surface. Polar boundary layers have additional aspects to consider, due to the possibility of long periods without diurnal forcing and enhanced Coriolis effects.
This paper provides a review of present concepts in polar boundary layer meteorology, which will generally apply to atmospheric flow over snow and ice surfaces. It forms a companion paper to the chemistry review papers in this special issue of ACP.
Boundary layer heights derived from velocity spectra
Energy Technology Data Exchange (ETDEWEB)
Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)
1997-10-01
It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)
Thickness and dielectric constant determination of thin dielectric layers
Bruijn, de Helene E.; Minor, Marcel; Kooyman, Rob P.H.; Greve, Jan
1993-01-01
We derive a method for the determination of the dielectric constant and thickness of a thin dielectric layer, deposited on top of a thick dielectric layer which is in turn present on a metal film. Reflection of p- and s-polarized light from the metal layer yields minima for certain angles of inciden
Boundary-layer model of pattern formation in solidification
Ben-Jacob, E.; Goldenfeld, N.; Langer, J. S.; Schon, G.
1984-01-01
A model of pattern formation in crystal growth is proposed, and its analytic properties are investigated. The principal dynamical variables in this model are the curvature of the solidification front and the thickness (or heat content) of a thermal boundary layer, both taken to be functions of position along the interface. This model is mathematically much more tractable than the realistic, fully nonlocal version of the free-boundary problem, and still recaptures many of the features that seem essential for studying dendritic behavior, for example. Preliminary numerical solutions produce snowflakelike patterns similar to those seen in nature.
Acoustic Radiation From a Mach 14 Turbulent Boundary Layer
Zhang, Chao; Duan, Lian; Choudhari, Meelan M.
2016-01-01
Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.
Excimer emission from cathode boundary layer discharges
Moselhy, Mohamed; Schoenbach, Karl H.
2004-02-01
The excimer emission from direct current glow discharges between a planar cathode and a ring-shaped anode of 0.75 and 1.5 mm diameter, respectively, separated by a gap of 250 μm, was studied in xenon and argon in a pressure range from 75 to 760 Torr. The thickness of the "cathode boundary layer" plasma, in the 100 μm range, and a discharge sustaining voltage of approximately 200 V, indicates that the discharge is restricted to the cathode fall and the negative glow. The radiant excimer emittance at 172 nm increases with pressure and reaches a value of 4 W/cm2 for atmospheric pressure operation in xenon. The maximum internal efficiency, however, decreases with pressure having highest values of 5% for 75 Torr operation. When the discharge current is reduced below a critical value, the discharge in xenon changes from an abnormal glow into a mode showing self-organization of the plasma. Also, the excimer spectrum changes from one with about equal contributions from the first and second continuum to one that is dominated by the second continuum emission. The xenon excimer emission intensity peaks at this discharge mode transition. In the case of argon, self-organization of the plasma was not seen, but the emission of the excimer radiation (128 nm) again shows a maximum at the transition from abnormal to normal glow. As was observed with xenon, the radiant emittance of argon increases with pressure, and the efficiency decreases. The maximum radiant emittance is 1.6 W/cm2 for argon at 600 Torr. The maximum internal efficiency is 2.5% at 200 Torr. The positive slope of the current-voltage characteristics at maximum excimer emission in both cases indicates the possibility of generating intense, large area, flat excimer lamps.
Atmospheric Boundary Layers: Modeling and Parameterization
Holtslag, A.A.M.
2015-01-01
In this contribution we deal with the representation of the atmospheric boundary layer (ABL) for modeling studies of weather, climate, and air quality. As such we review the major characteristics of the ABL, and summarize the basic parameterizations for the description of atmospheric turbulence and
Boundary layer control device for duct silencers
Schmitz, Fredric H. (Inventor); Soderman, Paul T. (Inventor)
1993-01-01
A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations.
Astrophysical Boundary Layers: A New Picture
Belyaev, Mikhail; Rafikov, Roman R.; Mclellan Stone, James
2016-04-01
Accretion is a ubiquitous process in astrophysics. In cases when the magnetic field is not too strong and a disk is formed, accretion can proceed through the mid plane all the way to the surface of the central compact object. Unless that compact object is a black hole, a boundary layer will be formed where the accretion disk touches its surfaces. The boundary layer is both dynamically and observationally significant as up to half of the accretion energy is dissipated there.Using a combination of analytical theory and computer simulations we show that angular momentum transport and accretion in the boundary layer is mediated by waves. This breaks with the standard astrophysical paradigm of an anomalous turbulent viscosity that drives accretion. However, wave-mediated angular momentum transport is a natural consequence of "sonic instability." The sonic instability, which we describe analytically and observe in our simulations, is a close cousin of the Papaloizou-Pringle instability. However, it is very vigorous in the boundary layer due to the immense radial velocity shear present at the equator.Our results are applicable to accreting neutron stars, white dwarfs, protostars, and protoplanets.
Comments on Hypersonic Boundary-Layer Transition
1990-09-01
laver transition results from instabilities as described by linear stability theory, then the disturbance growth historias follow a prescribed...mechanism by which boundary-layer disturbance growth is generally initiated and establishes the initial distur- banca amplitude at the onset of disturbance
Global stability analysis of axisymmetric boundary layers
Vinod, N
2016-01-01
This paper presents the linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inlet. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes(LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes are nega...
The influence of boundary layers on supersonic inlet flow unstart induced by mass injection
Do, Hyungrok; Im, Seong-Kyun; Mungal, M. Godfrey; Cappelli, Mark A.
2011-09-01
A transverse jet is injected into a supersonic model inlet flow to induce unstart. Planar laser Rayleigh scattering from condensed CO2 particles is used to visualize flow dynamics during the unstart process, while in some cases, wall pressure traces are simultaneously recorded. Studies conducted over a range of inlet configurations reveal that the presence of turbulent wall boundary layers strongly affect the unstart dynamics. It is found that relatively thick turbulent boundary layers in asymmetric wall boundary layer conditions prompt the formation of unstart shocks; in symmetric boundary conditions lead to the propagation of pseudo-shocks; and in both cases facilitate fast inlet unstart, when compared with thin, laminar boundary layers. Incident shockwaves and associated reflections are found to affect the speed of pressure disturbances. These disturbances, which induce boundary layer separation, are found to precede the formation of unstart shocks. The results confirm the importance of and need to better understand shock-boundary layer interactions in inlet unstart dynamics.
Controls on boundary layer ventilation: Boundary layer processes and large-scale dynamics
Sinclair, V. A.; Gray, S. L.; Belcher, S. E.
2010-06-01
Midlatitude cyclones are important contributors to boundary layer ventilation. However, it is uncertain how efficient such systems are at transporting pollutants out of the boundary layer, and variations between cyclones are unexplained. In this study 15 idealized baroclinic life cycles, with a passive tracer included, are simulated to identify the relative importance of two transport processes: horizontal divergence and convergence within the boundary layer and large-scale advection by the warm conveyor belt. Results show that the amount of ventilation is insensitive to surface drag over a realistic range of values. This indicates that although boundary layer processes are necessary for ventilation they do not control the magnitude of ventilation. A diagnostic for the mass flux out of the boundary layer has been developed to identify the synoptic-scale variables controlling the strength of ascent in the warm conveyor belt. A very high level of correlation (R2 values exceeding 0.98) is found between the diagnostic and the actual mass flux computed from the simulations. This demonstrates that the large-scale dynamics control the amount of ventilation, and the efficiency of midlatitude cyclones to ventilate the boundary layer can be estimated using the new mass flux diagnostic. We conclude that meteorological analyses, such as ERA-40, are sufficient to quantify boundary layer ventilation by the large-scale dynamics.
Numerical methods for hypersonic boundary layer stability
Malik, M. R.
1990-01-01
Four different schemes for solving compressible boundary layer stability equations are developed and compared, considering both the temporal and spatial stability for a global eigenvalue spectrum and a local eigenvalue search. The discretizations considered encompass: (1) a second-order-staggered finite-difference scheme; (2) a fourth-order accurate, two-point compact scheme; (3) a single-domain Chebychev spectral collocation scheme; and (4) a multidomain spectral collocation scheme. As Mach number increases, the performance of the single-domain collocation scheme deteriorates due to the outward movement of the critical layer; a multidomain spectral method is accordingly designed to furnish superior resolution of the critical layer.
Quantification of retinal layer thickness changes in acute macular neuroretinopathy
DEFF Research Database (Denmark)
Munk, Marion R; Beck, Marco; Kolb, Simone
2017-01-01
PURPOSE: To quantitatively evaluate retinal layer thickness changes in acute macular neuroretinopathy (AMN). METHODS: AMN areas were identified using near-infrared reflectance (NIR) images. Intraretinal layer segmentation using Heidelberg software was performed. The inbuilt ETDRS -grid was moved ...
Hair receptor sensitivity to changes in laminar boundary layer shape
Energy Technology Data Exchange (ETDEWEB)
Dickinson, B T, E-mail: btdickinson@lifetime.oregonstate.ed [Air Force Research Laboratory, Munitions Directorate, Eglin Air Force Base, FL 32542 (United States)
2010-03-15
Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.
Hair receptor sensitivity to changes in laminar boundary layer shape.
Dickinson, B T
2010-03-01
Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.
DNS of stratified spatially-developing turbulent thermal boundary layers
Araya, Guillermo; Castillo, Luciano; Jansen, Kenneth
2012-11-01
Direct numerical simulations (DNS) of spatially-developing turbulent thermal boundary layers under stratification are performed. It is well known that the transport phenomena of the flow is significantly affected by buoyancy, particularly in urban environments where stable and unstable atmospheric boundary layers are encountered. In the present investigation, the Dynamic Multi-scale approach by Araya et al. (JFM, 670, 2011) for turbulent inflow generation is extended to thermally stratified boundary layers. Furthermore, the proposed Dynamic Multi-scale approach is based on the original rescaling-recycling method by Lund et al. (1998). The two major improvements are: (i) the utilization of two different scaling laws in the inner and outer parts of the boundary layer to better absorb external conditions such as inlet Reynolds numbers, streamwise pressure gradients, buoyancy effects, etc., (ii) the implementation of a Dynamic approach to compute scaling parameters from the flow solution without the need of empirical correlations as in Lund et al. (1998). Numerical results are shown for ZPG flows at high momentum thickness Reynolds numbers (~ 3,000) and a comparison with experimental data is also carried out.
Bandgap tunability at single-layer molybdenum disulphide grain boundaries
Huang, Yu Li
2015-02-17
Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.
Bursting frequency prediction in turbulent boundary layers
Energy Technology Data Exchange (ETDEWEB)
LIOU,WILLIAM W.; FANG,YICHUNG
2000-02-01
The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.
Particulate plumes in boundary layers with obstacles
Petrosyan, Arakel; Karelsky, Kirill
2013-04-01
This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by non-slip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of big wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations.We deal with describing big field
The Layer Boundary Effect on Multi-Layer Mesoporous TiO2 Film Based Dye Sensitized Solar Cells
Energy Technology Data Exchange (ETDEWEB)
Xu, Feng; Zhu, Kai; Zhao, Yixin
2016-10-01
Multi-layer mesoporous TiO2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). We compare the three types of ~10 um thick mesoporous TiO2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layered mesoporous TiO2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO2 based DSSCs.
Turbulent dispersion in cloud-topped boundary layers
Verzijlbergh, R.A.; Jonker, H.J.J.; Heus, T.; Vilà-Guerau de Arellano, J.
2009-01-01
Compared to dry boundary layers, dispersion in cloud-topped boundary layers has received less attention. In this LES based numerical study we investigate the dispersion of a passive tracer in the form of Lagrangian particles for four kinds of atmospheric boundary layers: 1) a dry convective boundary
Simon, T. W.; Moffat, R. J.
1981-01-01
Surface heat transfer rates have been measured for several different flows on an isothermal, convexly curved surface. The freestream velocity, boundary layer thickness, acceleration parameter, and unheated starting length were varied systematically, and both turbulent and transitional boundary layers were studied. The effect of convex curvature on heat transfer rates is significant with Stanton numbers reduced 20-25% below flat wall values for the same enthalpy thickness Reynolds number. Heat transfer rates recovered slowly on a flat wall downstream of the curved wall, and after 60 cm, the Stanton numbers were still 15-20% below flat wall values. The behavior of the boundary layer suggests the existence of an asymptotic condition. Boundary layer thickness, freestream velocity, and boundary layer maturity affect the initial response to the introduction of curvature and the rate at which the asymptotic state is approached. Convex curvature appears to increase the boundary layer's sensitivity to acceleration; it also delays and retards transition. Near-laminar or early-transitional boundary layers recover from curvature rapidly, whereas late-transitional and mature boundary layers recover slowly.
Supersonic Turbulent Boundary Layer: DNS and RANS
Institute of Scientific and Technical Information of China (English)
XU Jing-Lei; MA Hui-Yang
2007-01-01
We assess the performance of a few turbulence models for Reynolds averaged Navier-Stokes (RANS) simulation of supersonic boundary layers, compared to the direct numerical simulations (DNS) of supersonic flat-plate turbulent boundary layers, carried out by Gao et al. [Chin. Phys. Lett. 22 (2005) 1709] and Huang et al. [Sci.Chin. 48 (2005) 614], as well as some available experimental data. The assessment is made for two test cases, with incoming Mach numbers and Reynolds numbers M = 2.25, Re = 365, 000/in, and M = 4.5, Re - 1.7 × 107/m,respectively. It is found that in the first case the prediction of RANS models agrees well with the DNS and the experimental data, while for the second case the agreement of the DNS models with experiment is less satisfactory.The compressibility effect on the RANS models is discussed.
MHD Turbulence in Accretion Disk Boundary Layers
Chan, Chi-kwan
2012-01-01
The physical modeling of the accretion disk boundary layer, the region where the disk meets the surface of the accreting star, usually relies on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity, widely adopted in astrophysics, satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability is inefficient in this inner disk region. I will discuss the results of a recent study on the generation of hydromagnetic stresses and energy density in the boundary layer around a weakly magnetized star. Our findings suggest that although magnetic energy density can be significantly amplified in this region, angular momentum transport is rather inefficient. This seems consistent with the results obtained in numerical simulations...
Active control of ionized boundary layers
Mendes, R V
1997-01-01
The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.
BOREAS AFM-6 Boundary Layer Height Data
Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
Goertler instability. [for boundary layer flow over curved walls
Ragab, S. A.; Nayfeh, A. H.
1981-01-01
Goertler instability for boundary-layer flows over generally curved walls is considered. The full-linearized disturbance equations are obtained in an orthogonal curvilinear coordinate system. A perturbation procedure to account for second-order effects is used to determine the effects of the displacement thickness and the variation of the streamline curvature on the neutral stability of the Blasius flow. The streamwise pressure gradient in the mean flow is accounted for by solving the nonsimilar boundary-layer equations. Growth rates are obtained for the actual mean flow and compared with those for the Blasius flow and the Falkner-Skan flows. The results demonstrate the strong influence of the streamwise pressure gradient and the nonsimilarity of the basic flow on the stability characteristics.
Experimental studies on transitional separated boundary layers
Serna Serrano, José
2013-01-01
Separated transitional boundary layers appear on key aeronautical processes such as the flow around wings or turbomachinery blades. The aim of this thesis is the study of these flows in representative scenarios of technological applications, gaining knowledge about phenomenology and physical processes that occur there and, developing a simple model for scaling them. To achieve this goal, experimental measurements have been carried out in a low speed facility, ensuring the flow homogeneity and...
2007 Program of Study: Boundary Layers
2008-06-01
PM Coalescence of charged water droplets Andrew Belmonte, Pennsylvania State University August 9 - 10:30 AM Multiscale analysis of strongly...Properties of Helium Near the Liquid-Vapor Critical Point. J. low Temp. Phys. 46, 115-135. [15] Polezhaev, V. I. and Soboleva, E. B. 2004 Rayleigh...through which potassium permanganate was added in most of the experiments in order to detect a possible appearance of boundary layer separation and
Instabilities and transition in boundary layers
Indian Academy of Sciences (India)
N Vinod; Rama Govindarajan
2005-03-01
Some recent developments in boundary layer instabilities and transition are reviewed. Background disturbance levels determine the instability mechanism that ultimately leads to turbulence. At low noise levels, the traditional Tollmien–Schlichting route is followed, while at high levels, a `by-pass' route is more likely. Our recent work shows that spot birth is related to the pattern of secondary instability in either route.
Clear-air radar observations of the atmospheric boundary layer
Ince, Turker
2001-10-01
This dissertation presents the design and operation of a high-resolution frequency-modulated continuous-wave (FM- CW) radar system to study the structure and dynamics of clear-air turbulence in the atmospheric boundary layer (ABL). This sensitive radar can image the vertical structure of the ABL with both high spatial and temporal resolutions, and provide both qualitative information about the morphology of clear-air structures and quantitative information on the intensity of fluctuations in refractive-index of air. The principles of operation and the hardware and data acquisition characteristics of the radar are described in the dissertation. In October 1999, the radar participated in the Cooperative Atmosphere-Surface Exchange Study (CASES'99) Experiment to characterize the temporal structure and evolution of the boundary-layer features in both convective and stable conditions. The observed structures include clear-air convection, boundary layer evolution, gravity waves, Kelvin-Helmholtz instabilities, stably stratified layers, and clear-air turbulence. Many of the S-band radar images also show high- reflectivity returns from Rayleigh scatterers such as insects. An adaptive median filtering technique based on local statistics has, therefore, been developed to discriminate between Bragg and Rayleigh scattering in clear-air radar observations. The filter is tested on radar observations of clear air convection with comparison to two commonly used image processing techniques. The dissertation also examines the statistical mean of the radar-measured C2n for clear-air convection, and compares it with the theoretical predictions. The study also shows that the inversion height, local thickness of the inversion layer, and the height of the elevated atmospheric layers can be estimated from the radar reflectivity measurements. In addition, comparisons to the radiosonde-based height estimates are made. To examine the temporal and spatial structure of C2n , the dissertation
Laboratory experiments on diffusive convection layer thickness and its oceanographic implications
Guo, Shuang-Xi; Zhou, Sheng-Qi; Qu, Ling; Lu, Yuan-Zheng
2016-10-01
We studied the thickness of diffusive convective layers that form when a linearly stratified fluid is subjected to heating from below in the laboratory. The thickness of the bottom convecting layer is much larger than subsequent layers. These thicknesses are systematically identified and used to examine the available convecting layer thickness parameterizations, which are consisted of the measured heat flux F (or thermal buoyancy flux qT), initial stratification N, density ratio Rρ, thermal diffusivity κT, etc. Parameterization with an intrinsic length scale >(qT3κ/TN8)1/4 is shown to be superior. Including the present laboratory convecting layer thicknesses and those observed in oceans and lakes, where layer thickness ranges from 0.01 to 1000 m, the parameterization is updated as H=C>(Rρ-1>)2>(qT3κ/TN8)1/4, where C = 38.3 for the bottom convective layer and 10.8 for the subsequent layers. Different prefactors are proposed to be attributed to different convective instabilities induced by different boundary conditions.
Kelvin-Helmholtz instability in the magnetopause-boundary layer region
Lee, L. C.; Albano, R. K.; Kan, J. R.
1981-01-01
The Kelvin-Helmholtz instability in the magnetopause-boundary layer region is studied on the basis of an idealized model which consists of three uniform plasma regions: the magnetosheath, the boundary layer, and the magnetosphere. There are two unstable modes in the magnetopause-boundary layer region: one is excited at the magnetopause (the magnetopause mode) and the other is excited at the inner surface of the boundary layer (the inner mode). The inner mode is found to be unstable most of the time, while the excitation of the magnetopause mode depends on the magnetic field in the magnetosheath. The observed variation of the boundary layer thickness can be attributed to the unstable inner mode. Possible relationships between the Pc 3-5 geomagnetic pulsations and the surface waves excited on the magnetospheric boundary are also discussed.
MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate
Institute of Scientific and Technical Information of China (English)
Krishnendu Bhattacharyya; Swati Mukhopadhyay; G.C.Layek
2011-01-01
An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented. A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method. In the boundary slip condition no local similarity occurs. Velocity and temperature distributions within the boundary layer are presented. Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate.%@@ An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented.A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method.In the boundary slip condition no local similarity occurs.Velocity and temperature distributions within the boundary layer are presented.Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate.
A global boundary-layer height climatology
Energy Technology Data Exchange (ETDEWEB)
Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)
1997-10-01
In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)
Leaky waves in boundary layer flow
Pralits, Jan
2005-11-01
Linear stability analysis of boundary layer flow is traditionally performed by solving the Orr-Sommerfeld equation (OSE), either in a temporal or a spatial framework. The mode structure of the OSE is in both cases composed of a finite number of discrete modes which decay at infinity in the wall- normal direction y, and a continuous spectrum of propagating modes behaving as (±ik y) when y->∞, with real k. A peculiarity of this structure is that the number of discrete modes changes with the Reynolds number, Re. They indeed seem to disappear behind the continuous spectrum at certain Re. This phenomenon is here investigated by studying the response of the Blasius boundary layer forced instantaneously in space and time. Since the solution of the forced and homogeneous Laplace-transformed problem both depend on the free-stream boundary conditions, it is shown here that a suitable change of variables can remove the branch cut in the Laplace plane. As a result, integration of the inverse Laplace transform along the two sides of the branch cut, which gives rise to the continuous spectrum, can be replaced by a sum of residues corresponding to an additional set of discrete eigenvalues. These new modes grow at infinity in the y direction, and are analogous to the leaky waves found in the theory of optical waveguides, i.e. optical fibers, which are attenuated in the direction of the waveguide but grow unbounded in the direction perpendicular to it.
Study on Folds of Equal Thickness Multi-layer Sandwiched in Different Thickness Media
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The theoretical model and non-homogeneous differential equation of equal thickness multi-layer folds sandwiched in different thickness and same character media are established by elastic and plastic mechanics. The special answer of the non-homogeneous differential equation and the common answer of the homogeneous differential equation are deduced by applying logistic equation and special function, and the dominant wavelength theory of equal thickness multi-layer folds sandwiched in different thickness and same character media. In addition, the experimental folding in both elastic and sticky materials proves the dominant wavelength theory.
A Coordinate Transformation for Unsteady Boundary Layer Equations
Directory of Open Access Journals (Sweden)
Paul G. A. CIZMAS
2011-12-01
Full Text Available This paper presents a new coordinate transformation for unsteady, incompressible boundary layer equations that applies to both laminar and turbulent flows. A generalization of this coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently derived. In addition, the boundary layer equations are derived using a time linearization approach and assuming harmonically varying small disturbances.
Stability of three-dimensional boundary layers
Nayfeh, A. H.
1979-01-01
A theory is presented for the three-dimensional stability of boundary layers. Equations are derived for the evolution of a disturbance having a given frequency and originating at a given curve. These equations are used to determine the rays along which the disturbance energy propagates. It is shown that the results can be obtained by using the saddle-point method, or kinematic wave theory, or the method of multiple scales. Extension of the theory to the case of a wave packet is also presented.
Thickness of the retinal nerve fiber layer in primate eyes.
Radius, R L
1980-09-01
Thickness of the retinal nerve fiber layer is studied in the eyes of three primate species. Measurements are made at various points throughout the fundus, including the peripapillary, arcuate, macular (area centralis), equatorial, and peripheral parts of the retina. Anatomic findings are compared with the clinical appearance of retinal light reflexes in these way. It is proposed that the nature of this light reflex is, in part, determined by the thickness of the retinal nerve fiber layer.
Determination of thin layer thickness from alpha particle energy spectra
Energy Technology Data Exchange (ETDEWEB)
Hnatowicz, V.; Kvitek, J. (Ceskoslovenska Akademie Ved, Prague. Ustav pro Elektrotechniku); Rybka, V.; Krejci, P. (Tesla, Prague (Czechoslovakia). Vyzkumny Ustav pro Sdelovaci Techniku); Pelikan, L. (Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Elektrotechnicka); Mikusik, P. (Ceskoslovenska Akademie Ved, Prague. Ustav Fyzikalni Chemie a Elektrochemie J. Heyrovskeho)
1982-10-01
A method which uses alpha particles from the /sup 10/B(n,alpha)/sup 7/Li nuclear reaction for the determination of surface layer thicknesses is described and experimentally checked. The thickness measurements can be performed on samples implanted with boron.
Homogeneity of Residual Layer thickness in UV Nanoimprint Lithography
Hiroshima, Hiroshi; Atobe, Hidemasa
2009-06-01
In nanoimprint lithography, control of residual layer thickness is a very important issue. Pattern density variation is inconvenient for nanoimprint lithography but UV nanoimprint is considered more adaptive to pattern density variation thanks to the higher fluidity of UV-curable resin. Despite this consideration, methods to overcome pattern density problems have been developed and adopted in UV nanoimprint lithography. These methods work well; however, it is still remains there a question of whether residual layer thickness uniformity is improved without such methods. In this study, UV nanoimprint is carried out using a conformable contact mechanism, and the impact of pattern density variation and pressing time of nanoimprint on the residual layer profile is investigated for an initially thin UV-curable resin. After recess filling, UV-curable resin moves very locally so as to make the residual layer smoothly change, but does not move sufficiently for the residual layer to be modified across the entire imprint field. For a longer pressing time, the residual layer thickness is decreased only at the edges. A small amount of the UV-curable resin was expelled from the mold, but most was retained between the mold and wafer, and the UV-curable resin moved inward. For realization of a thin and uniform residual layer, the residual layer must be thin throughout the imprint field from the beginning of the pressing process; otherwise the resulting residual layer that is thick only at peripheral regions must be thinned by a long pressing time.
Lumley decomposition of turbulent boundary layer at high Reynolds numbers
Tutkun, Murat; George, William K.
2017-02-01
The decomposition proposed by Lumley in 1966 is applied to a high Reynolds number turbulent boundary layer. The experimental database was created by a hot-wire rake of 143 probes in the Laboratoire de Mécanique de Lille wind tunnel. The Reynolds numbers based on momentum thickness (Reθ) are 9800 and 19 100. Three-dimensional decomposition is performed, namely, proper orthogonal decomposition (POD) in the inhomogeneous and bounded wall-normal direction, Fourier decomposition in the homogeneous spanwise direction, and Fourier decomposition in time. The first POD modes in both cases carry nearly 50% of turbulence kinetic energy when the energy is integrated over Fourier dimensions. The eigenspectra always peak near zero frequency and most of the large scale, energy carrying features are found at the low end of the spectra. The spanwise Fourier mode which has the largest amount of energy is the first spanwise mode and its symmetrical pair. Pre-multiplied eigenspectra have only one distinct peak and it matches the secondary peak observed in the log-layer of pre-multiplied velocity spectra. Energy carrying modes obtained from the POD scale with outer scaling parameters. Full or partial reconstruction of turbulent velocity signal based only on energetic modes or non-energetic modes revealed the behaviour of urms in distinct regions across the boundary layer. When urms is based on energetic reconstruction, there exists (a) an exponential decay from near wall to log-layer, (b) a constant layer through the log-layer, and (c) another exponential decay in the outer region. The non-energetic reconstruction reveals that urms has (a) an exponential decay from the near-wall to the end of log-layer and (b) a constant layer in the outer region. Scaling of urms using the outer parameters is best when both energetic and non-energetic profiles are combined.
Compressibility Effects in Turbulent Boundary Layers
Institute of Scientific and Technical Information of China (English)
CAO Yu-Hui; PEI Jie; CHEN Jun; SHE Zhen-Su
2008-01-01
Local cascade (LC) scheme and space-time correlations are used to study turbulent structures and their convection behaviour in the near-wall region of compressible boundary layers at Ma = 0.8 and 1.3. The convection velocities of fluctuating velocity components u (streamwise) and v (vertical) are investigated by statistically analysing scale-dependent ensembles of LC structures. The results suggest that u is convected with entropy perturbations while v with an isentropic process. An abnormal thin layer distinct from the conventional viscous sub-layer is discovered in the immediate vicinity of the wall (y+≤1) in supersonic flows. While in the region 1 ＜ y+ ＜ 30,streamwise streaks dominate velocity, density and temperature fluctuations, the abnormal thin layer is dominated by spanwise streaks in vertical velocity and density fluctuations, where pressure and density fluctuations are strongly correlated. The LC scheme is proven to be effective in studying the nature of supersonic flows and compressibility effects on wall-bounded motions.
Turbulent Plasmaspheric Boundary Layer: Observables and Consequences
Mishin, Evgeny
2014-10-01
In situ satellite observations reveal strong lower hybrid/fast magnetosonic turbulence and broadband hiss-like VLF waves in the substorm subauroral geospace at and earthward of the electron plasmasheet boundary. These coincide with subauroral ion drifts/polarization streams (SAID/SAPS) in the plasmasphere and topside ionosphere. SAID/SAPS appear in ~10 min after the substorm onset consistent with the fast propagation of substorm injection fronts. The SAID channel follows the dispersionless cutoff of the energetic electron flux at the plasmapause. This indicates that the cold plasma maintains charge neutrality within the channel, thereby short-circuiting the injected plasma jet (injection fronts over the plasmasphere. Plasma turbulence leads to the circuit resistivity and magnetic diffusion as well as significant electron heating and acceleration. As a result, a turbulent boundary layer forms between the inner edge of the electron plasmasheet and plasmasphere. The SAID/SAPS-related VLF emissions appear to constitute a distinctive subset of substorm/storm-related VLF activity in the region co-located with freshly injected energetic ions inside the plasmasphere. Significant pitch-angle diffusion coefficients suggest that substorm SAID/SAPS-related VLF waves could be responsible for the alteration of the outer radiation belt boundary during (sub)storms. Supported by the Air Force Office of Scientific Research.
Turbulent boundary layer over a chine.
Panchapakesan, N. R.; Joubert, P. N.
1999-11-01
The flow over an edge aligned with the streamwise direction is studied as a representative of the turbulent boundary layers developing over hard chines found on the hulls of ships and catamarans. We present results of a traditional experimental investigation of this geometry in a wind tunnel with pitot tubes and hot-wires. The chine model consisted of two surfaces made of varnished fibre boards with leading edges of airfoil sections and a 90 degree corner. The boundary layer was tripped with wires close to the leading edge. The model was housed in a test section of length 6.5 m in a closed circuit wind tunnel. The experiments were conducted at a unit Reynolds number of 680,000 /m corresponding to a nominal free stream velocity of 10 m/s. The mean velocity field and the associated integral parameters obtained with pitot tube measurements are presented for different streamwise locations from 0.2 to 4.7 m from the trip wire. The flow at the two farthest locations were also studied with single and 'x' hot-wires. The secondary mean flow and the turbulence field in the corner region are described with these measurements.
Nagata, Kouji; Sakai, Yasuhiko; Komori, Satoru
2011-06-01
Effects of weak, small-scale freestream turbulence on turbulent boundary layers with and without thermal convection are experimentally investigated using a wind tunnel. Two experiments are carried out: the first is isothermal boundary layers with and without grid turbulence, and the second is non-isothermal boundary layers with and without grid turbulence. Both boundary layers develop under a small favorable pressure gradient. For the latter case, the bottom wall of the test section is heated at a constant wall temperature to investigate the effects of thermal convection under the effects of freestream turbulence. For both cases, the turbulence intensity in the freestream is Tu = 1.3% ˜ 2.4%, and the integral length scale of freestream turbulence, L∞, is much smaller than the boundary layer thickness δ, i.e., L∞/δ ≪1. The Reynolds numbers Reθ based on the momentum thickness and freestream speed U∞ are Reθ = 560, 1100, 1310, and 2330 in isothermal boundary layers without grid turbulence. Instantaneous velocities, U and V, and instantaneous temperature T are simultaneously measured using a hot-wire anemometry and a constant-current resistance thermometer. The results show that the rms velocities and Reynolds shear stress normalized by the friction velocity are strongly suppressed by the freestream turbulence throughout the boundary layer in both isothermal and non-isothermal boundary layers. In the non-isothermal boundary layers, the normalized rms temperature and vertical turbulent heat flux are also strongly suppressed by the freestream turbulence. Turbulent momentum and heat transfer at the wall are enhanced by the freestream turbulence and the enhancement is notable in unstable stratification. The power spectra of u, v, and θ and their cospectra show that motions of almost all scales are suppressed by the freestream turbulence in both the isothermal and non-isothermal boundary layers.
Turbulent Boundary Layer on a Cylinder in Axial Flow
1988-09-29
8/a and x/a were estimated based on information presented in each paper. The studies listed are in order of decreasing curvature ratio, &a. The...boundar) layer is fundamental, yet difficult. Very little information is available on the structure of turbulence in a cylindrical boundary layer, although...Engineering Science Company, Pasadena, CA, 1962.) 4. B. C. Sakiadis, "Boundary-Layer Behavoir on Continuous Solid Surfaces: Ill. The Boundary Layer on a
PIV-based pressure fluctuations in the turbulent boundary layer
Ghaemi, Sina; Ragni, Daniele; Scarano, Fulvio
2012-12-01
The unsteady pressure field is obtained from time-resolved tomographic particle image velocimetry (Tomo-PIV) measurement within a fully developed turbulent boundary layer at free stream velocity of U ∞ = 9.3 m/s and Reθ = 2,400. The pressure field is evaluated from the velocity fields measured by Tomo-PIV at 10 kHz invoking the momentum equation for unsteady incompressible flows. The spatial integration of the pressure gradient is conducted by solving the Poisson pressure equation with fixed boundary conditions at the outer edge of the boundary layer. The PIV-based evaluation of the pressure field is validated against simultaneous surface pressure measurement using calibrated condenser microphones mounted behind a pinhole orifice. The comparison shows agreement between the two pressure signals obtained from the Tomo-PIV and the microphones with a cross-correlation coefficient of 0.6 while their power spectral densities (PSD) overlap up to 3 kHz. The impact of several parameters governing the pressure evaluation from the PIV data is evaluated. The use of the Tomo-PIV system with the application of three-dimensional momentum equation shows higher accuracy compared to the planar version of the technique. The results show that the evaluation of the wall pressure can be conducted using a domain as small as half the boundary layer thickness (0.5δ99) in both the streamwise and the wall normal directions. The combination of a correlation sliding-average technique, the Lagrangian approach to the evaluation of the material derivative and the planar integration of the Poisson pressure equation results in the best agreement with the pressure measurement of the surface microphones.
Linear Controllers for Turbulent Boundary Layers
Lim, Junwoo; Kim, John; Kang, Sung-Moon; Speyer, Jason
2000-11-01
Several recent studies have shown that controllers based on a linear system theory work surprisingly well in turbulent flows, suggesting that a linear mechanism may play an important role even in turbulent flows. It has been also shown that non-normality of the linearized Navier-Stokes equations is an essential characteristic in the regeneration of near-wall turbulence structures in turbulent boundary layers. A few controllers designed to reduce the role of different linear mechanisms, including that to minimize the non-normality of the linearized Navier-Stokes equations, have been developed and applied to a low Reynolds nubmer turbulent channel flow. A reduced-order model containing the most controllable and observables modes is derived for each system. Other existing control schemes, such as Choi et al's opposition control, have been examined from the point of a linear system control. Further discussion on controller design, such as choice of cost function and other control parameters, will be presented.
Large Eddy Simulation of Transitional Boundary Layer
Sayadi, Taraneh; Moin, Parviz
2009-11-01
A sixth order compact finite difference code is employed to investigate compressible Large Eddy Simulation (LES) of subharmonic transition of a spatially developing zero pressure gradient boundary layer, at Ma = 0.2. The computational domain extends from Rex= 10^5, where laminar blowing and suction excites the most unstable fundamental and sub-harmonic modes, to fully turbulent stage at Rex= 10.1x10^5. Numerical sponges are used in the neighborhood of external boundaries to provide non-reflective conditions. Our interest lies in the performance of the dynamic subgrid scale (SGS) model [1] in the transition process. It is observed that in early stages of transition the eddy viscosity is much smaller than the physical viscosity. As a result the amplitudes of selected harmonics are in very good agreement with the experimental data [2]. The model's contribution gradually increases during the last stages of transition process and the dynamic eddy viscosity becomes fully active and dominant in the turbulent region. Consistent with this trend the skin friction coefficient versus Rex diverges from its laminar profile and converges to the turbulent profile after an overshoot. 1. Moin P. et. al. Phys Fluids A, 3(11), 2746-2757, 1991. 2. Kachanov Yu. S. et. al. JFM, 138, 209-247, 1983.
Turbulent dispersion in cloud-topped boundary layers
Verzijlbergh, R. A.; Jonker, H. J. J.; Heus, T.; Vilöguerau de Arellano, J.
2009-02-01
Compared to dry boundary layers, dispersion in cloud-topped boundary layers has received less attention. In this LES based numerical study we investigate the dispersion of a passive tracer in the form of Lagrangian particles for four kinds of atmospheric boundary layers: 1) a dry convective boundary layer (for reference), 2) a "smoke" cloud boundary layer in which the turbulence is driven by radiative cooling, 3) a stratocumulus topped boundary layer and 4) a shallow cumulus topped boundary layer. We show that the dispersion characteristics of the smoke cloud boundary layer as well as the stratocumulus situation can be well understood by borrowing concepts from previous studies of dispersion in the dry convective boundary layer. A general result is that the presence of clouds enhances mixing and dispersion - a notion that is not always reflected well in traditional parameterization models, in which clouds usually suppress dispersion by diminishing solar irradiance. The dispersion characteristics of a cumulus cloud layer turn out to be markedly different from the other three cases and the results can not be explained by only considering the well-known top-hat velocity distribution. To understand the surprising characteristics in the shallow cumulus layer, this case has been examined in more detail by 1) determining the velocity distribution conditioned on the distance to the nearest cloud and 2) accounting for the wavelike behaviour associated with the stratified dry environment.
Boundary Layer for the Navier-Stokes-alpha Model of Fluid Turbulence
Cheskidov, A.
We study boundary-layer turbulence using the Navier-Stokes-alpha model obtaining an extension of the Prandtl equations for the averaged flow in a turbulent boundary layer. In the case of a zero pressure gradient flow along a flat plate, we derive a nonlinear fifth-order ordinary differential equation, which is an extension of the Blasius equation. We study it analytically and prove the existence of a two-parameter family of solutions satisfying physical boundary conditions. Matching these parameters with the skin-friction coefficient and the Reynolds number based on momentum thickness, we get an agreement of the solutions with experimental data in the laminar and transitional boundary layers, as well as in the turbulent boundary layer for moderately large Reynolds numbers.
Analytical solution for the convectively-mixed atmospheric boundary layer
Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.
2013-01-01
Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation
Study of interaction between shock wave and unsteady boundary layer
Institute of Scientific and Technical Information of China (English)
董志勇; 韩肇元
2003-01-01
This paper reports theoretical and experimental study of a new type of interaction of a moving shock wave with an unsteady boundary layer. This type of shock wave-boundary layer interaction describes a moving shock wave interaction with an unsteady boundary layer induced by another shock wave and a rarefaction wave. So it is different from the interaction of a stationary shock wave with steady boundary layer, also different from the interaction of a reflected moving shock wave at the end of a shock tube with unsteady boundary layer induced by an incident shock. Geometrical shock dynamics is used for the theoretical analysis of the shock wave-unsteady boundary layer interaction, and a double-driver shock tube with a rarefaction wave bursting diaphragm is used for the experimental investigation in this work.
A Cautionary Note on the Thermal Boundary Layer Similarity Scaling for the Turbulent Boundary Layer
Weyburne, David
2016-01-01
Wang and Castillo have developed empirical parameters for scaling the temperature profile of the turbulent boundary layer flowing over a heated wall in the paper X. Wang and L. Castillo, J. Turbul., 4, 1(2003). They presented experimental data plots that showed similarity type behavior when scaled with their new scaling parameters. However, what was actually plotted, and what actually showed similarity type behavior, was not the temperature profile but the defect profile formed by subtracting the temperature in the boundary layer from the temperature in the bulk flow. We show that if the same data and same scaling is replotted as just the scaled temperature profile, similarity is no longer prevalent. This failure to show both defect profile similarity and temperature profile similarity is indicative of false similarity. The nature of this false similarity problem is discussed in detail.
Slow Manifolds and Multiple Equilibria in Stratocumulus-Capped Boundary Layers
Directory of Open Access Journals (Sweden)
Junya Uchida
2010-12-01
Full Text Available In marine stratocumulus-capped boundary layers under strong inversions, the timescale for thermodynamic adjustment is roughly a day, much shorter than the multiday timescale for inversion height adjustment. Slow-manifold analysis is introduced to exploit this timescale separation when boundary layer air columns experience only slow changes in their boundary conditions. Its essence is that the thermodynamic structure of the boundary layer remains approximately slaved to its inversion height and the instantaneous boundary conditions; this slaved structure determines the entrainment rate and hence the slow evolution of the inversion height. Slow-manifold analysis is shown to apply to mixed-layer model and large-eddy simulations of an idealized nocturnal stratocumulus- capped boundary layer; simulations with different initial inversion heights collapse onto single relationships of cloud properties with inversion height. Depending on the initial inversion height, the simulations evolve toward a shallow thin-cloud boundary layer or a deep, well-mixed thick cloud boundary layer. In the large-eddy simulations, these evolutions occur on two separate slow manifolds (one of which becomes unstable if cloud droplet concentration is reduced. Applications to analysis of stratocumulus observations and to pockets of open cells and ship tracks are proposed.
Nonparallel stability of boundary layers with pressure gradients and suction
Saric, W. S.; Nayfeh, A. H.
1977-01-01
An analysis is presented for the linear nonparallel stability of boundary layer flows with pressure gradients and suction. The effect of the boundary layer growth is included by using the method of multiple scales. The present analysis is compared with those of Bouthier and Gaster and the roles of the different definitions of the amplification rates are discussed. The results of these theories are compared with experimental data for the Blasius boundary layer. Calculations are presented for stability characteristics of boundary layers with pressure gradients and nonsimilar suction distributions.
The Boundary Layer Interaction with Shock Wave and Expansion Fan
Institute of Scientific and Technical Information of China (English)
MaratA.Goldfeld; RomanV.Nestoulia; 等
2000-01-01
The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented.They include the study of the shock wave and /or expansion fan action upon the boundary layer,boundary layer sepqartion and its relaxation.Complex events of paired interactions and the flow on compression convex-concave surfaces were studied.The posibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented.Different model configurations for wide range conditions were investigated.Comparison of results for different interactions was carried out.
Control of the Transitional Boundary Layer
Belson, Brandt A.
This work makes advances in the delay of boundary layer transition from laminar to turbulent flow via feedback control. The applications include the reduction of drag over streamline bodies (e.g., airplane wings) and the decrease of mixing and heat transfer (e.g., over turbine blades in jet engines). A difficulty in many fields is designing feedback controllers for high-dimensional systems, be they experiments or high-fidelity simulations, because the required time and resources are too large. A cheaper alternative is to approximate the high-dimensional system with a reduced-order model and design a controller for the model. We implement several model reduction algorithms in "modred", an open source and publicly available library that is applicable to a wide range of problems. We use this library to study the role of sensors and actuators in feedback control of transition in the 2D boundary layer. Previous work uses a feedforward configuration in which the sensor is upstream of the actuator, but we show that the actuator-sensor pair is unsuitable for feedback control due to an inability to sense the exponentially-growing Tollmien-Schlichting waves. A new actuator-sensor pair is chosen that more directly affects and measures the TS waves, and as a result it is effective in a feedback configuration. Lastly, the feedback controller is shown to outperform feedforward controllers in the presence of unmodeled disturbances. Next, we focus on a specific type of actuator, the single dielectric barrier discharge (SDBD) plasma actuator. An array of these plasma actuators is oriented to produce stream-wise vorticity and thus directly cancel the structures with the largest transient growth (so-called stream-wise streaks). We design a feedback controller using only experimental data by first developing an empirical input-output quasi-steady model. Then, we design feedback controllers for the model such that the controllers perform well when applied to the experiment. Lastly, we
Dependence of piezoelectric properties on layer thickness for multilayer actuators
Groen, W.A.; Prijs, K.; Saeed, S.
2010-01-01
In general, it has been reported that the piezoelectric properties in multilayer actuators decrease for layer thicknesses below 20 microns. This has been investigated for PXE55 which is a material based on PLZT-Pb(Mg 1/2W1/2)O3 and PG01 which is a low sintering version of this material. Results show
On the development of turbulent boundary layer with wall transpiration
Ferro, Marco; Downs, Robert S., III; Fallenius, Bengt E. G.; Fransson, Jens H. M.
2015-11-01
An experimental study of the development of the transpired boundary layer in zero pressure gradient is carried out on a 6.4 m long hydrodynamically smooth and perforated plate. The relatively longer development length of the present perforated plate compared to the ones used in previous studies allows us to investigate whether an asymptotic suction boundary layer with constant thickness is achieved for the turbulent state, analogously to what happens in the laminar state. Velocity profiles are obtained via hot-wire anemometry while the wall shear stress is measured at several streamwise locations with hot-film and wall-wire probes as well as with oil-film interferometry. The threshold suction coefficient above which relaminarization starts to occur is examined. The scaling of the mean velocity and of higher order velocity moments is discussed in light of the measured wall shear stress data. Support from the European Research Council of the Advanced Fluid Research On Drag reduction in Turbulence Experiments (AFRODITE) is acknowledged.
Characteristics of the boundary layer of magnetic clouds and a new definition of the cloud boundary
Institute of Scientific and Technical Information of China (English)
WEI; Fengsi(魏奉思); LIU; Rui(刘睿); FAN; Quanlin(范全林); FENG; Xueshang(冯学尚)
2003-01-01
Based on the analysis of the boundaries of 70 magnetic clouds from 1967 to 1998, and relatively complete spacecraft observations, it is indicated that the magnetic cloud boundaries are boundary layers formed through the interaction between the magnetic clouds and the ambient medium. Most of the outer boundaries of the layers, with relatively high proton temperature, density and plasma β, are magnetic reconnection boundaries, while the inner boundaries, with low proton temperature, proton density and plasma β, separate the main body of magnetic clouds, which has not been affected by the interaction, from the boundary layers. The average time scale of the front boundary layer is 1.7 h and that of the tail boundary layer 3.1 h. It is also found that the magnetic probability distribution function undergoes significant changes across the boundary layers. This new definition, supported by the preliminary numerical simulation in principle, could qualitatively explain the observations of interplanetary magnetic clouds, and could help resolve the controversy in identifying the boundaries of magnetic clouds. Our concept of the boundary layer may provide some understanding of what underlies the observations, and a fresh train of thought in the interplanetary dynamics research.
Turbulence in the Stable Atmospheric Boundary Layer
Fernando, Harindra; Kit, Eliezer; Conry, Patrick; Hocut, Christopher; Liberzon, Dan
2016-11-01
During the field campaigns of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program, fine-scale measurements of turbulence in the atmospheric boundary layer (ABL) were made using a novel sonic and hot-film anemometer dyad (a combo probe). A swath of scales, from large down to Kolmogorov scales, was covered. The hot-film was located on a gimbal within the sonic probe volume, and was automated to rotate in the horizontal plane to align with the mean flow measured by sonic. This procedure not only helped satisfy the requirement of hot-film alignment with the mean flow, but also allowed in-situ calibration of hot-films. This paper analyzes a period of nocturnal flow that was similar to an idealized stratified parallel shear flow. Some new phenomena were identified, which included the occurrence of strong bursts in the velocity records indicative of turbulence generation at finer scales that are not captured by conventional sonic anemometers. The spectra showed bottleneck effect, but its manifestation did not fit into the framework of previous bottleneck-effect theories and was unequivocally related to bursts of turbulence. The measurements were also used to evaluate the energetics of stratified shear flows typical of the environment. ONR # N00014-11-1-0709; NSF # AGS-1528451; ISF 408/15.
Simulation of Wind turbines in the atmospheric boundary layer
DEFF Research Database (Denmark)
Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming
Large eddy simulation of an arbitrary wind farm is studied in the neutral and thermally stratified atmospheric boundary Layer. Large eddy simulations of industrial flows usually requires full resolution of the flow near the wall and this is believed to be one of the main deficiencies of LES because...... layer. In the current study, another approach has been implemented to simulate the flow in a fully developed wind farm boundary layer. The approach is based on Immersed Boundary Method and involves implementation of an arbitrary prescribed initial boundary layer. An initial boundary layer is enforced...... height and the flow development is seen based on the temperature variations and wind turbine wake generations and interactions of wakes occurs as soon as the wakes of the upwind turbine reach the downwind turbines. References: [1] U. Piomelli, Wall-layer models for large-eddy simulations, Progress...
EXPERIMENTAL STUDY ON TURBULENT BOUNDARY LAYER CHARACTERISTICS OVER STREAMWISE RIBLETS
Institute of Scientific and Technical Information of China (English)
ZHAO Zhi-yong; DONG Shou-ping; DU Ya-nan
2004-01-01
Measurements of characteristics by means of a two-component Laser Doppler Velocimeter (LDV) were carried out in turbulent boundary layers over both a symmetric V-shaped ribbed plate and a smooth one in a low speed wind tunnel. The present results clearly indicate that the logarithmic velocity profile over the riblets surface is shifted upward with a 30.9% increase in the thickness of the viscous sublayer. Also a change in the log-law region is found. And the maximum value of streamwise velocity fluctuations is reduced by approximately 17%. The skewness and flatness factors do not show any change besides those in the region of y+＜0.6. It is evident that the Reynolds shear stress over the riblets is reduced. Further more, in log-law region, the Reynolds shear stress has a larger reduction of up to 18%.
G. Khashayar; A. Dozic; C.J. Kleverlaan; A.J. Feilzer
2014-01-01
Objective Optical properties of teeth are mimicked by composite layering techniques by combining a relatively opaque layer (dentin) with more translucent layers (enamel). However, the replacing material cannot always optically imitate the tooth when applied in the same thickness as that of the natur
The effects of external conditions in turbulent boundary layers
Brzek, Brian G.
The effects of multiple external conditions on turbulent boundary layers were studied in detail. These external conditions include: surface roughness, upstream turbulence intensity, and pressure gradient. Furthermore, the combined effects of these conditions show the complicated nature of many realistic flow conditions. It was found that the effects of surface roughness are difficult to generalize, given the importance of so many parameters. These parameters include: roughness geometry, roughness regime, roughness height to boundary layer thickness, (k/delta), roughness parameter, ( k+), Reynolds number, and roughness function (Delta B+). A further complication, is the difficulty in computing the wall shear stress, tauw/rho. For the sand grain type roughness, the mean velocity and Reynolds stresses were studied in inner and outer variables, as well as, boundary layer parameters, anisotropy tensor, production term, and viscous stress and form drag contributions. To explore the effects of roughness and Reynolds number dependence in the boundary layer, a new experiment was carefully designed to properly capture the x-dependence of the single-point statistics. It was found that roughness destroys the viscous layer near the wall, thus, reducing the contribution of the viscous stress in the wall region. As a result, the contribution in the skin friction due to form drag increases, while the viscous stress decreases. This yields Reynolds number invariance in the skin friction, near-wall roughness parameters, and inner velocity profiles as k + increases into the fully rough regime. However, in the transitionally rough regime, (i.e., 5 component shows the largest influence of roughness, where the high peak near the wall was decreased and became nearly flat for the fully rough regime profiles. In addition, the Reynolds stresses in outer variables show self-similarity for fixed experimental conditions. However, as the roughness parameter, k +, increases, all Reynolds stress
Effects of large-scale free stream turbulence on a turbulent boundary layer
Sharp, N. S.; Neuscamman, S.; Warhaft, Z.
2009-09-01
Results of a wind tunnel experiment in which there are systematic variations of free stream turbulence above a flat-plate boundary layer are presented. Upstream of the plate, an active grid generates free stream turbulence varying in intensity from 0.25% to 10.5%. The momentum thickness Reynolds number of the boundary layer varies from 550 to nearly 3000. In all cases, the ratio of the free stream turbulence length scale to the boundary layer depth is greater than unity. Hotwire measurements show that, at high turbulence intensities, the effects of the free stream turbulence extend deep into the boundary layer, affecting the wall stress as well as the small-scale (derivative) statistics. Premultiplied energy spectra show a double peak. At very low free stream turbulence intensities these peaks are associated with the inner and outer scales of the turbulent boundary layer, but at high turbulence intensities the free stream energy peak dominates over the boundary layer's outer scale. The implications of the effect of the large free stream turbulence scales on the small, near-wall scales is discussed with reference to recent high Reynolds number experiments in a turbulent boundary layer without free stream turbulence [Hutchins and Marusic, Philos. Trans. R. Soc. London, Ser. A 365, 647 (2007)].
Raman Spectrum Analysis on the Solid-Liquid Boundary Layer of BGO Crystal Growth
Institute of Scientific and Technical Information of China (English)
ZHANG Xia; YIN Shao-Tang; WAN Song-Ming; YOU Jing-Lin; CHEN Hui; ZHAO Si-Jie; ZHANG Qing-Li
2007-01-01
We study the Raman spectra of Bi4Ge3O12 crystal at different temperatures, as well as its melt. The structure characters of the single crystal, melt and growth solid-liquid boundary layer of BGO are investigated by their high-temperature Raman spectra for the first time. The rule of structure change of BGO crystal with increasing temperature is analysed. The results show that there exists [GeO4] polyhedral structure and Bi ion independently in BGO melt. The bridge bonds Bi-O-Bi and Bi-O-Ge appear in the crystal and at the boundary layer, but disappear in the melt. The structure of the growth solid-liquid boundary layer is similar to that of BGO crystal. In the melt, the long-range order structure of the crystal disappears. The thickness of the grovth solid-liquid boundary layer of BGO crystal is about 50 μm.
Hydrodynamic resistance of concentration polarization boundary layers in ultrafiltration
Wijmans, J.G.; Nakao, S.; Berg, van den J.W.A.; Troelstra, F.R.; Smolders, C.A.
1985-01-01
The influence of concentration polarization on the permeate flux in the ultrafiltration of aqueous Dextran T70 solutions can be described by (i) the osmotic pressure model and (ii) the boundary layer resistance model. In the latter model the hydrodynamic resistance of the non-gelled boundary layer i
Interaction between surface and atmosphere in a convective boundary layer
Garai, Anirban
Solar heating of the surface causes the near surface air to warm up and with sufficient buoyancy it ascends through the atmosphere as surface-layer plumes and thermals. The cold fluid from the upper part of the boundary layer descends as downdrafts. The downdrafts and thermals form streamwise roll vortices. All these turbulent coherent structures are important because they contribute most of the momentum and heat transport. While these structures have been studied in depth, their imprint on the surface through energy budget in a convective atmospheric boundary layer has received little attention. The main objective of the present study is to examine the turbulence-induced surface temperature fluctuations for different surface properties and stratification. Experiments were performed to measure atmospheric turbulence using sonic anemometers, fine wire thermocouples and LIDAR; and surface temperature using an infra-red camera over grass and artificial turf fields. The surface temperature fluctuations were found to be highly correlated to the turbulent coherent structures and follow the processes postulated in the surface renewal theory. The spatio-temporal scales and advection speed of the surface temperature fluctuation were found to match with those of turbulent coherent structures. A parametric direct numerical simulation (DNS) study was then performed by solving the solid-fluid heat transport mechanism numerically for varying solid thermal properties, solid thickness and strength of stratification. Even though there were large differences in the friction Reynolds and Richardson numbers between the experiments and numerical simulations, similar turbulent characteristics were observed. The ejection (sweep) events tend to be aligned with the streamwise direction to form roll vortices with unstable stratification. The solid-fluid interfacial temperature fluctuations increase with the decreases in solid thermal inertia; and with the increase in solid thickness to
Measuring for thickness distribution of recording layer of PLH
Zhang, Xiao-Chun; Guo, Lurong; Guo, Yongkang
1991-07-01
An interference microscope is employed to take a photo of the interfering fringes, and its density is analyzed by a computer image system to measure the thickness distribution of a photolithographic hologram (PLH). This method is much more simple than that of SEM. The theory of measuring is presented in the paper. The authors measured the distributions of photolithographic gratings before and after the etching process. Comparing both the thickness distributions of corresponding recording layers, some primary rules of pattern transfer process by etching were identified.
Boundary Layer to a System of Viscous Hyperbolic Conservation Laws
Institute of Scientific and Technical Information of China (English)
2008-01-01
In this paper, we investigate the large-time behavior of solutions to the initial-boundary value problem for nxn hyperbolic system of conservation laws with artificial viscosity in the half line (0, ∞). We first show that a boundary layer exists if the corresponding hyperbolic part contains at least one characteristic field with negative propagation speed. We further show that such boundary layer is nonlinearly stable under small initial perturbation. The proofs are given by an elementary energy method.
Transport of gaseous pollutants by convective boundary layer around a human body
DEFF Research Database (Denmark)
Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra
2015-01-01
of the pollution boundary layer. The study, in addition, evaluates the effects of the room air temperature, table positioning, and seated body inclination. The human body is represented by a thermal manikin that has a body shape, size, and surface temperature that resemble those of a real person. The results show......This study investigates the ability of the human convective boundary layer to transport pollution in a quiescent indoor environment. The impact of the source location in the vicinity of a human body is examined in relation to pollution distribution in the breathing zone and the thickness...... that the source location has a considerable influence on the breathing zone pollution concentrations and on the thickness of the pollution boundary layer. The highest breathing zone concentrations are achieved when the pollution is located at the chest, while there is negligible exposure for the pollution emitted...
The effects of forcing on a single stream shear layer and its parent boundary layer
Haw, Richard C.; Foss, John F.
1990-01-01
Forcing and its effect on fluid flows has become an accepted tool in the study and control of flow systems. It has been used both as a diagnostic tool, to explore the development and interaction of coherent structures, and as a method of controlling the behavior of the flow. A number of forcing methods have been used in order to provide a perturbation to the flow; among these are the use of an oscillating trailing edge, acoustically driven slots, external acoustic forcing, and mechanical piston methods. The effect of a planar mechanical piston forcing on a single stream shear layer is presented; it can be noted that this is one of the lesser studied free shear layers. The single stream shear layer can be characterized by its primary flow velocity scale and the thickness of the separating boundary layer. The velocity scale is constant over the length of the flow field; theta (x) can be used as a width scale to characterize the unforced shear layer. In the case of the forced shear layer the velocity field is a function of phase time and definition of a width measure becomes somewhat problematic.
Institute of Scientific and Technical Information of China (English)
Wang Lijuan; Zhan Feng; Yu Ying; Zhu Yan; Liu Shaoqing; Huang Shesong; Ni Haiqiao; Niu Zhichuan
2011-01-01
The optimization of a SiO2/TiO2, SiO2/ZnS double layer antireflection coating (ARC) on Ga0.5ln0.5P/ln0.02Ga0.98As/Ge solar cells for terrestrial application is discussed. The Al0.5In0.5P window layer thickness is also taken into consideration. It is shown that the optimal parameters of double layer ARC vary with the thickness of the window layer.
Martis, R. R.; Misra, A.
2017-03-01
A numerical study is conducted to determine the effectiveness of six different microvortex generator geometries in controlling swept shock wave/boundary-layer interactions. The geometries considered are base ramp, base ramp with declining angle of 45°, blunt ramp, split ramp, thick vanes, and ramped vanes. Microvortex generators with a gap were found to be better suited for delaying the separation. Thick vanes showed the largest delay in separation among the devices studied.
Diffusive boundary layers over varying topography
Dell, R. W.
2015-03-25
Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.
Energy Technology Data Exchange (ETDEWEB)
Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G., E-mail: zgdeng@gmail.com
2014-10-15
Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.
Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer
Elsinga, G.E.; Adrian, R.J.; Van Oudheusden, B.W.; Scarano, F.
2010-01-01
Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in a supersonic (Mach 2) turbulent boundary layer in the region between y/δ = 0.15 and 0.89. The Reynolds number based on momentum thickness Reθ = 34000. The instantaneous velocity f
Characterization of a Thick Ozone Layer in Mars' Past
Deighan, Justin
2013-01-01
All three terrestrial planets with atmospheres support O3 layers of some thickness. While currently only that of Earth is substantial enough to be climatically significant, we hypothesize that ancient Mars may also have supported a thick O3 layer during volcanically quiescent periods whenthe atmosphere was oxidizing. To characterize such an O3 layer and determine the significance of its fedback on the Martian climate, we apply a 1D line-by-line radiative-convective model under clear sky conditions coupled to a simple photochemical model. The parameter space of atmospheric pressure, insolation, and O2 mixing fraction are explored to find conditions favorable to O3 formation. We find that a substantial O3 layer is most likely for surface pressures of 0.3-1.0 bar, and could produce an O3 column comparable to that of modern Earth for O2 mixing fractions approaching 1%. However, even for thinner O3 layers, significant UV shielding of the surface occurs along with feedback on both the energy budget and photochemist...
Usage of Neural Network to Predict Aluminium Oxide Layer Thickness
2015-01-01
This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of...
Boundary Layer Ventilation Processes During a High Pressure Event
Gray, S. L.; Dacre, H. F.; Belcher, S. E.
2006-12-01
It is often assumed that ventilation of the atmospheric boundary layer is weak during high pressure events. But is this always true? Here we investigate the processes responsible for ventilation of the atmospheric boundary layer during a high pressure event that occured on the 9 May 2005 using the UK Met Office Unifed Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include a sea breeze circulation, turbulent mixing across the top of the boundary layer followed by large-scale ascent, and shallow convection. Vertical distributions of tracer are validated with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree impressively well. Budget calculations of tracers are performed in order to determine the relative importance of these ventilation processes. The sea breeze circulation was found to ventilate 26% of the boundary layer tracer by sunset of which 2% was above 2km. A combination of the sea breeze circulation and turbulent mixing ventilated 46% of the boundary layer tracer, of which 10% was above 2km. Finally, the sea breeze circulation, turbulent mixing and shallow convection processes together ventilated 52% of the tracer into the free troposphere, of which 26% was above 2km. Hence this study shows that signicant ventilation of the boundary layer can occur during high pressure events; turbulent mixing and convection processes can double the amount of pollution ventilated from the boundary layer.
Bristled shark skin: a microgeometry for boundary layer control?
Energy Technology Data Exchange (ETDEWEB)
Lang, A W; Hidalgo, P; Westcott, M [Aerospace Engineering and Mechanics Department, University of Alabama, Box 870280, Tuscaloosa, AL 35487 (United States); Motta, P [Biology Department, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)], E-mail: alang@eng.ua.edu
2008-12-01
There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.
Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment
Energy Technology Data Exchange (ETDEWEB)
Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)
2015-06-12
The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.
Transient thermal response of turbulent compressible boundary layers
DEFF Research Database (Denmark)
Li, Hongwei; Nalim, M. Razi; Merkle, Charles L.
2011-01-01
. In turbulent flow as in laminar, the transient heat transfer rates are very different from that obtained from quasi-steady analysis. It is found that the time scale for response of the turbulent boundary layer to far-field temperature changes is 40% less than for laminar flow, and the turbulent local Nusselt......A numerical method is developed with the capability to predict transient thermal boundary layer response under various flow and thermal conditions. The transient thermal boundary layer variation due to a moving compressible turbulent fluid of varying temperature was numerically studied on a two...
Stable Boundary Layer Education (STABLE) Final Campaign Summary
Energy Technology Data Exchange (ETDEWEB)
Turner, David D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2016-03-01
The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region, a low-level jet. To advance our understanding of the nocturnal stable boundary layer, high temporal and vertical resolution data on the temperature and wind properties are needed, along with both large-eddy simulation and cloud-resolving modeling.
Studies of planetary boundary layer by infrared thermal imagery
Energy Technology Data Exchange (ETDEWEB)
Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)
2014-11-24
The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.
Aerodynamically-driven condensate layer thickness distributions on isothermal cylindrical surfaces
Rosner, D. E.; Gunes, D.; Nazih-Anous, N.
A simple yet rather general mathematical model is presented for predicting the distribution of condensate layer thickness when aerodynamic shear is the dominant mechanism of liquid flow along the surface. The Newtonian condensate film is treated using well-known thin-layer (lubrication theory) approximations, and condensate supply is taken to be the result of either convective diffusion or inertial impaction. Illustrative calculations for a circular cylinder in a crossflow at Re = 100,000 reveal the consequences of alternate condensate arrival mechanisms and the existence of thicker reverse-flow films behind the position of gas boundary-layer separation. The present formulation is readily generalized to include transient liquid layer flows on noncircular objects of variable surface temperature, as encountered in turbine-blade materials testing or operation.
Nanoscale Hot-Wire Probes for Boundary-Layer Flows
Tedjojuwono, Ken T.; Herring, Gregory C.
2003-01-01
Hot-wire probes having dimensions of the order of nanometers have been proposed for measuring temperatures (and possibly velocities) in boundary-layer flows at spatial resolutions much finer and distances from walls much smaller than have been possible heretofore. The achievable resolutions and minimum distances are expected to be of the order of tens of nanometers much less than a typical mean free path of a molecule and much less than the thickness of a typical flow boundary layer in air at standard temperature and pressure. An additional benefit of the small scale of these probes is that they would perturb the measured flows less than do larger probes. The hot-wire components of the probes would likely be made from semiconducting carbon nanotubes or ropes of such nanotubes. According to one design concept, a probe would comprise a single nanotube or rope of nanotubes laid out on the surface of an insulating substrate between two metallic wires. According to another design concept, a nanotube or rope of nanotubes would be electrically connected and held a short distance away from the substrate surface by stringing it between two metal electrodes. According to a third concept, a semiconducting nanotube or rope of nanotubes would be strung between the tips of two protruding electrodes made of fully conducting nanotubes or ropes of nanotubes. The figure depicts an array of such probes that could be used to gather data at several distances from a wall. It will be necessary to develop techniques for fabricating the probes. It will also be necessary to determine whether the probes will be strong enough to withstand the aerodynamic forces and impacts of micron-sized particles entrained in typical flows of interest.
Study of effect of a smooth hump on hypersonic boundary layer instability
Park, Donghun; Park, Seung O.
2016-12-01
Effect of a two-dimensional smooth hump on linear instability of hypersonic boundary layer is studied by using parabolized stability equations. Linear evolution of mode S over a hump is analyzed for Mach 4.5 and 5.92 flat plate and Mach 7.1 sharp cone boundary layers. Mean flow for stability analysis is obtained by solving the parabolized Navier-Stokes equations. Hump with height smaller than local boundary layer thickness is considered. The case of flat plate and sharp cone without the hump are also studied to provide comparable data. For flat plate boundary layers, destabilization and stabilization effect is confirmed for hump located at upstream and downstream of synchronization point, respectively. Results of parametric studies to examine the effect of hump height, location, etc., are also given. For sharp cone boundary layer, stabilization influence of hump is also identified for a specific range of frequency. Stabilization influence of hump on convective instability of mode S is found to be a possible cause of previous experimental observations of delaying transition in hypersonic boundary layers.
Size distributions of boundary-layer clouds
Energy Technology Data Exchange (ETDEWEB)
Stull, R.; Berg, L.; Modzelewski, H. [Univ. of Wisconsin, Madison, WI (United States)
1996-04-01
Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.
Boundary Layer Ventilation by Convection and Coastal Processes
Dacre, H.
2008-12-01
Several observational studies measuring aerosol in the atmosphere have found multiple aerosol layers located above the marine boundary layer. It is hypothesized that the existence of these layers is influenced by the diurnal variation in the structure of the upwind continental boundary layer. Furthermore, collision between a sea breeze and the prevailing wind can result in enhanced convection at the coast which can also lead to elevated layers of pollution. In this study we investigate the processes responsible for ventilation of the atmospheric boundary layer near the coast using the UK Met Office Unified Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include shallow convection, a sea breeze circulation and coastal outflow. Vertical distributions of tracer at the coast are validated qualitatively with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree well.
Reactive boundary layers in metallic rolling contacts
Energy Technology Data Exchange (ETDEWEB)
Burbank, John
2016-05-01
more thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 - 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 - 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates
High-resolution PIV measurements of a transitional shock wave-boundary layer interaction
Giepman, R. H. M.; Schrijer, F. F. J.; van Oudheusden, B. W.
2015-06-01
This study investigates the effects of boundary layer transition on an oblique shock wave reflection. The Mach number was 1.7, the unit Reynolds number was 35 × 106 m-1, and the pressure ratio over the interaction was 1.35. Particle image velocimetry is used as the main flow diagnostics tool, supported by oil-flow and Schlieren visualizations. At these conditions, the thickness of the laminar boundary layer is only 0.2 mm, and seeding proved to be problematic as practically no seeding was recorded in the lower 40 % of the boundary layer. The top 60 % could, however, still be resolved with good accuracy and is found to be in good agreement with the compressible Blasius solution. Due to the effects of turbulent mixing, the near-wall seeding deficiency disappears when the boundary layer transitions to a turbulent state. This allowed the seeding distribution to be used as an indicator for the state of the boundary layer, permitting to obtain an approximate intermittency distribution for the boundary layer transition region. This knowledge was then used for positioning the oblique shock wave in the laminar, transitional (50 % intermittency) or turbulent region of the boundary layer. Separation is only recorded for the laminar and transitional interactions. For the laminar interaction, a large separation bubble is found, with a streamwise length of 96. The incoming boundary layer is lifted over the separation bubble and remains in a laminar state up to the impingement point of the shock wave. After the shock, transition starts and a turbulent profile is reached approximately 80-90 downstream of the shock. Under the same shock conditions, the transitional interaction displays a smaller separation bubble (43), and transition is found to be accelerated over the separation bubble.
Flowfield measurements in a separated and reattached flat plate turbulent boundary layer
Patrick, William P.
1987-03-01
The separation and reattachment of a large-scale, two-dimensional turbulent boundary layer at low subsonic speed on a flat plate has been studied experimentally. The separation bubble was 55 cm long and had a maximum bubble thickness, measured to the height of the mean dividing streamline, of 17 cm, which was twice the thickness of the inlet boundary layer. A combination of laser velocimetry, hot-wire anemometry, pneumatic probing techniques, and flow visualization were used as diagnostics. Principal findings were that an outer inviscid rotational flow was defined which essentially convected over the blockage associated with the inner, viscously dominated bubble recirculation region. A strong backflow region in which the flow moved upstream 100 percent of the time was measured near the test surface over the central 35 percent of the bubble. A laminar backflow boundary layer having pseudo-turbulent characteristics including a log-linear velocity profile was generated under the highly turbulent backflow. Velocity profile shapes in the reversed flow region matched a previously developed universal backflow profile at the upstream edge of the separation region but not in the steady backflow region downstream. A smoke flow visualization movie and hot-film measurements revealed low frequency nonperiodic flapping at reattachment. However, forward flow fraction data at reattachment and mean velocity profiles in the redeveloping boundary layer downstream of reattachment correlated with backward-facing step data when the axial dimension was scaled by the distance from the maximum bubble thickness to reattachment.
Diffusive boundary layers and photosynthesis of the epilithic algal community of coral reefs
DEFF Research Database (Denmark)
Larkum, Anthony W.D.; Koch, Eva-Maria W.; Kühl, Michael
2003-01-01
The effects of mass transfer resistance due to the presence of a diffusive boundary layer on the photosynthesis of the epilithic algal community (EAC) of a coral reef were studied. Photosynthesis and respiration of the EAC of dead coral surfaces were investigated for samples from two locations......: the Gulf of Aqaba, Eilat (Israel), and One Tree Reef on the Great Barrier Reef (Australia). Microsensors were used to measure O2 and pH at the EAC surface and above. Oxygen profiles in the light and dark indicated a diffusive boundary layer (DBL) thickness of 180–590 µm under moderate flow (~0.08 m s-1...
Numerical simulation of tsunami-scale wave boundary layers
DEFF Research Database (Denmark)
Williams, Isaac A.; Fuhrman, David R.
2016-01-01
, is newly extended to incorporate a transitional variant of the standard two-equation k–ω turbulence closure. The developed numerical model is successfully validated against recent experimental measurements involving transient solitary wave boundary layers as well as for oscillatory flows, collectively......This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scalewaves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...
Microprobe of structure of crystal/liquid interface boundary layers
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The molecular structures and its evolutive regularities within the boundary layers in the crystal growth of KDP and DKDP have been studied in real time by using holography and Raman microprobe. The experiments show that the molecular structure of mother solution within the boundary layers is distinctly different from that of the solutions alone. In this paper, the effects of cations within the boundary layers on the structure of solution are considered. Within the characteristic boundary layers, the effects of cations cause the changes in O-P-O bond angle, electronic density redistribution of the phosphate groups, and significant changes in the bond intensity, thus leading to the breaking of partial hydrogen bonds of the phosphate associations, the readjustment of geometry of anionic phosphate groups and desolvation, and the forming of the smectic ordering structure of the anions_cations. Finally, the crystallization unit of anion_cation should be formed at the proximate interface.
The Diffusive Boundary-Layer of Sediments - Oxygen Microgradients Over a Microbial Mat
DEFF Research Database (Denmark)
JØRGENSEN, BB; MARAIS, DJD
1990-01-01
Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sedimen-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate...... the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial...... resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane...
DNS of compressible turbulent boundary layer over a blunt wedge
Institute of Scientific and Technical Information of China (English)
LI Xinliang; FU Dexun; MA Yanwan
2005-01-01
Direct numerical simulation of spatially evolving compressible boundary layer over a blunt wedge is performed in this paper. The free-stream Mach number is 6 and the disturbance source produced by wall blowing and suction is located downstream of the sound-speed point. Statistics are studied and compared with the results in incompressible flat-plate boundary layer. The mean pressure gradient effects on the vortex structure are studied.
A Compilation of Unsteady Turbulent Boundary Layer Experimental Data,
1981-11-01
HIRSCH KITAet ai, GOSTELOW EHERENSBERGER LU HO & CHEN KOBASHI & HAYAKAWA MAINARDI & PANDAY MARVIN* LORBER & COVERT MIZUSHINA I SAXENA RAMAPRIAN & TU...Laminar Boundary Layer by a Moving Belt. AIAA Paj_2r 69-40, New York, N.Y., 1969. (LT) Mainardi , H. and Panday, P. K.: A Study of Turbulent Pulsating...Flow in a (-cular Pipe. Eurovisc 77 - Unsteady Turbulent Boundary Layers and Shear Flows, Toulouse, France, Jar,. 2977. (TE-D) Mainardi , H. and Panday
A note on boundary-layer friction in baroclinic cyclones
Boutle, I A; Belcher, S E; Plant, R S
2008-01-01
The interaction between extratropical cyclones and the underlying boundary layer has been a topic of recent discussion in papers by Adamson et. al. (2006) and Beare (2007). Their results emphasise different mechanisms through which the boundary layer dynamics may modify the growth of a baroclinic cyclone. By using different sea-surface temperature distributions and comparing the low-level winds, the differences are exposed and both of the proposed mechanisms appear to be acting within a single simulation.
CONTINUOUS WAVELET TRANSFORM OF TURBULENT BOUNDARY LAYER FLOW
Institute of Scientific and Technical Information of China (English)
LIU Ying-zheng; KE Feng; CHEN Han-ping
2005-01-01
The spatio-temporal characteristics of the velocity fluctuations in a fully-developed turbulent boundary layer flow was investigated using hotwire. A low-speed wind tunnel was established. The experimental data was extensively analyzed in terms of continuous wavelet transform coefficients and their auto-correlation. The results yielded a potential wealth of information on inherent characteristics of coherent structures embedded in turbulent boundary layer flow. Spatial and temporal variations of the low- and high- frequency motions were revealed.
Turbulent oceanic western-boundary layers at low latitude
Quam Cyrille Akuetevi, Cataria; Wirth, Achim
2013-04-01
Low latitude oceanic western-boundary layers range within the most turbulent regions in the worlds ocean. The Somali current system with the Great Whirl and the Brazilian current system with its eddy shedding are the most prominent examples. Results from analytical calculations and integration of a one layer reduced-gravity fine resolution shallow water model is used to entangle this turbulent dynamics. Two types of wind-forcing are applied: a remote Trade wind forcing with maximum shear along the equator and a local Monsoon wind forcing with maximum shear in the vicinity of the boundary. For high values of the viscosity (> 1000m2s-1) the stationary solutions compare well to analytical predictions using Munk and inertial layer theory. When lowering the friction parameter time dependence results. The onset of instability is strongly influenced by inertial effects. The unstable boundary current proceeds as a succession of anti-cyclonic coherent eddies performing a chaotic dynamics in a turbulent flow. The dynamics is governed by the turbulent fluxes of mass and momentum. We determine these fluxes by analyzing the (potential) vorticity dynamics. We demonstrate that the boundary-layer can be separated in four sub-layers, which are (starting from the boundary): (1) the viscous sub-layer (2) the turbulent buffer-layer (3) the layer containing the coherent structures and (4) the extended boundary layer. The characteristics of each sub-layer and the corresponding turbulent fluxes are determined, as are the dependence on latitude and the type of forcing. A new pragmatic method of determining the eddy viscosity, based on Munk-layer theory, is proposed. Results are compared to observations and solutions of the multi-level primitive equation model (DRAKKAR).
LES model intercomparisons for the stable atmospheric boundary layer
Moene, A.F.; Baas, P.; Bosveld, F.C.; Basu, S.
2011-01-01
Model intercomparisons are one possible method to gain confidence in Large-Eddy Simulation (LES) as a viable tool to study turbulence in the atmospheric boundary-layer. This paper discusses the setup and some results of two intercomparison cases focussing on the stably stratified nocturnal boundary-
BOUNDARY LAYER AND VANISHING DIFFUSION LIMIT FOR NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
彭艳
2014-01-01
In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as the diffusion parameterαgoes to zero.
Tensile strength of thin resin composite layers as a function of layer thickness.
Alster, D; Feilzer, A J; De Gee, A J; Davidson, C L
1995-11-01
As a rule, cast restorations do not allow for free curing contraction of the resin composite luting cement. In a rigid situation, the resulting contraction stress is inversely proportional to the resin layer thickness. Adhesive technology has demonstrated, however, that thin joints may be considerably stronger than thicker ones. To investigate the effects of layer thickness and contraction stress on the tensile strength of resin composite joints, we cured cylindrical samples of a chemically initiated resin composite (Clearfil F2) in restrained conditions and subsequently loaded them in tension. The samples had a diameter of 5.35 mm and thicknesses of 50, 100, 200, 300, 400, 500, 600, and 700 microns, 1.4 mm, or 2.7 mm. None of the samples fractured due to contraction stress prior to tensile loading. Tensile strength decreased gradually from 62 +/- 2 MPa for the 50-microns layer to 31 +/- 4 MPa for the 2.7-mm layer. The failures were exclusively cohesive in resin for layers between 50 and 400 microns thick. Between 500 and 700 microns, the failures were cohesive or mixed adhesive/cohesive, while the 1.4- and 2.7-mm layers always failed in a mixed adhesive/cohesive mode. For the resin composite tested, the contraction stress did not endanger the cohesive strength. It was concluded that if adhesion to tooth structure were improved, thinner adhesive joints might enhance the clinical success of luted restorations.
Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.
2014-10-01
A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.
Hirt, Stefanie M.
2015-01-01
A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.
Usage of neural network to predict aluminium oxide layer thickness.
Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel
2015-01-01
This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A · dm(-2) and 3 A · dm(-2) for creating aluminium oxide layer.
2016-06-07
NUSC Technical Memorandum 851103 85lllil3 lillillN 21 June 1985 Calculations of Turbulent Boundary Layer (TBL) Pressure Fluctuations Transmitted...into a Viscoelastic Layer Sung H. Ko Howard H. Schloemer Submarine Sonar Department ~ - ~ • .-L ....... ’t’-~-~ ::?,$~.. \\ I I •• "’.e. !{ ft...Calculations of Turbulent Boundary Layer (TBL) Pressure Fluctuations Transmitted into a Viscoelastic Layer 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c
Institute of Scientific and Technical Information of China (English)
ZHANG Qiang; WANG Sheng
2009-01-01
The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to analyze the distribution and characteristics of the ABL in the extremely arid desert in Dunhuang, Northwest China. These data show that the daytime convective boundary layer and night time stable boundary layer in this area extend to higher altitudes than in other areas. In the night time, the stable boundary layer exceeds 900 m in altitude and can sometimes peak at 1750 m, above which the residual layer may reach up to about 4000 m. The daytime convective boundary layer develops rapidly after entering the residual layer, and exceeds 4000 m in thickness. The results show that the deep convective boundary layer in the daytime is a pre-requisite for maintaining the deep residual mixed layer in the night time. Meanwhile, the deep residual mixed layer in the night time provides favorable thermal conditions for the development of the convective boundary layer in the daytime. The prolonged periods of clear weather that often occurs in this area allow the cumulative effect of the atmospheric residual layer to develop fully, which creates thermal conditions beneficial for the growth of the daytime convective boundary layer. At the same time, the land surface process and atmospheric motion within the surface layer in this area also provide helpful support for forming the particular structure of the thermal ABL. High surface temperature is clearly the powerful external thermal forcing for the deep convective boundary layer. Strong sensible heat flux in the surface layer provides the required energy. Highly convective atmosphere and strong turbulence provide the necessary dynamic conditions, and the accumulative effect of the residual layer provides a favorable thermal environment.
Turbulent Boundary Layer at Large Re
Directory of Open Access Journals (Sweden)
Horia DUMITRESCU
2016-03-01
Full Text Available The fluids as deformable bodies without own shape, when starting from rest, experience interactions between the flowing fluid and the physical surfaces marking the bounds of flow. These interactions are a kind of impact process where there is a momentum exchange between two colliding bodies, i.e. the flow and its boundary surfaces. Within a short time of contact a post-impact shear flow occurs where two main effects are triggered off by the flow-induced collision: dramatic redistribution of the momentum and the boundary vorticity followed by the shear stress/viscosity change in the microstructure of the fluid which at the beginning behaves as linear reactive medium and latter as nonlinear dispersive medium. The disturbance of the starting flow induces the entanglement of the wall-bounded flow in the form of point-vortices or concentrated vorticity balls whence waves are emitted and propagated through flow field. The paper develops a wave mechanism for the transport of the concentrated boundary vorticity, directly related to the fascinating turbulence phenomenon, using the torsion concept of vorticity filaments associated with the hypothesis of thixotropic/nonlinear viscous fluid.
Ultrasonic eggshell thickness measurement for selection of layers.
Kibala, Lucyna; Rozempolska-Rucinska, Iwona; Kasperek, Kornel; Zieba, Grzegorz; Lukaszewicz, Marek
2015-10-01
This study aimed to develop a methodology for using ultrasonic technology (USG) to record eggshell thickness for selection of layers. Genetic correlations between eggshell strength and its thickness have been reported to be around 0.8, making shell thickness a selection index candidate element. Applying ultrasonic devices to measure shell thickness leaves an egg intact for further handling. In this study, eggs from 2 purebred populations of Rhode Island White (RIW) and Rhode Island Red (RIR) hens were collected on a single day in the 33rd week of the farm laying calendar from 2,414 RIR and 4,525 RIW hens. Beginning from the large end of the egg, measurements were taken at 5 latitudes: 0º (USG0), 45º (USG45), 90º (USG90), 135º (USG135), and 180º (USG180). To estimate the repeatability of readings, measurements were repeated at each parallel on 3 meridians. Electronic micrometer measurement ( EMM: ) were taken with an electronic micrometer predominantly at the wider end of eggs from 2,397 RIR and 4,447 RIW hens. A multiple-trait statistical model fit the fixed effect of year-of-hatch × hatch-within-year, and random effects due to repeated measurements (except EMM) and an animal's additive genetic component. The shell was thinnest in the region where chicks break it upon hatching (USG0, USG45). Heritabilities of shell thickness in different regions of the shell ranged from 0.09 to 0.19 (EMM) in RIW and from 0.12 to 0.23 (EMM) in RIR and were highest for USG45 and USG0. Because the measurement repeatabilities were all above 0.90, our recommendation for balancing egg strength against hatching ease is to take a single measurement of USG45. Due to high positive genetic correlations between shell thickness in different regions of the shell its thickness in the pointed end region will be modified accordingly, in response to selection for USG45.
Theoretical Analysis of Stationary Potential Flows and Boundary Layers at High Speed
Oswaititsch, K.; Wieghardt, K.
1948-01-01
The present report consists of two parts. The first part deals with the two-dimensional stationary flow in the presence of local supersonic zones. A numerical method of integration of the equation of gas dynamics is developed. Proceeding from solutions at great distance from the body the flow pattern is calculated step by step. Accordingly the related body form is obtained at the end of the calculation. The second part treats the relationship between the displacement thickness of laminar and turbulent boundary layers and the pressure distribution at high speeds. The stability of the boundary layer is investigated, resulting in basic differences in the behavior of subsonic and supersonic flows. Lastly, the decisive importance of the boundary layer for the pressure distribution, particularly for thin profiles, is demonstrated.
Analytical solution of conjugate turbulent forced convection boundary layer flow over plates
Directory of Open Access Journals (Sweden)
Joneydi Shariatzadeh Omid
2016-01-01
Full Text Available A conjugate (coupled forced convection heat transfer from a heated conducting plate under turbulent boundary layer flow is considered. A heated plate of finite thickness is cooled under turbulent forced convection boundary layer flow. Because the conduction and convection boundary layer flow is coupled (conjugated in the problem, a semi-analytical solution based on Differential Transform Method (DTM is presented for solving the non-linear integro-differential equation occurring in the problem. The main conclusion is that in the conjugate heat transfer case the temperature distribution of the plate is flatter than the one in the non-conjugate case. This feature is more pronounced under turbulent flow when compared with the laminar flow.
Boundary-Layer Effects on Acoustic Transmission Through Narrow Slit Cavities
Ward, G. P.; Lovelock, R. K.; Murray, A. R. J.; Hibbins, A. P.; Sambles, J. R.; Smith, J. D.
2015-07-01
We explore the slit-width dependence of the resonant transmission of sound in air through both a slit array formed of aluminum slats and a single open-ended slit cavity in an aluminum plate. Our experimental results accord well with Lord Rayleigh's theory concerning how thin viscous and thermal boundary layers at a slit's walls affect the acoustic wave across the whole slit cavity. By measuring accurately the frequencies of the Fabry-Perot-like cavity resonances, we find a significant 5% reduction in the effective speed of sound through the slits when an individual viscous boundary layer occupies only 5% of the total slit width. Importantly, this effect is true for any airborne slit cavity, with the reduction being achieved despite the slit width being on a far larger scale than an individual boundary layer's thickness. This work demonstrates that the recent prevalent loss-free treatment of narrow slit cavities within acoustic metamaterials is unrealistic.
Avery, D. E.
1978-01-01
An experimental heat-transfer investigation was conducted on two staggered arrays of metallic tiles in laminar and turbulent boundary layers. This investigation was conducted for two purposes. The impingement heating distribution where flow in a longitudinal gap intersects a transverse gap and impinges on a downstream blocking tile was defined. The influence of tile and gap geometries was analyzed to develop empirical relationships for impingement heating in laminar and turbulent boundary layers. Tests were conducted in a high temperature structures tunnel at a nominal Mach number of 7, a nominal total temperature of 1800 K, and free-stream unit Reynolds numbers from 1.0 x 10 million to 4.8 x 10 million per meter. The test results were used to assess the impingement heating effects produced by parameters that include gap width, longitudinal gap length, slope of the tile forward-facing wall, boundary-layer displacement thickness, Reynolds number, and local surface pressure.
Predicting the mean fields of compressible turbulent boundary layer via a symmetry approach
Bi, Wei-Tao; Wu, Bin; She, Zhen-Su
2016-11-01
A symmetry approach for canonical wall turbulence is extended to develop mean-field predictions for compressible turbulent boundary layer (CTBL). A stress length and a weighted heat flux length are identified to obey the multilayer dilation symmetry of canonical flows, giving rise to predictions of the mean velocity and temperature profiles for a range of Reynolds number (Re), Mach number (Ma) and wall temperature (Tw). Also predicted are the streamwise developments of the shape factor, the boundary layer edge velocity and the boundary layer thicknesses, etc. Only three parameters are involved in the predictions, which have sound physics and organized behaviors with respect to the Re, Ma and Tw effects. The predictions are extensively validated by direct numerical simulation and experimental data, showing better accuracies than the previous theories. The results provide new quantifications that can be used to assess computations, measurements and turbulence models of CTBL, as well as to provide new insights for the CTBL physics.
Boundary layer development in the flow field between a rotating and a stationary disk
van Eeten, K. M. P.; van der Schaaf, J.; Schouten, J. C.; van Heijst, G. J. F.
2012-03-01
This paper discusses the development of boundary layers in the flow of a Newtonian fluid between two parallel, infinite disks. One of the disks is rotating at a constant angular velocity while the other remains stationary. An analytical series approximation and a numerical solution method are used to describe the velocity profiles of the flow. Both methods rely on the commonly used similarity transformation first proposed by Von Kármán [T. von Kármán, ZAMM 1, 233 (1921)], 10.1002/zamm.19210010401. For Reh Batchelor type of flow was observed for Reh > 300, with two boundary layers near the disks and a non-viscous core in the middle. A remarkable conclusion of the current work is the coincidence of the power series' radius of convergence, a somewhat abstract mathematical notion, with the physically tangible concept of the boundary layer thickness. The coincidence shows a small deviation of only 2% to 4%.
Multiple paths to subharmonic laminar breakdown in a boundary layer
Zang, Thomas A.; Hussaini, M. Yousuff
1990-01-01
Numerical simulations demonstrate that laminar breakdown in a boundary layer induced by the secondary instability of two-dimensional Tollmien-Schlichting waves to three-dimensional subharmonic disturbancews need not take the conventional lambda vortex/high-shear layer path.
Layer-by-layer assembly of nanocomposite films with thickness up to hundreds of nanometers
Institute of Scientific and Technical Information of China (English)
ZHOU Ling-de; YAN Yu-hua; YU Hai-hu; GU Er-dan; JIANG De-sheng
2006-01-01
Polyelectrolyte/polyelectrolyte, organic molecule/colloidal CdS and polyelectrolyte/MWCNT films were fabricated via the layer-by-layer assembling technique. The assembled films were characterized by UV-vis spectrophotometer, X-ray diffractometry,nano profilometer and scanning electron microscopy. The results demonstrate that the layer-by-layer assembling technique can be used to make the nanoscaled films from polyelectrolytes and thicker composite films from suitable precursor materials. Both organic molecule/colloidal CdS films and PEI/MWCNT films with thickness of hundreds of nanometers were obtained. For the organic molecule/colloidal CdS films, a reasonable explanation for the result is that both the organic molecules and the CdS particles aggregate in the films. For the PEI/MWCNT films, obviously, it is the MWCNT that makes the great contribution to the film thickness.
Plasma boundary layer and magnetopause layer of the earth's magnetosphere
Energy Technology Data Exchange (ETDEWEB)
Eastman, T.E.
1979-06-01
IMP 6 observations of the plasma boundary layer (PBL) and magnetopause layer (MPL) of the earth's magnetosphere indicate that plasma in the low-latitude portion of the PBL is supplied primarily by direct transport of magnetosheath plasma across the MPL and that this transport process is relatively widespread over the entire sunward magnetospheric boundary.
Institute of Scientific and Technical Information of China (English)
XIE Xiaoqiang
2012-01-01
The goal of this article is to study the boundary layer of Navier-Stokes/Allen-Cahn system in a channel at small viscosity.We prove that there exists a boundary layer at the outlet(down-wind)of thickness v,where v,is the kinematic viscosity.The convergence in L2 of the solutions of the Navier-Stokes/Allen-Cahn equations to that of the Euler/Allen-Cahn equations at the vanishing viscosity was established.In two dimensional case we are able to derive the physically relevant uniform in space and time estimates,which is derived by the idea of better control on the tangential derivative and the use of an anisotropic Sobolve imbedding.
Lichtenberg, Mads; Nørregaard, Rasmus Dyrmose; Kühl, Michael
2017-03-01
The role of hyaline hairs on the thallus of brown algae in the genus Fucus is long debated and several functions have been proposed. We used a novel motorized set-up for two-dimensional and three-dimensional mapping with O2 microsensors to investigate the spatial heterogeneity of the diffusive boundary layer (DBL) and O2 flux around single and multiple tufts of hyaline hairs on the thallus of Fucus vesiculosus. Flow was a major determinant of DBL thickness, where higher flow decreased DBL thickness and increased O2 flux between the algal thallus and the surrounding seawater. However, the topography of the DBL varied and did not directly follow the contour of the underlying thallus. Areas around single tufts of hyaline hairs exhibited a more complex mass-transfer boundary layer, showing both increased and decreased thickness when compared with areas over smooth thallus surfaces. Over thallus areas with several hyaline hair tufts, the overall effect was an apparent increase in the boundary layer thickness. We also found indications for advective O2 transport driven by pressure gradients or vortex shedding downstream from dense tufts of hyaline hairs that could alleviate local mass-transfer resistances. Mass-transfer dynamics around hyaline hair tufts are thus more complex than hitherto assumed and may have important implications for algal physiology and plant-microbe interactions.
Coherent structures in wave boundary layers. Part 1. Oscillatory motion
DEFF Research Database (Denmark)
Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen
2010-01-01
This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i......) Vortex tubes, essentially two-dimensional vortices close to the bed extending across the width of the boundary-layer flow, caused by an inflectional-point shear layer instability. The imprint of these vortices in the bed shear stress is a series of small, insignificant kinks and dips. (ii) Turbulent...
An experimental investigation of the three-dimensional boundary layer on a rotating disk
Littell, Howard Steven
The velocity field above a large spinning disk has been studied using pressure probes and hotwire anemometers. The flowfield consists of a three-dimensional boundary layer due to a crossflow caused by centrifugal forces. The disk was 1 m in diameter and was spun at speeds up to 1500 rpm, giving momentum thickness Reynolds numbers in excess of 6000. The mean flow in both the laminar and turbulent regimes compares well with previous studies of 'infinite' smooth rotating disks. All six Reynolds stresses and the ten triple products have been measured using established crosswire anemometry techniques. These results are compared to previous three-dimensional boundary layer measurements and several key differences are noted. The ratio of the shear stress vector magnitude to the turbulent kinetic energy is a common descriptor of boundary layer flow and is used in many modeling efforts because it is usually a constant over most of a two-dimensional boundary layer. Three-dimensionality has been observed to depress this parameter near the wall in many pressure-driven boundary layers. In the disk flow, this parameter was at a maximum near the wall at close to the 2-D value, but dropped off almost linearly away from the wall. Two-point velocity correlations were also measured using a pair of crosswire anemometers to gain insight into the structure of the turbulence. These measurements were obtained at two different heights at momentum thickness Reynolds numbers of 2650 and 5000 to test for possible scaling effects. These measurements showed that the turbulence exhibits asymmetry in the crossflow direction, which cannot occur in two-dimensional boundary layers. A mechanism by which the crossflow may be modifying the turbulence structure is proposed which exhibits several features of the asymmetric two-point correlations.
Analysis of diabatic flow modification in the internal boundary layer
DEFF Research Database (Denmark)
Floors, Rogier; Gryning, Sven-Erik; Pena Diaz, Alfredo
2011-01-01
is controlled by a combination of both downstream and upstream stability and surface roughness conditions. A model based on a diffusion analogy is able to predict the internal boundary layer height well. Modeling the neutral and long-term wind profile with a 3 layer linear interpolation scheme gives good......Measurements at two meteorological masts in Denmark, Horns Rev in the sea and Høvsøre near the coastline on land, are used to analyze the behaviour of the flow after a smooth-to-rough change in surface conditions. The study shows that the wind profile within the internal boundary layer...... results at Høvsøre. Based on a comparison with a numerical model and the measurements, the constants in the interpolation scheme are slightly adjusted, which yields an improvement for the description of the wind profile in the internal boundary layer....
Boundary-layer control by electric fields A feasibility study
Mendes, R V
1998-01-01
A problem of great concern in aviation and submarine propulsion is the control of the boundary layer and, in particular, the methods to extend the laminar region as a means to decrease noise and fuel consumption. In this paper we study the flow of air along an airfoil when a layer of ionized gas and a longitudinal electric field are created in the boundary layer region. By deriving scaling solutions and more accurate numerical solutions we discuss the possibility of achieving significant boundary layer control for realistic physical parameters. Practical design formulas and criteria are obtained. We also discuss the perspectives for active control of the laminar-to-turbulent transition fluctuations by electromagnetic field modulation.
Definition of Turbulent Boundary-Layer with Entropy Concept
Directory of Open Access Journals (Sweden)
Zhao Rui
2016-01-01
Full Text Available The relationship between the entropy increment and the viscosity dissipation in turbulent boundary-layer is systematically investigated. Through theoretical analysis and direct numerical simulation (DNS, an entropy function fs is proposed to distinguish the turbulent boundary-layer from the external flow. This approach is proved to be reliable after comparing its performance in the following complex flows, namely, low-speed airfoil flows with different wall temperature, supersonic cavity-ramp flow dominated by the combination of free-shear layer, larger recirculation and shocks, and the hypersonic flow past an aeroplane configuration. Moreover, fs is deduced from the point of energy, independent of any particular turbulent quantities. That is, this entropy concept could be utilized by other engineering applications related with turbulent boundary-layer, such as turbulence modelling transition prediction and engineering thermal protection.
Choi, Ja-Young; Biswas, Reni; Bae, Won C; Healey, Robert; Im, Michael; Statum, Sheronda; Chang, Eric Y; Du, Jiang; Bydder, Graeme M; D'Lima, Darryl; Chung, Christine B
2016-07-01
Purpose To determine the relationship between lamellar layer thickness on ultrashort echo time (UTE) magnetic resonance (MR) images and indentation stiffness of human menisci and to compare quantitative MR imaging values between two groups with normal and abnormally thick lamellar layers. Materials and Methods This was a HIPAA-compliant, institutional review board-approved study. Nine meniscal pieces were obtained from seven donors without gross meniscal pathologic results (mean age, 57.4 years ± 14.5 [standard deviation]). UTE MR imaging and T2, UTE T2*, and UTE T1ρ mapping were performed. The presence of abnormal lamellar layer thickening was determined and thicknesses were measured. Indentation testing was performed. Correlation between the thickness and indentation stiffness was assessed, and mean quantitative MR imaging values were compared between the groups. Results Thirteen normal lamellar layers had mean thickness of 232 μm ± 85 and indentation peak force of 1.37 g ± 0.87. Four abnormally thick lamellar layers showed mean thickness of 353.14 μm ± 98.36 and peak force 0.72 g ± 0.31. In most cases, normal thicknesses showed highly positive correlation with the indentation peak force (r = 0.493-0.912; P thickness in two abnormal lamellar layers showed highly negative correlation (r = -0.90, P thick lamellar layers were increased compared with values in normal lamellar layers, although only the UTE T2* value showed significant difference (P = .010). Conclusion Variation of lamellar layer thickness in normal human menisci was evident on two-dimensional UTE images. In normal lamellar layers, thickness is highly and positively correlated with surface indentation stiffness. UTE T2* values may be used to differentiate between normal and abnormally thickened lamellar layers. (©) RSNA, 2016.
Barnwell, R. W.; Dejarnette, F. R.; Wahls, R. A.
1987-01-01
A new turbulent boundary-layer method is developed which models the inner region with the law of the wall while the outer region uses Clauser's eddy viscosity in Matsuno's finite-difference method. The match point between the inner and outer regions as well as the wall shear stress are determined at each marching step during the computation. Results obtained for incompressible, two-dimensional flow over flat plates and ellipses are compared with solutions from a baseline method which uses a finite-difference method for the entire boundary layer. Since the present method used the finite-difference method in the outer region only, the number of grid points required was about half that needed for the baseline method. Accurate displacement and momentum thicknesses were predicted for all cases. Skin friction was predicted well for the flat plate, but the accuracy decreased significantly for the ellipses. Adding a wake functions to the law of the wall allows some of the pressure gradient effect to be taken into account thereby increasing the accuracy of the method.
Vortex Generators to Control Boundary Layer Interactions
Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)
2014-01-01
Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.
Scaling properties of the mean wall-normal velocity in zero-pressure-gradient boundary layers
Wei, Tie; Klewicki, Joseph
2016-12-01
The scaling properties of the mean wall-normal velocity V (x ,y ) in zero-pressure-gradient laminar and turbulent boundary-layer flows are investigated using numerical simulation data, physical experiment data, and integral analyses of the governing equations. The maximum mean wall-normal velocity V∞ and the boundary-layer thickness δ are evidenced to be the proper scaling for V over most if not all of the boundary layer. This is different from the behavior of the mean streamwise velocity U or the turbulent shear stress T =-ρ , which depend on different characteristic length scales in the regions near and away from the surface, respectively. The reason for this apparent difference in scaling behaviors is described physically relative to the downstream development of the U velocity profile and the mechanisms of boundary-layer growth. Insights pertaining to this are further surmised from an analytical relationship for the ratio of the displacement to momentum thickness, i.e., shape factor H . Integral analyses using the continuity and mean momentum equation show that U∞V∞/uτ2=H , where uτ is the friction velocity. Both the laminar similarity solution and direct numerical simulation data in post-transitional flows convincingly support this relation. Over the transitional regime, data of sufficiently high quality are lacking to check if this relation remains valid.
Sigüenza, J.; Mendez, S.; Ambard, D.; Dubois, F.; Jourdan, F.; Mozul, R.; Nicoud, F.
2016-10-01
This paper constitutes an extension of the work of Mendez et al. (2014) [36], for three-dimensional simulations of deformable membranes under flow. An immersed thick boundary method is used, combining the immersed boundary method with a three-dimensional modeling of the structural part. The immersed boundary method is adapted to unstructured grids for the fluid resolution, using the reproducing kernel particle method. An unstructured finite-volume flow solver for the incompressible Navier-Stokes equations is coupled with a finite-element solver for the structure. The validation process relying on a number of test cases proves the efficiency of the method, and its robustness is illustrated when computing the dynamics of a tri-leaflet aortic valve. The proposed immersed thick boundary method is able to tackle applications involving both thin and thick membranes/closed and open membranes, in significantly high Reynolds number flows and highly complex geometries.
An investigation of streaklike instabilities in laminar boundary layer flames
Miller, Colin; Finney, Mark; Forthofer, Jason; McAllister, Sara; Gollner, Michael
2016-11-01
Observations of coherent structures in boundary layer flames, particularly wildland fires, motivated an investigation on flame instabilities within a boundary layer. This experimental study examined streaklike structures in a stationary diffusion flame stabilized within a laminar boundary layer. Flame streaks were found to align with pre-existing velocity perturbations, enabling stabilization of these coherent structures. Thermocouple measurements were used to quantify streamwise amplification of flame streaks. Temperature mapping indicated a temperature rise in the flame streaks, while the region in between these streaks, the trough, decreased in temperature. The heat flux to the surface was measured with a total heat flux gauge, and the heat flux below the troughs was found to be higher at all measurement locations. This was likely a function of the flame standoff distance, and indicated that the flame streaks were acting to modify the spanwise distribution of heat flux. Instabilities in boundary layer combustion can have an effect on the spanwise distribution of heat transfer. This finding has significant implications for boundary layer combustion, indicating that instantaneous properties can vary significantly in a three-dimensional flow field.
The inner core thermodynamics of the tropical cyclone boundary layer
Williams, Gabriel J.
2016-10-01
Although considerable progress has been made in understanding the inner-core dynamics of the tropical cyclone boundary layer (TCBL), our knowledge of the inner-core thermodynamics of the TCBL remains limited. In this study, the inner-core budgets of potential temperature (θ), specific humidity ( q), and reversible equivalent potential temperature (θ _e) are examined using a high-resolution multilevel boundary layer model. The potential temperature budgets show that the heat energy is dominated by latent heat release in the eyewall, evaporative cooling along the outer edge of the eyewall, and upward surface fluxes of sensible and latent heat from the underlying warm ocean. It is shown that the vertical θ advection overcompensates the sum of radial advective warming from the boundary layer outflow jet and latent heating for the development of cooling in the eyewall within the TCBL. The moisture budgets show the dominant upward transport of moisture in the eyewall updrafts, partly by the boundary-layer outflow jet from the bottom eye region, so that the eyewall remains nearly saturated. The θ _e budgets reveal that the TCBL is maintained thermodynamically by the upward surface flux of higher-θ _e air from the underlying warm ocean, the radial transport of low-θ _e air from the outer regions of the TCBL, and the dry adiabatic cooling associated by eyewall updrafts. These results underscore the significance of vertical motion and the location of the boundary layer outflow jet in maintaining the inner core thermal structure of the TCBL.
Coherent structures in a zero-pressure-gradient and a strongly decelerated boundary layer
Simens, Mark P.; Gungor, Ayse G.; Maciel, Yvan
2016-04-01
Coherent structures in a strongly decelerated large-velocity-defect turbulent boundary layer (TBL) and a zero pressure gradient (ZPG) boundary layer are analysed by direct numerical simulation (DNS). The characteristics of the one-point velocity stastistics are also considered. The adverse pressure gradient (APG) TBL simulation is a new one carried out by the present authors. The APG TBL begins as a zero pressure gradient boundary layer, decelerates under a strong adverse pressure gradient, and separates near the end of the domain in the form of a very thin separation bubble. The one-point velocity statistics in the outer region of this large-defect boundary layer are compared to those of two other large-velocity-defect APG TBLs (one in dynamic equilibrium, the other in disequilibrium) and a mixing layer. In the upper half of the large-defect boundary layers, the velocity statistics are similar to those of the mixing layer. The dominant peaks of turbulence production and Reynolds stresses are located in the middle of the boundary layers. Three-dimensional spatial correlations of (u, u) and (u, v) show that coherence is lost in the streamwise and spanwise directions as the velocity defect increases. Near-wall streaks tend to disappear in the large-defect zone of the flow to be replaced by more disorganized u motions. Near-wall sweeps and ejections are also less numerous. In the outer region, the u structures tend to be shorter, less streaky, and more inclined with respect to the wall than in the ZPG TBL. The sweeps and ejections are generally bigger with respect to the boundary layer thickness in the large-defect boundary layer, even if the biggest structures are found in the ZPG TBL. Large sweeps and ejections that reach the wall region (wall-attached) are less streamwise elongated and they occupy less space than in the ZPG boundary layer. The distinction between wall-attached and wall-detached structures is not as pronounced in the large-defect TBL.
Reduction in retinal nerve fiber layer thickness in migraine patients.
Gipponi, Stefano; Scaroni, Niccolò; Venturelli, Elisabetta; Forbice, Eliana; Rao, Renata; Liberini, Paolo; Padovani, Alessandro; Semeraro, Francesco
2013-06-01
Migraine is a common disorder and its pathogenesis remains still unclear. Several hypotheses about the mechanisms involved in the pathogenesis of migraine have been proposed, but the issue is still far from being fully clarified. Neurovascular system remains one of the most important mechanisms involved in the pathogenesis of migraine and it could be possible that hypoperfusion might involve other areas besides brain, including the retina. This is, for example, of particular interest in a form of migraine, the retinal migraine, which has been associated with hypoperfusion and vasoconstriction of the retinal vasculature. Although vasoconstriction of cerebral and retinal blood vessels is a transient phenomenon, the chronic nature of the migraine might cause permanent structural abnormalities of the brain and also of the retina. On this basis, a few studies have evaluated whether retina is involved in migraine patients: Tan et al. have not found differences in retinal nerve fiber layer (RNFL) thickness between migraine patients and healthy subjects, while Martinez et al. have shown that RNFL in the temporal retinic quadrant of migraineurs is thinner than in normal people. The aim of our study was to analyze if there are differences in retinal nerve fiber layer thickness between migraine patients and normal subjects by studying 24 consecutive migraine patients who presented at the Headache Center of our Neurological Department. Migraine diagnosis has been made according to the International Classification of Headache disorder (ICHD-II). Patients have been recruited according to strict inclusion criteria; then patients have undergone a complete ophthalmological examination at the Ophthalmological Department. All patients and controls who met the ophthalmological criteria have been examined with ocular coherence tomography spectral domain (OCT-SD) after pupillary dilation. OCT-SD is an optical system designed to acquire the retinal layer images simultaneously with fundus
Rohrer, Franz; Li, Xin; Hofzumahaus, Andreas; Ehlers, Christian; Holland, Frank; Klemp, Dieter; Lu, Keding; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Wahner, Andreas
2014-05-01
The nocturnal boundary layer (NBL) is a sublayer within the planetary boundary layer (PBL) which evolves above solid land each day in the late afternoon due to radiation cooling of the surface. It is a region of several hundred meters thickness which inhibits vertical mixing. A residual and a surface layer remain above and below the NBL. Inside the surface layer, almost all direct emissions of atmospheric constituents take place during this time. This stratification lasts until the next morning after sunrise. Then, the heating of the surface generates a new convectionally mixed layer which successively eats up the NBL from below. This process lasts until shortly before noon when the NBL disappears completely and the PBL is mixed convectionally. Ozone measurements onboard a Zeppelin airship in The Netherlands, in Italy, and in Finland are used to analyse this behaviour with respect to atmospheric constituents and consequences for the diurnal cycles observed in the surface layer, the nocturnal boundary layer, and the residual layer are discussed.
On the dynamic behavior of composite panels under turbulent boundary layer excitations
Ciappi, E.; De Rosa, S.; Franco, F.; Vitiello, P.; Miozzi, M.
2016-03-01
In this work high Mach number aerodynamic and structural measurements acquired in the CIRA (Italian Aerospace Research Center) transonic wind tunnel and the models used to analyze the response of composite panels to turbulent boundary layer excitation are presented. The two investigated panels are CFRP (Carbon Fiber-Reinforced Polymer) composite plates and their lay-up is similar to configurations used in aeronautical structures. They differ only for the presence of an embedded viscoelastic layer. The experimental set-up has been designed to reproduce a pressure fluctuations field beneath a turbulent boundary layer as close as possible to those in flight. A tripping system, specifically conceived to this aim for this facility, has been used to generate thick turbulent boundary layers at Mach number values ranging between 0.4 and 0.8. It is shown that the designed setup provides a realistic representation of full scale size pressure spectra in the frequency range of interest for the noise component inside the fuselage, generated by turbulent boundary layer. The significant role of the viscoelastic layer at reducing panel's response is detailed and discussed. Finally, it is demonstrated that at high Mach number the aeroelastic effect cannot be neglected when analyzing the panel response, especially when composite materials are considered.
Thickness-induced structural phase transformation of layered gallium telluride.
Zhao, Q; Wang, T; Miao, Y; Ma, F; Xie, Y; Ma, X; Gu, Y; Li, J; He, J; Chen, B; Xi, S; Xu, L; Zhen, H; Yin, Z; Li, J; Ren, J; Jie, W
2016-07-28
The thickness-dependent electronic states and physical properties of two-dimensional materials suggest great potential applications in electronic and optoelectronic devices. However, the enhanced surface effect in ultra-thin materials might significantly influence the structural stability, as well as the device reliability. Here, we report a spontaneous phase transformation of gallium telluride (GaTe) that occurred when the bulk was exfoliated to a few layers. Transmission electron microscopy (TEM) results indicate a structural variation from a monoclinic to a hexagonal structure. Raman spectra suggest a critical thickness for the structural transformation. First-principle calculations and thermodynamic analysis show that the surface energy and the interlayer interaction compete to dominate structural stability in the thinning process. A two-stage transformation process from monoclinic (m) to tetragonal (T) and then from tetragonal to hexagonal (h) is proposed to understand the phase transformation. The results demonstrate the crucial role of interlayer interactions in the structural stability, which provides a phase engineering strategy for device applications.
Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate
Directory of Open Access Journals (Sweden)
Mohammad Reza Safaei
2016-09-01
Full Text Available In the present study, the heat transfer and flow of water/FMWCNT (functionalized multi-walled carbon nanotube nanofluids over a flat plate was investigated using a finite volume method. Simulations were performed for velocity ranging from 0.17 mm/s to 1.7 mm/s under laminar regime and nanotube concentrations up to 0.2%. The 2-D governing equations were solved using an in-house FORTRAN code. For a specific free stream velocity, the presented results showed that increasing the weight percentage of nanotubes increased the Nusselt number. However, an increase in the solid weight percentage had a negligible effect on the wall shear stress. The results also indicated that increasing the free stream velocity for all cases leads to thinner boundary layer thickness, while increasing the FMWCNT concentration causes an increase in the boundary layer thickness.
Analytic Study of Magnetohydrodynamic Flow and Boundary Layer Control Over a Wedge
Institute of Scientific and Technical Information of China (English)
M. Chandrasekar; S. Baskaran
2008-01-01
A genuine variational principle developed by Gyarmati, in the field of thermodynamics of irreversible processes unifying the theoretical requirements of technical, environmental and biological sciences is employed to study the effects of uniform suction and injection on MHD flow adjacent to an isothermal wedge with pressure gradient in the presence of a transverse magnetic field. The velocity distribution inside the boundary layer has been considered as a simple polynomial function and the variational principle is formulated. The Euler-Lagrange equation is reduced to a simple polynomial equation in terms of momentum boundary layer thickness. The velocity profiles, displacement thickness and the coefficient of skin friction are calculated for various values of wedge angle parameter m, magnetic parameter ε and suction/injection parameter H. The present results are compared with known available results and the comparison is found to be satisfactory. The present study establishes high accuracy of results obtained by this variational technique.
Secondary instability in boundary-layer flows
Nayfeh, A. H.; Bozatli, A. N.
1979-01-01
The stability of a secondary Tollmien-Schlichting wave, whose wavenumber and frequency are nearly one half those of a fundamental Tollmien-Schlichting instability wave is analyzed using the method of multiple scales. Under these conditions, the fundamental wave acts as a parametric exciter for the secondary wave. The results show that the amplitude of the fundamental wave must exceed a critical value to trigger this parametric instability. This value is proportional to a detuning parameter which is the real part of k - 2K, where k and K are the wavenumbers of the fundamental and its subharmonic, respectively. For Blasius flow, the critical amplitude is approximately 29% of the mean flow, and hence many other secondary instabilities take place before this parametric instability becomes significant. For other flows where the detuning parameter is small, such as free-shear layer flows, the critical amplitude can be small, thus the parametric instability might play a greater role.
Institute of Scientific and Technical Information of China (English)
Chandaneswar Midya
2012-01-01
An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible Buid over a linearly shrinking surface is presented. The Row is permeated by an externally applied magnetic Geld normal to the plane of the flow. The equations governing the Row and concentration Reid are reduced into a set of nonlinear ordinary differential equations using similarity variables. Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall mass flux (PMF) as boundary conditions. The study reveals that the concentration over a shrinking sheet is signiRcantly different from that of a stretching surface. It s found that te solute boundary layer thickness is enhanced with the increasing values of the Schmidt number and the power-law index parameter, but decreases with enhanced vaJues of magnetic and reaction rate parameters for the PSC case. For the PMF case, the solute boundary layer thickness decreases with the increase of the Schmidt number, magnetic and reaction rate parameter for power-law index parameter n = 0. Negative solute boundary layer thickness is observed for the PMF case when n = 1 and 2, and these facts may not be realized in real-world applications.%An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible fluid over a linearly shrinking surface is presented.The flow is permeated by an externally applied magnetic field normal to the plane of the flow.The equations governing the flow and concentration field are reduced into a set of nonlinear ordinary differential equations using similarity variables.Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall
Sound from boundary layer flow over steps and gaps
Ryan Catlett, M.; Devenport, William; Glegg, Stewart A. L.
2014-09-01
This study is concerned with the radiated sound from boundary layer flows over small forward and backward steps and gap configurations of similar dimension. These measurements were performed in the Virginia Tech Anechoic Wall Jet Facility for step heights that ranged from approximately 10 percent to 100 percent of the incoming boundary layer height. The results show the influence of step height and boundary layer edge velocity on the far-field sound from forward and backward steps. Neither source shows clear dipole directivity and at least the larger step heights considered in this study are shown to not be acoustically compact. A new mixed scaling normalization is proposed for the far-field spectra from both types of step. Backward steps are shown to be much weaker producers of far-field sound than similarly sized forward steps. The implications of this behavior are discussed with respect to the far-field sound measured from various gap flows.
Vertical pressure gradient and particle motions in wave boundary layers
DEFF Research Database (Denmark)
Jensen, Karsten Lindegård
The present study covers both a numerical and experimental investigation of the processes in the oscillatory boundary layer. In the first part a direct numerical simulation (DNS) is conducted to study the vertical pressure gradient, and its role in relation to laminar to turbulent transition...... and its role in the fully turbulent boundary layer. The pressure in the flow is obtained from the flow fields of the oscillatory boundary layer. What differs, the vertical pressure gradient, from other turbulent quantities, like e.g. velocity fluctuations is that it can detect newly generated turbulence....... This is in contrast to velocity fluctuations that are diffusive, so they can also contain residual turbulence from the previous half cycle until they are dissipated. Furthermore, the magnitude of the mean value of conditionally averaged vertical pressure gradient (for −∂p∗/∂x∗ 2 > 0) is compared to the submerged...
On the interaction between turbulence grids and boundary layers
Directory of Open Access Journals (Sweden)
Irps Thomas
2016-01-01
Full Text Available Turbulence grids are widely used in wind tunnels to produce representative turbulence levels when testing aerodynamic phenomena around models. Although the purpose of the grid is to introduce a desired turbulence level in the freestream flow, the wall boundary layers of the tunnel are subjected to modification due to the presence of such grids. This could have major implications to the flow around the models to be tested and hence there is a need to further understand this interaction. The study described in this paper examines wind tunnel wall boundary layer modification by turbulence grids of different mesh sizes and porosities to understand the effect of these parameters on such interaction. Experimental results are presented in the form of pressure loss coefficients, boundary layer velocity profiles and the statistics of turbulence modification.
Localized travelling waves in the asymptotic suction boundary layer
Kreilos, Tobias; Schneider, Tobias M
2016-01-01
We present two spanwise-localized travelling wave solutions in the asymptotic suction boundary layer, obtained by continuation of solutions of plane Couette flow. One of the solutions has the vortical structures located close to the wall, similar to spanwise-localized edge states previously found for this system. The vortical structures of the second solution are located in the free stream far above the laminar boundary layer and are supported by a secondary shear gradient that is created by a large-scale low-speed streak. The dynamically relevant eigenmodes of this solution are concentrated in the free stream, and the departure into turbulence from this solution evolves in the free stream towards the walls. For invariant solutions in free-stream turbulence, this solution thus shows that that the source of energy of the vortical structures can be a dynamical structure of the solution itself, instead of the laminar boundary layer.
Effect of externally generated turbulence on wave boundary layer
DEFF Research Database (Denmark)
Fredsøe, Jørgen; Sumer, B. Mutlu; Kozakiewicz, A.
2003-01-01
This experimental study deals with the effect of externally generated turbulence on the oscillatory boundary layer to simulate the turbulence in the wave boundary layer under broken waves in the swash zone. The subject has been investigated experimentally in a U-shaped, oscillating water tunnel...... with a smooth bottom. Turbulence was generated ´externally´ as the flow in the oscillator was passed through a series of grids, that extended from the cover of the water tunnel to about mid-depth. Two different types of grid porosities were used. Direct measurements of the bed shear stress and velocity...... results. The mean and turbulence quantities in the outer flow region are increased substantially with the introduction of the grids. It is shown that the externally generated turbulence is able to penetrate the bed boundary layer, resulting in an increase in the bed shear stress, and therefore...
Boundary-layer temperatures in high accretion rate cataclysmic variables
Energy Technology Data Exchange (ETDEWEB)
Hoare, M.G.; Drew, J.E. (Oxford Univ. (UK). Dept. of Physics Oxford Univ. (UK). Dept. of Astrophysics)
1991-04-01
We use the Zanstra method to derive limits on boundary-layer temperatures in eclipsing dwarf novae during outburst and nova-like variables, using the observed He II {lambda}1640 and {lambda}4686 recombination lines. It is assumed that all the emission is produced in the wind rather than the accretion disc. This method constrains the boundary-layer temperatures to between 50 000 and 100 000 K depending on the degree of wind bipolarity. These estimates are lower than the T>or approx200 000 K predicted theoretically. Possible explanations include rapid rotation of the white dwarf and spreading of the boundary layer over the entire white-dwarf surface. (author).
Bypass transition and spot nucleation in boundary layers
Kreilos, Tobias; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S; Eckhardt, Bruno
2016-01-01
The spatio-temporal aspects of the transition to turbulence are considered in the case of a boundary layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly fitted from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.
Bypass transition and spot nucleation in boundary layers
Kreilos, Tobias; Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S.; Eckhardt, Bruno
2016-08-01
The spatiotemporal aspects of the transition to turbulence are considered in the case of a boundary-layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly obtained from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.
On the design of airfoils in which the transition of the boundary layer is delayed
Tani, Itiro
1952-01-01
A method is presented for designing suitable thickness distributions and mean camber lines for airfoils permitting extensive chordwise laminar flow. Wind tunnel and flight tests confirming the existence of laminar flow; possible maintenance of laminar flow by area suction; and the effects of wind tunnel turbulence and surface roughness on the promotion of premature boundary layer transition are discussed. In addition, estimates of profile drag and scale effect on maximum lift of the derived airfoils are made.
Coupled vs. decoupled boundary layers in VOCALS-REx
Directory of Open Access Journals (Sweden)
C. R. Jones
2011-03-01
Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.
We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the “well-mixed cloud thickness”, defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling. In the deeper boundary layers observed well offshore, there was frequently nearly 100% boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA)and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for describing thickness ratios of HDA/PEO coatings. Then, the effect of thickness ratio on stresses field of HDA/PEO coatings subjected to uniform normal contact load was investigated by finite element method. Results show that the surface tensile stress is mainly affected by the thickness ratio of Al layer when the total thickness of coating is unchanged. With the increase of Al layer thickness, the surface tensile stress rises quickly. When Al2O3 layer thickness increases, surface tensile stress is diminished. Meanwhile, the maximum shear stress moves rapidly towards internal part of HDA/PEO coatings. Shear stress at the Al2O3/Al interface is minimal when Al2O3 layer and Al layer have the same thickness.
Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report
Energy Technology Data Exchange (ETDEWEB)
Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory
2015-11-01
The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.
Calculation of a boundary layer with phase transformations
Dorosh, N. D.; Kharitonov, A. A.
A method for the analysis of a laminar boundary layer with phase transformations is developed. It is noted that volume gas condensation can occur in the case of flow past a cooled surface, drops becoming aggregated in groups in the process of condensation. The concept of group density and concentration is proposed, and this approach is used to investigate a boundary layer near the stagnation point of a two-dimensional blunt body in a flow of molecular oxygen. Profiles of temperature, stream function, and concentration of liquid-oxygen droplet groups are determined for various values of the condensation rate.
Turbulent boundary layer on perforated surfaces with vector injection
Eroshenko, V. M.; Zaichik, L. I.; Klimov, A. A.; Ianovskii, L. S.; Kondratev, V. I.
1980-10-01
The paper presents an experimental investigation of a turbulent boundary layer on perforated plates with uniform vector injection at various angles to gas flow. It was shown that with strong injection at angles oriented in the flow direction the intensity of turbulent pulsation is decreased, while injection at angles in the opposite direction increase the intensity. A relationship was established between the critical parameters of the boundary layer injection angles; it was concluded that the asymptotic theory of Kutateladze and Leontiev can be used for determining the coefficient of friction of vector injection.
Non-Equilibrium Effects on Hypersonic Turbulent Boundary Layers
Kim, Pilbum
Understanding non-equilibrium effects of hypersonic turbulent boundary layers is essential in order to build cost efficient and reliable hypersonic vehicles. It is well known that non-equilibrium effects on the boundary layers are notable, but our understanding of the effects are limited. The overall goal of this study is to improve the understanding of non-equilibrium effects on hypersonic turbulent boundary layers. A new code has been developed for direct numerical simulations of spatially developing hypersonic turbulent boundary layers over a flat plate with finite-rate reactions. A fifth-order hybrid weighted essentially non-oscillatory scheme with a low dissipation finite-difference scheme is utilized in order to capture stiff gradients while resolving small motions in turbulent boundary layers. The code has been validated by qualitative and quantitative comparisons of two different simulations of a non-equilibrium flow and a spatially developing turbulent boundary layer. With the validated code, direct numerical simulations of four different hypersonic turbulent boundary layers, perfect gas and non-equilibrium flows of pure oxygen and nitrogen, have been performed. In order to rule out uncertainties in comparisons, the same inlet conditions are imposed for each species, and then mean and turbulence statistics as well as near-wall turbulence structures are compared at a downstream location. Based on those comparisons, it is shown that there is no direct energy exchanges between internal and turbulent kinetic energies due to thermal and chemical non-equilibrium processes in the flow field. Instead, these non-equilibria affect turbulent boundary layers by changing the temperature without changing the main characteristics of near-wall turbulence structures. This change in the temperature induces the changes in the density and viscosity and the mean flow fields are then adjusted to satisfy the conservation laws. The perturbation fields are modified according to
Conference on Boundary and Interior Layers : Computational and Asymptotic Methods
2015-01-01
This volume offers contributions reflecting a selection of the lectures presented at the international conference BAIL 2014, which was held from 15th to 19th September 2014 at the Charles University in Prague, Czech Republic. These are devoted to the theoretical and/or numerical analysis of problems involving boundary and interior layers and methods for solving these problems numerically. The authors are both mathematicians (pure and applied) and engineers, and bring together a large number of interesting ideas. The wide variety of topics treated in the contributions provides an excellent overview of current research into the theory and numerical solution of problems involving boundary and interior layers. .
Axisymmetric fundamental solutions for a finite layer with impeded boundaries
Institute of Scientific and Technical Information of China (English)
程泽海; 陈云敏; 凌道盛; 唐晓武
2003-01-01
Axisymmetrie fundamental solutions that are applied in the consolidation calculations of a finite clay layer with impeded boundaries were derived. Laplace and Hankel integral transforms were utilized with respect to time and radial coordinates, respectively in the analysis. The derivation of fundamental solutions considers two boundary-value problems involving unit point loading and ring loading in the vertical. The solut-ions are extended to circular distributed and strip distributed normal load. The computation and analysis of set-tlements, vertical total stress and excess pore pressure in the consolidation layer subject to circular loading are presented.
Axisymmetric fundamental solutions for a finite layer with impeded boundaries
Institute of Scientific and Technical Information of China (English)
程泽海; 陈云敏; 凌道盛; 唐晓武
2003-01-01
Axisymmetric fundamental solutions that are applied in the consolidation calculations of a finite clay layer with impeded boundaries were derived. Laplace and Hankel integral transforms were utilized with respect to time and radial coordinates, respectively in the analysis. The derivation of fundamental solutions considers two boundary-value problems involving unit point loading and ring loading in the vertical. The solutions are extended to circular distributed and strip distributed normal load. The computation and analysis of settlements, vertical total stress and excess pore pressure in the consolidation layer subject to circular loading are presented.
Coherent structures in wave boundary layers. Part 2. Solitary motion
DEFF Research Database (Denmark)
Sumer, B. Mutlu; Jensen, Palle Martin; Sørensen, Lone B.;
2010-01-01
in an oscillating water tunnel. Two kinds of measurements were made: bed shear stress measurements and velocity measurements. The experiments show that the solitary-motion boundary layer experiences three kinds of flow regimes as the Reynolds number is increased: (i) laminar regime; (ii) laminar regime where...... the boundary-layer flow experiences a regular array of vortex tubes near the bed over a short period of time during the deceleration stage; and (iii) transitional regime characterized with turbulent spots, revealed by single/multiple, or, sometimes, quite dense spikes in the bed shear stress traces...
DNS Study on Physics of Late Boundary Layer Transition
Liu, Chaoqun
2014-01-01
This paper serves as a review of our recent new DNS study on physics of late boundary layer transition. This includes mechanism of the large coherent vortex structure formation, small length scale generation and flow randomization. The widely spread concept vortex breakdown to turbulence,which was considered as the last stage of flow transition, is not observed and is found theoretically incorrect. The classical theory on boundary layer transition is challenged and we proposed a new theory with five steps, i.e. receptivity, linear instability, large vortex formation, small length scale generation, loss of symmetry and randomization to turbulence. We have also proposed a new theory about turbulence generation. The new theory shows that all small length scales (turbulence) are generated by shear layer instability which is produced by large vortex structure with multiple level vortex rings, multiple level sweeps and ejections, and multiple level negative and positive spikes near the laminar sub-layers.Therefore,...
Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers.
Najmaei, Sina; Liu, Zheng; Zhou, Wu; Zou, Xiaolong; Shi, Gang; Lei, Sidong; Yakobson, Boris I; Idrobo, Juan-Carlos; Ajayan, Pulickel M; Lou, Jun
2013-08-01
Single-layered molybdenum disulphide with a direct bandgap is a promising two-dimensional material that goes beyond graphene for the next generation of nanoelectronics. Here, we report the controlled vapour phase synthesis of molybdenum disulphide atomic layers and elucidate a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers. Furthermore, a nucleation-controlled strategy is established to systematically promote the formation of large-area, single- and few-layered films. Using high-resolution electron microscopy imaging, the atomic structure and morphology of the grains and their boundaries in the polycrystalline molybdenum disulphide atomic layers are examined, and the primary mechanisms for grain boundary formation are evaluated. Grain boundaries consisting of 5- and 7- member rings are directly observed with atomic resolution, and their energy landscape is investigated via first-principles calculations. The uniformity in thickness, large grain sizes, and excellent electrical performance signify the high quality and scalable synthesis of the molybdenum disulphide atomic layers.
Characterization of an incipiently separated shock wave/turbulent boundary layer interaction
Schreyer, A.-M.; Dussauge, J.-P.; Krämer, E.
2017-03-01
The turbulence structure in a shock wave/turbulent boundary layer interaction at incipient separation was investigated in order to get insight into turbulence generation and amplification mechanisms in such flow fields. The flow along a two-dimensional 11.5° compression corner was studied experimentally at a Mach number of M=2.53 and with a momentum-thickness Reynolds number of Re_{θ }=5370. From hot-wire boundary layer traverses and surface heat-flux density fluctuation measurements with the fast-response atomic layer thermopile, the turbulence structure and amplification was described. Space-time correlations of the mass-flux fluctuations across the boundary layer and the surface heat-flux density fluctuations were measured to further characterize the development of the turbulence structure across the interaction. The large-scale boundary layer structures are concealed by shock-related effects in the strongly disturbed shock-foot region. Shortly downstream, however, large-scale structures dominate the signal again, just as in the incoming flow. A mechanism explaining this behavior is suggested.
Investigation of radiative effects of the optically thick dust layer over the Indian tropical region
Energy Technology Data Exchange (ETDEWEB)
Das, S.K.; Chen, J.P. [National Taiwan Univ. (China). Dept. of Atmospheric Sciences; Ratnam, M. Venkat; Jayaraman, A. [National Atmospheric Research Laboratory, Tirupati (India)
2013-06-01
Optical and physical properties of aerosols derived from multi-satellite observations (MODIS-Aqua, OMI-Aura, MISR-Terra, CALIOP-CALIPSO) have been used to estimate radiative effects of the dust layer over southern India. The vertical distribution of aerosol radiative forcing and heating rates are calculated with 100m resolution in the lower atmosphere, using temperature and relative humidity data from balloon-borne radiosonde observations. The present study investigates the optically thick dust layer of optical thickness 0.18 {+-} 0.06 at an altitude of 2.5 {+-} 0.7 km over Gadanki, transported from the Thar Desert, producing radiative forcing and heating rate of 11.5 {+-} 3.3 W m{sup -2} and 0.6 {+-} 0.26 K day{sup -1}, respectively, with a forcing efficiency of 43 W m{sup -2} and an effective heating rate of 4Kday-1 per unit dust optical depth. Presence of the dust layer increases radiative forcing by 60% and heating rate by 60 times at that altitude compared to nondusty cloud-free days. Calculation shows that the radiative effects of the dust layer strongly depend on the boundary layer aerosol type and mass loading. An increase of 25% of heating by the dust layer is found over relatively cleaner regions than urban regions in southern India and further 15% of heating increases over the marine region. Such heating differences in free troposphere may have significant consequences in the atmospheric circulation and hydrological cycle over the tropical Indian region. (orig.)
Effect of the acoustic boundary layer on the wave propagation in ducts
Nayfeh, A. H.
1973-01-01
An analysis is presented for the wave propagation in two-dimensional and circular lined ducts taking into account the effects of viscosity in both the mean and the acoustic problems. The method of composite expansions is used to express each acoustic flow quantity as the sum of an inviscid part and a boundary layer part insignificant outside a thin layer next to the wall. The problem is reduced to solving a second-order ordinary differential equation for the pressure perturbation as in the inviscid acoustic case but with a modified specific wall admittance. An analytic expression is presented for the variation of the modified admittance with the wall and flow parameters, such as the acoustic boundary layer thickness, the mean velocity and temperature gradients at the wall, the frequency of oscillation, and the wavelength.
Thermocouple Rakes for Measuring Boundary Layer Flows Extremely Close to Surface
Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.
2001-01-01
Of vital interest to aerodynamic researchers is precise knowledge of the flow velocity profile next to the surface. This information is needed for turbulence model development and the calculation of viscous shear force. Though many instruments can determine the flow velocity profile near the surface, none of them can make measurements closer than approximately 0.01 in. from the surface. The thermocouple boundary-layer rake can measure much closer to the surface than conventional instruments can, such as a total pressure boundary layer rake, hot wire, or hot film. By embedding the sensors (thermocouples) in the region where the velocity is equivalent to the velocity ahead of a constant thickness strut, the boundary-layer flow profile can be obtained. The present device fabricated at the NASA Glenn Research Center microsystem clean room has a heater made of platinum and thermocouples made of platinum and gold. Equal numbers of thermocouples are placed both upstream and downstream of the heater, so that the voltage generated by each pair at the same distance from the surface is indicative of the difference in temperature between the upstream and downstream thermocouple locations. This voltage differential is a function of the flow velocity, and like the conventional total pressure rake, it can provide the velocity profile. In order to measure flow extremely close to the surface, the strut is made of fused quartz with extremely low heat conductivity. A large size thermocouple boundary layer rake is shown in the following photo. The latest medium size sensors already provide smooth velocity profiles well into the boundary layer, as close as 0.0025 in. from the surface. This is about 4 times closer to the surface than the previously used total pressure rakes. This device also has the advantage of providing the flow profile of separated flow and also it is possible to measure simultaneous turbulence levels within the boundary layer.
Flow visualization of swept wing boundary layer transition
Serpieri, J.; Kotsonis, M.
2015-01-01
In this work the flow visualization of the transition pattern occurring on a swept wing in a subsonic flow is presented. This is done by means of fluorescent oil flow technique and boundary layer hot-wire scans. The experiment was performed at Reynolds number of 2:15 . 106 and at angle of attack of
Body surface adaptations to boundary-layer dynamics
Videler, J.J.
1995-01-01
Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins, sca
The boundary layer growth in an urban area
Pino, D.; Vilà-Guerau de Arellano, J.; Comerón, A.; Rocadenbosch, F.
2004-01-01
The development and maintenance of the atmospheric boundary layer (ABL) plays a key role in the distribution of atmospheric constituents, especially in a polluted urban area. In particular, the ABL has a direct impact on the concentration and transformation of pollutants. In this work, in order to a
DNS of compressible turbulent boundary layer around a sharp cone
Institute of Scientific and Technical Information of China (English)
LI XinLiang; FU DeXun; MA YanWen
2008-01-01
Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20° cone angle (or 10° half-cone angle) is performed by using the mixed seventh-order up-wind biased finite difference scheme and sixth-order central difference scheme.The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch.The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer,Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow.The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations,The turbulent energy equation in the cylindrical coordinate is given and turbulent en-ergy budget is studied.The computed results show that the effect of circumferen-tial curvature on turbulence characteristics is not obvious.
Wave boundary layer hydrodynamics during onshore bar migration
Henriquez, M.; Reniers, A.; Ruessink, G.; Stive, M.J.F.
2010-01-01
To study onshore bar migration and the accompanying intra-wave sediment transport a wave flume experiment was conducted. The wave flume had a rigid bottom with a single bar profile. The focus of the experiment was to measure the hydrodynamics in the wave bottom boundary layer. The results show that
Drizzle and Turbulence Variability in Stratocumulus-topped Boundary Layers
Kollias, P.; Luke, E. P.; Szyrmer, W.
2015-12-01
Marine stratocumulus clouds frequently produce light precipitation in the form of drizzle. The drizzle rate at the cloud base (RCB) dictates the impact of drizzle on the boundary layer turbulence and cloud organization. Here, synergistic observations from the US Department of Energy Atmospheric Radiation Measurement (ARM) program Eastern North Atlantic (ENA) site located on Graciosa Island in the Azores are used to investigate the relationship between RCB, and boundary layer turbulence and dynamics. The ARM ENA site is a heavily instrumented ground-based facility that offers new measurement capabilities in stratocumulus-topped boundary layers (STBL). The RCB is retrieved using a radar-lidar algorithm. The STBL turbulent structure is characterized using the Doppler lidar and radar observations. The profiling radar/lidar/radiometer observations are used to describe the cloud fraction and morphology. Finally, surface-based aerosol number concentration measurements are used to investigate the connection between the boundary layer turbulence, cloud morphology and aerosol loading. Preliminary correlative relationships between the aforementioned variables will be shown.
Three dimensional boundary layers on submarine conning towers and rudders
Gleyzes, C.
1988-01-01
Solutions for the definition of grids adapted to the calculation of three-dimensional boundary layers on submarine conning towers and on submarine rudders and fins are described. The particular geometry of such bodies (oblique shaped hull, curved fins) required special adaptations. The grids were verified on examples from a test basin.
The use of a wave boundary layer model in SWAN
DEFF Research Database (Denmark)
Du, Jianting; Bolaños, Rodolfo; Larsén, Xiaoli Guo
2017-01-01
A Wave Boundary Layer Model (WBLM) is implemented in the third-generation ocean wave model SWAN to improve the wind-input source function under idealized, fetch-limited condition. Accordingly, the white capping dissipation parameters are re-calibrated to fit the new wind-input source function...
Two Phases of Coherent Structure Motions in Turbulent Boundary Layer
Institute of Scientific and Technical Information of China (English)
LIU Jian-Hua; JIANG Nan
2007-01-01
Two phases of coherent structure motion are acquired after obtaining conditional phase-averaged waveforms for longitudinal velocity of coherent structures in turbulent boundary layer based on Harr wavelet transfer. The correspondences of the two phases to the two processes (i.e. ejection and sweep) during a burst are determined.
Entrainment process of carbon dioxide in the atmospheric boundary layer
Vilà-Guerau de Arellano, J.; Gioli, B.; Miglietta, F.; Jonker, H.J.J.; Klein Baltink, H.; Hutjes, R.W.A.; Holtslag, A.A.M.
2004-01-01
Aircraft and surface measurements of turbulent thermodynamic variables and carbon dioxide (CO2) were taken above a grassland in a convective atmospheric boundary layer. The observations were analyzed to assess the importance of the entrainment process for the distribution and evolution of carbon dio
Role of the vertical pressure gradient in wave boundary layers
DEFF Research Database (Denmark)
Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna
2014-01-01
By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressur...
Convective boundary layers driven by nonstationary surface heat fluxes
Van Driel, R.; Jonker, H.J.J.
2011-01-01
In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is systematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds modulate incoming solar radiation. Because the time scale of the associated change
Combined Wave and Current Bottom Boundary Layers: A Review
2016-03-01
formation during an energetic storm. They noted that the sedi- ment first became dilated due to water entrainment, followed by erosion during the most...suggested by Businger et al. (1971), who developed their eddy viscosity for thermally stratified atmospheric boundary layers, was shown to be valid for
Boundary-Layer Wind Structure in a Landfalling Tropical Cyclone
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components of horizontal wind in the tropical cyclone boundary layer at landfall. For a steady tropical cyclone on a straight coastline at landfall, the magnitude of the radial component is greater in the offshoreflow side and the tangential component is greater over the sea, slightly offshore, therefore the greater total wind speed occurs in the offshore-flow side over the sea. The budget analysis suggests that: (1) a greater surface friction over land produces a greater inflow and the nonlinear effect advects the maximum inflow downstream, and (2) a smaller surface friction over the sea makes the decrease of the tangential wind component less than that over land. Moreover, the boundary layer wind structures in a tropical cyclone are related to the locations of the tropical cyclone relative to the coastline due to the different surface frictions. During tropical cyclone landfall, the impact of rough terrain on the cyclone increases, so the magnitude of the radial component of wind speed increases in the offshore-flow side and the tangential component outside the radius of maximum wind speed decreases gradually.
Spatially developing turbulent boundary layer on a flat plate
Lee, J H; Hutchins, N; Monty, J P
2012-01-01
This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as it would form over the hull of a ship or fuselage of an aircraft. The towed plate permits visualisation of the zero-pressure-gradient turbulent boundary layer as it develops from the trip to a high Reynolds number state ($Re_\\tau \\approx 3000$). An evolving large-scale coherent structure will appear almost stationary in this frame of reference. The visualisations provide an unique view of the evolution of fundamental processes in the boundary layer (such as interfacial bulging, entrainment, vortical motions, etc.). In the more traditional laboratory frame of reference, in which fluid passes over a stationary body, it is difficult to observe the full evolution and lifetime of turbulent coherent structures. An equivalent experiment in a wind/water-tunnel would requ...
Stability of the laminar boundary layer for an imperfect gas
Gasperas, G.
The linear perturbation equations are derived for the general case of a compressible imperfect gas characterized by an equation of state utilizing a compressibility factor. The specific case of the Beattie-Bridgeman gas is chosen for calculation. Amplification curves calculated using the Beattie-Bridgeman equation of state for two representative flat plate boundary layers are presented.
Boundary Layer Flows in Porous Media with Lateral Mass Flux
DEFF Research Database (Denmark)
Nemati, H; H, Bararnia; Noori, F;
2015-01-01
Solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium are presented using the Homotopy Analysis Method and Shooting Numerical Method. Homotopy Analysis Method yields an analytic solution in the form of a rapidly...
Vortex Generator Induced Flow in a High Re Boundary Layer
DEFF Research Database (Denmark)
Velte, Clara Marika; Braud, C.; Coudert, S.
2012-01-01
Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...
Vortex Generator Induced Flow in a High Re Boundary Layer
DEFF Research Database (Denmark)
Velte, Clara Marika; Braud, C.; Coudert, S.
2014-01-01
Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...
Modeling of particulate plumes transportation in boundary layers with obstacles
Karelsky, K. V.; Petrosyan, A. S.
2012-04-01
This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by nonslip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of high wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations. We deal with describing high
Transportation of particulate plumes in boundary layer with obstacles
Petrosyan, A.; Karelsky, K.; Smirnov, I.
2010-05-01
This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by nonslip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of high wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations. We deal with describing high
Transport of Particulates in Boundary Layer with Obstacles
Karelsky, Kirill; Petrosyan, Arakel
2014-05-01
This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by nonslip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of high wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations. We deal with describing high
Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K
2015-02-01
An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected.
Characteristics of the near-tail dawn magnetopause and boundary layer
Directory of Open Access Journals (Sweden)
G. Paschmann
2005-06-01
Full Text Available The paper discusses properties of the near-tail dawnside and boundary layer, as obtained from Cluster plasma and magnetic field measurements during a single skimming orbit on 4 and 5 July 2001 that included 24 well-defined crossings by all four spacecraft. As a result of variations of the interplanetary magnetic field, the magnetic shear across the local varied between ~0° and ~180°. Using an improved method, which takes into account acceleration and thickness variation, we have determined the orientation, speed, thickness and current for the 96 individual crossings. The orientations show clear evidence of surface waves. Magnetopause thicknesses range from ~100 to ~2500km, with an average of 753km. The speeds range from less than 10up to more than 300, with an average of 48. Both results are consistent with earlier ISEE and AMPTE results obtained for the dayside magnetopause. Importantly, scaling the thicknesses to the ion gyro radius or the ion inertial length did not reduce the large dynamic range. There is also no significant dependence of thickness on magnetic shear. Current densities range from ~0.01 up to ~0.3uA, with an average value of 0.05 . By including some extra crossings that did not involve all four spacecraft, we were able to apply the Walén test to a total of 60 by Cluster 1 and 3, and have classified 19 cases as rotational discontinuities (RDs, of which 12 and 7 were sunward and tailward of an X-line, respectively. Of these 60 crossings, 26 show no trace of a boundary layer. The only with substantial boundary layers are into the plasma mantle. Of the 26 without a boundary layer, 8 were identified as RDs. Since reconnection produces wedge-shaped boundary layers emanating from the X-line, RDs without may be considered close to the X-line, in which case the observed magnetic shear and Alfvén Mach number should be representative of the conditions at the X-line itself. It is therefore important that four of the eight cases had
Mechanisms of fast neutron penetration in thick layers of sodium
Energy Technology Data Exchange (ETDEWEB)
Huang, L.Y.
1975-01-01
A series of computer experiments was carried out to elucidate the penetration mechanisms of fast neutrons through thick layers of sodium such as occur in LMFBR designs. As a one-dimensional approximation of the actual situation, the calculations concentrated mainly on the flux 5 meters from a plane isotropic fission source in an infinite sodium medium. Most of the transport calculations were made with the moments-method code BMT with a 496-energy point grid. Previously developed methods for reconstructing the flux from the spatial moments were used, except that a set of biorthogonal polynomials was constructed suitable for expansion of the flux in terms of a Gaussian weight function. The moments-method technique lends itself to easy and economical changes of the input cross section data. A large number of such modified cross section sets, built around the ENDF/B-III set, were used in separate calculations designed variously to emphasize or eliminate one or more particular transport processes. It was shown that, as the energy decreases below 190 keV, the flux spectrum at 5 m is increasingly dominated by an age-diffusion process that is quantitatively close to conventional age theory if the age is suitably chosen. Conclusions from this picture of neutron penetration in sodium are made as to the types of transport calculations that can be successfully made in shield design, and the accuracies needed in future cross section measurements. 37 figures, 30 tables.
Bathel, Brett F.; Danehy, Paul M.; Jones, Stephen B.; Johansen, Craig T.; Goyne, Christopher P.
2013-01-01
Measurements of mean streamwise velocity, fluctuating streamwise velocity, and instantaneous streamwise velocity profiles in a hypersonic boundary layer were obtained over a 10-degree half-angle wedge model. A laser-induced fluorescence-based molecular tagging velocimetry technique was used to make the measurements. The nominal edge Mach number was 4.2. Velocity profiles were measured both in an untripped boundary layer and in the wake of a 4-mm diameter cylindrical tripping element centered 75.4 mm downstream of the sharp leading edge. Three different trip heights were investigated: k = 0.53 mm, k = 1.0 mm and k = 2.0 mm. The laminar boundary layer thickness at the position of the measurements was approximately 1 mm, though the exact thickness was dependent on Reynolds number and wall temperature. All of the measurements were made starting from a streamwise location approximately 18 mm downstream of the tripping element. This measurement region continued approximately 30 mm in the streamwise direction. Additionally, measurements were made at several spanwise locations. An analysis of flow features show how the magnitude, spatial location, and spatial growth of streamwise velocity instabilities are affected by parameters such as the ratio of trip height to boundary layer thickness and roughness Reynolds number. The fluctuating component of streamwise velocity measured along the centerline of the model increased from approximately 75 m/s with no trip to +/-225 m/s with a 0.53-mm trip, and to +/-240 m/s with a 1-mm trip, while holding the freestream Reynolds number constant. These measurements were performed in the 31-inch Mach 10 Air Tunnel at the NASA Langley Research Center.
Magnetic Domination of Recollimation Boundary Layers in Relativistic Jets
Kohler, Susanna
2012-01-01
We study the collimation of relativistic magnetohydrodynamic jets by the pressure of an ambient medium, in the limit where the jet interior loses causal contact with its surroundings. This follows up a hydrodynamic study in a previous paper, adding the effects of a toroidal magnetic field threading the jet. As the ultrarelativistic jet encounters an ambient medium with a pressure profile with a radial scaling of p ~ r^-eta where 2
Directory of Open Access Journals (Sweden)
A. Lampert
2009-07-01
Full Text Available During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR, which was conducted in Svalbard in March and April 2007, tropospheric Arctic clouds were observed with two ground-based backscatter lidar systems (micro pulse lidar and Raman lidar and with an airborne elastic lidar. An increase in low-level (cloud tops below 2.5 km cloud cover from 51% to 65% was observed above Ny-Ålesund during the time of the ASTAR campaign. Four different case studies of lidar cloud observations are analyzed: With the ground-based Raman lidar, a pre-condensation layer was observed at an altitude of 2 km. The layer consisted of small droplets with a high number concentration (around 300 cm^{−3} at low temperatures (−30°C. Observations of a boundary layer mixed-phase cloud by airborne lidar were evaluated with the measurements of concurrent airborne in situ and spectral solar radiation sensors. Two detailed observations of multiply layered clouds in the free troposphere are presented. The first case was composed of various ice layers with different optical properties detected with the Raman lidar, the other case showed a mixed-phase double layer and was observed by airborne lidar.
The analysis of these four cases confirmed that lidar data provide information of the whole range from subvisible to optically thick clouds. Despite the attenuation of the laser signal in optically thick clouds and multiple scattering effects, information on the geometrical boundaries of liquid water clouds were obtained. Furthermore, the dominating phase of the clouds' particles in the layer closest to the lidar system could be retrieved.
Determination of crystallization as a function of Mo layer thickness in Mo/Si multilayers
DEFF Research Database (Denmark)
Abdali, Salim; Gerward, Leif; Yakshin, A.E.;
2002-01-01
Mo/Si multilayer samples with different Mo layer thickness were deposited by electron beam evaporation, while Kr+ ions (300 eV) were used for polishing the Si layers. Crystallization as a function of the Mo layer thickness deposited was investigated by grazing incidence X-ray diffraction, giving...
On buffer layers as non-reflecting computational boundaries
Hayder, M. Ehtesham; Turkel, Eli L.
1996-01-01
We examine an absorbing buffer layer technique for use as a non-reflecting boundary condition in the numerical simulation of flows. One such formulation was by Ta'asan and Nark for the linearized Euler equations. They modified the flow inside the buffer zone to artificially make it supersonic in the layer. We examine how this approach can be extended to the nonlinear Euler equations. We consider both a conservative and a non-conservative form modifying the governing equations in the buffer layer. We compare this with the case that the governing equations in the layer are the same as in the interior domain. We test the effectiveness of these buffer layers by a simulation of an excited axisymmetric jet based on a nonlinear compressible Navier-Stokes equations.
The height of the atmospheric boundary layer during unstable conditions
Energy Technology Data Exchange (ETDEWEB)
Gryning, S.E.
2005-11-01
The height of the convective atmospheric boundary layer, also called the mixed-layer, is one of the fundamental parameters that characterise the structure of the atmosphere near the ground. It has many theoretical and practical applications such as the prediction of air pollution concentrations, surface temperature and the scaling of turbulence. However, as pointed out by Builtjes (2001) in a review paper on Major Twentieth Century Milestones in Air Pollution Modelling and Its Application, the weakest point in meteorology data is still the determination of the height of the mixed-layer, the so-called mixing height. A simple applied model for the height of the mixed-layer over homogeneous terrain is suggested in chapter 2. It is based on a parameterised budget for the turbulent kinetic energy. In the model basically three terms - the spin-up term and the production of mechanical and convective turbulent kinetic energy - control the growth of the mixed layer. The interplay between the three terms is related to the meteorological conditions and the height of the mixed layer. A stable layer, the so-called entrainment zone, which is confined between the mixed layer and the free air above, caps the mixed layer. A parameterisation of the depth of the entrainment zone is also suggested, and used to devise a combined model for the height of the mixed layer and the entrainment zone. Another important aspect of the mixed layer development exists in coastal areas where an internal boundary layer forms downwind from the coastline. A model for the growth of the internal boundary layer is developed in analogy with the model for mixed layer development over homogeneous terrain. The strength of this model is that it can operate on a very fine spatial resolution with minor computer resources. Chapter 3 deals with the validation of the models. It is based in parts on data from the literature, and on own measurements. For the validation of the formation of the internal boundary layer
Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.
1982-01-01
Measurements were made of the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15% to 20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: the effect of initial boundary layer thickness, the effect of freestream velocity, the effect of freestream acceleration, the effect of unheated starting length, and the effect of the maturity of the boundary layer. An existing curvature prediction model was tested against this broad heat transfer data base to determine where it could appropriately be used for heat transfer predictions.
Breaking the boundary layer symmetry in turbulent convection using wall geometry
Toppaladoddi, Srikanth; Wettlaufer, John S
2014-01-01
We systematically probe the interaction of the boundary layer with the core flow during two-dimensional turbulent Rayleigh-B\\'{e}nard convection using numerical simulations and scaling theory. The boundary layer/core flow interaction is manipulated by configuring the top plate with a sinusoidal geometry and breaking the symmetry between the top and bottom thermal boundary layers. At long wavelength the planar results are recovered. However, at intermediate wavelengths, and for Rayleigh numbers ($Ra$) such that the amplitude of the roughness elements is larger than the boundary layer thickness, there is enhanced cold plume production at the tips of the elements. It is found that, while the interior of the flow is well mixed as in the classical theory of Malkus, the mean temperature is lower than that in the planar case. For a Prandtl number of unity and $Ra = 10^6$ to $2.5 \\times 10^9$ we find a Nusselt number ($Nu$) scaling law of $Nu = 0.052 \\times Ra^{0.34}$, in good agreement with recent experiments. The c...
Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle
Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.
2017-01-01
As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.
On determining characteristic length scales in pressure gradient turbulent boundary layers
Vinuesa, Ricardo; Örlü, Ramis; Schlatter, Philipp
2016-04-01
In the present work we analyze three methods used to determine the edge of pressure gradient turbulent boundary layers: two based on composite profiles, the one by Chauhan et al. (Fluid Dyn. Res. 41:021401, 2009) and the one by Nickels (J. Fluid Mech. 521:217-239, 2004), and the other one based on the condition of vanishing mean velocity gradient. Additionally, a new method is introduced based on the diagnostic plot concept by Alfredsson et al. (Phys. Fluids 23:041702, 2011). The boundary layer developing over the suction side of a NACA4412 wing profile, extracted from a direct numerical simulation at Rec = 400,000, is used as the test case. We find that all the methods produce robust results with mild or moderate pressure gradients, but stronger pressure gradients (with β larger than around 7) lead to inconsistent results in all the techniques except the diagnostic plot. This method also has the advantage of providing an objective way of defining the point where the mean streamwise velocity is 99% of the edge velocity, and shows consistent results in a wide range of pressure gradient conditions, as well as flow histories. Therefore, the technique based on the diagnostic plot is a robust method to determine the boundary layer thickness (equivalent to δ99) and edge velocity in pressure gradient turbulent boundary layers.
Boundary Layer Effect on Behavior of Discrete Models
Directory of Open Access Journals (Sweden)
Jan Eliáš
2017-02-01
Full Text Available The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson’s ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.
DEFF Research Database (Denmark)
Pantleon, Karen; Bossche, Bart van den; Purcar, Marius;
2005-01-01
The impact of adjacent patterned zones with different active area densities on the current density and electrodeposited layer thickness distribution over a wafer substrate is examined, both by experiment and numerical simulation. The experiments consist in running an acid copper plating process...... on the patterned wafer, and layer thickness measurements by means of X-ray fluorescence (XRF) and atomic force microscopy (AFM). The simulations are based on a potential model approach taking into account electrolyte ohmic drop and electrode polarization effects, combined to a boundary element method (BEM......) approach to compute the current density distribution over the electrodes. Experimental and computed layer thickness distributions are in very good agreement....
Ma, Xu; Arce, Gonzalo R
2009-07-01
Recently, a set of generalized gradient-based optical proximity correction (OPC) optimization methods have been developed to solve for the forward and inverse lithography problems under the thin-mask assumption, where the mask is considered a thin 2D object. However, as the critical dimension printed on the wafer shrinks into the subwavelength regime, thick-mask effects become prevalent, and thus these effects must be taken into account in OPC optimization methods. OPC methods derived under the thin-mask assumption have inherent limitations and perform poorly in the subwavelength regime. This paper focuses on developing model-based forward binary mask optimization methods that account for the thick-mask effects of coherent imaging systems. The boundary layer (BL) model is exploited to simplify and characterize the thick-mask effects, leading to a model-based OPC method. The BL model is simpler than other thick-mask models, treating the near field of the mask as the superposition of the interior transmission areas and the boundary layers. The advantages and limitations of the proposed algorithm are discussed, and several illustrative simulations are presented.
Binary mask optimization for forward lithography based on boundary layer model in coherent systems
Ma, Xu; Arce, Gonzalo R.
2010-04-01
Recently, a set of generalized gradient-based optical proximity correction (OPC) optimization methods have been developed to solve for the forward and inverse lithography problem under the thin-mask assumption, where the mask is considered a thin 2-D object. However, as the critical dimension printed on the wafer shrinks into the subwavelength regime, thick-mask effects become prevalent and thus these effects must be taken into account in OPC optimization methods. OPC methods derived under the thin-mask assumption have inherent limitations and perform poorly in the subwavelength scenario. This paper focuses on developing model-based forward binary mask optimization methods which account for the thick-mask effects of coherent imaging systems. The boundary layer (BL) model is exploited to simplify and characterize the thick-mask effects, leading to a computationally efficient OPC method. The BL model is simpler than other thick-mask models, treating the near field of the mask as the superposition of the interior transmission areas and the boundary layers. The advantages and limitations of the proposed algorithm are discussed and several illustrative simulations are presented.
Studies of stability of blade cascade suction surface boundary layer
Institute of Scientific and Technical Information of China (English)
DONG Xue-zhi; YAN Pei-gang; HAN Wan-jin
2007-01-01
Compressible boundary layers stability on blade cascade suction surface was discussed by wind tunnel experiment and numerical solution. Three dimensional disturbance wave Parabolized Stability Equations(PSE) of orthogonal Curvilinear Coordinates in compressible flow was deducted. The surface pressure of blade in wind tunnel experiment was measured. The Falkner-Skan equation was solved under the boundary conditions of experiment result, and velocity, pressure and temperature of average flow were obtained. Substituted this result for discretization of the PSE Eigenvalue Problem, the stability problem can be solved.
A Numerical Study of Sea-Spray Aerosol Motion in a Coastal Thermal Internal Boundary Layer
Liang, Tinghao; Yu, Xiping
2016-08-01
A three-dimensional large-eddy simulation model is applied to the study of sea-spray aerosol transport, dispersion and settling in the coastal thermal internal boundary layer (IBL) formed by cool airflow from the open sea to the warm land. An idealized situation with constant inflow from the ocean and constant heat flux over the coastal land is considered. The numerical results confirm that the thickness of the coastal thermal IBL increases with the distance from the coastline until the outer edge of the IBL penetrates into the capping inversion layer. The thickness increases also with time until a fully-developed thermal boundary layer is formed. In addition, the thickness of the coastal thermal IBL increases more rapidly when the heat flux over the land is greater. Existence of large-scale eddies within the thermal IBL is identified and the turbulence intensity within the thermal IBL is also found to be significantly higher than that above. It is also indicated that the vertical position of the maximum concentration does not occur at the surface but increases as sea-spray aerosols are transported inland. The vertical position of the maximum flux of sea-spray aerosols within the coastal thermal IBL is shown to coincide with that of the maximum vertical velocity fluctuations when the coastal thermal IBL is fully developed with increased distance in the airflow direction.
Transitional boundary layers in low-Prandtl-number convection
Schumacher, Jörg; Bandaru, Vinodh; Pandey, Ambrish; Scheel, Janet D.
2016-12-01
The boundary layer structure of the velocity and temperature fields in turbulent Rayleigh-Bénard flows in closed cylindrical cells of unit aspect ratio is revisited from a transitional and turbulent viscous boundary layer perspective. When the Rayleigh number is large enough, the dynamics at the bottom and top plates can be separated into an impact region of downwelling plumes, an ejection region of upwelling plumes, and an interior region away from the side walls. The latter is dominated by the shear of the large-scale circulation (LSC) roll, which fills the whole cell and continuously varies its orientation. The working fluid is liquid mercury or gallium at a Prandtl number Pr=0.021 for Rayleigh numbers 3 ×105≤Ra≤4 ×108 . The generated turbulent momentum transfer corresponds to macroscopic flow Reynolds numbers with 1.8 ×103≤Re≤4.6 ×104 . In highly resolved spectral element direct numerical simulations, we present the mean profiles of velocity, Reynolds stress, and temperature in inner viscous units and compare our findings with convection experiments and channel flow data. The complex three-dimensional and time-dependent structure of the LSC in the cell is compensated by a plane-by-plane symmetry transformation which aligns the horizontal velocity components and all its derivatives with the instantaneous orientation of the LSC. As a consequence, the torsion of the LSC is removed, and a streamwise direction in the shear flow can be defined. It is shown that the viscous boundary layers for the largest Rayleigh numbers are highly transitional and obey properties that are directly comparable to transitional channel flows at friction Reynolds numbers Reτ≲102 . The transitional character of the viscous boundary layer is also underlined by the strong enhancement of the fluctuations of the wall stress components with increasing Rayleigh number. An extrapolation of our analysis data suggests that the friction Reynolds number Reτ in the velocity boundary
Boundary-Value Problem for Two-Dimensional Fluctuations in Boundary Layers
1985-07-01
inviscid analysis by P. Durbin "Distortion of turbulence by a constant-shear layer adjacent to a wall," private communication (1977). (l.2e) 2-D...vortices near a boundary," ~ of the Americ~ p ~ ~ , Volume 20, Number 9 (November 1975). 21. Hultgren, Lennart S. and Gustavsson, L. Hakan, " Algebraic
Inversion of thicknesses of multi-layered structures from eddy current testing measurements
Institute of Scientific and Technical Information of China (English)
黄平捷; 吴昭同
2004-01-01
Luquire et al. ' s impedance change model of a rectangular cross section probe coil above a structure with an arbitrary number of parallel layers was used to study the principle of measuring thicknesses of multi-layered structures in terms of eddy current testing voltage measurements. An experimental system for multi-layered thickness measurement was developed and several fitting models to formulate the relationships between detected impedance/voltage measurements and thickness are put forward using least square method. The determination of multi-layered thicknesses was investigated after inversing the voltage outputs of the detecting system. The best fitting and inversion models are presented.
Inversion of thicknesses of multi-layered structures from eddy current testing measurements
Institute of Scientific and Technical Information of China (English)
HUANG Ping-jie(黄平捷); WU Zhao-tong(吴昭同)
2004-01-01
Luquire et al.'s impedance change model of a rectangular cross section probe coil above a structure with an arbitrary number of parallel layers was used to study the principle of measuring thicknesses of multi-layered structures in terms of eddy current testing voltage measurements. An experimental system for multi-layered thickness measurement was developed and several fitting models to formulate the relationships between detected impedance/voltage measurements and thickness are put forward using least square method. The determination of multi-layered thicknesses was investigated after inversing the voltage outputs of the detecting system. The best fitting and inversion models are presented.
Biktasheva, I V; Dierckx, H; Biktashev, V N
2015-02-13
A scroll wave in a very thin layer of excitable medium is similar to a spiral wave, but its behavior is affected by the layer geometry. We identify the effect of sharp variations of the layer thickness, which is separate from filament tension and curvature-induced drifts described earlier. We outline a two-step asymptotic theory describing this effect, including asymptotics in the layer thickness and calculation of the drift of so-perturbed spiral waves using response functions. As specific examples, we consider drift of scrolls along thickness steps, ridges, ditches, and disk-shaped thickness variations. Asymptotic predictions agree with numerical simulations.
On the global existence and uniqueness of solutions to the nonstationary boundary layer system
Institute of Scientific and Technical Information of China (English)
ZHANG; Jianwen; ZHAO; Junning
2006-01-01
In this paper, we study the problem of boundary layer for nonstationary flows of viscous incompressible fluids. There are some open problems in the field of boundary layer. The method used here is mainly based on a transformation which reduces the boundary layer system to an initial-boundary value problem for a single quasilinear parabolic equation. We prove the existence of weak solutions to the modified nonstationary boundary layer system. Moreover, the stability and uniqueness of weak solutions are discussed.
Energy Technology Data Exchange (ETDEWEB)
Rastgoo, A. [University of Tehran, Tehran (Iran, Islamic Republic of); Ebrahimi, F. [lmam Khomeini International University, Qazvin (Iran, Islamic Republic of); Kargarnovin, M. H. [Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2008-06-15
In this paper, a free vibration analysis of moderately thick circular functionally graded (FG) plate integrated with two thin piezoelectric (PZT4) layers is presented based on Mindlin plate theory. The material properties of the FG core plate are assumed to be graded in the thickness direction, while the distribution of electric potential field along the thickness of piezoelectric layers is simulated by sinusoidal function. The differential equations of motion are solved analytically for two boundary conditions of the plate: clamped edge and simply supported edge. The analytical solution is validated by comparing the obtained resonant frequencies with those of an isotropic host plate. The emphasis is placed on investigating the effect of varying the gradient index of FG plate on the free vibration characteristics of the structure. Good agreement between the results of this paper and those of the finite element analyses validated the presented approach
A Thermal Plume Model for the Martian Convective Boundary Layer
Colaïtis, Arnaud; Hourdin, Frédéric; Rio, Catherine; Forget, François; Millour, Ehouarn
2013-01-01
The Martian Planetary Boundary Layer [PBL] is a crucial component of the Martian climate system. Global Climate Models [GCMs] and Mesoscale Models [MMs] lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically-based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in Large-Eddy Simulations [LESs]. We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking ...
Boundary layer ozone - An airborne survey above the Amazon Basin
Gregory, Gerald L.; Browell, Edward V.; Warren, Linda S.
1988-01-01
Ozone data obtained over the forest canopy of the Amazon Basin during July and August 1985 in the course of NASA's Amazon Boundary Layer Experiment 2A are discussed, and ozone profiles obtained during flights from Belem to Tabatinga, Brazil, are analyzed to determine any cross-basin effects. The analyses of ozone data indicate that the mixed layer of the Amazon Basin, for the conditions of undisturbed meteorology and in the absence of biomass burning, is a significant sink for tropospheric ozone. As the coast is approached, marine influences are noted at about 300 km inland, and a transition from a forest-controlled mixed layer to a marine-controlled mixed layer is noted.
Zsurzsa, S.; Péter, L.; Kiss, L. F.; Bakonyi, I.
2017-01-01
The magnetic properties and the magnetoresistance behavior were investigated for electrodeposited nanoscale Co films, Co/Cu/Co sandwiches and Co/Cu multilayers with individual Co layer thicknesses ranging from 1 nm to 20 nm. The measured saturation magnetization values confirmed that the nominal and actual layer thicknesses are in fairly good agreement. All three types of layered structure exhibited anisotropic magnetoresistance for thick magnetic layers whereas the Co/Cu/Co sandwiches and Co/Cu multilayers with thinner magnetic layers exhibited giant magnetoresistance (GMR), the GMR magnitude being the largest for the thinnest Co layers. The decreasing values of the relative remanence and the coercive field when reducing the Co layer thickness down to below about 3 nm indicated the presence of superparamagnetic (SPM) regions in the magnetic layers which could be more firmly evidenced for these samples by a decomposition of the magnetoresistance vs. field curves into a ferromagnetic and an SPM contribution. For thicker magnetic layers, the dependence of the coercivity (Hc) on magnetic layer thickness (d) could be described for each of the layered structure types by the usual equation Hc=Hco+a/dn with an exponent around n=1. The common value of n suggests a similar mechanism for the magnetization reversal by domain wall motion in all three structure types and hints also at the absence of coupling between magnetic layers in the Co/Cu/Co sandwiches and Co/Cu multilayers.
CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions
DEFF Research Database (Denmark)
Koblitz, Tilman
to the atmospheric boundary-layer, are mostly ignored so far. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include atmospheric stability and the Coriolis effect. Within the present work a RANS model framework is developed and implemented......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important...
Three-dimensional stability of growing boundary layers
Nayfeh, A. H.
1980-01-01
A theory is developed for the linear stability of three-dimensional growing boundary layers. The method of multiple scales is used to derive partial-differential equations describing the temporal and spatial evolution of the complex amplitudes and wavenumbers of the disturbances. In general, these equations are elliptic unless certain conditions are satisfied. For a monochromatic disturbance, these conditions demand that the ratio of the components of the complex group velocity be real and thereby relate the direction of growth of the disturbance to the disturbance wave angle. For a nongrowing boundary layer, this condition reduces to d-alpha/d-beta being real, in agreement with the result obtained by using the saddle-point method. For a wavepacket, these conditions demand that the components of the group velocity be real.
Nonlinear interaction of two waves in boundary-layer flows
Nayfeh, A. H.; Bozatli, A. N.
1980-01-01
First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed using the method of multiple scales. Numerical results for flow past a flat plate show that the spatial detuning wipes out resonant interactions unless the initial amplitudes are very large. Thus, a wave having a moderate amplitude has little influence on its subharmonic although it has a strong influence on its second harmonic. Moreover, two waves having moderate amplitudes have a strong influence on their difference frequency. The results show that the difference frequency can be very unstable when generated by the nonlinear interaction, even though it may be stable when introduced by itself in the boundary layer.
Anisotropic Boundary Layer Adaptivity of Multi-Element Wings
Chitale, Kedar C; Sahni, Onkar; Shephard, Mark S; Jansen, Kenneth E
2014-01-01
Multi-element wings are popular in the aerospace community due to their high lift performance. Turbulent flow simulations of these configurations require very fine mesh spacings especially near the walls, thereby making use of a boundary layer mesh necessary. However, it is difficult to accurately determine the required mesh resolution a priori to the simulations. In this paper we use an anisotropic adaptive meshing approach including adaptive control of elements in the boundary layers and study its effectiveness for two multi-element wing configurations. The results are compared with experimental data as well as nested refinements to show the efficiency of adaptivity driven by error indicators, where superior resolution in wakes and near the tip region through adaptivity are highlighted.
Small Scale Forcing in a Turbulent Boundary Layer
Lorkowski, Thomas; Rathnasingham, Ruben; Breuer, Kenneth S.
1996-11-01
In order to understand the effect of small scale forcing on turbulent flows and its implications on control, an experimental investigation is made into the forcing of the inertial scales in the wall region of a turbulent boundary layer. A wall-mounted resonant actuator is used to produce a local vortical structure in the streamwise direction which is convected downstream by the boundary layer flow. The frequency associated with this structure is governed by the resonant frequency of the device and falls in the range of the inertial scales at the Reynolds number of the experiment (Re_θ = 2000). Hot-wire anemometry is used to map the velocity field at several stations downstream of the actuator. The signals are also conditioned to identify the effect of the actuator on different scales in the flow. Amplitude and modulation effects are also discussed. ^*Supported by ONR Grant N00014-92-J-1910.
Turbulence measurements in high Reynolds number boundary layers
Vallikivi, Margit; Smits, Alexander
2013-11-01
Measurements are conducted in zero pressure gradient turbulent boundary layers for Reynolds numbers from Reθ = 9,000 to 225,000. The experiments were performed in the High Reynolds number Test Facility (HRTF) at Princeton University, which uses compressed air as the working fluid. Nano-Scale Thermal Anemometry Probes (NSTAPs) are used to acquire data with very high spatial and temporal precision. These new data are used to study the scaling behavior of the streamwise velocity fluctuations in the boundary layer and make comparisons with the scaling of other wall-bounded turbulent flows. Supported under ONR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257 (program manager Henning Winter).
Temporally optimized spanwise vorticity sensor measurements in turbulent boundary layers
Morrill-Winter, C.; Klewicki, J.; Baidya, R.; Marusic, I.
2015-12-01
Multi-element hot-wire anemometry was used to measure spanwise vorticity fluctuations in turbulent boundary layers. Smooth wall boundary layer profiles, with very good spatial and temporal resolution, were acquired over a Kármán number range of 2000-12,700 at the Melbourne Wind Tunnel at the University of Melbourne and the University of New Hampshire's Flow Physics Facility. A custom hot-wire probe was necessary to simultaneously obtain velocity and spanwise vorticity measurements centered at a fixed point in space. A custom calibration/processing scheme was developed to utilize single-wall-parallel wires to optimize the accuracy of the measured wall-normal velocity fluctuations derived from the sensor's ×-array.
Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool
Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.
2016-01-01
Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.
Stereoscopic PIV measurement of boundary layer affected by DBD actuator
Directory of Open Access Journals (Sweden)
Procházka Pavel
2016-01-01
Full Text Available The effect of ionic wind generated by plasma actuator on developed boundary layer inside a narrow channel was investigated recently. Since the main investigated plane was parallel to the channel axis, the description of flow field was not evaluated credibly. This paper is dealing with cross-section planes downstream the actuator measured via 3D time-resolved PIV. The actuator position is in spanwise or in streamwise orientation so that ionic wind is blown in the same direction as the main flow or in opposite direction or perpendicularly. The interaction between boundary layer and ionic wind is evaluated for three different velocities of main flow and several parameters of plasma actuation (steady and unsteady regime, frequency etc.. Statistical properties of the flow are shown as well as dynamical behaviour of arising longitudinal vortices are discussed via phase-locked measurement and decomposition method.
Optimal control of wind turbines in a turbulent boundary layer
Yilmaz, Ali Emre; Meyers, Johan
2016-11-01
In recent years, optimal control theory was combined with large-eddy simulations to study the optimal control of wind farms and their interaction with the atmospheric boundary layer. The individual turbine's induction factors were dynamically controlled in time with the aim of increasing overall power extraction. In these studies, wind turbines were represented using an actuator disk method. In the current work, we focus on optimal control on a much finer mesh (and a smaller computational domain), representing turbines with an actuator line method. Similar to Refs., optimization is performed using a gradient-based method, and gradients are obtained employing an adjoint formulation. Different cases are investigated, that include a single and a double turbine case both with uniform inflow, and with turbulent-boundary-layer inflow. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).
Full-Scale Spectrum of Boundary-Layer Winds
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik
2016-01-01
Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used...... to estimate the spectrum from about 1 yr−1 to 0.05 min−1; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day−1 to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various...... of the three velocity components over a wide range from 1 day−1 to 10 Hz, which is useful in determining the necessary sample duration when measuring turbulence statistics in the boundary layer....
Numerical study of the laminar shock boundary layer interaction
Katzer, E.
1985-02-01
The interaction of an oblique shock wave with a laminar boundary layer on an adiabatic flat plate was analyzed numerically with solutions of the two dimensional Navier-Stokes equations using McCormack's explicit finite volume method. The agreement between numerical calculations and experimental results is good. Local and global properties of the interaction region are discussed regarding shock strength, separation bubble length using a similarity law, and separation environment. The asymetrical structure inside the separation bubble produces an asymetrical shape of the wall shear stress distribution. The calculation speed was increased by algorithm vectorization on a CRAY 1S supercomputer. Further investigations for determination of a similarity law in interaction with turbulent boundary layer, of the physical mechanisms of the laminar interaction, and for study of the wall temperature transfer are recommended.
Influence of localised double suction on a turbulent boundary layer
Oyewola, O.; Djenidi, L.; Antonia, R. A.
2007-07-01
The effects of localised suction applied through a pair of porous wall strips on a turbulent boundary layer have been quantified through the measurements of mean velocity and Reynolds stresses. The results indicate that the use of second strip extends the pseudo-relaminarisation zone but also reduces the overshoot in the longitudinal and normal r.m.s. velocities. While the minimum r.m.s. occurs at x/δo=3.0 (one strip) and x/δo=12 (two strips), the reduction observed for the latter case is larger. Relative to no suction, the turbulence level is modified by suction and the effect is enhanced with double suction. This increased effectiveness reflects the fact that the second strip acts on a boundary layer whose near-wall active motion has been seriously weakened by the first strip.
New Algebraic Approaches to Classical Boundary Layer Problems
Institute of Scientific and Technical Information of China (English)
Xiao Ping XU
2011-01-01
Classical non-steady boundary layer equations are fundamental nonlinear partial differential equations in the boundary layer theory of fluid dynamics. In this paper, we introduce various schemes with multiple parameter functions to solve these equations and obtain many families of new explicit exact solutions with multiple parameter functions. Moreover, symmetry transformations are used to simplify our arguments. The technique of moving frame is applied in the three-dimensional case in order to capture the rotational properties of the fluid. In particular, we obtain a family of solutions singular on any moving surface, which may be used to study turbulence. Many other solutions are analytic related to trigonometric and hyperbolic functions, which reflect various wave characteristics of the fluid. Our solutions may also help engineers to develop more effective algorithms to find physical numeric solutions to practical models.
Directory of Open Access Journals (Sweden)
Krishnendu Bhattacharyya
2014-01-01
Full Text Available A mathematical model of the steady boundary layer flow of nanofluid due to an exponentially permeable stretching sheet with external magnetic field is presented. In the model, the effects of Brownian motion and thermophoresis on heat transfer and nanoparticle volume friction are considered. Using shooting technique with fourth-order Runge-Kutta method the transformed equations are solved. The study reveals that the governing parameters, namely, the magnetic parameter, the wall mass transfer parameter, the Prandtl number, the Lewis number, Brownian motion parameter, and thermophoresis parameter, have major effects on the flow field, the heat transfer, and the nanoparticle volume fraction. The magnetic field makes enhancement in temperature and nanoparticle volume fraction, whereas the wall mass transfer through the porous sheet causes reduction of both. For the Brownian motion, the temperature increases and the nanoparticle volume fraction decreases. Heat transfer rate becomes low with increase of Lewis number. For thermophoresis effect, the thermal boundary layer thickness becomes larger.
Miner, E. W.; Lewis, C. H.
1972-01-01
An implicit finite difference method has been applied to tangential slot injection into supersonic turbulent boundary layer flows. In addition, the effects induced by the interaction between the boundary layer displacement thickness and the external pressure field are considered. In the present method, three different eddy viscosity models have been used to specify the turbulent momentum exchange. One model depends on the species concentration profile and the species conservation equation has been included in the system of governing partial differential equations. Results are compared with experimental data at stream Mach numbers of 2.4 and 6.0 and with results of another finite difference method. Good agreement was generally obtained for the reduction of wall skin friction with slot injection and with experimental Mach number and pitot pressure profiles. Calculations with the effects of pressure interaction included showed these effects to be smaller than effects of changing eddy viscosity models.
Layer thickness evaluation for transuranic transmutation in a fusion–fission system
Energy Technology Data Exchange (ETDEWEB)
Velasquez, Carlos E., E-mail: carlosvelcab@eng-nucl.mest.ufmg.br [Departamento de Engenharia Nuclear—Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 Campus UFMG, 31.270-90, Belo Horizonte, MG (Brazil); Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq, Rio de Janeiro, RJ (Brazil); Rede Nacional de Fusão (FINEP/CNPq), Rio de Janeiro, RJ (Brazil); Pereira, Claubia, E-mail: claubia@nuclear.ufmg.br [Departamento de Engenharia Nuclear—Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 Campus UFMG, 31.270-90, Belo Horizonte, MG (Brazil); Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq, Rio de Janeiro, RJ (Brazil); Rede Nacional de Fusão (FINEP/CNPq), Rio de Janeiro, RJ (Brazil); Veloso, Maria Auxiliadora F., E-mail: dora@nuclear.ufmg.br [Departamento de Engenharia Nuclear—Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 Campus UFMG, 31.270-90, Belo Horizonte, MG (Brazil); Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq, Rio de Janeiro, RJ (Brazil); Rede Nacional de Fusão (FINEP/CNPq), Rio de Janeiro, RJ (Brazil); Costa, Antonella L., E-mail: antonella@nuclear.ufmg.br [Departamento de Engenharia Nuclear—Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 Campus UFMG, 31.270-90, Belo Horizonte, MG (Brazil); Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq, Rio de Janeiro, RJ (Brazil); Rede Nacional de Fusão (FINEP/CNPq), Rio de Janeiro, RJ (Brazil)
2015-05-15
Highlights: • Layer thickness for transmutation in a fusion–fission system was evaluated. • The calculations were performed using MONTEBURNS code. • The results indicate the best thickness and volume ratio to induce transmutation. - Abstract: Layer thickness for transuranic transmutation in a fusion–fission system was evaluated using two different ways. In the first one, transmutation layer thicknesses were designed maintaining the fuel rod radius constant; in the second part, while the transmutation layer thickness increases, the fuel rod radius decreases maintaining k{sub s} (source-multiplication factor) ≈0.95. Spent fuel reprocessed by UREX+ method and then spiked with thorium and uranium composes the transmutation layer. The calculations were performed using MONTEBURNS code (MCNP5 and ORIGEN 2.1). The results indicate the best thickness and the volume ratio between the coolant and the fuel composition to induce transmutation.
Neutral stability calculations for boundary-layer flows
Nayfeh, A. H.; Padhye, A.
1980-01-01
An analysis is presented of the parallel neutral stability of three-dimensional incompressible, isothermal boundary-layer flows. A Taylor-series expansion of the dispersion relation is used to derive the general eigenvalues. These equations are functions of the complex group velocity. These relations are verified by numerical results obtained for two- and three-dimensional disturbances in two- and three-dimensional flows.
Imaging the transient boundary layer on a free rotating disc.
Matijasević, Branimir; Guzović, Zvonimir; Martinis, Vinko
2002-10-01
This report presents a visual study of the transition process of the laminar boundary layer (BL) in a turbulent BL on a free rotating disc. The imaging is based on an experimental investigation that aimed to analyze the structure of the BL by relating it to the ratio between turbulent energy and vortex energy, the critical and the transient Reynolds numbers (Re), the vortex numbers and their dependence on Re, and on the distance from the rotating disc.
Grey zone simulations of the morning convective boundary layer development
Efstathiou, G. A.; Beare, R. J.; Osborne, S.; Lock, A. P.
2016-05-01
Numerical simulations of two cases of morning boundary layer development are conducted to investigate the impact of grid resolution on mean profiles and turbulent kinetic energy (TKE) partitioning from the large eddy simulation (LES) to the mesoscale limit. Idealized LES, using the 3-D Smagorinsky scheme, is shown to be capable of reproducing the boundary layer evolution when compared against measurements. However, increasing grid spacing results in the damping of resolved TKE and the production of superadiabatic temperature profiles in the boundary layer. Turbulence initiation is significantly delayed, exhibiting an abrupt onset at intermediate resolutions. Two approaches, the bounding of vertical diffusion coefficient and the blending of the 3-D Smagorinsky with a nonlocal 1D scheme, are used to model subgrid diffusion at grey zone resolutions. Simulations are compared against the coarse-grained fields from the validated LES results for each case. Both methods exhibit particular strengths and weaknesses, indicating the compromise that needs to be made currently in high-resolution numerical weather prediction. The blending scheme is able to reproduce the adiabatic profiles although turbulence is underestimated in favor of the parametrized heat flux, and the spin-up of TKE remains delayed. In contrast, the bounding approach gives an evolution of TKE that follows the coarse-grained LES very well, relying on the resolved motions for the nonlocal heat flux. However, bounding gives unrealistic static instability in the early morning temperature profiles (similar to the 3-D Smagorinsky scheme) because model dynamics are unable to resolve TKE when the boundary layer is too shallow compared to the grid spacing.
Extreme Vertical Gusts in the Atmospheric Boundary Layer
2015-07-01
with tornadogenesis [Mueller and Carbone (1987), Wilson (1986) and McCaul and Bluestein (1986)], although tornadoes are part of the hazard of...Burns, C. Nappo, R. Banta, R. Newsom and J. Cuxart (2002). CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bulletin of...Meteorology 64(1-2): 55-74. Wilson , J. W. (1986). Tornadogenesis by nonprecipitation induced wind shear lines. Monthly Weather Review 114(2): 270-284
Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers
2015-10-01
index. In the boundary layer, atmospheric temperature fluctuations are primarily responsible for the variations in refractive index at ultraviolet...parameterization of the atmospheric emissivity, in the early 1980s a parallel study of the SEB was conducted by the US Army Waterways Experiment Station...period of rotation of the atmosphere can be defined as TI = 2π/fc. At most mid- latitude locations this period is approximately 17 h. This quantity is
Transport of particles in an atmospheric turbulent boundary layer
Institute of Scientific and Technical Information of China (English)
Xiongping Luo; Shiyi Chen
2005-01-01
A program incorporating the parallel code of large eddy simulation (LES) and particle transportation model is developed to simulate the motion of particles in an atmospheric turbulent boundary layer (ATBL). A model of particles of 100-micrometer order coupling with large scale ATBL is proposed. Two typical cases are studied, one focuses on the evolution of particle profile in the ATBL and the landing displacement of particles, whereas the other on the motion of particle stream.
High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces
Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min
2007-11-01
This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.
Directory of Open Access Journals (Sweden)
Yinhuan Ao
2017-01-01
Full Text Available This paper reported a comprehensive analysis on the diurnal variation of the Atmospheric Boundary Layer (ABL in summer of Badain Jaran Desert and discussed deeply the effect of surface thermal to ABL, including the Difference in Surface-Air Temperature (DSAT, net radiation, and sensible heat, based on limited GPS radiosonde and surface observation data during two intense observation periods of experiments. The results showed that (1 affected by topography of the Tibetan Plateau, the climate provided favorable external conditions for the development of Convective Boundary Layer (CBL, (2 deep CBL showed a diurnal variation of three- to five-layer structure in clear days and five-layer ABL structure often occurred about sunset or sunrise, (3 the diurnal variation of DSAT influenced thickness of ABL through changes of turbulent heat flux, (4 integral value of sensible heat which rapidly converted by surface net radiation had a significant influence on the growth of CBL throughout daytime. The cumulative effect of thick RML dominated the role after CBL got through SBL in the development stage, especially in late summer, and (5 the development of CBL was promoted and accelerated by the variation of wind field and distribution of warm advection in high and low altitude.
Evolution and formation of shear layers in a developing turbulent boundary layer
Lee, Junghoon; Monty, Jason; Hutchins, Nicholas
2016-11-01
The evolution and formation mechanism of shear layers in the outer region of a turbulent boundary layer are investigated using time-resolved PIV datasets of a developing turbulent boundary layer from inception at the trip up to Reτ = 3000 . An analysis of a sequence of instantaneous streamwise velocity fluctuation fields reveals that strong streamwise velocity gradients are prevalent along interfaces where low- and high-speed regions interact. To provide an insight on how such regions are associated with the formation of shear layers in the outer regions, we compute conditional averages of streamwise velocity fluctuations based on a strong shear layer. Our results reveal that one possible mechanism for the generation of shear layers in the outer region is due to the mismatch in the convection velocities between low- and high-speed regions. The results also indicate that the angle of the inclined shear layer is developing in time. In addition, the conditionally averaged velocity fluctuations exhibit a local instability along these shear layers, leading to a shear layer roll-up event as the layers evolve in time. Based on these findings, we propose a conceptual model which describes dynamic interactions of shear layers and their associated large-scale coherent motions. The authors wish to acknowledge the financial support of the Australian Research Council.
Preparation and properties of thick not intentionally doped GaInP(As)/GaAs layers
Nohavica, D; Zdansky, K
1999-01-01
We report on liquid-phase epitaxial growth of thick layers of GaInP(As), lattice matched to GaAs. Layers with thicknesses up to 10 mu m were prepared in a multi-melt bin, step-cooling, one-phase configuration. Unintentionally doped layers, grown from moderate purity starting materials, show a significant decrease in the residual impurity level when erbium is added to the melt. Fundamental electrical and optical properties of the layers were investigated. (author)
Turbulent thermal boundary layers subjected to severe acceleration
Araya, Guillermo; Castillo, Luciano
2013-11-01
Favorable turbulent boundary layers are flows of great importance in industry. Particularly, understanding the mechanisms of quasi-laminarization by means of a very strong favorable streamwise pressure gradient is indeed crucial in drag reduction and energy management applications. Furthermore, due to the low Reynolds numbers involved in the quasi-laminarization process, abundant experimental investigation can be found in the literature for the past few decades. However, several grey zones still remain unsolved, principally associated with the difficulties that experiments encounter as the boundary layer becomes smaller. In addition, little attention has been paid to the heat transfer in a quasi-laminarization process. In this investigation, DNS of spatially-developing turbulent thermal boundary layers with prescribed very strong favorable pressure gradients (K = 4 × 10-6) are performed. Realistic inflow conditions are prescribed based on the Dynamic Multi-scale Approach (DMA) [Araya et al. JFM, Vol. 670, pp. 581-605, 2011]. In this sense the flow carries the footprint of turbulence, particularly in the streamwise component of the Reynolds stresses.
An analytical model of capped turbulent oscillatory bottom boundary layers
Shimizu, Kenji
2010-03-01
An analytical model of capped turbulent oscillatory bottom boundary layers (BBLs) is proposed using eddy viscosity of a quadratic form. The common definition of friction velocity based on maximum bottom shear stress is found unsatisfactory for BBLs under rotating flows, and a possible extension based on turbulent kinetic energy balance is proposed. The model solutions show that the flow may slip at the top of the boundary layer due to capping by the water surface or stratification, reducing the bottom shear stress, and that the Earth's rotation induces current and bottom shear stress components perpendicular to the interior flow with a phase lag (or lead). Comparisons with field and numerical experiments indicate that the model predicts the essential characteristics of the velocity profiles, although the agreement is rather qualitative due to assumptions of quadratic eddy viscosity with time-independent friction velocity and a well-mixed boundary layer. On the other hand, the predicted linear friction coefficients, phase lead, and veering angle at the bottom agreed with available data with an error of 3%-10%, 5°-10°, and 5°-10°, respectively. As an application of the model, the friction coefficients are used to calculate e-folding decay distances of progressive internal waves with a semidiurnal frequency.
Using UAV's to Measure the Urban Boundary Layer
Jacob, R. L.; Sankaran, R.; Beckman, P. H.
2015-12-01
The urban boundary layer is one of the most poorly studied regions of the atmospheric boundary layer. Since a majority of the world's population now lives in urban areas, it is becoming a more important region to measure and model. The combination of relatively low-cost unmanned aerial vehicles and low-cost sensors can together provide a new instrument for measuring urban and other boundary layers. We have mounted a new sensor and compute platform called Waggle on an off-the-shelf XR8 octo-copter from 3DRobotics. Waggle consists of multiple sensors for measuring pressure, temperature and humidity as well as trace gases such as carbon monoxide, nitrogen dioxide, sulfur dioxide and ozone. A single board computer running Linux included in Waggle on the UAV allows in-situ processing and data storage. Communication of the data is through WiFi or 3G and the Waggle software can save the data in case communication is lost during flight. The flight pattern is a deliberately simple vertical ascent and descent over a fixed location to provide vertical profiles and so flights can be confined to urban parks, industrial areas or the footprint of a single rooftop. We will present results from test flights in urban and rural areas in and around Chicago.
Coupled wake boundary layer model of wind-farms
Stevens, Richard J A M; Meneveau, Charles
2014-01-01
We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall wind-farm boundary layer structure. The wake expansion/superposition model captures the effect of turbine positioning, while the top-down portion adds the interaction between the wind-turbine wakes and the atmospheric boundary layer. Each portion of the model requires specification of a parameter that is not known a-priori. For the wake model the wake expansion coefficient is required, while the top-down model requires an effective span-wise turbine spacing within which the model's momentum balance is relevant. The wake expansion coefficient is obtained by matching the predicted mean velocity at the turbine from both approaches, while the effective span-wise turbine spacing depends on turbine positioning and thus can be determined from the wake expansion...
Minnowbrook II 1997 Workshop on Boundary Layer Transition in Turbomachines
LaGraff John E. (Editor); Ashpis, David E. (Editor)
1998-01-01
The volume contains materials presented at the Minnowbrook II - 1997 Workshop on Boundary Layer Transition in Turbomachines, held at Syracuse University Minnowbrook Conference Center, New York, on September 7-10, 1997. The workshop followed the informal format at the 1993 Minnowbrook I workshop, focusing on improving the understanding of late stage (final breakdown) boundary layer transition, with the engineering application of improving design codes for turbomachinery in mind. Among the physical mechanisms discussed were hydrodynamic instabilities, laminar to turbulent transition, bypass transition, turbulent spots, wake interaction with boundary layers, calmed regions, and separation, all in the context of flow in turbomachinery, particularly in compressors and high and low pressure turbines. Results from experiments, DNS, computation, modeling and theoretical analysis were presented. Abstracts and copies of viewgraphs, a specifically commissioned summation paper prepared after the workshop, and a transcript of the extensive working group reports and discussions are included in this volume. They provide recommendations for future research and clearly highlight the need for continued vigorous research in the technologically important area of transition in turbomachines.
RANS Modeling of Benchmark Shockwave / Boundary Layer Interaction Experiments
Georgiadis, Nick; Vyas, Manan; Yoder, Dennis
2010-01-01
This presentation summarizes the computations of a set of shock wave / turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock / boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Three turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Shear Stress Transport wavenumber-angular frequency two-equation model, and an explicit algebraic stress wavenumber-angular frequency formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.!
Some characteristics of bypass transition in a heated boundary layer
Sohn, K. H.; Reshotko, E.; O'Brien, J. E.
Experimental measurements of both mean and conditionally sampled characteristics of laminar, transitional and low Reynolds number turbulent boundary layers on a heated flat plate are presented. Measurements were obtained in air over a range of freestream turbulence intensities from 0.3 percent to 6 percent with a freestream velocity of 30.5 m/s and zero pressure gradient. Conditional sampling performed in the transitional boundary layers indicate the existence of a near-wall drop in intermittency, especially pronounced at low intermittencies. Nonturbulent intervals were observed to possess large levels of low-frequency unsteadiness, and turbulent intervals had peak intensities as much as 50 percent higher than were measured at fully turbulent stations. Heat transfer results were consistent with results of previous researches and Reynolds analogy factors were found to be well predicted by laminar and turbulent correlations which accounted for unheated starting length. A small dependence of the turbulent Reynolds analogy factors on freestream turbulence level was observed. Laminar boundary layer spectra indicated selective amplification of unstable frequencies. These instabilities appear to play a dominant role in the transition process only for the lowest freestream turbulence level studied, however.
DNS of self-similar adverse pressure gradient turbulent boundary layer
Soria, Julio; Kitsios, Vassili; Sekimoto, Atsushi; Atkinson, Callum; Jiménez, Javier
2016-11-01
A direct numerical simulation (DNS) of a self-similar adverse pressure gradient (APG) turbulent boundary layer (TBL) at the verge of separation has been set-up and carried out. The DNS APG TBL has a displacement thickness based Reynolds number that ranges up to 30,000. The conditions for self-similarity and appropriate scaling will be highlighted, with the first and second order velocity statistical profiles non-dimensionalised using this scaling. The details of the DNS and the required boundary conditions that are necessary to establish this self-similar APG-TBL will be presented. The statistical properties of the self-similar adverse pressure gradient (APG) turbulent boundary layer (TBL) DNS will presented, as will the profiles of the terms in the momentum equation, spanwise/wall-normal kinetic energy spectrum and two-point correlations, which will be compared to those of a zero pressure gradient turbulent boundary layer. NCI and Pawsey SCC funded by the Australian and Western Australian governments as well as the support of PRACE funded by the European Union are gratefully acknowledged.
Changes in the relative thickness of individual subcutaneous adipose tissue layers in growing pigs
DEFF Research Database (Denmark)
McEvoy, Fintan; Strathe, Anders Bjerring; Madsen, Mads T.;
2007-01-01
longevity and finally to assist in the calculation of payments to producers that allow for general adiposity. Currently for reasons of tradition and ease, total adipose thickness measurements are made at one or multiple sites although it has been long recognized that up to three well defined layers (outer......Background: The thickness of the subcutaneous fat layer is an important parameter at all stages The thickness of the subcutaneous fat layer is an important parameter at all stages of pig production. It is used to inform decisions on dietary requirements to optimize growth, in gilts to promote...... (L1), middle (L2), and inner (L3)) may be present to make up the total. Various features and properties of these layers have been described. This paper examines the contribution of each layer to total adipose thickness at three time points and describes the change in thickness of each layer per unit...
Micro vortex generator control of axisymmetric high-speed laminar boundary layer separation
Estruch-Samper, D.; Vanstone, L.; Hillier, R.; Ganapathisubramani, B.
2015-09-01
Interest in the development of micro vortex generators (MVGs) to control high-speed flow separation has grown in the last decade. In contrast to conventional vortex generators, MVGs are fully submerged in the boundary layer and have the potential of inducing surface flow mixing with marginal drag penalty when suitably designed. Also, they do not result in undesired reduced mass flow such as with suction methods. The flow mechanisms at the location of MVGs are not yet fully understood, and optimal designs are difficult to establish given that both numerical predictions and experiments are particularly challenged for short element heights, yet optimal MVGs are generally expected to be at least shorter than half the local boundary layer thickness. The present work aims at investigating experimentally the fundamental flow physics concerning an individual MVG element (of `canonical' or simplified geometry) at a range of near-wall heights. A fully laminar base flow is considered so as to isolate the effect of incoming turbulence as well as the more complex physics that may occur when specific and/or multiple elements are used. Tests were performed in a gun tunnel at a freestream Mach number of 8.9 and Reynolds number of /m, and the basic test model consisted of a blunt-nosed cylinder which produced an axisymmetric laminar boundary layer with an edge Mach number of 3.4 and Reynolds number of /m at the MVG location. A laminar shock-wave/boundary layer interaction with separation was induced by a flare located further downstream on the model. Measurements consisted of time-resolved surface heat transfer obtained in the axial direction immediately downstream of the MVG and along the interaction, together with simultaneous high-speed schlieren imaging. The height () of the MVG element used in a `diamond' configuration (square planform with one vertex facing the flow) was adjusted between tests ranging from = 0.03 to 0.58, where the local undisturbed boundary layer thickness
Chan, Tommy C Y; Ye, Cong; Ng, Paul K F; Li, Emmy Y M; Yuen, Hunter K L; Jhanji, Vishal
2015-07-17
We evaluated the change in tear film lipid layer thickness, corneal thickness, volume and topography after superficial cauterization of symptomatic conjunctivochalasis. Bilateral superficial conjunctival cauterization was performed in 36 eyes of 18 patients with symptomatic conjunctivochalasis. The mean age of patients (12 males, 6 females) was 68.6 ± 10.9 years (range: 44-83 years). Preoperatively, 28 eyes (77.8%) had grade 1 conjunctivochalasis, and 8 eyes (22.2%) had grade 2 conjunctivochalasis. At 1 month postoperatively, the severity of conjunctivochalasis decreased significantly (p corneal thickness, thinnest corneal thickness and corneal volume decreased significantly postoperatively (p corneal thickness and volume were observed after surgical correction of conjunctivochalasis.
Directory of Open Access Journals (Sweden)
W. Choi
2010-11-01
Full Text Available In this study the atmospheric boundary layer (ABL height (z_{i} over complex, forested terrain is estimated based on the power spectra and the integral length scale of horizontal winds obtained from a three-axis sonic anemometer during the BEARPEX (Biosphere Effects on Aerosol and Photochemistry Experiment. The z_{i} values estimated with this technique showed very good agreement with observations obtained from balloon tether sonde (2007 and rawinsonde (2009 measurements under unstable conditions (z/L < 0 at the coniferous forest in the California Sierra Nevada. The behavior of the nocturnal boundary layer height (h and power spectra of lateral winds and temperature under stable conditions (z/L > 0 is also presented. The nocturnal boundary layer height is found to be fairly well predicted by a recent interpolation formula proposed by Zilitinkevich et al. (2007, although it was observed to only vary from 60–80 m during the experiment. Finally, significant directional wind shear was observed during both day and night with winds backing from the prevailing west-southwesterlies in the ABL (anabatic cross-valley circulation to consistent southerlies in a layer ~1 km thick just above the ABL before veering to the prevailing westerlies further aloft. We show that this is consistent with the forcing of a thermal wind driven by the regional temperature gradient directed due east in the lower troposphere.
Investigation of the outer and inner low-latitude boundary layers
Directory of Open Access Journals (Sweden)
T. M. Bauer
Full Text Available We analyze 22 AMPTE/IRM crossings of the day-side low-latitude boundary layer for which a dense outer part can be distinguished from a dilute inner part. Whereas the plasma in the outer boundary layer (OBL is dominated by solar wind particles, the partial densities of solar wind and magnetospheric particles are comparable in the inner boundary layer (IBL. For 11 events we find a reasonable agreement between observed plasma flows and those predicted by the tangential stress balance of an open magnetopause. Thus, we conclude that, at least in these cases, the OBL is formed by a local magnetic reconnection. The disagreement with the tangential stress balance in the other 11 cases might be due to reconnection being time-dependent and patchy. The north-south component of the proton bulk velocity in the boundary layer is, on average, directed toward high latitudes for both low and high magnetic shear across the magnetopause. This argues clearly against the possibility that the dayside low-latitude boundary layer is populated with solar wind plasma primarily from the cusps. "Warm", counterstreaming electrons that originate primarily from the magnetosheath and have a field-aligned temperature that is higher than the electron temperature in the magnetosheath by a factor of 1–5, are a characteristic feature of the IBL. Profiles of the proton bulk velocity and the density of hot ring current electrons provide evidence that the IBL is on closed field lines. Part of the IBL may be on newly opened field lines. Using the average spectra of electric and magnetic fluctuations in the boundary layer, we estimate the diffusion caused by lower hybrid drift instability, gyroresonant pitch angle scattering, or kinetic Alfvén wave turbulence. We find that cross-field diffusion cannot transport solar wind plasma into the OBL or IBL at a rate that would account for the thickness ( ~ 1000 km of these sublayers. On the duskside, the dawn-dusk component of the proton
Metaporous layer to overcome the thickness constraint for broadband sound absorption
Energy Technology Data Exchange (ETDEWEB)
Yang, Jieun [Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Lee, Joong Seok [Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Yoon Young, E-mail: yykim@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)
2015-05-07
The sound absorption of a porous layer is affected by its thickness, especially in a low-frequency range. If a hard-backed porous layer contains periodical arrangements of rigid partitions that are coordinated parallel and perpendicular to the direction of incoming sound waves, the lower bound of the effective sound absorption can be lowered much more and the overall absorption performance enhanced. The consequence of rigid partitioning in a porous layer is to make the first thickness resonance mode in the layer appear at much lower frequencies compared to that in the original homogeneous porous layer with the same thickness. Moreover, appropriate partitioning yields multiple thickness resonances with higher absorption peaks through impedance matching. The physics of the partitioned porous layer, or the metaporous layer, is theoretically investigated in this study.
Velocity-vorticity correlation structures in compressible turbulent boundary layer
Chen, Jun; Li, Shi-Yao; She, Zhen-Su
2016-11-01
A velocity-vorticity correlation structure (VVCS) analysis is applied to analyze data of 3-dimensional (3-D) direct numerical simulations (DNS), to investigate the quantitative properties of the most correlated vortex structures in compressible turbulent boundary layer (CTBL) at Mach numbers, Ma = 2 . 25 and 6 . 0 . It is found that the geometry variation of the VVCS closely reflects the streamwise development of CTBL. In laminar region, the VVCS captures the instability wave number of the boundary layer. The transition region displays a distinct scaling change of the dimensions of VVCS. The developed turbulence region is characterized by a constant spatial extension of the VVCS. For various Mach numbers, the maximum correlation coefficient of the VVCS presents a clear multi-layer structure with the same scaling laws as a recent symmetry analysis proposed to quantifying the sublayer, the log-layer, and the wake flow. A surprising discovery is that the wall friction coefficient, Cf, holds a "-1"-power law of the wall normal distance of the VVCS, ys. This validates the speculation that the wall friction is determined by the near-wall coherent structure, which clarifies the correlation between statistical structures and the near-wall dynamics. Project 11452002 and 11172006 supported by National Natural Science Foundation of China.
Bi-layer functionally gradient thick film semiconducting methane sensors
Indian Academy of Sciences (India)
A Banerjee; A K Haldar; J Mondal; A Sen; H S Maiti
2002-11-01
Gas sensors based on metal oxide semiconductors like tin dioxide are widely used for the detection of toxic and combustible gases like carbon monoxide, methane and LPG. One of the problems of such sensors is their lack of sensitivity, which to some extent, can be circumvented by using different catalysts. However, highly reactive volatile organic compounds (VOC) coming from different industrial and domestic products (e.g. paints, lacquers, varnishes etc) can play havoc on such sensors and can give rise to false alarms. Any attempt to adsorb such VOCs (e.g. by using activated charcoal) results in sorption of the detecting gases (e.g. methane) too. To get round the problem, bi-layer sensors have been developed. Such tin oxide based functionally gradient bi-layer sensors have different compositions at the top and bottom layers. Here, instead of adsorbing the VOCs, they are allowed to interact and are consumed on the top layer of the sensors and a combustible gas like methane being less reactive, penetrates the top layer and interacts with the bottom layer. By modifying the chemical compositions of the top and bottom layers and by designing the electrode-lead wire arrangement properly, the top layer can be kept electrically shunted from the bottom layer and the electrical signal generated at the bottom layer from the combustible gas is collected. Such functionally gradient sensors, being very reliable, can find applications in domestic, industrial and strategic sectors.
Oxide-Based Solar Cell: Impact of Layer Thicknesses on the Device Performance.
Panigrahi, Shrabani; Nunes, Daniela; Calmeiro, Tomás; Kardarian, Kasra; Martins, Rodrigo; Fortunato, Elvira
2017-02-13
A ZnO/Cu2O-based combinatorial heterojunction device library was successfully fabricated by a simple spray pyrolysis technique using ITO-coated glass as the substrate. The combinatorial approach was introduced to analyze the impact of the ZnO and Cu2O layer thicknesses on the performance of the solar cells. The thickness of the ZnO layer was varied from ∼50 to 320 nm, and the Cu2O layer was deposited orthogonal to the ZnO thickness gradient. In the case of Cu2O, the thickness varied from ∼200 to 800 nm. The photovoltaic performance of the cells is strongly dependent on the absorber layer thickness for a particular window layer thickness and reaches a maximum short-circuit current density of 3.9 mA/cm(2) when the absorber layer thickness just crosses ∼700 nm. Reducing the thicknesses of the active layers leads to a sharp decrease in the device performance. It is shown that the entire built-in bias of the heterojunction is created in the absorber layer due to low carrier density. The poor performance of the devices having lower thicknesses is attributed to different interfacial phenomena such as optical losses due to the thin Cu2O layer, back-contact recombination of the carriers due to the low layer thickness because a minimum heterojunction thickness is required for the formation of the full built-in bias that slows down the recombination of the carriers, and other factors.
Evidence of tropospheric layering: interleaved stratospheric and planetary boundary layer intrusions
2007-01-01
International audience; We present a case study of interleaving in the free troposphere of 4 layers of non-tropospheric origin, with emphasis on their residence time in the troposphere. Two layers are stratospheric intrusions at 4.7 and 2.2 km altitude with residence times of about 2 and 6.5 days, respectively. The two other layers at 7 and 3 km altitude were extracted from the maritime planetary boundary layer by warm conveyor belts associated with two extratropical lows and have residence t...
Spina, Eric F.
1995-01-01
The primary objective in the two research investigations performed under NASA Langley sponsorship (Turbulence measurements in hypersonic boundary layers using constant temperature anemometry and Reynolds stress measurements in hypersonic boundary layers) has been to increase the understanding of the physics of hypersonic turbulent boundary layers. The study began with an extension of constant-temperature thermal anemometry techniques to a Mach 11 helium flow, including careful examinations of hot-wire construction techniques, system response, and system calibration. This was followed by the application of these techniques to the exploration of a Mach 11 helium turbulent boundary layer (To approximately 290 K). The data that was acquired over the course of more than two years consists of instantaneous streamwise mass flux measurements at a frequency response of about 500 kHz. The data are of exceptional quality in both the time and frequency domain and possess a high degree of repeatability. The data analysis that has been performed to date has added significantly to the body of knowledge on hypersonic turbulence, and the data reduction is continuing. An attempt was then made to extend these thermal anemometry techniques to higher enthalpy flows, starting with a Mach 6 air flow with a stagnation temperature just above that needed to prevent liquefaction (To approximately 475 F). Conventional hot-wire anemometry proved to be inadequate for the selected high-temperature, high dynamic pressure flow, with frequent wire breakage and poor system frequency response. The use of hot-film anemometry has since been investigated for these higher-enthalpy, severe environment flows. The difficulty with using hot-film probes for dynamic (turbulence) measurements is associated with construction limitations and conduction of heat into the film substrate. Work continues under a NASA GSRP grant on the development of a hot film probe that overcomes these shortcomings for hypersonic
Structural properties of subnanometer thick Y layers in extreme ultraviolet multilayer mirrors
Bosgra, J.; Zoethout, E.; Eerden, A.M.J.; Verhoeven, J.; Kruijs, van de R.W.E.; Yakshin, A.; Bijkerk, F.
2012-01-01
We studied the structure and optical properties of B4C∕Mo∕Y∕Si multilayer systems. Using extended x-ray absorption fine structure measurements at the Y and Mo K-edge, the structure of the subnanometer thick Y layer and the underlying Mo layer were analyzed. It was found that even a 0.2 nm thick Y la
Grain-boundary layering transitions and phonon engineering
Rickman, J. M.; Harmer, M. P.; Chan, H. M.
2016-09-01
We employ semi-grand canonical Monte Carlo simulation to investigate layering transitions at grain boundaries in a prototypical binary alloy. We demonstrate the existence of such transitions among various interfacial states and examine the role of elastic fields in dictating state equilibria. The results of these studies are summarized in the form of diagrams that highlight interfacial state coexistence in this system. Finally, we examine the impact of layering transitions on the phononic properties of the system, as given by the specific heat and, by extension, the thermal conductivity. Thus, it is suggested that by inducing interfacial layering transitions via changes in temperature or pressure, one can thereby engineer thermodynamic and transport properties in materials.
A numerical-physical planetary boundary layer model
Padro, Jacob
1983-07-01
A numerical-physical model for the planetary boundary layer has been formulated for the purpose of predicting the winds, temperatures and humidities in the lowest 1600 m of the atmosphere. An application of the model to the synoptic situation of 30 August, 1972, demonstrates its ability to produce useful forecasts for a period of 24 h. Results are illustrated in terms of horizontal maps and time-height sections of winds and temperatures. The model is divided in the vertical direction into three layers that are governed, respectively, by different physical formulations. At the lowest level, which is the surface of the earth, forecasts of temperature and humidity are computed from empirical relations. In the first layer, the surface layer, application is made of the similarity theories of Monin-Obukhov, Monin-Kazanski and Businger’s form of the universal functions. The second layer, the Ekman layer, is 1550 m deep and is governed by diagnostic momentum and time-dependent thermodynamic and humidity equations. External input to the model are large-scale pressure gradients and middle-level cloudiness. Cressman’s objective analysis procedure is applied to conventional surface and upper air data over a horizontal region of about 2500 km by 2500 km, centered about Lake Ontario. With a grid distance of 127 km and a time interval of 30 min, the computer time required on Control Data Cyber 76 for a 24 h forecast for the case study is less than two minutes.
Oceanic Double-Diffusive Layer Thicknesses in the Presence of Turbulence
Shibley, Nicole; Timmermans, Mary-Louise
2016-11-01
Double-diffusive stratification in the ocean is characterized by staircase structures consisting of mixed layers separated by high-gradient interfaces in temperature and salinity. Several past studies have examined mechanisms that govern the observed thicknesses of staircase mixed layers. In one formalism, the mixed-layer thickness is set by layer formation that arises when a heat source is applied at the base of water that is stably-stratified in salinity; in another, the equilibrium thickness of mixed layers has been explained as the product of "merging," where thin layers continue to grow until they reach a thickness determined by a criterion relating the ratio of heat flux to salt flux and the density ratio. We extend the above two theories to consider the influence of turbulence on mixed-layer thicknesses. The study has implications for the Arctic Ocean where double-diffusive staircases are widely present, and mixed-layer thicknesses are well-resolved by ocean measurements. Our theoretical framework provides a means to determine turbulent diffusivities (in regions where microstructure measurements are not available) by considering only observations of density ratio, stratification, and layer thicknesses.
Numerical Analysis of Effect of Boundary Layer Characteristics on the Flow Field in S-shaped Inlet
Directory of Open Access Journals (Sweden)
Ren Jia
2015-01-01
Full Text Available In order to explore the effect of boundary layer thickness and pressure gradient on the performance of the flow field in the inlet, we design a high offset rate S-shaped inlet based on a certain unmanned aerial vehicle (UAV, and its author has analyzed the effect of boundary layer characteristics on the inlet with numerical simulation method. The suction of boundary layer which leads to separation zone not only becomes longer in the inlet, but also moves to the center plane of symmetry, the separation point of boundary layer appears in advance as pressure gradient increases. Considering the influence of the boundary layer, various performance parameters all exceeds that of the uniform entrance inlet conditions, especially the circumferential total pressure distortion of outlet increased by 58.2% at most, obviously can’t meet the engine to work properly, so we must consider and pay attention to the effect of the boundary layer characteristics on the flow field in the S-shaped inlet.
Identification of Lagrangian coherent structures in the turbulent boundary layer
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Using Finite-Time Lyapunov Exponents (FTLE) method, Lagrangian coherent structures (LCSs) in a fully developed flat-plate turbulent boundary layer are successfully identified from a two-dimensional (2D) velocity field obtained by time-resolved 2D PIV measurement. The typical LCSs in the turbulent boundary layer are hairpin-like structures, which are characterized as legs of quasi-streamwise vor- tices extending deep into the near wall region with an inclination angle θ to the wall, and heads of the transverse vortex tube located in the outer region. Statistical analysis on the characteristic shape of typical LCS reveals that the probability density distribution of θ accords well with t-distribution in the near wall region, but presents a bimodal distribution with two peaks in the outer region, corresponding to the hairpin head and the hairpin neck, respectively. Spatial correlation analysis of FTLE field is im- plemented to get the ensemble-averaged inclination angle θ R of typical LCS. θ R first increases and then decreases along the wall-normal direction, similar to that of the mean value of θ. Moreover, the most probable value of θ saturates at y+=100 with the maximum value of about 24°, suggesting that the most likely position where hairpins transit from the neck to the head is located around y+=100. The ensem- ble-averaged convection velocity Uc of typical LCS is finally calculated from temporal-spatial correla- tion analysis of FTLE field. It is found that the wall-normal profile of the convection velocity Uc(y) ac- cords well with the local mean velocity profile U(y) beyond the buffer layer, evidencing that the down- stream convection of hairpins determines the transportation properties of the turbulent boundary layer in the log-region and beyond.
Identification of Lagrangian coherent structures in the turbulent boundary layer
Institute of Scientific and Technical Information of China (English)
PAN Chong; WANG JinJun; ZHANG Cao
2009-01-01
Using Finite-Time Lyapunov Exponents (FTLE) method, Lagrangian coherent structures (LCSs) in a fully developed flat-plate turbulent boundary layer are successfully identified from a two-dimensional (2D) velocity field obtained by time-resolved 2D PIV measurement. The typical LCSs in the turbulent boundary layer are hairpin-like structures, which are characterized as legs of quasi-streamwise vor-tices extending deep into the near wall region with an inclination angle θto the wall, and heads of the transverse vortex tube located in the outer region. Statistical analysis on the characteristic shape of typical LCS reveals that the probability density distribution of # accords well with t-distribution in the near wall region, but presents a bimodal distribution with two peaks in the outer region, corresponding to the hairpin head and the hairpin neck, respectively. Spatial correlation analysis of FTLE field is im-plemented to get the ensemble-averaged inclination angle θR of typical LCS. θR first increases and then decreases along the wall-normal direction, similar to that of the mean value of θ. Moreover, the most probable value of 8 saturates at Y+=100 with the maximum value of about 24°, suggesting that the most likely position where hairpins transit from the neck to the head is located around Y+=100. The ensem-ble-averaged convection velocity Uc of typical LCS is finally calculated from temporal-spatial correla-tion analysis of FTLE field. It is found that the wall-normal profile of the convection velocity Uc(Y) ac-cords well with the local mean velocity profile U(y) beyond the buffer layer, evidencing that the down-stream convection of hairpins determines the transportation properties of the turbulent boundary layer in the log-region and beyond.
Effect of age and sex on retinal layer thickness and volume in normal eyes.
Won, Jae Yon; Kim, Sung Eun; Park, Young-Hoon
2016-11-01
The aim of the study was to evaluate the effect of sex and age on the thickness of the retinal layer in normal eyes using spectral-domain optical coherence tomography (SD-OCT).Fifty healthy subjects between the ages of 20 and 80 had their retinal layers measured using SD-OCT at Seoul St. Mary's Hospital. Mean thickness and volume were measured for 9 retinal layers in the fovea, the pericentral ring, and the peripheral ring. The differences of sex- and age-related thickness and volume in each retinal layer were analyzed.The retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), and outer plexiform layer (OPL) were thinnest in the fovea area, whereas the outer nuclear layer (ONL), photoreceptor layer (PHL), and retinal pigment epithelium (RPE) were thickest at similar locations. Mean thickness of the RNFL, GCL, IPL, and OPL was significantly greater in men than women. However, mean thickness of the ONL was greater in women than in men. When compared between patients 60 years of age, the thickness and volume of peripheral RNFL, GCL, and pericentral and peripheral IPL were significantly larger in the younger group than the older group. Conversely, the thickness and volume of foveal INL and IR were larger in the older group than in the younger group.The thickness and volume of the retinal layer in normal eyes significantly vary depending on age and sex. These results should be considered when evaluating layer analysis in retinal disease.
Nian, Li; Chen, Zhenhui; Herbst, Stefanie; Li, Qingyuan; Yu, Chengzhuo; Jiang, Xiaofang; Dong, Huanli; Li, Fenghong; Liu, Linlin; Würthner, Frank; Chen, Junwu; Xie, Zengqi; Ma, Yuguang
2016-09-01
An aqueous-solution-processed photoconductive cathode interlayer is developed, in which the photoinduced charge transfer brings multiple advantages such as increased conductivity and electron mobility, as well as reduced work function. Average power conversion efficiency over 10% is achieved even when the thickness of the cathode interlayer and active layer is up to 100 and 300 nm, respectively.
Institute of Scientific and Technical Information of China (English)
Aurang Zaib; Krishnendu Bhattacharyya; Sharidan Shafie
2015-01-01
An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented. Water is treated as a base fluid. In the investigation, non-uniform mass suction through the porous sheet is considered. Using Keller-box method the transformed equations are solved numerically. The results of skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles are presented for different flow parameters. The results showed that the dual non-similar solutions exist only when certain amount of mass suction is applied through the porous sheet for various unsteady parameters and nanoparticle volume fractions. The ranges of suction where dual non-similar solution exists, become larger when values of unsteady parameter as well as nanoparticle volume fraction increase. So, due to unsteadiness of flow dynamics and the presence of nanoparticles in flow field, the requirement of mass suction for existence of solution of boundary layer flow past an exponentially shrinking sheet is less. Furthermore, the velocity boundary layer thickness decreases and thermal boundary layer thickness increases with increasing of nanoparticle volume fraction in both non-similar solutions. Whereas, for stronger mass suction, the velocity boundary layer thickness becomes thinner for the first solution and the effect is opposite in the case of second solution. The temperature inside the boundary layer increases with nanoparticle volume fraction and decreases with mass suction. So, for the unsteadiness and for the presence of nanoparticles, the flow separation is delayed to some extent.
Nagata, Kouji; Sakai, Yasuhiko; Komori, Satoru
2011-01-01
Effects of weak, small-scale freestream turbulence on turbulent boundary layers with and without thermal convection are experimentally investigated using a wind tunnel. Two experiments are carried out: the first is isothermal boundary layers with and without grid turbulence, and the second is non-isothermal boundary layers with and without grid turbulence. Both boundary layers develop under a small favorable pressure gradient. For the latter case, the bottom wall of the test section is heated...
Directory of Open Access Journals (Sweden)
W. Choi
2011-07-01
Full Text Available The atmospheric boundary layer (ABL height (z_{i} over complex, forested terrain is estimated based on the power spectra and the integral length scale of cross-stream winds obtained from a three-axis sonic anemometer during the two summers of the BEARPEX (Biosphere Effects on Aerosol and Photochemistry Experiment. The z_{i} values estimated with this technique show very good agreement with observations obtained from balloon tether sondes (2007 and rawinsondes (2009 under unstable conditions (z/L < 0 at the coniferous forest in the California Sierra Nevada. On the other hand, the low frequency behavior of the streamwise upslope winds did not exhibit significant variations and was therefore not useful in predicting boundary layer height. The behavior of the nocturnal boundary layer height (h with respect to the power spectra of the v-wind component and temperature under stable conditions (z/L > 0 is also presented. The nocturnal boundary layer height is found to be fairly well predicted by a recent interpolation formula proposed by Zilitinkevich et al. (2007, although it was observed to only vary from 60–80 m during the 2009 experiment in which it was measured. Finally, significant directional wind shear was observed during both day and night soundings. The winds were found to be consistently backing from the prevailing west-southwesterlies within the ABL (the anabatic cross-valley circulation to southerlies in a layer ~1–2 km thick just above the ABL before veering to the prevailing westerlies further aloft. This shear pattern is shown to be consistent with the forcing of a thermal wind driven by the regional temperature gradient directed east-southeast in the lower troposphere.
Numerical study of wingtip shed vorticity reduction by wing Boundary Layer Control
Posada, Jose Alejandro
computed pressure coefficient values compare very well (Figure 90). The present simulations were also validated by comparison with wake survey and balance type experimental measurements done by Chometon and Laurent on a NACA 643-018 wing. Lift, induced drag, and profile drag coefficients agree very well with Chometon and Laurent data. More than one hundred simulations were performed with different BLC suction slot geometries. Suction slots were used in the chord-wise and span-wise locations near the wing tip region. Blowing slots were evaluated at the wing center line, the wing tip upper surface, and span-wise outside of the wing tip. For an elliptically loaded wing, 50% of the bound vorticity is shed at the wing tips over a length of 7% of the wing span. The turbulent boundary layer thickness for a Cessna 206 aircraft at cruise is estimated as 0.09 ft. Theoretically the power required to remove by suction all the upper and lower surface boundary layer over the tip region for this aircraft at take-off is 2.6 HP, which would be very small compared to the 70 HP induced drag power saved. This would only be true if 100% wingtip vortex elimination could be obtained.
Thermographic analysis of turbulent non-isothermal water boundary layer
Znamenskaya, Irina A
2015-01-01
The paper is devoted to the investigation of the turbulent water boundary layer in the jet mixing flows using high-speed infrared (IR) thermography. Two turbulent mixing processes were studied: a submerged water jet impinging on a flat surface and two intersecting jets in a round disc-shaped vessel. An infrared camera (FLIR Systems SC7700) was focused on the window transparent for IR radiation; it provided high-speed recordings of heat fluxes from a thin water layer close to the window. Temperature versus time curves at different points of water boundary layer near the wall surface were acquired using the IR camera with the recording frequency of 100 Hz. The time of recording varied from 3 till 20 min. The power spectra for the temperature fluctuations at different points on the hot-cold water mixing zone were calculated using the Fast Fourier Transform algorithm. The obtained spectral behavior was compared to the Kolmogorov "-5/3 spectrum" (a direct energy cascade) and the dual-cascade scenario predicted for...
On the nature of the plasma sheet boundary layer
Energy Technology Data Exchange (ETDEWEB)
Hones, E.W. Jr. (Mission Research Corp., Los Alamos, NM (USA) Los Alamos National Lab., NM (USA))
1990-01-01
The regions of the plasma sheet adjacent to the north and south lobes of the magnetotail have been described by many experimenters as locations of beams of energetic ions and fast-moving plasma directed primarily earthward and tailward along magnetic field lines. Measurements taken as satellites passed through one or the other of these boundary layers have frequently revealed near-earth mirroring of ions and a vertical segregation of velocities of both earthward-moving and mirroring ions with the fastest ions being found nearest the lobe-plasma sheet interface. These are features expected for particles from a distant tail source {bar E} {times} {bar B} drifting in a dawn-to-dusk electric field and are consistent with the source being a magnetic reconnection region. The plasma sheet boundary layers are thus understood as separatrix layers, bounded at their lobeward surfaces by the separatrices from the distant neutral line. This paper will review the observations that support this interpretation. 10 refs., 7 figs.
Wave boundary layer over a stone-covered bed
DEFF Research Database (Denmark)
Dixen, Martin; Hatipoglu, Figen; Sumer, B. Mutlu
2008-01-01
This paper summarizes the results of an experimental investigation on wave boundary layers over a bed with large roughness, simulating stone/rock/armour block cover on the sea bottom. The roughness elements used in the experiments were stones the size of 1.4cm and 3.85cm in one group of experiments...... and regular ping-pong balls the size 3.6cm in the other. The orbital-motion-amplitude-to-roughness ratio at the bed was rather small, in the range a/ks=0.6-3. The mean and turbulence properties of the boundary-layer flow were measured. Various configurations of the roughness elements were used in the ping......-pong ball experiments to study the influence of packing pattern, packing density, number of layers and surface roughness of the roughness elements. The results show that the friction factor seems to be not extremely sensitive to these factors. The results also show that the friction factor for small values...
Vertical ozone characteristics in urban boundary layer in Beijing.
Ma, Zhiqiang; Xu, Honghui; Meng, Wei; Zhang, Xiaoling; Xu, Jing; Liu, Quan; Wang, Yuesi
2013-07-01
Vertical ozone and meteorological parameters were measured by tethered balloon in the boundary layer in the summer of 2009 in Beijing, China. A total of 77 tethersonde soundings were taken during the 27-day campaign. The surface ozone concentrations measured by ozonesondes and TEI 49C showed good agreement, albeit with temporal difference between the two instruments. Two case studies of nocturnal secondary ozone maxima are discussed in detail. The development of the low-level jet played a critical role leading to the observed ozone peak concentrations in nocturnal boundary layer (NBL). The maximum of surface ozone was 161.7 ppbv during the campaign, which could be attributed to abundant precursors storage near surface layer at nighttime. Vertical distribution of ozone was also measured utilizing conventional continuous analyzers on 325-m meteorological observation tower. The results showed the NBL height was between 47 and 280 m, which were consistent with the balloon data. Southerly air flow could bring ozone-rich air to Beijing, and the ozone concentrations exceeded the China's hourly ozone standard (approximately 100 ppb) above 600 m for more than 12 h.
Large Eddy Simulation and Study of the Urban Boundary Layer
Institute of Scientific and Technical Information of China (English)
苗世光; 蒋维楣
2004-01-01
Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.
Three-Dimensional Waves in Tilt Thermal Boundary Layers
Institute of Scientific and Technical Information of China (English)
TAO Jian-Jun; YUAN Xiang-Jiang
2009-01-01
We numerically and theoretically study the stabilities of tilt thermal boundary layers immersed in stratified air. An interesting phenomenon is revealed: the stationary longitudinal-roll mode becomes unstable to some oscillating state even when the Grashof number is smaller than its corresponding critical value. By stability analysis, this phenomenon is explained in terms of a new three-dimensional wave mode. The effect of the tilt angle on the stability of the boundary flows is investigated. Since the new three-dimensional wave is found to be the most unstable mode when the title angle is between 30° and 64°, it is expected to play an important role in the transition to turbulence.
Modified boundary layer analysis for a mode III crack problem
Energy Technology Data Exchange (ETDEWEB)
Beom, Hyeon Gyu; Kim, Yu Hwan; Cho, Chong Du; Kim, Chang Boo [Inha University, Incheon (Korea, Republic of)
2008-04-15
A modified boundary layer problem of a semi-infinite crack in an elastic-perfectly plastic material under a Mode III load is analyzed. The analytic solution of elastic fields is derived by using complex function theory. It is found that the size and the shape of the plastic zone near the crack tip depend on the elastic T-stress given on the remote boundary. A method for determining higher order singular solutions of elastic fields is also proposed. In order to determine the higher order singular solutions of the elastic fields, Williams expansion of the solution is used. Higher order terms in the Williams expansion are obtained through simple mathematical manipulation. The coefficients of each term in the Williams expansion are also calculated numerically with the J-based mutual integral
Estimates of the height of the boundary layer using SODAR and rawinsoundings in Amazonia
Energy Technology Data Exchange (ETDEWEB)
Fisch, G [Instituto de Aeronautica e Espaco (IAE/CTA), Sao Jose dos Campos, 12228-904 (Brazil); Santos, L A R dos [Instituto Nacional de Meteorologia (INMET), BrasIlia, 70680-900 (Brazil)], E-mail: gfisch@iae.cta.br, E-mail: landre@inmet.gov.br
2008-05-01
During the LBA campaign in Amazonia 2002, simultaneous measurements were made of the boundary layer using different instruments (rawinsoundings and SODAR). The profiles of potential temperature and humidity were used to estimates the height of the boundary layer using 3 different techniques. The SODAR's measurements did not capture the shallow morning boundary layer observed at the profiles.
Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa
2014-05-01
Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.
Planetary Boundary Layer Dynamics over Reno, Nevada in Summer
Liming, A.; Sumlin, B.; Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.
2014-12-01
Quantifying the height of the planetary boundary layer (PBL) is important to understand the transport behavior, mixing, and surface concentrations of air pollutants. In Reno, NV, located in complex, mountainous terrain with high desert climate, the daytime boundary layer can rise to an estimated 3km or more on a summer day due to surface heating and convection. The nocturnal boundary layer, conversely, tends to be much lower and highly stable due to radiative cooling from the surface at night and downslope flow of cool air from nearby mountains. With limited availability of radiosonde data, current estimates of the PBL height at any given time or location are potentially over or underestimated. To better quantify the height and characterize the PBL physics, we developed portable, lightweight sensors that measure CO2 concentrations, temperature, pressure, and humidity every 5 seconds. Four of these sensors are used on a tethered balloon system to monitor CO2 concentrations from the surface up to 300m. We will combine this data with Radio Acoustic Sounding System (RASS) data that measures vertical profiles of wind speed, temperature, and humidity from 40m to 400m. This experiment will characterize the diurnal evolution of CO2 concentrations at multiple heights in the PBL, provide insight into PBL physics during stability transition periods at sunrise and sunset, and estimate the nighttime PBL depth during August in Reno. Further, we expect to gain a better understanding of the impact of mixing volume changes (i.e., PBL height) on air quality and pollution concentrations in Reno. The custom portable sensor design will also be presented. It is expected that these instruments can be used for indoor or outdoor air quality studies, where lightness, small size, and battery operation can be of benefit.
Shock Train/Boundary-Layer Interaction in Rectangular Scramjet Isolators
Geerts, Jonathan Simon
Numerous studies of the dual-mode scramjet isolator, a critical component in preventing inlet unstart and/or vehicle loss by containing a collection of flow disturbances called a shock train, have been performed since the dual-mode propulsion cycle was introduced in the 1960s. Low momentum corner flow and other three-dimensional effects inherent to rectangular isolators have, however, been largely ignored in experimental studies of the boundary layer separation driven isolator shock train dynamics. Furthermore, the use of two dimensional diagnostic techniques in past works, be it single-perspective line-of-sight schlieren/shadowgraphy or single axis wall pressure measurements, have been unable to resolve the three-dimensional flow features inside the rectangular isolator. These flow characteristics need to be thoroughly understood if robust dual-mode scramjet designs are to be fielded. The work presented in this thesis is focused on experimentally analyzing shock train/boundary layer interactions from multiple perspectives in aspect ratio 1.0, 3.0, and 6.0 rectangular isolators with inflow Mach numbers ranging from 2.4 to 2.7. Secondary steady-state Computational Fluid Dynamics studies are performed to compare to the experimental results and to provide additional perspectives of the flow field. Specific issues that remain unresolved after decades of isolator shock train studies that are addressed in this work include the three-dimensional formation of the isolator shock train front, the spatial and temporal low momentum corner flow separation scales, the transient behavior of shock train/boundary layer interaction at specific coordinates along the isolator's lateral axis, and effects of the rectangular geometry on semi-empirical relations for shock train length prediction. (Abstract shortened by ProQuest.).
Research on Fractal-Scanning Path for Arbitrary Boundary Layer in Layered Manufacturing
Institute of Scientific and Technical Information of China (English)
阳佳; 宾鸿赞; 等
2002-01-01
The fractal curve is proposed as a novel scanning-path used in Layered Manufacturing.Aiming at a limitation that the fractal curve can only fill a square region,a method is developed to realize the trimming of fractal curve in arbitrary boundary layer by means of undging intersection points between parameterized arbitrary boundary and a FASS(space-filling,self-avoiding,simple and self-similar)fractal curve.Accordingly,the related algorithm concerning with determining intersection points has been investigated according to the recursion reature of the fractal curve,and in the process of the fractal curve traversed,the rule of udging intersection points is ascertained as well,so that the laser-scanning beam can “walk” along the fractal curve inside the desired boundary,and arbitrary contour components are fabricated.
Perfectly-matched-layer boundary integral equation method for wave scattering in a layered medium
Lu, Wangtao; Qian, Jianliang
2016-01-01
For scattering problems of time-harmonic waves, the boundary integral equation (BIE) methods are highly competitive, since they are formulated on lower-dimension boundaries or interfaces, and can automatically satisfy outgoing radiation conditions. For scattering problems in a layered medium, standard BIE methods based on the Green's function of the background medium must evaluate the expensive Sommefeld integrals. Alternative BIE methods based on the free-space Green's function give rise to integral equations on unbounded interfaces which are not easy to truncate, since the wave fields on these interfaces decay very slowly. We develop a BIE method based on the perfectly matched layer (PML) technique. The PMLs are widely used to suppress outgoing waves in numerical methods that directly discretize the physical space. Our PML-based BIE method uses the Green's function of the PML-transformed free space to define the boundary integral operators. The method is efficient, since the Green's function of the PML-tran...
Marginally stable and turbulent boundary layers in low-curvature Taylor-Couette flow
Brauckmann, Hannes J
2016-01-01
Marginal stability arguments are used to describe the rotation-number dependence of torque in Taylor-Couette (TC) flow for radius ratios $\\eta \\geq 0.9$ and shear Reynolds number $Re_S=2\\times 10^4$. With an approximate representation of the mean profile by piecewise linear functions, characterized by the boundary-layer thicknesses at the inner and outer cylinder and the angular momentum in the center, profiles and torques are extracted from the requirement that the boundary layers represent marginally stable TC subsystems and that the torque at the inner and outer cylinder coincide. This model then explains the broad shoulder in the torque as a function of rotation number near $R_\\Omega\\approx 0.2$. For rotation numbers $R_\\Omega < 0.07$ the TC stability conditions predict boundary layers in which shear Reynolds numbers are very large. Assuming that the TC instability is bypassed by some shear instability, a second maximum in torque appears, in very good agreement with numerical simulations. The results s...
Numerical study of boundary layer injection as a scale control method
Energy Technology Data Exchange (ETDEWEB)
Feiereisen, W.
1975-09-26
A boundary layer injection method of controlling scale-buildup in geothermal two-phase flow nozzles is studied. The object of this study is to set an upper limit on the ratio of the injected mass flow rate to the free stream mass flow rate that is necessary to isolate the scale carrying free stream flow from the nozzle wall. In order to develop a numerical model of the boundary layer flow, assumptions are made which reduce the results to order of magnitude approximations. Two configurations of nozzles with various injection flow rates are tried. It is found by numerical experiment that a nozzle with injection through a 1 mm thick ring near the inlet, is more efficient at isolating the free stream than a porous nozzle. A mass flow rate ratio of 0.173% was necessary to achieve this effect. It may be concluded that an upper limit on the mass flow rate ratio is about 2.0% with injection through a ring near the inlet, and that boundary layer injection is a reasonable method of controlling scale-buildup. A glossary of variables, program documentation and listings are presented for programs GMD15SR8, TRACK11, and TRACK12.
The actuation of microflaps inspired by shark scales deeply embedded in a boundary layer
Morris, Jackson; Lang, Amy; Hubner, Paul
2016-11-01
Thanks to millions of years of natural selection, sharks have evolved to become quick apex predators. Shark skin is made up of microscopic scales on the order of 0.2 mm in size. This array of scales is hypothesized to be a flow control mechanism where individual scales are capable of being passively actuated by reversed flow in water due to their preferential orientation to attached flow. Previous research has proven shark skin to reduce flow separation in water, which would result in lower pressure drag. We believe shark scales are strategically sized to interact with the lower 5 percent of the boundary layer, where reversed flow occurs close to the wall. To test the capability of micro-flaps to be actuated in air various sets of flaps, inspired by shark scale geometry, were rapidly prototyped. These microflaps were tested in a low-speed wind tunnel at various flow speeds and boundary layer thicknesses. Boundary layer flow conditions were measured using a hot-wire probe and microflap actuation was observed. Microflap actuation in airflow would mean that this bio-inspired separation control mechanism found on shark skin has potential application for aircraft. Boeing.
Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer
Zahradka, D.; Parziale, N. J.; Smith, M. S.; Marineau, E. C.
2016-05-01
The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the "Mach 3 Calibration Tunnel" at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 % {N}2/1 % Kr at momentum-thickness Reynolds numbers of {Re}_{\\varTheta }= 800, 1400, and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV (y/δ ≈ 0.1-0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.
Institute of Scientific and Technical Information of China (English)
WANG Liang; FU Song
2009-01-01
Based on Reynolds-averaged Navier-Stokes approach, a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows. The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy, ωthe specific dissipation rate and the intermittency factor γ.The particular features of the model are that: 1) k includes the non-turbulent, as well as turbulent fluctuations; 2) a transport equation for the intermittency factor γis proposed here with a source term set to trigger the transition onset; 3) through the introduction of a new length scale normal to wall, the present model employs the local variables only avoiding the use of the integral parameters, like the boundary layer thickness δ,which are often cost-ineffective with the modern CFD (Computational Fluid Dynamics) methods; 4) in the fully turbulent region, the model retreats to the well-known k-ωSST (Shear Stress Transport) model. This model is validated with a number of available experiments on boundary layer transitions including the incompressible, supersonic and hypersonic flows past flat plates, straight/flared cones at zero incidences, etc. It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Based on Reynolds-averaged Navier-Stokes approach,a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows.The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy,ωthe specific dissipation rate and the intermittency factorγ.The particular features of the model are that:1)k includes the non-turbulent,as well as turbulent fluctuations;2)a transport equation for the intermittency factorγis proposed here with a source term set to trigger the transition onset;3)through the introduction of a new length scale normal to wall,the present model employs the local variables only avoiding the use of the integral parameters,like the boundary layer thicknessδ,which are often cost-ineffective with the modern CFD(Computational Fluid Dynamics)methods;4)in the fully turbulent region,the model retreats to the well-known k-ωSST(Shear Stress Transport)model.This model is validated with a number of available experiments on boundary layer transitions including the incompressible,supersonic and hypersonic flows past flat plates,straight/flared cones at zero incidences,etc.It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition.
Separation control in a hypersonic shock wave / turbulent boundary-layer interaction
Schreyer, Anne-Marie; Bermejo-Moreno, Ivan; Kim, Jeonglae; Urzay, Javier
2016-11-01
Hypersonic vehicles play a key role for affordable access to space. The associated flow fields are strongly affected by shock wave/turbulent boundary-layer interactions, and the inherent separation causes flow distortion and low-frequency unsteadiness. Microramp sub-boundary layer vortex generators are a promising means to control separation and diminish associated detrimental effects. We investigate the effect of a microramp on the low-frequency unsteadiness in a fully separated interaction. A large eddy simulation of a 33 ∘ -compression-ramp interaction was performed for an inflow Mach number of 7.2 and a Reynolds number based on momentum thickness of Reθ = 3500 , matching the experiment of Schreyer et al. (2011). For the control case, we introduced a counter-rotating vortex pair, as induced by a single microramp, into the boundary layer through the inflow conditions. We applied a dynamic mode decomposition (DMD) on both cases to identify coherent structures that are responsible for the dynamic behavior. Based on the DMD, we discuss the reduction of the separation zone and the stabilization of the shock motion achieved by the microramp, and contribute to the description of the governing mechanisms. Pursued during the 2016 CTR Summer Program at Stanford University.
Investigation of Gas Seeding for Planar Laser-Induced Fluorescence in Hypersonic Boundary Layers
Arisman, C. J.; Johansen, C. T.; Bathel, B. F.; Danehy, P. M.
2015-01-01
Numerical simulations of the gas-seeding strategies required for planar laser-induced fluorescence in a Mach 10 (approximately Mach 8.2 postshock) airflow were performed. The work was performed to understand and quantify the adverse effects associated with gas seeding and to assess various types of seed gas that could potentially be used in future experiments. In prior experiments, NO and NO2 were injected through a slot near the leading edge of a flatplate wedge model used in NASA Langley Research Center's 31 in. Mach 10 air tunnel facility. In this paper, nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulations showing the deflection of the velocity boundary layer for each of the cases are presented. Streamwise distributions of velocity and concentration boundary-layer thicknesses, as well as vertical distributions of velocity, temperature, and mass distributions, are presented for each of the cases. A comparison between simulated streamwise velocity profiles and experimentally obtained molecular tagging velocimetry profiles using a nitric oxide seeding strategy is performed to verify the influence of such a strategy on the boundary layer. The relative merits of the different seeding strategies are discussed. The results from a custom solver based on OpenFOAM version 2.2.1 are compared against results obtained from ANSYS® Fluent version 6.3.
Effect of roughness on the stability of boundary layers
Nayfeh, Ali H.; Ragab, Saad A.; Al-Maaitah, Ayman
1987-01-01
An analysis is conducted on the effect of imperfections consisting of humps and dips on the stability of incompressible flows over flat plates. The mean flow is calculated using interacting boundary layers. Linear quasiparallel spatial stability is used to calculate the growth rates and mode shapes of two-dimensional disturbances. Then, the amplification factor is computed. A search for the most dangerous frequency is conducted based on an amplification factor of 9 in the shortest distance. Correlations are made with the transition experiment of Walker and Greening using the e sup 9 method.
Preliminary experimental investigation of boundary layer in decelerating flow
Directory of Open Access Journals (Sweden)
Příhoda J.
2013-04-01
Full Text Available Investigations of characteristics of turbulence inside boundary layer under decelerating flow were studied by means of constant temperature anemometer. The decelerating flow was simulated in the closed circuit wind tunnel 0.9 m × 0.5 m at IT AS CR. The free stream turbulence was either natural o risen up by square mesh plane grid. The details of experimental settings and measurement procedures of the instantaneous longitudinal velocity component are described and the distributions of intensity, skewness and kurtosis of turbulent fluctuations are discussed in the contribution.
Calculation of Turbulent Boundary Layers Using the Dissipation Integral Method
Institute of Scientific and Technical Information of China (English)
MatthiasBuschmann
1999-01-01
This paper gives an introduction into the dissipation integral method.The general integral equations for the three-dimensional case are derved.It is found that for a practical calculation algorithm the integral monentum equation and the integral energy equation are msot useful.Using Two different sets of mean velocity profiles the hyperbolical character of a dissipation integral method is shown.Test cases for two-and three-dimensional boundary layers are analysed and discussed.The paper concludes with a discussion of the advantages and limits of dissipation integral methods.
Heat and Moisture Transport in the Atmospheric Boundary Layer.
1987-01-05
rapid distortion theory by considering the ’image’ of the eddies in the boundary (Goldstein & Durbin , 1980). The same techniques could be applied to...Fitzjarald, D.J. (1983) Katabatic wind in opposing flow NCAR3123-83/1 Goldstein, M.E. & Durbin , P.A. (1980) J. Fluid Mech. 98, 473. Geiger, R. (1965) The...Foldvick (1962), S -S (2.6a) or algebraically : S - SO (h m/Z) where N0 and U are the values at the height hm of the mid- dle layer, and hi is the vertical
STUDY OF SWEPT SHOCK WAVE AND BOUNDARY LAYER INTERACTIONS
Institute of Scientific and Technical Information of China (English)
1998-01-01
This paper presents briefly the recent progress on study of swept shock wave/boundary layer interactions with emphasis on application of zonalanalysis and correlation analysis to them. Based on the zonal analysis an overall framework of complicated interaction flow structure including both surface flowfield and space flowfield is discussed. Based on correlation analysis the conical interactions induced by four families of shock wave generators have been discussedin detail. Some control parameter and physical mechanism of conical interaction have been revealed. Finally some aspects of the problem and the prospects for future work are suggested.
Lidar Scanning of Momentum Flux in the Marine Boundary Layer
DEFF Research Database (Denmark)
Pena Diaz, Alfredo; Mann, Jakob; Courtney, Michael;
Momentum flux measurements are important for describing the wind profile in the atmospheric boundary layer, modeling the atmospheric flow over water, the accounting of exchange processes between air and sea, etc. It is also directly related to the friction velocity, which is a velocity scale...... turbulence measurements from a sonic anemometer, showing high agreement. In this study, a conical scanning lidar is used to derive the momentum flux, which compares well to the estimations from the bulk-derived method, but it also shows a filtering effect due to the large spatial-averaging volume...
Large Eddy Simulation of the ventilated wave boundary layer
DEFF Research Database (Denmark)
Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu
2006-01-01
A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... size. The results indicate that the large eddies develop in the resolved scale, corresponding to fluid with an effective viscosity decided by the sum of the kinematic and subgrid viscosity. Regarding case 2, the results are qualitatively in accordance with experimental findings. Injection generally...... significantly. Ventilation therefore results in a net current, even in symmetric waves....
Full-Scale Spectrum of Boundary-Layer Winds
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik
2016-01-01
Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used...... to estimate the spectrum from about 1 yr−1 to 0.05 min−1; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day−1 to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various...
Fluid Mechanics and Heat Transfer in Transitional Boundary Layers
Wang, Ting
2007-01-01
Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.
Notes on an Internal Boundary-Layer Height Formula
Savelyev, Sergiya.; Taylor, Petera.
The derivation of the Panofsky-Dutton internal boundary-layer(IBL) height formula has been revisited. We propose that the upwindroughness length (rather than downwind) should be used in theformula and that a turbulent vertical velocity (w) ratherthan the surface friction velocity (u*) should be considered asthe appropriate scaling for the rate of propagation ofdisturbances into the turbulent flow. A published set ofwind-tunnel and atmospheric data for neutral stratification hasbeen used to investigate the influence of the magnitude ofroughness change on the IBL height.
Streaming effect of wall oscillation to boundary layer separation
Wu, X. H.; Wu, J. Z.; Wu, J. M.
1991-01-01
This paper presents a preliminary theoretical result on the time averaged streaming effect of local forcing excitation to the boundary layer separation from smooth surface. The problem is formulated as a periodic disturbance to a basic steady breakaway separating flow, for which the data are taken from a numerical triple-deck solution. The ratio of Strouhal number St and Reynolds number Re plays an important role, both being assumed sufficiently high. The analytical and numerical results show that this streaming effect is quite strong at proper values of St/Re exp 1/4, which may delay or even suppress the separation.
Transition in Hypersonic Boundary Layers: Role of Dilatational Waves
Zhu, Yiding; Yuan, Huijing; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed
2015-01-01
Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 quiet wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second instability acoustic mode is the key modulator of the transition process. The second mode experiences a rapid growth and a very fast annihilation due to the effect of bulk viscosity. The second mode interacts strongly with the first vorticity mode to directly promote a fast growth of the latter and leads to immediate transition to turbulence.
Directory of Open Access Journals (Sweden)
S. Elipot
2009-02-01
Full Text Available Spectral characteristics of the oceanic boundary-layer response to wind stress forcing are assessed by comparing surface drifter observations from the Southern Ocean to a suite of idealized models that parameterize the vertical flux of horizontal momentum using a first-order turbulence closure scheme. The models vary in their representation of vertical viscosity and boundary conditions. Each is used to derive a theoretical transfer function for the spectral linear response of the ocean to wind stress.
The transfer functions are evaluated using observational data. The ageostrophic component of near-surface velocity is computed by subtracting altimeter-derived geostrophic velocities from observed drifter velocities (nominally drogued to represent motions at 15-m depth. Then the transfer function is computed to link these ageostrophic velocities to observed wind stresses. The traditional Ekman model, with infinite depth and constant vertical viscosity is among the worst of the models considered in this study. The model that most successfully describes the variability in the drifter data has a shallow layer of depth O(30–50 m, in which the viscosity is constant and O(100–1000 m^{2} s^{−1}, with a no-slip bottom boundary condition. The second best model has a vertical viscosity with a surface value O(200 m^{2} s^{−1}, which increases linearly with depth at a rate O(0.1–1 cm s^{−1} and a no-slip boundary condition at the base of the boundary layer of depth O(10^{3}m. The best model shows little latitudinal or seasonal variability, and there is no obvious link to wind stress or climatological mixed-layer depth. In contrast, in the second best model, the linear coefficient and the boundary layer depth seem to covary with wind stress. The depth of the boundary layer for this model is found to be unphysically large at some latitudes and seasons, possibly a consequence of the inability of
Blay-Carreras, E.; Pino, D.; Vilà-Guerau de Arellano, J.; Boer, van de A.; Coster, de O.; Darbieu, C.; Hartogensis, O.K.; Lohou, F.; Lothon, M.; Pietersen, H.P.
2014-01-01
Observations, mixed-layer theory and the Dutch Large-Eddy Simulation model (DALES) are used to analyze the dynamics of the boundary layer during an intensive operational period (1 July 2011) of the Boundary Layer Late Afternoon and Sunset Turbulence campaign. Continuous measurements made by remote s
Effect of bulges on the stability of boundary layers
Nayfeh, Ali H.; Ragab, Saad A.; Al-Maaitah, Ayman A.
1988-01-01
The instability of flows around hump and dip imperfections is investigated. The mean flow is calculated using interacting boundary layers, thereby accounting for viscous/inviscid interaction and separation bubbles. Then, the two-dimensional linear stability of this flow is analyzed, and the amplification factors are computed. Results are obtained for several height/width ratios and locations. The theoretical results have been used to correlate the experimental results of Walker and Greening (1942). The observed transition locations are found to correspond to amplification factors varying between 7.4 and 10.0, consistent with previous results for flat plates. The method accounts for both viscous and shear-layer instabilities. Separation is found to increase significantly the amplification factor.
Interactions between the thermal internal boundary layer and sea breezes
Energy Technology Data Exchange (ETDEWEB)
Steyn, D.G. [The Univ. of British Columbia, Dept. of Geography, Atmospheric Science Programme, Vancouver (Canada)
1997-10-01
In the absence of complex terrain, strongly curved coastline or strongly varying mean wind direction, the Thermal Internal Boundary Layer (TIBL) has well known square root behaviour with inland fetch. Existing slab modeling approaches to this phenomenon indicate no inland fetch limit at which this behaviour must cease. It is obvious however that the TIBL cannot continue to grow in depth with increasing fetch, since the typical continental Mixed Layer Depths (MLD) of 1500 to 2000 m must be reached between 100 and 200 km from the shoreline. The anticyclonic conditions with attendant strong convection and light winds which drive the TIBL, also drive daytime Sea Breeze Circulations (SBC) in the coastal zone. The onshore winds driving mesoscale advection of cool air are at the core of TIBL mechanisms, and are invariably part of a SBC. It is to be expected that TIBL and SBC be intimately linked through common mechanisms, as well as external conditions. (au)
Atmospheric Boundary Layer Characteristics during BOBMEX-Pilot Experiment
Indian Academy of Sciences (India)
G S Bhat; S Ameenulla; M Venkataramana; K Sengupta
2000-06-01
The atmospheric boundary layer characteristics observed during the BOBMEX-Pilot experiment are reported. Surface meteorological data were acquired continuously through an automatic weather monitoring system and manually every three hours. High resolution radiosondes were launched to obtain the vertical thermal structure of the atmosphere. The study area was convectively active, the SSTs were high, surface air was warm and moist, and the surface air moist static energy was among the highest observed over the tropical oceans. The mean sea air temperature difference was about 1.25°C and the sea skin temperature was cooler than bucket SST by 0.5°C. The atmospheric mixed layer was shallow, fluctuated in response to synoptic conditions from 100 m to 900 m with a mean around 500 m.
The boundary layer over turbine blade models with realistic rough surfaces
McIlroy, Hugh M., Jr.
The impact of turbine blade surface roughness on aerodynamic performance and heat loads is well known. Over time, as the turbine blades are exposed to heat loads, the external surfaces of the blades become rough. Also, for film-cooled blades, surface degradation can have a significant impact on film-cooling effectiveness. Many studies have been conducted on the effects of surface degradation/roughness on engine performance but most investigations have modeled the rough surfaces with uniform or two-dimensional roughness patterns. The objective of the present investigation is to conduct measurements that will reveal the influence of realistic surface roughness on the near-wall behavior of the boundary layer. Measurements have been conducted at the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Engineering and Environmental Laboratory with a laser Doppler velocimeter. A flat plate model of a turbine blade has been developed that produces a transitional boundary layer, elevated freestream turbulence and an accelerating freestream in order to simulate conditions on the suction side of a high-pressure turbine blade. Boundary layer measurements have been completed over a smooth plate model and over a model with a strip of realistic rough surface. The realistic rough surface was developed by scaling actual turbine blade surface data that was provided by U.S. Air Force Research Laboratory. The results indicate that bypass transition occurred very early in the flow over the model and that the boundary layer remained unstable throughout the entire length of the test plate; the boundary layer thickness and momentum thickness Reynolds numbers increased over the rough patch; and the shape factor increased over the rough patch but then decreased downstream of the patch relative to the smooth plate case; in the rough patch case the flow experienced two transition reversals with laminar-like behavior achieved by the end of the test plate; streamwise turbulence
On determining characteristic length scales in pressure-gradient turbulent boundary layers
Vinuesa, R.; Bobke, A.; Örlü, R.; Schlatter, P.
2016-05-01
boundary layer thickness (equivalent to δ99) and the edge velocity in pressure gradient turbulent boundary layers.
Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy.
Directory of Open Access Journals (Sweden)
Andrew W Francis
Full Text Available To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR subjects.High density spectral domain optical coherence tomography (SDOCT images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR, inner retina (IR, outer retina (OR, and the inner segment ellipsoid (ISe band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval.In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars.Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR.
Effect of layer thickness on the properties of nickel thermal sprayed steel
Nurisna, Zuhri; Triyono, Muhayat, Nurul; Wijayanta, Agung Tri
2016-03-01
Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni-5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers were conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.
Coherent structures of a self-similar adverse pressure gradient turbulent boundary layer
Sekimoto, Atsushi; Kitsios, Vassili; Atkinson, Callum; Jiménez, Javier; Soria, Julio
2016-11-01
The turbulence statistics and structures are studied in direct numerical simulation (DNS) of a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL). The self-similar APG-TBL at the verged of separation is achieved by a modification of the far-field boundary condition to produce the desired pressure gradient. The turbulence statistics in the self-similar region collapse by using the scaling of the external velocity and the displacement thickness. The coherent structures of the APG-TBL are investigated and compared to those of zero-pressure gradient case and homogeneous shear flow. The support of the ARC, NCI and Pawsey SCC funded by the Australian and Western Australian governments as well as the support of PRACE funded by the European Union are gratefully acknowledged.
MacRorie, Michael
1995-01-01
The interaction between convecting spanwise vortices and a flat plate turbulent boundary layer was studied experimentally. The results are relevant to the flow downstream of unsteady airfoils or spoilers. Vortices were generated with a rapidly pitched airfoil upstream of a test plate leading edge in a low-speed wind tunnel. By varying the height of the vortex generator the degree to which the vortices interacted with the test plate was controlled. Dynamic stall vortices of both positive and negative circulation were studied with Reynolds numbers (Gamma/upsilon ) of 9300 and 7400 respectively. The free-stream velocity was 5.9 m/s for all cases and the boundary layer momentum thickness Reynolds number was 480 at the primary measurement station. The measurement techniques were hot -wire anemometry (single and cross wire) and smoke-wire visualization. The results focus on two distinct aspects of the flow, first is the decay and diffusion rates of the vortices. Only in the case where a negative circulation vortex impinges directly on the leading edge does surface interaction significantly increase the vortex decay/diffusion rate. The second aspect is the response of the turbulent boundary layer to the convecting vortices. Wall shear stress measurements show that the passage of a positive circulation vortex results in an increase in wall shear after a delay-time, while the negative circulation vortices result in a decrease in wall shear. An application of log-law scaling to the ensemble-averaged mean flow was found to produce a velocity scale which resembles one based on measured wall shear stress but is offset by a phase lag. The ratio of turbulent shear stress to the two-dimensional turbulent kinetic energy was generally not constant, although it did show a constant value across the boundary layer at different phases of the interaction.
Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry
Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.
2016-10-01
Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.
Zhang, Dejun; Yu, Yating; Lai, Chao; Tian, Guiyun
2016-07-01
To ensure the key structural performance in high-temperature and high-stress environments, thermal barrier coatings (TBCs) are often adopted in engineering. The thickness of these multi-layer conductive coatings is an important quality indicator. In order to measure the thickness of multi-layer conductive coatings, a new measurement approach is presented using eddy current testing techniques, and then, an inversion algorithm is proposed and proved efficient and applicable, of which the maximum experimental relative error is within 10%. Therefore, the new approach can be effectively applied to thickness measurement of multi-layer conductive coatings such as TBCs.
Stability and modal analysis of shock/boundary layer interactions
Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio
2017-02-01
The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).
Experimental Study of Fully Developed Wind Turbine Array Boundary Layer
Turner v, John; Wosnik, Martin
2014-11-01
Results from an experimental study of an array of up to 100 model wind turbines with 0.25 m diameter, conducted in the turbulent boundary layer of the 6.0 m wide × 2.7 m tall × 72.0 m long test section of the UNH Flow Physics Facility, are reported. The study aims to address two questions. First, for a given configuration (turbine spacing, initial conditions, etc.), when will the model wind farm reach a ``fully developed'' condition, in which turbulence statistics remain the same from one row to the next within and above the wind turbine array. Second, how is kinetic energy transported in the wind turbine array boundary layer (WTABL). Measurements in the fully developed WTABL can provide valuable insight to the optimization of wind farm energy production. Previous experimental studies with smaller model wind farms were unable to reach the fully developed condition. Due to the size of the UNH facility and the current model array, the fully developed WTABL condition can be achieved. The wind turbine array was simulated by a combination of drag-matched porous disks, used in the upstream part of the array, and by a smaller array of realistic, scaled 3-bladed wind turbines immediately upstream of the measurement location.
Geostrophic convective turbulence: The effect of boundary layers
Ostilla-Mónico, Rodolfo; Kunnen, Rudie P J; Verzicco, Roberto; Lohse, Detlef
2014-01-01
This Letter presents results of the first direct numerical simulations of rotating Rayleigh--B\\'enard convection in the so-called geostrophic regime, (hence very small Ekman numbers $\\mathcal{O}(10^{-7})$ and high Rayleigh numbers~$Ra=10^{10}$ and~$5\\cdot 10^{10}$), employing the \\emph{full} Navier--Stokes equations. In the geostrophic regime the criteria of very strong rotation and large supercriticality are met simultaneously, which is true for many geophysical and astrophysical flows. Until now, numerical approaches of this regime have been based on \\emph{reduced} versions of the Navier--Stokes equations (cf. Sprague \\emph{et al.} J. Fluid Mech., \\textbf{551}, 141 (2006)), omitting the effect of the viscous (Ekman) boundary layers. By using different velocity boundary conditions at the plates, we study the effect of these Ekman layers. We find that the formation of large-scale structures (Rubio \\emph{et al.} (Phys. Rev. Lett. \\textbf{112} (2014)), which indicates the presence of an inverse energy cascade, ...
Scaling of pressure spectrum in turbulent boundary layers
Patwardhan, Saurabh S.; Ramesh, O. N.
2014-04-01
Scaling of pressure spectrum in zero-pressure-gradient turbulent boundary layers is discussed. Spatial DNS data of boundary layer at one time instant (Reθ = 4500) are used for the analysis. It is observed that in the outer regions the pressure spectra tends towards the -7/3 law predicted by Kolmogorov's theory of small-scale turbulence. The slope in the pressure spectra varies from -1 close to the wall to a value close to -7/3 in the outer region. The streamwise velocity spectra also show a -5/3 trend in the outer region of the flow. The exercise carried out to study the amplitude modulation effect of the large scales on the smaller ones in the near-wall region reveals a strong modulation effect for the streamwise velocity, but not for the pressure fluctuations. The skewness of the pressure follows the same trend as the amplitude modulation coefficient, as is the case for the velocity. In the inner region, pressure spectra were seen to collapse better when normalized with the local Reynolds stress than when scaled with the local turbulent kinetic energy
Retrievals of boundary layer methane and isotope fractionation on Titan
Adamkovics, Mate; Lora, Juan M.; Mitchell, Jonathan L.
2016-10-01
The amount of methane in the boundary layer on Titan is an interesting diagnostic of whether or not it might be seeping out of the regolith. We know that kinetic fractionation of methane isotopes can be diagnostic of evaporation at the surface and condensation in the atmosphere. If a parcel is constrained to follow a moist adiabat while condensation occurs, we can predict the amount of fractionation that is expected (Ádámkovics & Mitchell, 2016). We will present our most recent efforts to measure boundary layer methane abundance and isotopic composition, which include our recently published Keck NIRSPAO observations from 17 July 2014 (Ádámkovics et al., 2016), as well as preliminary results from follow-up measurements made on 15 May 2016. Our measurements are tantalizingly close to being able to distinguish between different hydrological parameterizations of the polar regions in the Titan Atmospheric Model (Lora & Ádámkovics, 2016). We will discuss the systematic uncertainties that can be evaluated with the combination of these two datasets and the prospects for exceptionally high S/N observations via particularly deep integrations over multiple nights.
Stability and modal analysis of shock/boundary layer interactions
Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio
2016-06-01
The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).
Sonic eddy model of the turbulent boundary layer
Breidenthal, Robert; Dintilhac, Paul; Williams, Owen
2016-11-01
A model of the compressible turbulent boundary layer is proposed. It is based on the notion that turbulent transport by an eddy requires that information of nonsteady events propagates across the diameter of that eddy during one rotation period. The finite acoustic signaling speed then controls the turbulent fluxes. As a consequence, the fluxes are limited by the largest eddies that satisfies this requirement. Therefore "sonic eddies" with a rotational Mach number of about unity would determine the skin friction, which is predicted to vary inversely with Mach number. This sonic eddy model contrasts with conventional models that are based on the energy equation and variations in the density. The effect of density variations is known to be weak in free shear flows, and the sonic eddy model assumes the same for the boundary layer. In general, Mach number plays two simultaneous roles in compressible flow, one related to signaling and the other related to the energy equation. The predictions of the model are compared with experimental data and DNS results from the literature.
Optimizing EDMF parameterization for stratocumulus-topped boundary layer
Jones, C. R.; Bretherton, C. S.; Witek, M. L.; Suselj, K.
2014-12-01
We present progress in the development of an Eddy Diffusion / Mass Flux (EDMF) turbulence parameterization, with the goal of improving the representation of the cloudy boundary layer in NCEP's Global Forecast System (GFS), as part of a multi-institution Climate Process Team (CPT). Current GFS versions substantially under-predict cloud amount and cloud radiative impact over much of the globe, leading to large biases in the surface and top of atmosphere energy budgets. As part of the effort to correct these biases, the CPT is developing a new EDMF turbulence scheme for GFS, in which local turbulent mixing is represented by an eddy diffusion term while nonlocal shallow convection is represented by a mass flux term. The sum of both contributions provides the total turbulent flux. Our goal is for this scheme to more skillfully simulate cloud radiative properties without negatively impacting other measures of weather forecast skill. One particular challenge faced by an EDMF parameterization is to be able to handle stratocumulus regimes as well as shallow cumulus regimes. In order to isolate the behavior of the proposed EDMF parameterization and aid in its further development, we have implemented the scheme in a portable MATLAB single column model (SCM). We use this SCM framework to optimize the simulation of stratocumulus cloud top entrainment and boundary layer decoupling.
Heat exposure of corals: investigating the "other" diffusive boundary layer
DEFF Research Database (Denmark)
Jimenez, Isabel M.; Kühl, Michael; Larkum, Anthony W. D.
HEAT EXPOSURE OF CORALS: INVESTIGATING THE "OTHER" DIFFUSIVE BOUNDARY LAYER Radiant energy reaching shallow water corals can cause their temperature to increase above that of the surrounding water, an effect which is reduced as flow increases. In order to better understand the thermal exposure...... of corals under bleaching conditions, we used temperature microsensors to investigate the thermal boundary layer (TBL) of a branching and a hemispherical coral species (Stylophora pistillata and Porites lobata). The TBL thickness for both species was 2 mm at quasi stagnant flow (0.3 cm/s), and declined...... exponentially at increasing flow. Dimensionless analysis of heat transfer (Nusselt-Reynolds number plots) resulted in a heat exponent of approx. 0.5, indicative of a laminar boundary layer and consistent with predictions from engineering theory for simple geometrical objects. However, additional measurements...
Physiological variation of segmented OCT retinal layer thicknesses is short-lasting.
Balk, Lisanne; Mayer, Markus; Uitdehaag, Bernard M J; Petzold, Axel
2013-12-01
The application of spectral domain optical coherence tomography as a surrogate for neurodegeneration in a range of neurological disorders demands better understanding of the physiological variation of retinal layer thicknesses, which may mask any value of this emerging outcome measure. A prospective study compared retinal layer thicknesses between control subjects (n = 15) and runners (n = 27) participating in a 10-km charity run. Three scans were performed using an eye-tracking function (EBF) and automated scan registration for optimal precision at (1) baseline, (2) directly after the run, and (3) following a rehydration period. Retinal layer segmentation was performed with suppression of axial retinal vessel signal artifacts. Following the run, there was an increase in the relative retinal nerve fibre layer (p = 0.018), the combined inner plexiform/ganglion cell layer (p = 0.038), and the outer nuclear layer (p = 0.018) in runners compared to controls. The initial increase of thickness in the outer nuclear layer of runners (p < 0.0001) was likely related to (noncompliant) rehydration during exercise. Following a period of rest and rehydration, the difference in thickness change for all retinal layers, except the retinal nerve fibre layer (RNFL) (p < 0.05), disappeared between the two groups. There is a quantifiable change in the axial thickness of retinal layersthat which can be explained by an increase in the cellular volume. This effect may potentially be caused by H2O volume shifts.
Pavement thickness and stabilised foundation layer assessment using ground-coupled GPR
Hu, Jinhui; Vennapusa, Pavana K. R.; White, David J.; Beresnev, Igor
2016-07-01
Experimental results from field and laboratory investigations using a ground-coupled ground penetrating radar (GPR), dielectric measurement, magnetic imaging tomography (MIT) and dynamic cone penetrometer (DCP) tests are presented. Dielectric properties of asphalt pavement and stabilised and unstabilised pavement foundation materials were evaluated in the laboratory in frozen and unfrozen conditions. Laboratory test results showed that dielectric properties of materials back-calculated from GPR in comparison to dielectric gauge measurements are strongly correlated and repeatable. For chemically stabilised materials, curing time affected the dielectric properties of the materials. Field tests were conducted on asphalt pavement test sections with different foundation materials (stabilised and unstabilised layers), drainage conditions and layer thicknesses. GPR and MIT results were used to determine asphalt layer thicknesses and were compared with measured core thicknesses, while GPR and DCP were used to assess foundation layer profiles. Asphalt thicknesses estimated from GPR showed an average error of about 11% using the dielectric gauge values as input. The average error reduced to about 4% when calibrated with cores thicknesses. MIT results showed thicknesses that are about 9% higher than estimated using GPR. Foundation layer thicknesses could not be measured using GPR due to variations in moisture conditions between the test sections, which is partly attributed to variations in gradation and drainage characteristics of the subbase layer.
The scaling transition between Nu number and boundary thickness in RB convection
Zou, Hong-Yue; Chen, Xi; She, Zhen-Su
2016-11-01
A quantitative theory is developed for the vertical mean temperature profile (MTP) and mean velocity profile (MVP) in turbulent Rayleigh-Benard convection(RBC), which explains the experimental and numerical observations of logarithmic law in MTP and the coefficient A varying along the Ra. Based on a new mean-field approach via symmetry analysis to wall-bounded turbulent flows it yields accurate scaling of the sub-layer buffer layer and log-layer over a wide range of Rayleigh number and gives an explanation of their physical mechanism. In particular, based on the scaling of multi-layer thickness for mean temperature and velocity, we first prove that the coefficient A follows a -0.121 scaling, which agrees well with the experimental data, and the scaling transition of Nu from 1/3 to 0.38 is due to the thickness variation of the multi-layer. The new explanation of mean temperature logarithmic law is that the effect of inverse pressure gradient (LSC) driving the plume to side wall, which yields the similarity between vertical temperature transport and vertical momentum.
Atkinson, Callum; Coudert, Sebastien; Foucaut, Jean-Marc; Stanislas, Michel; Soria, Julio
2011-04-01
To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Reθ = 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume "fat" light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV.
Institute of Scientific and Technical Information of China (English)
LI Xiang-tang; ZHANG Xiao-ning; WANG Duan-yi
2008-01-01
To detect overlapped echoes due to the thin pavement layers, we present a thickness measurement approach for the very thin layer of pavement structures. The term "thin" is relative to the incident wavelength or pulse. By means of independent component analysis of noisy signals received by a single radar sensor, the over-lapped echoes can be successfully separated. Once the echoes from the top and bottom side of a thin layer have been separated, the time delay and the layer thickness determination follow immediately. Results of the simula-tion and real data re fy the feasibility of the presented method.
FOREWORD: International Conference on Planetary Boundary Layer and Climate Change
Djolov, G.; Esau, I.
2010-05-01
One of the greatest achievements of climate science has been the establisment of the concept of climate change on a multitude of time scales. The Earth's complex climate system does not allow a straightforward interpretation of dependences between the external parameter perturbation, internal stochastic system dynamics and the long-term system response. The latter is usually referred to as climate change in a narrow sense (IPCC, 2007). The focused international conference "Planetary Boundary Layers and Climate Change" has addressed only time scales and dynamical aspects of climate change with possible links to the turbulent processes in the Planetary Boundary Layer (PBL). Although limited, the conference topic is by no means singular. One should clearly understand that the PBL is the layer where 99% of biosphere and human activity are concentrated. The PBL is the layer where the energy fluxes, which are followed by changes in cryosphere and other known feedbacks, are maximized. At the same time, the PBL processes are of a naturally small scale. What is the averaged long-term effect of the small-scale processes on the long-term climate dynamics? Can this effect be recognized in existing long-term paleo-climate data records? Can it be modeled? What is the current status of our theoretical understanding of this effect? What is the sensitivity of the climate model projections to the representation of small-scale processes? Are there significant indirect effects, e.g. through transport of chemical components, of the PBL processes on climate? These and other linked questions have been addressed during the conference. The Earth's climate has changed many times during the planet's history, with events ranging from ice ages to long periods of warmth. Historically, natural factors such as the amount of energy released from the Sun, volcanic eruptions and changes in the Earth's orbit have affected the Earth's climate. Beginning late in the 18th century, human activities
Chen, Jung-San; Chang, I.-Ling; Huang, Wan-Ting; Chen, Lien-Wen; Huang, Guan-Hua
2016-09-01
This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.
Heat transfer and fluid mechanics measurements in transitional boundary layer flows
Wang, T.; Simon, T. W.; Buddhavarapu, J.
1985-01-01
Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68 percent and 2.0 percent free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.
Cooper, B. P., Jr.
1979-01-01
A model for the boundary layer at the exit plane of a rocket nozzle was developed which, unlike most previous models, includes the subsonic sublayer. The equations for the flow near the nozzle exit plane are presented and the method by which the subsonic sublayer transitions to supersonic flow in the plume is described. The resulting model describes the entire boundary layer and can be used to provide a startline for method-of-characteristics calculations of plume flowfields. The model was incorporated into a method of characteristics computer program and comparisons of computed results to experimental data show good agreement. The data used in the comparisons were obtained in tests in which mass fluxes from a 22.2-N (5 lbf) thrust engine were measured at angles off the nozzle centerline of up to 150 deg. Additional comparisons were made with data obtained during tests of a 0.89-N (0.2 lbr) monopropellant thruster and from the OH-64 space shuttle heating tests. The agreement with the data indicates that the model can be used for calculating plume backflow properties.
Institute of Scientific and Technical Information of China (English)
Yan Huang; Hong Qiu; Liqing Pan; Yue Tian; Fengping Wang; Ping Wu
2004-01-01
110 nm-thick Au layers were sputter-deposited on unheated glasses coated about a 10 nm-thick and a 50 nm-thick Cr layer respectively. The Au/Cr bilayer films were annealed in a vacuum of 1 mPa at 300℃ for 2, 5 and 30 min, respectively. Auger electron spectroscopy, X-ray diffraction and Field emission scanning electron microscopy were used to analyze the composition and structure of the Au layers. The resistivity of the bilayer films was measured by using four-point probe technique. The adhesion of the bilayer films to the substrate was tested using tape tests. The amount of Cr atoms diffusing into the Au layer increases with increasing the annealing time, resulting in a decrease in lattice constant and an increase in resistivity of the Au layer. The content of Cr inside the Au layer grown on the thinner Cr layer is less than that grown on the thicker Cr layer. For the Au/Cr bilayer films, the lower resistivity and the good adhesion to the glass substrate can be obtained at a shorter annealing time for a thinner Cr layer.
A Lagrangian Study of Southeast Pacific Boundary Layer Clouds
Painter, Gallia
concentration which extend far offshore into regions of normally very clean cloud. We use Lagrangian trajectories to investigate the source of the high droplet concentrations of the mesoscale "hooks", and evaluate whether boundary layer transport of coastal pollutants alone can account for their extent. We find that boundary layer trajectories past 85 W do not pass sufficiently close to the coastline to explain high aerosol concentrations offshore.
Energy Technology Data Exchange (ETDEWEB)
GHARAKHANI,ADRIN; WOLFE,WALTER P.
1999-10-01
The prediction of potential flow about zero thickness membranes by the boundary element method constitutes an integral component of the Lagrangian vortex-boundary element simulation of flow about parachutes. To this end, the vortex loop (or the panel) method has been used, for some time now, in the aerospace industry with relative success [1, 2]. Vortex loops (with constant circulation) are equivalent to boundary elements with piecewise constant variation of the potential jump. In this case, extending the analysis in [3], the near field potential velocity evaluations can be shown to be {Omicron}(1). The accurate evaluation of the potential velocity field very near the parachute surface is particularly critical to the overall accuracy and stability of the vortex-boundary element simulations. As we will demonstrate in Section 3, the boundary integral singularities, which arise due to the application of low order boundary elements, may lead to severely spiked potential velocities at vortex element centers that are near the boundary. The spikes in turn cause the erratic motion of the vortex elements, and the eventual loss of smoothness of the vorticity field and possible numerical blow up. In light of the arguments above, the application of boundary elements with (at least) a linear variation of the potential jump--or, equivalently, piecewise constant vortex sheets--would appear to be more appropriate for vortex-boundary element simulations. For this case, two strategies are possible for obtaining the potential flow field. The first option is to solve the integral equations for the (unknown) strengths of the surface vortex sheets. As we will discuss in Section 2.1, the challenge in this case is to devise a consistent system of equations that imposes the solenoidality of the locally 2-D vortex sheets. The second approach is to solve for the unknown potential jump distribution. In this case, for commonly used C{sup o} shape functions, the boundary integral is singular at
Extraction of the cerebral cortical boundaries from MRI for measurement of cortical thickness
Eskildsen, Simon F.; Uldahl, Mark; Ostergaard, Lasse R.
2005-04-01
Several neurodegenerative diseases, such as Alzheimer's disease, cause atrophy of the cerebral cortex. Measurements of cerebral cortical thickness and volume are used in the quantification and localization of atrophy. It is possible to measure the thickness of the cerebral cortex manually from magnetic resonance imaging, but partial volume effects, orthogonality problems, large amounts of manual labor and operator bias makes it difficult to conduct measurements on large patient populations. Automatic quantification and localization of atrophy is a highly desirable goal, as it facilitates the study of early anatomical changes and track disease progression on large populations. The first step in achieving this goal is to develop robust and accurate methods for measuring cortical thickness and volume automatically. We have developed a new method, capable of both extracting surface representations of the cortical boundaries from magnetic resonance imaging and measuring the cortical thickness. Experiments show that the developed method is robust and performs well on datasets of both healthy subjects and subjects suffering from Alzheimer's disease.
Bogumilowicz, Y.; Hartmann, J. M.; Rochat, N.; Salaun, A.; Martin, M.; Bassani, F.; Baron, T.; David, S.; Bao, X.-Y.; Sanchez, E.
2016-11-01
We have grown GaAs epitaxial layers on Ge buffers, themselves on Si (001) substrates, using an Applied Materials 300 mm metal organic chemical vapor deposition tool. We varied the Ge buffer thickness between 0.36 and 1.38 μm and studied the properties of a 0.27 μm thick GaAs layer on top. We found that increasing the Ge buffer thickness yielded smoother GaAs films with an rms surface roughness as low as 0.5 nm obtained on a 5×5 μm2 area. The bow of the substrate increased following a linear law with the epitaxial stack thickness up to 240 μm for a 1.65 μm stack. We have also characterized the threading dislocations present in the GaAs layers using X-ray diffraction and cathodoluminescence. Increasing the Ge buffer thickness resulted in lower threading dislocation densities, enabling us to obtain anti-phase boundary - free GaAs films with a threading dislocation density as low as 3×107 cm-2. In addition, atomic force microscopy surface topology measurements showed the presence of pits in the GaAs layers whose density agreed well with other threading dislocation density assessments. It thus seems that threading dislocations can in certain cases induce some growth rate variations, making them visible in as-grown GaAs films. Using thicker Ge buffers results in smoother films with less threading dislocations, with the side effect of increasing the bow on the wafer. If bow is not an issue, this is a practical approach to improve the GaAs (on Ge buffer) on silicon quality.
The Effect of Air Pollution on Ozone Layer Thickness in Troposphere over the State of Kuwait
Directory of Open Access Journals (Sweden)
H. O. Al Jeran
2009-01-01
Full Text Available Troposphere ozone layer acts as a shield against all ultraviolet radiation approaching the planet Earth through absorption. It was noticed in mid 80s that ozone layer has thinned on the poles of the planet due to release of man-made substances commonly known as Ozone Depleting Substances, (ODS into its atmosphere. The consequences of this change are adverse as the harmful radiations reach to the surface of the earth, strongly influencing the crops yield and vegetation. These radiations are major cause of skin cancer that has long exposure to Ultra Violet (UV radiation. United States environmental protection agency and European community have imposed strict regulations to curb the emission of ODS and phase out schedules for the manufacture and use of ODS that was specified by Montreal protocol in 1987. Problem statement: This research deled with data analysis of ozone layer thickness obtained from Abu-Dhabi station and detailed measurement of air pollution levels in Kuwait. Approach: The ozone layer thickness in stratosphere had been correlated with the measured pollution levels in the State of Kuwait. The influence of import of ozone depletion substances for the last decade had been evaluated. Other factor that strongly affects the ozone layer thickness in stratosphere is local pollution levels of primary pollutants such as total hydrocarbon compounds and nitrogen oxides. Results: The dependency of ozone layer thickness on ambient pollutant levels presented in detail reflecting negative relation of both non-methane hydrocarbon and nitrogen oxide concentrations in ambient air. Conclusion: Ozone layer thickness in stratosphere had been measured for five years (1999-2004 reflecting minimum thickness in the month of December and maximum in the month of June. The ozone thickness related to the ground level concentration of non-methane hydrocarbon and can be used as an indicator of the health of ozone layer thickness in the stratosphere.
Full-Scale Spectrum of Boundary-Layer Winds
Larsén, Xiaoli G.; Larsen, Søren E.; Petersen, Erik L.
2016-05-01
Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr^{-1} to 10 Hz. 10-min cup anemometer data are used to estimate the spectrum from about 1 yr^{-1} to 0.05 min^{-1}; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day^{-1} to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various spectral ranges, including the spectral gap, are revisited. Following the seasonal peak at 1 yr^{-1}, the frequency spectrum fS( f) increases with f^{+1} and gradually reaches a peak at about 0.2 day^{-1}. From this peak to about 1 hr^{-1}, the spectrum fS( f) decreases with frequency with a -2 slope, followed by a -2/3 slope, which can be described by fS(f)=a_1f^{-2/3}+a_2f^{-2}, ending in the frequency range for which the debate on the spectral gap is ongoing. It is shown here that the spectral gap exists and can be modelled. The linear composition of the horizontal wind variation from the mesoscale and microscale gives the observed spectrum in the gap range, leading to a suggestion that mesoscale and microscale processes are uncorrelated. Depending on the relative strength of the two processes, the gap may be deep or shallow, visible or invisible. Generally, the depth of the gap decreases with height. In the low frequency region of the gap, the mesoscale spectrum shows a two-dimensional isotropic nature; in the high frequency region, the classical three-dimensional boundary-layer turbulence is evident. We also provide the cospectrum of the horizontal and vertical components, and the power spectra of the three velocity components over a wide range from 1 day^{-1} to 10 Hz, which is useful in determining the necessary sample duration when measuring turbulence
The Final Stage of Gravitationally Collapsed Thick Matter Layers
Directory of Open Access Journals (Sweden)
Piero Nicolini
2013-01-01
Full Text Available In the presence of a minimal length, physical objects cannot collapse to an infinite density, singular, matter point. In this paper, we consider the possible final stage of the gravitational collapse of “thick” matter layers. The energy momentum tensor we choose to model these shell-like objects is a proper modification of the source for “noncommutative geometry inspired,” regular black holes. By using higher momenta of Gaussian distribution to localize matter at finite distance from the origin, we obtain new solutions of the Einstein equation which smoothly interpolates between Minkowski’s geometry near the center of the shell and Schwarzschild’s spacetime far away from the matter layer. The metric is curvature singularity free. Black hole type solutions exist only for “heavy” shells; that is, M ≥Me, where Me is the mass of the extremal configuration. We determine the Hawking temperature and a modified area law taking into account the extended nature of the source.
Langevin equation model of dispersion in the convective boundary layer
Energy Technology Data Exchange (ETDEWEB)
Nasstrom, J S
1998-08-01
This dissertation presents the development and evaluation of a Lagrangian stochastic model of vertical dispersion of trace material in the convective boundary layer (CBL). This model is based on a Langevin equation of motion for a fluid particle, and assumes the fluid vertical velocity probability distribution is skewed and spatially homogeneous. This approach can account for the effect of large-scale, long-lived turbulent structures and skewed vertical velocity distributions found in the CBL. The form of the Langevin equation used has a linear (in velocity) deterministic acceleration and a skewed randomacceleration. For the case of homogeneous fluid velocity statistics, this ""linear-skewed" Langevin equation can be integrated explicitly, resulting in a relatively efficient numerical simulation method. It is shown that this approach is more efficient than an alternative using a "nonlinear-Gaussian" Langevin equation (with a nonlinear deterministic acceleration and a Gaussian random acceleration) assuming homogeneous turbulence, and much more efficient than alternative approaches using Langevin equation models assuming inhomogeneous turbulence. "Reflection" boundary conditions for selecting a new velocity for a particle that encounters a boundary at the top or bottom of the CBL were investigated. These include one method using the standard assumption that the magnitudes of the particle incident and reflected velocities are positively correlated, and two alternatives in which the magnitudes of these velocities are negatively correlated and uncorrelated. The constraint that spatial and velocity distributions of a well-mixed tracer must be the same as those of the fluid, was used to develop the Langevin equation models and the reflection boundary conditions. The two Langevin equation models and three reflection methods were successfully tested using cases for which exact, analytic statistical properties of particle velocity and position are known, including well
Heat Flux in the Strong-Wind Nocturnal Boundary Layer
Mahrt, L.
2016-11-01
Sonic anemometer measurements are analyzed from two primary field programs and 12 supplementary sites to examine the behaviour of the turbulent heat flux near the surface with high wind speeds in the nocturnal boundary layer. On average, large downward heat flux is found for high wind speeds for most of the sites where some stratification is maintained in spite of relatively intense vertical mixing. The stratification for high wind speeds is found to be dependent on wind direction, suggesting the importance of warm-air advection, even for locally homogenous sites. Warm-air advection is also inferred from a large imbalance of the heat budget of the air for strong winds. Shortcomings of our study are noted.
On Hydromagnetic Stresses in Accretion Disk Boundary Layers
DEFF Research Database (Denmark)
Pessah, Martin Elias; Chan, Chi-kwan
2012-01-01
Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear...... viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where...... with angular frequencies that increase outward in the shearing-sheet framework. We isolate the modes that are unrelated to the standard MRI and provide analytic solutions for the long-term evolution of the resulting shearing MHD waves. We show that, although the energy density of these waves can be amplified...
The turning of the wind in the atmospheric boundary layer
DEFF Research Database (Denmark)
Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph
2014-01-01
at the Høvsøre site in Denmark, which is a flat farmland area with a nearly homogeneous easterly upstream sector. Therefore, within that sector, the turning of the wind is caused by a combination of atmospheric stability, Coriolis, roughness, horizontal pressure gradient and baroclinity effects. Atmospheric......Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... stability was measured using sonic anemometers placed at different heights on the mast. Horizontal pressure gradients and baroclinity are derived from outputs of a numerical weather prediction model and are used to estimate the geostrophic wind. It is found, for these specific and relatively short periods...
THE UNSTABLE MODES OF NATURAL CONVECTION BOUNDARY LAYER
Institute of Scientific and Technical Information of China (English)
Tao Jianjun; Zhuang Fenggan; Yan Dachun
2000-01-01
The instability of natural convection boundary layer around a vertical heated flat plate is analyzed theoretically in this paper. The results illustrate that the “loop” in the neutral curve is not a real loop but a twist of the curve is the frequencywave number-Grashof number space, and there is only one unstable mode at small Prandtl numbers. Specially, when the Prandtl number is large enough two unstable modes will be found in the “loop” region. Along the amplifying surface intersection the two unstable modes have the same Grashof number, wave number and frequency but different amplifying rates. Their instability characteristics are analyzed and the criterion for determining the existence of the multi-unstable modes is also discussed.
Aerodynamic Heating in Hypersonic Boundary Layers:\\ Role of Dilatational Waves
Zhu, Yiding; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed
2016-01-01
The evolution of multi-mode instabilities in a hypersonic boundary layer and their effects on aerodynamic heating are investigated. Experiments are conducted in a Mach 6 wind tunnel using Rayleigh-scattering flow visualization, fast-response pressure sensors, fluorescent temperature-sensitive paint (TSP), and particle image velocimetry (PIV). Calculations are also performed based on both parabolized stability equations (PSE) and direct numerical simulations (DNS). It is found that second-mode dilatational waves, accompanied by high-frequency alternating fluid compression and expansion, produce intense aerodynamic heating in a small region that rapidly heats the fluid passing through it. As a result, the surface temperature rapidly increases and results in an overshoot over the nominal transitional value. When the dilatation waves decay downstream, the surface temperature decreases gradually until transition is completed. A theoretical analysis is provided to interpret the temperature distribution affected by ...
Logarithmic boundary layers in highly turbulent Taylor-Couette flow
Huisman, Sander G; Cierpka, Christian; Kahler, Christian J; Lohse, Detlef; Sun, Chao
2013-01-01
We provide direct measurements of the boundary layer properties in highly turbulent Taylor-Couette flow up to $\\text{Ta}=6.2 \\times 10^{12}$ using high-resolution particle image velocimetry (PIV). We find that the mean azimuthal velocity profile at the inner and outer cylinder can be fitted by the von K\\'arm\\'an log law $u^+ = \\frac 1\\kappa \\ln y^+ +B$. The von K\\'arm\\'an constant $\\kappa$ is found to depend on the driving strength $\\text{Ta}$ and for large $\\text{Ta}$ asymptotically approaches $\\kappa \\approx 0.40$. The variance profiles of the local azimuthal velocity have a universal peak around $y^+ \\approx 12$ and collapse when rescaled with the driving velocity (and not with the friction velocity), displaying a log-dependence of $y^+$ as also found for channel and pipe flows [1,2].
Compressible Turbulent Boundary Layers on a Strongly Heated Wall
Institute of Scientific and Technical Information of China (English)
无
1993-01-01
This paper concerns the theoretical and experimental modelling of the flat wall,highly heated,compressible turbulent boundary layer.Its final objective is to develop a numerical Navier-Stokes solver and to conclude on its capability to correctly represent complex aerothermic viscous flows near the wall.The paper presents a constructed numerical method with particular attention given to the turbulence modelling at low Reynolds number and comparisons with supersonic and transonic experimental data.For the transonic experiment,very high wall temperature(Tw=1100K)is realized.The method of this difficult experimental set up is discussed.The comparison between experimental and computational data conducts to the first conclusion and gives some indications for the future work.
Coherent vorticity extraction in turbulent boundary layers using orthogonal wavelets
Energy Technology Data Exchange (ETDEWEB)
Khujadze, George; Oberlack, Martin [Chair of Fluid Dynamics, Technische Universitaet Darmstadt (Germany); Yen, Romain Nguyen van [Institut fuer Mathematik, Freie Universitaet Berlin (Germany); Schneider, Kai [M2P2-CNRS and CMI, Universite de Provence, Marseille (France); Farge, Marie, E-mail: khujadze@fdy.tu-darmstadt.de [LMD-IPSL-CNRS, Ecole Normale Superieure, Paris (France)
2011-12-22
Turbulent boundary layer data computed by direct numerical simulation are analyzed using orthogonal anisotropic wavelets. The flow fields, originally given on a Chebychev grid, are first interpolated on a locally refined dyadic grid. Then, they are decomposed using a wavelet basis, which accounts for the anisotropy of the flow by using different scales in the wall-normal direction and in the planes parallel to the wall. Thus the vorticity field is decomposed into coherent and incoherent contributions using thresholding of the wavelet coefficients. It is shown that less than 1% of the coefficients retain the coherent structures of the flow, while the majority of the coefficients corresponds to a structureless, i.e., noise-like background flow. Scale-and direction-dependent statistics in wavelet space quantify the flow properties at different wall distances.
Footprints of funnel vortices in a turbulent boundary layer
Gurka, Roi; Liberzon, Alex; Hetsroni, Gad
2003-11-01
The topology of large scale funnel structures in a turbulent boundary layer in a flume is investigated experimentally. The large scale structure is reconstructed from the proper orthogonal decomposition (POD) eigenmodes, calculated from the two-dimensional projections of the fluctuated vorticity field realizations. The instantaneous two-dimensional velocity field realizations are obtained using Particle Image Velocimetry (PIV) technique. The dominant funnel structure appears to have a longitudinal streamwise orientation, an inclination angle of 8 degrees, streamwise length of 1000 wall units, and a distance between the neighboring structures of about 100 wall units in the spanwise direction. The spatial characteristics of the funnel structure, measured in the streamwise - wall normal plane of the flume, has been found to be independent of the Reynolds number. The identification technique is based on all the data set and provide a statistical descrition of the structure footprint.
Laminar boundary-layer flow of non-Newtonian fluid
Lin, F. N.; Chern, S. Y.
1979-01-01
A solution for the two-dimensional and axisymmetric laminar boundary-layer momentum equation of power-law non-Newtonian fluid is presented. The analysis makes use of the Merk-Chao series solution method originally devised for the flow of Newtonian fluid. The universal functions for the leading term in the series are tabulated for n from 0.2 to 2. Equations governing the universal functions associated with the second and the third terms are provided. The solution together with either Lighthill's formula or Chao's formula constitutes a simple yet general procedure for the calculation of wall shear and surface heat transfer rate. The theory was applied to flows over a circular cylinder and a sphere and the results compared with published data.
Dynamics of boundary layer electrons around a laser wakefield bubble
Luo, J.; Chen, M.; Zhang, G.-B.; Yuan, T.; Yu, J.-Y.; Shen, Z.-C.; Yu, L.-L.; Weng, S.-M.; Schroeder, C. B.; Esarey, E.
2016-10-01
The dynamics of electrons forming the boundary layer of a highly nonlinear laser wakefield driven in the so called bubble or blowout regime is investigated using particle-in-cell simulations. It is shown that when the driver pulse intensity increases or the focal spot size decreases, a significant amount of electrons initially pushed by the laser pulse can detach from the bubble structure at its tail, middle, or front and form particular classes of waves locally with high densities, referred to as the tail wave, lateral wave, and bow wave. The tail wave and bow wave correspond to real electron trajectories, while the lateral wave does not. The detached electrons can be ejected transversely, containing considerable energy, and reducing the efficiency of the laser wakefield accelerator. Some of the transversely emitted electrons may obtain MeV level energy. These electrons can be used for wake evolution diagnosis and producing high frequency radiation.
Concentration Boundary Layer Model of Mortar Corrosion by Sulfuric Acid
Institute of Scientific and Technical Information of China (English)
SONG Zhigang; ZHANG Xuesong; MIN Hongguang
2011-01-01
A long time immersion experiment of mortar specimens is carried out to investigate their degradation mechanism by sulfuric acid. Water-cement ratios of mortar are ranging from 0.5 to 0.7 and the pH value of sulfuric acid is 3.5 and 4.0 respectively. The pH meter is used to monitor the soak solution and the titration sulfuric acid with given concentration is added to maintain original pH value, through which the acid consumption of mortar is recorded. A theoretical reaction rate model is also proposed based on concentration boundary layer model. The results show that theoretical model fits the experimental results well and the corrosion mechanism can be modeled by a diffusion process accompanied with an irreversible chemical reaction when pH value of soak solution is no less than 3.5.
A Qualitative Description of Boundary Layer Wind Speed Records
Kavasseri, R G; Nagarajan, Radhakrishnan
2006-01-01
The complexity of the atmosphere endows it with the property of turbulence by virtue of which, wind speed variations in the atmospheric boundary layer (ABL) exhibit highly irregular fluctuations that persist over a wide range of temporal and spatial scales. Despite the large and significant body of work on microscale turbulence, understanding the statistics of atmospheric wind speed variations has proved to be elusive and challenging. Knowledge about the nature of wind speed at ABL has far reaching impact on several fields of research such as meteorology, hydrology, agriculture, pollutant dispersion, and more importantly wind energy generation. In the present study, temporal wind speed records from twenty eight stations distributed through out the state of North Dakota (ND, USA), ($\\sim$ 70,000 square-miles) and spanning a period of nearly eight years are analyzed. We show that these records exhibit a characteristic broad multifractal spectrum irrespective of the geographical location and topography. The rapi...
ON NONLINEAR STABILITY IN NONPARALLEL BOUNDARY LAYER FLOW
Institute of Scientific and Technical Information of China (English)
TANG Deng-bin; WANG Wei-zhi
2004-01-01
The nonlinear stability problem in nonparallel boundary layer flow for two-dimensional disturbances was studied by using a newly presented method called Parabolic Stability Equations (PSE). A series of new modes generated by the nonlinear interaction of disturbance waves were tabulately analyzed, and the Mean Flow Distortion (MFD) was numerically given. The computational techniques developed, including the higher-order spectral method and the more effective algebraic mapping, increased greatly the numerical accuracy and the rate of convergence. With the predictor-corrector approach in the marching procedure, the normalization condition was satisfied, and the stability of numerical calculation could be ensured. With different initial amplitudes, the nonlinear stability of disturbance wave was studied. The results of examples show good agreement with the data given by the DNS using the full Navier-Stokes equations.
Radiative transfer in a polluted urban planetary boundary layer
Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.
1977-01-01
Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.
Hypersonic Boundary-Layer Trip Development for Hyper-X
Berry, Scott A.; Auslender, Aaron H.; Dilley, Authur D.; Calleja, John F.
2000-01-01
Boundary layer trip devices for the Hper-X forebody have been experimentally examined in several wind tunnels. Five different trip configurations were compared in three hypersonic facilities, the LaRC 20-Inch Mach 6 Air Tunnel, the LaRC 31 -Inch Mach 10 Air Tunnel, and in the HYPULSE Reflected Shock Tunnel at GASL. Heat transfer distributions, utilizing the phosphor thermography and thin-film techniques, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 15.4 million: and inlet cowl door simulated in both open and closed positions. Comparisons of transition due to discrete roughness elements have led to the selection of a trip configuration for the Hyper-X Mach 7 flight vehicle.
DEFF Research Database (Denmark)
Xu, Zhang-Cheng; Zhang, Ya-Ting; Hvam, Jørn Märcher
2009-01-01
The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage at 110K is observed, which...
The vertical structure of the atmospheric boundary layer over the central Arctic Ocean
Institute of Scientific and Technical Information of China (English)
BIAN Lingen; MA Yongfeng; LU Changgui; LIN Xiang
2013-01-01
The tropopause height and the atmospheric boundary layer (PBL) height as well as the variation of inversion layer above the floating ice surface are presented using GPS (global position system ) radiosonde sounding data and relevant data obtained by China’s fourth arctic scientific expedition team over the central Arctic Ocean (86◦-88◦N, 144◦-170◦W ) during the summer of 2010. The tropopause height is from 9.8 to 10.5 km, with a temperature range between-52.2 and-54.1◦C in the central Arctic Ocean. Two zones of maximum wind (over 12 m/s) are found in the wind profile, namely, low-and upper-level jets, located in the middle troposphere and the tropopause, respectively. The wind direction has a marked variation point in the two jets from the southeast to the southwest. The average PBL height determined by two methods is 341 and 453 m respectively. These two methods can both be used when the inversion layer is very low, but the results vary significantly when the inversion layer is very high. A significant logarithmic relationship exists between the PBL height and the inversion intensity, with a correlation coefficient of 0.66, indicating that the more intense the temperature inversion is, the lower the boundary layer will be. The observation results obviously differ from those of the third arctic expedition zone (80◦-85◦N). The PBL height and the inversion layer thickness are much lower than those at 87◦-88◦N, but the inversion temperature is more intense, meaning a strong ice-atmosphere interaction in the sea near the North Pole. The PBL structure is related to the weather system and the sea ice concentration, which affects the observation station.
Directory of Open Access Journals (Sweden)
Danoyan Z.N.
2009-09-01
Full Text Available In the article the existence and behaviour of electroelastic Love waves in three-layered system of a piezoelectric substrate of classes 6, 4, 6mm, 4mm and attached to her two isotropic layers (conductor-dielectric, conductor-conductor of any thickness is investigated, depending on the physicomechanical characteristics of layered system and relative thicknesses of layers. The characteristic equation of a required surface wave is investigated in case of a basic soft layer. The research is based on properties of the electromechanical factor of surface wave given in the work [1-5]. Existence of a Love wave of a gap type caused by extremely piezoelectric effect in particular is shown. The structure and behavior of modes of Love waves are investigated. The qualitative diagrams of “dispersive” curves of modes of Love waves are given . The relation between electroelastic Love waves, pure-elastic Love waves, and Bleustein-Gulyaev waves is discussed.
Rapid cycling of reactive nitrogen in the marine boundary layer
Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L.; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S.; Apel, Eric C.; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N.; Ortega, John; Knote, Christoph
2016-04-01
Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A ‘renoxification’ process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth’s surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.
Shock Wave-Boundary Layer Interaction in Forced Shock Oscillations
Institute of Scientific and Technical Information of China (English)
Piotr Doerffer; Oskar Szulc; Franco Magagnato
2003-01-01
The flow in transonic diffusers as well as in supersonic air intakes becomes often unsteady due to shock wave boundary layer interaction. The oscillations may be induced by natural separation unsteadiness or may be forced by boundary conditions. Significant improvement of CFD tools, increase of computer resources as well as development of experimental methods have again.drawn the attention of researchers to this topic.To investigate the problem forced oscillations of transonic turbulent flow in asymmetric two-dimensional Laval nozzle were considered. A viscous, perfect gas flow, was numerically simulated using the Reynolds-averaged compressible Navier-Stokes solver SPARC, employing a two-equation, eddy viscosity, turbulence closure in the URANS approach.For time-dependent and stationary flow simulations, Mach numbers upstream of the shock between 1.2 and 1.4 were considered. Comparison of computed and experimental data for steady states generally gave acceptable agreement. In the case of forced oscillations, a harmonic pressure variation was prescribed at the exit plane resulting in shock wave motion. Excitation frequencies between 0 Hz and 1024 Hz were investigated at the same pressure amplitude.The main result of the work carried out is the relation between the amplitude of the shock wave motion and the excitation frequency in the investigated range. Increasing excitation frequency resulted in decreasing amplitude of the shock movement. At high frequencies a natural mode of shock oscillation (of small amplitude) was observed which is not sensitive to forced excitement.
Turbulence transition in the asymptotic suction boundary layer
Kreilos, Tobias; Schneider, Tobias M; Veble, Gregor; Duguet, Yohann; Schlatter, Philipp; Henningson, Dan S; Eckhardt, Bruno
2015-01-01
We study the transition to turbulence in the asymptotic suction boundary layer (ASBL) by direct numerical simulation. Tracking the motion of trajectories intermediate between laminar and turbulent states we can identify the invariant object inside the laminar-turbulent boundary, the edge state. In small domains, the flow behaves like a travelling wave over short time intervals. On longer times one notes that the energy shows strong bursts at regular time intervals. During the bursts the streak structure is lost, but it reforms, translated in the spanwise direction by half the domain size. Varying the suction velocity allows to embed the flow into a family of flows that interpolate between plane Couette flow and the ASBL. Near the plane Couette limit, the edge state is a travelling wave. Increasing the suction, the travelling wave and a symmetry-related copy of it undergo a saddle-node infinite-period (SNIPER) bifurcation that leads to bursting and discrete-symmetry shifts. In wider domains, the structures loc...
The Stokes boundary layer for a thixotropic or antithixotropic fluid
McArdle, Catriona R.
2012-10-01
We present a mathematical investigation of the oscillatory boundary layer in a semi-infinite fluid bounded by an oscillating wall (the so-called \\'Stokes problem\\'), when the fluid has a thixotropic or antithixotropic rheology. We obtain asymptotic solutions in the limit of small-amplitude oscillations, and we use numerical integration to validate the asymptotic solutions and to explore the behaviour of the system for larger-amplitude oscillations. The solutions that we obtain differ significantly from the classical solution for a Newtonian fluid. In particular, for antithixotropic fluids the velocity reaches zero at a finite distance from the wall, in contrast to the exponential decay for a thixotropic or a Newtonian fluid.For small amplitudes of oscillation, three regimes of behaviour are possible: the structure parameter may take values defined instantaneously by the shear rate, or by a long-term average; or it may behave hysteretically. The regime boundaries depend on the precise specification of structure build-up and breakdown rates in the rheological model, illustrating the subtleties of complex fluid models in non-rheometric settings. For larger amplitudes of oscillation the dominant behaviour is hysteretic. We discuss in particular the relationship between the shear stress and the shear rate at the oscillating wall. © 2012 Elsevier B.V.
Evolution of vortex-surface fields in transitional boundary layers
Yang, Yue; Zhao, Yaomin; Xiong, Shiying
2016-11-01
We apply the vortex-surface field (VSF), a Lagrangian-based structure-identification method, to the DNS database of transitional boundary layers. The VSFs are constructed from the vorticity fields within a sliding window at different times and locations using a recently developed boundary-constraint method. The isosurfaces of VSF, representing vortex surfaces consisting of vortex lines with different wall distances in the laminar stage, show different evolutionary geometries in transition. We observe that the vortex surfaces with significant deformation evolve from wall-parallel planar sheets through hairpin-like structures and packets into a turbulent spot with regeneration of small-scale hairpins. From quantitative analysis, we show that a small number of representative or influential vortex surfaces can contribute significantly to the increase of the drag coefficient in transition, which implies a reduced-order model based on VSF. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11472015, 11522215 and 11521091), and the Thousand Young Talents Program of China.
Sircar, A.; Paul, C.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.
2016-11-01
The lack of accurate submodels for in-cylinder radiation and heat transfer has been identified as a key shortcoming in developing truly predictive CFD models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Recent measurements of wall layers in engines show discrepancies of up to 100% with respect to standard CFD boundary-layer models. And recent analysis of in-cylinder radiation based on recent spectral property databases and high-fidelity radiative transfer equation (RTE) solvers has shown that at operating conditions typical of heavy-duty CI engines, radiative emission can be as high as 40% of the wall heat losses, that molecular gas radiation can be more important than soot radiation, and that a significant fraction of the emitted radiation can be reabsorbed before reaching the walls. That is, radiation changes the in-cylinder temperature distribution, which in turn affects combustion and emissions. The goal of this research is to develop models that explicitly account for the potentially strong coupling between radiative and turbulent boundary layer heat transfer. For example, for optically thick conditions, a simple diffusion model might be formulated in terms of an absorption-coefficient-dependent turbulent Prandtl number. NSF, DOE.
Institute of Scientific and Technical Information of China (English)
ZHONG Yan-hui; WANG Fu-ming; ZHANG Bei; CAI Ying-chun
2004-01-01
Based on system identification theory and FWD testing data, the effect of thickness error on backcalculating pavement layer moduli is studied and the method of singular value decomposition (SVD) is presented to solve the morbidity problem of sensitivity matrix in this paper.The results show that the thickness error has great effects on the backcalculated pavement layer moduli. The error of backcalculated moduli can be controlled within the range of ±15% by limiting the thickness error within the range of ±5%.
Experimental study of wind turbine wakes in a convective boundary layer
Zhang, W.; Markfort, C. D.; Porte-Agel, F.
2010-12-01
Understanding the interaction of atmospheric boundary layer (ABL) flows with wind turbines is important for optimizing the design of wind farms (maximizing energy output and mitigating fatigue loads) and improving the parameterization of wind farms in weather and climate models. Field observations have suggested that atmospheric stability affects ABL flow and its interaction with wind turbines, which in turn affects wind farm performance. However, the fluid mechanics involved has not been fully understood, highlighting the need of acquiring high quality data in clearly defined conditions. Well-controlled wind tunnel experiments of the wake of wind turbines immersed in thermally stratified or convective boundary layers are very limited. In this study, we investigate the wake structure of a miniature three-blade wind turbine model placed in a convective boundary layer (CBL) in the Saint Anthony Falls Laboratory wind tunnel. The objectives of this study are: 1) to understand how the CBL flow affects the wake behind a wind turbine in terms of tip vortices distribution, mean velocity deficit, turbulence intensities, Reynolds shear stress and heat flux modification; 2) to provide reliable data sets for validating and developing new parameterizations of turbulent fluxes and turbine-induced forces in numerical models, such as large-eddy simulation (LES). The CBL was generated by cooling the free stream air flow to 13 οC and heating up the test section floor to 80 οC. The free stream speed was set at 2.5 m/s, resulting in the Obukhov stability of δ/L=-3.15 and the bulk Richardson number about -0.16. The wake of a wind turbine model, whose height is about 1/3 the boundary layer thickness, was systematically studied using Stereo Particle Image Velocimetry (SPIV) and a hot-wire/cold-wire anemometer. Results revealed the top tip vortices (in Fig.1), noticeably degraded velocity deficit and significantly enhanced turbulence. Turbulent momentum and heat fluxes were also
Wake structures of two side by side spheres in a tripped boundary layer flow
Canli, Eyüb; Özgören, Muammer; Dogan, Sercan; Hilmi Aksoy, Muharrem; Akilli, Huseyin
2014-03-01
Two independent spheres were placed in a side by side arrangement and flow structure in the wake region of the spheres was investigated with a Particle Image Velocimetry (PIV) system when the spheres were in a boundary layer over a flat plate as a special case. Reynolds number was 5000 based on the sphere diameter which was 42.5 mm. Boundary layer was tripped 8mm away from the leading edge of the flat plate with a 5 mm trip wire. The thickness of the hydrodynamically developed boundary layer was determined as 63mm which was larger than the sphere diameter of D=42.5mm. Wake region of the spheres was examined from point of flow physics for the different sphere locations in the ranges of 0≤G/D ≤1.5 and 0≤S/D ≤1.5 where G and S were the distance between the spheres and the distance between the bottom point of the spheres and the flat plate surface, respectively. Depending on the different sphere locations, instantaneous and time averaged vorticity data, scalar values of time-averaged velocity components and their root mean square (rms) values and time averaged vorticity data are presented in the study for the evaluation of wake region of the spheres. It is demonstrated that the gap between the two spheres and the interaction between the gap and the boundary layer greatly affects flow pattern, especially when spheres are located near to the flat plate surface, i.e. S/D=0.1 for 0≤G/D ≤1.5. Different distances between the spheres resulted in various flow patterns as the spheres were approached to the flat plate. The distance S/D=0.1 for all gap values has the strongest effect on the wake structures. Beyond G/D=1.0, the sphere wakes tend to be similar to single sphere case. The instantaneous vorticity fields of the side by side arrangements comprised wavy structures in higher level comparing to an individual sphere case. The gap flow intensifies the occurrence of small scale eddies in the wake region. The submersion rate of the spheres actually determines the
Wake structures of two side by side spheres in a tripped boundary layer flow
Directory of Open Access Journals (Sweden)
Canli Eyüb
2014-03-01
Full Text Available Two independent spheres were placed in a side by side arrangement and flow structure in the wake region of the spheres was investigated with a Particle Image Velocimetry (PIV system when the spheres were in a boundary layer over a flat plate as a special case. Reynolds number was 5000 based on the sphere diameter which was 42.5 mm. Boundary layer was tripped 8mm away from the leading edge of the flat plate with a 5 mm trip wire. The thickness of the hydrodynamically developed boundary layer was determined as 63mm which was larger than the sphere diameter of D=42.5mm. Wake region of the spheres was examined from point of flow physics for the different sphere locations in the ranges of 0≤G/D ≤1.5 and 0≤S/D ≤1.5 where G and S were the distance between the spheres and the distance between the bottom point of the spheres and the flat plate surface, respectively. Depending on the different sphere locations, instantaneous and time averaged vorticity data, scalar values of time-averaged velocity components and their root mean square (rms values and time averaged vorticity data are presented in the study for the evaluation of wake region of the spheres. It is demonstrated that the gap between the two spheres and the interaction between the gap and the boundary layer greatly affects flow pattern, especially when spheres are located near to the flat plate surface, i.e. S/D=0.1 for 0≤G/D ≤1.5. Different distances between the spheres resulted in various flow patterns as the spheres were approached to the flat plate. The distance S/D=0.1 for all gap values has the strongest effect on the wake structures. Beyond G/D=1.0, the sphere wakes tend to be similar to single sphere case. The instantaneous vorticity fields of the side by side arrangements comprised wavy structures in higher level comparing to an individual sphere case. The gap flow intensifies the occurrence of small scale eddies in the wake region. The submersion rate of the spheres
Evidence of tropospheric layering: interleaved stratospheric and planetary boundary layer intrusions
Directory of Open Access Journals (Sweden)
J. Brioude
2007-01-01
Full Text Available We present a case study of interleaving in the free troposphere of 4 layers of non-tropospheric origin, with emphasis on their residence time in the troposphere. Two layers are stratospheric intrusions at 4.7 and 2.2 km altitude with residence times of about 2 and 6.5 days, respectively. The two other layers at 7 and 3 km altitude were extracted from the maritime planetary boundary layer by warm conveyor belts associated with two extratropical lows and have residence times of about 2 and 5.75 days, respectively. The event took place over Frankfurt (Germany in February 2002 and was observed by a commercial airliner from the MOZAIC programme with measurements of ozone, carbon monoxide and water vapour. Origins and residence times in the troposphere of these layers are documented with a trajectory and particle dispersion model. The combination of forward and backward simulations of the Lagrangian model allows the period of time during which the residence time can be assessed to be longer, as shown by the capture of the stratospheric-origin signature of the lowest tropopause fold just about to be completely mixed above the planetary boundary layer. This case study is of interest for atmospheric chemistry because it emphasizes the importance of coherent airstreams that produce laminae in the free troposphere and that contribute to the average tropospheric ozone. The interleaving of these 4 layers also provides the conditions for a valuable case study for the validation of global chemistry transport models used to perform tropospheric ozone budgets.
Retinal nerve fiber layer thickness and visual hallucinations in Parkinson's Disease.
Lee, Jee-Young; Kim, Jae Min; Ahn, Jeeyun; Kim, Han-Joon; Jeon, Beom S; Kim, Tae Wan
2014-01-01
Defective visual information processing from both central and peripheral pathways is one of the suggested mechanisms of visual hallucination in Parkinson's disease (PD). To investigate the role of retinal thinning for visual hallucination in PD, we conducted a case-control study using spectral domain optical coherence tomography. We examined a representative sample of 61 patients with PD and 30 healthy controls who had no history of ophthalmic diseases. General ophthalmologic examinations and optical coherence tomography scans were performed in each participant. Total macular thickness and the thickness of each retinal layer on horizontal scans through the fovea were compared between the groups. In a comparison between patients with PD and healthy controls, there was significant parafoveal inner nuclear layer thinning, whereas other retinal layers, including the retinal nerve fiber layer, as well as total macular thicknesses were not different. In terms of visual hallucinations among the PD subgroups, only retinal nerve fiber layer thickness differed significantly, whereas total macular thickness and the thickness of other retinal layers did not differ. The retinal nerve fiber layer was thinnest in the group that had hallucinations without dementia, followed by the group that had hallucinations with dementia, and the group that had no hallucinations and no dementia. General ophthalmologic examinations did not reveal any significant correlation with hallucinations. There were no significant correlations between retinal thicknesses and duration or severity of PD and medication dosages. The results indicate that retinal nerve fiber layer thinning may be related to visual hallucination in nondemented patients with PD. Replication studies as well as further studies to elucidate the mechanism of thinning are warranted.
STACKiNG SEQUENCE OPTiMiZATiON OF COMPOSiTE BEAMS WiTH DiFFERENT LAYER THiCKNESSES
Directory of Open Access Journals (Sweden)
Fatih Karaçam
2015-05-01
Full Text Available In this study, stacking sequence optimization of composite beams with different layer thicknesses is investigated for various boundary conditions. A unified shear deformation theory is used for analytical solution. The optimization process is carried out in order to obtain the minimum deflection parameters for Clamped-Free (C-F, Clamped-Clamped (C-C and simply supported (S-S boundary conditions under a uniform distributed load by use of genetic algorithm for a specific number of population and generation. Finally, among all possible combinations of layer thicknesses, the one giving the minimum deflection parameter and corresponding stacking sequence is chosen. The minimum values and corresponding stacking sequences are presented for different boundary conditions.
Effect of layer thickness on device response of silicon heavily supersaturated with sulfur
Directory of Open Access Journals (Sweden)
David Hutchinson
2016-05-01
Full Text Available We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer’s law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.
Effect of layer thickness on device response of silicon heavily supersaturated with sulfur
Hutchinson, David; Mathews, Jay; Sullivan, Joseph T.; Akey, Austin; Aziz, Michael J.; Buonassisi, Tonio; Persans, Peter; Warrender, Jeffrey M.
2016-05-01
We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE) is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011)] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer's law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011)], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.
Hybrid layer thickness and morphology: Influence of cavity preparation with air abrasion.
Barceleiro, Marcos Oliveira; de Mello, Jose Benedicto; Porto, Celso Luis de Angelis; Dias, Katia Regina Hostilio Cervantes; de Miranda, Mauro Sayao
2011-01-01
Dentinal surfaces prepared with air abrasion have considerably different characteristics from those prepared with conventional instruments. Different hybrid layer morphology and thickness occur, which can result in differences in the quality of restorations placed on dentinal surfaces prepared with a diamond bur compared to surfaces prepared using air abrasion. The objective of this study was to compare the hybrid layer thickness and morphology formed utilizing Scotchbond Multi-Purpose Plus (SBMP) on dentin prepared with a diamond bur in a high-speed handpiece and on dentin prepared using air abrasion. Flat dentin surfaces obtained from five human teeth were prepared using each method, then treated with the dentin adhesive system according to manufacturer's instructions. After a layer of composite was applied, specimens were sectioned, flattened, polished, and prepared for scanning electron microscopy. Ten different measurements of hybrid layer thickness were obtained along the bonded surface in each specimen. SBMP produced a 3.43 ± 0.75 µm hybrid layer in dentin prepared with diamond bur. This hybrid layer was regular and found consistently. In the air abrasion group, SBMP produced a 4.94 ± 1.28 µm hybrid layer, which was regular and found consistently. Statistical ANOVA (P = 0.05) indicated that there was a statistically significant difference between the groups. These data indicate that the air abrasion, within the parameters used in this study, provides a thick hybrid layer formation.
Uncertainties in the CO2 buget associated to boundary layer dynamics and CO2-advection
Kaikkonen, J.P.; Pino, D.; Vilà-Guerau de Arellano, J.
2012-01-01
The relationship between boundary layer dynamics and carbon dioxide (CO2) budget in the convective boundary layer (CBL) is investigated by using mixed-layer theory. We derive a new set of analytical relations to quantify the uncertainties on the estimation of the bulk CO2 mixing ratio and the inferr
Institute of Scientific and Technical Information of China (English)
ZHANG Hui; ZHANG Shu-Yi; FAN Li
2009-01-01
A model of high-overtone bulk acoustic resonators is used to study the effects of thickness deviation of elastic plates on resonance frequency spectra in planar multi-layered systems. The resonance frequency shifts induced by the thickness deviations of the elastic plates periodically vary with the resonance order, which depends on the acoustic impedance ratios of the elastic plates to piezoelectric patches. Additionally, the center lines of the frequency shift oscillations Hnearly change with the orders of the resonance modes, and their slopes are sensitive to the thickness deviations of the plates, which can be used to quantitatively evaluate the thickness deviations.
Ratiometric analysis of in vivo retinal layer thicknesses in multiple sclerosis
Bhaduri, Basanta; Nolan, Ryan M.; Shelton, Ryan L.; Pilutti, Lara A.; Motl, Robert W.; Boppart, Stephen A.
2016-09-01
We performed ratiometric analysis of retinal optical coherence tomography images for the first time in multiple sclerosis (MS) patients. The ratiometric analysis identified differences in several retinal layer thickness ratios in the cohort of MS subjects without a history of optic neuritis (ON) compared to healthy control (HC) subjects, and there was no difference in standard retinal nerve fiber layer thickness (RNFLT). The difference in such ratios between HC subjects and those with mild MS-disability, without a difference in RNFLT, further suggests the possibility of using layer ratiometric analysis for detecting early retinal changes in MS. Ratiometric analysis may be useful and potentially more sensitive for detecting disease changes in MS.
Energy Technology Data Exchange (ETDEWEB)
Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)
2015-12-29
Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.
Surface layer similarity in the nocturnal boundary layer: the application of Hilbert-Huang transform
Directory of Open Access Journals (Sweden)
J. Hong
2009-10-01
Full Text Available Turbulence statistics such as flux-variance relationship is critical information in measuring and modeling carbon, water, energy, and momentum exchanges at the biosphere-atmosphere interface. Using a recently proposed mathematical technique, the Hilbert-Huang transform (HHT, this study highlights its possibility to quantify impacts of non-turbulent flows on turbulence statistics in the stable surface layer. The HHT is suitable for the analysis of non-stationary and intermittent data and thus very useful for better understanding of the interplay of the surface layer similarity with complex nocturnal environment. Our analysis showed that the HHT can successfully sift non-turbulent components and be used as a tool to estimate the relationships between turbulence statistics and atmospheric stability in complex environment such as nocturnal stable boundary layer.
Atmospheric boundary layers in storms: advanced theory and modelling applications
Directory of Open Access Journals (Sweden)
S. S. Zilitinkevich
2005-01-01
Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S
Atmospheric boundary layers in storms: advanced theory and modelling applications
Zilitinkevich, S. S.; Esau, I. N.; Baklanov, A.
2005-03-01
Turbulent planetary boundary layers (PBLs) control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow). It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral) or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions) depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S were overlooked
Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas
2014-01-01
In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.
Shulman, S; Shorer, R; Wollman, J; Dotan, G; Paran, D
2017-01-01
Background Cognitive impairment is frequent in systemic lupus erythematosus. Atrophy of the corpus callosum and hippocampus have been reported in patients with systemic lupus erythematosus, and diffusion tensor imaging studies have shown impaired white matter integrity, suggesting that white matter damage in systemic lupus erythematosus may underlie the cognitive impairment as well as other neuropsychiatric systemic lupus erythematosus manifestations. Retinal nerve fiber layer thickness, as assessed by optical coherence tomography, has been suggested as a biomarker for white matter damage in neurologic disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Retinal nerve fiber layer thinning may occur early, even in patients with mild clinical symptoms. Aim The objective of this study was to assess the association of retinal nerve fiber layer thickness, as a biomarker of white matter damage in systemic lupus erythematosus patients, with neuropsychiatric systemic lupus erythematosus manifestations, including cognitive impairment. Methods Twenty-one consecutive patients with systemic lupus erythematosus underwent neuropsychological testing using a validated computerized battery of tests as well as the Rey-Auditory verbal learning test. All 21 patients, as well as 11 healthy, age matched controls, underwent optical coherence tomography testing to assess retinal nerve fiber layer thickness. Correlations between retinal nerve fiber layer thickness and results in eight cognitive domains assessed by the computerized battery of tests as well as the Rey-Auditory verbal learning test were assessed in patients with systemic lupus erythematosus, with and without neuropsychiatric systemic lupus erythematosus, and compared to retinal nerve fiber layer thickness in healthy controls. Results No statistically significant correlation was found between retinal nerve fiber layer thickness in patients with systemic lupus erythematosus as compared to healthy
Constraining the Thickness of the Crystal Mush in Layered Mafic Intrusions
Holness, M. B.; Tegner, C.; Nielsen, T. F.
2009-12-01
When basaltic magma stalls in the crust, cooling leads to growth of a marginal mushy layer. The thickness of this crystal mush can be constrained using the step-changes in textural maturity (quantified by the median augite(cpx)-plag-plag dihedral angle, Θcpp) caused by the change in fractional latent heat accompanying the arrival of a new liquidus phase. At the instant of its saturation in the bulk magma, the top of the mush is marked by the first appearance of the new primocryst phase. At this moment, the high porosity upper zone of the mush comprises poorly consolidated material, with no cpx-plag-plag junctions: at deeper levels porosity decreases by primocryst overgrowth, growth of interstitial augite, and compaction. In the context of dihedral angle populations, the mush zone can be divided into 3: the upper zone, where melt is adjacent to all plag-plag junctions; the middle zone where augite fills some of the pore corners; and the lower zone where augite fills all pore corners. For our purposes, the base of this lower zone corresponds to the point at which diffusive change of grain boundary orientations has effectively ceased. The change in fractional latent heat accompanying the addition to the liquidus assemblage will be fully recorded within the upper zone since all cpx-plag-plag junctions are created after the change and its consequent decrease in the contribution of sensible heat to the total enthalpy loss: Θcpp will be high. The middle zone will record a mixture of the new and old thermal regime: junctions which were melt-filled at the moment of arrival of the new phase will have less opportunity to increase the cpx-plag-plag angle, while those which were already filled by augite will have higher angles. Θcpp will therefore range from the new higher value at the top of middle zone, to some lower value at the base. Cumulates in the lower zone had no melt-filled junctions: Θcpp will increase from a low value corresponding to the previous value of
Institute of Scientific and Technical Information of China (English)
XU Zhang-Cheng; ZHANG Ya-Ting; J(φ)rn M. Hvam; Yoshiji Horikoshi
2009-01-01
The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage at 110K is observed, which can be explained by considering the resonant F(o)rster energy transfer between the wetting layer states at elevated temperatures.
HYBRID LAYER THICKNESS IN PRIMARY AND PERMANENT TEETH – A COMPARISON BETWEEN TOTAL ETCH ADHESIVES
Directory of Open Access Journals (Sweden)
Natalia Gateva
2012-05-01
Full Text Available Purpose: The aim this study is to compare the hybrid layer thickness and its micromorphological characteristics in samples from primary and permanent teeth following application of total etch adhesives.Materials and methods: On intact specimens of 20 primary and 10 permanent teeth was created flat dentin surfaces. The patterns were divided in 6 groups. Two different total etch adhesive systems were used – one tree steps (OptiBond, Kerr and one two steps (Exite, VivaDent. In groups 3, 4, 5 and 6 recommended etching time was used - 15 s, in groups 1 and 2 the etching time was reduced to 7 s. After applying the adhesive, resin composite build-ups were constructed. Thus restored samples are stored in saline solution for 24 hours at temperature 37 C. Then they are subjected to thermal stress in temperature between 5 C to 55 C for 1,500 cycles and to masticatory stress – 150,000 cycles with force 100 N in intervals of 0.4 s. After that the teeth are cut through the middle in medio-distal direction with a diamond disc. SEM observation was done to investigate the thickness of the hybrid layer and the presence of microgaps. Statistical analysis was performed with ANOVA and Tukey׳s tests.Results: SEM observation showed significant differences of the hybrid layer thickness between primary and permanent teeth under equal conditions and after different etching time. Group 6 presented the highest average thickness 8.85 μ and group 1 the lowest average in hybrid layer 3.74 μ.Conclusion: In primary teeth the hybrid layer thickness increases with the increased etching time. The hybrid layer thickness in primary teeth is greater than that of the hybrid layer in permanent teeth under equal conditions. For primary teeth it is more appropriate to reduce the etching time to 7s to obtain a hybrid layer with better quality
Properties of electrodeposited CoFe/Cu multilayers: The effect of Cu layer thickness
Energy Technology Data Exchange (ETDEWEB)
Sahin, Turgut, E-mail: stsahin4@hotmail.com [Deparment of Physics, Science and Literature Faculty, Balikesir University, 10100 Balikesir (Turkey); Kockar, Hakan, E-mail: hkockar@balikesir.edu.tr [Deparment of Physics, Science and Literature Faculty, Balikesir University, 10100 Balikesir (Turkey); Alper, Mursel, E-mail: malper@uludag.edu.tr [Deparment of Physics, Science and Literature Faculty, Uludag University, 16059 Gorukle, Bursa (Turkey)
2015-01-01
CoFe/Cu multilayers were potentiostatically electrodeposited on Ti substrates as a function of different non-magnetic (Cu) layer thicknesses, and their characterizations were investigated. The compositional analysis performed by energy dispersive X-ray spectroscopy disclosed that the Cu content in the multilayers increased and the Co content decreased as non-magnetic layer was increased. However, the Fe content was almost stable. The scanning electron microscopy studies showed that the surface morphology of the films is strongly affected by the non-magnetic layer thickness, and X-ray diffraction was used to analyse the structural properties of the multilayers and revealed that the multilayers have face-centred cubic (fcc) structure and their preferred orientations change depending on the Cu layer thickness. In the case of magnetoresistance measurements of the multilayers performed at room temperature, the highest giant magnetoresistance (GMR) values exhibited for the films with the Cu layer thickness (6.0 nm) whereas the lowest GMR magnitudes were observed for the films without Cu layer. Therefore, the variations of the Cu layer thicknesses were observed to have a significant effect on the GMR of multilayers. The differences observed in the magnetotransport properties were attributed to the microstructural changes caused by the Cu layer thickness. - Highlights: • CoFe/Cu multilayers were potentiostatically electrodeposited on Ti substrates. • Microstructural and magnetoresistance properties of CoFe/Cu multilayers were investigated. • All films had a face-centred cubic structure irrespective of the multilayer content. • All samples exhibited GMR and the maximum GMR value was 11%.
The high frequency acoustic radiation from the boundary layer of an axisymmetric body
Institute of Scientific and Technical Information of China (English)
LI Fuxin; MA Lin; MA Zhiming
2001-01-01
The mechanism of acoustic radiation from the boundary layer of an axisymmetric body is analyzed, and its sound pressure spectrum is predicted. It is shown that the acoustic radiation results from the transition region and the turbulent boundary layer; and that the acoustic radiation from transition region is predominant at low frequencies; while the turbulent boundary layer has the decisive effect on acoustic radiation at high frequencies. The calculated values are in good agreement with the experimental data.
Boundary-layer height detection with a ceilometer at a coastal site in western Denmark
DEFF Research Database (Denmark)
Hannesdottir, Asta; Hansen, Aksel Walle
One year of data from ceilometer measurements is used to estimate the atmospheric boundary-layer height at the coastal site Høvsøre in western Denmark. The atmospheric boundary-layer height is a fundamental parameter for the evaluation of the wind speed profile, and an essential parameter in atmo...... for easterly winds it is seldom possible. The ceilometer data shows potential to be used to perform extensive studies of the boundary layer....
Bubble and boundary layer behaviour in subcooled flow boiling
Energy Technology Data Exchange (ETDEWEB)
Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)
2006-03-15
Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)
Directory of Open Access Journals (Sweden)
Ju-Yeun Lee
Full Text Available The aims of this study were 1 To evaluate retinal nerve fiber layer (fRNFL thickness and ganglion cell layer plus inner plexiform layer (GCIPL thickness at the fovea in eyes affected with traumatic optic neuropathy (TON compared with contralateral normal eyes, 2 to further evaluate these thicknesses within 3 weeks following trauma (defined as "early TON", and 3 to investigate the relationship between these retinal layer thicknesses and visual function in TON eyes. Twenty-nine patients with unilateral TON were included. Horizontal and vertical spectral-domain optical coherence tomography (SD-OCT scans of the fovea were taken in patients with unilateral TON. The main outcome measure was thickness of the entire retina, fRNFL, and GCIPL in eight areas. Thickness of each retinal layer was compared between affected and unaffected eyes. The correlation between the thickness of each retinal layer and visual function parameters, including best corrected visual acuity, color vision, P100 latency, and P100 amplitude in visual evoked potential (VEP, mean deviation (MD and visual field index (VFI in Humphrey visual field analysis in TON eyes was analyzed. Thicknesses of the entire retina, fRNFL, and GCIPL in SD-OCT were significantly thinner (3-36% in all measurement areas of TON eyes compared to those in healthy eyes (all p<0.05. Whereas, only GCIPL in the outer nasal, superior, and inferior areas was significantly thinner (5-10% in the early TON eyes than that in the control eyes (all p<0.01. A significant correlation was detected between retinal layer thicknesses and visual function parameters including color vision, P100 latency and P100 amplitude in VEP, MD, and VFI (particularly P100 latency, MD, and VFI (r = -0.70 to 0.84. Among the retinal layers analyzed in this study, GCIPL (particularly in the superior and inferior areas was most correlated with these five visual function parameters (r = -0.70 to 0.71. Therefore, evaluation of morphological change
Marine boundary layer simulation and verification during BOBMEX-Pilot using NCMRWF model
Indian Academy of Sciences (India)
Swati Basu
2000-06-01
A global spectral model (T80L18) that is operational at NCMRWF is utilized to study the structure of the marine boundary layer over the Bay of Bengal during the BOBMEX-Pilot period. The vertical profiles of various meteorological parameters within the boundary layer are studied and verified against the available observations. The diurnal variation of various surface fields are also studied. The impact of non-local closure scheme for the boundary layer parameterisation is seen in simulation of the flow pattern as well as on the boundary layer structure over the oceanic region.
Strataridakis, Constantine John
Hot-wire anemometry measurements in an incompressible turbulent boundary-layer flow over a flat plate at zero pressure gradient were made using two X-probes simultaneously. The experiment was performed in the large Atmospheric Boundary-Layer Wind Tunnel at the University of California, Davis. The 7.32 meter long flat plate installed within the wind tunnel generated approximately 20 cm thick boundary layer, R (sub theta) approximately 4,000. Mean velocity and turbulence intensity data very close to the wall (y(+) is greater than or = to 1) were measured with a single hot wire to improve the measurement resolution. Space-time correlations of mu' and upsilon' velocities and of their instantaneous product were obtained with a pair of X-wires. The mean convection velocities, the extent in space, the mean inclination angles, and coherence characteristics of the mu', upsilon' and (mu')(upsilon') large-scale structures are presented. (The (mu')(upsilon') results are presented for the first time.) The mu' structure is inclined at a small angle (19 deg) to the wall, while the upsilon' and (mu')(upsilon') structures propagate almost at wall-normal directions. Each of the mu' and upsilon' structures appears elongated in the direction of the corresponding velocity fluctuation and is limited to delta-extent in the other two directions. The similarity between the upsilon' and (mu')(upsilon') suggests that the (mu')(upsilon') might mainly be a consequence of the motion of the upsilon' structure. Finally, a possible explanation for the differences between the (mu')(upsilon'), upsilon' and the mu' structures is the existence of different coherent scales, one dominating mu' and the other dominating upsilon' and (mu')(upsilon').
Stereoscopic Imaging in Hypersonics Boundary Layers using Planar Laser-Induced Fluorescence
Danehy, Paul M.; Bathel, Brett; Inman, Jennifer A.; Alderfer, David W.; Jones, Stephen B.
2008-01-01
Stereoscopic time-resolved visualization of three-dimensional structures in a hypersonic flow has been performed for the first time. Nitric Oxide (NO) was seeded into hypersonic boundary layer flows that were designed to transition from laminar to turbulent. A thick laser sheet illuminated and excited the NO, causing spatially-varying fluorescence. Two cameras in a stereoscopic configuration were used to image the fluorescence. The images were processed in a computer visualization environment to provide stereoscopic image pairs. Two methods were used to display these image pairs: a cross-eyed viewing method which can be viewed by naked eyes, and red/blue anaglyphs, which require viewing through red/blue glasses. The images visualized three-dimensional information that would be lost if conventional planar laser-induced fluorescence imaging had been used. Two model configurations were studied in NASA Langley Research Center's 31-Inch Mach 10 Air Wind tunnel. One model was a 10 degree half-angle wedge containing a small protuberance to force the flow to transition. The other model was a 1/3-scale, truncated Hyper-X forebody model with blowing through a series of holes to force the boundary layer flow to transition to turbulence. In the former case, low flowrates of pure NO seeded and marked the boundary layer fluid. In the latter, a trace concentration of NO was seeded into the injected N2 gas. The three-dimensional visualizations have an effective time resolution of about 500 ns, which is fast enough to freeze this hypersonic flow. The 512x512 resolution of the resulting images is much higher than high-speed laser-sheet scanning systems with similar time response, which typically measure 10-20 planes.
Directory of Open Access Journals (Sweden)
Raju.B.S,
2010-07-01
Full Text Available Stereolithography is a Rapid prototyping technique, which allows direct transformation of CAD files into epoxy resin parts for building the physical models, these are built from photo-curable thermosetting resins. Part quality in the Stereolithography process is a function of the build parameters such as hatch cure depth, layer thickness, orientation and hatch file. This paper attempts to identify and study the various process parameters governing thestereolithography system, specifically the influence of layer thickness related to the part characteristics. The part characteristics can be divided into part physical characteristics and mechanical characteristics. The part physical characteristics are surface finish, dimensional accuracy and distortion where as mechanical characteristics are flexural property, ultimate tensile strength and impact strength. Thus paper proposes to study the influence of the layer thickness (build parameters over the part quality. The study is conducted on the test samples of SL 5530, which were built on SLA5000 machine, under different sets of process parameters and tested under ASTM specified test conditions. The results have been analyzed to achieve an optimal layer at which the mechanical properties are high with minimum dimensional instability, which is found to be 100 micron layer thickness. To obtain an optimallayer thickness for the SLA parts is the end result of the paper.
Energy Technology Data Exchange (ETDEWEB)
Randelia, R.R.; Sahai, V.
1987-01-01
A numerical analysis of a two-phase, laminar boundary layer is carried out using the Keller Box method. The two phases are assumed to be immiscible. The problem considered involves the boundary layer flow of a compressible gas with variable properties over a flat surface in the presence of a thin liquid film with power law temperature dependent viscosity. Both zero and nonzero pressure gradients are considered. The main purpose of the study was to investigate the effect of the presence of the liquid layer on the velocity and temperature distributions. A limited set of results are presented in terms of varying liquid Prandtl numbers, film thickness, and viscosity exponents on these distributions as well as the shear stress and heat transfer parameters at the wall and at the interface between the two fluids.
Thick growing multilayer nanobrick wall thin films: super gas barrier with very few layers.
Guin, Tyler; Krecker, Michelle; Hagen, David Austin; Grunlan, Jaime C
2014-06-24
Recent work with multilayer nanocoatings composed of polyelectrolytes and clay has demonstrated the ability to prepare super gas barrier layers from water that rival inorganic CVD-based films (e.g., SiOx). In an effort to reduce the number of layers required to achieve a very low oxygen transmission rate (OTR (layer-by-layer (LbL) assembly. Buffering the chitosan solution and its rinse with 50 mM Trizma base increased the thickness of these films by an order of magnitude. The OTR of a 1.6-μm-thick, six-bilayer film was 0.009 cc/m(2)·day·atm, making this the best gas barrier reported for such a small number of layers. This simple modification to the LbL process could likely be applied more universally to produce films with the desired properties much more quickly.
Assessment of Layer Thickness and Interface Quality in CoP Electrodeposited Multilayers.
Lucas, Irene; Ciudad, David; Plaza, Manuel; Ruiz-Gómez, Sandra; Aroca, Claudio; Pérez, Lucas
2016-07-27
The magnetic properties of CoP electrodeposited alloys can be easily controlled by layering the alloys and modulating the P content of the different layers by using pulse plating in the electrodeposition process. However, because of its amorphous nature, the study of the interface quality, which is a limitation for the optimization of the soft magnetic properties of these alloys, becomes a complex task. In this work, we use Rutherford backscattering spectroscopy (RBS) to determine that electrodeposited Co0.74P0.26/Co0.83P0.17 amorphous multilayers with layers down to 20 nm-thick are composed by well-defined layers with interfacial roughness below 3 nm. We have also determined, using magnetostriction measurements, that 4 nm is the lower limitation for the layer thickness. Below this thickness, the layers are mixed and the magnetic behavior of the multilayered films is similar to that shown by single layers, thus going from in-plane to out-of-plane magnetic anisotropy. Therefore, these results establish the range in which the magnetic properties of these alloys can be controlled by layering.
Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses
Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan
2017-01-01
The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current-time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of -0.3 and -1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices.
Huangfu, Minzan; Shen, Yue; Zhu, Gongbo; Xu, Kai; Cao, Meng; Gu, Feng; Wang, Linjun
2015-12-01
This study is the first to report the preparation of Copper iodide (CuI) thick films by means of convenient airbrush process and their application as inorganic hole transport layers (HTL) in organo-lead halide perovskite-based solar cells. CuI thick films exhibit high conductivity, wide-band-gap and solution-processable. Organo-lead halide perovskite solar cells with different thickness of mesoporous layers and CuI hole transport layers were fabricated. Performance of the cells were mainly controlled by the thickness of TiO2 mesoporous layers. Under optimized conditions, a power conversion efficiency of 5.8% has been achieved with short-circuit current density JSC of 22.3 mA/cm2, open-circuit voltage VOC of 614 mV and fill factor of 42%. However, the VOC remains low in comparison with the state of the art perovskite-based solar cells, which is attributed to the high recombination in CuI devices as determined by impedance spectroscopy.
The Spring-Time Boundary Layer in the Central Arctic Observed during PAMARCMiP 2009
Directory of Open Access Journals (Sweden)
Alexander Makshtas
2012-07-01
Full Text Available The Arctic atmospheric boundary layer (AABL in the central Arctic was characterized by dropsonde, lidar, ice thickness and airborne in situ measurements during the international Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project (PAMARCMiP in April 2009. We discuss AABL observations in the lowermost 500 m above (A open water, (B sea ice with many open/refrozen leads (C sea ice with few leads, and (D closed sea ice with a front modifying the AABL. Above water, the AABL had near-neutral stratification and contained a high water vapor concentration. Above sea ice, a low AABL top, low near-surface temperatures, strong surface-based temperature inversions and an increase of moisture with altitude were observed. AABL properties and particle concentrations were modified by a frontal system, allowing vertical mixing with the free atmosphere. Above areas with many leads, the potential temperature decreased with height in the lowest 50 m and was nearly constant above, up to an altitude of 100–200 m, indicating vertical mixing. The increase of the backscatter coefficient towards the surface was high. Above sea ice with few refrozen leads, the stably stratified boundary layer extended up to 200–300 m altitude. It was characterized by low specific humidity and a smaller increase of the backscatter coefficient towards the surface.
Confinement effects in shock/turbulent-boundary-layer interaction through wall-modeled LES
Bermejo-Moreno, Ivan; Campo, Laura; Larsson, Johan; Bodart, Julien; Helmer, David; Eaton, John
2016-11-01
Wall-modeled large-eddy simulations (WMLES) are used to investigate three-dimensional effects imposed by lateral confinement on the interaction of oblique shock waves impinging on turbulent boundary layers (TBLs) developed along the walls of a nearly-square duct. A constant Mach number, M = 2 . 05 , of the incoming air stream is considered, with a Reynolds number based on the incoming turbulent boundary layer momentum thickness Reθ 14 , 000 . The strength of the impinging shock is varied by increasing the height of a compression wedge located at a constant streamwise location that spans the top wall of the duct at a 20° angle. Simulation results are first validated with particle image velocimetry (PIV) experimental data obtained at several vertical planes. Emphasis is placed on the study of the instantaneous and time-averaged structure of the flow for the stronger-interaction case, which shows mean flow reversal. By performing additional spanwise-periodic simulations, it is found that the structure and location of the shock system and separation bubble are significantly modified by the lateral confinement. Low-frequency unsteadiness and downstream evolution of corner flows are also investigated. Financial support from the United States Department of Energy under the PSAAP program is gratefully acknowledged.
Diagnostics of boundary layer transition by shear stress sensitive liquid crystals
Shapoval, E. S.
2016-10-01
Previous research indicates that the problem of boundary layer transition visualization on metal models in wind tunnels (WT) which is a fundamental question in experimental aerodynamics is not solved yet. In TsAGI together with Khristianovich Institute of Theoretical and Applied Mechanics (ITAM) a method of shear stress sensitive liquid crystals (LC) which allows flow visualization was proposed. This method allows testing several flow conditions in one wind tunnel run and does not need covering the investigated model with any special heat-insulating coating which spoils the model geometry. This coating is easily applied on the model surface by spray or even by brush. Its' thickness is about 40 micrometers and it does not spoil the surface quality. At first the coating obtains some definite color. Under shear stress the LC coating changes color and this change is proportional to shear stress. The whole process can be visually observed and during the tests it is recorded by camera. The findings of the research showed that it is possible to visualize boundary layer transition, flow separation, shock waves and the flow image on the whole. It is possible to predict that the proposed method of shear stress sensitive liquid crystals is a promise for future research.
PIV experiments in rough-wall, laminar-to-turbulent, oscillatory boundary-layer flows
Mujal-Colilles, Anna; Mier, Jose M.; Christensen, Kenneth T.; Bateman, Allen; Garcia, Marcelo H.
2014-01-01
Exploratory measurements of oscillatory boundary layers were conducted over a smooth and two different rough beds spanning the laminar, transitional and turbulent flow regimes using a multi-camera 2D-PIV system in a small oscillatory-flow tunnel (Admiraal et al. in J Hydraul Res 44(4):437-450, 2006). Results show how the phase lag between bed shear stress and free-stream velocity is better defined when the integral of the momentum equation is used to estimate the bed shear stress. Observed differences in bed shear stress and phase lag between bed shear stress and free-stream velocity are highly sensitive to the definition of the bed position ( y = b). The underestimation of turbulent stresses close to the wall is found to explain such differences when using the addition of Reynolds and viscous stresses to define both the bed shear stress and the phase lag. Regardless of the flow regime, in all experiments, boundary-layer thickness reached its maximum value at a phase near the flow reversal at the wall. Friction factors in smooth walls are better estimated using a theoretical equation first proposed by Batchelor (An introduction to fluid dynamics. Cambridge University Press, Cambridge, 1967) while the more recent empirical predictor of Pedocchi and Garcia (J Hydraul Res 47(4):438-444, 2009a) was found to be appropriate for estimating friction coefficients in the laminar-to-turbulent transition regime.
Influence of water layer thickness on hard tissue ablation with pulsed CO2 laser.
Zhang, Xianzeng; Zhan, Zhenlin; Liu, Haishan; Zhao, Haibin; Xie, Shusen; Ye, Qing
2012-03-01
The theory of hard tissue ablation reported for IR lasers is based on a process of thermomechanical interaction, which is explained by the absorption of the radiation in the water component of the tissue. The microexplosion of the water is the cause of tissue fragments being blasted from hard tissue. The aim of this study is to evaluate the influence of the interdependence of water layer thickness and incident radiant exposure on ablation performance. A total of 282 specimens of bovine shank bone were irradiated with a pulse CO(2) laser. Irradiation was carried out in groups: without a water layer and with a static water layer of thickness ranging from 0.2 to 1.2 mm. Each group was subdivided into five subgroups for different radiant exposures ranging from 18 to 84 J/cm(2), respectively. The incision geometry, surface morphology, and microstructure of the cut walls as well as thermal injury were examined as a function of the water layer thickness at different radiant exposures. Our results demonstrate that the additional water layer is actually a mediator of laser-tissue interaction. There exists a critical thickness of water layer for a given radiant exposure, at which the additional water layer plays multiple roles, not only acting as a cleaner to produce a clean cut but also as a coolant to prevent bone heating and reduce thermal injury, but also helping to improve the regularity of the cut shape, smooth the cut surface, and enhance ablation rate and efficiency. The results suggest that desired ablation results depend on optimal selection of both water layer thickness and radiant exposure.
Influence of water layer thickness on hard tissue ablation with pulsed CO2 laser
Zhang, Xianzeng; Zhan, Zhenlin; Liu, Haishan; Zhao, Haibin; Xie, Shusen; Ye, Qing
2012-03-01
The theory of hard tissue ablation reported for IR lasers is based on a process of thermomechanical interaction, which is explained by the absorption of the radiation in the water component of the tissue. The microexplosion of the water is the cause of tissue fragments being blasted from hard tissue. The aim of this study is to evaluate the influence of the interdependence of water layer thickness and incident radiant exposure on ablation performance. A total of 282 specimens of bovine shank bone were irradiated with a pulse CO2 laser. Irradiation was carried out in groups: without a water layer and with a static water layer of thickness ranging from 0.2 to 1.2 mm. Each group was subdivided into five subgroups for different radiant exposures ranging from 18 to 84 J/cm2, respectively. The incision geometry, surface morphology, and microstructure of the cut walls as well as thermal injury were examined as a function of the water layer thickness at different radiant exposures. Our results demonstrate that the additional water layer is actually a mediator of laser-tissue interaction. There exists a critical thickness of water layer for a given radiant exposure, at which the additional water layer plays multiple roles, not only acting as a cleaner to produce a clean cut but also as a coolant to prevent bone heating and reduce thermal injury, but also helping to improve the regularity of the cut shape, smooth the cut surface, and enhance ablation rate and efficiency. The results suggest that desired ablation results depend on optimal selection of both water layer thickness and radiant exposure.
Nonlinear interaction of waves in boundary-layer flows
Nayfeh, A. H.; Bozatli, A. N.
1979-01-01
First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed by using the method of multiple scales. For the case of two waves, a strong nonlinear interaction exists if one of the frequencies w2 is twice the other frequency w1. Numerical results for flow past a flat plate show that this interaction mechanism is strongly destabilizing even in regions where either the fundamental or its harmonic is damped in the absence of the interaction. For the case of three waves, a strong nonlinear interaction exists when w3 = w2- w1. This combination resonance causes the amplitude of the wave with the difference frequency w3 to multiply many times in magnitude in a short distance even if it is damped in the absence of the interaction. The initial amplitudes play a dominant role in determining the changes in the amplitudes of the waves in both of these mechanisms.
Disturbance amplification in boundary layers over thin wall films
Saha, Sandeep; Page, Jacob; Zaki, Tamer A.
2016-02-01
In single-fluid boundary layers, streaks can amplify at sub-critical Reynolds numbers and initiate early transition to turbulence. Introducing a wall film of different viscosities can appreciably alter the stability of the base flow and, in particular, the transient growth of the perturbation streaks. The formalism of seminorms is used to identify optimal disturbances which maximize the kinetic energy in the two-fluid flow. An examination of optimal growth over a range of viscosity ratios of the film relative to the outer flow reveals three distinct regimes of amplification, each associated with a particular combination of the eigenfunctions. In order to elucidate the underlying amplification mechanisms, a model problem is formulated: An initial value problem is solved using an eigenfunction expansion and is used to compute the evolution of pairs of eigenfunctions. By appropriately selecting the pair, the initial value problem qualitatively reproduces the temporal evolution of the optimal disturbance, and provides an unambiguous explanation of the dynamics. Two regimes of transient growth are attributed to the evolution of the interface mode along with free-stream vortical modes; the third regime is due to the evolution of the interface and a discrete mode. The results demonstrate that a lower-viscosity film can effectively reduce the efficacy of the lift-up mechanism and, as a result, transient growth of disturbances. However, another mechanism of amplification of wall-normal vorticity arises due to the deformation of the two-fluid interface and becomes dominant below a critical viscosity ratio.
NOx and NOy in the Tropical Marine Boundary Layer
Reed, Chris; Evans, Mathew J.; Lee, James D.; Carpenter, Lucy J.; Read, Katie A.; Mendes, Luis N.
2016-04-01
Nitrogen oxides (NOx=NO+NO2) and their reservoir species (NOy) play a central role in determining the chemistry of the troposphere. Although their concentrations are low (1-100 ppt) in regions such as the remote marine boundary layer, they have a profound impact on ozone production and the oxidizing capacity. There are very few observations of NOx and NOy in remote oceanic regions due to the technical challenges of measuring such low concentrations, and thus our understanding of this background chemistry is incomplete. Here we present long term measurements of NOx (2006-2015) and more recent measurements of speciated NOy (total peroxyacetyl nitrates, PANs; alkyl nitrates, ANs; nitric acid; and aerosol analogues) made at the Cape Verde Atmospheric Observatory (CVAO; 16° 51' N, 24° 52' W) located in the tropical Atlantic Ocean. We identify potential interferences in the NO2 and NOy measurements and methods to eliminate them. Diurnal and seasonal cycles are interpreted using a box model. We find a complex chemistry with interactions between organic and inorganic chemistry, between the aerosol and gas phase, and between the very local and large scales.
Iodine oxide in the global marine boundary layer
Directory of Open Access Journals (Sweden)
C. Prados-Roman
2014-08-01
Full Text Available Emitted mainly by the oceans, iodine is a halogen compound important for atmospheric chemistry due to its high ozone depletion potential and effect on the oxidizing capacity of the atmosphere. Here we present a comprehensive dataset of iodine oxide (IO measurements in the open marine boundary layer (MBL made during the Malaspina 2010 circumnavigation. Results show IO mixing ratios ranging from 0.4 to 1 pmol mol−1 and, complemented with additional field campaigns, this dataset confirms through observations the ubiquitous presence of reactive iodine chemistry in the global marine environment. We use a global model with organic (CH3I, CH2ICl, CH2I2 and CH2IBr and inorganic (HOI and I2 iodine ocean emissions to investigate the contribution of the different iodine source gases to the budget of IO in the global MBL. In agreement with previous estimates, our results indicate that, globally averaged, the abiotic precursors contribute about 75% to the iodine oxide budget. However, this work reveals a strong geographical pattern in the contribution of organic vs. inorganic precursors to reactive iodine in the global MBL.
The decay of wake vortices in the convective boundary layer
Energy Technology Data Exchange (ETDEWEB)
Holzaepfel, F.; Gerz, T.; Frech, M.; Doernbrack, A.
2000-03-01
The decay of three wake vortex pairs of B-747 aircraft in a convectively driven atmospheric boundary layer is investigated by means of large-eddy simulations (LES). This situation is considered as being hazardous as the updraft velocities of a thermal may compensate the induced descent speed of the vortex pair resulting in vortices stalled in the flight path. The LES results, however, illustrate that (i) the primary rectilinear vortices are rapidly deformed on the scale of the alternating updraft and downdraft regions; (ii) parts of the vortices stay on flight level but are quickly eroded by the enhanced turbulence of an updraft; (iii) longest living sections of the vortices are found in regions of relatively calm downdraft flow which augments their descent. Strip theory calculations are used to illustrate the temporal and spatial development of lift and rolling moments experienced by a following medium weight class B-737 aircraft. Characteristics of the respective distributions are analysed. Initially, the maximum rolling moments slightly exceed the available roll control of the B-737. After 60 seconds the probability of rolling moments exceeding 50% of the roll control, a value which is considered as a threshold for acceptable rolling moments, has decreased to 1% of its initial probability. (orig.)
Ground-based lidar for atmospheric boundary layer ozone measurements.
Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong
2013-05-20
Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.
Ion Beams in the Plasma Sheet Boundary Layer
Birn, J.; Hesse, M.; Runov, A.; Zhou, X.
2015-12-01
We explore characteristics of energetic particles in the plasma sheet boundary layer associated with dipolarization events, based on simulations and observations. The simulations use the electromagnetic fields of an MHD simulation of magnetotail reconnection and flow bursts as basis for test particle tracing. They are complemented by self-consistent fully electrodynamic particle-in-cell (PIC) simulations. The test particle simulations confirm that crescent shaped earthward flowing ion velocity distributions with strong perpendicular anisotropy can be generated as a consequence of near tail reconnection, associated with earthward flows and propagating magnetic field dipolarization fronts. Both PIC and test particle simulations show that the ion distribution in the outflow region close to the reconnection site also consist of a beam superposed on an undisturbed population; this beam, however, does not show strong perpendicular anisotropy. This suggests that the crescent shape is created by quasi-adiabatic deformation from ion motion along the magnetic field toward higher field strength. The simulation results compare favorably with ``Time History of Events and Macroscale Interactions during Substorms" (THEMIS) observations.
Boundary Layer Instabilities Generated by Freestream Laser Perturbations
Chou, Amanda; Schneider, Steven P.
2015-01-01
A controlled, laser-generated, freestream perturbation was created in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT). The freestream perturbation convected downstream in the Mach-6 wind tunnel to interact with a flared cone model. The geometry of the flared cone is a body of revolution bounded by a circular arc with a 3-meter radius. Fourteen PCB 132A31 pressure transducers were used to measure a wave packet generated in the cone boundary layer by the freestream perturbation. This wave packet grew large and became nonlinear before experiencing natural transition in quiet flow. Breakdown of this wave packet occurred when the amplitude of the pressure fluctuations was approximately 10% of the surface pressure for a nominally sharp nosetip. The initial amplitude of the second mode instability on the blunt flared cone is estimated to be on the order of 10 -6 times the freestream static pressure. The freestream laser-generated perturbation was positioned upstream of the model in three different configurations: on the centerline, offset from the centerline by 1.5 mm, and offset from the centerline by 3.0 mm. When the perturbation was offset from the centerline of a blunt flared cone, a larger wave packet was generated on the side toward which the perturbation was offset. The offset perturbation did not show as much of an effect on the wave packet on a sharp flared cone as it did on a blunt flared cone.
Large Scale Organization of a Near Wall Turbulent Boundary Layer
Stanislas, Michel; Dekou Tiomajou, Raoul Florent; Foucaut, Jean Marc
2016-11-01
This study lies in the context of large scale coherent structures investigation in a near wall turbulent boundary layer. An experimental database at high Reynolds numbers (Re θ = 9830 and Re θ = 19660) was obtained in the LML wind tunnel with stereo-PIV at 4 Hz and hot wire anemometry at 30 kHz. A Linear Stochastic Estimation procedure, is used to reconstruct a 3 component field resolved in space and time. Algorithms were developed to extract coherent structures from the reconstructed field. A sample of 3D view of the structures is depicted in Figure 1. Uniform momentum regions are characterized with their mean hydraulic diameter in the YZ plane, their life time and their contribution to Reynolds stresses. The vortical motions are characterized by their position, radius, circulation and vorticity in addition to their life time and their number computed at a fixed position from the wall. The spatial organization of the structures was investigated through a correlation of their respective indicative functions in the spanwise direction. The simplified large scale model that arise is compared to the ones available in the literature. Streamwise low (green) and high (yellow) uniform momentum regions with positive (red) and negative (blue) vortical motions. This work was supported by Campus International pour la Sécurité et l'Intermodalité des Transports.
Wave mediated angular momentum transport in astrophysical boundary layers
Hertfelder, Marius
2015-01-01
Context. Disk accretion onto weakly magnetized stars leads to the formation of a boundary layer (BL) where the gas loses its excess kinetic energy and settles onto the star. There are still many open questions concerning the BL, for instance the transport of angular momentum (AM) or the vertical structure. Aims. It is the aim of this work to investigate the AM transport in the BL where the magneto-rotational instability (MRI) is not operating owing to the increasing angular velocity $\\Omega(r)$ with radius. We will therefore search for an appropriate mechanism and examine its efficiency and implications. Methods. We perform 2D numerical hydrodynamical simulations in a cylindrical coordinate system $(r, \\varphi)$ for a thin, vertically inte- grated accretion disk around a young star. We employ a realistic equation of state and include both cooling from the disk surfaces and radiation transport in radial and azimuthal direction. The viscosity in the disk is treated by the {\\alpha}-model; in the BL there is no v...
Plume meander and dispersion in a stable boundary layer
Hiscox, April L.; Miller, David R.; Nappo, Carmen J.
2010-11-01
Continuous lidar measurements of elevated plume dispersion and corresponding micrometeorology data are analyzed to establish the relationship between plume behavior and nocturnal boundary layer dynamics. Contrasting nights of data from the JORNADA field campaign in the New Mexico desert are analyzed. The aerosol lidar measurements were used to separate the plume diffusion (plume spread) from plume meander (displacement). Mutiresolution decomposition was used to separate the turbulence scale (90 s). Durations of turbulent kinetic energy stationarity and the wind steadiness were used to characterize the local scale and submesoscale turbulence. Plume meander, driven by submesoscale wind motions, was responsible for most of the total horizontal plume dispersion in weak and variable winds and strong stability. This proportion was reduced in high winds (i.e., >4 m s-1), weakly stable conditions but remained the dominant dispersion mechanism. The remainder of the plume dispersion in all cases was accounted for by internal spread of the plume, which is a small eddy diffusion process driven by turbulence. Turbulence stationarity and the wind steadiness are demonstrated to be closely related to plume diffusion and plume meander, respectively.
Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements
Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong
2013-01-01
Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.
Lubrication approximation in completed double layer boundary element method
Nasseri, S.; Phan-Thien, N.; Fan, X.-J.
This paper reports on the results of the numerical simulation of the motion of solid spherical particles in shear Stokes flows. Using the completed double layer boundary element method (CDLBEM) via distributed computing under Parallel Virtual Machine (PVM), the effective viscosity of suspension has been calculated for a finite number of spheres in a cubic array, or in a random configuration. In the simulation presented here, the short range interactions via lubrication forces are also taken into account, via the range completer in the formulation, whenever the gap between two neighbouring particles is closer than a critical gap. The results for particles in a simple cubic array agree with the results of Nunan and Keller (1984) and Stoksian Dynamics of Brady etal. (1988). To evaluate the lubrication forces between particles in a random configuration, a critical gap of 0.2 of particle's radius is suggested and the results are tested against the experimental data of Thomas (1965) and empirical equation of Krieger-Dougherty (Krieger, 1972). Finally, the quasi-steady trajectories are obtained for time-varying configuration of 125 particles.
Plasma structures inside boundary layers of magnetic clouds
Institute of Scientific and Technical Information of China (English)
WEI Fengsi; FENG Xueshang; YANG Fang; ZHONG Dingkun
2004-01-01
We analyze the plasma structures for 50 magnetic cloud boundary layers (BLs) which were observed by the spacecraft WIND from February, 1995 to June 2003. Main discoveries are: (ⅰ) The BL is a non-pressure balanced structure, its total pressure, PT,L, (the thermal pressure, Pth,L, plus the magnetic pressure, PM,L) is generally less than the total pressure PT,S and PT,C of the front solar wind (SW) and the following magnetic clouds (MC), respectively. The rising of the Pth,L inside the BLs is often not enough to compensate the declining of PM,L; (ⅱ) The ratio of electron and proton temperatures, (Te/Tp)L, inside the BLs is offen less than (Te/Tp)s and (Te/Tp)c in the SW and the MC, respectively, because the heating of proton is more obvious than that of electron; and (ⅲ) The reversal jet is observed in 80% BLs investigated, in which the reversal jets from all of three directions (±Vx, ±Vy, ±Vz), were observed in ≈25% BLs. These basic characteristics could be associated with a possible magnetic reconnection process inside the BLs. The results above suggest that the cloud BL owns the plasma structures different from those in the SW and MC. It is a manifestation for the existing significant dynamic interaction between the magnetic cloud and the solar wind.
Footprint Characteristics of Scalar Concentration in the Convective Boundary Layer
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Footprint characteristics for passive scalar concentration in the convective boundary layer (CBL)are investigated. A backward Lagrangian stochastic (LS) dispersion model and a large eddy simulation (LES) model are used in the investigation. Typical characteristics of the CBL and their responses to the surface heterogeneity are resolved from the LES. Then the turbulence fields are used to drive the backward LS dispersion. To remedy the spoiled description of the turbulence near the surface, MoninObukhov similarity is applied to the lowest LES level and the surface for the modeling of the backward LS dispersion. Simulation results show that the footprint within approximately 1 km upwind predominates in the total contribution. But influence from farther distances also exists and is even slightly greater than that from closer locations. Surface heterogeneity may change the footprint pattern to a certain degree.A comparison to three analytical models provides a validation of the footprint simulations, which shows the possible influence of along-wind turbulence and the large eddies in the CBL, as well as the surface heterogeneity.
Sensitivity of African easterly waves to boundary layer conditions
Directory of Open Access Journals (Sweden)
A. Lenouo
2008-06-01
Full Text Available A linearized version of the quasi-geostrophic model (QGM with an explicit Ekman layer and observed static stability parameter and profile of the African easterly jet (AEJ, is used to study the instability properties of the environment of the West African wave disturbances. It is found that the growth rate, the propagation velocity and the structure of the African easterly waves (AEW can be well simulated. Two different lower boundary conditions are applied. One assumes a lack of vertical gradient of perturbation stream function and the other assumes zero wind perturbation at the surface. The first case gives more realistic results since in the absence of horizontal diffusion, growth rate, phase speed and period have values of 0.5 day^{−1}, 10.83 m s^{−1} and 3.1 day, respectively. The zero wind perturbation at the surface case leads to values of these parameters that are 50 percent lower. The analysis of the sensitivity to diffusion shows that the magnitude of the growth rate decreases with this parameter. Modelled total relative vorticity has its low level maximum around 900 hPa under no-slip, and 700 hPa under free slip condition.
Appraisal of boundary layer trips for landing gear testing
McCarthy, Philip; Feltham, Graham; Ekmekci, Alis
2013-11-01
Dynamic similarity during scaled model testing is difficult to maintain. Forced boundary layer transition via a surface protuberance is a common method used to address this issue, however few guidelines exist for the effective tripping of complex geometries, such as aircraft landing gears. To address this shortcoming, preliminary wind tunnel tests were performed at Re = 500,000. Surface transition visualisation and pressure measurements show that zigzag type trips of a given size and location are effective at promoting transition, thus preventing the formation of laminar separation bubbles and increasing the effective Reynolds number from the critical regime to the supercritical regime. Extension of these experiments to include three additional tripping methods (wires, roughness strips, CADCUT dots) in a range of sizes, at Reynolds number of 200,000 and below, have been performed in a recirculating water channel. Analysis of surface pressure measurements and time resolved PIV for each trip device, size and location has established a set of recommendations for successful use of tripping for future, low Reynolds number landing gear testing.
Reactive chlorine chemistry in the boundary layer of coastal Antarctica
Zielcke, Johannes; Poehler, Denis; Friess, Udo; Hay, Tim; Eger, Philipp; Kreher, Karin; Platt, Ulrich
2015-04-01
A unique feature of the polar troposphere is the strong impact of halogen photochemistry, in which reactive halogen species are responsible for ozone depletion as well as the oxidation of elemental mercury and dimethyl sulphide. The source, however, as well as release and recycling mechanisms of these halogen species - for some species even abundances - are far from being completely known, especially of chlorine and iodine compounds. Here we present active long-path differential optical absorption spectroscopy (LP-DOAS) measurements conducted during austral spring 2012 at Ross Island, Antarctica, observing several species (BrO, O3, NO2, IO, ClO, OBrO, OClO, OIO, I2, CHOCHO, HCHO, HONO). For the first time, ClO was detected and quantified in the marine boundary layer of coastal Antarctica, with typical mixing ratios around 20 pptv and maxima around 50 pptv. Meteorological controls on the mixing ratio of ClO as well as the interplay with other halogen compounds will be discussed, such as the lack of observed OClO (< 1 pptv). The results seem to reflect previously in chamber studies observed dependences on ozone levels and solar irradiance.
Measurement of the dead layer thickness in a p-type point contact germanium detector
Jiang, Hao; Yue, Qian; Li, Yu-Lan; Kang, Ke-Jun; Li, Yuan-Jing; Li, Jin; Lin, Shin-Ted; Liu, Shu-Kui; Ma, Hao; Ma, Jing-Lu; Su, Jian; Tsz-King Wong, Henry; Yang, Li-Tao; Zhao, Wei; Zeng, Zhi
2016-09-01
A 994 g mass p-type PCGe detector has been deployed during the first phase of the China Dark matter EXperiment, aiming at direct searches for light weakly interacting massive particles. Measuring the thickness of the dead layer of a p-type germanium detector is an issue of major importance since it determines the fiducial mass of the detector. This work reports a method using an uncollimated 133Ba source to determine the dead layer thickness. The experimental design, data analysis and Monte Carlo simulation processes, as well as the statistical and systematic uncertainties are described. A dead layer thickness of 1.02 mm was obtained based on a comparison between the experimental data and the simulated results. Supported by National Natural Science Foundation of China (10935005, 10945002, 11275107, 11175099)
Effect of Polymer Inclusion in Preparation of Thick LZO Buffer Layers for YBCO Coated Conductors
Institute of Scientific and Technical Information of China (English)
Vyshnavi Narayanan; Isabel Van Driessche
2013-01-01
In this work,water-based precursor solutions suitable for dip-coating of thick La2Zr2O7 (LZO) buffer layers for coated conductors on Ni-5％W substrates with an inclusion of polymeric polyvinyl pyrrolidone were developed.The effect of varying percentage of the polymer addition on the preparation of the deposited films with maximum crack-free thickness was investigated.This novel water-based chemical solution deposition method involving polymers in two different chelate-chemistry compositions revealed the possibility to grow single,crack-free layers with thicknesses ranging from 140 to 280 nm,with good crystallinity and epitaxial growth.The effect of increasing polymer concentrations on the morphology and the structure of the films was studied.The appropriate buffer layer action of the films in preventing Ni diffusion was studied by X-ray photoelectron spectroscopy.
Effect of electrolyte temperature on the thickness of anodic aluminium oxide (AAO layer
Directory of Open Access Journals (Sweden)
P. Michal
2016-07-01
Full Text Available Effect of electrolyte temperature on the thickness of resulting oxide layer has been studied. Unlike previous published studies this article was aimed to monitor the relationship between electrolyte temperature and resulting AAO layer thickness in interaction with other input factors affecting during anodizing process under special process condition, i.e. lower concentration of sulphuric acid, oxalic acid, boric acid and sodium chloride. According to Design of Experiments (DOE 80 individual test runs of experiment were carried out. Using statistical analysis and artificial intelligence for evaluation, the computational model predicting the thickness of oxide layer in the range from 5 / μm to 15 / μm with tolerance ± 0,5 / μm was developed.
A comparative study of near-wall turbulence in high and low Reynolds number boundary layers
Metzger, M. M.; Klewicki, J. C.
2001-03-01
The present study explores the effects of Reynolds number, over three orders of magnitude, in the viscous wall region of a turbulent boundary layer. Complementary experiments were conducted both in the boundary layer wind tunnel at the University of Utah and in the atmospheric surface layer which flows over the salt flats of the Great Salt Lake Desert in western Utah. The Reynolds numbers, based on momentum deficit thickness, of the two flows were Rθ=2×103 and Rθ≈5×106, respectively. High-resolution velocity measurements were obtained from a five-element vertical rake of hot-wires spanning the buffer region. In both the low and high Rθ flows, the length of the hot-wires measured less than 6 viscous units. To facilitate reliable comparisons, both the laboratory and field experiments employed the same instrumentation and procedures. Data indicate that, even in the immediate vicinity of the surface, strong influences from low-frequency motions at high Rθ produce noticeable Reynolds number differences in the streamwise velocity and velocity gradient statistics. In particular, the peak value in the root mean square streamwise velocity profile, when normalized by viscous scales, was found to exhibit a logarithmic dependence on Reynolds number. The mean streamwise velocity profile, on the other hand, appears to be essentially independent of Reynolds number. Spectra and spatial correlation data suggest that low-frequency motions at high Reynolds number engender intensified local convection velocities which affect the structure of both the velocity and velocity gradient fields. Implications for turbulent production mechanisms and coherent motions in the buffer layer are discussed.