WorldWideScience

Sample records for boundary layer structure

  1. Structure of relaminarizing turbulent boundary layers

    Science.gov (United States)

    Ramesh, O.; Patwardhan, Saurabh

    2014-11-01

    Relaminarization of a turbulent boundary layer in a strongly accelerated flow has received a great attention in recent times. It has been found that such relaminarization is a general and regularly occurring phenomenon in the leading-edge region of a swept wing of an airplane (van Dam et al., 1993). In this work, we investigate the effect of initial Reynolds number on the process of relaminarization in turbulent boundary layers. The experimental and numerical investigation of relaminarizing turbulent boundary layers undergoing same history reveals that the boundary layer with higher initial Reynolds number relaminarizes at a lower pressure gradient value compared to the one with lower Reynolds number. This effect can be explained on the inviscid theory proposed earlier in the literature. Further, various parameter criteria proposed to predict relaminarization, are assessed and the structure of relaminarizing boundary layers is investigated. A mechanism for stabilization of near-wall low speed streaks is proposed.

  2. Microprobe of structure of crystal/liquid interface boundary layers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The molecular structures and its evolutive regularities within the boundary layers in the crystal growth of KDP and DKDP have been studied in real time by using holography and Raman microprobe. The experiments show that the molecular structure of mother solution within the boundary layers is distinctly different from that of the solutions alone. In this paper, the effects of cations within the boundary layers on the structure of solution are considered. Within the characteristic boundary layers, the effects of cations cause the changes in O-P-O bond angle, electronic density redistribution of the phosphate groups, and significant changes in the bond intensity, thus leading to the breaking of partial hydrogen bonds of the phosphate associations, the readjustment of geometry of anionic phosphate groups and desolvation, and the forming of the smectic ordering structure of the anions_cations. Finally, the crystallization unit of anion_cation should be formed at the proximate interface.

  3. Coherent structures in wave boundary layers. Part 1. Oscillatory motion

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen

    2010-01-01

    This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i......) Vortex tubes, essentially two-dimensional vortices close to the bed extending across the width of the boundary-layer flow, caused by an inflectional-point shear layer instability. The imprint of these vortices in the bed shear stress is a series of small, insignificant kinks and dips. (ii) Turbulent...

  4. Two Phases of Coherent Structure Motions in Turbulent Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Hua; JIANG Nan

    2007-01-01

    Two phases of coherent structure motion are acquired after obtaining conditional phase-averaged waveforms for longitudinal velocity of coherent structures in turbulent boundary layer based on Harr wavelet transfer. The correspondences of the two phases to the two processes (i.e. ejection and sweep) during a burst are determined.

  5. Boundary-Layer Wind Structure in a Landfalling Tropical Cyclone

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components of horizontal wind in the tropical cyclone boundary layer at landfall. For a steady tropical cyclone on a straight coastline at landfall, the magnitude of the radial component is greater in the offshoreflow side and the tangential component is greater over the sea, slightly offshore, therefore the greater total wind speed occurs in the offshore-flow side over the sea. The budget analysis suggests that: (1) a greater surface friction over land produces a greater inflow and the nonlinear effect advects the maximum inflow downstream, and (2) a smaller surface friction over the sea makes the decrease of the tangential wind component less than that over land. Moreover, the boundary layer wind structures in a tropical cyclone are related to the locations of the tropical cyclone relative to the coastline due to the different surface frictions. During tropical cyclone landfall, the impact of rough terrain on the cyclone increases, so the magnitude of the radial component of wind speed increases in the offshore-flow side and the tangential component outside the radius of maximum wind speed decreases gradually.

  6. Velocity-vorticity correlation structures in compressible turbulent boundary layer

    Science.gov (United States)

    Chen, Jun; Li, Shi-Yao; She, Zhen-Su

    2016-11-01

    A velocity-vorticity correlation structure (VVCS) analysis is applied to analyze data of 3-dimensional (3-D) direct numerical simulations (DNS), to investigate the quantitative properties of the most correlated vortex structures in compressible turbulent boundary layer (CTBL) at Mach numbers, Ma = 2 . 25 and 6 . 0 . It is found that the geometry variation of the VVCS closely reflects the streamwise development of CTBL. In laminar region, the VVCS captures the instability wave number of the boundary layer. The transition region displays a distinct scaling change of the dimensions of VVCS. The developed turbulence region is characterized by a constant spatial extension of the VVCS. For various Mach numbers, the maximum correlation coefficient of the VVCS presents a clear multi-layer structure with the same scaling laws as a recent symmetry analysis proposed to quantifying the sublayer, the log-layer, and the wake flow. A surprising discovery is that the wall friction coefficient, Cf, holds a "-1"-power law of the wall normal distance of the VVCS, ys. This validates the speculation that the wall friction is determined by the near-wall coherent structure, which clarifies the correlation between statistical structures and the near-wall dynamics. Project 11452002 and 11172006 supported by National Natural Science Foundation of China.

  7. Identification of Lagrangian coherent structures in the turbulent boundary layer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using Finite-Time Lyapunov Exponents (FTLE) method, Lagrangian coherent structures (LCSs) in a fully developed flat-plate turbulent boundary layer are successfully identified from a two-dimensional (2D) velocity field obtained by time-resolved 2D PIV measurement. The typical LCSs in the turbulent boundary layer are hairpin-like structures, which are characterized as legs of quasi-streamwise vor- tices extending deep into the near wall region with an inclination angle θ to the wall, and heads of the transverse vortex tube located in the outer region. Statistical analysis on the characteristic shape of typical LCS reveals that the probability density distribution of θ accords well with t-distribution in the near wall region, but presents a bimodal distribution with two peaks in the outer region, corresponding to the hairpin head and the hairpin neck, respectively. Spatial correlation analysis of FTLE field is im- plemented to get the ensemble-averaged inclination angle θ R of typical LCS. θ R first increases and then decreases along the wall-normal direction, similar to that of the mean value of θ. Moreover, the most probable value of θ saturates at y+=100 with the maximum value of about 24°, suggesting that the most likely position where hairpins transit from the neck to the head is located around y+=100. The ensem- ble-averaged convection velocity Uc of typical LCS is finally calculated from temporal-spatial correla- tion analysis of FTLE field. It is found that the wall-normal profile of the convection velocity Uc(y) ac- cords well with the local mean velocity profile U(y) beyond the buffer layer, evidencing that the down- stream convection of hairpins determines the transportation properties of the turbulent boundary layer in the log-region and beyond.

  8. Identification of Lagrangian coherent structures in the turbulent boundary layer

    Institute of Scientific and Technical Information of China (English)

    PAN Chong; WANG JinJun; ZHANG Cao

    2009-01-01

    Using Finite-Time Lyapunov Exponents (FTLE) method, Lagrangian coherent structures (LCSs) in a fully developed flat-plate turbulent boundary layer are successfully identified from a two-dimensional (2D) velocity field obtained by time-resolved 2D PIV measurement. The typical LCSs in the turbulent boundary layer are hairpin-like structures, which are characterized as legs of quasi-streamwise vor-tices extending deep into the near wall region with an inclination angle θto the wall, and heads of the transverse vortex tube located in the outer region. Statistical analysis on the characteristic shape of typical LCS reveals that the probability density distribution of # accords well with t-distribution in the near wall region, but presents a bimodal distribution with two peaks in the outer region, corresponding to the hairpin head and the hairpin neck, respectively. Spatial correlation analysis of FTLE field is im-plemented to get the ensemble-averaged inclination angle θR of typical LCS. θR first increases and then decreases along the wall-normal direction, similar to that of the mean value of θ. Moreover, the most probable value of 8 saturates at Y+=100 with the maximum value of about 24°, suggesting that the most likely position where hairpins transit from the neck to the head is located around Y+=100. The ensem-ble-averaged convection velocity Uc of typical LCS is finally calculated from temporal-spatial correla-tion analysis of FTLE field. It is found that the wall-normal profile of the convection velocity Uc(Y) ac-cords well with the local mean velocity profile U(y) beyond the buffer layer, evidencing that the down-stream convection of hairpins determines the transportation properties of the turbulent boundary layer in the log-region and beyond.

  9. Coherent structures in wave boundary layers. Part 2. Solitary motion

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Jensen, Palle Martin; Sørensen, Lone B.;

    2010-01-01

    in an oscillating water tunnel. Two kinds of measurements were made: bed shear stress measurements and velocity measurements. The experiments show that the solitary-motion boundary layer experiences three kinds of flow regimes as the Reynolds number is increased: (i) laminar regime; (ii) laminar regime where...... the boundary-layer flow experiences a regular array of vortex tubes near the bed over a short period of time during the deceleration stage; and (iii) transitional regime characterized with turbulent spots, revealed by single/multiple, or, sometimes, quite dense spikes in the bed shear stress traces...

  10. Plasma structures inside boundary layers of magnetic clouds

    Institute of Scientific and Technical Information of China (English)

    WEI Fengsi; FENG Xueshang; YANG Fang; ZHONG Dingkun

    2004-01-01

    We analyze the plasma structures for 50 magnetic cloud boundary layers (BLs) which were observed by the spacecraft WIND from February, 1995 to June 2003. Main discoveries are: (ⅰ) The BL is a non-pressure balanced structure, its total pressure, PT,L, (the thermal pressure, Pth,L, plus the magnetic pressure, PM,L) is generally less than the total pressure PT,S and PT,C of the front solar wind (SW) and the following magnetic clouds (MC), respectively. The rising of the Pth,L inside the BLs is often not enough to compensate the declining of PM,L; (ⅱ) The ratio of electron and proton temperatures, (Te/Tp)L, inside the BLs is offen less than (Te/Tp)s and (Te/Tp)c in the SW and the MC, respectively, because the heating of proton is more obvious than that of electron; and (ⅲ) The reversal jet is observed in 80% BLs investigated, in which the reversal jets from all of three directions (±Vx, ±Vy, ±Vz), were observed in ≈25% BLs. These basic characteristics could be associated with a possible magnetic reconnection process inside the BLs. The results above suggest that the cloud BL owns the plasma structures different from those in the SW and MC. It is a manifestation for the existing significant dynamic interaction between the magnetic cloud and the solar wind.

  11. Detecting Multi-Scale Coherent Eddy Structures and Intermittency in Turbulent Boundary Layer by Wavelet Analysis

    Institute of Scientific and Technical Information of China (English)

    JIANG Nan; ZHANG Jin

    2005-01-01

    @@ Multi-scale decomposition by wavelet transform has been performed to velocity time sequences obtained by fine measurements of turbulent boundary layer flow. A conditional sampling technique for detecting multi-scale coherent eddy structures in turbulent field is proposed by using multi-scale instantaneous intensity factor and flatness factor of wavelet coefficients. Although the number of coherent eddy structures in the turbulent boundary layer is very small, their energy percentage with respect to the turbulence kinetic energy is high. Especially in buffer layer, the energy percentages of coherent structures are significantly higher than those in the logarithmic layer, indicating that the buffer layer is the most active region in the turbulent boundary layer. These multi-scale coherent eddy structures share some common dynamical characteristics and are responsible for the anomalous scaling law in the turbulent boundary layer.

  12. Impacts of sea spray on the boundary layer structure of Typhoon Imbudo

    Institute of Scientific and Technical Information of China (English)

    TANG Jie; LI Weibiao; CHEN Shumin; WANG Lei

    2013-01-01

    High winds in a typhoon over the ocean can produce substantial amounts of spray in the lower part of the atmospheric boundary layer, which can modify the transfer of momentum, heat, and moisture across the air-sea interface. However, the consequent effects on the boundary layer structure and the evolution of the typhoon are largely unknown. The focus of this paper is on the role of sea spray on the storm intensity and the structure of the atmospheric boundary layer. The case study is Typhoon Imbudo in July 2003. The results show that sea spray tends to intensify storms by increasing the sea surface heat fluxes. Moreover, the effects of sea spray are mainly felt in boundary layer. Spray evaporation causes the atmospheric boundary layer to experience cooling and moistening. Sea spray can cause significant effects on the structure of boundary layer. The boundary-layer height over the eyewall area east to the center of Typhoon Imbudo was increased with a maximum up to about 550 m due to sea spray, which is closely related with the enhancements of the heat fluxes, upward motions, and horizontal winds in this region due to sea spray.

  13. Influence of relaxation processes on the structure of a thermal boundary layer in partially ionized argon

    Energy Technology Data Exchange (ETDEWEB)

    van Dongen, M.E.H.; van Eck, R.B.P.; Hagebeuk, H.J.L.; Hirschberg, A.; Hutten-Mansfeld, A.C.B.; Jager, H.J.; Willems, J.F.H. (Technische Hogeschool Eindhoven (Netherlands))

    1981-08-01

    A model for the unsteady thermal boundary-layer development at the end wall of a shock tube, in partially ionized atmospheric argon, is proposed. Consideration is given to ionization and thermal relaxation processes. In order to obtain some insight into the influence of the relaxation processes on the structure of the boundary layer, a study of the frozen and equilibrium limits has been carried out. The transition from a near-equilibrium situation in the outer part of the boundary layer towards a frozen situation near the wall is determined numerically. Experimental data on the electron and atom density profiles obtained from laser schlieren and absorption measurements are presented. A quantitative agreement between theory and experiment is found for a moderate degree of ionization (3%). At a higher degree of ionization the structure of the boundary layer is dominated by the influence of radiation cooling, which has been neglected in the model.

  14. Modeling of individual coherent structures in wall region of a turbulent boundary layer

    Institute of Scientific and Technical Information of China (English)

    周恒; 陆昌根; 罗纪生

    1999-01-01

    Models for individual coherent structures in the wall region of a turbulent boundary layer are proposed. Method of numerical simulations is used to follow the evolution of the structures. It is found that the proposed model does bear many features of coherent structures found in experiments.

  15. Coherent structures in a zero-pressure-gradient and a strongly decelerated boundary layer

    Science.gov (United States)

    Simens, Mark P.; Gungor, Ayse G.; Maciel, Yvan

    2016-04-01

    Coherent structures in a strongly decelerated large-velocity-defect turbulent boundary layer (TBL) and a zero pressure gradient (ZPG) boundary layer are analysed by direct numerical simulation (DNS). The characteristics of the one-point velocity stastistics are also considered. The adverse pressure gradient (APG) TBL simulation is a new one carried out by the present authors. The APG TBL begins as a zero pressure gradient boundary layer, decelerates under a strong adverse pressure gradient, and separates near the end of the domain in the form of a very thin separation bubble. The one-point velocity statistics in the outer region of this large-defect boundary layer are compared to those of two other large-velocity-defect APG TBLs (one in dynamic equilibrium, the other in disequilibrium) and a mixing layer. In the upper half of the large-defect boundary layers, the velocity statistics are similar to those of the mixing layer. The dominant peaks of turbulence production and Reynolds stresses are located in the middle of the boundary layers. Three-dimensional spatial correlations of (u, u) and (u, v) show that coherence is lost in the streamwise and spanwise directions as the velocity defect increases. Near-wall streaks tend to disappear in the large-defect zone of the flow to be replaced by more disorganized u motions. Near-wall sweeps and ejections are also less numerous. In the outer region, the u structures tend to be shorter, less streaky, and more inclined with respect to the wall than in the ZPG TBL. The sweeps and ejections are generally bigger with respect to the boundary layer thickness in the large-defect boundary layer, even if the biggest structures are found in the ZPG TBL. Large sweeps and ejections that reach the wall region (wall-attached) are less streamwise elongated and they occupy less space than in the ZPG boundary layer. The distinction between wall-attached and wall-detached structures is not as pronounced in the large-defect TBL.

  16. Analyses of structure of planetary boundary layer in ice camp over Arctic ocean

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The vertical structure of Planetary boundary layer over Arctic floating ice is presented by using about 50 atmospheric profiles and relevant data sounded at an ice station over Arctic Ocean from 22 August to 3 September, 2003. It shows that the height of the convective boundary layer in day is greater than that of the stability boundary layer in night. The boundary layer can be described as vertical structures of stability, instability and multipling The interaction between relative warm and wet down draft air from up level and cool air of surface layer is significant, which causes stronger wind shear, temperature and humidity inversion with typical wind shear of 10 m/s/100 m, intensity of temperature inversion of 8 ℃/100 m. While the larger pack ice is broken by such process, new ice free area in the high latitudes of arctic ocean. The interactions between air/ice/water are enhanced. The fact helps to understanding characteristics of atmospheric boundary layer and its effect in Arctic floating ice region.

  17. Relating instantaneous structures and mean flow characteristics of turbulent boundary layers

    Science.gov (United States)

    de Silva, Charitha; Philip, Jimmy; Hutchins, Nicholas; Marusic, Ivan

    2016-11-01

    Recent works have highlighted the presence of thin interfacial layers of high shear that demarcate regions of relatively uniform streamwise momentum in turbulent boundary layers. Here, we aim to further our understanding of how such a zonal-like structural arrangement manifests in the averaged flow statistics. To this end, we start by identifying high shear interfaces in turbulent boundary layers employing particle image velocimetry databases that span more than an order of magnitude of friction Reynolds number (Reτ =103 -104). Inspection of these recurrent features reveal that their geometry is highly contorted and exhibits self-similarity across a wide range of scales. The Reynolds number dependence of these features is also investigated, together with their associated scaling. Based on these findings and the persistent presence of sharp changes in momentum in turbulent boundary layers, a simple model is presented towards reconstructing the mean velocity profile.

  18. Study of Boundary Structures.

    Science.gov (United States)

    1982-09-01

    THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE .......... 11 - 4 TRANSITIONS AND PHASE EQUILIBRIA AMONG GRAIN BOUNDARY STRUCTURES...19 B THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE .......... 37 C TRANSITIONS AND PHASE EQUILIBRIA AMONG GRAIN BOUNDARY...layer structure. 10 SECTION 3 THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE The (111) planes of the fcc structure is stacked as ABCABC... as

  19. Simultaneous measurement of aero-optical distortion and turbulent structure in a heated boundary layer

    Science.gov (United States)

    Saxton-Fox, Theresa; McKeon, Beverley; Smith, Adam; Gordeyev, Stanislav

    2014-11-01

    This study examines the relationship between turbulent structures and the aero-optical distortion of a laser beam passing through a turbulent boundary layer. Previous studies by Smith et al. (AIAA, 2014--2491) have found a bulk convection velocity of 0 . 8U∞ for aero-optical distortion in turbulent boundary layers, motivating a comparison of the distortion with the outer boundary layer. In this study, a turbulent boundary layer is developed over a flat plate with a moderately-heated section of length 25 δ . Density variation in the thermal boundary layer leads to aero-optical distortion, which is measured with a Malley probe (Smith et al., AIAA, 2013--3133). Simultaneously, 2D PIV measurements are recorded in a wall-normal, streamwise plane centered on the Malley probe location. Experiments are run at Reθ = 2100 and at a Mach number of 0.03, with the heated wall 10 to 20°C above the free stream temperature. Correlations and conditional averages are carried out between Malley probe distortion angles and flow features in the PIV vector fields. Aero-optical distortion in this study will be compared to distortion in higher Mach number flows studied by Gordeyev et al. (J. Fluid Mech., 2014), with the aim of extending conclusions into compressible flows. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.

  20. Fundamental interactions of vortical structures with boundary layers in two-dimensional flows

    DEFF Research Database (Denmark)

    Coutsias, E.A.; Lynov, Jens-Peter

    1991-01-01

    in the vorticity-stream function representation for bounded geometries. Fundamental processes connected to vorticity detachment from the boundary layers caused by the proximity of vortical structures are described. These processes include enstrophy enhancement of the main flow during bursting events, and pinning...

  1. Internal structure and spatial dimensions of whistler wave regions in the magnetopause boundary layer

    Directory of Open Access Journals (Sweden)

    G. Stenberg

    2007-11-01

    Full Text Available We use whistler waves observed close to the magnetopause as an instrument to investigate the internal structure of the magnetopause-magnetosheath boundary layer. We find that this region is characterized by tube-like structures with dimensions less than or comparable with an ion inertial length in the direction perpendicular to the ambient magnetic field. The tubes are revealed as they constitute regions where whistler waves are generated and propagate. We believe that the region containing tube-like structures extend several Earth radii along the magnetopause in the boundary layer. Within the presumed wave generating regions we find current structures moving at the whistler wave group velocity in the same direction as the waves.

  2. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers.

    Science.gov (United States)

    Najmaei, Sina; Liu, Zheng; Zhou, Wu; Zou, Xiaolong; Shi, Gang; Lei, Sidong; Yakobson, Boris I; Idrobo, Juan-Carlos; Ajayan, Pulickel M; Lou, Jun

    2013-08-01

    Single-layered molybdenum disulphide with a direct bandgap is a promising two-dimensional material that goes beyond graphene for the next generation of nanoelectronics. Here, we report the controlled vapour phase synthesis of molybdenum disulphide atomic layers and elucidate a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers. Furthermore, a nucleation-controlled strategy is established to systematically promote the formation of large-area, single- and few-layered films. Using high-resolution electron microscopy imaging, the atomic structure and morphology of the grains and their boundaries in the polycrystalline molybdenum disulphide atomic layers are examined, and the primary mechanisms for grain boundary formation are evaluated. Grain boundaries consisting of 5- and 7- member rings are directly observed with atomic resolution, and their energy landscape is investigated via first-principles calculations. The uniformity in thickness, large grain sizes, and excellent electrical performance signify the high quality and scalable synthesis of the molybdenum disulphide atomic layers.

  3. Boundary layer structure and decoupling from synoptic scale flow during NAMBLEX

    Directory of Open Access Journals (Sweden)

    E. G. Norton

    2006-01-01

    Full Text Available This paper presents an overview of the meteorology and planetary boundary layer structure observed during the NAMBLEX field campaign to aid interpretation of the chemical and aerosol measurements. The campaign has been separated into five periods corresponding to the prevailing synoptic condition. Comparisons between meteorological measurements (UHF wind profiler, Doppler sodar, sonic aneometers mounted on a tower at varying heights and a standard anemometer and the ECMWF analysis at 10m and 1100 m identified days when the internal boundary layer was decoupled from the synoptic flow aloft. Generally the agreement was remarkably good apart from during period one and on a few days during period four when the diurnal swing in wind direction implies a sea/land breeze circulation near the surface. During these periods the origin of air sampled at Mace Head would not be accurately represented by back trajectories following the winds resolved in ECMWF analyses. The wind profiler observations give a detailed record of boundary layer structure including an indication of its depth, average wind speed and direction. Turbulence statistics have been used to assess the height to which the developing internal boundary layer, caused by the increased surface drag at the coast, reaches the sampling location under a wide range of marine conditions. Sampling conducted below 10 m will be impacted by emission sources at the shoreline in all wind directions and tidal conditions, whereas sampling above 15 m is unlikely to be affected in any of the wind directions and tidal heights sampled during the experiment.

  4. Structure of the marine boundary layer over north western Indian Ocean during 1983 summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sadhuram, Y.; Michael, G.S.; Rao, L.V.G.

    STRUCTURE OF THE MARINE BOUNDARY LAYER OVER NORTH WESTERN INDIAN OCEAN DURING 1983 SUMMER MONSOON (Research Note) M. R. RAMESH KUMAR, Y. SADHURAM, G. S. MICHAEL and L. V. GANGADHARA RAO Physical Oceanography Division, National Institute of Oceanography..., Dona Paula, Goa - 403 004, India (Received 7 August, 1989) Abstract. The spatial variability of the structure of the lower troposphere over the northwestern Indian Ocean for the period 12th July to 2nd September, 1983 has been studied using upper...

  5. Characteristics of the Boundary Layer Structure of Sea Fog on the Coast of Southern China

    Institute of Scientific and Technical Information of China (English)

    HUANG Huijun; LIU Hongnian; JIANG Weimei; HUANG Jian; MAO Weikang

    2011-01-01

    Using boundary layer data with regard to sea fog observed at the Science Experiment Base for Marine Meteorology at Bohe,Guangdong Province,the structure of the atmospheric boundary layer and the characteristics of the tops of the fog and the clouds were analyzed.In addition,the effects of advection,radiation,and turbulence during sea fog were also investigated.According to the stability definition of saturated,wet air,the gradient of the potential pseudo-equivalent temperature equal to zero was defined as the thermal turbulence interface.There is evidence to suggest that two layers of turbulence exist in sea fog.Thermal turbulence produced by long-wave radiation is prevalent above the thermal turbulence interface,whereas mechanical turbulence aroused by wind shear is predominant below the interface.The height of the thermal turbulence interface was observed between 180 m and 380 m.Three important factors are closely related to the development of the top of the sea fog:(1) the horizontal advection of the water vapor,(2) the long-wave radiation of the fog top,and (3) the movement of the vertical turbulence.Formation,development,and dissipation are the three possible phases of the evolution of the boundary-layer structure during the sea fog season.In addition,the thermal turbulence interface is the most significant turbulence interface during the formation and development periods; it is maintained after sea fog rises into the stratus layer.

  6. Random Boundary Simulation of Pumping Groundwater on Two-layer Soft Soil Structure with Porous Media

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on random theory,fluid dynamics,porous media and soil mechanics,the porosity and random characteristic of the two-layer soft soil in Wuhan region were studied in this paper.The random seepage coefficient on the two-layer soft soil was analyzed,and the seepage model and its random distribution function were given.The groundwater flow differential equations related to the two layer soft soil structure were also established.The evaluation procedure of effect boundary on the pumping water in deep foundation pit was put forward.Moreover,with an engineering example,the probability distribution on random boundary prediction for pumping water of foundation pit was computed.

  7. Vertical structure of aeolian turbulence in a boundary layer with sand transport

    Science.gov (United States)

    Lee, Zoe S.; Baas, Andreas C. W.

    2016-04-01

    Recently we have found that Reynolds shear stress shows a significant variability with measurement height (Lee and Baas, 2016), and so an alternative parameter for boundary layer turbulence may help to explain the relationship between wind forcing and sediment transport. We present data that were collected during a field study of boundary layer turbulence conducted on a North Atlantic beach. High-frequency (50 Hz) 3D wind velocity measurements were collected using ultrasonic anemometry at thirteen different measurement heights in a tight vertical array between 0.11 and 1.62 metres above the surface. Thanks to the high density installation of sensors a detailed analysis of the boundary layer flow can be conducted using methods more typically used in studies where data is only available from one or just a few measurement heights. We use quadrant analysis to explore the vertical structure of turbulence and track the changes in quadrant signatures with measurement elevation and over time. Results of quadrant analysis, at the 'raw' 50 Hz timescale, demonstrates the tendency for event clustering across all four quadrants, which implies that at-a-point quadrant events are part of larger-scale turbulent structures. Using an HSV colour model, applied to the quadrant analysis data and plotted in series, we create colour maps of turbulence, which can provide a clear visualisation of the clustering of event activity at each height and illustrate the shape of the larger coherent flow structures that are present within the boundary layer. By including a saturation component to the colour model, the most significant stress producing sections of the data are emphasised. This results in a 'banded' colour map, which relates to clustering of quadrant I (Outward Interaction) and quadrant IV (Sweep) activity, separate from clustering of quadrant II (Burst) and quadrant III (Inward Interaction). Both 'sweep-type' and 'burst-type' sequences are shown to have a diagonal structure

  8. Assessment of thermal structure of boundary layer atmosphere of Western Siberia

    OpenAIRE

    Akhmetshina, Anna

    2013-01-01

    The assessment of frequency of temperature inversions makes it possible to investigate the probability of coincidence of unfavorable conditions of atmospheric stratification and the results of the intensive business activity. This paper is devoted to the study of thermal structure of the atmosphere boundary layer of Western Siberian territory in the period from 1990 to 2010 by using reanalysis of NCEP/NCAR data. The data of reanalysis is the only available information for similar research. Ba...

  9. An Observational Study of the Structure of the Nocturnal Boundary Layer

    DEFF Research Database (Denmark)

    Mahrt, Larry; Heald, R. C.; Lenschow, D. H.;

    1980-01-01

    In an effort to describe the basic vertical structure of the nocturnal boundary layer, observations from four experiments are analyzed. During the night, the depth of significant cooling appears to increase with time while the depth of the turbulence and height of the low level wind maximum tend...... to remain constant or decrease with time. Since the inversion layer extends above the low level wind maximum and shear is small in the region of the low level jet, the Richardson number reaches a maximum at the jet level and then decreases again with height. As a result, turbulence is observed...

  10. Turbulent boundary layer control through spanwise wall oscillation using Kagome lattice structures

    Science.gov (United States)

    Bird, James; Santer, Matthew; Morrison, Jonathan

    2015-11-01

    It is well established that a reduction in skin-friction and turbulence intensity can be achieved by applying in-plane spanwise forcing to a surface beneath a turbulent boundary layer. It has also been shown in DNS (M. Quadrio, P. Ricco, & C. Viotti; J. Fluid Mech; 627, 161, 2009), that this phenomenon is significantly enhanced when the forcing takes the form of a streamwise travelling wave of spanwise perturbation. In the present work, this type of forcing is generated by an active surface comprising a compliant structure, based on a Kagome lattice geometry, supporting a membrane skin. The structural design ensures negligible wall normal displacement while facilitating large in-plane velocities. The surface is driven pneumatically, achieving displacements of 3 mm approximately, at frequencies in excess of 70 Hz for a turbulent boundary layer at Reτ ~ 1000 . As the influence of this forcing on boundary layer is highly dependent on the wavenumber and frequency of the travelling wave, a flat surface was designed and optimised to allow these forcing parameters to be varied, without reconfiguration of the experiment. Simultaneous measurements of the fluid and surface motion are presented, and notable skin-friction drag reduction is demonstrated. Airbus support agreement IW202838 is gratefully acknowledged.

  11. Spectral structure and linear mechanisms in a 'rapidly' distorted boundary layer

    Science.gov (United States)

    Diwan, Sourabh; Morrison, Jonathan

    2016-11-01

    A characteristic feature of a turbulent boundary layer (TBL) at high Reynolds numbers is the presence of coherent motions such as the 'large scale motions' and 'superstructures'. In this work we attempt to mimic such coherent motions and their spectral structure using a simplified experimental arrangement of a boundary layer flow over a flat plate subjected to grid-generated turbulence and/or localized patch of surface roughness. The velocity measurements done downstream of a grit roughness patch (in absence of grid turbulence) show that over a certain distance the energy spectrum of streamwise velocity fluctuations shows a bi-modal shape which resembles that found in a high-Re TBL. We also carry out experiments with both grid turbulence and grit roughness present and show that it is possible to 'synthesize' the structure of a TBL in the wall-normal direction, in the limited context of streamwise coherent motions, using the present experimental design. These results indicate that the predictions of the Rapid Distortion Theory (RDT) can be applied to the present case in a region close to the plate leading edge, and we examine the linearized effects of 'blocking' and 'shear' on turbulent fluctuations near the edge of the boundary layer and close to the wall in the framework of the RDT. We acknowledge financial support from EPSRC (Grant No. EP/1037938).

  12. Complexity of localised coherent structures in a boundary-layer flow

    CERN Document Server

    Khapko, Taras; Kreilos, Tobias; Schlatter, Philipp; Eckhardt, Bruno; Henningson, Dan S

    2013-01-01

    We study numerically transitional coherent structures in a boundary-layer flow with homogeneous suction at the wall (the so-called asymptotic suction boundary layer ASBL). The dynamics restricted to the laminar-turbulent separatrix is investigated in a spanwisely extended domain that allows for robust localisation of all edge states. We work at fixed Reynolds number and study the edge states as a function of the streamwise period. We demonstrate the complex spatio-temporal dynamics of these localised states, which exhibits multistability and undergoes complex bifurcations leading from periodic to chaotic regimes. It is argued that in all regimes the dynamics restricted to the edge is essentially low-dimensional and non-extensive.

  13. A Study of the Atmospheric Boundary Layer Structure During a Clear Day in the Arid Region of Northwest China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiang; WANG Sheng

    2009-01-01

    The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to analyze the distribution and characteristics of the ABL in the extremely arid desert in Dunhuang, Northwest China. These data show that the daytime convective boundary layer and night time stable boundary layer in this area extend to higher altitudes than in other areas. In the night time, the stable boundary layer exceeds 900 m in altitude and can sometimes peak at 1750 m, above which the residual layer may reach up to about 4000 m. The daytime convective boundary layer develops rapidly after entering the residual layer, and exceeds 4000 m in thickness. The results show that the deep convective boundary layer in the daytime is a pre-requisite for maintaining the deep residual mixed layer in the night time. Meanwhile, the deep residual mixed layer in the night time provides favorable thermal conditions for the development of the convective boundary layer in the daytime. The prolonged periods of clear weather that often occurs in this area allow the cumulative effect of the atmospheric residual layer to develop fully, which creates thermal conditions beneficial for the growth of the daytime convective boundary layer. At the same time, the land surface process and atmospheric motion within the surface layer in this area also provide helpful support for forming the particular structure of the thermal ABL. High surface temperature is clearly the powerful external thermal forcing for the deep convective boundary layer. Strong sensible heat flux in the surface layer provides the required energy. Highly convective atmosphere and strong turbulence provide the necessary dynamic conditions, and the accumulative effect of the residual layer provides a favorable thermal environment.

  14. An investigation of turbulence structure in a low Reynolds number incompressible turbulent boundary layer

    Science.gov (United States)

    Strataridakis, Constantine John

    Hot-wire anemometry measurements in an incompressible turbulent boundary-layer flow over a flat plate at zero pressure gradient were made using two X-probes simultaneously. The experiment was performed in the large Atmospheric Boundary-Layer Wind Tunnel at the University of California, Davis. The 7.32 meter long flat plate installed within the wind tunnel generated approximately 20 cm thick boundary layer, R (sub theta) approximately 4,000. Mean velocity and turbulence intensity data very close to the wall (y(+) is greater than or = to 1) were measured with a single hot wire to improve the measurement resolution. Space-time correlations of mu' and upsilon' velocities and of their instantaneous product were obtained with a pair of X-wires. The mean convection velocities, the extent in space, the mean inclination angles, and coherence characteristics of the mu', upsilon' and (mu')(upsilon') large-scale structures are presented. (The (mu')(upsilon') results are presented for the first time.) The mu' structure is inclined at a small angle (19 deg) to the wall, while the upsilon' and (mu')(upsilon') structures propagate almost at wall-normal directions. Each of the mu' and upsilon' structures appears elongated in the direction of the corresponding velocity fluctuation and is limited to delta-extent in the other two directions. The similarity between the upsilon' and (mu')(upsilon') suggests that the (mu')(upsilon') might mainly be a consequence of the motion of the upsilon' structure. Finally, a possible explanation for the differences between the (mu')(upsilon'), upsilon' and the mu' structures is the existence of different coherent scales, one dominating mu' and the other dominating upsilon' and (mu')(upsilon').

  15. Structure and dynamics of turbulent boundary layer flow over healthy and algae-covered corals

    Science.gov (United States)

    Stocking, Jonathan B.; Rippe, John P.; Reidenbach, Matthew A.

    2016-09-01

    Fine-scale velocity measurements over healthy and algae-covered corals were collected in situ to characterize combined wave-current boundary layer flow and the effects of algal canopies on turbulence hydrodynamics. Data were collected using acoustic Doppler velocimetry and particle image velocimetry. Flow over healthy corals is well described by traditional wall-bounded shear layers, distinguished by a logarithmic velocity profile, a local balance of turbulence production and dissipation, and high levels of bed shear stress. Healthy corals exhibit significant spatial heterogeneity in boundary layer flow structure resulting from variations in large-scale coral topography. By contrast, the turbulence structure of algae-covered corals is best represented by a plane mixing layer, with a sharp inflection point in mean velocity at the canopy top, a large imbalance of turbulence production and dissipation, and strongly damped flow and shear stresses within the canopy. The presence of an algal canopy increases turbulent kinetic energy within the roughness sublayer by ~2.5 times compared to healthy corals while simultaneously reducing bed shear stress by nearly an order of magnitude. Reduced bed shear at the coral surface and within-canopy turbulent stresses imply reduced mass transfer of necessary metabolites (e.g., oxygen, nutrients), leading to negative impacts on coral health.

  16. INTERACTIVE STUDY BETWEEN IDENTICAL COHERENT STRUCTURES IN THE WALL REGION OF A TURBULENT BOUNDARY LAYER

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A theoretical model for identical coherent structures in the wall region of a turbulent boundary layer was proposed, using the idea of general resonant triad of the hydrodynamic stability. The evolution of the structures in the wall region of a turbulent boundary layer was studied by combining the compact finite differences of high numerical accuracy and the Fourier spectral hybrid method for solving the three dimensional Navier-Stokes equations. In this method, the third order mixed explicit-implicit scheme was applied for the time integration. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space were introduced, respectively. The fourth-order compact schemes satisfied by the velocities and pressure in spectral space was derived. As an application, the method was implemented to the wall region of a turbulent boundary to study the evolution of identical coherent structures. It is found that the numerical results are satisfactory.

  17. The effect of pressure gradient on the structure of an equilibrium turbulent boundary layer

    Science.gov (United States)

    Lei, Ting-Kwo

    1993-01-01

    Hot-wire anemometry was used to study the effect of adverse pressure gradient on the large-scale structures of equilibrium turbulent boundary layers. A previously existing zero-pressure gradient wind tunnel was modified into an adverse-pressure gradient wind tunnel, which had the capability of creating designated adverse-pressure gradient equilibrium turbulent boundary layer flows. The range of the equilibrium parameter beta was from 0.0 to 1.8 along a 1.50 m long test section of the wind tunnel. Computer programs were developed to predict the geometric shape of the test section for an equilibrium adverse-pressure gradient turbulent boundary layer flow. The numerical prediction of the test section geometry was found to be satisfactory and a substantial effort was saved in the establishment of an equilibrium boundary layer. Three equilibrium boundary layer flows at values of beta = 0.0, 0.8, and 1.8, which respectively represents zero, mild, and strong adverse pressure gradient, were established and were found to be suitable for turbulence structure measurements. Space-time correlation measurements were carried out to determine the convection velocities and inclination angles of the large-scale structures for the three different pressure gradient cases. The convection velocity measurements were performed at various heights which ranged form y(sup +) = 225 to 525 for each beta value. It was found that, within the range of height of the measurements, the convection velocity was independent of height In the case of the strong adverse-pressure gradient flow, the convection velocity was observed to be much lower than the convection velocity observed in the case of zero-pressure gradient. In the case of the mild-pressure gradient flow, it was observed that the pressure gradient effect on the convection velocity was negligible as compared to the zero-pressure gradient case. The inclination angle in the case of strong-pressure gradient case was found to be much greater than

  18. Wake structures of two side by side spheres in a tripped boundary layer flow

    Science.gov (United States)

    Canli, Eyüb; Özgören, Muammer; Dogan, Sercan; Hilmi Aksoy, Muharrem; Akilli, Huseyin

    2014-03-01

    Two independent spheres were placed in a side by side arrangement and flow structure in the wake region of the spheres was investigated with a Particle Image Velocimetry (PIV) system when the spheres were in a boundary layer over a flat plate as a special case. Reynolds number was 5000 based on the sphere diameter which was 42.5 mm. Boundary layer was tripped 8mm away from the leading edge of the flat plate with a 5 mm trip wire. The thickness of the hydrodynamically developed boundary layer was determined as 63mm which was larger than the sphere diameter of D=42.5mm. Wake region of the spheres was examined from point of flow physics for the different sphere locations in the ranges of 0≤G/D ≤1.5 and 0≤S/D ≤1.5 where G and S were the distance between the spheres and the distance between the bottom point of the spheres and the flat plate surface, respectively. Depending on the different sphere locations, instantaneous and time averaged vorticity data, scalar values of time-averaged velocity components and their root mean square (rms) values and time averaged vorticity data are presented in the study for the evaluation of wake region of the spheres. It is demonstrated that the gap between the two spheres and the interaction between the gap and the boundary layer greatly affects flow pattern, especially when spheres are located near to the flat plate surface, i.e. S/D=0.1 for 0≤G/D ≤1.5. Different distances between the spheres resulted in various flow patterns as the spheres were approached to the flat plate. The distance S/D=0.1 for all gap values has the strongest effect on the wake structures. Beyond G/D=1.0, the sphere wakes tend to be similar to single sphere case. The instantaneous vorticity fields of the side by side arrangements comprised wavy structures in higher level comparing to an individual sphere case. The gap flow intensifies the occurrence of small scale eddies in the wake region. The submersion rate of the spheres actually determines the

  19. Wake structures of two side by side spheres in a tripped boundary layer flow

    Directory of Open Access Journals (Sweden)

    Canli Eyüb

    2014-03-01

    Full Text Available Two independent spheres were placed in a side by side arrangement and flow structure in the wake region of the spheres was investigated with a Particle Image Velocimetry (PIV system when the spheres were in a boundary layer over a flat plate as a special case. Reynolds number was 5000 based on the sphere diameter which was 42.5 mm. Boundary layer was tripped 8mm away from the leading edge of the flat plate with a 5 mm trip wire. The thickness of the hydrodynamically developed boundary layer was determined as 63mm which was larger than the sphere diameter of D=42.5mm. Wake region of the spheres was examined from point of flow physics for the different sphere locations in the ranges of 0≤G/D ≤1.5 and 0≤S/D ≤1.5 where G and S were the distance between the spheres and the distance between the bottom point of the spheres and the flat plate surface, respectively. Depending on the different sphere locations, instantaneous and time averaged vorticity data, scalar values of time-averaged velocity components and their root mean square (rms values and time averaged vorticity data are presented in the study for the evaluation of wake region of the spheres. It is demonstrated that the gap between the two spheres and the interaction between the gap and the boundary layer greatly affects flow pattern, especially when spheres are located near to the flat plate surface, i.e. S/D=0.1 for 0≤G/D ≤1.5. Different distances between the spheres resulted in various flow patterns as the spheres were approached to the flat plate. The distance S/D=0.1 for all gap values has the strongest effect on the wake structures. Beyond G/D=1.0, the sphere wakes tend to be similar to single sphere case. The instantaneous vorticity fields of the side by side arrangements comprised wavy structures in higher level comparing to an individual sphere case. The gap flow intensifies the occurrence of small scale eddies in the wake region. The submersion rate of the spheres

  20. Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry

    Science.gov (United States)

    Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.

    2016-10-01

    Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.

  1. Coherent structures of a self-similar adverse pressure gradient turbulent boundary layer

    Science.gov (United States)

    Sekimoto, Atsushi; Kitsios, Vassili; Atkinson, Callum; Jiménez, Javier; Soria, Julio

    2016-11-01

    The turbulence statistics and structures are studied in direct numerical simulation (DNS) of a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL). The self-similar APG-TBL at the verged of separation is achieved by a modification of the far-field boundary condition to produce the desired pressure gradient. The turbulence statistics in the self-similar region collapse by using the scaling of the external velocity and the displacement thickness. The coherent structures of the APG-TBL are investigated and compared to those of zero-pressure gradient case and homogeneous shear flow. The support of the ARC, NCI and Pawsey SCC funded by the Australian and Western Australian governments as well as the support of PRACE funded by the European Union are gratefully acknowledged.

  2. Stability of Boundary Layer Flow.

    Science.gov (United States)

    1980-03-01

    and Teske (1975). We can conclude (as in the case of ducting) that theoretical models of boundary layer structure and associated radar structure...FI33 (Secret). Hitney, (1978) "Surface Duct Effects," Naval Ocean Systems Center, San Diego, Calif., Report No. TD144. Lewellen, W. S., and M. E. Teske

  3. Boundary layer structure over the ocean observed by LEANDRE 1 during a tramontane event

    Science.gov (United States)

    Flamant, C.; Pelon, J.; Flamant, P.; Durand, P.

    1992-01-01

    A new airborne backscatter lidar, has been developed by CNRS (Service d'Aeronomie, (SA) Laboratoire de Meteorologie Dynamique (LMD) and the Institut des Sciences de 1'Univers) in the frame of the LEANDRE research program. It has been qualified on board the ARAT in autumn 1989 and spring 1990 and was involved in its first cooperative campaign during PYREX in October and November 1990. During this campaign, lidar observations of the perturbations induced on tropospheric flow and boundary layer structure were performed, and results are presented. A large number of experiments were performed, for synoptic situation description (meteorological radiosoundings, constant level balloons) and local flow analysis (aircrafts, radars, sodars). For the first time in such an experiment, a lidar has been flown on a research aircraft to perform altitude resolved observations of these perturbations, and we will present here results obtained for deflected flow structure. In the presence of a synoptic northerly flow, part of it is deflected to the east by the Pyrenees, and accelerated over the Mediterranean by the mountain surroundings. In this case, a low level wind is generated (the Tramontane) bringing cold and dry air over the Mediterranean Sea. As the sea is still at a warm temperature in November (around 17 degrees), an Internal Marine Boundary Layer rapidly grows over the first tens of kilometers and stabilizes at about 1 km depth, corresponding to an altitude just below the Lifting Condensation Level. The whole Marine Atmospheric Boundary Layer (MABL) is characterized by highly turbulent motions bringing large humid particles from the surface up to its top. The lidar signal due to scattering by these particles is then representative of the turbulent kinetic energy in this layer.

  4. Boundary layer chemical vapour synthesis of self-organised ferromagnetically filled radial-carbon-nanotube structures.

    Science.gov (United States)

    Boi, Filippo S; Wilson, Rory M; Mountjoy, Gavin; Ibrar, Muhammad; Baxendale, Mark

    2014-01-01

    Boundary layer chemical vapour synthesis is a new technique that exploits random fluctuations in the viscous boundary layer between a laminar flow of pyrolysed metallocene vapour and a rough substrate to yield ferromagnetically filled radial-carbon-nanotube structures departing from a core agglomeration of spherical nanocrystals individually encapsulated by graphitic shells. The fluctuations create the thermodynamic conditions for the formation of the central agglomeration in the vapour which subsequently defines the spherically symmetric diffusion gradient that initiates the radial growth. The radial growth is driven by the supply of vapour feedstock by local diffusion gradients created by endothermic graphitic-carbon formation at the vapour-facing tips of the individual nanotubes and is halted by contact with the isothermal substrate. The radial structures are the dominant product and the reaction conditions are self-sustaining. Ferrocene pyrolysis yields three common components in the nanowire encapsulated by multiwall carbon nanotubes, Fe3C, α-Fe, and γ-Fe. Magnetic tuning in this system can be achieved through the magnetocrystalline and shape anisotropies of the encapsulated nanowire. Here we demonstrate proof that alloying of the encapsulated nanowire is an additional approach to tuning of the magnetic properties of these structures by synthesis of radial-carbon-nanotube structures with γ-FeNi encapsulated nanowires.

  5. Effects of air pollution on thermal structure and dispersion in an urban planetary boundary layer

    Science.gov (United States)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    The short-term effects of urbanization and air pollution on the transport processes in the urban planetary boundary layer (PBL) are studied. The investigation makes use of an unsteady two-dimensional transport model which has been developed by Viskanta et al., (1976). The model predicts pollutant concentrations and temperature in the PBL. The potential effects of urbanization and air pollution on the thermal structure in the urban PBL are considered, taking into account the results of numerical simulations modeling the St. Louis, Missouri metropolitan area.

  6. The vertical structure of the atmospheric boundary layer over the central Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    BIAN Lingen; MA Yongfeng; LU Changgui; LIN Xiang

    2013-01-01

    The tropopause height and the atmospheric boundary layer (PBL) height as well as the variation of inversion layer above the floating ice surface are presented using GPS (global position system ) radiosonde sounding data and relevant data obtained by China’s fourth arctic scientific expedition team over the central Arctic Ocean (86◦-88◦N, 144◦-170◦W ) during the summer of 2010. The tropopause height is from 9.8 to 10.5 km, with a temperature range between-52.2 and-54.1◦C in the central Arctic Ocean. Two zones of maximum wind (over 12 m/s) are found in the wind profile, namely, low-and upper-level jets, located in the middle troposphere and the tropopause, respectively. The wind direction has a marked variation point in the two jets from the southeast to the southwest. The average PBL height determined by two methods is 341 and 453 m respectively. These two methods can both be used when the inversion layer is very low, but the results vary significantly when the inversion layer is very high. A significant logarithmic relationship exists between the PBL height and the inversion intensity, with a correlation coefficient of 0.66, indicating that the more intense the temperature inversion is, the lower the boundary layer will be. The observation results obviously differ from those of the third arctic expedition zone (80◦-85◦N). The PBL height and the inversion layer thickness are much lower than those at 87◦-88◦N, but the inversion temperature is more intense, meaning a strong ice-atmosphere interaction in the sea near the North Pole. The PBL structure is related to the weather system and the sea ice concentration, which affects the observation station.

  7. Coherent Structures in Transition of a Flat-Plate Boundary Layer at Ma=0.7

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ying; LI Xin-Liang; FU De-Xun; MA Yan-Wen

    2007-01-01

    @@ Direct numerical simulation (DNS) of a spatially evolving flat-plate boundary layer transition process at free stream Mach number 0.7 is performed. Tollmien-Schlichting (T-S) waves are added on the inlet boundary as the disturbances before transition. Typical coherent structures in the transition process are investigated based on the second invariant of velocity gradient tensor. The instantaneous shear stress and the mean velocity profile in the transition region are studied. In our view, the fact that the peak value of shear stress in the stress concentration area increases and exceeds a threshold value during the later stage of the transition process plays an important role in the laminar breakdown process.

  8. Structure and Optical Properties of the Atmospheric Boundary Layer over Dusty Hot Deserts

    Science.gov (United States)

    Chalermthai, B.; Al Marzooqi, M.; Basha, G.; Ouarda, T.; Armstrong, P.; Molini, A.

    2014-12-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature of the atmospheric boundary layer (ABL) over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main common features however, desert boundary layers present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as transport and deposition of dust and pollutants, local wind fields, turbulent fluxes and their impacts on the sustainable development, human health and solar energy harvesting in these regions. In this study, we explore the potential of the joint usage of Lidar Ceilometer backscattering profiles and sun-photometer optical depth retrievals to quantitatively determine the vertical aerosol profile over dusty hot desert regions. Toward this goal, we analyze a continuous record of observations of the atmospheric boundary layer height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4425N 54.6163E, Abu Dhabi, United Arab Emirates), starting March 2013, and the concurrent measurements of aerosol optical depth derived independently from the Masdar Institute AERONET sun-photometer. The main features of the desert ABL are obtained from the ceilometer range corrected backscattering profiles through bi-dimensional clustering technique we developed as a modification of the recently proposed single-profile clustering method, and therefore "directly" and "indirectly" calibrated to obtain a full diurnal cycle climatology of the aerosol optical depth and aerosol profiles. The challenges and the advantages of applying a similar methodology to the monitoring of aerosols and dust over hyper-arid regions are also discussed, together with the issues related to the sensitivity of commercial ceilometers to changes in the solar background.

  9. DHMPIV and Tomo-PIV measurements of three-dimensional structures in a turbulent boundary layer

    Science.gov (United States)

    Amili, O.; Atkinson, C.; Soria, J.

    In turbulent boundary layers, a large portion of total turbulence production happens in the near wall region, y/δ Tomo-PIV) was used to extract the 3C-3D velocity field using a rapid and less memory intensive reconstruction algorithm. It is based on a multiplicative line-of-sight (MLOS) estimation that determines possible particle locations in the volume, followed by simultaneous iterative correction. Application of MLOS-SART and MART to a turbulent boundary layer at Refθ=2200 using a 4 camera Tomo-PIV system with a volume of 1000×1000×160 voxels is discussed. In addition, near wall velocity measurement attempt made by digital holographic microscopic particle image velocimetry (DHMPIV). The technique provides a solution to overcome the poor axial accuracy and the low spatial resolution which are common problems in digital holography [5]. By reducing the depth of focus by at least one order of magnitude as well as increasing the lateral spatial resolution, DHMPIV provides the opportunity to resolve the small-scale structures existing in near wall layers.

  10. Nonparallel stability of boundary layers

    Science.gov (United States)

    Nayfeh, Ali H.

    1987-01-01

    The asymptotic formulations of the nonparallel linear stability of incompressible growing boundary layers are critically reviewed. These formulations can be divided into two approaches. The first approach combines a numerical method with either the method of multiple scales, or the method of averaging, of the Wentzel-Kramers-Brillouin (WKB) approximation; all these methods yield the same result. The second approach combined a multi-structure theory with the method of multiple scales. The first approach yields results that are in excellent agreement with all available experimental data, including the growth rates as well as the neutral stability curve. The derivation of the linear stability of the incompressible growing boundary layers is explained.

  11. Boundary-layer theory

    CERN Document Server

    Schlichting (Deceased), Hermann

    2017-01-01

    This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

  12. Sea ice edge position impact on the atmospheric boundary layer temperature structure

    Science.gov (United States)

    Khavina, Elena; Repina, Irina

    2016-04-01

    Processes happening in the Arctic region nowadays strongly influence global climate system; the polar amplification effect can be considered one of the main indicators of ongoing changes. Dramatic increase in amount of ice-free areas in the Arctic Ocean, which took place in 2000s, is one of the most significant examples of climate system dynamic in polar region. High amplitude of changes in Arctic climate, both observed and predicted, and existing inaccuracies of climate and weather forecasting models, enforce the development of a more accurate one. It is essential to understand the physics of the interaction between atmosphere and ocean in the Northern Polar area (particularly in boundary layer of the atmosphere) to improve the models. Ice conditions have a great influence on the atmospheric boundary layer in the Arctic. Sea ice inhibits the heat exchange between atmosphere and ocean water during the polar winter, while the heat exchange above the ice-free areas increases rapidly. Due to those significant temperature fluctuations, turbulence of heat fluxes grows greatly. The most intensive interaction takes place at marginal ice zones, especially in case of the cold outbreak - intrusion of cooled air mass from the ice to free water area. Still, thermal structure and dynamic of the atmosphere boundary layer are not researched and described thoroughly enough. Single radio sounding observations from the planes being done, bur they do not provide high-resolution data which is necessary for study. This research is based on continuous atmosphere boundary layer temperature and sea ice observation collected in the Arctic Ocean during the two NABOS expeditions in August and September in 2013 and 2015, as well as on ice conditions satellite data (NASA TEAM 2 and VASIA 2 data processing). Atmosphere temperature data has been obtained with Meteorological Temperature Profiler MTP-5 (ATTEX, Russia). It is a passive radiometer, which provides continuous data of atmospheric

  13. Spectra and Large-Scale Structures in a Turbulent Boundary Layer Interacting with Wind Turbine Arrays

    Science.gov (United States)

    Peet, Yulia; Chatterjee, Tanmoy

    2016-11-01

    Wind Turbine Array Boundary Layer is a relatively simple, yet useful theoretical conceptualization to study very large wind farms in an atmospheric boundary layer. In this talk, we investigate the length scales of eddies involved in the power generation in these very large, "infinite" wind farms by analyzing the spectra of the turbulent flux of the mean kinetic energy from Large Eddy Simulations (LES). A goal is to provide a fundamental understanding of the dynamic behavior, the size, the scaling laws and the anisotropic structure of the energy containing eddies responsible for power generation from the wind turbines. Large-scale structures with an order of magnitude bigger than the turbine rotor diameter are shown to have substantial contribution to wind power. The study is performed with a Spectral Element LES code with the recently implemented near-wall model and the actuator line model to represent the effect of rotating wind turbine blades. In this presentation, we also explore an idea of a "multiscale" wind farm, where larger and smaller turbines are arranged in a symbiotic way, with smaller turbines helping to harvest additional power from the wakes of the larger turbines, inspired by the findings of the spectral analysis in uniform wind farms. NSF CBET 13358568 award.

  14. Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Zhaoxia [Univ. of Utah, Salt Lake City, UT (United States)

    2015-10-06

    Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.

  15. Nonisothermal turbulent boundary-layer adverse pressure gradient large scale thermal structure measurements

    Science.gov (United States)

    Bagheri, Nader; White, Bruce R.; Lei, Ting-Kwo

    1994-01-01

    Hot-wire anemometry measurements in an incompressible turbulent boundary-layer flow over a heated flat plate under equilibrium adverse-pressure-gradient conditions (beta = 1.8) were made for two different temperature difference cases (10 and 15 C) between the wall and the freestream. Space-time correlations of temperature fluctuations (T') were obtained with a pair of subminiature temperature fluctuation probes. The mean convection velocities, the mean inclination angles, and coherence characteristics of the T' large-scale structure were determined. The present temperature structures measurements for a nonisothermal boundary layer are compared to the zero-pressure-gradient case with identical temperature differences previously reported, in which the mean convection velocity of the T' structure was a function of position y(sup +) and independent of the limited temperature-difference cases tested. The three major findings of the present study, as compared to the zero-pressure-gradient case, are (1) the mean convection speed of the T' structure under beta = 1.8 pressure-gradient conditions was found to be substantially lower in the logarithmic core region than the zero-pressure-gradient case. Additionally, the mean convection speed is felt by the authors to be a function of pressure-gradient parameter beta; (2) the mean inclination angle of the T' structure to the wall under the adverse-pressure-gradient flow was 32 deg, which compares favorably to the 30-deg value of the zero-pressure-gradient case; and (3) the limited data suggests that the mean convection velocity of the T' structure is a function of y(sup +) and independent of the limited temperature-difference cases tested.

  16. Numerical Study of Winter Urban Boundary Layer Structure over Beijing Area

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoli; BI Baogui; LI Zechun

    2005-01-01

    Based on the successful simulation of a typical winter urban boundarylayer (UBL) process over Beijing area during the Beijing City Air Pollution Experiment (BECAPEX) in 2001 by the use of MM5 coupled with urban canopy parameterization, a series of simulation experiments are performed to investigate the effects of urban influence, surrounding terrain, and different extent of urbanization on urban boundary layer structures over Beijing area. The results of factor separation experiments of urban influence indicate that the total effect of urban influence, which is the synthetic effect of urban infrastructure on thermal and dynamic structures of atmosphere, is responsible for the formation of main UBL features over Beijing area. Meanwhile, the relative importance of thermal and mechanical factors of urban infrastructure and interaction between thermal and mechanical factors for the formation and evolution of UBL over the Beijing area are also explored. The results show that, during nighttime, mechanical factors are responsible for main characteristics of nocturnal urban boundary layer such as elevated inversion layer over downtown area,smaller wind speed and stronger turbulent kinetic energy (TKE) and its behavior with peak at the top of canopy layer, whereas in the daytime, thermal factors play dominant role in the structure of UBL, such as the intensity of mixed layer and temperature in the lower atmosphere in urban area. The interaction between mechanical and thermal factors plays an important role in the formation and evolution of UBL, but its specific characteristics of mechanisms are complex. The results of surrounding terrain experiment show that terrain surrounding Beijing area not only determines the characteristic of prevailing airflow over Beijing area, but also has obvious effect on thermal structure of UBL, such as the distribution of elevated inversion and urban heat island, and makes them with special localization feature. The results of different extent

  17. Investigation of Effect of Boundary Layer on Flow Structure Around a Cylinder with a Strip

    Directory of Open Access Journals (Sweden)

    Yayla Sedat

    2015-01-01

    Full Text Available In this study, the flow characteristic of the circular cylinder was placed vertically in channel which has dimensions as 8000 mm, 1000 mm, 750 mm, lenght, width and height repectively, was investigated. The cylinder was located in boundary layer with a diameter of 60 mm (D and a elastic stripwhich has a 1400 N/mm2 modulus of elasticity vinyl PVC transperent film was attached behind the cylinder. Lenght of the strip (L was 240 mm L/D=4. The Reynolds number was fixed at Re=7500. The time-averaged and instantaneous velocity vector maps, vorticity contours, Reynold shear and normal stresses, turbulent kinetic energy and frequency of shedding were obtained using the particle image velocimetry (PIV technique. It was found that the elastic plate which exists behind the cylinder has a slight influence on the flow structure of the wake-boundary layer interaction. Values of turbulent kinetic energy, streamwise Reynold stress, transverse Reynold stresses were decreased by attaching strip.

  18. Noisy contact interactions of multi-layer mechanical structures coupled by boundary conditions

    Science.gov (United States)

    Awrejcewicz, J.; Krysko, V. A., Jr.; Yakovleva, T. V.; Krysko, V. A.

    2016-05-01

    In this work mathematical models of temporal part of chaos at chosen spatial locations of a plate locally reinforced by ribs taking into account an interplay of their interactions are derived and studied numerically for the most relevant dynamical parameters. In addition, an influence of the additive external noise on chaotic vibrations of multi-layer beam-plate structures coupled only by boundary conditions is investigated. We illustrate and discuss novel nonlinear phenomena of the temporal regular and chaotic contact/no-contact dynamics with the help of Morlet wavelets and Fourier analysis. We show how the additive white noise cancels deterministic chaos close to the boundary of chaotic region in the space of parameters, and we present windows of on/off switching of the frequencies during the contact dynamics between structural members. In order to solve the mentioned design type nonlinear problem we apply methods of qualitative theory of differential equations, the Bubnov-Galerkin method in higher approximations, the Runge-Kutta methods of 4th, 6th and 8th order, as well as the computation and analysis of the largest Lyapunov exponent (Benettin's and Wolf's algorithms are used). The agreement of outcomes of all applied qualitatively different numerical approaches validate our simulation results. In particular, we have illustrated that the Fourier analysis of the studied mechanical structures may yield erroneous results, and hence the wavelet-based analysis is used to investigate chaotic dynamics in the system parameter space.

  19. Boundary layer transition studies

    Science.gov (United States)

    Watmuff, Jonathan H.

    1995-02-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated

  20. Investigations of boundary layer structure, cloud characteristics and vertical mixing of aerosols at Barbados with large eddy simulations

    Science.gov (United States)

    Jähn, M.; Muñoz-Esparza, D.; Chouza, F.; Reitebuch, O.; Knoth, O.; Haarig, M.; Ansmann, A.

    2016-01-01

    Large eddy simulations (LESs) are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. Due to the presence of a topographically structured island surface in the domain center, the model setup has to be designed with open lateral boundaries. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, we use the cell perturbation method based on finite amplitude potential temperature perturbations. In this work, this method is for the first time tested and validated for moist boundary layer simulations with open lateral boundary conditions. Observational data obtained from the SALTRACE field campaign is used for both model initialization and a comparison with Doppler wind and Raman lidar data. Several numerical sensitivity tests are carried out to demonstrate the problems related to "gray zone modeling" when using coarser spatial grid spacings beyond the inertial subrange of three-dimensional turbulence or when the turbulent marine boundary layer flow is replaced by laminar winds. Especially cloud properties in the downwind area west of Barbados are markedly affected in these kinds of simulations. Results of an additional simulation with a strong trade-wind inversion reveal its effect on cloud layer depth and location. Saharan dust layers that reach Barbados via long-range transport over the North Atlantic are included as passive tracers in the model. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom at z ≈ 1800 m become apparent. The exact position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability (especially inversion strength) and wind shear. Comparisons of LES model output with wind lidar data show similarities in the downwind vertical wind structure. Additionally, the model results accurately reproduce the

  1. Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20 S during VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. S. Bretherton

    2010-06-01

    Full Text Available Multiplatform airborne, ship-based, and land-based observations from 16 October–15 November 2008 during the VOCALS Regional Experiment (REx are used to document the typical structure of the Southeast Pacific stratocumulus-topped boundary layer and lower free troposphere on a transect along 20° S between the coast of Northern Chile and a buoy 1500 km offshore. Strong systematic gradients in clouds, precipitation and vertical structure are modulated by synoptically and diurnally-driven variability. The boundary layer is generally capped by a strong (10–12 K, sharp inversion. In the coastal zone, the boundary layer is typically 1 km deep, fairly well mixed, and topped by thin, nondrizzling stratocumulus with haccumulation-mode aerosol and cloud droplet concentrations exceeding 200 cm−3. Far offshore, the boundary layer depth is typically deeper (1600 m and more variable, and the vertical structure is usually decoupled. The offshore stratocumulus typically have strong mesoscale organization, much higher peak liquid water paths, extensive drizzle, and cloud droplet concentrations below 100 cm−3, sometimes with embedded pockets of open cells with lower droplet concentrations. The lack of drizzle near the coast is not just a microphysical response to high droplet concentrations; smaller cloud depth and liquid water path than further offshore appear comparably important.

    Moist boundary layer air is heated and mixed up along the Andean slopes, then advected out over the top of the boundary layer above adjacent coastal ocean regions. Well offshore, the lower free troposphere is typically much drier. This promotes strong cloud-top radiative cooling and stronger turbulence in the clouds offshore. In conjunction with a slightly cooler free troposphere, this may promote stronger entrainment that maintains the deeper boundary layer seen offshore.

    Winds from ECMWF and NCEP operational analyses have an rms

  2. The Boundary Layer Radiometer

    Science.gov (United States)

    Irshad, Ranah; Bowles, N. E.; Calcutt, S. B.; Hurley, J.

    2010-10-01

    The Boundary Layer Radiometer is a small, low mass (<1kg) radiometer with only a single moving part - a scan/calibration mirror. The instrument consists of a three mirror telescope system incorporating an intermediate focus for use with miniature infrared and visible filters. It also has an integrated low power blackbody calibration target to provide long-term calibration stability The instrument may be used as an upward looking boundary layer radiometer for both the terrestrial and Martian atmospheres with appropriate filters for the mid-infrared carbon dioxide band, as well as a visible channel for the detection of aerosol components such as dust. The scan mirror may be used to step through different positions from the local horizon to the zenith, allowing the vertical temperature profile of the atmosphere to be retrieved. The radiometer uses miniature infrared filter assemblies developed for previous space-based instruments by Oxford, Cardiff and Reading Universities. The intermediate focus allows for the use of upstream blocking filters and baffles, which not only simplifies the design of the filters and focal plane assembly, but also reduces the risk of problems due to stray light. Combined with the calibration target this means it has significant advantages over previous generations of small radiometers.

  3. Boundary-Layer Structure Upwind and Downwind of Oklahoma City during the Joint Urban 2003 Field Study

    Energy Technology Data Exchange (ETDEWEB)

    De Wekker, Stephan; Berg, Larry K.; Allwine, K Jerry; Doran, J. C.; Shaw, William J.

    2004-08-25

    The Joint Urban 2003 field study in Oklahoma City in July 2003 provided a comprehensive data set that included measurements from sites upwind and downwind of Oklahoma City where sodars, radar wind profilers/RASSes, and radiosondes were deployed. Radiosonde measurements were taken during six daytime intensive observational periods (IOPs) and during four nighttime IOPs, while the sodars and radars operated almost continuously during the entire month of July. The upwind and downwind sites were located approximately 2 km south and 5 km north of downtown Oklahoma City, respectively. Boundary-layer heights and wind and temperature structure at both sites have been investigated and compared to determine effects of the urban area on mean boundary-layer structure. Initial results show that differences in boundary-layer structure between the upwind and downwind location are small, i.e., there is no detectable effect of downtown Oklahoma City on the mean boundary-layer structure 5 km downwind. These measurements are compared with a numerical model and simple analytical models such as those that predict the growth of an internal boundary layer after a roughness change, and an advective thermodynamic model used to determine mixing heights in an urban area.

  4. Turbulence vertical structure of the boundary layer during the afternoon transition

    Directory of Open Access Journals (Sweden)

    C. Darbieu

    2014-12-01

    Full Text Available We investigate the decay of planetary boundary layer (PBL turbulence in the afternoon, from the time the surface buoyancy flux starts to decrease until sunset. Dense observations of mean and turbulent parameters were acquired during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST field experiment by several meteorological surface stations, sounding balloons, radars, lidars, and two aircraft flying extensively during the afternoon transition. We analyzed a case study based on some of those observations and Large-Eddy Simulation (LES data focusing on the turbulent vertical structure throughout the afternoon transition. The decay of turbulence is quantified through the temporal and vertical evolution of (1 the turbulence kinetic energy (TKE, (2 the characteristic length scales of turbulence, (3 the shape of the turbulence spectra. A spectral analysis of LES data, airborne and surface measurements is performed in order to (1 characterize the variation of the turbulent decay with height and (2 study the distribution of turbulence over eddy size. This study points out the LES ability to reproduce the turbulence evolution throughout the afternoon. LES and observations agree that the afternoon transition can be divided in two phases: (1 a first phase during which the TKE decays with a low rate, with no significant change in turbulence characteristics, (2 a second phase characterized by a larger TKE decay rate and a change spectral shape, implying an evolution of eddy size distribution and energy cascade from low to high wavenumber. The changes observed either on TKE decay (during the first phase or on the vertical wind spectra shape (during the second phase of the afternoon transition occur first in the upper region of the PBL. The higher within the PBL, the stronger the spectra shape changes.

  5. Surface ozone-aerosol behaviour and atmospheric boundary layer structure in Saharan dusty scenario

    Science.gov (United States)

    Adame, Jose; Córdoba-Jabonero, Carmen; Sorrribas, Mar; Gil-Ojeda, Manuel; Toledo, Daniel; Yela, Margarita

    2016-04-01

    A research campaign was performed for the AMISOC (Atmospheric Minor Species relevant to the Ozone Chemistry) project at El Arenosillo observatory (southwest Spain) in May-June 2012. The campaign focused on the impact of Saharan dust intrusions at the Atmospheric Boundary Layer (ABL) and ozone-aerosol interactions. In-situ and remote-sensing techniques for gases and aerosols were used moreover to modelling analyses. Meteorology features, ABL structures and evolution, aerosol profiling distributions and aerosol-ozone interactions on the surface were analysed. Two four-day periods were selected according to non-dusty (clean conditions) and dusty (Saharan dust) situations. In both scenarios, sea-land breezes developed in the lower atmosphere, but differences were found in the upper levels. Results show that surface temperatures were greater than 3°C and humidity values were lower during dusty conditions than non-dusty conditions. Thermal structures on the surface layer (estimated using an instrument on a 100 m tower) show differences, mainly during nocturnal periods with less intense inversions under dusty conditions. The mixing layer during dusty days was 400-800 m thick, less than observed on non-dusty days. Dust also disturbed the typical daily ABL evolution. Stable conditions were observed during the early evening during intrusions. Aerosol extinction on dusty days was 2-3 times higher, and the dust was confined between 1500 and 5500 m. Back trajectory analyses confirmed that the dust had an African origin. On the surface, the particle concentration was approximately 3.5 times higher during dusty events, but the local ozone did not exhibit any change. The arrival of Saharan dust in the upper levels impacted the meteorological surface, inhibited the daily evolution of the ABL and caused an increase in aerosol loading on the surface and at higher altitudes; however, no dust influence was observed on surface ozone.

  6. Cloud and boundary layer structure over San Nicolas Island during FIRE

    Science.gov (United States)

    Albrecht, Bruce A.; Fairall, Christopher W.; Syrett, William J.; Schubert, Wayne H.; Snider, Jack B.

    1990-01-01

    The temporal evolution of the structure of the marine boundary layer and of the associated low-level clouds observed in the vicinity of the San Nicolas Island (SNI) is defined from data collected during the First ISCCP Regional Experiment (FIRE) Marine Stratocumulus Intense Field Observations (IFO) (July 1 to 19). Surface, radiosonde, and remote-sensing measurements are used for this analysis. Sounding from the Island and from the ship Point Sur, which was located approximately 100 km northwest of SNI, are used to define variations in the thermodynamic structure of the lower-troposphere on time scales of 12 hours and longer. Time-height sections of potential temperature and equivalent potential temperature clearly define large-scale variations in the height and the strength of the inversion and periods where the conditions for cloud-top entrainment instability (CTEI) are met. Well defined variations in the height and the strength of the inversion were associated with a Cataline Eddy that was present at various times during the experiment and with the passage of the remnants of a tropical cyclone on July 18. The large-scale variations in the mean thermodynamic structure at SNI correlate well with those observed from the Point Sur. Cloud characteristics are defined for 19 days of the experiment using data from a microwave radiometer, a cloud ceilometer, a sodar, and longwave and shortwave radiometers. The depth of the cloud layer is estimated by defining inversion heights from the sodar reflectivity and cloud-base heights from a laser ceilometer. The integrated liquid water obtained from NOAA's microwave radiometer is compared with the adiabatic liquid water content that is calculated by lifting a parcel adiabatically from cloud base. In addition, the cloud structure is characterized by the variability in cloud-base height and in the integrated liquid water.

  7. Investigations of boundary layer structure, cloud characteristics and vertical mixing of aerosols at Barbados with large eddy simulations

    Directory of Open Access Journals (Sweden)

    M. Jähn

    2015-08-01

    Full Text Available Large eddy simulations (LES are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. Due to the presence of a topographically structured island surface in the domain center, the model setup has to be designed with open lateral boundaries. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, we use the cell perturbation method based on finite amplitude perturbations. In this work, this method is for the first time tested and validated for moist boundary layer simulations with open lateral boundary conditions. Observational data obtained from the SALTRACE field campaign is used for both model initialization and a comparison with Doppler wind lidar data. Several numerical sensitivity tests are carried out to demonstrate the problems related to "gray zone modeling" when using coarser spatial grid spacings beyond the inertial subrange of three-dimensional turbulence or when the turbulent marine boundary layer flow is replaced by laminar winds. Especially cloud properties in the downwind area west of Barbados are markedly affected in these kinds of simulations. Results of an additional simulation with a strong trade-wind inversion reveal its effect on cloud layer depth and location. Saharan dust layers that reach Barbados via long-range transport over the North Atlantic are included as passive tracers in the model. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom at z ~ 1800 m become apparent. The exact position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability (especially inversion strength and wind shear. Comparisons of LES model output with wind lidar data show similarities in the formation of the daytime convective plume and the mean vertical wind structure.

  8. Evidence of an asymptotic geometric structure to the Reynolds stress motions in turbulent boundary layers

    Science.gov (United States)

    Klewicki, Joseph; Philip, Jimmy; Morrill-Winter, Caleb

    2016-11-01

    Recent results suggest that the uv motions in turbulent wall-flows asymptotically exhibit self-similar geometric properties. Herein we use time series from high resolution boundary layer experiments up to high Reynolds numbers to discern additional properties associated with the uv signals. Their space filling properties are shown to reinforce previous observations, while the uv skewness profile suggests that the size and magnitude of these motions are correlated on the inertial domain. The size and length scales of the negative uv -motions are shown to increase with distance from the wall, while their occurrences decreases. A joint analysis of the signal magnitudes and their corresponding lengths reveals that the length scales that contribute most to are distinctly larger than their average size. The u and v cospectra, however, exhibit invariance across the inertial region when their wavelengths are normalized by the width distribution, W (y) , of the scaling layer hierarchy surmised from analysis of the mean momentum equation. This distribution is associated with scale dependent zero-crossings in the contributions to , and derivative cospectra of support the existence of this structural detail. This work is supported by the Australian Research Council and the National Science Foundation.

  9. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere.

    Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  10. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    1974-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  11. Turbulent structure and scaling of the inertial subrange in a stratocumulus-topped boundary layer observed by a Doppler lidar

    Directory of Open Access Journals (Sweden)

    J. Tonttila

    2014-09-01

    Full Text Available The turbulent structure of a stratocumulus-topped marine boundary layer over a two-day period is observed with a Doppler lidar at Mace Head in Ireland. Using profiles of vertical velocity statistics, the bulk of the mixing is identified as cloud-driven. This is supported by the pertinent feature of negative vertical velocity skewness in the sub-cloud layer which extends, on occasion, almost to the surface. Both coupled and decoupled turbulence characteristics are observed. The length and time scales related to the cloud driven mixing are investigated, which are shown to provide additional information about the structure and the source of the mixing inside the boundary layer. They are also shown to place constraints on the length of the sampling periods used to derive products, such as the turbulent dissipation rate, from lidar measurements. For this, the upper cut-off wavelength of the inertial subrange is studied through spectral analysis of the vertical velocity. The bulk statistical profiles and the scaling of the inertial subrange show consistent behaviour as the boundary layer undergoes transitions between a coupled and decoupled stratocumulus layer. The cut-off wavelength of the inertial subrange does not appear to scale robustly with the relative depth of the local mixing regime at different altitudes during decoupled periods. Rather, the competition between surface-based and cloud-driven mixed layers suppresses the range of eddy sizes at all heights inside the boundary layer.

  12. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields.

    Science.gov (United States)

    König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen

    2013-03-19

    To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.

  13. Coherent Structures Generated by a Circular Jet Issuing into a Cross Laminar Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Visualisations by LASER topogratphies and velocity measurements by LDV have allowed the study of the flow resulting form the interaction between a circular jet and a cross boundary layer.This type of flow is dominated by the presence of many complex vortices that come from the recombining of the vorticity created in the injction tube and that created along the chamber floor.

  14. Structure of a bathtub vortex: importance of the bottom boundary layer

    Science.gov (United States)

    Yukimoto, Shinji; Niino, Hiroshi; Noguchi, Takashi; Kimura, Ryuji; Moulin, Frederic Y.

    2010-03-01

    A bathtub vortex in a cylindrical tank rotating at a constant angular velocity Ω is studied by means of a laboratory experiment, a numerical experiment and a boundary layer theory. The laboratory and numerical experiments show that two regimes of vortices in the steady-state can occur depending on Ω and the volume flux Q through the drain hole: when Q is large and Ω is small, a potential vortex is formed in which angular momentum outside the vortex core is constant in the non-rotating frame. However, when Q is small or Ω is large, a vortex is generated in which the angular momentum decreases with decreasing radius. Boundary layer theory shows that the vortex regimes strongly depend on the theoretical radial volume flux through the bottom boundary layer under a potential vortex : when the ratio of Q to the theoretical boundary-layer radial volume flux Q b (scaled by {2π R^2 ( Ω ν )^1/2}) at the outer rim of the vortex core is larger than a critical value (of order 1), the radial flow in the interior exists at all radii and Regime I is realized, where R is the inner radius of the tank and ν the kinematic viscosity. When the ratio is less than the critical value, the radial flow in the interior nearly vanishes inside a critical radius and almost all of the radial volume flux occurs only in the boundary layer, resulting in Regime II in which the angular momentum is not constant with radius. This criterion is found to explain the results of the laboratory and numerical experiments very well.

  15. Boundary-Layer & health

    Science.gov (United States)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  16. On the boundary layer structure near a highly permeable porous interface

    CERN Document Server

    Dalwadi, Mohit P; Waters, Sarah L; Oliver, James M

    2015-01-01

    The method of matched asymptotic expansions is used to study the canonical problem of steady laminar flow through a narrow two-dimensional channel blocked by a tight-fitting finite-length highly permeable porous obstacle. We investigate the behaviour of the local flow close to the interface between the single-phase and porous regions (governed by the incompressible Navier--Stokes and Darcy flow equations, respectively). We solve for the local flow in the limits of low and high Reynolds number, facilitating an understanding of the nature of the transition from Poiseuille to plug to Poiseuille flow in each of these limits. Significant analytic progress is made in the high-Reynolds-number limit, as we are able to explore in detail the rich boundary layer structure that occurs. We derive general results for the interfacial stress and for the conditions that couple the flow in the regions away from the interface. We consider the three-dimensional generalization to unsteady laminar flow through and around a tight-f...

  17. Spatial structures in the heat budget of the Antarctic Atmospheric Boundary Layer

    Directory of Open Access Journals (Sweden)

    W. J. van de Berg

    2007-08-01

    Full Text Available Output from the regional climate model RACMO2/ANT is used to calculate the heat budget of the Antarctic atmospheric boundary layer (ABL. The main feature of the wintertime Antarctic ABL is a persistent temperature deficit compared to the free atmosphere. The magnitude of this deficit is controlled by the heat budget. During winter, transport of heat towards the surface by turbulence and net longwave emission are the primary ABL cooling terms. These processes show horizontal spatial variability only on continental scales. Vertical and horizontal advection of heat are the main warming terms. Over regions with convex ice sheet topography, i.e. domes and ridges, warming by downward vertical advection is enhanced due to divergence of the ABL wind field. Horizontal advection balances any excess warming caused by vertical advection, hence the ABL over domes and ridges tends to have a relatively weak temperature deficit. Conversely, vertical advection is reduced in regions with concave topography, i.e. valleys, where the ABL temperature deficit is enlarged. Along the coast, horizontal and vertical advection is governed by the inability of the large-scale circulation to adapt to small scale topographic features. Meso-scale (~10 km topographic structures have thus a strong impact on the ABL winter temperature, besides latitude and surface elevation. During summer, this mechanism is much weaker; and the horizontal variability of ABL temperatures is smaller.

  18. Stability and coherent structures of the asymptotic suction boundary layer over a heated plate

    CERN Document Server

    Zammert, Stefan; Eckhardt, Bruno

    2016-01-01

    The asymptotic suction boundary layer (ASBL) is a parallel shear flow that becomes turbulent in a bypass transition in parameter regions where the laminar profile is stable. We here add a temperature gradient perpendicular to the plate and explore the interaction between convection and shear in determining the transition. We find that the laminar state becomes unstable in a subcritical bifurcation and that the critical Rayleigh number and wave number depend strongly on the Prandtl number. We also track several secondary bifurcations and identify states that are localized in two directions, showing different symmetries. In the subcritical regime, transient turbulent states which are connected to exact coherent states and follow the same transition scenario as found in linearly stable shear flows are identified and analyzed. The study extends the bypass transition scenario from shear flows to thermal boundary layers and shows the intricate interactions between thermal and shear forces in determining critical po...

  19. On the Coupling Between a Supersonic Turbulent Boundary Layer and a Flexible Structure

    Science.gov (United States)

    Frendi, Abdelkader

    1996-01-01

    A mathematical model and a computer code have been developed to fully couple the vibration of an aircraft fuselage panel to the surrounding flow field, turbulent boundary layer and acoustic fluid. The turbulent boundary layer model is derived using a triple decomposition of the flow variables and applying a conditional averaging to the resulting equations. Linearized panel and acoustic equations are used. Results from this model are in good agreement with existing experimental and numerical data. It is shown that in the supersonic regime, full coupling of the flexible panel leads to lower response and radiation from the panel. This is believed to be due to an increase in acoustic damping on the panel in this regime. Increasing the Mach number increases the acoustic damping, which is in agreement with earlier work.

  20. Three-Dimensional Structure of Boundary Layers in Transition to Turbulence

    Science.gov (United States)

    1989-03-01

    basic flows are boundary layers (flat plate, curved wall, Falkner-Skan, rotating disk, Falkner-Skan-Cook), plane and circular Couette and Poiseuille ...metric), the viscous normal shock, and the compressible plane Couette flow . The code and selected insert files have been distributed to students, various...that depend on a single independent variable 9, e.g. a stratified fluid with density p(U), 9 pointing opposite to gravity, circular Couette flow with

  1. Structure of 2-D and 3-D Turbulent Boundary Layers with Sparsely Distributed Roughness Elements

    Science.gov (United States)

    2005-06-28

    straight orientation. Stations U, 6, mm 6", mm 0, mm Ree k+ k/6 1 25.98 58.565 12.70 7.65 11997 58.5 0.0130 2 25.36 54.56 12.65 7.52 11518 60.4 0.0139 3...a flat plate boundary layer transition. Engineering Turbulence Modeling and Experiments - 4, W. Rodi and D. Laurence (Eds.), Elsevier Science Ltd

  2. Hurricane Boundary-Layer Theory

    Science.gov (United States)

    2010-01-01

    2501. Kundu PK. 1990. Fluid Mechanics . Academic Press: San Diego, USA. Kuo HL. 1982. Vortex boundary layer under quadratic surface stress. Boundary...identification of two mechanisms for the spin-up of the mean tangential circulation of a hurricane. The first involves convergence of absolute angular...momentum above the boundary layer, where this quantity is approximately conserved. This mechanism acts to spin up the outer circulation at radii

  3. Laboratory measurements of scalar and momentum structure in turbulent aquatic benthic boundary layers

    Science.gov (United States)

    Dombroski, Daniel Edward

    In aquatic benthic environments, hydrodynamic transport of mass and momentum have shaped the evolution of form-function relationships. Animals whose life cycle depends on success in such environments have developed the biological structure and behavioral mechanisms to sustain dynamic stresses and complex chemical signals. It has become increasingly clear that understanding the ecology of these organisms is dependent on examining the complexities of the turbulent environment. In this dissertation, hydrodynamics and the structure of chemical signals within turbulent boundary layer flows are examined in the context of natural and biological systems. Experiments were conducted in the benthic region of a water flume using a combination of point-measurement and full-field imaging techniques. There are three areas of focus within the complete body of work: (1) The accuracy of an acoustic measurement technique commonly used in natural flows was evaluated. Errors in the technique, primarily attributed to a sampling volume that is large relative to the scales of motion in turbulent flows, were found to be larger than and extend farther from the bed than previously reported. (2) A three-dimensional laser-based imaging system was developed for quantifying turbulent scalar structure. The system was employed to study the topology and orientation of structure within a bed-level, passively released scalar plume. (3) Hydrodynamic stresses were measured near marine fouling communities in a study aimed at predicting larval settlement probabilities. Turbulent stresses, and by extension, the suitability of microhabitats, were found to be highly dependent on local topography and outer-scale flow conditions. This body of work advances the field of experimental fluid mechanics by contributing to the development of methods for quantifying turbulent flows, as well as furthering current understanding of the capabilities and limitations associated with new and existing techniques. Statistical

  4. Magnetic reconnection structures in the boundary layer of an interplanetary magnetic cloud

    Institute of Scientific and Technical Information of China (English)

    WEI; Fengsi; LIU; Rui; FENG; Xueshang; ZHONG; Dingkun; YAN

    2004-01-01

    An interplanetary magnetic diffusion region was detected by WIND during 0735-0850 UT on May 15, 1997 when the front boundary layer of a magnetic cloud passed through the spacecraft about 190 earth radii upstream of the earth. The main signals of magnetic reconnection processes are: (ⅰ) Flow reversal was detected at about 0810 UT. The counter-streaming flows have the speeds of about 65 and 41 km/s, respectively, with an angle of about 140 degree between them. (ⅱ) Hall magnetic field was detected. The Hall fields ?By and +By, perpendicular to the X-Z plane, with their magnitude up to ~7.0 nT, are superposed upon a guide field about 12 nT. (ⅲ) Alfvenic fluctuations are obviously intensified inside the reconnection region; at the front boundary of the reconnection region, a slow-mode-like discontinuity was detected. (ⅳ) Ions are heated intensively inside the reconnection region, with their temperature three times higher than that ahead of the boundary layer; electrons are also heated, with a little enhancement in their temperature. The above observations indicate that magnetic reconnection processes could take place in interplanetary space.

  5. The investigation of coherent structures in the wall region of a supersonic turbulent boundary layer based on DNS database

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Through temporal mode direct numerical simulation, flow field database of a fully developed turbulent boundary layer on a flat plate with Mach number 4.5 and Reynolds number Reθ =1094 has been obtained. Commonly used detection meth- ods in experiments are applied to detecting coherent structures in the flow field, and it is found that coherent structures do exist in the wall region of a supersonic turbulent boundary layer. The detected results show that a low-speed streak is de- tected by using the Mu-level method, the rising parts of this streak are detected by using the second quadrant method, and the crossing regions from a low-speed streak to the high-speed one are detected by using the VITA method respectively. Notwithstanding that different regions are detected by different methods, they are all accompanied by quasi-stream-wise vortex structures.

  6. The investigation of coherent structures in the wall region of a supersonic turbulent boundary layer based on DNS database

    Institute of Scientific and Technical Information of China (English)

    HUANG ZhangFeng; ZHOU Heng; LUO JiSheng

    2007-01-01

    Through temporal mode direct numerical simulation, flow field database of a fully developed turbulent boundary layer on a flat plate with Mach number 4.5 and Reynolds number Reθ=1094 has been obtained. Commonly used detection methods in experiments are applied to detecting coherent structures in the flow field,and it is found that coherent structures do exist in the wall region of a supersonic turbulent boundary layer. The detected results show that a low-speed streak is detected by using the Mu-level method, the rising parts of this streak are detected by using the second quadrant method, and the crossing regions from a low-speed streak to the high-speed one are detected by using the VITA method respectively.Notwithstanding that different regions are detected by different methods, they are all accompanied by quasi-stream-wise vortex structures.

  7. A Structured Mesh Euler and Interactive Boundary Layer Method for Wing/Body Configurations

    Institute of Scientific and Technical Information of China (English)

    Li Jie; Zhou Zhou

    2008-01-01

    To compute transonic flows over a complex 3D aircraft configuration, a viscous/inviscid interaction method is developed by coupling an integral boundary-layer solver with an Eluer solver in a "semi-inverse" manner. For the turbulent bonndary-layer, an integral method using Green's lag equation is coupled with the outer inviscid flow. A blowing velocity approach is used to simulate the displacement effects of the boundary layer. To predict the aerodynamic drag, it is developed a numerical technique called far-field method that is based on the momentum theorem, in which the total drag is divided into three component drags, i.e. viscous, induced and wave-formed. Consequently, it can provide more physical insight into the drag sources than the oflen-used surface integral technique.The drag decomposition can be achieved with help of the second law of thermodynamics, which implies that entropy increases and total pressure decreases only across shock wave along a streamline of an inviscid non-isentropic flow. This method has been applied to the DLR-F4 wing/body configuration showing results in good agreement with the wind tunnel data.

  8. Boundary layers in stochastic thermodynamics.

    Science.gov (United States)

    Aurell, Erik; Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo

    2012-02-01

    We study the problem of optimizing released heat or dissipated work in stochastic thermodynamics. In the overdamped limit these functionals have singular solutions, previously interpreted as protocol jumps. We show that a regularization, penalizing a properly defined acceleration, changes the jumps into boundary layers of finite width. We show that in the limit of vanishing boundary layer width no heat is dissipated in the boundary layer, while work can be done. We further give an alternative interpretation of the fact that the optimal protocols in the overdamped limit are given by optimal deterministic transport (Burgers equation).

  9. The mechanism for the generation of coherent structures in the wall region of a turbulent boundary layer

    Institute of Scientific and Technical Information of China (English)

    周恒; 熊忠民

    1995-01-01

    By using the idea of resonant triad of the theory of hydrodynamic stability, a theoretical model was proposed for the generation of the coherent structures in the wall region of a turbulent boundary layer. The obtained structural configuration, the spanwise length scale and the convective speed of the coherent structures are in agreement with those obtained by numerical simulations. To further characterize these structures, the probability density distribution of the non-dimensional circulation difference of the largely unsymmetric streamwise vortex pairs has been calculated. Its comparison with those obtained by the numerical simulations is in general satisfactory.

  10. Effect of Boundary Layer Thickness on Secondary Structures in a Short Inlet Curved Duct

    Science.gov (United States)

    Gartner, Jeremy; Amitay, Michael

    2013-11-01

    The flow pattern in short ducts with aggressive curvature can lead in some cases to an asymmetric flow field. In the current work, a two dimensional honeycomb mesh was added upstream of the curved duct to create a pressure drop across it, and therefore an increased velocity deficit in the boundary layer profile. This velocity deficit led to a stronger streamwise separation, overcoming the flow mechanisms that result in the asymmetric flowfield. Experiments were conducted at M = 0.2, 0.44 and 0.58 in an expanding aggressive duct with square cross section with an area ratio of 1.27. Pressure data, together with Particle Image Velocimetry (PIV), verify the symmetry of the incoming flow field. Steady pressure distributions along the lower surface of the curved duct were obtained, as well as steady and time dependent total pressure distributions at the aerodynamic interface plane, enabling the analysis of the flow characteristics throughout the duct length. The effect of inserting a honeycomb was tested by increasing its height from 0 to 2.2 times the baseline flow boundary layer thickness upstream of the curve. Crosstream flow symmetry was achieved for specific geometrical configurations with a negligible decrease in the pressure recovery.

  11. Effects of artificial sea film slick upon the atmospheric boundary layer structure

    Science.gov (United States)

    Repina, Irina; Artamonov, Arseniy; Malinovsky, Vladimir; Chechin, Dmitriy

    2010-05-01

    Organic surface-active compounds accumulate at the ocean-atmosphere boundary, influencing several air-sea interaction processes. In coastal areas with high biological activity this accumulation frequently becomes visible as mirrorlike patches ("slicks") on the sea surface. The artificial surface films of oleyl alcohol and vegetable oil were produced in the Black Sea coastal zone (one site was located near Gelendjik and another was near Crimea coast) to investigate its influence on energy and gas exchange between atmosphere and sea surface under different meteorological conditions. The atmospheric turbulence measurements during the passage of an artificial sea slick are compared with similar measurements without a sea slick. The effects of the slick are modifications of roughness length z0, and a possible increase in mean wind speed. In the mean, during the passage of the slick, the roughness length decreased while the mean wind speed appeared to increase. For the spectral comparison we compared the wind field over the sea during the time the film slick was in the vicinity of the measurement site with the wind field observed after the slick had passed. The cross-spectral density was computed between horizontal velocity and vertical velocity (Reynolds stress) and between atmospheric temperature and vertical velocity (heat flux). The introduction of the sea film slick, with its damping and suppression of capillary waves, appears to completely destroy the atmospheric turbulence generation. When a slick is present, the U-W phase angle and Reynolds stress spectrum for the atmosphere appear to be completely unaffected by undulating sea surface directly below the sensors. Spectral and wavelet analysis of the atmospheric surface layer characteristics showed a significant correlation between the processes on the sea surface and the atmospheric boundary layer. An intensification of change processes in the vicinity of the windward slick boundary are detected. It may be

  12. Mean flow structure of non-equilibrium boundary layers with adverse pressure gradient

    Indian Academy of Sciences (India)

    B C Mandal; H P Mazumdar; S S Dutta

    2014-10-01

    In this paper Spalding’s formulation for the law of the wall with constants modified by Persen is used to describe the inner region (viscous sub-layer and certain portion of logarithmic layer) and a wake law due to Persen is used to describe the wake region (outer region). These two laws are examined in the light of measured data by Marušić and Perry for non-equilibrium adverse pressure gradient layers. It is observed that structure of turbulence for this flow is well-described by these two laws. From the known structure of turbulence eddy viscosity for the flow under consideration is calculated. Self similarity in eddy viscosity is observed in the wall region.

  13. Experimental measurements of large scale structures in an incompressible turbulent boundary layer using correlated X-probes

    Science.gov (United States)

    Strataridakis, Constantine J.; White, Bruce R.; Robinson, Stephen K.

    1989-01-01

    Hot-wire anemometry measurements in an incompressible turbulent boundary-layer flow over a flat plate, at zero pressure gradient were made using two X-probes simultaneously. The over seven meters long flat plate installed within the wind tunnel generated an approximately 20-cm thick boundary layer, and R(theta) of about 4,000. The mean velocity and turbulence intensity data very close to the wall were measured with a single-wire. Space-time velocity fluctuation and shear-product correlation measurements enabled the calculation of large-scale structure convection velocity, inclination-angle to the wall, and spatial extent in space. The shear-product correlation results are reported for the first time.

  14. Simulation of the atmospheric boundary layer in the wind tunnel for modeling of wind loads on low-rise structures

    Science.gov (United States)

    Tieleman, H. W.; Reinhold, T. A.; Marshall, R. D.

    1976-01-01

    The lower part of the atmospheric boundary layer (strong wind conditions) was simulated in low speed wind tunnel for the modeling of wind loads on low-rise structures. The turbulence characteristics of the turbulent boundary layer in the wind tunnel are compared with full scale measurements and with measurements made at NASA Wallops Flight Center. Wind pressures measured on roofs of a 1:70 scale model of a small single family dwelling were compared with results obtained from full scale measurements. The results indicate a favorable comparison between full scale and model pressure data as far as mean, r.m.s. and peak pressures are concerned. In addition, results also indicate that proper modeling of the turbulence is essential for proper simulation of the wind pressures.

  15. Fluid-structure interaction of turbulent boundary layer over a compliant surface

    Science.gov (United States)

    Anantharamu, Sreevatsa; Mahesh, Krishnan

    2016-11-01

    Turbulent flows induce unsteady loads on surfaces in contact with them, which affect material stresses, surface vibrations and far-field acoustics. We are developing a numerical methodology to study the coupled interaction of a turbulent boundary layer with the underlying surface. The surface is modeled as a linear elastic solid, while the fluid follows the spatially filtered incompressible Navier-Stokes equations. An incompressible Large Eddy Simulation finite volume flow approach based on the algorithm of Mahesh et al. is used in the fluid domain. The discrete kinetic energy conserving property of the method ensures robustness at high Reynolds number. The linear elastic model in the solid domain is integrated in space using finite element method and in time using the Newmark time integration method. The fluid and solid domain solvers are coupled using both weak and strong coupling methods. Details of the algorithm, validation, and relevant results will be presented. This work is supported by NSWCCD, ONR.

  16. Exploiting the structure of MWR-derived temperature profile for stable boundary-layer height estimation

    Science.gov (United States)

    Saeed, Umar; Rocadenbosch, Francesc

    2015-10-01

    A method for the estimation of Stable Boundary Layer Height (SBLH) using curvature of the potential temperature profiles retrieved by a Microwave Radiometer (MWR) is presented. The vertical resolution of the MWR-derived temperature profile decreases with the height. A spline interpolation is carried-out to obtain a uniformly discretized temperature profile. The curvature parameter is calculated from the first and second order derivatives of the interpolated potential temperature profile. The first minima of the curvature parameter signifies the point where the temperature profile starts changing from the stable to the residual conditions. The performance of the method is analyzed by comparing it against physically idealized models of the stable boundary-layer temperature profile available in the literature. There are five models which include stable-mixed, mixed-linear, linear, polynomial and exponential. For a given temperature profile these five models are fitted using the non-linear least-squares approach. The best fitting model is chosen as the one which fits with the minimum root-mean-square error. Comparison of the SBLH estimates from curvature-based method with the physically idealized models shows that the method works qualitatively and quantitatively well with lower variation. Potential application of this approach is the situation where given temperature profiles are significantly deviant from the idealized models. The method is applied to data from a Humidity-and-Temperature Profiler (HATPRO) MWR collected during the HD(CP)2 Observational Prototype Experiment (HOPE) campaign at Jülich, Germany. Radiosonde data, whenever available, is used as the ground-truth.

  17. Structuring of turbulence and its impact on basic features of Ekman boundary layers

    Directory of Open Access Journals (Sweden)

    I. Esau

    2013-08-01

    Full Text Available The turbulent Ekman boundary layer (EBL has been studied in a large number of theoretical, laboratory and modeling works since F. Nansen's observations during the Norwegian Polar Expedition 1893–1896. Nevertheless, the proposed analytical models, analysis of the EBL instabilities, and turbulence-resolving numerical simulations are not fully consistent. In particular, the role of turbulence self-organization into longitudinal roll vortices in the EBL and its dependence on the meridional component of the Coriolis force remain unclear. A new set of large-eddy simulations (LES are presented in this study. LES were performed for eight different latitudes (from 1° N to 90° N in the domain spanning 144 km in the meridional direction. Geostrophic winds from the west and from the east were used to drive the development of EBL turbulence. The emergence and growth of longitudinal rolls in the EBL was simulated. The simulated rolls are in good agreement with EBL stability analysis given in Dubos et al. (2008. The destruction of rolls in the westerly flow at low latitude was observed in simulations, which agrees well with the action of secondary instability on the rolls in the EBL. This study quantifies the effect of the meridional component of the Coriolis force and the effect of rolls in the EBL on the internal EBL parameters such as friction velocity, cross-isobaric angle, parameters of the EBL depth and resistance laws. A large impact of the roll development or destruction is found. The depth of the EBL in the westerly flow is about five times less than it is in the easterly flow at low latitudes. The EBL parameters, which depend on the depth, also exhibit large difference in these two types of the EBL. Thus, this study supports the need to include the horizontal component of the Coriolis force into theoretical constructions and parameterizations of the boundary layer in models.

  18. Statistical evidence of anasymptotic geometric structure to the momentum transporting motions in turbulent boundary layers

    Science.gov (United States)

    Morrill-Winter, Caleb; Philip, Jimmy; Klewicki, Joseph

    2017-03-01

    The turbulence contribution to the mean flow is reflected by the motions producing the Reynolds shear stress () and its gradient. Recent analyses of the mean dynamical equation, along with data, evidence that these motions asymptotically exhibit self-similar geometric properties. This study discerns additional properties associated with the uv signal, with an emphasis on the magnitudes and length scales of its negative contributions. The signals analysed derive from high-resolution multi-wire hot-wire sensor data acquired in flat-plate turbulent boundary layers. Space-filling properties of the present signals are shown to reinforce previous observations, while the skewness of uv suggests a connection between the size and magnitude of the negative excursions on the inertial domain. Here, the size and length scales of the negative uv motions are shown to increase with distance from the wall, whereas their occurrences decrease. A joint analysis of the signal magnitudes and their corresponding lengths reveals that the length scales that contribute most to are distinctly larger than the average geometric size of the negative uv motions. Co-spectra of the streamwise and wall-normal velocities, however, are shown to exhibit invariance across the inertial region when their wavelengths are normalized by the width distribution, W(y), of the scaling layer hierarchy, which renders the mean momentum equation invariant on the inertial domain.

  19. Implications of Stably Stratified Atmospheric Boundary Layer Turbulence on the Near-Wake Structure of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kiran Bhaganagar

    2014-09-01

    Full Text Available Turbulence structure in the wake behind a full-scale horizontal-axis wind turbine under the influence of real-time atmospheric inflow conditions has been investigated using actuator-line-model based large-eddy-simulations. Precursor atmospheric boundary layer (ABL simulations have been performed to obtain mean and turbulence states of the atmosphere under stable stratification subjected to two different cooling rates. Wind turbine simulations have revealed that, in addition to wind shear and ABL turbulence, height-varying wind angle and low-level jets are ABL metrics that influence the structure of the turbine wake. Increasing stability results in shallower boundary layers with stronger wind shear, steeper vertical wind angle gradients, lower turbulence, and suppressed vertical motions. A turbulent mixing layer forms downstream of the wind turbines, the strength and size of which decreases with increasing stability. Height dependent wind angle and turbulence are the ABL metrics influencing the lateral wake expansion. Further, ABL metrics strongly impact the evolution of tip and root vortices formed behind the rotor. Two factors play an important role in wake meandering: tip vortex merging due to the mutual inductance form of instability and the corresponding instability of the turbulent mixing layer.

  20. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  1. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  2. Heat flux at the base of lake ice cover estimated from fine structure of the ice-water boundary layer

    Science.gov (United States)

    Kirillin, Georgiy; Aslamov, Ilya; Kozlov, Vladimir; Granin, Nikolay; Engelhardt, Christof; Förster, Josephine

    2016-04-01

    Seasonal lake ice is a highly changeable part of the cryosphere undergoing remarkable impact by global warming. Vertical heat transport across the boundary layer under ice affects strongly the growth and melting of lake ice cover. The existing models of ice cover dynamics focus basically on the dependence of the ice thickness on the air temperature with implicit account of the snow cover effects. The heat flux at the water-ice boundary, in turn, is usually neglected or parameterized in a very simplistic form. However, neglecting of the basal ice melting due to heat flux at the ice-water interface produces appreciable errors in the modeled ice cover duration. We utilize fine-structure observations taken during 2009-2015 in ice-water boundary layers of Lake Baikal and arctic Lake Kilpisjärvi to reveal the major physical drivers of the heat exchange at the ice bottom and to explain the high geographical, spatial, and temporal variability in the heat flux magnitudes. The methods provide first detailed estimations of the heat exchange beneath the ice cover, available previously only from bulk estimations. The fluxes in Lake Baikal have magnitudes of 101 W m-2 and vary strongly between different parts of the lake being influenced by large-scale horizontal circulation with current velocities amounting at up to 7 cm s-1. The shallow lake fluxes, while an order of magnitude weaker, are highly non-stationary, being affected by the turbulence due to oscillating currents under ice. Our results demonstrate the role played by the boundary layer mixing in the ice growth and melting, as well as characterize the physical processes responsible for the vertical heat exchange and provide a basis for an improved parameterization of ice cover in coupled lake-atmosphere models.

  3. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime...

  4. Shockwave-boundary layer interactions

    NARCIS (Netherlands)

    Glepman, R.

    2014-01-01

    Shock wave-boundary layer interactions are a very common feature in both transonic and supersonic flows. They can be encountered on compressor and turbine blades, in supersonic jet inlets, on transonic wings, on the stabilization fins of missiles and in many more situations. Because of their major i

  5. The Ocean Boundary Layer beneath Hurricane Frances

    Science.gov (United States)

    Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.

    2006-12-01

    The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.

  6. Bursting process of large- and small-scale structures in turbulent boundary layer perturbed by a cylinder roughness element

    Science.gov (United States)

    Tang, Zhanqi; Jiang, Nan; Zheng, Xiaobo; Wu, Yanhua

    2016-05-01

    Hot-wire measurements on a turbulent boundary layer flow perturbed by a wall-mounted cylinder roughness element (CRE) are carried out in this study. The cylindrical element protrudes into the logarithmic layer, which is similar to those employed in turbulent boundary layers by Ryan et al. (AIAA J 49:2210-2220, 2011. doi: 10.2514/1.j051012) and Zheng and Longmire (J Fluid Mech 748:368-398, 2014. doi: 10.1017/jfm.2014.185) and in turbulent channel flow by Pathikonda and Christensen (AIAA J 53:1-10, 2014. doi: 10.2514/1.j053407). The similar effects on both the mean velocity and Reynolds stress are observed downstream of the CRE perturbation. The series of hot-wire data are decomposed into large- and small-scale fluctuations, and the characteristics of large- and small-scale bursting process are observed, by comparing the bursting duration, period and frequency between CRE-perturbed case and unperturbed case. It is indicated that the CRE perturbation performs the significant impact on the large- and small-scale structures, but within the different impact scenario. Moreover, the large-scale bursting process imposes a modulation on the bursting events of small-scale fluctuations and the overall trend of modulation is not essentially sensitive to the present CRE perturbation, even the modulation extent is modified. The conditionally averaging fluctuations are also plotted, which further confirms the robustness of the bursting modulation in the present experiments.

  7. Stability of compressible boundary layers

    Science.gov (United States)

    Nayfeh, Ali H.

    1989-01-01

    The stability of compressible 2-D and 3-D boundary layers is reviewed. The stability of 2-D compressible flows differs from that of incompressible flows in two important features: There is more than one mode of instability contributing to the growth of disturbances in supersonic laminar boundary layers and the most unstable first mode wave is 3-D. Whereas viscosity has a destabilizing effect on incompressible flows, it is stabilizing for high supersonic Mach numbers. Whereas cooling stabilizes first mode waves, it destabilizes second mode waves. However, second order waves can be stabilized by suction and favorable pressure gradients. The influence of the nonparallelism on the spatial growth rate of disturbances is evaluated. The growth rate depends on the flow variable as well as the distance from the body. Floquet theory is used to investigate the subharmonic secondary instability.

  8. Transition in hypersonic boundary layers

    Directory of Open Access Journals (Sweden)

    Chuanhong Zhang

    2015-10-01

    Full Text Available Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second-mode instability is a key modulator of the transition process. Although the second-mode is primarily an acoustic wave, it causes the formation of high-frequency vortical waves, which triggers a fast transition to turbulence.

  9. Structure of two-dimensional and three-dimensional turbulent boundary layers with sparsely distributed roughness elements

    Science.gov (United States)

    George, Jacob

    The present study deals with the effects of sparsely distributed three-dimensional elements on two-dimensional (2-D) and three-dimensional (3-D) turbulent boundary layers (TBL) such as those that occur on submarines, ship hulls, etc. This study was achieved in three parts: Part 1 dealt with the cylinders when placed individually in the turbulent boundary layers, thereby considering the effect of a single perturbation on the TBL; Part 2 considered the effects when the same individual elements were placed in a sparse and regular distribution, thus studying the response of the flow to a sequence of perturbations; and in Part 3, the distributions were subjected to 3-D turbulent boundary layers, thus examining the effects of streamwise and spanwise pressure gradients on the same perturbed flows as considered in Part 2. The 3-D turbulent boundary layers were generated by an idealized wing-body junction flow. Detailed 3-velocity-component Laser-Doppler Velocimetry (LDV) and other measurements were carried out to understand and describe the rough-wall flow structure. The measurements include mean velocities, turbulence quantities (Reynolds stresses and triple products), skin friction, surface pressure and oil flow visualizations in 2-D and 3-D rough-wall flows for Reynolds numbers, based on momentum thickness, greater than 7000. Very uniform circular cylindrical roughness elements of 0.38mm, 0.76mm and 1.52mm height (k) were used in square and diagonal patterns, yielding six different roughness geometries of rough-wall surface. For the 2-D rough-wall flows, the roughness Reynolds numbers, k +, based on the element height (k) and the friction velocity (Utau), range from 26 to 131. Results for the 2-D rough-wall flows reveal that the velocity-defect law is similar for both smooth and rough surfaces, and the semi-logarithmic velocity-distribution curve is shifted by an amount DeltaU/U, depending on the height of the roughness element, showing that Delta U/Utau is a function

  10. On the Structure and Adjustment of Inversion-Capped Neutral Atmospheric Boundary-Layer Flows: Large-Eddy Simulation Study

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Gryning, Sven-Erik; Kelly, Mark C.

    2014-01-01

    A range of large-eddy simulations, with differing free atmosphere stratification and zero or slightly positive surface heat flux, is investigated to improve understanding of the neutral and near-neutral, inversion-capped, horizontally homogeneous, barotropic atmospheric boundary layer with emphasis...... on the upper region. We find that an adjustment time of at least 16 h is needed for the simulated flow to reach a quasi-steady state. The boundary layer continues to grow, but at a slow rate that changes little after 8 h of simulation time. A common feature of the neutral simulations is the development...... of a super-geostrophic jet near the top of the boundary layer. The analytical wind-shear models included do not account for such a jet, and the best agreement with simulated wind shear is seen in cases with weak stratification above the boundary layer. Increasing the surface heat flux decreases the magnitude...

  11. Singularities of 3D laminar boundary layer equations and flow structure in their vicinity on conical bodies

    Science.gov (United States)

    Shalaev, V. I.

    2016-10-01

    Singularities appearing in solutions of 3D laminar boundary layer (BL) equations, when two streamline families are collided, are discussed. For conical bodies, equations are investigated using asymptotic methods. Analytical solutions are obtained for the outer BL region; their singularities in the runoff plane are studied. The asymptotic flow structure near the singularity is constructed on the base of Navier-Stokes equations at large Reynolds numbers. For different flow regions analytical solutions are found and are matched with BL equation solutions. Properties of BL equations for the near-wall region in the runoff plane are investigated and a criterion of the solution disappearing is found. It is shown that this criterion separates two different topological flow structures and corresponds to the singularity appearance in this plane in solutions of full equations. Calculations confirmed obtained results are presented.

  12. Wavelet phase analysis of two velocity components to infer the structure of interscale transfers in a turbulent boundary-layer

    Energy Technology Data Exchange (ETDEWEB)

    Keylock, Christopher J [Sheffield Fluid Mechanics Group and Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Nishimura, Kouichi, E-mail: c.keylock@sheffield.ac.uk [Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2016-04-15

    Scale-dependent phase analysis of velocity time series measured in a zero pressure gradient boundary layer shows that phase coupling between longitudinal and vertical velocity components is strong at both large and small scales, but minimal in the middle of the inertial regime. The same general pattern is observed at all vertical positions studied, but there is stronger phase coherence as the vertical coordinate, y, increases. The phase difference histograms evolve from a unimodal shape at small scales to the development of significant bimodality at the integral scale and above. The asymmetry in the off-diagonal couplings changes sign at the midpoint of the inertial regime, with the small scale relation consistent with intense ejections followed by a more prolonged sweep motion. These results may be interpreted in a manner that is consistent with the action of low speed streaks and hairpin vortices near the wall, with large scale motions further from the wall, the effect of which penetrates to smaller scales. Hence, a measure of phase coupling, when combined with a scale-by-scale decomposition of perpendicular velocity components, is a useful tool for investigating boundary-layer structure and inferring process from single-point measurements. (paper)

  13. Large Scale Circulation and boundary layer structure in a rough Rayleigh-B{\\'e}nard cell filled with water

    CERN Document Server

    Liot, Olivier; Rusaouën, Elonore; Coudarchet, Thibaut; Salort, Julien; Chillà, Francesca

    2016-01-01

    We report Particle Image Velocimetry of the Large Scale Circulation and the viscous boundary layer in turbulent thermal convection. We use two parallelepipedic Rayleigh-B{\\'e}nard cells with a top smooth plate. The first one has a rough bottom plate and the second one has a smooth one so we compare the rough-smooth and the smooth-smooth configurations. The dimensions of the cell allow to consider a bi-dimensional mean flow. Lots of previous heat flux measurements have shown a Nusselt--Rayleigh regime transition corresponding to an increase of the heat flux in presence of roughness which is higher than the surface increase. Our velocity measurements show that if the mean velocity field is not clearly affected by the roughness, the velocity fluctuations rise dramatically. It is accompanied by a change of the longitudinal velocity structure functions scaling. Moreover, we show that the boundary layer becomes turbulent close to roughness, as it was observed recently in the air [Liot et al., JFM, vol. 786, pp. 275...

  14. Turbulent Boundary Layer on a Cylinder in Axial Flow

    Science.gov (United States)

    1988-09-29

    8/a and x/a were estimated based on information presented in each paper. The studies listed are in order of decreasing curvature ratio, &a. The...boundar) layer is fundamental, yet difficult. Very little information is available on the structure of turbulence in a cylindrical boundary layer, although...Engineering Science Company, Pasadena, CA, 1962.) 4. B. C. Sakiadis, "Boundary-Layer Behavoir on Continuous Solid Surfaces: Ill. The Boundary Layer on a

  15. Bursting frequency prediction in turbulent boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    LIOU,WILLIAM W.; FANG,YICHUNG

    2000-02-01

    The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.

  16. Diurnal Variations of Air Pollution and Atmospheric Boundary Layer Structure in Beijing During Winter 2000/2001

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li; XU Xiangde; DING Guoan; ZHOU Mingyu; CHENG Xinghong

    2005-01-01

    The diurnal variations of gaseous pollutants and the dynamical and thermodynamic structures of the atmospheric boundary layer (ABL) in the Beijing area from January to March 2001 are analyzed in this study using data from the Beijing City Air Pollution Observation Field Experiment (BECAPEX). A heavy pollution day (22 February) and a good air quality day (24 February) are selected and individually analyzed and compared to reveal the relationships between gaseous pollutants and the diurnal variations of the ABL. The results show that gaseous pollutant concentrations exhibit a double-peak-double-valley-type diurnal variation and have similar trends but with different magnitudes at different sites in Beijing. The diurnal variation of the gaseous pollutant concentrations is closely related to (with a 1-2 hour delay of)changes in the atmospheric stability and the mean kinetic energy in the ABL.

  17. The marine atmospheric boundary layer under strong wind conditions: Organized turbulence structure and flux estimates by airborne measurements

    Science.gov (United States)

    Brilouet, Pierre-Etienne; Durand, Pierre; Canut, Guylaine

    2017-02-01

    During winter, cold air outbreaks take place in the northwestern Mediterranean sea. They are characterized by local strong winds (Mistral and Tramontane) which transport cold and dry continental air across a warmer sea. In such conditions, high values of surface sensible and latent heat flux are observed, which favor deep oceanic convection. The HyMeX/ASICS-MED field campaign was devoted to the study of these processes. Airborne measurements, gathered in the Gulf of Lion during the winter of 2013, allowed for the exploration of the mean and turbulent structure of the marine atmospheric boundary layer (MABL). A spectral analysis based on an analytical model was conducted on 181 straight and level runs. Profiles of characteristic length scales and sharpness parameter of the vertical wind spectrum revealed larger eddies along the mean wind direction associated with an organization of the turbulence field into longitudinal rolls. These were highlighted by boundary layer cloud bands on high-resolution satellite images. A one-dimensional description of the vertical exchanges is then a tricky issue. Since the knowledge of the flux profile throughout the entire MABL is essential for the estimation of air-sea exchanges, a correction of eddy covariance turbulent fluxes was developed taking into account the systematic and random errors due to sampling and data processing. This allowed the improvement of surface fluxes estimates, computed from the extrapolation of the stacked levels. A comparison between those surface fluxes and bulk fluxes computed at a moored buoy revealed considerable differences, mainly regarding the latent heat flux under strong wind conditions.

  18. Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution

    Science.gov (United States)

    Miao, Yucong; Guo, Jianping; Liu, Shuhua; Liu, Huan; Li, Zhanqing; Zhang, Wanchun; Zhai, Panmao

    2017-02-01

    Meteorological conditions within the planetary boundary layer (PBL) are closely governed by large-scale synoptic patterns and play important roles in air quality by directly and indirectly affecting the emission, transport, formation, and deposition of air pollutants. Partly due to the lack of long-term fine-resolution observations of the PBL, the relationships between synoptic patterns, PBL structure, and aerosol pollution in Beijing have not been well understood. This study applied the obliquely rotated principal component analysis in T-mode to classify the summertime synoptic conditions over Beijing using the National Centers for Environmental Prediction reanalysis from 2011 to 2014, and investigated their relationships with PBL structure and aerosol pollution by combining numerical simulations, measurements of surface meteorological variables, fine-resolution soundings, the concentration of particles with diameters less than or equal to 2.5 µm, total cloud cover (CLD), and reanalysis data. Among the seven identified synoptic patterns, three types accounted for 67 % of the total number of cases studied and were associated with heavy aerosol pollution events. These particular synoptic patterns were characterized by high-pressure systems located to the east or southeast of Beijing at the 925 hPa level, which blocked the air flow seaward, and southerly PBL winds that brought in polluted air from the southern industrial zone. The horizontal transport of pollutants induced by the synoptic forcings may be the most important factor affecting the air quality of Beijing in summer. In the vertical dimension, these three synoptic patterns featured a relatively low boundary layer height (BLH) in the afternoon, accompanied by high CLD and southerly cold advection from the seas within the PBL. The high CLD reduced the solar radiation reaching the surface, and suppressed the thermal turbulence, leading to lower BLH. Besides, the numerical sensitive experiments show that cold

  19. Experimental measurements of large-scale temperature fluctuation structures in a heated incompressible turbulent boundary layer

    Science.gov (United States)

    Bagheri, Nader; White, Bruce R.

    1993-03-01

    Hot-wire anemometry measurements over a heated flat plate are made for three different temperature difference cases of 10, 15, and 20 C. Space-time correlations of temperature fluctuations T-prime are determined from which mean convection velocities, mean inclination angles, extent in space, and coherence characteristics of T-prime large-scale structure are calculated. The T-prime mean convection velocity is found as a function of y(+). The T-prime structure inclination angle is 30 deg. The T-prime structure is limited to the viscous defect length in the normal and spanwise directions. However, in the streamwise direction, the structure is mildly dependent on the temperature difference.

  20. Hybrid Element Method for Compsoite Structures Subjected to Boundary Layer Loading Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In many situations, aerospace structures are subjected to a wide frequency spectrum of mechanical and/or acoustic excitations and therefore, there is a need for the...

  1. Turbulent structures dependent on tidal currents in the bottom boundary layer of the Venice Lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Cavazzoni, S.; Crosera, F.

    The time series of horizontal and vertical turbulent velocity fluctuations u', w' have been recorded by means of an electromagnetic currentmeter in proximity of the bottom of a channel feeding the Venetian Lagoon. Simultaneous surface gradients have been recorded at two tide gauge stations, one upstream and the other downstream of the chosen test site. The time series of u', w' and u'w' values have been analysed using standard digital methods and, for each record, spectra, cross-spectra, co-spectra, quadrature spectra, phase and coherence of u' and w' have been computed. This analysis allows us to determine temporal and spatial dimensions of turbulent structures that give the greatest contribution to Reynolds stress (- rhoanti u'anti w', where rho is the water density). These structures that seem to be dependent on longitudinal surface gradients are primarily responsible for vertical momentum transport and, consequently, for the lift-up and transport of sediments. Statistic distributions of u', w' and u'w' values indicate that the greatest turbulent structures are those with u'w'<0 and with u'<0 predominating.

  2. Influence of large-eddy breakup device on near-wall turbulent structures in turbulent boundary layer

    Science.gov (United States)

    Kim, Joon-Seok; Hwang, Jinyul; Yoon, Min; Ahn, Junsun; Sung, Hyung Jin; Flow Control Lab Team

    2016-11-01

    Direct numerical simulation of a large-eddy breakup (LEBU) device in a spatially developing turbulent boundary layer was performed to investigate the influence of outer structures on the near-wall turbulence. The thin and rectangular shaped LEBU device was placed on y / δ = 0 . 8 and the device reduced the skin-friction coefficient (Cf) up to 17%. Decomposition of Cf showed that the contribution of the Reynolds shear stress decreased along the wall-normal direction. The reduction of the Reynolds shear stress was associated with the decrease of the ejection and sweep events, and in particular the latter was significantly reduced compared to the former in the near-wall region. The spanwise length scale of high-speed structures was more shortened than that of low-speed very near the wall (y+ = 20). As a result, the dispersive motions induced by the outer sweeps were weakened leading to the reduction of Cf even the LEBU device located far from the wall. This work was supported by the Creative Research Initiatives (No. 2016-004749) program of the National Research Foundation of Korea (MSIP).

  3. Marine boundary-layer cloud structure from CM- to KM-scales

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A. [and others

    2000-04-01

    The authors analysis of small-scale LWC fluctuations in PVM-100A data from SOCEX-1 supports the still controversial claim that droplet concentration is not everywhere Poissonian. This does not exclude a slow (spectral exponent {beta} = 5/3) low-amplitude component in the variability of droplet number and size distribution. We believe the cause of the excess small-scale LWC variance causing the scale-break at 2--5 m lies in entrainment- and/or-mixing events; such processes maybe related to the intermittency (occasional bursts of variability at the inner-scale) associated with the large-scale multifractality. Comparing exponents obtained for large-scale behavior with those previously obtained from two other field programs, we uncover remarkable similarities between the basic multifractal (i.e., arbitrary-order structure function) properties of LWC in SOCEX, FIRE'87 and ASTEX clouds and those of passively advected scalars in turbulent flows. However, we also find interesting differences between the three kinds of marine cloud cover and with passive scalars but these are in the details of the various multifractal characterizations (inner and outer scales, high-order scaling). To reproduce these statistical behaviors defines a quantitatively-precise challenge for the cloud-modeling community.

  4. A STUDY ON NUMERICAL METHOD OF NAVIER-STOKES EQUATION AND NON-LINEAR EVOLUTION OF THE COHERENT STRUCTURES IN A LAMINAR BOUNDARY LAYER

    Institute of Scientific and Technical Information of China (English)

    LU Chang-gen; CAO Wei-dong; QIAN Jian-hua

    2006-01-01

    A new method for direct numerical simulation of incompressible Navier-Stokes equations is studied in the paper. The compact finite difference and the non-linear terms upwind compact finite difference schemes on non-uniform meshes in x and y directions are developed respectively. With the Fourier spectral expansion in the spanwise direction, three-dimensional N-S equation are converted to a system of two-dimensional equations. The third-order mixed explicit-implicit scheme is employed for time integration. The treatment of the three-dimensional non-reflecting outflow boundary conditions is presented, which is important for the numerical simulations of the problem of transition in boundary layers, jets, and mixing layer. The numerical results indicate that high accuracy, stabilization and efficiency are achieved by the proposed numerical method. In addition, a theory model for the coherent structure in a laminar boundary layer is also proposed, based on which the numerical method is implemented to the non-linear evolution of coherent structure. It is found that the numerical results of the distribution of Reynolds stress, the formation of high shear layer, and the event of ejection and sweeping, match well with the observed characteristics of the coherent structures in a turbulence boundary layer.

  5. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  6. Turbulent boundary layer over flexible plates

    Science.gov (United States)

    Rostami, Parand; Ioppolo, Tindaro

    2016-11-01

    This research describes the structure of a turbulent boundary layer flow with a zero pressure gradient over elastic plates. The elastic plates made of a thin aluminum sheets with thickness between 50 and 500 microns were placed on the floor of a subsonic wind tunnel and exposed to a turbulent boundary layer flow with a free stream velocity between 20m/s and 100m/s. The ceiling of the test section of the wind tunnel is adjustable so that a nearly zero pressure gradient is obtained in the test section. Hot-wire anemometry was used to measure the velocity components. Mean, fluctuating velocities and Reynolds stresses will be presented and compared with the values of a rigid plate.

  7. Experimental investigation of wave boundary layer

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2003-01-01

    A review is presented of experimental investigation of wave boundary layer. The review is organized in six main sections. The first section describes the wave boundary layer in a real-life environment and its simulation in the laboratory in an oscillating water tunnel and in a water tank...... with an oscillating seabed. A brief account is given of measured quantities, measurement techniques (LDA, PIV, flow visualization) and limitations/constraints in the experimental investigation of the wave boundary layer in the laboratory. The second section concentrates on uniform oscillating boundary layers...... with a smooth bed. The boundary layer process is described over the entire range of the Reynolds number (Re from practically nil to Re = O(107)), from the laminar regime to the transitional regime and to the fully developed turbulent regime. The third section focuses on the effect of the boundary roughness...

  8. Leaky waves in boundary layer flow

    Science.gov (United States)

    Pralits, Jan

    2005-11-01

    Linear stability analysis of boundary layer flow is traditionally performed by solving the Orr-Sommerfeld equation (OSE), either in a temporal or a spatial framework. The mode structure of the OSE is in both cases composed of a finite number of discrete modes which decay at infinity in the wall- normal direction y, and a continuous spectrum of propagating modes behaving as (±ik y) when y->∞, with real k. A peculiarity of this structure is that the number of discrete modes changes with the Reynolds number, Re. They indeed seem to disappear behind the continuous spectrum at certain Re. This phenomenon is here investigated by studying the response of the Blasius boundary layer forced instantaneously in space and time. Since the solution of the forced and homogeneous Laplace-transformed problem both depend on the free-stream boundary conditions, it is shown here that a suitable change of variables can remove the branch cut in the Laplace plane. As a result, integration of the inverse Laplace transform along the two sides of the branch cut, which gives rise to the continuous spectrum, can be replaced by a sum of residues corresponding to an additional set of discrete eigenvalues. These new modes grow at infinity in the y direction, and are analogous to the leaky waves found in the theory of optical waveguides, i.e. optical fibers, which are attenuated in the direction of the waveguide but grow unbounded in the direction perpendicular to it.

  9. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar re

  10. Introduction to computational techniques for boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Blottner, F.G.

    1979-09-01

    Finite-difference procedures to solve boundary layer flows in fluid mechanics are explained. The governing equations and the transformations utilized are described. Basic solution techniques are illustrated with the similar boundary layer equations. Nonsimilar solutions are developed for the incompressible equations. Various example problems are solved, and the numerical results in the Fortran listing of the computer codes are presented.

  11. Magnetohydrodynamic cross-field boundary layer flow

    Directory of Open Access Journals (Sweden)

    D. B. Ingham

    1982-01-01

    Full Text Available The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.

  12. Mechanisms Responsible for the Observed Thermodynamic Structure in a Convective Boundary Layer Over the Hudson Valley of New York State

    Science.gov (United States)

    Freedman, Jeffrey M.; Fitzjarrald, David R.

    2017-02-01

    We examine cases of a regional elevated mixed layer (EML) observed during the Hudson Valley Ambient Meteorology Study (HVAMS) conducted in New York State, USA in 2003. Previously observed EMLs referred to topographic domains on scales of 105 -106 km2 . Here, we present observational evidence of the mechanisms responsible for the development and maintenance of regional EMLs overlying a valley-based convective boundary layer (CBL) on much smaller spatial scales (deployed during the HVAMS, we show that cross-valley horizontal advection, along-valley channelling, and fog-induced cold-air pooling are responsible for the formation and maintenance of the EML and valley-CBL coupling over New York State's Hudson Valley. The upper layer stability of the overlying EML constrains growth of the valley CBL, and this has important implications for air dispersion, aviation interests, and fog forecasting.

  13. Observation study on the structure of wind and temperature in the boundary layer and its impact on air quality over the Pearl River Delta,China

    Science.gov (United States)

    Fan, S.; Zhu, W.; Wu, M.; Li, H.; Liao, Z.; Fan, Q.

    2015-12-01

    The structure of wind and temperature in the boundary layer and its impact on air quality over the Pearl River Delta(PRD) were examined through five intensive observations in October 2004 July 2006, November 2008 December 2013 and October 2014.The results show that the structure of wind and temperature in boundary layer has significant relationship with the underlying surface, geographical environment, season, weather systems, and has direct impact on air quality. Two types of typical weather conditions associated with poor air quality over PRD. The first is the warm period before a cold front (WPBCF) and the second is the subsidence period controlled by a tropical cyclone (SPCTC). In both cases, quiet small wind and stabilize weather obvious wind shear and multi-layer inversion appear. There will be a phenomenon "the gray in near ground layer, but blue sky in upper layer" some time, the reason is that the Mountain of Nanling and the heat island effect of urban area of PRD has weakened effect to the low-level cold air the upper-level cold air has reached, but the low-level cold air has not reach or is not strength enough to remove pollutants. Within the boundary layer, especially near ground small wind speed, ground inversion or multi-layer inversion, stable stratification, lower mixing layer height, insufficient horizontal transportation and vertical diffusion ability, combination with the negative impact of sea-land breeze urban heat island circulation, would be the main reasons of the most time poor air quality of PRD.

  14. A case study of cumulus formation beneath a stratocumulus sheet: Its structure and effect on boundary layer budgets

    Science.gov (United States)

    Barlow, Roy W.; Nicholls, S.

    1990-01-01

    On several occasions during the FIRE Marine Stratocumulus IFO off the California coast, small cumulus were observed to form during the morning beneath the main stratocumulus (Sc) deck. This occurs in the type of situation described by Turton and Nicholls (1987) in which there is insufficient generation of turbulent kinetic energy (TKE) from the cloudtop or the surface to sustain mixing throughout the layer, and a separation of the surface and cloud layers occurs. The build up of humidity in the surface layer allows cumuli to form, and the more energetic of these may penetrate back into the Sc deck, reconnecting the layers. The results presented were collected by the UKMO C-130 aircraft flying in a region where these small cumulus had grown to the extent that they had penetrated into the main Sc deck above. The structure of these penetrative cumulus are examined and their implications on the layer flux and radiation budget discussed.

  15. Compressibility Effects in Turbulent Boundary Layers

    Institute of Scientific and Technical Information of China (English)

    CAO Yu-Hui; PEI Jie; CHEN Jun; SHE Zhen-Su

    2008-01-01

    Local cascade (LC) scheme and space-time correlations are used to study turbulent structures and their convection behaviour in the near-wall region of compressible boundary layers at Ma = 0.8 and 1.3. The convection velocities of fluctuating velocity components u (streamwise) and v (vertical) are investigated by statistically analysing scale-dependent ensembles of LC structures. The results suggest that u is convected with entropy perturbations while v with an isentropic process. An abnormal thin layer distinct from the conventional viscous sub-layer is discovered in the immediate vicinity of the wall (y+≤1) in supersonic flows. While in the region 1 < y+ < 30,streamwise streaks dominate velocity, density and temperature fluctuations, the abnormal thin layer is dominated by spanwise streaks in vertical velocity and density fluctuations, where pressure and density fluctuations are strongly correlated. The LC scheme is proven to be effective in studying the nature of supersonic flows and compressibility effects on wall-bounded motions.

  16. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiao-Ming, E-mail: xhu@ou.edu [Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, OK 73072 (United States); Ma, ZhiQiang, E-mail: zqma@ium.cn [Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089 (China); Lin, Weili [Key Laboratory for Atmospheric Chemistry, Center for Atmospheric Watch and Services, Chinese Academy of Meteorological Sciences, Beijing, 100081 (China); Zhang, Hongliang; Hu, Jianlin [Department of Civil and Environmental Engineering, University of California, Davis, CA 95616 (United States); Wang, Ying; Xu, Xiaobin [Key Laboratory for Atmospheric Chemistry, Center for Atmospheric Watch and Services, Chinese Academy of Meteorological Sciences, Beijing, 100081 (China); Fuentes, Jose D. [Department of Meteorology, Pennsylvania State University, University Park, PA 16802 (United States); Xue, Ming [Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, OK 73072 (United States)

    2014-11-15

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (∼ 1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O{sub 3} pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events. - Highlights: • Low mixed layer exacerbates air pollution over the North China Plain (NCP) • Warm advection from the Loess

  17. Boundary Layers in Laminar Vortex Flows.

    Science.gov (United States)

    Baker, Glenn Leslie

    A detailed experimental study of the flow in an intense, laminar, axisymmetric vortex has been conducted in the Purdue Tornado Vortex Simulator. The complicated nature of the flow in the boundary layer of laboratory vortices and presumably on that encountered in full-scale tornadoes has been examined. After completing a number of modifications to the existing facility to improve the quality of the flow in the simulator, hot-film anemometry was employed for making velocity-component and turbulence-intensity measurements of both the free-stream and boundary layer portions of the flow. The measurements represent the first experimental boundary layer investigation of a well-defined vortex flow to appear in the literature. These results were compared with recent theoretical work by Burggraf, Stewartson and Belcher (1971) and with an exact similarity solution for line-sink boundary layers developed by the author. A comparison is also made with the numerical simulation of Wilson (1981) in which the boundary conditions were matched to those of the present experimental investigation. Expressions for the vortex core radius, the maximum tangential velocity and the maximum pressure drop are given in terms of dimensionless modeling parameters. References. Burggraf, O. R., K. Stewartson and R. Belcher, Boundary layer. induced by a potential vortex. Phys. Fluids 14, 1821-1833 (1971). Wilson, T., M. S. thesis, Vortex Boundary Layer Dynamics, Univ. Calif. Davis (1981).

  18. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: a case study.

    Science.gov (United States)

    Hu, Xiao-Ming; Ma, ZhiQiang; Lin, Weili; Zhang, Hongliang; Hu, Jianlin; Wang, Ying; Xu, Xiaobin; Fuentes, Jose D; Xue, Ming

    2014-11-15

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (~1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events.

  19. Imaging the Structure of Grains, Grain Boundaries, and Stacking Sequences in Single and Multi-Layer Graphene

    Science.gov (United States)

    Muller, David

    2012-02-01

    Graphene can be produced by chemical vapor deposition (CVD) on copper substrates on up to meter scales [1, 2], making their polycrystallinity [3,4] almost unavoidable. By combining aberration-corrected scanning transmission electron microscopy and dark-field transmission electron microscopy, we image graphene grains and grain boundaries across six orders of magnitude. Atomic-resolution images of graphene grain boundaries reveal that different grains can stitch together via pentagon-heptagon pairs. We use diffraction-filtered electron imaging to map the shape and orientation of several hundred grains and boundaries over fields of view of a hundred microns. Single, double and multilayer graphene can be differentiated, and the stacking sequence and relative abundance of sequences can be directly imaged. These images reveal an intricate patchwork of grains with structural details depending strongly on growth conditions. The imaging techniques enabled studies of the structure, properties, and control of graphene grains and grain boundaries [5]. [4pt] [1] X. Li et al., Science 324, 1312 (2009).[0pt] [2] S. Bae et al., Nature Nanotechnol. 5, 574 (2010).[0pt] [3] J. M. Wofford, et al., Nano Lett., (2010).[0pt] [4] P. Y. Huang, et al., Nature 469, 389--392 (2011); arXiv:1009.4714, (2010)[0pt] [5] In collaboration with Pinshane Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, A. W. Tsen, L. Brown, R. Hovden, F. Ghahari, W. S. Whitney, M.P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, N. Petrone, J. Hone, J. Park, P. L. McEuen

  20. Dropwindsonde observations of the mean boundary layer structure in the low-latitude Pacific during SOP-1

    Science.gov (United States)

    Firestone, James K.

    1986-01-01

    The low-level mean thermodynamic and wind profiles in the transition between the trade winds and the ICZ are described using the FGGE level II-b dropwindsonde data set collected during the period of SOP-1 (January 15-February 20, 1979). The results illustrate the influence of decaying midlatitude frontal systems in the northwesternmost region, the general tradelike nature of the eastern regions, and the highly convective nature of a region near the equator. Contrary to the results obtained with the traditional approach to the tropical boundary layer, the FGGE data indicate a trade inversion that remains quasi-horizontal in the north-south direction despite an equatorward decrease in its frequency of occurrence, indicating that subsidence may be more important in equatorial regions than was previously thought.

  1. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM......) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation...... and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically...

  2. DNS of compressible turbulent boundary layer over a blunt wedge

    Institute of Scientific and Technical Information of China (English)

    LI Xinliang; FU Dexun; MA Yanwan

    2005-01-01

    Direct numerical simulation of spatially evolving compressible boundary layer over a blunt wedge is performed in this paper. The free-stream Mach number is 6 and the disturbance source produced by wall blowing and suction is located downstream of the sound-speed point. Statistics are studied and compared with the results in incompressible flat-plate boundary layer. The mean pressure gradient effects on the vortex structure are studied.

  3. CONTINUOUS WAVELET TRANSFORM OF TURBULENT BOUNDARY LAYER FLOW

    Institute of Scientific and Technical Information of China (English)

    LIU Ying-zheng; KE Feng; CHEN Han-ping

    2005-01-01

    The spatio-temporal characteristics of the velocity fluctuations in a fully-developed turbulent boundary layer flow was investigated using hotwire. A low-speed wind tunnel was established. The experimental data was extensively analyzed in terms of continuous wavelet transform coefficients and their auto-correlation. The results yielded a potential wealth of information on inherent characteristics of coherent structures embedded in turbulent boundary layer flow. Spatial and temporal variations of the low- and high- frequency motions were revealed.

  4. Alpha models and boundary-layer turbulence

    Science.gov (United States)

    Cheskidov, Alexey

    We study boundary-layer turbulence using the Navier-Stokes-alpha model obtaining an extension of the Prandtl equations for the averaged flow in a turbulent boundary layer. In the case of a zero pressure gradient flow along a flat plate, we derive a nonlinear fifth-order ordinary differential equation, an extension of the Blasius equation. We study it analytically and prove the existence of a two-parameter family of solutions satisfying physical boundary conditions. From this equation we obtain a theoretical prediction of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce the maximal value of the skin-friction coefficient in the turbulent boundary layer. The two-parameter family of solutions to the equation matches experimental data in the transitional boundary layers with different free stream turbulence intensity. A one-parameter sub-family of solutions, obtained using our skin-friction coefficient law, matches experimental data in the turbulent boundary layer for moderately large Reynolds numbers.

  5. Boundary Layer Ventilation by Convection and Coastal Processes

    Science.gov (United States)

    Dacre, H.

    2008-12-01

    Several observational studies measuring aerosol in the atmosphere have found multiple aerosol layers located above the marine boundary layer. It is hypothesized that the existence of these layers is influenced by the diurnal variation in the structure of the upwind continental boundary layer. Furthermore, collision between a sea breeze and the prevailing wind can result in enhanced convection at the coast which can also lead to elevated layers of pollution. In this study we investigate the processes responsible for ventilation of the atmospheric boundary layer near the coast using the UK Met Office Unified Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include shallow convection, a sea breeze circulation and coastal outflow. Vertical distributions of tracer at the coast are validated qualitatively with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree well.

  6. THERMAL BOUNDARY LAYER IN CFB BOILER RISER

    Institute of Scientific and Technical Information of China (English)

    Jinwei; Wang; Xinmu; Zhao; Yu; Wang; Xing; Xing; Jiansheng; Zhang; Guangxi; Yue

    2006-01-01

    Measurement of temperature profiles of gas-solid two-phase flow at different heights in commercial-scale circulating fluidized bed (CFB) boilers was carried out. Experimental results showed that the thickness of thermal boundary layer was generally independent of the distance from the air distributor, except when close to the riser outlet. Through analysis of flow and combustion characteristics in the riser, it was found that the main reasons for the phenomena were: 1) the hydrodynamic boundary layer was thinner than the thermal layer and hardly changed along the CFB boiler height, and 2) both radial and axial mass and heat exchanges were strong in the CFB boiler. Numerical simulation of gas flow in the outlet zone confirmed that the distribution of the thermal boundary layer was dominated by the flow field characteristics.

  7. Linear Controllers for Turbulent Boundary Layers

    Science.gov (United States)

    Lim, Junwoo; Kim, John; Kang, Sung-Moon; Speyer, Jason

    2000-11-01

    Several recent studies have shown that controllers based on a linear system theory work surprisingly well in turbulent flows, suggesting that a linear mechanism may play an important role even in turbulent flows. It has been also shown that non-normality of the linearized Navier-Stokes equations is an essential characteristic in the regeneration of near-wall turbulence structures in turbulent boundary layers. A few controllers designed to reduce the role of different linear mechanisms, including that to minimize the non-normality of the linearized Navier-Stokes equations, have been developed and applied to a low Reynolds nubmer turbulent channel flow. A reduced-order model containing the most controllable and observables modes is derived for each system. Other existing control schemes, such as Choi et al's opposition control, have been examined from the point of a linear system control. Further discussion on controller design, such as choice of cost function and other control parameters, will be presented.

  8. Stability of separating subsonic boundary layers

    Science.gov (United States)

    Masad, Jamal A.; Nayfeh, Ali H.

    1994-01-01

    The primary and subharmonic instabilities of separating compressible subsonic two-dimensional boundary layers in the presence of a two-dimensional roughness element on a flat plate are investigated. The roughness elements considered are humps and forward- and backward-facing steps. The use of cooling and suction to control these instabilities is studied. The similarities and differences between the instability characteristics of separating boundary layers and those of the boundary layer over a flat plate with a zero pressure gradient are pointed out and discussed. The theoretical results agree qualitatively and quantitatively with the experimental data of Dovgal and Kozlov. Cooling and suction decrease the growth rates of primary and subharmonic waves in the attached-flow regions but increase them in the separated-flow regions.

  9. Boundary layer physics over snow and ice

    Directory of Open Access Journals (Sweden)

    P. S. Anderson

    2007-06-01

    Full Text Available A general understanding of the physics of advection and turbulent mixing within the near surface atmosphere assists the interpretation and predictive power of air chemistry theory. The theory of the physical processes involved in diffusion of trace gas reactants in the near surface atmosphere is still incomplete. Such boundary layer theory is least understood over snow and ice covered surfaces, due in part to the thermo-optical properties of the surface. Polar boundary layers have additional aspects to consider, due to the possibility of long periods without diurnal forcing and enhanced Coriolis effects.

    This paper provides a review of present concepts in polar boundary layer meteorology, which will generally apply to atmospheric flow over snow and ice surfaces. It forms a companion paper to the chemistry review papers in this special issue of ACP.

  10. Localized travelling waves in the asymptotic suction boundary layer

    CERN Document Server

    Kreilos, Tobias; Schneider, Tobias M

    2016-01-01

    We present two spanwise-localized travelling wave solutions in the asymptotic suction boundary layer, obtained by continuation of solutions of plane Couette flow. One of the solutions has the vortical structures located close to the wall, similar to spanwise-localized edge states previously found for this system. The vortical structures of the second solution are located in the free stream far above the laminar boundary layer and are supported by a secondary shear gradient that is created by a large-scale low-speed streak. The dynamically relevant eigenmodes of this solution are concentrated in the free stream, and the departure into turbulence from this solution evolves in the free stream towards the walls. For invariant solutions in free-stream turbulence, this solution thus shows that that the source of energy of the vortical structures can be a dynamical structure of the solution itself, instead of the laminar boundary layer.

  11. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  12. Self-similar magnetohydrodynamic boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel; Lastra, Alberto, E-mail: mnjmhd@am.uva.e [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2010-10-15

    The boundary layer created by parallel flow in a magnetized fluid of high conductivity is considered in this paper. Under appropriate boundary conditions, self-similar solutions analogous to the ones studied by Blasius for the hydrodynamic problem may be found. It is proved that for these to be stable, the size of the Alfven velocity at the outer flow must be smaller than the flow velocity, a fact that has a ready physical explanation. The process by which the transverse velocity and the thickness of the layer grow with the size of the Alfven velocity is detailed.

  13. A numerical investigation of the evolution of 2-D disturbances in hypersonic boundary layers and the effect on the flow structure due to the existence of shocklets

    Institute of Scientific and Technical Information of China (English)

    CAO; Wei; ZHOU; Heng

    2004-01-01

    The evolution of 2-D disturbances in hypersonic boundary layer with Mach number 6,8, and 10 was investigated numerically by three different numerical schemes.At the entrance, second mode T-S waves with different amplitudes were introduced, and the relation between the Mach number and the amplitude of the disturbance when shocklets started to appear was investigated. By comparing the disturbance velocity profiles with those provided by linear stability theory, the effects of shocklets on flow structures were also investigated.

  14. Turbulent oceanic western-boundary layers at low latitude

    Science.gov (United States)

    Quam Cyrille Akuetevi, Cataria; Wirth, Achim

    2013-04-01

    Low latitude oceanic western-boundary layers range within the most turbulent regions in the worlds ocean. The Somali current system with the Great Whirl and the Brazilian current system with its eddy shedding are the most prominent examples. Results from analytical calculations and integration of a one layer reduced-gravity fine resolution shallow water model is used to entangle this turbulent dynamics. Two types of wind-forcing are applied: a remote Trade wind forcing with maximum shear along the equator and a local Monsoon wind forcing with maximum shear in the vicinity of the boundary. For high values of the viscosity (> 1000m2s-1) the stationary solutions compare well to analytical predictions using Munk and inertial layer theory. When lowering the friction parameter time dependence results. The onset of instability is strongly influenced by inertial effects. The unstable boundary current proceeds as a succession of anti-cyclonic coherent eddies performing a chaotic dynamics in a turbulent flow. The dynamics is governed by the turbulent fluxes of mass and momentum. We determine these fluxes by analyzing the (potential) vorticity dynamics. We demonstrate that the boundary-layer can be separated in four sub-layers, which are (starting from the boundary): (1) the viscous sub-layer (2) the turbulent buffer-layer (3) the layer containing the coherent structures and (4) the extended boundary layer. The characteristics of each sub-layer and the corresponding turbulent fluxes are determined, as are the dependence on latitude and the type of forcing. A new pragmatic method of determining the eddy viscosity, based on Munk-layer theory, is proposed. Results are compared to observations and solutions of the multi-level primitive equation model (DRAKKAR).

  15. Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx – Part 1: Mean structure and diurnal cycle

    Directory of Open Access Journals (Sweden)

    R. D. Garreaud

    2009-12-01

    Full Text Available Atmospheric subsidence over the subtropical southeast Pacific (SEP leads to a low-level anticyclonic circulation, a cool sea surface and a cloud-topped marine boundary layer (MBL. Observations in this region from a major field campaign during October and November 2008, the VOCALS Regional Experiment, provide ample data to characterize the lower atmospheric features over the SEP. The observations are also useful to test the ability of an area-limited, high-resolution atmospheric model to simulate the SEP conditions. Observations and model-results (where appropriate improve the characterization of the mean state (Part 1 and variability (Part 2 of the lower troposphere including circulation, MBL characteristics and the upsidence wave.

    Along 20° S the MBL is generally deeper offshore (1600 m at 85° W but there is also considerable variability. MBL depth and variability decrease towards the coast and maximum inversion strength is detected between 74–76° W. Southeasterly trades prevail within the MBL although the wind speed decreases toward the coast. Above the MBL along the coast of Chile, flow is northerly, has a maximum at 3 km, and extends westward to ~74° W, apparently due to the mechanical blocking exerted by the Andes upon the westerly flow aloft. Mean MBL features along northern Chile (18–25° S are remarkably similar (e.g., MBL depth just below 1 km in spite of different SST. Observed diurnal cycles of the temperature at the coast and further offshore exhibit a number of conspicuous features that are consistent with the southwestward propagation of an upsidence wave initiated during late evening along the south Peru coast. Furthermore, the passage of the vertical motion results in either constructive or deconstructive interference with the radiatively-forced diurnal cycle of MBL depth.

  16. An investigation of streaklike instabilities in laminar boundary layer flames

    Science.gov (United States)

    Miller, Colin; Finney, Mark; Forthofer, Jason; McAllister, Sara; Gollner, Michael

    2016-11-01

    Observations of coherent structures in boundary layer flames, particularly wildland fires, motivated an investigation on flame instabilities within a boundary layer. This experimental study examined streaklike structures in a stationary diffusion flame stabilized within a laminar boundary layer. Flame streaks were found to align with pre-existing velocity perturbations, enabling stabilization of these coherent structures. Thermocouple measurements were used to quantify streamwise amplification of flame streaks. Temperature mapping indicated a temperature rise in the flame streaks, while the region in between these streaks, the trough, decreased in temperature. The heat flux to the surface was measured with a total heat flux gauge, and the heat flux below the troughs was found to be higher at all measurement locations. This was likely a function of the flame standoff distance, and indicated that the flame streaks were acting to modify the spanwise distribution of heat flux. Instabilities in boundary layer combustion can have an effect on the spanwise distribution of heat transfer. This finding has significant implications for boundary layer combustion, indicating that instantaneous properties can vary significantly in a three-dimensional flow field.

  17. Atmospheric Boundary Layers: Modeling and Parameterization

    NARCIS (Netherlands)

    Holtslag, A.A.M.

    2015-01-01

    In this contribution we deal with the representation of the atmospheric boundary layer (ABL) for modeling studies of weather, climate, and air quality. As such we review the major characteristics of the ABL, and summarize the basic parameterizations for the description of atmospheric turbulence and

  18. Boundary layer control device for duct silencers

    Science.gov (United States)

    Schmitz, Fredric H. (Inventor); Soderman, Paul T. (Inventor)

    1993-01-01

    A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations.

  19. Astrophysical Boundary Layers: A New Picture

    Science.gov (United States)

    Belyaev, Mikhail; Rafikov, Roman R.; Mclellan Stone, James

    2016-04-01

    Accretion is a ubiquitous process in astrophysics. In cases when the magnetic field is not too strong and a disk is formed, accretion can proceed through the mid plane all the way to the surface of the central compact object. Unless that compact object is a black hole, a boundary layer will be formed where the accretion disk touches its surfaces. The boundary layer is both dynamically and observationally significant as up to half of the accretion energy is dissipated there.Using a combination of analytical theory and computer simulations we show that angular momentum transport and accretion in the boundary layer is mediated by waves. This breaks with the standard astrophysical paradigm of an anomalous turbulent viscosity that drives accretion. However, wave-mediated angular momentum transport is a natural consequence of "sonic instability." The sonic instability, which we describe analytically and observe in our simulations, is a close cousin of the Papaloizou-Pringle instability. However, it is very vigorous in the boundary layer due to the immense radial velocity shear present at the equator.Our results are applicable to accreting neutron stars, white dwarfs, protostars, and protoplanets.

  20. Comments on Hypersonic Boundary-Layer Transition

    Science.gov (United States)

    1990-09-01

    laver transition results from instabilities as described by linear stability theory, then the disturbance growth historias follow a prescribed...mechanism by which boundary-layer disturbance growth is generally initiated and establishes the initial distur- banca amplitude at the onset of disturbance

  1. Global stability analysis of axisymmetric boundary layers

    CERN Document Server

    Vinod, N

    2016-01-01

    This paper presents the linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inlet. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes(LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes are nega...

  2. Controls on boundary layer ventilation: Boundary layer processes and large-scale dynamics

    Science.gov (United States)

    Sinclair, V. A.; Gray, S. L.; Belcher, S. E.

    2010-06-01

    Midlatitude cyclones are important contributors to boundary layer ventilation. However, it is uncertain how efficient such systems are at transporting pollutants out of the boundary layer, and variations between cyclones are unexplained. In this study 15 idealized baroclinic life cycles, with a passive tracer included, are simulated to identify the relative importance of two transport processes: horizontal divergence and convergence within the boundary layer and large-scale advection by the warm conveyor belt. Results show that the amount of ventilation is insensitive to surface drag over a realistic range of values. This indicates that although boundary layer processes are necessary for ventilation they do not control the magnitude of ventilation. A diagnostic for the mass flux out of the boundary layer has been developed to identify the synoptic-scale variables controlling the strength of ascent in the warm conveyor belt. A very high level of correlation (R2 values exceeding 0.98) is found between the diagnostic and the actual mass flux computed from the simulations. This demonstrates that the large-scale dynamics control the amount of ventilation, and the efficiency of midlatitude cyclones to ventilate the boundary layer can be estimated using the new mass flux diagnostic. We conclude that meteorological analyses, such as ERA-40, are sufficient to quantify boundary layer ventilation by the large-scale dynamics.

  3. Numerical methods for hypersonic boundary layer stability

    Science.gov (United States)

    Malik, M. R.

    1990-01-01

    Four different schemes for solving compressible boundary layer stability equations are developed and compared, considering both the temporal and spatial stability for a global eigenvalue spectrum and a local eigenvalue search. The discretizations considered encompass: (1) a second-order-staggered finite-difference scheme; (2) a fourth-order accurate, two-point compact scheme; (3) a single-domain Chebychev spectral collocation scheme; and (4) a multidomain spectral collocation scheme. As Mach number increases, the performance of the single-domain collocation scheme deteriorates due to the outward movement of the critical layer; a multidomain spectral method is accordingly designed to furnish superior resolution of the critical layer.

  4. Turbulent Boundary Layer Flow over Superhydrophobic Surfaces

    Science.gov (United States)

    2013-05-10

    Figure 1 were a highly viscous fluid, such as honey , the boundary layer would be thick while if the fluid were water, a low-viscosity fluid, the boundary...drag has become even more important. In response to this need, and with the benefit of modern technology, the drag-reduction field is replete with...manufactured with “riblets,” small ridges on the order of fractions of millimeters, built-into the hull or skin that seek to reduce frictional drag. The

  5. Particulate plumes in boundary layers with obstacles

    Science.gov (United States)

    Petrosyan, Arakel; Karelsky, Kirill

    2013-04-01

    This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by non-slip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of big wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations.We deal with describing big field

  6. Turbulent dispersion in cloud-topped boundary layers

    NARCIS (Netherlands)

    Verzijlbergh, R.A.; Jonker, H.J.J.; Heus, T.; Vilà-Guerau de Arellano, J.

    2009-01-01

    Compared to dry boundary layers, dispersion in cloud-topped boundary layers has received less attention. In this LES based numerical study we investigate the dispersion of a passive tracer in the form of Lagrangian particles for four kinds of atmospheric boundary layers: 1) a dry convective boundary

  7. Control of the Transitional Boundary Layer

    Science.gov (United States)

    Belson, Brandt A.

    This work makes advances in the delay of boundary layer transition from laminar to turbulent flow via feedback control. The applications include the reduction of drag over streamline bodies (e.g., airplane wings) and the decrease of mixing and heat transfer (e.g., over turbine blades in jet engines). A difficulty in many fields is designing feedback controllers for high-dimensional systems, be they experiments or high-fidelity simulations, because the required time and resources are too large. A cheaper alternative is to approximate the high-dimensional system with a reduced-order model and design a controller for the model. We implement several model reduction algorithms in "modred", an open source and publicly available library that is applicable to a wide range of problems. We use this library to study the role of sensors and actuators in feedback control of transition in the 2D boundary layer. Previous work uses a feedforward configuration in which the sensor is upstream of the actuator, but we show that the actuator-sensor pair is unsuitable for feedback control due to an inability to sense the exponentially-growing Tollmien-Schlichting waves. A new actuator-sensor pair is chosen that more directly affects and measures the TS waves, and as a result it is effective in a feedback configuration. Lastly, the feedback controller is shown to outperform feedforward controllers in the presence of unmodeled disturbances. Next, we focus on a specific type of actuator, the single dielectric barrier discharge (SDBD) plasma actuator. An array of these plasma actuators is oriented to produce stream-wise vorticity and thus directly cancel the structures with the largest transient growth (so-called stream-wise streaks). We design a feedback controller using only experimental data by first developing an empirical input-output quasi-steady model. Then, we design feedback controllers for the model such that the controllers perform well when applied to the experiment. Lastly, we

  8. Automatic remote sensing detection of the convective boundary layer structure over flat and complex terrain using the novel PathfinderTURB algorithm

    Science.gov (United States)

    Poltera, Yann; Martucci, Giovanni; Hervo, Maxime; Haefele, Alexander; Emmenegger, Lukas; Brunner, Dominik; Henne, stephan

    2016-04-01

    We have developed, applied and validated a novel algorithm called PathfinderTURB for the automatic and real-time detection of the vertical structure of the planetary boundary layer. The algorithm has been applied to a year of data measured by the automatic LIDAR CHM15K at two sites in Switzerland: the rural site of Payerne (MeteoSwiss station, 491 m, asl), and the alpine site of Kleine Scheidegg (KSE, 2061 m, asl). PathfinderTURB is a gradient-based layer detection algorithm, which in addition makes use of the atmospheric variability to detect the turbulent transition zone that separates two low-turbulence regions, one characterized by homogeneous mixing (convective layer) and one above characterized by free tropospheric conditions. The PathfinderTURB retrieval of the vertical structure of the Local (5-10 km, horizontal scale) Convective Boundary Layer (LCBL) has been validated at Payerne using two established reference methods. The first reference consists of four independent human-expert manual detections of the LCBL height over the year 2014. The second reference consists of the values of LCBL height calculated using the bulk Richardson number method based on co-located radio sounding data for the same year 2014. Based on the excellent agreement with the two reference methods at Payerne, we decided to apply PathfinderTURB to the complex-terrain conditions at KSE during 2014. The LCBL height retrievals are obtained by tilting the CHM15K at an angle of 19 degrees with respect to the horizontal and aiming directly at the Sphinx Observatory (3580 m, asl) on the Jungfraujoch. This setup of the CHM15K and the processing of the data done by the PathfinderTURB allows to disentangle the long-transport from the local origin of gases and particles measured by the in-situ instrumentation at the Sphinx Observatory. The KSE measurements showed that the relation amongst the LCBL height, the aerosol layers above the LCBL top and the gas + particle concentration is all but

  9. DNS Study on Physics of Late Boundary Layer Transition

    CERN Document Server

    Liu, Chaoqun

    2014-01-01

    This paper serves as a review of our recent new DNS study on physics of late boundary layer transition. This includes mechanism of the large coherent vortex structure formation, small length scale generation and flow randomization. The widely spread concept vortex breakdown to turbulence,which was considered as the last stage of flow transition, is not observed and is found theoretically incorrect. The classical theory on boundary layer transition is challenged and we proposed a new theory with five steps, i.e. receptivity, linear instability, large vortex formation, small length scale generation, loss of symmetry and randomization to turbulence. We have also proposed a new theory about turbulence generation. The new theory shows that all small length scales (turbulence) are generated by shear layer instability which is produced by large vortex structure with multiple level vortex rings, multiple level sweeps and ejections, and multiple level negative and positive spikes near the laminar sub-layers.Therefore,...

  10. Analytic prediction for planar turbulent boundary layers

    CERN Document Server

    Chen, Xi

    2016-01-01

    Analytic predictions of mean velocity profile (MVP) and streamwise ($x$) development of related integral quantities are presented for flows in channel and turbulent boundary layer (TBL), based on a symmetry analysis of eddy length and total stress. Specific predictions are the friction velocity $u_\\tau$: ${ U_e/u_\\tau }\\approx 2.22\\ln Re_x+2.86-3.83\\ln(\\ln Re_x)$; the boundary layer thickness $\\delta_e$: $x/\\delta_e \\approx 7.27\\ln Re_x-5.18-12.52\\ln(\\ln Re_x)$; the momentum thickness Reynolds number: $Re_x/Re_\\theta=4.94[{(\\ln {{\\mathop{\\rm Re}\

  11. Supersonic Turbulent Boundary Layer: DNS and RANS

    Institute of Scientific and Technical Information of China (English)

    XU Jing-Lei; MA Hui-Yang

    2007-01-01

    We assess the performance of a few turbulence models for Reynolds averaged Navier-Stokes (RANS) simulation of supersonic boundary layers, compared to the direct numerical simulations (DNS) of supersonic flat-plate turbulent boundary layers, carried out by Gao et al. [Chin. Phys. Lett. 22 (2005) 1709] and Huang et al. [Sci.Chin. 48 (2005) 614], as well as some available experimental data. The assessment is made for two test cases, with incoming Mach numbers and Reynolds numbers M = 2.25, Re = 365, 000/in, and M = 4.5, Re - 1.7 × 107/m,respectively. It is found that in the first case the prediction of RANS models agrees well with the DNS and the experimental data, while for the second case the agreement of the DNS models with experiment is less satisfactory.The compressibility effect on the RANS models is discussed.

  12. MHD Turbulence in Accretion Disk Boundary Layers

    CERN Document Server

    Chan, Chi-kwan

    2012-01-01

    The physical modeling of the accretion disk boundary layer, the region where the disk meets the surface of the accreting star, usually relies on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity, widely adopted in astrophysics, satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability is inefficient in this inner disk region. I will discuss the results of a recent study on the generation of hydromagnetic stresses and energy density in the boundary layer around a weakly magnetized star. Our findings suggest that although magnetic energy density can be significantly amplified in this region, angular momentum transport is rather inefficient. This seems consistent with the results obtained in numerical simulations...

  13. Active control of ionized boundary layers

    CERN Document Server

    Mendes, R V

    1997-01-01

    The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.

  14. BOREAS AFM-6 Boundary Layer Height Data

    Science.gov (United States)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  15. Boundary layer control of rotating convection systems.

    Science.gov (United States)

    King, Eric M; Stellmach, Stephan; Noir, Jerome; Hansen, Ulrich; Aurnou, Jonathan M

    2009-01-15

    Turbulent rotating convection controls many observed features of stars and planets, such as magnetic fields, atmospheric jets and emitted heat flux patterns. It has long been argued that the influence of rotation on turbulent convection dynamics is governed by the ratio of the relevant global-scale forces: the Coriolis force and the buoyancy force. Here, however, we present results from laboratory and numerical experiments which exhibit transitions between rotationally dominated and non-rotating behaviour that are not determined by this global force balance. Instead, the transition is controlled by the relative thicknesses of the thermal (non-rotating) and Ekman (rotating) boundary layers. We formulate a predictive description of the transition between the two regimes on the basis of the competition between these two boundary layers. This transition scaling theory unifies the disparate results of an extensive array of previous experiments, and is broadly applicable to natural convection systems.

  16. The inner core thermodynamics of the tropical cyclone boundary layer

    Science.gov (United States)

    Williams, Gabriel J.

    2016-10-01

    Although considerable progress has been made in understanding the inner-core dynamics of the tropical cyclone boundary layer (TCBL), our knowledge of the inner-core thermodynamics of the TCBL remains limited. In this study, the inner-core budgets of potential temperature (θ), specific humidity ( q), and reversible equivalent potential temperature (θ _e) are examined using a high-resolution multilevel boundary layer model. The potential temperature budgets show that the heat energy is dominated by latent heat release in the eyewall, evaporative cooling along the outer edge of the eyewall, and upward surface fluxes of sensible and latent heat from the underlying warm ocean. It is shown that the vertical θ advection overcompensates the sum of radial advective warming from the boundary layer outflow jet and latent heating for the development of cooling in the eyewall within the TCBL. The moisture budgets show the dominant upward transport of moisture in the eyewall updrafts, partly by the boundary-layer outflow jet from the bottom eye region, so that the eyewall remains nearly saturated. The θ _e budgets reveal that the TCBL is maintained thermodynamically by the upward surface flux of higher-θ _e air from the underlying warm ocean, the radial transport of low-θ _e air from the outer regions of the TCBL, and the dry adiabatic cooling associated by eyewall updrafts. These results underscore the significance of vertical motion and the location of the boundary layer outflow jet in maintaining the inner core thermal structure of the TCBL.

  17. Experimental studies on transitional separated boundary layers

    OpenAIRE

    Serna Serrano, José

    2013-01-01

    Separated transitional boundary layers appear on key aeronautical processes such as the flow around wings or turbomachinery blades. The aim of this thesis is the study of these flows in representative scenarios of technological applications, gaining knowledge about phenomenology and physical processes that occur there and, developing a simple model for scaling them. To achieve this goal, experimental measurements have been carried out in a low speed facility, ensuring the flow homogeneity and...

  18. 2007 Program of Study: Boundary Layers

    Science.gov (United States)

    2008-06-01

    PM Coalescence of charged water droplets Andrew Belmonte, Pennsylvania State University August 9 - 10:30 AM Multiscale analysis of strongly...Properties of Helium Near the Liquid-Vapor Critical Point. J. low Temp. Phys. 46, 115-135. [15] Polezhaev, V. I. and Soboleva, E. B. 2004 Rayleigh...through which potassium permanganate was added in most of the experiments in order to detect a possible appearance of boundary layer separation and

  19. Instabilities and transition in boundary layers

    Indian Academy of Sciences (India)

    N Vinod; Rama Govindarajan

    2005-03-01

    Some recent developments in boundary layer instabilities and transition are reviewed. Background disturbance levels determine the instability mechanism that ultimately leads to turbulence. At low noise levels, the traditional Tollmien–Schlichting route is followed, while at high levels, a `by-pass' route is more likely. Our recent work shows that spot birth is related to the pattern of secondary instability in either route.

  20. Clear-air radar observations of the atmospheric boundary layer

    Science.gov (United States)

    Ince, Turker

    2001-10-01

    This dissertation presents the design and operation of a high-resolution frequency-modulated continuous-wave (FM- CW) radar system to study the structure and dynamics of clear-air turbulence in the atmospheric boundary layer (ABL). This sensitive radar can image the vertical structure of the ABL with both high spatial and temporal resolutions, and provide both qualitative information about the morphology of clear-air structures and quantitative information on the intensity of fluctuations in refractive-index of air. The principles of operation and the hardware and data acquisition characteristics of the radar are described in the dissertation. In October 1999, the radar participated in the Cooperative Atmosphere-Surface Exchange Study (CASES'99) Experiment to characterize the temporal structure and evolution of the boundary-layer features in both convective and stable conditions. The observed structures include clear-air convection, boundary layer evolution, gravity waves, Kelvin-Helmholtz instabilities, stably stratified layers, and clear-air turbulence. Many of the S-band radar images also show high- reflectivity returns from Rayleigh scatterers such as insects. An adaptive median filtering technique based on local statistics has, therefore, been developed to discriminate between Bragg and Rayleigh scattering in clear-air radar observations. The filter is tested on radar observations of clear air convection with comparison to two commonly used image processing techniques. The dissertation also examines the statistical mean of the radar-measured C2n for clear-air convection, and compares it with the theoretical predictions. The study also shows that the inversion height, local thickness of the inversion layer, and the height of the elevated atmospheric layers can be estimated from the radar reflectivity measurements. In addition, comparisons to the radiosonde-based height estimates are made. To examine the temporal and spatial structure of C2n , the dissertation

  1. The influence of the planetary boundary layer on the vertical structure of the horizontal sight up to a height of 300 m

    Science.gov (United States)

    Pietzner, B.

    The visual range was measured for the investigation of the effect of the planetary boundary layer on the visual profile and for the development of a horizontal visual climatology. The standard visual range was measured on a radio relay mast from fall 1982 till spring 1985 at a height of 2, 9, 80, 153, 223, and 297 m. The vertical structure of the visual range is determined by the vertical gradient of the aerosol concentration and on the relative humidity: both parameters depend on the dominating air masses and on the general weather situation. Rapid variations of the sight profile related to the formation and disintegration of mist, and to the passage of fronts were determined. The diurnal variation of the visual profile as a function of the general weather situation was determined.

  2. Non-Equilibrium Effects on Hypersonic Turbulent Boundary Layers

    Science.gov (United States)

    Kim, Pilbum

    Understanding non-equilibrium effects of hypersonic turbulent boundary layers is essential in order to build cost efficient and reliable hypersonic vehicles. It is well known that non-equilibrium effects on the boundary layers are notable, but our understanding of the effects are limited. The overall goal of this study is to improve the understanding of non-equilibrium effects on hypersonic turbulent boundary layers. A new code has been developed for direct numerical simulations of spatially developing hypersonic turbulent boundary layers over a flat plate with finite-rate reactions. A fifth-order hybrid weighted essentially non-oscillatory scheme with a low dissipation finite-difference scheme is utilized in order to capture stiff gradients while resolving small motions in turbulent boundary layers. The code has been validated by qualitative and quantitative comparisons of two different simulations of a non-equilibrium flow and a spatially developing turbulent boundary layer. With the validated code, direct numerical simulations of four different hypersonic turbulent boundary layers, perfect gas and non-equilibrium flows of pure oxygen and nitrogen, have been performed. In order to rule out uncertainties in comparisons, the same inlet conditions are imposed for each species, and then mean and turbulence statistics as well as near-wall turbulence structures are compared at a downstream location. Based on those comparisons, it is shown that there is no direct energy exchanges between internal and turbulent kinetic energies due to thermal and chemical non-equilibrium processes in the flow field. Instead, these non-equilibria affect turbulent boundary layers by changing the temperature without changing the main characteristics of near-wall turbulence structures. This change in the temperature induces the changes in the density and viscosity and the mean flow fields are then adjusted to satisfy the conservation laws. The perturbation fields are modified according to

  3. A global boundary-layer height climatology

    Energy Technology Data Exchange (ETDEWEB)

    Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)

    1997-10-01

    In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)

  4. Spatially developing turbulent boundary layer on a flat plate

    CERN Document Server

    Lee, J H; Hutchins, N; Monty, J P

    2012-01-01

    This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as it would form over the hull of a ship or fuselage of an aircraft. The towed plate permits visualisation of the zero-pressure-gradient turbulent boundary layer as it develops from the trip to a high Reynolds number state ($Re_\\tau \\approx 3000$). An evolving large-scale coherent structure will appear almost stationary in this frame of reference. The visualisations provide an unique view of the evolution of fundamental processes in the boundary layer (such as interfacial bulging, entrainment, vortical motions, etc.). In the more traditional laboratory frame of reference, in which fluid passes over a stationary body, it is difficult to observe the full evolution and lifetime of turbulent coherent structures. An equivalent experiment in a wind/water-tunnel would requ...

  5. Aerosol fluxes in the marine boundary layer

    Science.gov (United States)

    Petelski, Tomasz; Zieliński, Tymon; Makuch, Przemysław; Kowalczyk, Jakub; Ponczkowska, Agnieszka; Drozdowska, Violetta; Piskozub, Jacek

    2010-05-01

    We present aerosol emission fluxes and concentrations calculated from in-situ measurement in the Nordic Sea from R/V Oceania. We compare vertical fluxes calculated with the eddy correlation and gradient methods. We use the results to test the hypothesis that marine aerosol emitted from the sea surface helps to clear the boundary layer from other aerosol particles. As the emitted droplets do not dry out in the highly humid surface layer air and because of their sizes most of them are deposited quickly at the sea surface. Therefore marine aerosol has many features of rain meaning that the deposition in the marine boundary layer in high wind events is controlled not only by the "dry" processes but also by the "wet" scavenging. We have estimated the effectiveness of the process using our own measurements of vertical aerosol fluxes in the Nordic Seas. This process could explain observed phenomenon of lower Arctic aerosol optical thickness (AOT) when the air masses moved over open sea than over sea-ice. We show a negative correlation between the sea-ice coverage in the seas adjacent to Svalbard and monthly AOT values in Ny Alesund.

  6. A Coordinate Transformation for Unsteady Boundary Layer Equations

    Directory of Open Access Journals (Sweden)

    Paul G. A. CIZMAS

    2011-12-01

    Full Text Available This paper presents a new coordinate transformation for unsteady, incompressible boundary layer equations that applies to both laminar and turbulent flows. A generalization of this coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently derived. In addition, the boundary layer equations are derived using a time linearization approach and assuming harmonically varying small disturbances.

  7. Stability of three-dimensional boundary layers

    Science.gov (United States)

    Nayfeh, A. H.

    1979-01-01

    A theory is presented for the three-dimensional stability of boundary layers. Equations are derived for the evolution of a disturbance having a given frequency and originating at a given curve. These equations are used to determine the rays along which the disturbance energy propagates. It is shown that the results can be obtained by using the saddle-point method, or kinematic wave theory, or the method of multiple scales. Extension of the theory to the case of a wave packet is also presented.

  8. Turbulent Plasmaspheric Boundary Layer: Observables and Consequences

    Science.gov (United States)

    Mishin, Evgeny

    2014-10-01

    In situ satellite observations reveal strong lower hybrid/fast magnetosonic turbulence and broadband hiss-like VLF waves in the substorm subauroral geospace at and earthward of the electron plasmasheet boundary. These coincide with subauroral ion drifts/polarization streams (SAID/SAPS) in the plasmasphere and topside ionosphere. SAID/SAPS appear in ~10 min after the substorm onset consistent with the fast propagation of substorm injection fronts. The SAID channel follows the dispersionless cutoff of the energetic electron flux at the plasmapause. This indicates that the cold plasma maintains charge neutrality within the channel, thereby short-circuiting the injected plasma jet (injection fronts over the plasmasphere. Plasma turbulence leads to the circuit resistivity and magnetic diffusion as well as significant electron heating and acceleration. As a result, a turbulent boundary layer forms between the inner edge of the electron plasmasheet and plasmasphere. The SAID/SAPS-related VLF emissions appear to constitute a distinctive subset of substorm/storm-related VLF activity in the region co-located with freshly injected energetic ions inside the plasmasphere. Significant pitch-angle diffusion coefficients suggest that substorm SAID/SAPS-related VLF waves could be responsible for the alteration of the outer radiation belt boundary during (sub)storms. Supported by the Air Force Office of Scientific Research.

  9. Turbulent boundary layer over a chine.

    Science.gov (United States)

    Panchapakesan, N. R.; Joubert, P. N.

    1999-11-01

    The flow over an edge aligned with the streamwise direction is studied as a representative of the turbulent boundary layers developing over hard chines found on the hulls of ships and catamarans. We present results of a traditional experimental investigation of this geometry in a wind tunnel with pitot tubes and hot-wires. The chine model consisted of two surfaces made of varnished fibre boards with leading edges of airfoil sections and a 90 degree corner. The boundary layer was tripped with wires close to the leading edge. The model was housed in a test section of length 6.5 m in a closed circuit wind tunnel. The experiments were conducted at a unit Reynolds number of 680,000 /m corresponding to a nominal free stream velocity of 10 m/s. The mean velocity field and the associated integral parameters obtained with pitot tube measurements are presented for different streamwise locations from 0.2 to 4.7 m from the trip wire. The flow at the two farthest locations were also studied with single and 'x' hot-wires. The secondary mean flow and the turbulence field in the corner region are described with these measurements.

  10. Hair receptor sensitivity to changes in laminar boundary layer shape

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, B T, E-mail: btdickinson@lifetime.oregonstate.ed [Air Force Research Laboratory, Munitions Directorate, Eglin Air Force Base, FL 32542 (United States)

    2010-03-15

    Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.

  11. Hair receptor sensitivity to changes in laminar boundary layer shape.

    Science.gov (United States)

    Dickinson, B T

    2010-03-01

    Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.

  12. DNS of compressible turbulent boundary layer around a sharp cone

    Institute of Scientific and Technical Information of China (English)

    LI XinLiang; FU DeXun; MA YanWen

    2008-01-01

    Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20° cone angle (or 10° half-cone angle) is performed by using the mixed seventh-order up-wind biased finite difference scheme and sixth-order central difference scheme.The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch.The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer,Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow.The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations,The turbulent energy equation in the cylindrical coordinate is given and turbulent en-ergy budget is studied.The computed results show that the effect of circumferen-tial curvature on turbulence characteristics is not obvious.

  13. Drizzle and Turbulence Variability in Stratocumulus-topped Boundary Layers

    Science.gov (United States)

    Kollias, P.; Luke, E. P.; Szyrmer, W.

    2015-12-01

    Marine stratocumulus clouds frequently produce light precipitation in the form of drizzle. The drizzle rate at the cloud base (RCB) dictates the impact of drizzle on the boundary layer turbulence and cloud organization. Here, synergistic observations from the US Department of Energy Atmospheric Radiation Measurement (ARM) program Eastern North Atlantic (ENA) site located on Graciosa Island in the Azores are used to investigate the relationship between RCB, and boundary layer turbulence and dynamics. The ARM ENA site is a heavily instrumented ground-based facility that offers new measurement capabilities in stratocumulus-topped boundary layers (STBL). The RCB is retrieved using a radar-lidar algorithm. The STBL turbulent structure is characterized using the Doppler lidar and radar observations. The profiling radar/lidar/radiometer observations are used to describe the cloud fraction and morphology. Finally, surface-based aerosol number concentration measurements are used to investigate the connection between the boundary layer turbulence, cloud morphology and aerosol loading. Preliminary correlative relationships between the aforementioned variables will be shown.

  14. Marine boundary layer simulation and verification during BOBMEX-Pilot using NCMRWF model

    Indian Academy of Sciences (India)

    Swati Basu

    2000-06-01

    A global spectral model (T80L18) that is operational at NCMRWF is utilized to study the structure of the marine boundary layer over the Bay of Bengal during the BOBMEX-Pilot period. The vertical profiles of various meteorological parameters within the boundary layer are studied and verified against the available observations. The diurnal variation of various surface fields are also studied. The impact of non-local closure scheme for the boundary layer parameterisation is seen in simulation of the flow pattern as well as on the boundary layer structure over the oceanic region.

  15. Connecting Tropical Marine Cloud Structures to Boundary Layer Properties and the Effect of Sea State on Whitecap Coverage

    Science.gov (United States)

    2016-02-08

    Approach It is often difficult to determine whether clouds are organized when one is among them. We used satellite imagery to classify regions we flew...and aerosol concentrations changed in these circumstances. 1 Figure 1: Cloud structure patterns during PASE: GOES-11 imagery with flight tracks super...wintertime Arctic cold-air outbreaks. Journal of the Atmospheric Sciences , 56(15):2613–2636, 1999. D. Maraun, J. Kurths, and M. Holschneider. Nonstationary

  16. Progress in Understanding the Impacts of 3-D Cloud Structure on MODIS Cloud Property Retrievals for Marine Boundary Layer Clouds

    Science.gov (United States)

    Zhang, Zhibo; Werner, Frank; Miller, Daniel; Platnick, Steven; Ackerman, Andrew; DiGirolamo, Larry; Meyer, Kerry; Marshak, Alexander; Wind, Galina; Zhao, Guangyu

    2016-01-01

    Theory: A novel framework based on 2-D Tayler expansion for quantifying the uncertainty in MODIS retrievals caused by sub-pixel reflectance inhomogeneity. (Zhang et al. 2016). How cloud vertical structure influences MODIS LWP retrievals. (Miller et al. 2016). Observation: Analysis of failed MODIS cloud property retrievals. (Cho et al. 2015). Cloud property retrievals from 15m resolution ASTER observations. (Werner et al. 2016). Modeling: LES-Satellite observation simulator (Zhang et al. 2012, Miller et al. 2016).

  17. A Thermal Plume Model for the Martian Convective Boundary Layer

    CERN Document Server

    Colaïtis, Arnaud; Hourdin, Frédéric; Rio, Catherine; Forget, François; Millour, Ehouarn

    2013-01-01

    The Martian Planetary Boundary Layer [PBL] is a crucial component of the Martian climate system. Global Climate Models [GCMs] and Mesoscale Models [MMs] lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically-based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in Large-Eddy Simulations [LESs]. We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking ...

  18. Magnetic Domination of Recollimation Boundary Layers in Relativistic Jets

    CERN Document Server

    Kohler, Susanna

    2012-01-01

    We study the collimation of relativistic magnetohydrodynamic jets by the pressure of an ambient medium, in the limit where the jet interior loses causal contact with its surroundings. This follows up a hydrodynamic study in a previous paper, adding the effects of a toroidal magnetic field threading the jet. As the ultrarelativistic jet encounters an ambient medium with a pressure profile with a radial scaling of p ~ r^-eta where 2boundary layer with a large pressure gradient. By constructing self-similar solutions to the fluid equations within this boundary layer, we examine the structure of this layer as a function of the external pressure profile. We show that the boundary layer always becomes magnetically dominated far from the source, and that in the magnetic limit, physical self-similar solutions are admitted in which the total pressure within the layer decreases linearly with distance from the contact discontinuity inward. These sol...

  19. Small Scale Forcing in a Turbulent Boundary Layer

    Science.gov (United States)

    Lorkowski, Thomas; Rathnasingham, Ruben; Breuer, Kenneth S.

    1996-11-01

    In order to understand the effect of small scale forcing on turbulent flows and its implications on control, an experimental investigation is made into the forcing of the inertial scales in the wall region of a turbulent boundary layer. A wall-mounted resonant actuator is used to produce a local vortical structure in the streamwise direction which is convected downstream by the boundary layer flow. The frequency associated with this structure is governed by the resonant frequency of the device and falls in the range of the inertial scales at the Reynolds number of the experiment (Re_θ = 2000). Hot-wire anemometry is used to map the velocity field at several stations downstream of the actuator. The signals are also conditioned to identify the effect of the actuator on different scales in the flow. Amplitude and modulation effects are also discussed. ^*Supported by ONR Grant N00014-92-J-1910.

  20. Imaging the transient boundary layer on a free rotating disc.

    Science.gov (United States)

    Matijasević, Branimir; Guzović, Zvonimir; Martinis, Vinko

    2002-10-01

    This report presents a visual study of the transition process of the laminar boundary layer (BL) in a turbulent BL on a free rotating disc. The imaging is based on an experimental investigation that aimed to analyze the structure of the BL by relating it to the ratio between turbulent energy and vortex energy, the critical and the transient Reynolds numbers (Re), the vortex numbers and their dependence on Re, and on the distance from the rotating disc.

  1. Some measurements in synthetic turbulent boundary layers

    Science.gov (United States)

    Savas, O.

    1980-01-01

    Synthetic turbulent boundary layers are examined which were constructed on a flat plate by generating systematic moving patterns of turbulent spots in a laminar flow. The experiments were carried out in a wind tunnel at a Reynolds number based on plate length of 1,700,000. Spots were generated periodically in space and time near the leading edge to form a regular hexagonal pattern. The disturbance mechanism was a camshaft which displaced small pins momentarily into the laminar flow at frequencies up to 80 Hz. The main instrumentation was a rake of 24 hot wires placed across the flow in a line parallel to the surface. The main measured variable was local intermittency; i.e., the probability of observing turbulent flow at a particular point in space and time. The results are reported in x-t diagrams showing the evolution of various synthetic flows along the plate. The dimensionless celerity or phase velocity of the large eddies is found to be 0.88, independent of eddy scale. All patterns with sufficiently small scales eventually showed loss of coherence as they moved downstream. A novel phenomenon called eddy transposition was observed in several flows which contained appreciable laminar regions. The large eddies shifted in formation to new positions, intermediate to their original ones, while preserving their hexagonal pattern. The present results, together with some empirical properties of a turbulent spot, are used to estimate the best choice of scales for constructing a synthetic boundary layer suitable for detailed study. The values recommended are: spanwise scale/thickness = 2.5, streamwise scale/thickness = 8.

  2. Large Eddy Simulation of Transitional Boundary Layer

    Science.gov (United States)

    Sayadi, Taraneh; Moin, Parviz

    2009-11-01

    A sixth order compact finite difference code is employed to investigate compressible Large Eddy Simulation (LES) of subharmonic transition of a spatially developing zero pressure gradient boundary layer, at Ma = 0.2. The computational domain extends from Rex= 10^5, where laminar blowing and suction excites the most unstable fundamental and sub-harmonic modes, to fully turbulent stage at Rex= 10.1x10^5. Numerical sponges are used in the neighborhood of external boundaries to provide non-reflective conditions. Our interest lies in the performance of the dynamic subgrid scale (SGS) model [1] in the transition process. It is observed that in early stages of transition the eddy viscosity is much smaller than the physical viscosity. As a result the amplitudes of selected harmonics are in very good agreement with the experimental data [2]. The model's contribution gradually increases during the last stages of transition process and the dynamic eddy viscosity becomes fully active and dominant in the turbulent region. Consistent with this trend the skin friction coefficient versus Rex diverges from its laminar profile and converges to the turbulent profile after an overshoot. 1. Moin P. et. al. Phys Fluids A, 3(11), 2746-2757, 1991. 2. Kachanov Yu. S. et. al. JFM, 138, 209-247, 1983.

  3. Turbulent dispersion in cloud-topped boundary layers

    Science.gov (United States)

    Verzijlbergh, R. A.; Jonker, H. J. J.; Heus, T.; Vilöguerau de Arellano, J.

    2009-02-01

    Compared to dry boundary layers, dispersion in cloud-topped boundary layers has received less attention. In this LES based numerical study we investigate the dispersion of a passive tracer in the form of Lagrangian particles for four kinds of atmospheric boundary layers: 1) a dry convective boundary layer (for reference), 2) a "smoke" cloud boundary layer in which the turbulence is driven by radiative cooling, 3) a stratocumulus topped boundary layer and 4) a shallow cumulus topped boundary layer. We show that the dispersion characteristics of the smoke cloud boundary layer as well as the stratocumulus situation can be well understood by borrowing concepts from previous studies of dispersion in the dry convective boundary layer. A general result is that the presence of clouds enhances mixing and dispersion - a notion that is not always reflected well in traditional parameterization models, in which clouds usually suppress dispersion by diminishing solar irradiance. The dispersion characteristics of a cumulus cloud layer turn out to be markedly different from the other three cases and the results can not be explained by only considering the well-known top-hat velocity distribution. To understand the surprising characteristics in the shallow cumulus layer, this case has been examined in more detail by 1) determining the velocity distribution conditioned on the distance to the nearest cloud and 2) accounting for the wavelike behaviour associated with the stratified dry environment.

  4. Influence of orographically induced transport process on the structure of the atmospheric boundary layer and on the distribution of trace gases; Einfluss orographisch induzierter Transportprozesse auf die Struktur der atmosphaerischen Grenzschicht und die Verteilung von Spurengasen

    Energy Technology Data Exchange (ETDEWEB)

    Kossmann, M.

    1998-04-01

    The influence of terrain on the structure of the atmospheric boundary-layer and the distribution of trace gases during periods of high atmospheric pressure was studied by means of meteorological and air-chemical data collected in September 1992 during the TRACT experiment in the transition area between the upper Rhine valley and the northern Black Forest. The emphasis was on the investigation of the development of the convective boundary layer, the formation of thermally induced circulation systems, and the orographic exchange between the atmospheric boundary layer and the free troposphere. Thanks to the extensive measurements, phenomena not yet described in literature could be verified by case studies, and processes that had only been established qualitatively could be quantified. (orig.)

  5. Transitional boundary layers in low-Prandtl-number convection

    Science.gov (United States)

    Schumacher, Jörg; Bandaru, Vinodh; Pandey, Ambrish; Scheel, Janet D.

    2016-12-01

    The boundary layer structure of the velocity and temperature fields in turbulent Rayleigh-Bénard flows in closed cylindrical cells of unit aspect ratio is revisited from a transitional and turbulent viscous boundary layer perspective. When the Rayleigh number is large enough, the dynamics at the bottom and top plates can be separated into an impact region of downwelling plumes, an ejection region of upwelling plumes, and an interior region away from the side walls. The latter is dominated by the shear of the large-scale circulation (LSC) roll, which fills the whole cell and continuously varies its orientation. The working fluid is liquid mercury or gallium at a Prandtl number Pr=0.021 for Rayleigh numbers 3 ×105≤Ra≤4 ×108 . The generated turbulent momentum transfer corresponds to macroscopic flow Reynolds numbers with 1.8 ×103≤Re≤4.6 ×104 . In highly resolved spectral element direct numerical simulations, we present the mean profiles of velocity, Reynolds stress, and temperature in inner viscous units and compare our findings with convection experiments and channel flow data. The complex three-dimensional and time-dependent structure of the LSC in the cell is compensated by a plane-by-plane symmetry transformation which aligns the horizontal velocity components and all its derivatives with the instantaneous orientation of the LSC. As a consequence, the torsion of the LSC is removed, and a streamwise direction in the shear flow can be defined. It is shown that the viscous boundary layers for the largest Rayleigh numbers are highly transitional and obey properties that are directly comparable to transitional channel flows at friction Reynolds numbers Reτ≲102 . The transitional character of the viscous boundary layer is also underlined by the strong enhancement of the fluctuations of the wall stress components with increasing Rayleigh number. An extrapolation of our analysis data suggests that the friction Reynolds number Reτ in the velocity boundary

  6. The Influence of Climate Factors, Meteorological Conditions, and Boundary-Layer Structure on Severe Haze Pollution in the Beijing-Tianjin-Hebei Region during January 2013

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2014-01-01

    Full Text Available The air-pollution episodes in China in January 2013 were the most hazardous in the Beijing-Tianjin-Hebei (BTH region. PM2.5, AOD, and long-term visibility data, along with various climate and meteorological factors and the boundary-layer structure, were used to investigate the cause of the heavy-haze pollution events in January 2013. The result suggests that unfavorable diffusion conditions (weak surface winds and high humidity and high primary-pollutant emissions have induced heavy-haze pollution in the BTH region over the past two decades. A sudden stratospheric warming (SSW, weak East Asian winter monsoon, a weak Siberian High, weak meridional circulation, southerly wind anomalies in the lower troposphere, and abnormally weak surface winds and high humidity were responsible for the severe haze pollution events, rather than an abrupt increase in emissions. Heavy/severe haze pollution is associated with orographic wind convergence zones along the Taihang and Yanshan Mountains, slight winds (1.7∼2.1 m/s, and high humidity (70%∼90%, which limits the diffusion of pollutants and facilitates the hygroscopic growth of aerosols. Recirculation and regional transport, along with the poorest diffusion conditions and favorable conditions for hygroscopic growth of aerosols and secondary transformation under the high emission, led to explosive growth and the record high hourly average concentration of PM2.5 in Beijing.

  7. Analytical solution for the convectively-mixed atmospheric boundary layer

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.

    2013-01-01

    Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation

  8. Numerical study of the laminar shock boundary layer interaction

    Science.gov (United States)

    Katzer, E.

    1985-02-01

    The interaction of an oblique shock wave with a laminar boundary layer on an adiabatic flat plate was analyzed numerically with solutions of the two dimensional Navier-Stokes equations using McCormack's explicit finite volume method. The agreement between numerical calculations and experimental results is good. Local and global properties of the interaction region are discussed regarding shock strength, separation bubble length using a similarity law, and separation environment. The asymetrical structure inside the separation bubble produces an asymetrical shape of the wall shear stress distribution. The calculation speed was increased by algorithm vectorization on a CRAY 1S supercomputer. Further investigations for determination of a similarity law in interaction with turbulent boundary layer, of the physical mechanisms of the laminar interaction, and for study of the wall temperature transfer are recommended.

  9. The height of the atmospheric boundary layer during unstable conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E.

    2005-11-01

    The height of the convective atmospheric boundary layer, also called the mixed-layer, is one of the fundamental parameters that characterise the structure of the atmosphere near the ground. It has many theoretical and practical applications such as the prediction of air pollution concentrations, surface temperature and the scaling of turbulence. However, as pointed out by Builtjes (2001) in a review paper on Major Twentieth Century Milestones in Air Pollution Modelling and Its Application, the weakest point in meteorology data is still the determination of the height of the mixed-layer, the so-called mixing height. A simple applied model for the height of the mixed-layer over homogeneous terrain is suggested in chapter 2. It is based on a parameterised budget for the turbulent kinetic energy. In the model basically three terms - the spin-up term and the production of mechanical and convective turbulent kinetic energy - control the growth of the mixed layer. The interplay between the three terms is related to the meteorological conditions and the height of the mixed layer. A stable layer, the so-called entrainment zone, which is confined between the mixed layer and the free air above, caps the mixed layer. A parameterisation of the depth of the entrainment zone is also suggested, and used to devise a combined model for the height of the mixed layer and the entrainment zone. Another important aspect of the mixed layer development exists in coastal areas where an internal boundary layer forms downwind from the coastline. A model for the growth of the internal boundary layer is developed in analogy with the model for mixed layer development over homogeneous terrain. The strength of this model is that it can operate on a very fine spatial resolution with minor computer resources. Chapter 3 deals with the validation of the models. It is based in parts on data from the literature, and on own measurements. For the validation of the formation of the internal boundary layer

  10. Study of interaction between shock wave and unsteady boundary layer

    Institute of Scientific and Technical Information of China (English)

    董志勇; 韩肇元

    2003-01-01

    This paper reports theoretical and experimental study of a new type of interaction of a moving shock wave with an unsteady boundary layer. This type of shock wave-boundary layer interaction describes a moving shock wave interaction with an unsteady boundary layer induced by another shock wave and a rarefaction wave. So it is different from the interaction of a stationary shock wave with steady boundary layer, also different from the interaction of a reflected moving shock wave at the end of a shock tube with unsteady boundary layer induced by an incident shock. Geometrical shock dynamics is used for the theoretical analysis of the shock wave-unsteady boundary layer interaction, and a double-driver shock tube with a rarefaction wave bursting diaphragm is used for the experimental investigation in this work.

  11. A Cautionary Note on the Thermal Boundary Layer Similarity Scaling for the Turbulent Boundary Layer

    CERN Document Server

    Weyburne, David

    2016-01-01

    Wang and Castillo have developed empirical parameters for scaling the temperature profile of the turbulent boundary layer flowing over a heated wall in the paper X. Wang and L. Castillo, J. Turbul., 4, 1(2003). They presented experimental data plots that showed similarity type behavior when scaled with their new scaling parameters. However, what was actually plotted, and what actually showed similarity type behavior, was not the temperature profile but the defect profile formed by subtracting the temperature in the boundary layer from the temperature in the bulk flow. We show that if the same data and same scaling is replotted as just the scaled temperature profile, similarity is no longer prevalent. This failure to show both defect profile similarity and temperature profile similarity is indicative of false similarity. The nature of this false similarity problem is discussed in detail.

  12. Nonparallel stability of boundary layers with pressure gradients and suction

    Science.gov (United States)

    Saric, W. S.; Nayfeh, A. H.

    1977-01-01

    An analysis is presented for the linear nonparallel stability of boundary layer flows with pressure gradients and suction. The effect of the boundary layer growth is included by using the method of multiple scales. The present analysis is compared with those of Bouthier and Gaster and the roles of the different definitions of the amplification rates are discussed. The results of these theories are compared with experimental data for the Blasius boundary layer. Calculations are presented for stability characteristics of boundary layers with pressure gradients and nonsimilar suction distributions.

  13. The Boundary Layer Interaction with Shock Wave and Expansion Fan

    Institute of Scientific and Technical Information of China (English)

    MaratA.Goldfeld; RomanV.Nestoulia; 等

    2000-01-01

    The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented.They include the study of the shock wave and /or expansion fan action upon the boundary layer,boundary layer sepqartion and its relaxation.Complex events of paired interactions and the flow on compression convex-concave surfaces were studied.The posibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented.Different model configurations for wide range conditions were investigated.Comparison of results for different interactions was carried out.

  14. Characteristics of the boundary layer of magnetic clouds and a new definition of the cloud boundary

    Institute of Scientific and Technical Information of China (English)

    WEI; Fengsi(魏奉思); LIU; Rui(刘睿); FAN; Quanlin(范全林); FENG; Xueshang(冯学尚)

    2003-01-01

    Based on the analysis of the boundaries of 70 magnetic clouds from 1967 to 1998, and relatively complete spacecraft observations, it is indicated that the magnetic cloud boundaries are boundary layers formed through the interaction between the magnetic clouds and the ambient medium. Most of the outer boundaries of the layers, with relatively high proton temperature, density and plasma β, are magnetic reconnection boundaries, while the inner boundaries, with low proton temperature, proton density and plasma β, separate the main body of magnetic clouds, which has not been affected by the interaction, from the boundary layers. The average time scale of the front boundary layer is 1.7 h and that of the tail boundary layer 3.1 h. It is also found that the magnetic probability distribution function undergoes significant changes across the boundary layers. This new definition, supported by the preliminary numerical simulation in principle, could qualitatively explain the observations of interplanetary magnetic clouds, and could help resolve the controversy in identifying the boundaries of magnetic clouds. Our concept of the boundary layer may provide some understanding of what underlies the observations, and a fresh train of thought in the interplanetary dynamics research.

  15. Coupled wake boundary layer model of wind-farms

    CERN Document Server

    Stevens, Richard J A M; Meneveau, Charles

    2014-01-01

    We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall wind-farm boundary layer structure. The wake expansion/superposition model captures the effect of turbine positioning, while the top-down portion adds the interaction between the wind-turbine wakes and the atmospheric boundary layer. Each portion of the model requires specification of a parameter that is not known a-priori. For the wake model the wake expansion coefficient is required, while the top-down model requires an effective span-wise turbine spacing within which the model's momentum balance is relevant. The wake expansion coefficient is obtained by matching the predicted mean velocity at the turbine from both approaches, while the effective span-wise turbine spacing depends on turbine positioning and thus can be determined from the wake expansion...

  16. RANS Modeling of Benchmark Shockwave / Boundary Layer Interaction Experiments

    Science.gov (United States)

    Georgiadis, Nick; Vyas, Manan; Yoder, Dennis

    2010-01-01

    This presentation summarizes the computations of a set of shock wave / turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock / boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Three turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Shear Stress Transport wavenumber-angular frequency two-equation model, and an explicit algebraic stress wavenumber-angular frequency formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.!

  17. Turbulence in the Stable Atmospheric Boundary Layer

    Science.gov (United States)

    Fernando, Harindra; Kit, Eliezer; Conry, Patrick; Hocut, Christopher; Liberzon, Dan

    2016-11-01

    During the field campaigns of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program, fine-scale measurements of turbulence in the atmospheric boundary layer (ABL) were made using a novel sonic and hot-film anemometer dyad (a combo probe). A swath of scales, from large down to Kolmogorov scales, was covered. The hot-film was located on a gimbal within the sonic probe volume, and was automated to rotate in the horizontal plane to align with the mean flow measured by sonic. This procedure not only helped satisfy the requirement of hot-film alignment with the mean flow, but also allowed in-situ calibration of hot-films. This paper analyzes a period of nocturnal flow that was similar to an idealized stratified parallel shear flow. Some new phenomena were identified, which included the occurrence of strong bursts in the velocity records indicative of turbulence generation at finer scales that are not captured by conventional sonic anemometers. The spectra showed bottleneck effect, but its manifestation did not fit into the framework of previous bottleneck-effect theories and was unequivocally related to bursts of turbulence. The measurements were also used to evaluate the energetics of stratified shear flows typical of the environment. ONR # N00014-11-1-0709; NSF # AGS-1528451; ISF 408/15.

  18. Simulation of Wind turbines in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    Large eddy simulation of an arbitrary wind farm is studied in the neutral and thermally stratified atmospheric boundary Layer. Large eddy simulations of industrial flows usually requires full resolution of the flow near the wall and this is believed to be one of the main deficiencies of LES because...... layer. In the current study, another approach has been implemented to simulate the flow in a fully developed wind farm boundary layer. The approach is based on Immersed Boundary Method and involves implementation of an arbitrary prescribed initial boundary layer. An initial boundary layer is enforced...... height and the flow development is seen based on the temperature variations and wind turbine wake generations and interactions of wakes occurs as soon as the wakes of the upwind turbine reach the downwind turbines. References: [1] U. Piomelli, Wall-layer models for large-eddy simulations, Progress...

  19. Footprints of funnel vortices in a turbulent boundary layer

    Science.gov (United States)

    Gurka, Roi; Liberzon, Alex; Hetsroni, Gad

    2003-11-01

    The topology of large scale funnel structures in a turbulent boundary layer in a flume is investigated experimentally. The large scale structure is reconstructed from the proper orthogonal decomposition (POD) eigenmodes, calculated from the two-dimensional projections of the fluctuated vorticity field realizations. The instantaneous two-dimensional velocity field realizations are obtained using Particle Image Velocimetry (PIV) technique. The dominant funnel structure appears to have a longitudinal streamwise orientation, an inclination angle of 8 degrees, streamwise length of 1000 wall units, and a distance between the neighboring structures of about 100 wall units in the spanwise direction. The spatial characteristics of the funnel structure, measured in the streamwise - wall normal plane of the flume, has been found to be independent of the Reynolds number. The identification technique is based on all the data set and provide a statistical descrition of the structure footprint.

  20. Hydrodynamic resistance of concentration polarization boundary layers in ultrafiltration

    NARCIS (Netherlands)

    Wijmans, J.G.; Nakao, S.; Berg, van den J.W.A.; Troelstra, F.R.; Smolders, C.A.

    1985-01-01

    The influence of concentration polarization on the permeate flux in the ultrafiltration of aqueous Dextran T70 solutions can be described by (i) the osmotic pressure model and (ii) the boundary layer resistance model. In the latter model the hydrodynamic resistance of the non-gelled boundary layer i

  1. Excimer emission from cathode boundary layer discharges

    Science.gov (United States)

    Moselhy, Mohamed; Schoenbach, Karl H.

    2004-02-01

    The excimer emission from direct current glow discharges between a planar cathode and a ring-shaped anode of 0.75 and 1.5 mm diameter, respectively, separated by a gap of 250 μm, was studied in xenon and argon in a pressure range from 75 to 760 Torr. The thickness of the "cathode boundary layer" plasma, in the 100 μm range, and a discharge sustaining voltage of approximately 200 V, indicates that the discharge is restricted to the cathode fall and the negative glow. The radiant excimer emittance at 172 nm increases with pressure and reaches a value of 4 W/cm2 for atmospheric pressure operation in xenon. The maximum internal efficiency, however, decreases with pressure having highest values of 5% for 75 Torr operation. When the discharge current is reduced below a critical value, the discharge in xenon changes from an abnormal glow into a mode showing self-organization of the plasma. Also, the excimer spectrum changes from one with about equal contributions from the first and second continuum to one that is dominated by the second continuum emission. The xenon excimer emission intensity peaks at this discharge mode transition. In the case of argon, self-organization of the plasma was not seen, but the emission of the excimer radiation (128 nm) again shows a maximum at the transition from abnormal to normal glow. As was observed with xenon, the radiant emittance of argon increases with pressure, and the efficiency decreases. The maximum radiant emittance is 1.6 W/cm2 for argon at 600 Torr. The maximum internal efficiency is 2.5% at 200 Torr. The positive slope of the current-voltage characteristics at maximum excimer emission in both cases indicates the possibility of generating intense, large area, flat excimer lamps.

  2. Boundary Layer to a System of Viscous Hyperbolic Conservation Laws

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, we investigate the large-time behavior of solutions to the initial-boundary value problem for nxn hyperbolic system of conservation laws with artificial viscosity in the half line (0, ∞). We first show that a boundary layer exists if the corresponding hyperbolic part contains at least one characteristic field with negative propagation speed. We further show that such boundary layer is nonlinearly stable under small initial perturbation. The proofs are given by an elementary energy method.

  3. Raman Spectrum Analysis on the Solid-Liquid Boundary Layer of BGO Crystal Growth

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xia; YIN Shao-Tang; WAN Song-Ming; YOU Jing-Lin; CHEN Hui; ZHAO Si-Jie; ZHANG Qing-Li

    2007-01-01

    We study the Raman spectra of Bi4Ge3O12 crystal at different temperatures, as well as its melt. The structure characters of the single crystal, melt and growth solid-liquid boundary layer of BGO are investigated by their high-temperature Raman spectra for the first time. The rule of structure change of BGO crystal with increasing temperature is analysed. The results show that there exists [GeO4] polyhedral structure and Bi ion independently in BGO melt. The bridge bonds Bi-O-Bi and Bi-O-Ge appear in the crystal and at the boundary layer, but disappear in the melt. The structure of the growth solid-liquid boundary layer is similar to that of BGO crystal. In the melt, the long-range order structure of the crystal disappears. The thickness of the grovth solid-liquid boundary layer of BGO crystal is about 50 μm.

  4. STUDY OF SWEPT SHOCK WAVE AND BOUNDARY LAYER INTERACTIONS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    This paper presents briefly the recent progress on study of swept shock wave/boundary layer interactions with emphasis on application of zonalanalysis and correlation analysis to them. Based on the zonal analysis an overall framework of complicated interaction flow structure including both surface flowfield and space flowfield is discussed. Based on correlation analysis the conical interactions induced by four families of shock wave generators have been discussedin detail. Some control parameter and physical mechanism of conical interaction have been revealed. Finally some aspects of the problem and the prospects for future work are suggested.

  5. Fluid Mechanics and Heat Transfer in Transitional Boundary Layers

    Science.gov (United States)

    Wang, Ting

    2007-01-01

    Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.

  6. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R. W.

    2015-03-25

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.

  7. Thermodynamic structure of the Atmospheric Boundary Layer over the Arabian Sea and the Indian Ocean during pre-INDOEX and INDOEX-FFP campaigns

    Directory of Open Access Journals (Sweden)

    M. V. Ramana

    2004-09-01

    Full Text Available Spatial and temporal variability of the Marine Atmospheric Boundary Layer (MABL height for the Indian Ocean Experiment (INDOEX study period are examined using the data collected through Cross-chained LORAN (Long-Range Aid to Navigation Atmospheric Sounding System (CLASS launchings during the Northern Hemispheric winter monsoon period. This paper reports the results of the analyses of the data collected during the pre-INDOEX (1997 and the INDOEX-First Field Phase (FFP; 1998 in the latitude range 14°N to 20°S over the Arabian Sea and the Indian Ocean. Mixed layer heights are derived from thermodynamic profiles and they indicated the variability of heights ranging from 400m to 1100m during daytime depending upon the location. Mixed layer heights over the Indian Ocean are slightly higher during the INDOEX-FFP than the pre-INDOEX due to anomalous conditions prevailing during the INDOEX-FFP. The trade wind inversion height varied from 2.3km to 4.5km during the pre-INDOEX and from 0.4km to 2.5km during the INDOEX-FFP. Elevated plumes of polluted air (lofted aerosol plumes above the marine boundary layer are observed from thermodynamic profiles of the lower troposphere during the INDOEX-FFP. These elevated plumes are examined using 5-day back trajectory analysis and show that one group of air mass travelled a long way from Saudi Arabia and Iran/Iraq through India before reaching the location of measurement, while the other air mass originates from India and the Bay of Bengal.

  8. Slow Manifolds and Multiple Equilibria in Stratocumulus-Capped Boundary Layers

    Directory of Open Access Journals (Sweden)

    Junya Uchida

    2010-12-01

    Full Text Available In marine stratocumulus-capped boundary layers under strong inversions, the timescale for thermodynamic adjustment is roughly a day, much shorter than the multiday timescale for inversion height adjustment. Slow-manifold analysis is introduced to exploit this timescale separation when boundary layer air columns experience only slow changes in their boundary conditions. Its essence is that the thermodynamic structure of the boundary layer remains approximately slaved to its inversion height and the instantaneous boundary conditions; this slaved structure determines the entrainment rate and hence the slow evolution of the inversion height. Slow-manifold analysis is shown to apply to mixed-layer model and large-eddy simulations of an idealized nocturnal stratocumulus- capped boundary layer; simulations with different initial inversion heights collapse onto single relationships of cloud properties with inversion height. Depending on the initial inversion height, the simulations evolve toward a shallow thin-cloud boundary layer or a deep, well-mixed thick cloud boundary layer. In the large-eddy simulations, these evolutions occur on two separate slow manifolds (one of which becomes unstable if cloud droplet concentration is reduced. Applications to analysis of stratocumulus observations and to pockets of open cells and ship tracks are proposed.

  9. Boundary Layer Ventilation Processes During a High Pressure Event

    Science.gov (United States)

    Gray, S. L.; Dacre, H. F.; Belcher, S. E.

    2006-12-01

    It is often assumed that ventilation of the atmospheric boundary layer is weak during high pressure events. But is this always true? Here we investigate the processes responsible for ventilation of the atmospheric boundary layer during a high pressure event that occured on the 9 May 2005 using the UK Met Office Unifed Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include a sea breeze circulation, turbulent mixing across the top of the boundary layer followed by large-scale ascent, and shallow convection. Vertical distributions of tracer are validated with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree impressively well. Budget calculations of tracers are performed in order to determine the relative importance of these ventilation processes. The sea breeze circulation was found to ventilate 26% of the boundary layer tracer by sunset of which 2% was above 2km. A combination of the sea breeze circulation and turbulent mixing ventilated 46% of the boundary layer tracer, of which 10% was above 2km. Finally, the sea breeze circulation, turbulent mixing and shallow convection processes together ventilated 52% of the tracer into the free troposphere, of which 26% was above 2km. Hence this study shows that signicant ventilation of the boundary layer can occur during high pressure events; turbulent mixing and convection processes can double the amount of pollution ventilated from the boundary layer.

  10. Atmospheric Boundary Layer Characteristics during BOBMEX-Pilot Experiment

    Indian Academy of Sciences (India)

    G S Bhat; S Ameenulla; M Venkataramana; K Sengupta

    2000-06-01

    The atmospheric boundary layer characteristics observed during the BOBMEX-Pilot experiment are reported. Surface meteorological data were acquired continuously through an automatic weather monitoring system and manually every three hours. High resolution radiosondes were launched to obtain the vertical thermal structure of the atmosphere. The study area was convectively active, the SSTs were high, surface air was warm and moist, and the surface air moist static energy was among the highest observed over the tropical oceans. The mean sea air temperature difference was about 1.25°C and the sea skin temperature was cooler than bucket SST by 0.5°C. The atmospheric mixed layer was shallow, fluctuated in response to synoptic conditions from 100 m to 900 m with a mean around 500 m.

  11. Bristled shark skin: a microgeometry for boundary layer control?

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A W; Hidalgo, P; Westcott, M [Aerospace Engineering and Mechanics Department, University of Alabama, Box 870280, Tuscaloosa, AL 35487 (United States); Motta, P [Biology Department, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)], E-mail: alang@eng.ua.edu

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  12. Observations of the atmospheric boundary layer height over Abu Dhabi, United Arab Emirates: Investigating boundary layer climatology in arid regions

    Science.gov (United States)

    Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa

    2014-05-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.

  13. Boundary-layer predictions for small low-speed contractions

    Science.gov (United States)

    Mehta, Rabindra D.; Bell, James H.

    1989-01-01

    The present scheme for the prediction of boundary-layer development in small, low-speed wind tunnel contraction sections proceeds by calculating the wall pressure distributions, and hence the wall velocity distributions, by means of a three-dimensional potential-flow method. For the family of contractions presently treated, the assumption of a laminar boundary layer appears to be justified; the measured boundary layer momentum thicknesses at the exit of the four contractions were found to lie within 10 percent of predicted values.

  14. Transient thermal response of turbulent compressible boundary layers

    DEFF Research Database (Denmark)

    Li, Hongwei; Nalim, M. Razi; Merkle, Charles L.

    2011-01-01

    . In turbulent flow as in laminar, the transient heat transfer rates are very different from that obtained from quasi-steady analysis. It is found that the time scale for response of the turbulent boundary layer to far-field temperature changes is 40% less than for laminar flow, and the turbulent local Nusselt......A numerical method is developed with the capability to predict transient thermal boundary layer response under various flow and thermal conditions. The transient thermal boundary layer variation due to a moving compressible turbulent fluid of varying temperature was numerically studied on a two...

  15. Stable Boundary Layer Education (STABLE) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region, a low-level jet. To advance our understanding of the nocturnal stable boundary layer, high temporal and vertical resolution data on the temperature and wind properties are needed, along with both large-eddy simulation and cloud-resolving modeling.

  16. Monin-Obukhov Similarity Functions of the Structure Parameter of Temperature and Turbulent Kinetic Energy Dissipation Rate in the Stable Boundary Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.; Debruin, H.A.R.

    2005-01-01

    The Monin-Obukhov similarity theory (MOST) functions fepsi; and fT, of the dissipation rate of turbulent kinetic energy (TKE), ¿, and the structure parameter of temperature, CT2, were determined for the stable atmospheric surface layer using data gathered in the context of CASES-99. These data cover

  17. The effects of external conditions in turbulent boundary layers

    Science.gov (United States)

    Brzek, Brian G.

    profiles become similar in shape indicating increased isotropy near the wall. Furthermore, the boundary layer parameters and production terms also show a considerable increase due to roughness. This study of rough wall turbulence was also combined with high freestream turbulence. The freestream turbulence was generated with the use of an active grid, which resulted in freestream turbulence levels of 6.2% and 5.2% at the two downstream measuring locations. The effect of the freestream turbulence on this rough surface significantly alters the mean velocity deficit profiles. In inner variables, the velocity profiles show a significantly reduced wake region, while in outer variables, a more full profile indicates increased momentum transport towards the wall. Furthermore, the effects of freestream turbulence are clearly identifiable in the Reynolds stress profiles. Furthermore, pressure gradient flows are also difficult to generalize, given that a significant difference in the boundary layer structure exists between different external pressure gradients, (i.e., FPG, ZPG, and APG). This was examined through the scaling of the velocity and Reynolds stresses from multiple data sets. (Abstract shortened by UMI.)

  18. Size distributions of boundary-layer clouds

    Energy Technology Data Exchange (ETDEWEB)

    Stull, R.; Berg, L.; Modzelewski, H. [Univ. of Wisconsin, Madison, WI (United States)

    1996-04-01

    Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.

  19. Reactive boundary layers in metallic rolling contacts

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, John

    2016-05-01

    more thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 - 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 - 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates

  20. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    , is newly extended to incorporate a transitional variant of the standard two-equation k–ω turbulence closure. The developed numerical model is successfully validated against recent experimental measurements involving transient solitary wave boundary layers as well as for oscillatory flows, collectively......This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scalewaves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...

  1. Numerical investigation of non-equilibrium effects in hypersonic turbulent boundary layers

    Science.gov (United States)

    Kim, Pilbum; Kim, John; Zhong, Xiaolin; Eldredge, Jeff

    2014-11-01

    Direct numerical simulations of a spatially developing hypersonic boundary layer have been conducted in order to investigate thermal and chemical non-equilibrium effects in a hypersonic turbulent boundary layer. Two different flows, pure oxygen and pure nitrogen flows with specific total enthalpy, h0 ,O2 = 9 . 5017 MJ/kg and h0 ,N2 = 19 . 1116 MJ/kg, respectively, have been considered. The boundary edge conditions were obtained from a separate calculation of a flow over a blunt wedge at free-stream Mach numbers M∞ ,O2 = 15 and M∞ ,N2 = 20 . The inflow conditions were obtained from a simulation of a turbulent boundary layer of a perfect gas. Non-equilibrium effects on turbulence statistics and near-wall turbulence structures were examined by comparing with those obtained in a simulation of the same boundary layer with a perfect-gas assumption.

  2. Characteristics of the boundary-layer equations of the minimum time-to-climb problem

    Science.gov (United States)

    Ardema, M. D.

    1976-01-01

    In many singular perturbation solutions of optimal control problems, the most difficult numerical task is to solve the boundary-layer equations. However, these equations have a special structure that may often be used to expedite their solution. This paper begins by noting the general nature of the boundary-layer equations for optimal control problems. These results are then applied to the aircraft minimum time-to-climb problem. A specific numerical example is considered to illustrate the characteristics of the solution of the boundary-layer equations for this problem.

  3. A Compilation of Unsteady Turbulent Boundary Layer Experimental Data,

    Science.gov (United States)

    1981-11-01

    HIRSCH KITAet ai, GOSTELOW EHERENSBERGER LU HO & CHEN KOBASHI & HAYAKAWA MAINARDI & PANDAY MARVIN* LORBER & COVERT MIZUSHINA I SAXENA RAMAPRIAN & TU...Laminar Boundary Layer by a Moving Belt. AIAA Paj_2r 69-40, New York, N.Y., 1969. (LT) Mainardi , H. and Panday, P. K.: A Study of Turbulent Pulsating...Flow in a (-cular Pipe. Eurovisc 77 - Unsteady Turbulent Boundary Layers and Shear Flows, Toulouse, France, Jar,. 2977. (TE-D) Mainardi , H. and Panday

  4. A note on boundary-layer friction in baroclinic cyclones

    CERN Document Server

    Boutle, I A; Belcher, S E; Plant, R S

    2008-01-01

    The interaction between extratropical cyclones and the underlying boundary layer has been a topic of recent discussion in papers by Adamson et. al. (2006) and Beare (2007). Their results emphasise different mechanisms through which the boundary layer dynamics may modify the growth of a baroclinic cyclone. By using different sea-surface temperature distributions and comparing the low-level winds, the differences are exposed and both of the proposed mechanisms appear to be acting within a single simulation.

  5. LES model intercomparisons for the stable atmospheric boundary layer

    NARCIS (Netherlands)

    Moene, A.F.; Baas, P.; Bosveld, F.C.; Basu, S.

    2011-01-01

    Model intercomparisons are one possible method to gain confidence in Large-Eddy Simulation (LES) as a viable tool to study turbulence in the atmospheric boundary-layer. This paper discusses the setup and some results of two intercomparison cases focussing on the stably stratified nocturnal boundary-

  6. BOUNDARY LAYER AND VANISHING DIFFUSION LIMIT FOR NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    彭艳

    2014-01-01

    In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as the diffusion parameterαgoes to zero.

  7. Geostrophic convective turbulence: The effect of boundary layers

    CERN Document Server

    Ostilla-Mónico, Rodolfo; Kunnen, Rudie P J; Verzicco, Roberto; Lohse, Detlef

    2014-01-01

    This Letter presents results of the first direct numerical simulations of rotating Rayleigh--B\\'enard convection in the so-called geostrophic regime, (hence very small Ekman numbers $\\mathcal{O}(10^{-7})$ and high Rayleigh numbers~$Ra=10^{10}$ and~$5\\cdot 10^{10}$), employing the \\emph{full} Navier--Stokes equations. In the geostrophic regime the criteria of very strong rotation and large supercriticality are met simultaneously, which is true for many geophysical and astrophysical flows. Until now, numerical approaches of this regime have been based on \\emph{reduced} versions of the Navier--Stokes equations (cf. Sprague \\emph{et al.} J. Fluid Mech., \\textbf{551}, 141 (2006)), omitting the effect of the viscous (Ekman) boundary layers. By using different velocity boundary conditions at the plates, we study the effect of these Ekman layers. We find that the formation of large-scale structures (Rubio \\emph{et al.} (Phys. Rev. Lett. \\textbf{112} (2014)), which indicates the presence of an inverse energy cascade, ...

  8. Boundary layer effects on liners for aircraft engines

    Science.gov (United States)

    Gabard, Gwénaël

    2016-10-01

    The performance of acoustic treatments installed on aircraft engines is strongly influenced by the boundary layer of the grazing flow on the surface of the liner. The parametric study presented in this paper illustrates the extent of this effect and identifies when it is significant. The acoustic modes of a circular duct with flow are calculated using a finite difference method. The parameters are representative of the flow conditions, liners and sound fields found in current turbofan engines. Both the intake and bypass ducts are considered. Results show that there is a complex interplay between the boundary layer thickness, the direction of propagation and the liner impedance and that the boundary layer can have a strong impact on liner performance for typical configurations (including changes of the order of 30 dB on the attenuation of modes associated with tonal fan noise). A modified impedance condition including the effect of a small but finite boundary layer thickness is considered and compared to the standard Myers condition based on an infinitely thin boundary layer. We show how this impedance condition can be implemented in a mode calculation method by introducing auxiliary variables. This condition is able to capture the trends associated with the boundary layer effects and in most cases provides improved predictions of liner performance.

  9. Calculations of Turbulent Boundary Layer (TBL) Pressure Fluctuations Transmitted into a Viscoelastic Layer

    Science.gov (United States)

    2016-06-07

    NUSC Technical Memorandum 851103 85lllil3 lillillN 21 June 1985 Calculations of Turbulent Boundary Layer (TBL) Pressure Fluctuations Transmitted...into a Viscoelastic Layer Sung H. Ko Howard H. Schloemer Submarine Sonar Department ~ - ~ • .-L ....... ’t’-~-~ ::?,$~.. \\ I I •• "’.e. !{ ft...Calculations of Turbulent Boundary Layer (TBL) Pressure Fluctuations Transmitted into a Viscoelastic Layer 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  10. Turbulent Boundary Layer at Large Re

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2016-03-01

    Full Text Available The fluids as deformable bodies without own shape, when starting from rest, experience interactions between the flowing fluid and the physical surfaces marking the bounds of flow. These interactions are a kind of impact process where there is a momentum exchange between two colliding bodies, i.e. the flow and its boundary surfaces. Within a short time of contact a post-impact shear flow occurs where two main effects are triggered off by the flow-induced collision: dramatic redistribution of the momentum and the boundary vorticity followed by the shear stress/viscosity change in the microstructure of the fluid which at the beginning behaves as linear reactive medium and latter as nonlinear dispersive medium. The disturbance of the starting flow induces the entanglement of the wall-bounded flow in the form of point-vortices or concentrated vorticity balls whence waves are emitted and propagated through flow field. The paper develops a wave mechanism for the transport of the concentrated boundary vorticity, directly related to the fascinating turbulence phenomenon, using the torsion concept of vorticity filaments associated with the hypothesis of thixotropic/nonlinear viscous fluid.

  11. Effects of boundary layer on flame propagation generated by forced ignition behind an incident shock wave

    Science.gov (United States)

    Ishihara, S.; Tamura, S.; Ishii, K.; Kataoka, H.

    2016-09-01

    To study the effects of the boundary layer on the deflagration to detonation transition (DDT) process, the mixture behind an incident shock wave was ignited using laser breakdown. Ignition timing was controlled so that the interaction of the resulting flame with a laminar or turbulent boundary layer could be examined. In the case of the interaction with a laminar boundary layer, wrinkling of the flame was observed after the flame reached the corner of the channel. On the other hand, interaction with the turbulent boundary layer distorted the flame front and increased the spreading rate of the flame followed by prompt DDT. The inner structure of the turbulent boundary layer plays an important role in the DDT process. The region that distorted the flame within the turbulent boundary layer was found to be the intermediate region 0.01DDT was independent of the ignition position. The effect of the boundary layer on the propagating flame, thus, became relatively small after the accelerating flame was generated.

  12. Effect of Pulsed Plasma Jets on the Recovering Boundary Layer Downstream of a Reflected Shock Interaction

    Science.gov (United States)

    Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus

    2015-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.

  13. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    Science.gov (United States)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  14. Multiple paths to subharmonic laminar breakdown in a boundary layer

    Science.gov (United States)

    Zang, Thomas A.; Hussaini, M. Yousuff

    1990-01-01

    Numerical simulations demonstrate that laminar breakdown in a boundary layer induced by the secondary instability of two-dimensional Tollmien-Schlichting waves to three-dimensional subharmonic disturbancews need not take the conventional lambda vortex/high-shear layer path.

  15. Plasma boundary layer and magnetopause layer of the earth's magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, T.E.

    1979-06-01

    IMP 6 observations of the plasma boundary layer (PBL) and magnetopause layer (MPL) of the earth's magnetosphere indicate that plasma in the low-latitude portion of the PBL is supplied primarily by direct transport of magnetosheath plasma across the MPL and that this transport process is relatively widespread over the entire sunward magnetospheric boundary.

  16. Latitude-energy structure of multiple ion beamlets in Polar/TIMAS data in plasma sheet boundary layer and boundary plasma sheet below 6 RE radial distance: basic properties and statistical analysis

    Directory of Open Access Journals (Sweden)

    W. K. Peterson

    2005-03-01

    Full Text Available Velocity dispersed ion signatures (VDIS occurring at the plasma sheet boundary layer (PSBL are a well reported feature. Theory has, however, predicted the existence of multiple ion beamlets, similar to VDIS, in the boundary plasma sheet (BPS, i.e. at latitudes below the PSBL. In this study we show evidence for the multiple ion beamlets in Polar/TIMAS ion data and basic properties of the ion beamlets will be presented. Statistics of the occurrence frequency of ion multiple beamlets show that they are most common in the midnight MLT sector and for altitudes above 4 RE, while at low altitude (≤3 RE, single beamlets at PSBL (VDIS are more common. Distribution functions of ion beamlets in velocity space have recently been shown to correspond to 3-dimensional hollow spheres, containing a large amount of free energy. We also study correlation with ~100 Hz waves and electron anisotropies and consider the possibility that ion beamlets correspond to stable auroral arcs.

  17. Turbulence transition in the asymptotic suction boundary layer

    CERN Document Server

    Kreilos, Tobias; Schneider, Tobias M; Veble, Gregor; Duguet, Yohann; Schlatter, Philipp; Henningson, Dan S; Eckhardt, Bruno

    2015-01-01

    We study the transition to turbulence in the asymptotic suction boundary layer (ASBL) by direct numerical simulation. Tracking the motion of trajectories intermediate between laminar and turbulent states we can identify the invariant object inside the laminar-turbulent boundary, the edge state. In small domains, the flow behaves like a travelling wave over short time intervals. On longer times one notes that the energy shows strong bursts at regular time intervals. During the bursts the streak structure is lost, but it reforms, translated in the spanwise direction by half the domain size. Varying the suction velocity allows to embed the flow into a family of flows that interpolate between plane Couette flow and the ASBL. Near the plane Couette limit, the edge state is a travelling wave. Increasing the suction, the travelling wave and a symmetry-related copy of it undergo a saddle-node infinite-period (SNIPER) bifurcation that leads to bursting and discrete-symmetry shifts. In wider domains, the structures loc...

  18. The Stokes boundary layer for a thixotropic or antithixotropic fluid

    KAUST Repository

    McArdle, Catriona R.

    2012-10-01

    We present a mathematical investigation of the oscillatory boundary layer in a semi-infinite fluid bounded by an oscillating wall (the so-called \\'Stokes problem\\'), when the fluid has a thixotropic or antithixotropic rheology. We obtain asymptotic solutions in the limit of small-amplitude oscillations, and we use numerical integration to validate the asymptotic solutions and to explore the behaviour of the system for larger-amplitude oscillations. The solutions that we obtain differ significantly from the classical solution for a Newtonian fluid. In particular, for antithixotropic fluids the velocity reaches zero at a finite distance from the wall, in contrast to the exponential decay for a thixotropic or a Newtonian fluid.For small amplitudes of oscillation, three regimes of behaviour are possible: the structure parameter may take values defined instantaneously by the shear rate, or by a long-term average; or it may behave hysteretically. The regime boundaries depend on the precise specification of structure build-up and breakdown rates in the rheological model, illustrating the subtleties of complex fluid models in non-rheometric settings. For larger amplitudes of oscillation the dominant behaviour is hysteretic. We discuss in particular the relationship between the shear stress and the shear rate at the oscillating wall. © 2012 Elsevier B.V.

  19. Evolution of vortex-surface fields in transitional boundary layers

    Science.gov (United States)

    Yang, Yue; Zhao, Yaomin; Xiong, Shiying

    2016-11-01

    We apply the vortex-surface field (VSF), a Lagrangian-based structure-identification method, to the DNS database of transitional boundary layers. The VSFs are constructed from the vorticity fields within a sliding window at different times and locations using a recently developed boundary-constraint method. The isosurfaces of VSF, representing vortex surfaces consisting of vortex lines with different wall distances in the laminar stage, show different evolutionary geometries in transition. We observe that the vortex surfaces with significant deformation evolve from wall-parallel planar sheets through hairpin-like structures and packets into a turbulent spot with regeneration of small-scale hairpins. From quantitative analysis, we show that a small number of representative or influential vortex surfaces can contribute significantly to the increase of the drag coefficient in transition, which implies a reduced-order model based on VSF. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11472015, 11522215 and 11521091), and the Thousand Young Talents Program of China.

  20. Analysis of diabatic flow modification in the internal boundary layer

    DEFF Research Database (Denmark)

    Floors, Rogier; Gryning, Sven-Erik; Pena Diaz, Alfredo

    2011-01-01

    is controlled by a combination of both downstream and upstream stability and surface roughness conditions. A model based on a diffusion analogy is able to predict the internal boundary layer height well. Modeling the neutral and long-term wind profile with a 3 layer linear interpolation scheme gives good......Measurements at two meteorological masts in Denmark, Horns Rev in the sea and Høvsøre near the coastline on land, are used to analyze the behaviour of the flow after a smooth-to-rough change in surface conditions. The study shows that the wind profile within the internal boundary layer...... results at Høvsøre. Based on a comparison with a numerical model and the measurements, the constants in the interpolation scheme are slightly adjusted, which yields an improvement for the description of the wind profile in the internal boundary layer....

  1. Boundary-layer control by electric fields A feasibility study

    CERN Document Server

    Mendes, R V

    1998-01-01

    A problem of great concern in aviation and submarine propulsion is the control of the boundary layer and, in particular, the methods to extend the laminar region as a means to decrease noise and fuel consumption. In this paper we study the flow of air along an airfoil when a layer of ionized gas and a longitudinal electric field are created in the boundary layer region. By deriving scaling solutions and more accurate numerical solutions we discuss the possibility of achieving significant boundary layer control for realistic physical parameters. Practical design formulas and criteria are obtained. We also discuss the perspectives for active control of the laminar-to-turbulent transition fluctuations by electromagnetic field modulation.

  2. Definition of Turbulent Boundary-Layer with Entropy Concept

    Directory of Open Access Journals (Sweden)

    Zhao Rui

    2016-01-01

    Full Text Available The relationship between the entropy increment and the viscosity dissipation in turbulent boundary-layer is systematically investigated. Through theoretical analysis and direct numerical simulation (DNS, an entropy function fs is proposed to distinguish the turbulent boundary-layer from the external flow. This approach is proved to be reliable after comparing its performance in the following complex flows, namely, low-speed airfoil flows with different wall temperature, supersonic cavity-ramp flow dominated by the combination of free-shear layer, larger recirculation and shocks, and the hypersonic flow past an aeroplane configuration. Moreover, fs is deduced from the point of energy, independent of any particular turbulent quantities. That is, this entropy concept could be utilized by other engineering applications related with turbulent boundary-layer, such as turbulence modelling transition prediction and engineering thermal protection.

  3. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2012-01-01

    Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear...... viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where...... with angular frequencies that increase outward in the shearing-sheet framework. We isolate the modes that are unrelated to the standard MRI and provide analytic solutions for the long-term evolution of the resulting shearing MHD waves. We show that, although the energy density of these waves can be amplified...

  4. Coherent vorticity extraction in turbulent boundary layers using orthogonal wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Khujadze, George; Oberlack, Martin [Chair of Fluid Dynamics, Technische Universitaet Darmstadt (Germany); Yen, Romain Nguyen van [Institut fuer Mathematik, Freie Universitaet Berlin (Germany); Schneider, Kai [M2P2-CNRS and CMI, Universite de Provence, Marseille (France); Farge, Marie, E-mail: khujadze@fdy.tu-darmstadt.de [LMD-IPSL-CNRS, Ecole Normale Superieure, Paris (France)

    2011-12-22

    Turbulent boundary layer data computed by direct numerical simulation are analyzed using orthogonal anisotropic wavelets. The flow fields, originally given on a Chebychev grid, are first interpolated on a locally refined dyadic grid. Then, they are decomposed using a wavelet basis, which accounts for the anisotropy of the flow by using different scales in the wall-normal direction and in the planes parallel to the wall. Thus the vorticity field is decomposed into coherent and incoherent contributions using thresholding of the wavelet coefficients. It is shown that less than 1% of the coefficients retain the coherent structures of the flow, while the majority of the coefficients corresponds to a structureless, i.e., noise-like background flow. Scale-and direction-dependent statistics in wavelet space quantify the flow properties at different wall distances.

  5. Dynamics of boundary layer electrons around a laser wakefield bubble

    Science.gov (United States)

    Luo, J.; Chen, M.; Zhang, G.-B.; Yuan, T.; Yu, J.-Y.; Shen, Z.-C.; Yu, L.-L.; Weng, S.-M.; Schroeder, C. B.; Esarey, E.

    2016-10-01

    The dynamics of electrons forming the boundary layer of a highly nonlinear laser wakefield driven in the so called bubble or blowout regime is investigated using particle-in-cell simulations. It is shown that when the driver pulse intensity increases or the focal spot size decreases, a significant amount of electrons initially pushed by the laser pulse can detach from the bubble structure at its tail, middle, or front and form particular classes of waves locally with high densities, referred to as the tail wave, lateral wave, and bow wave. The tail wave and bow wave correspond to real electron trajectories, while the lateral wave does not. The detached electrons can be ejected transversely, containing considerable energy, and reducing the efficiency of the laser wakefield accelerator. Some of the transversely emitted electrons may obtain MeV level energy. These electrons can be used for wake evolution diagnosis and producing high frequency radiation.

  6. The effects of forcing on a single stream shear layer and its parent boundary layer

    Science.gov (United States)

    Haw, Richard C.; Foss, John F.

    1990-01-01

    Forcing and its effect on fluid flows has become an accepted tool in the study and control of flow systems. It has been used both as a diagnostic tool, to explore the development and interaction of coherent structures, and as a method of controlling the behavior of the flow. A number of forcing methods have been used in order to provide a perturbation to the flow; among these are the use of an oscillating trailing edge, acoustically driven slots, external acoustic forcing, and mechanical piston methods. The effect of a planar mechanical piston forcing on a single stream shear layer is presented; it can be noted that this is one of the lesser studied free shear layers. The single stream shear layer can be characterized by its primary flow velocity scale and the thickness of the separating boundary layer. The velocity scale is constant over the length of the flow field; theta (x) can be used as a width scale to characterize the unforced shear layer. In the case of the forced shear layer the velocity field is a function of phase time and definition of a width measure becomes somewhat problematic.

  7. Vortex Generators to Control Boundary Layer Interactions

    Science.gov (United States)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  8. Surface modes in sheared boundary layers over impedance linings

    Science.gov (United States)

    Brambley, E. J.

    2013-08-01

    Surface modes, being duct modes localized close to the duct wall, are analysed within a lined cylindrical duct with uniform flow apart from a thin boundary layer. As well as full numerical solutions of the Pridmore-Brown equation, simplified mathematical models are given where the duct lining and boundary layer are lumped together and modelled using a single boundary condition (a modification of the Myers boundary condition previously proposed by the author), from which a surface mode dispersion relation is derived. For a given frequency, up to six surface modes are shown to exist, rather than the maximum of four for uniform slipping flow. Not only is the different number and behaviour of surface modes important for frequency-domain mode-matching techniques, which depend on having found all relevant modes during matching, but the thin boundary layer is also shown to lead to different convective and absolute stability than for uniform slipping flow. Numerical examples are given comparing the predictions of the surface mode dispersion relation to full solutions of the Pridmore-Brown equation, and the accuracy with which surface modes are predicted is shown to be significantly increased compared with the uniform slipping flow assumption. The importance of not only the boundary layer thickness but also its profile (tanh or linear) is demonstrated. A Briggs-Bers stability analysis is also performed under the assumption of a mass-spring-damper or Helmholtz resonator impedance model.

  9. FOREWORD: International Conference on Planetary Boundary Layer and Climate Change

    Science.gov (United States)

    Djolov, G.; Esau, I.

    2010-05-01

    structural uncertainties is hard to reduce and this could be one of the reasons determining slow progress in narrowing the climate model uncertainty range over the last 30 years (Knutti and Hagerl, Nature Geoscience, 2008). One of the most prominent structural uncertainties in the ongoing transient climate change is related to poor understanding and hence incorrect modelling of the turbulent physics and dynamics processes in the planetary boundary layer. Nevertheless, the climate models continue to rely on physically incorrect boundary layer parameterizations (Cuxart et al., BLM, 2006), whose erroneous dynamical response in the climate models may lead to significant abnormalities in simulated climate. At present, international efforts in theoretical understanding of the turbulent mixing have resulted in significant progress in turbulence simulation, measurements and parameterizations. However, this understanding has not yet found its way to the climate research community. Vice versa, climate research is not usually addressed by the boundary layer research community. The gap needs to be closed in order to crucially complete the scientific basis of climate change studies. The focus of the proposed forum could be formulated as follows: The planetary boundary layer determines several key parameters controlling the Earth's climate system but being a dynamic sub-system, just a layer of turbulent mixing in the atmosphere/ocean, it is also controlled by the climate system and its changes. Such a dynamic relationship causes a planetary boundary layer feedback (PBL-feedback) which could be defined as the response of the surface air temperature on changes in the vertical turbulent mixing. The forum participants have discussed both climatological and fluid dynamic aspects of this response, in order to quantify their role in the Earth's transient heat uptake and its representation in climate models. The choice of the forum location and dates are motivated by the role of tropical oceans

  10. Interaction between surface and atmosphere in a convective boundary layer

    Science.gov (United States)

    Garai, Anirban

    Solar heating of the surface causes the near surface air to warm up and with sufficient buoyancy it ascends through the atmosphere as surface-layer plumes and thermals. The cold fluid from the upper part of the boundary layer descends as downdrafts. The downdrafts and thermals form streamwise roll vortices. All these turbulent coherent structures are important because they contribute most of the momentum and heat transport. While these structures have been studied in depth, their imprint on the surface through energy budget in a convective atmospheric boundary layer has received little attention. The main objective of the present study is to examine the turbulence-induced surface temperature fluctuations for different surface properties and stratification. Experiments were performed to measure atmospheric turbulence using sonic anemometers, fine wire thermocouples and LIDAR; and surface temperature using an infra-red camera over grass and artificial turf fields. The surface temperature fluctuations were found to be highly correlated to the turbulent coherent structures and follow the processes postulated in the surface renewal theory. The spatio-temporal scales and advection speed of the surface temperature fluctuation were found to match with those of turbulent coherent structures. A parametric direct numerical simulation (DNS) study was then performed by solving the solid-fluid heat transport mechanism numerically for varying solid thermal properties, solid thickness and strength of stratification. Even though there were large differences in the friction Reynolds and Richardson numbers between the experiments and numerical simulations, similar turbulent characteristics were observed. The ejection (sweep) events tend to be aligned with the streamwise direction to form roll vortices with unstable stratification. The solid-fluid interfacial temperature fluctuations increase with the decreases in solid thermal inertia; and with the increase in solid thickness to

  11. Control Parameters for Boundary-Layer Instabilities in Unsteady Shock Interactions

    Directory of Open Access Journals (Sweden)

    LaVar King Isaacson

    2012-01-01

    Full Text Available This article presents the computation of a set of control parameters for the deterministic prediction of laminar boundary-layer instabilities induced by an imposed unsteady shock interaction. The objective of the study is exploratory in nature by computing a supersonic flight environment for flow over a blunt body and the deterministic prediction of the spectral entropy rates for the boundary layer subjected to an unsteady pressure disturbance. The deterministic values for the spectral entropy rate within the instabilities are determined for each control parameter. Computational results imply that the instabilities are of a span-wise vortex form, that the maximum vertical velocity wave vector components are produced in the region nearest the wall and that extended transient coherent structures are produced in the boundary layer at a vertical location slightly below the mid-point of the boundary layer.

  12. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  13. Secondary instability in boundary-layer flows

    Science.gov (United States)

    Nayfeh, A. H.; Bozatli, A. N.

    1979-01-01

    The stability of a secondary Tollmien-Schlichting wave, whose wavenumber and frequency are nearly one half those of a fundamental Tollmien-Schlichting instability wave is analyzed using the method of multiple scales. Under these conditions, the fundamental wave acts as a parametric exciter for the secondary wave. The results show that the amplitude of the fundamental wave must exceed a critical value to trigger this parametric instability. This value is proportional to a detuning parameter which is the real part of k - 2K, where k and K are the wavenumbers of the fundamental and its subharmonic, respectively. For Blasius flow, the critical amplitude is approximately 29% of the mean flow, and hence many other secondary instabilities take place before this parametric instability becomes significant. For other flows where the detuning parameter is small, such as free-shear layer flows, the critical amplitude can be small, thus the parametric instability might play a greater role.

  14. Large Scale Organization of a Near Wall Turbulent Boundary Layer

    Science.gov (United States)

    Stanislas, Michel; Dekou Tiomajou, Raoul Florent; Foucaut, Jean Marc

    2016-11-01

    This study lies in the context of large scale coherent structures investigation in a near wall turbulent boundary layer. An experimental database at high Reynolds numbers (Re θ = 9830 and Re θ = 19660) was obtained in the LML wind tunnel with stereo-PIV at 4 Hz and hot wire anemometry at 30 kHz. A Linear Stochastic Estimation procedure, is used to reconstruct a 3 component field resolved in space and time. Algorithms were developed to extract coherent structures from the reconstructed field. A sample of 3D view of the structures is depicted in Figure 1. Uniform momentum regions are characterized with their mean hydraulic diameter in the YZ plane, their life time and their contribution to Reynolds stresses. The vortical motions are characterized by their position, radius, circulation and vorticity in addition to their life time and their number computed at a fixed position from the wall. The spatial organization of the structures was investigated through a correlation of their respective indicative functions in the spanwise direction. The simplified large scale model that arise is compared to the ones available in the literature. Streamwise low (green) and high (yellow) uniform momentum regions with positive (red) and negative (blue) vortical motions. This work was supported by Campus International pour la Sécurité et l'Intermodalité des Transports.

  15. Langevin equation model of dispersion in the convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Nasstrom, J S

    1998-08-01

    This dissertation presents the development and evaluation of a Lagrangian stochastic model of vertical dispersion of trace material in the convective boundary layer (CBL). This model is based on a Langevin equation of motion for a fluid particle, and assumes the fluid vertical velocity probability distribution is skewed and spatially homogeneous. This approach can account for the effect of large-scale, long-lived turbulent structures and skewed vertical velocity distributions found in the CBL. The form of the Langevin equation used has a linear (in velocity) deterministic acceleration and a skewed randomacceleration. For the case of homogeneous fluid velocity statistics, this ""linear-skewed" Langevin equation can be integrated explicitly, resulting in a relatively efficient numerical simulation method. It is shown that this approach is more efficient than an alternative using a "nonlinear-Gaussian" Langevin equation (with a nonlinear deterministic acceleration and a Gaussian random acceleration) assuming homogeneous turbulence, and much more efficient than alternative approaches using Langevin equation models assuming inhomogeneous turbulence. "Reflection" boundary conditions for selecting a new velocity for a particle that encounters a boundary at the top or bottom of the CBL were investigated. These include one method using the standard assumption that the magnitudes of the particle incident and reflected velocities are positively correlated, and two alternatives in which the magnitudes of these velocities are negatively correlated and uncorrelated. The constraint that spatial and velocity distributions of a well-mixed tracer must be the same as those of the fluid, was used to develop the Langevin equation models and the reflection boundary conditions. The two Langevin equation models and three reflection methods were successfully tested using cases for which exact, analytic statistical properties of particle velocity and position are known, including well

  16. Sound from boundary layer flow over steps and gaps

    Science.gov (United States)

    Ryan Catlett, M.; Devenport, William; Glegg, Stewart A. L.

    2014-09-01

    This study is concerned with the radiated sound from boundary layer flows over small forward and backward steps and gap configurations of similar dimension. These measurements were performed in the Virginia Tech Anechoic Wall Jet Facility for step heights that ranged from approximately 10 percent to 100 percent of the incoming boundary layer height. The results show the influence of step height and boundary layer edge velocity on the far-field sound from forward and backward steps. Neither source shows clear dipole directivity and at least the larger step heights considered in this study are shown to not be acoustically compact. A new mixed scaling normalization is proposed for the far-field spectra from both types of step. Backward steps are shown to be much weaker producers of far-field sound than similarly sized forward steps. The implications of this behavior are discussed with respect to the far-field sound measured from various gap flows.

  17. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    The present study covers both a numerical and experimental investigation of the processes in the oscillatory boundary layer. In the first part a direct numerical simulation (DNS) is conducted to study the vertical pressure gradient, and its role in relation to laminar to turbulent transition...... and its role in the fully turbulent boundary layer. The pressure in the flow is obtained from the flow fields of the oscillatory boundary layer. What differs, the vertical pressure gradient, from other turbulent quantities, like e.g. velocity fluctuations is that it can detect newly generated turbulence....... This is in contrast to velocity fluctuations that are diffusive, so they can also contain residual turbulence from the previous half cycle until they are dissipated. Furthermore, the magnitude of the mean value of conditionally averaged vertical pressure gradient (for −∂p∗/∂x∗ 2 > 0) is compared to the submerged...

  18. On the interaction between turbulence grids and boundary layers

    Directory of Open Access Journals (Sweden)

    Irps Thomas

    2016-01-01

    Full Text Available Turbulence grids are widely used in wind tunnels to produce representative turbulence levels when testing aerodynamic phenomena around models. Although the purpose of the grid is to introduce a desired turbulence level in the freestream flow, the wall boundary layers of the tunnel are subjected to modification due to the presence of such grids. This could have major implications to the flow around the models to be tested and hence there is a need to further understand this interaction. The study described in this paper examines wind tunnel wall boundary layer modification by turbulence grids of different mesh sizes and porosities to understand the effect of these parameters on such interaction. Experimental results are presented in the form of pressure loss coefficients, boundary layer velocity profiles and the statistics of turbulence modification.

  19. Effect of externally generated turbulence on wave boundary layer

    DEFF Research Database (Denmark)

    Fredsøe, Jørgen; Sumer, B. Mutlu; Kozakiewicz, A.

    2003-01-01

    This experimental study deals with the effect of externally generated turbulence on the oscillatory boundary layer to simulate the turbulence in the wave boundary layer under broken waves in the swash zone. The subject has been investigated experimentally in a U-shaped, oscillating water tunnel...... with a smooth bottom. Turbulence was generated ´externally´ as the flow in the oscillator was passed through a series of grids, that extended from the cover of the water tunnel to about mid-depth. Two different types of grid porosities were used. Direct measurements of the bed shear stress and velocity...... results. The mean and turbulence quantities in the outer flow region are increased substantially with the introduction of the grids. It is shown that the externally generated turbulence is able to penetrate the bed boundary layer, resulting in an increase in the bed shear stress, and therefore...

  20. Boundary-layer temperatures in high accretion rate cataclysmic variables

    Energy Technology Data Exchange (ETDEWEB)

    Hoare, M.G.; Drew, J.E. (Oxford Univ. (UK). Dept. of Physics Oxford Univ. (UK). Dept. of Astrophysics)

    1991-04-01

    We use the Zanstra method to derive limits on boundary-layer temperatures in eclipsing dwarf novae during outburst and nova-like variables, using the observed He II {lambda}1640 and {lambda}4686 recombination lines. It is assumed that all the emission is produced in the wind rather than the accretion disc. This method constrains the boundary-layer temperatures to between 50 000 and 100 000 K depending on the degree of wind bipolarity. These estimates are lower than the T>or approx200 000 K predicted theoretically. Possible explanations include rapid rotation of the white dwarf and spreading of the boundary layer over the entire white-dwarf surface. (author).

  1. Bypass transition and spot nucleation in boundary layers

    CERN Document Server

    Kreilos, Tobias; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S; Eckhardt, Bruno

    2016-01-01

    The spatio-temporal aspects of the transition to turbulence are considered in the case of a boundary layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly fitted from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  2. Bypass transition and spot nucleation in boundary layers

    Science.gov (United States)

    Kreilos, Tobias; Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S.; Eckhardt, Bruno

    2016-08-01

    The spatiotemporal aspects of the transition to turbulence are considered in the case of a boundary-layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly obtained from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  3. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality

    Science.gov (United States)

    Miao, Yucong; Hu, Xiao-Ming; Liu, Shuhua; Qian, Tingting; Xue, Ming; Zheng, Yijia; Wang, Shu

    2015-12-01

    The Beijing-Tianjin-Hebei (BTH) region experiences frequent heavy haze pollution in fall and winter. Pollution was often exacerbated by unfavorable atmospheric boundary layer (BL) conditions. The topography in this region impacts the BL processes in complex ways. Such impacts and implications on air quality are not yet clearly understood. The BL processes in all four seasons in BTH are thus investigated in this study using idealized simulations with the WRF-Chem model. Results suggest that seasonal variation of thermal conditions and synoptic patterns significantly modulates BL processes. In fall, with a relatively weak northwesterly synoptic forcing, thermal contrast between the mountains and the plain leads to a prominent mountain-plain breeze circulation (MPC). In the afternoon, the downward branch of the MPC, in addition to northwesterly warm advection, suppresses BL development over the western side of BTH. In the eastern coastal area, a sea-breeze circulation develops late in the morning and intensifies during the afternoon. In summer, southeasterly BL winds allow the see-breeze front to penetrate farther inland (˜150 km from the coast), and the MPC is less prominent. In spring and winter, with strong northwesterly synoptic winds, the sea-breeze circulation is confined in the coastal area, and the MPC is suppressed. The BL height is low in winter due to strong near-surface stability, while BL heights are large in spring due to strong mechanical forcing. The relatively low BL height in fall and winter may have exacerbated the air pollution, thus contributing to the frequent severe haze events in the BTH region.

  4. Coupled vs. decoupled boundary layers in VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. R. Jones

    2011-03-01

    Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.

    We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the “well-mixed cloud thickness”, defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling. In the deeper boundary layers observed well offshore, there was frequently nearly 100% boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.

  5. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  6. Calculation of a boundary layer with phase transformations

    Science.gov (United States)

    Dorosh, N. D.; Kharitonov, A. A.

    A method for the analysis of a laminar boundary layer with phase transformations is developed. It is noted that volume gas condensation can occur in the case of flow past a cooled surface, drops becoming aggregated in groups in the process of condensation. The concept of group density and concentration is proposed, and this approach is used to investigate a boundary layer near the stagnation point of a two-dimensional blunt body in a flow of molecular oxygen. Profiles of temperature, stream function, and concentration of liquid-oxygen droplet groups are determined for various values of the condensation rate.

  7. Turbulent boundary layer on perforated surfaces with vector injection

    Science.gov (United States)

    Eroshenko, V. M.; Zaichik, L. I.; Klimov, A. A.; Ianovskii, L. S.; Kondratev, V. I.

    1980-10-01

    The paper presents an experimental investigation of a turbulent boundary layer on perforated plates with uniform vector injection at various angles to gas flow. It was shown that with strong injection at angles oriented in the flow direction the intensity of turbulent pulsation is decreased, while injection at angles in the opposite direction increase the intensity. A relationship was established between the critical parameters of the boundary layer injection angles; it was concluded that the asymptotic theory of Kutateladze and Leontiev can be used for determining the coefficient of friction of vector injection.

  8. Conference on Boundary and Interior Layers : Computational and Asymptotic Methods

    CERN Document Server

    2015-01-01

    This volume offers contributions reflecting a selection of the lectures presented at the international conference BAIL 2014, which was held from 15th to 19th September 2014 at the Charles University in Prague, Czech Republic. These are devoted to the theoretical and/or numerical analysis of problems involving boundary and interior layers and methods for solving these problems numerically. The authors are both mathematicians (pure and applied) and engineers, and bring together a large number of interesting ideas. The wide variety of topics treated in the contributions provides an excellent overview of current research into the theory and numerical solution of problems involving boundary and interior layers.  .

  9. Axisymmetric fundamental solutions for a finite layer with impeded boundaries

    Institute of Scientific and Technical Information of China (English)

    程泽海; 陈云敏; 凌道盛; 唐晓武

    2003-01-01

    Axisymmetrie fundamental solutions that are applied in the consolidation calculations of a finite clay layer with impeded boundaries were derived. Laplace and Hankel integral transforms were utilized with respect to time and radial coordinates, respectively in the analysis. The derivation of fundamental solutions considers two boundary-value problems involving unit point loading and ring loading in the vertical. The solut-ions are extended to circular distributed and strip distributed normal load. The computation and analysis of set-tlements, vertical total stress and excess pore pressure in the consolidation layer subject to circular loading are presented.

  10. Axisymmetric fundamental solutions for a finite layer with impeded boundaries

    Institute of Scientific and Technical Information of China (English)

    程泽海; 陈云敏; 凌道盛; 唐晓武

    2003-01-01

    Axisymmetric fundamental solutions that are applied in the consolidation calculations of a finite clay layer with impeded boundaries were derived. Laplace and Hankel integral transforms were utilized with respect to time and radial coordinates, respectively in the analysis. The derivation of fundamental solutions considers two boundary-value problems involving unit point loading and ring loading in the vertical. The solutions are extended to circular distributed and strip distributed normal load. The computation and analysis of settlements, vertical total stress and excess pore pressure in the consolidation layer subject to circular loading are presented.

  11. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    Science.gov (United States)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  12. 超细金刚石与树脂基体间界面层的研究%Structure and Properties of Boundary Layer Between Nanodiamond and Resin Matrix

    Institute of Scientific and Technical Information of China (English)

    楚亚卿; 仝毅; 黄风雷; 张同来

    2013-01-01

    To analyze the structure and reinforcing mechanism of boundary layer between nanodiamond and resin matrix, composite resins contained DND (detonation nanodiamond, modified) were synthesized. Properties of resins were investigated by measures of electronic universal testing machine, SEM and FT-IR. The structure and characters of the boundary layer were analyzed and its reinforcing mechanism was explained. Results show that, with the added DND, the mechanical properties of resins is improved, and the boundary layer between DND particle and matrix could be observed. After light-curing, the double bonds in boundary layer were catalyzed and then combined randomly with double bonds of other molecules nearby. Combination between DND and resin matrix changed from week combination, such as hydrogen bonds or intermolecular force, to firm chemical bonds. These changes made resin resistance to load improve greatly.%为观察和分析复合树脂中超细金刚石填料与基体间界面层的结构及其作用机理,合成了仅添加改性超细金刚石为增强体的复合树脂,对该树脂进行了机械性能测试、透射电镜观察以及红外光谱等测试.结果表明超细金刚石的加入可以明显提高树脂的机械性能,并观察到纳米金刚石颗粒与基体之间存在着界面层.在光照固化以后,界面层中的双键在光引发剂的催化下随机地与其附近的其他分子上的双键发生反应,DND与基体之间由氢键、分子间作用力等较弱的结合方式变成通过化学键连接的牢固的结合方式,使得树脂抵抗外界载荷的能力获得了极大提高.

  13. Measurement and Modeling of the Fluctuating Wall Pressure Field Beneath Transitional Boundary Layers

    Science.gov (United States)

    Snarski, Stephen R.

    2001-11-01

    Measurements have been performed to better understand the space-varying character of the fluctuating wall pressure field beneath a transitional boundary layer and to develop an appropriate model for the space-varying (nonhomogeneous) wavenumber-frequency wall pressure spectrum. Although a great deal is understood regarding the structure of the wall pressure field beneath turbulent boundary layers, the current understanding of the wall pressure field beneath the transitional boundary layer is incomplete. Overlooked have been critical issues concerning spatial variations in turbulence structure and the convection and decay of pressure producing disturbances—properties that define the character of the field and resulting form of the wavenumber-frequency spectrum. The experiments involve measurement of the space-time fluctuating wall pressure field across the transition region of a flat plate boundary layer by means of a 64-element linear array of hearing-aid microphones and hot wire velocity measurements in the adjacent laminar, transitional, and turbulent boundary layers. Because the field is nonhomogeneous, wavelet based transform methods are required to appropriately resolve the space-varying structure of the field and form of the nonhomogeneous wavenumber-frequency spectrum.

  14. Flow visualization of swept wing boundary layer transition

    NARCIS (Netherlands)

    Serpieri, J.; Kotsonis, M.

    2015-01-01

    In this work the flow visualization of the transition pattern occurring on a swept wing in a subsonic flow is presented. This is done by means of fluorescent oil flow technique and boundary layer hot-wire scans. The experiment was performed at Reynolds number of 2:15 . 106 and at angle of attack of

  15. Body surface adaptations to boundary-layer dynamics

    NARCIS (Netherlands)

    Videler, J.J.

    1995-01-01

    Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins, sca

  16. The boundary layer growth in an urban area

    NARCIS (Netherlands)

    Pino, D.; Vilà-Guerau de Arellano, J.; Comerón, A.; Rocadenbosch, F.

    2004-01-01

    The development and maintenance of the atmospheric boundary layer (ABL) plays a key role in the distribution of atmospheric constituents, especially in a polluted urban area. In particular, the ABL has a direct impact on the concentration and transformation of pollutants. In this work, in order to a

  17. Wave boundary layer hydrodynamics during onshore bar migration

    NARCIS (Netherlands)

    Henriquez, M.; Reniers, A.; Ruessink, G.; Stive, M.J.F.

    2010-01-01

    To study onshore bar migration and the accompanying intra-wave sediment transport a wave flume experiment was conducted. The wave flume had a rigid bottom with a single bar profile. The focus of the experiment was to measure the hydrodynamics in the wave bottom boundary layer. The results show that

  18. Three dimensional boundary layers on submarine conning towers and rudders

    Science.gov (United States)

    Gleyzes, C.

    1988-01-01

    Solutions for the definition of grids adapted to the calculation of three-dimensional boundary layers on submarine conning towers and on submarine rudders and fins are described. The particular geometry of such bodies (oblique shaped hull, curved fins) required special adaptations. The grids were verified on examples from a test basin.

  19. The use of a wave boundary layer model in SWAN

    DEFF Research Database (Denmark)

    Du, Jianting; Bolaños, Rodolfo; Larsén, Xiaoli Guo

    2017-01-01

    A Wave Boundary Layer Model (WBLM) is implemented in the third-generation ocean wave model SWAN to improve the wind-input source function under idealized, fetch-limited condition. Accordingly, the white capping dissipation parameters are re-calibrated to fit the new wind-input source function...

  20. Entrainment process of carbon dioxide in the atmospheric boundary layer

    NARCIS (Netherlands)

    Vilà-Guerau de Arellano, J.; Gioli, B.; Miglietta, F.; Jonker, H.J.J.; Klein Baltink, H.; Hutjes, R.W.A.; Holtslag, A.A.M.

    2004-01-01

    Aircraft and surface measurements of turbulent thermodynamic variables and carbon dioxide (CO2) were taken above a grassland in a convective atmospheric boundary layer. The observations were analyzed to assess the importance of the entrainment process for the distribution and evolution of carbon dio

  1. Role of the vertical pressure gradient in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna

    2014-01-01

    By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressur...

  2. Convective boundary layers driven by nonstationary surface heat fluxes

    NARCIS (Netherlands)

    Van Driel, R.; Jonker, H.J.J.

    2011-01-01

    In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is systematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds modulate incoming solar radiation. Because the time scale of the associated change

  3. Combined Wave and Current Bottom Boundary Layers: A Review

    Science.gov (United States)

    2016-03-01

    formation during an energetic storm. They noted that the sedi- ment first became dilated due to water entrainment, followed by erosion during the most...suggested by Businger et al. (1971), who developed their eddy viscosity for thermally stratified atmospheric boundary layers, was shown to be valid for

  4. Stability of the laminar boundary layer for an imperfect gas

    Science.gov (United States)

    Gasperas, G.

    The linear perturbation equations are derived for the general case of a compressible imperfect gas characterized by an equation of state utilizing a compressibility factor. The specific case of the Beattie-Bridgeman gas is chosen for calculation. Amplification curves calculated using the Beattie-Bridgeman equation of state for two representative flat plate boundary layers are presented.

  5. Boundary Layer Flows in Porous Media with Lateral Mass Flux

    DEFF Research Database (Denmark)

    Nemati, H; H, Bararnia; Noori, F;

    2015-01-01

    Solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium are presented using the Homotopy Analysis Method and Shooting Numerical Method. Homotopy Analysis Method yields an analytic solution in the form of a rapidly...

  6. DNS of stratified spatially-developing turbulent thermal boundary layers

    Science.gov (United States)

    Araya, Guillermo; Castillo, Luciano; Jansen, Kenneth

    2012-11-01

    Direct numerical simulations (DNS) of spatially-developing turbulent thermal boundary layers under stratification are performed. It is well known that the transport phenomena of the flow is significantly affected by buoyancy, particularly in urban environments where stable and unstable atmospheric boundary layers are encountered. In the present investigation, the Dynamic Multi-scale approach by Araya et al. (JFM, 670, 2011) for turbulent inflow generation is extended to thermally stratified boundary layers. Furthermore, the proposed Dynamic Multi-scale approach is based on the original rescaling-recycling method by Lund et al. (1998). The two major improvements are: (i) the utilization of two different scaling laws in the inner and outer parts of the boundary layer to better absorb external conditions such as inlet Reynolds numbers, streamwise pressure gradients, buoyancy effects, etc., (ii) the implementation of a Dynamic approach to compute scaling parameters from the flow solution without the need of empirical correlations as in Lund et al. (1998). Numerical results are shown for ZPG flows at high momentum thickness Reynolds numbers (~ 3,000) and a comparison with experimental data is also carried out.

  7. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.

    2012-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...

  8. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.

    2014-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...

  9. Modeling of particulate plumes transportation in boundary layers with obstacles

    Science.gov (United States)

    Karelsky, K. V.; Petrosyan, A. S.

    2012-04-01

    This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by nonslip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of high wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations. We deal with describing high

  10. Transportation of particulate plumes in boundary layer with obstacles

    Science.gov (United States)

    Petrosyan, A.; Karelsky, K.; Smirnov, I.

    2010-05-01

    This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by nonslip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of high wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations. We deal with describing high

  11. Transport of Particulates in Boundary Layer with Obstacles

    Science.gov (United States)

    Karelsky, Kirill; Petrosyan, Arakel

    2014-05-01

    This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by nonslip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of high wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations. We deal with describing high

  12. Characterization of an incipiently separated shock wave/turbulent boundary layer interaction

    Science.gov (United States)

    Schreyer, A.-M.; Dussauge, J.-P.; Krämer, E.

    2017-03-01

    The turbulence structure in a shock wave/turbulent boundary layer interaction at incipient separation was investigated in order to get insight into turbulence generation and amplification mechanisms in such flow fields. The flow along a two-dimensional 11.5° compression corner was studied experimentally at a Mach number of M=2.53 and with a momentum-thickness Reynolds number of Re_{θ }=5370. From hot-wire boundary layer traverses and surface heat-flux density fluctuation measurements with the fast-response atomic layer thermopile, the turbulence structure and amplification was described. Space-time correlations of the mass-flux fluctuations across the boundary layer and the surface heat-flux density fluctuations were measured to further characterize the development of the turbulence structure across the interaction. The large-scale boundary layer structures are concealed by shock-related effects in the strongly disturbed shock-foot region. Shortly downstream, however, large-scale structures dominate the signal again, just as in the incoming flow. A mechanism explaining this behavior is suggested.

  13. On buffer layers as non-reflecting computational boundaries

    Science.gov (United States)

    Hayder, M. Ehtesham; Turkel, Eli L.

    1996-01-01

    We examine an absorbing buffer layer technique for use as a non-reflecting boundary condition in the numerical simulation of flows. One such formulation was by Ta'asan and Nark for the linearized Euler equations. They modified the flow inside the buffer zone to artificially make it supersonic in the layer. We examine how this approach can be extended to the nonlinear Euler equations. We consider both a conservative and a non-conservative form modifying the governing equations in the buffer layer. We compare this with the case that the governing equations in the layer are the same as in the interior domain. We test the effectiveness of these buffer layers by a simulation of an excited axisymmetric jet based on a nonlinear compressible Navier-Stokes equations.

  14. Study of a prototypical convective boundary layer observed during BLLAST: contributions by large-scale forcings

    Directory of Open Access Journals (Sweden)

    H. Pietersen

    2014-07-01

    Full Text Available We study the disturbances of CBL dynamics due to large-scale atmospheric contributions for a representative day observed during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST campaign. We first reproduce the observed boundary-layer dynamics by combining the Dutch Atmospheric Large-Eddy Simulation (DALES model with a mixed-layer theory based model. We find that by only taking surface and entrainment fluxes into account, the boundary-layer height is overestimated by 70%. If we constrain our numerical experiments with the BLLAST comprehensive data set, we are able to quantify the contributions of advection of heat and moisture, and subsidence. We find that subsidence has a clear diurnal pattern. Supported by the presence of a nearby mountain range, this pattern suggests that not only synoptic scales exert their influence on the boundary layer, but also mesoscale circulations. Finally, we study whether the vertical and temporal evolution of turbulent variables are influenced by these large-scale forcings. Our model results show good correspondence of the vertical structure of turbulent variables with observations. Our findings further indicate that when large-scale advection and subsidence are applied, the values for turbulent kinetic are lower than without these large-scale forcings. We conclude that the prototypical CBL can still be used as a valid representation of the boundary-layer dynamics near regions characterized by complex topography and small-scale surface heterogeneity, provided that surface- and large-scale forcings are well characterized.

  15. Boundary Layer Effect on Behavior of Discrete Models

    Directory of Open Access Journals (Sweden)

    Jan Eliáš

    2017-02-01

    Full Text Available The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson’s ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.

  16. Boundary-layer model of pattern formation in solidification

    Science.gov (United States)

    Ben-Jacob, E.; Goldenfeld, N.; Langer, J. S.; Schon, G.

    1984-01-01

    A model of pattern formation in crystal growth is proposed, and its analytic properties are investigated. The principal dynamical variables in this model are the curvature of the solidification front and the thickness (or heat content) of a thermal boundary layer, both taken to be functions of position along the interface. This model is mathematically much more tractable than the realistic, fully nonlocal version of the free-boundary problem, and still recaptures many of the features that seem essential for studying dendritic behavior, for example. Preliminary numerical solutions produce snowflakelike patterns similar to those seen in nature.

  17. Studies of stability of blade cascade suction surface boundary layer

    Institute of Scientific and Technical Information of China (English)

    DONG Xue-zhi; YAN Pei-gang; HAN Wan-jin

    2007-01-01

    Compressible boundary layers stability on blade cascade suction surface was discussed by wind tunnel experiment and numerical solution. Three dimensional disturbance wave Parabolized Stability Equations(PSE) of orthogonal Curvilinear Coordinates in compressible flow was deducted. The surface pressure of blade in wind tunnel experiment was measured. The Falkner-Skan equation was solved under the boundary conditions of experiment result, and velocity, pressure and temperature of average flow were obtained. Substituted this result for discretization of the PSE Eigenvalue Problem, the stability problem can be solved.

  18. Turbulent dusty boundary layer in an ANFO surface-burst explosion

    Science.gov (United States)

    Kuhl, A. L.; Ferguson, R. E.; Chien, K. Y.; Collins, J. P.

    1992-01-01

    This paper describes the results of numerical simulations of the dusty, turbulent boundary layer created by a surface burst explosion. The blast wave was generated by the detonation of a 600-T hemisphere of ANFO, similar to those used in large-scale field tests. The surface was assumed to be ideally noncratering but contained an initial loose layer of dust. The dust-air mixture in this fluidized bed was modeled as a dense gas (i.e., an equilibrium model, valid for very small-diameter dust particles). The evolution of the flow was calculated by a high-order Godunov code that solves the nonsteady conservation laws. Shock interactions with dense layer generated vorticity near the wall, a result that is similar to viscous, no-slip effects found in clean flows. The resulting wall shear layer was unstable, and rolled up into large-scale rotational structures. These structures entrained dense material from the wall layer and created a chaotically striated flow. The boundary layer grew due to merging of the large-scale structures and due to local entrainment of the dense material from the fluidized bed. The chaotic flow was averaged along similarity lines (i.e., lines of constant values of x = r/Rs and y = z/Rs where R(sub s) = ct(exp alpha)) to establish the mean-flow profiles and the r.m.s. fluctuating-flow profiles of the boundary layer.

  19. On the dynamic behavior of composite panels under turbulent boundary layer excitations

    Science.gov (United States)

    Ciappi, E.; De Rosa, S.; Franco, F.; Vitiello, P.; Miozzi, M.

    2016-03-01

    In this work high Mach number aerodynamic and structural measurements acquired in the CIRA (Italian Aerospace Research Center) transonic wind tunnel and the models used to analyze the response of composite panels to turbulent boundary layer excitation are presented. The two investigated panels are CFRP (Carbon Fiber-Reinforced Polymer) composite plates and their lay-up is similar to configurations used in aeronautical structures. They differ only for the presence of an embedded viscoelastic layer. The experimental set-up has been designed to reproduce a pressure fluctuations field beneath a turbulent boundary layer as close as possible to those in flight. A tripping system, specifically conceived to this aim for this facility, has been used to generate thick turbulent boundary layers at Mach number values ranging between 0.4 and 0.8. It is shown that the designed setup provides a realistic representation of full scale size pressure spectra in the frequency range of interest for the noise component inside the fuselage, generated by turbulent boundary layer. The significant role of the viscoelastic layer at reducing panel's response is detailed and discussed. Finally, it is demonstrated that at high Mach number the aeroelastic effect cannot be neglected when analyzing the panel response, especially when composite materials are considered.

  20. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  1. Wave mediated angular momentum transport in astrophysical boundary layers

    CERN Document Server

    Hertfelder, Marius

    2015-01-01

    Context. Disk accretion onto weakly magnetized stars leads to the formation of a boundary layer (BL) where the gas loses its excess kinetic energy and settles onto the star. There are still many open questions concerning the BL, for instance the transport of angular momentum (AM) or the vertical structure. Aims. It is the aim of this work to investigate the AM transport in the BL where the magneto-rotational instability (MRI) is not operating owing to the increasing angular velocity $\\Omega(r)$ with radius. We will therefore search for an appropriate mechanism and examine its efficiency and implications. Methods. We perform 2D numerical hydrodynamical simulations in a cylindrical coordinate system $(r, \\varphi)$ for a thin, vertically inte- grated accretion disk around a young star. We employ a realistic equation of state and include both cooling from the disk surfaces and radiation transport in radial and azimuthal direction. The viscosity in the disk is treated by the {\\alpha}-model; in the BL there is no v...

  2. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  3. Sensitivity of African easterly waves to boundary layer conditions

    Directory of Open Access Journals (Sweden)

    A. Lenouo

    2008-06-01

    Full Text Available A linearized version of the quasi-geostrophic model (QGM with an explicit Ekman layer and observed static stability parameter and profile of the African easterly jet (AEJ, is used to study the instability properties of the environment of the West African wave disturbances. It is found that the growth rate, the propagation velocity and the structure of the African easterly waves (AEW can be well simulated. Two different lower boundary conditions are applied. One assumes a lack of vertical gradient of perturbation stream function and the other assumes zero wind perturbation at the surface. The first case gives more realistic results since in the absence of horizontal diffusion, growth rate, phase speed and period have values of 0.5 day−1, 10.83 m s−1 and 3.1 day, respectively. The zero wind perturbation at the surface case leads to values of these parameters that are 50 percent lower. The analysis of the sensitivity to diffusion shows that the magnitude of the growth rate decreases with this parameter. Modelled total relative vorticity has its low level maximum around 900 hPa under no-slip, and 700 hPa under free slip condition.

  4. Boundary-Value Problem for Two-Dimensional Fluctuations in Boundary Layers

    Science.gov (United States)

    1985-07-01

    inviscid analysis by P. Durbin "Distortion of turbulence by a constant-shear layer adjacent to a wall," private communication (1977). (l.2e) 2-D...vortices near a boundary," ~ of the Americ~ p ~ ~ , Volume 20, Number 9 (November 1975). 21. Hultgren, Lennart S. and Gustavsson, L. Hakan, " Algebraic

  5. Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers

    Science.gov (United States)

    Gajjar, J. S. B.

    1995-01-01

    The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.

  6. On the global existence and uniqueness of solutions to the nonstationary boundary layer system

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Jianwen; ZHAO; Junning

    2006-01-01

    In this paper, we study the problem of boundary layer for nonstationary flows of viscous incompressible fluids. There are some open problems in the field of boundary layer. The method used here is mainly based on a transformation which reduces the boundary layer system to an initial-boundary value problem for a single quasilinear parabolic equation. We prove the existence of weak solutions to the modified nonstationary boundary layer system. Moreover, the stability and uniqueness of weak solutions are discussed.

  7. The influence of grain boundary structure on the penetration of gallium into aluminum grain boundaries

    Science.gov (United States)

    Hugo, Richard Charles

    1998-12-01

    Liquid Metal Embrittlement is a form of environmental embrittlement that dramatically reduces the fracture toughness of many metals and alloys. It occurs when surfaces of certain solid metals are wet by certain liquid metals. The Al-Ga system provides a remarkable example of intergranular attack. The Al-Ga equilibrium phase diagram reveals no intermetallic compounds and very limited mutual solubilities, which implies that interactions between Al and Ga should be minimal. Yet when liquid Ga wets the surface of an unstressed Al specimen, the Ga will penetrate the Al grain boundaries, replacing each boundary with a liquid layer. The driving force is generally considered to be the reduction in energy when a grain boundary is replaced by two Ga-Al interfaces. Once an Al sample has been penetrated by Ga, it fails at almost no load. In this dissertation, in-situ Transmission Electron Microscope (TEM) studies are presented that elucidate the physical nature of the Ga penetration front. Although many of the TEM specimens were bicrystals, all but one of the grain boundaries studied were "general" boundaries; that is, they were low symmetry boundaries with high-index rotation axes, and no low-index planes common to both grains. Since the atomic structure of these grain boundaries cannot be resolved experimentally, atomistic computer models were constructed to assist in interpreting TEM results. TEM observations indicated that the penetration front is a line defect, possessing a stress field that interacts with lattice dislocations. The penetration front was also observed to interact with structural variations within the grain boundary. Interactions with lattice dislocations were used to estimate the penetration front thickness. Penetration speeds were not found to be determined by grain boundary energy or grain boundary excess volume. Penetration speeds were, however, found to depend qualitatively on the presence of penetration barriers in the grain boundary.

  8. Boundary layer ozone - An airborne survey above the Amazon Basin

    Science.gov (United States)

    Gregory, Gerald L.; Browell, Edward V.; Warren, Linda S.

    1988-01-01

    Ozone data obtained over the forest canopy of the Amazon Basin during July and August 1985 in the course of NASA's Amazon Boundary Layer Experiment 2A are discussed, and ozone profiles obtained during flights from Belem to Tabatinga, Brazil, are analyzed to determine any cross-basin effects. The analyses of ozone data indicate that the mixed layer of the Amazon Basin, for the conditions of undisturbed meteorology and in the absence of biomass burning, is a significant sink for tropospheric ozone. As the coast is approached, marine influences are noted at about 300 km inland, and a transition from a forest-controlled mixed layer to a marine-controlled mixed layer is noted.

  9. Lumley decomposition of turbulent boundary layer at high Reynolds numbers

    Science.gov (United States)

    Tutkun, Murat; George, William K.

    2017-02-01

    The decomposition proposed by Lumley in 1966 is applied to a high Reynolds number turbulent boundary layer. The experimental database was created by a hot-wire rake of 143 probes in the Laboratoire de Mécanique de Lille wind tunnel. The Reynolds numbers based on momentum thickness (Reθ) are 9800 and 19 100. Three-dimensional decomposition is performed, namely, proper orthogonal decomposition (POD) in the inhomogeneous and bounded wall-normal direction, Fourier decomposition in the homogeneous spanwise direction, and Fourier decomposition in time. The first POD modes in both cases carry nearly 50% of turbulence kinetic energy when the energy is integrated over Fourier dimensions. The eigenspectra always peak near zero frequency and most of the large scale, energy carrying features are found at the low end of the spectra. The spanwise Fourier mode which has the largest amount of energy is the first spanwise mode and its symmetrical pair. Pre-multiplied eigenspectra have only one distinct peak and it matches the secondary peak observed in the log-layer of pre-multiplied velocity spectra. Energy carrying modes obtained from the POD scale with outer scaling parameters. Full or partial reconstruction of turbulent velocity signal based only on energetic modes or non-energetic modes revealed the behaviour of urms in distinct regions across the boundary layer. When urms is based on energetic reconstruction, there exists (a) an exponential decay from near wall to log-layer, (b) a constant layer through the log-layer, and (c) another exponential decay in the outer region. The non-energetic reconstruction reveals that urms has (a) an exponential decay from the near-wall to the end of log-layer and (b) a constant layer in the outer region. Scaling of urms using the outer parameters is best when both energetic and non-energetic profiles are combined.

  10. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  11. CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions

    DEFF Research Database (Denmark)

    Koblitz, Tilman

    to the atmospheric boundary-layer, are mostly ignored so far. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include atmospheric stability and the Coriolis effect. Within the present work a RANS model framework is developed and implemented......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important...

  12. Three-dimensional stability of growing boundary layers

    Science.gov (United States)

    Nayfeh, A. H.

    1980-01-01

    A theory is developed for the linear stability of three-dimensional growing boundary layers. The method of multiple scales is used to derive partial-differential equations describing the temporal and spatial evolution of the complex amplitudes and wavenumbers of the disturbances. In general, these equations are elliptic unless certain conditions are satisfied. For a monochromatic disturbance, these conditions demand that the ratio of the components of the complex group velocity be real and thereby relate the direction of growth of the disturbance to the disturbance wave angle. For a nongrowing boundary layer, this condition reduces to d-alpha/d-beta being real, in agreement with the result obtained by using the saddle-point method. For a wavepacket, these conditions demand that the components of the group velocity be real.

  13. Nonlinear interaction of two waves in boundary-layer flows

    Science.gov (United States)

    Nayfeh, A. H.; Bozatli, A. N.

    1980-01-01

    First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed using the method of multiple scales. Numerical results for flow past a flat plate show that the spatial detuning wipes out resonant interactions unless the initial amplitudes are very large. Thus, a wave having a moderate amplitude has little influence on its subharmonic although it has a strong influence on its second harmonic. Moreover, two waves having moderate amplitudes have a strong influence on their difference frequency. The results show that the difference frequency can be very unstable when generated by the nonlinear interaction, even though it may be stable when introduced by itself in the boundary layer.

  14. Goertler instability. [for boundary layer flow over curved walls

    Science.gov (United States)

    Ragab, S. A.; Nayfeh, A. H.

    1981-01-01

    Goertler instability for boundary-layer flows over generally curved walls is considered. The full-linearized disturbance equations are obtained in an orthogonal curvilinear coordinate system. A perturbation procedure to account for second-order effects is used to determine the effects of the displacement thickness and the variation of the streamline curvature on the neutral stability of the Blasius flow. The streamwise pressure gradient in the mean flow is accounted for by solving the nonsimilar boundary-layer equations. Growth rates are obtained for the actual mean flow and compared with those for the Blasius flow and the Falkner-Skan flows. The results demonstrate the strong influence of the streamwise pressure gradient and the nonsimilarity of the basic flow on the stability characteristics.

  15. Anisotropic Boundary Layer Adaptivity of Multi-Element Wings

    CERN Document Server

    Chitale, Kedar C; Sahni, Onkar; Shephard, Mark S; Jansen, Kenneth E

    2014-01-01

    Multi-element wings are popular in the aerospace community due to their high lift performance. Turbulent flow simulations of these configurations require very fine mesh spacings especially near the walls, thereby making use of a boundary layer mesh necessary. However, it is difficult to accurately determine the required mesh resolution a priori to the simulations. In this paper we use an anisotropic adaptive meshing approach including adaptive control of elements in the boundary layers and study its effectiveness for two multi-element wing configurations. The results are compared with experimental data as well as nested refinements to show the efficiency of adaptivity driven by error indicators, where superior resolution in wakes and near the tip region through adaptivity are highlighted.

  16. Turbulence measurements in high Reynolds number boundary layers

    Science.gov (United States)

    Vallikivi, Margit; Smits, Alexander

    2013-11-01

    Measurements are conducted in zero pressure gradient turbulent boundary layers for Reynolds numbers from Reθ = 9,000 to 225,000. The experiments were performed in the High Reynolds number Test Facility (HRTF) at Princeton University, which uses compressed air as the working fluid. Nano-Scale Thermal Anemometry Probes (NSTAPs) are used to acquire data with very high spatial and temporal precision. These new data are used to study the scaling behavior of the streamwise velocity fluctuations in the boundary layer and make comparisons with the scaling of other wall-bounded turbulent flows. Supported under ONR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257 (program manager Henning Winter).

  17. Temporally optimized spanwise vorticity sensor measurements in turbulent boundary layers

    Science.gov (United States)

    Morrill-Winter, C.; Klewicki, J.; Baidya, R.; Marusic, I.

    2015-12-01

    Multi-element hot-wire anemometry was used to measure spanwise vorticity fluctuations in turbulent boundary layers. Smooth wall boundary layer profiles, with very good spatial and temporal resolution, were acquired over a Kármán number range of 2000-12,700 at the Melbourne Wind Tunnel at the University of Melbourne and the University of New Hampshire's Flow Physics Facility. A custom hot-wire probe was necessary to simultaneously obtain velocity and spanwise vorticity measurements centered at a fixed point in space. A custom calibration/processing scheme was developed to utilize single-wall-parallel wires to optimize the accuracy of the measured wall-normal velocity fluctuations derived from the sensor's ×-array.

  18. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    Science.gov (United States)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  19. Stereoscopic PIV measurement of boundary layer affected by DBD actuator

    Directory of Open Access Journals (Sweden)

    Procházka Pavel

    2016-01-01

    Full Text Available The effect of ionic wind generated by plasma actuator on developed boundary layer inside a narrow channel was investigated recently. Since the main investigated plane was parallel to the channel axis, the description of flow field was not evaluated credibly. This paper is dealing with cross-section planes downstream the actuator measured via 3D time-resolved PIV. The actuator position is in spanwise or in streamwise orientation so that ionic wind is blown in the same direction as the main flow or in opposite direction or perpendicularly. The interaction between boundary layer and ionic wind is evaluated for three different velocities of main flow and several parameters of plasma actuation (steady and unsteady regime, frequency etc.. Statistical properties of the flow are shown as well as dynamical behaviour of arising longitudinal vortices are discussed via phase-locked measurement and decomposition method.

  20. Optimal control of wind turbines in a turbulent boundary layer

    Science.gov (United States)

    Yilmaz, Ali Emre; Meyers, Johan

    2016-11-01

    In recent years, optimal control theory was combined with large-eddy simulations to study the optimal control of wind farms and their interaction with the atmospheric boundary layer. The individual turbine's induction factors were dynamically controlled in time with the aim of increasing overall power extraction. In these studies, wind turbines were represented using an actuator disk method. In the current work, we focus on optimal control on a much finer mesh (and a smaller computational domain), representing turbines with an actuator line method. Similar to Refs., optimization is performed using a gradient-based method, and gradients are obtained employing an adjoint formulation. Different cases are investigated, that include a single and a double turbine case both with uniform inflow, and with turbulent-boundary-layer inflow. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  1. Full-Scale Spectrum of Boundary-Layer Winds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik

    2016-01-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used...... to estimate the spectrum from about 1 yr−1 to 0.05 min−1; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day−1 to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various...... of the three velocity components over a wide range from 1 day−1 to 10 Hz, which is useful in determining the necessary sample duration when measuring turbulence statistics in the boundary layer....

  2. Influence of localised double suction on a turbulent boundary layer

    Science.gov (United States)

    Oyewola, O.; Djenidi, L.; Antonia, R. A.

    2007-07-01

    The effects of localised suction applied through a pair of porous wall strips on a turbulent boundary layer have been quantified through the measurements of mean velocity and Reynolds stresses. The results indicate that the use of second strip extends the pseudo-relaminarisation zone but also reduces the overshoot in the longitudinal and normal r.m.s. velocities. While the minimum r.m.s. occurs at x/δo=3.0 (one strip) and x/δo=12 (two strips), the reduction observed for the latter case is larger. Relative to no suction, the turbulence level is modified by suction and the effect is enhanced with double suction. This increased effectiveness reflects the fact that the second strip acts on a boundary layer whose near-wall active motion has been seriously weakened by the first strip.

  3. New Algebraic Approaches to Classical Boundary Layer Problems

    Institute of Scientific and Technical Information of China (English)

    Xiao Ping XU

    2011-01-01

    Classical non-steady boundary layer equations are fundamental nonlinear partial differential equations in the boundary layer theory of fluid dynamics. In this paper, we introduce various schemes with multiple parameter functions to solve these equations and obtain many families of new explicit exact solutions with multiple parameter functions. Moreover, symmetry transformations are used to simplify our arguments. The technique of moving frame is applied in the three-dimensional case in order to capture the rotational properties of the fluid. In particular, we obtain a family of solutions singular on any moving surface, which may be used to study turbulence. Many other solutions are analytic related to trigonometric and hyperbolic functions, which reflect various wave characteristics of the fluid. Our solutions may also help engineers to develop more effective algorithms to find physical numeric solutions to practical models.

  4. Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming.

    Science.gov (United States)

    Larocca, Francesco; Chiu, Stephanie J; McNabb, Ryan P; Kuo, Anthony N; Izatt, Joseph A; Farsiu, Sina

    2011-06-01

    Segmentation of anatomical structures in corneal images is crucial for the diagnosis and study of anterior segment diseases. However, manual segmentation is a time-consuming and subjective process. This paper presents an automatic approach for segmenting corneal layer boundaries in Spectral Domain Optical Coherence Tomography images using graph theory and dynamic programming. Our approach is robust to the low-SNR and different artifact types that can appear in clinical corneal images. We show that our method segments three corneal layer boundaries in normal adult eyes more accurately compared to an expert grader than a second grader-even in the presence of significant imaging outliers.

  5. Boundary layers in turbulent Rayleigh-B\\'enard convection in air

    CERN Document Server

    Puits, Ronald du; Resagk, Christian; Thess, André

    2012-01-01

    The boundary layer flow in a Rayleigh-B\\'enard convection cell of rectangular shape has been visualized in this fluid dynamics video. The experiment has been undertaken in air at a Rayleigh number $Ra=1.3\\times 10^{10}$ and a Prandtl number $Pr=0.7$. Various sequences captured at selected positions of the heating plate show that the boundary layer is a very transient flow region characterized by coherent structures that permanently evolve. It becomes fully turbulent in the areas where the large-scale circulation impinge or leave the bottom plate.

  6. Neutral stability calculations for boundary-layer flows

    Science.gov (United States)

    Nayfeh, A. H.; Padhye, A.

    1980-01-01

    An analysis is presented of the parallel neutral stability of three-dimensional incompressible, isothermal boundary-layer flows. A Taylor-series expansion of the dispersion relation is used to derive the general eigenvalues. These equations are functions of the complex group velocity. These relations are verified by numerical results obtained for two- and three-dimensional disturbances in two- and three-dimensional flows.

  7. Grey zone simulations of the morning convective boundary layer development

    Science.gov (United States)

    Efstathiou, G. A.; Beare, R. J.; Osborne, S.; Lock, A. P.

    2016-05-01

    Numerical simulations of two cases of morning boundary layer development are conducted to investigate the impact of grid resolution on mean profiles and turbulent kinetic energy (TKE) partitioning from the large eddy simulation (LES) to the mesoscale limit. Idealized LES, using the 3-D Smagorinsky scheme, is shown to be capable of reproducing the boundary layer evolution when compared against measurements. However, increasing grid spacing results in the damping of resolved TKE and the production of superadiabatic temperature profiles in the boundary layer. Turbulence initiation is significantly delayed, exhibiting an abrupt onset at intermediate resolutions. Two approaches, the bounding of vertical diffusion coefficient and the blending of the 3-D Smagorinsky with a nonlocal 1D scheme, are used to model subgrid diffusion at grey zone resolutions. Simulations are compared against the coarse-grained fields from the validated LES results for each case. Both methods exhibit particular strengths and weaknesses, indicating the compromise that needs to be made currently in high-resolution numerical weather prediction. The blending scheme is able to reproduce the adiabatic profiles although turbulence is underestimated in favor of the parametrized heat flux, and the spin-up of TKE remains delayed. In contrast, the bounding approach gives an evolution of TKE that follows the coarse-grained LES very well, relying on the resolved motions for the nonlocal heat flux. However, bounding gives unrealistic static instability in the early morning temperature profiles (similar to the 3-D Smagorinsky scheme) because model dynamics are unable to resolve TKE when the boundary layer is too shallow compared to the grid spacing.

  8. Extreme Vertical Gusts in the Atmospheric Boundary Layer

    Science.gov (United States)

    2015-07-01

    with tornadogenesis [Mueller and Carbone (1987), Wilson (1986) and McCaul and Bluestein (1986)], although tornadoes are part of the hazard of...Burns, C. Nappo, R. Banta, R. Newsom and J. Cuxart (2002). CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bulletin of...Meteorology 64(1-2): 55-74. Wilson , J. W. (1986). Tornadogenesis by nonprecipitation induced wind shear lines. Monthly Weather Review 114(2): 270-284

  9. Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers

    Science.gov (United States)

    2015-10-01

    index. In the boundary layer, atmospheric temperature fluctuations are primarily responsible for the variations in refractive index at ultraviolet...parameterization of the atmospheric emissivity, in the early 1980s a parallel study of the SEB was conducted by the US Army Waterways Experiment Station...period of rotation of the atmosphere can be defined as TI = 2π/fc. At most mid- latitude locations this period is approximately 17 h. This quantity is

  10. Transport of particles in an atmospheric turbulent boundary layer

    Institute of Scientific and Technical Information of China (English)

    Xiongping Luo; Shiyi Chen

    2005-01-01

    A program incorporating the parallel code of large eddy simulation (LES) and particle transportation model is developed to simulate the motion of particles in an atmospheric turbulent boundary layer (ATBL). A model of particles of 100-micrometer order coupling with large scale ATBL is proposed. Two typical cases are studied, one focuses on the evolution of particle profile in the ATBL and the landing displacement of particles, whereas the other on the motion of particle stream.

  11. Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schröder, A.; Geisler, R.; Staack, K.; Elsinga, G.E.; Scarano, F.; Wieneke, B.; Henning, A.; Poelma, C.; Westerweel, J.

    2010-01-01

    Coherent structures and their time evolution in the logarithmic region of a turbulent boundary layer investigated by means of 3D space–time correlations and time-dependent conditional averaging techniques are the focuses of the present paper. Experiments have been performed in the water tunnel at TU

  12. Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer

    NARCIS (Netherlands)

    Elsinga, G.E.; Adrian, R.J.; Van Oudheusden, B.W.; Scarano, F.

    2010-01-01

    Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in a supersonic (Mach 2) turbulent boundary layer in the region between y/δ = 0.15 and 0.89. The Reynolds number based on momentum thickness Reθ = 34000. The instantaneous velocity f

  13. Impacts of Aerosol Shortwave Radiation Absorption on the Dynamics of an Idealized Convective Atmospheric Boundary Layer

    NARCIS (Netherlands)

    Wilde Barbaro, E.; Vilà-Guerau de Arellano, J.; Krol, M.C.; Holtslag, A.A.M.

    2013-01-01

    We investigated the impact of aerosol heat absorption on convective atmospheric boundary-layer (CBL) dynamics. Numerical experiments using a large-eddy simulation model enabled us to study the changes in the structure of a dry and shearless CBL in depthequilibrium for different vertical profiles of

  14. Evolution and formation of shear layers in a developing turbulent boundary layer

    Science.gov (United States)

    Lee, Junghoon; Monty, Jason; Hutchins, Nicholas

    2016-11-01

    The evolution and formation mechanism of shear layers in the outer region of a turbulent boundary layer are investigated using time-resolved PIV datasets of a developing turbulent boundary layer from inception at the trip up to Reτ = 3000 . An analysis of a sequence of instantaneous streamwise velocity fluctuation fields reveals that strong streamwise velocity gradients are prevalent along interfaces where low- and high-speed regions interact. To provide an insight on how such regions are associated with the formation of shear layers in the outer regions, we compute conditional averages of streamwise velocity fluctuations based on a strong shear layer. Our results reveal that one possible mechanism for the generation of shear layers in the outer region is due to the mismatch in the convection velocities between low- and high-speed regions. The results also indicate that the angle of the inclined shear layer is developing in time. In addition, the conditionally averaged velocity fluctuations exhibit a local instability along these shear layers, leading to a shear layer roll-up event as the layers evolve in time. Based on these findings, we propose a conceptual model which describes dynamic interactions of shear layers and their associated large-scale coherent motions. The authors wish to acknowledge the financial support of the Australian Research Council.

  15. Comparing wall modeled LES and prescribed boundary layer approach in infinite wind farm simulations

    DEFF Research Database (Denmark)

    Sarlak, Hamid; Mikkelsen, Robert; Sørensen, Jens Nørkær

    2015-01-01

    This paper aims at presenting a simple and computationally fast method for simulation of the Atmospheric Boundary Layer (ABL) and comparing the results with the commonly used wall-modelled Large Eddy Simulation (WMLES). The simple method, called Prescribed Mean Shear and Turbulence (PMST) hereafter......, is based on imposing body forces over the whole domain to maintain a desired unsteady ow, where the ground is modeled as a slip-free boundary which in return hampers the need for grid refinement and/or wall modeling close to the solid walls. Another strength of this method besides being computationally...... inexpensive, is high flexibility meaning that the imposed boundary layer can be read from another CFD simulation, or from site measurements. For fundamental studies focusing on the wake structures rather than ABL for example, the grid can be refined in the rotor region and any desired shear layer can...

  16. Aerodynamic heating in gaps of thermal protection system tile arrays in laminar and turbulent boundary layers

    Science.gov (United States)

    Avery, D. E.

    1978-01-01

    An experimental heat-transfer investigation was conducted on two staggered arrays of metallic tiles in laminar and turbulent boundary layers. This investigation was conducted for two purposes. The impingement heating distribution where flow in a longitudinal gap intersects a transverse gap and impinges on a downstream blocking tile was defined. The influence of tile and gap geometries was analyzed to develop empirical relationships for impingement heating in laminar and turbulent boundary layers. Tests were conducted in a high temperature structures tunnel at a nominal Mach number of 7, a nominal total temperature of 1800 K, and free-stream unit Reynolds numbers from 1.0 x 10 million to 4.8 x 10 million per meter. The test results were used to assess the impingement heating effects produced by parameters that include gap width, longitudinal gap length, slope of the tile forward-facing wall, boundary-layer displacement thickness, Reynolds number, and local surface pressure.

  17. Turbulent thermal boundary layers subjected to severe acceleration

    Science.gov (United States)

    Araya, Guillermo; Castillo, Luciano

    2013-11-01

    Favorable turbulent boundary layers are flows of great importance in industry. Particularly, understanding the mechanisms of quasi-laminarization by means of a very strong favorable streamwise pressure gradient is indeed crucial in drag reduction and energy management applications. Furthermore, due to the low Reynolds numbers involved in the quasi-laminarization process, abundant experimental investigation can be found in the literature for the past few decades. However, several grey zones still remain unsolved, principally associated with the difficulties that experiments encounter as the boundary layer becomes smaller. In addition, little attention has been paid to the heat transfer in a quasi-laminarization process. In this investigation, DNS of spatially-developing turbulent thermal boundary layers with prescribed very strong favorable pressure gradients (K = 4 × 10-6) are performed. Realistic inflow conditions are prescribed based on the Dynamic Multi-scale Approach (DMA) [Araya et al. JFM, Vol. 670, pp. 581-605, 2011]. In this sense the flow carries the footprint of turbulence, particularly in the streamwise component of the Reynolds stresses.

  18. An analytical model of capped turbulent oscillatory bottom boundary layers

    Science.gov (United States)

    Shimizu, Kenji

    2010-03-01

    An analytical model of capped turbulent oscillatory bottom boundary layers (BBLs) is proposed using eddy viscosity of a quadratic form. The common definition of friction velocity based on maximum bottom shear stress is found unsatisfactory for BBLs under rotating flows, and a possible extension based on turbulent kinetic energy balance is proposed. The model solutions show that the flow may slip at the top of the boundary layer due to capping by the water surface or stratification, reducing the bottom shear stress, and that the Earth's rotation induces current and bottom shear stress components perpendicular to the interior flow with a phase lag (or lead). Comparisons with field and numerical experiments indicate that the model predicts the essential characteristics of the velocity profiles, although the agreement is rather qualitative due to assumptions of quadratic eddy viscosity with time-independent friction velocity and a well-mixed boundary layer. On the other hand, the predicted linear friction coefficients, phase lead, and veering angle at the bottom agreed with available data with an error of 3%-10%, 5°-10°, and 5°-10°, respectively. As an application of the model, the friction coefficients are used to calculate e-folding decay distances of progressive internal waves with a semidiurnal frequency.

  19. Using UAV's to Measure the Urban Boundary Layer

    Science.gov (United States)

    Jacob, R. L.; Sankaran, R.; Beckman, P. H.

    2015-12-01

    The urban boundary layer is one of the most poorly studied regions of the atmospheric boundary layer. Since a majority of the world's population now lives in urban areas, it is becoming a more important region to measure and model. The combination of relatively low-cost unmanned aerial vehicles and low-cost sensors can together provide a new instrument for measuring urban and other boundary layers. We have mounted a new sensor and compute platform called Waggle on an off-the-shelf XR8 octo-copter from 3DRobotics. Waggle consists of multiple sensors for measuring pressure, temperature and humidity as well as trace gases such as carbon monoxide, nitrogen dioxide, sulfur dioxide and ozone. A single board computer running Linux included in Waggle on the UAV allows in-situ processing and data storage. Communication of the data is through WiFi or 3G and the Waggle software can save the data in case communication is lost during flight. The flight pattern is a deliberately simple vertical ascent and descent over a fixed location to provide vertical profiles and so flights can be confined to urban parks, industrial areas or the footprint of a single rooftop. We will present results from test flights in urban and rural areas in and around Chicago.

  20. Minnowbrook II 1997 Workshop on Boundary Layer Transition in Turbomachines

    Science.gov (United States)

    LaGraff John E. (Editor); Ashpis, David E. (Editor)

    1998-01-01

    The volume contains materials presented at the Minnowbrook II - 1997 Workshop on Boundary Layer Transition in Turbomachines, held at Syracuse University Minnowbrook Conference Center, New York, on September 7-10, 1997. The workshop followed the informal format at the 1993 Minnowbrook I workshop, focusing on improving the understanding of late stage (final breakdown) boundary layer transition, with the engineering application of improving design codes for turbomachinery in mind. Among the physical mechanisms discussed were hydrodynamic instabilities, laminar to turbulent transition, bypass transition, turbulent spots, wake interaction with boundary layers, calmed regions, and separation, all in the context of flow in turbomachinery, particularly in compressors and high and low pressure turbines. Results from experiments, DNS, computation, modeling and theoretical analysis were presented. Abstracts and copies of viewgraphs, a specifically commissioned summation paper prepared after the workshop, and a transcript of the extensive working group reports and discussions are included in this volume. They provide recommendations for future research and clearly highlight the need for continued vigorous research in the technologically important area of transition in turbomachines.

  1. Some characteristics of bypass transition in a heated boundary layer

    Science.gov (United States)

    Sohn, K. H.; Reshotko, E.; O'Brien, J. E.

    Experimental measurements of both mean and conditionally sampled characteristics of laminar, transitional and low Reynolds number turbulent boundary layers on a heated flat plate are presented. Measurements were obtained in air over a range of freestream turbulence intensities from 0.3 percent to 6 percent with a freestream velocity of 30.5 m/s and zero pressure gradient. Conditional sampling performed in the transitional boundary layers indicate the existence of a near-wall drop in intermittency, especially pronounced at low intermittencies. Nonturbulent intervals were observed to possess large levels of low-frequency unsteadiness, and turbulent intervals had peak intensities as much as 50 percent higher than were measured at fully turbulent stations. Heat transfer results were consistent with results of previous researches and Reynolds analogy factors were found to be well predicted by laminar and turbulent correlations which accounted for unheated starting length. A small dependence of the turbulent Reynolds analogy factors on freestream turbulence level was observed. Laminar boundary layer spectra indicated selective amplification of unstable frequencies. These instabilities appear to play a dominant role in the transition process only for the lowest freestream turbulence level studied, however.

  2. An experimental investigation of the three-dimensional boundary layer on a rotating disk

    Science.gov (United States)

    Littell, Howard Steven

    The velocity field above a large spinning disk has been studied using pressure probes and hotwire anemometers. The flowfield consists of a three-dimensional boundary layer due to a crossflow caused by centrifugal forces. The disk was 1 m in diameter and was spun at speeds up to 1500 rpm, giving momentum thickness Reynolds numbers in excess of 6000. The mean flow in both the laminar and turbulent regimes compares well with previous studies of 'infinite' smooth rotating disks. All six Reynolds stresses and the ten triple products have been measured using established crosswire anemometry techniques. These results are compared to previous three-dimensional boundary layer measurements and several key differences are noted. The ratio of the shear stress vector magnitude to the turbulent kinetic energy is a common descriptor of boundary layer flow and is used in many modeling efforts because it is usually a constant over most of a two-dimensional boundary layer. Three-dimensionality has been observed to depress this parameter near the wall in many pressure-driven boundary layers. In the disk flow, this parameter was at a maximum near the wall at close to the 2-D value, but dropped off almost linearly away from the wall. Two-point velocity correlations were also measured using a pair of crosswire anemometers to gain insight into the structure of the turbulence. These measurements were obtained at two different heights at momentum thickness Reynolds numbers of 2650 and 5000 to test for possible scaling effects. These measurements showed that the turbulence exhibits asymmetry in the crossflow direction, which cannot occur in two-dimensional boundary layers. A mechanism by which the crossflow may be modifying the turbulence structure is proposed which exhibits several features of the asymmetric two-point correlations.

  3. Development of the Convective Boundary Layer Capping with a Thick Neutral Layer in Badanjilin: Observations and Simulations

    Institute of Scientific and Technical Information of China (English)

    HAN Bo; L(U) Shihua; AO Yinhuan

    2012-01-01

    In this study,the development of a convective boundary layer (CBL) in the Badanjilin region was investigated by comparing the observation data of two cases.A deep neutral layer capped a CBL that occurred on 30 August 2009.This case was divided into five sublayers from the surface to higher atmospheric elevations:surface layer,mixed layer,inversion layer,neutral layer,and sub-inversion layer.The development process of the CBL was divided into three stages:S1,S2,and S3.This case was quite different from the development of the three-layer CBL observed on 31 August 2009 because the mixed layer of the five-layer CBL (CBL5) eroded the neutral layer during S2.The specific initial structure of the CBL5 was correlated to the synoptic background of atmosphere during nighttime.The three-stage development process of the CBL5 was confirmed by six simulations using National Center for Atmospheric Research (USA) large-eddy simulation (NCAR-LES),and some of its characteristics are presented in detail.

  4. Evidence of tropospheric layering: interleaved stratospheric and planetary boundary layer intrusions

    OpenAIRE

    2007-01-01

    International audience; We present a case study of interleaving in the free troposphere of 4 layers of non-tropospheric origin, with emphasis on their residence time in the troposphere. Two layers are stratospheric intrusions at 4.7 and 2.2 km altitude with residence times of about 2 and 6.5 days, respectively. The two other layers at 7 and 3 km altitude were extracted from the maritime planetary boundary layer by warm conveyor belts associated with two extratropical lows and have residence t...

  5. Turbulence measurements in hypersonic boundary layers using constant-temperature anemometry and Reynolds stress measurements in hypersonic boundary layers

    Science.gov (United States)

    Spina, Eric F.

    1995-01-01

    The primary objective in the two research investigations performed under NASA Langley sponsorship (Turbulence measurements in hypersonic boundary layers using constant temperature anemometry and Reynolds stress measurements in hypersonic boundary layers) has been to increase the understanding of the physics of hypersonic turbulent boundary layers. The study began with an extension of constant-temperature thermal anemometry techniques to a Mach 11 helium flow, including careful examinations of hot-wire construction techniques, system response, and system calibration. This was followed by the application of these techniques to the exploration of a Mach 11 helium turbulent boundary layer (To approximately 290 K). The data that was acquired over the course of more than two years consists of instantaneous streamwise mass flux measurements at a frequency response of about 500 kHz. The data are of exceptional quality in both the time and frequency domain and possess a high degree of repeatability. The data analysis that has been performed to date has added significantly to the body of knowledge on hypersonic turbulence, and the data reduction is continuing. An attempt was then made to extend these thermal anemometry techniques to higher enthalpy flows, starting with a Mach 6 air flow with a stagnation temperature just above that needed to prevent liquefaction (To approximately 475 F). Conventional hot-wire anemometry proved to be inadequate for the selected high-temperature, high dynamic pressure flow, with frequent wire breakage and poor system frequency response. The use of hot-film anemometry has since been investigated for these higher-enthalpy, severe environment flows. The difficulty with using hot-film probes for dynamic (turbulence) measurements is associated with construction limitations and conduction of heat into the film substrate. Work continues under a NASA GSRP grant on the development of a hot film probe that overcomes these shortcomings for hypersonic

  6. PIV-based pressure fluctuations in the turbulent boundary layer

    Science.gov (United States)

    Ghaemi, Sina; Ragni, Daniele; Scarano, Fulvio

    2012-12-01

    The unsteady pressure field is obtained from time-resolved tomographic particle image velocimetry (Tomo-PIV) measurement within a fully developed turbulent boundary layer at free stream velocity of U ∞ = 9.3 m/s and Reθ = 2,400. The pressure field is evaluated from the velocity fields measured by Tomo-PIV at 10 kHz invoking the momentum equation for unsteady incompressible flows. The spatial integration of the pressure gradient is conducted by solving the Poisson pressure equation with fixed boundary conditions at the outer edge of the boundary layer. The PIV-based evaluation of the pressure field is validated against simultaneous surface pressure measurement using calibrated condenser microphones mounted behind a pinhole orifice. The comparison shows agreement between the two pressure signals obtained from the Tomo-PIV and the microphones with a cross-correlation coefficient of 0.6 while their power spectral densities (PSD) overlap up to 3 kHz. The impact of several parameters governing the pressure evaluation from the PIV data is evaluated. The use of the Tomo-PIV system with the application of three-dimensional momentum equation shows higher accuracy compared to the planar version of the technique. The results show that the evaluation of the wall pressure can be conducted using a domain as small as half the boundary layer thickness (0.5δ99) in both the streamwise and the wall normal directions. The combination of a correlation sliding-average technique, the Lagrangian approach to the evaluation of the material derivative and the planar integration of the Poisson pressure equation results in the best agreement with the pressure measurement of the surface microphones.

  7. Grain-boundary layering transitions and phonon engineering

    Science.gov (United States)

    Rickman, J. M.; Harmer, M. P.; Chan, H. M.

    2016-09-01

    We employ semi-grand canonical Monte Carlo simulation to investigate layering transitions at grain boundaries in a prototypical binary alloy. We demonstrate the existence of such transitions among various interfacial states and examine the role of elastic fields in dictating state equilibria. The results of these studies are summarized in the form of diagrams that highlight interfacial state coexistence in this system. Finally, we examine the impact of layering transitions on the phononic properties of the system, as given by the specific heat and, by extension, the thermal conductivity. Thus, it is suggested that by inducing interfacial layering transitions via changes in temperature or pressure, one can thereby engineer thermodynamic and transport properties in materials.

  8. A numerical-physical planetary boundary layer model

    Science.gov (United States)

    Padro, Jacob

    1983-07-01

    A numerical-physical model for the planetary boundary layer has been formulated for the purpose of predicting the winds, temperatures and humidities in the lowest 1600 m of the atmosphere. An application of the model to the synoptic situation of 30 August, 1972, demonstrates its ability to produce useful forecasts for a period of 24 h. Results are illustrated in terms of horizontal maps and time-height sections of winds and temperatures. The model is divided in the vertical direction into three layers that are governed, respectively, by different physical formulations. At the lowest level, which is the surface of the earth, forecasts of temperature and humidity are computed from empirical relations. In the first layer, the surface layer, application is made of the similarity theories of Monin-Obukhov, Monin-Kazanski and Businger’s form of the universal functions. The second layer, the Ekman layer, is 1550 m deep and is governed by diagnostic momentum and time-dependent thermodynamic and humidity equations. External input to the model are large-scale pressure gradients and middle-level cloudiness. Cressman’s objective analysis procedure is applied to conventional surface and upper air data over a horizontal region of about 2500 km by 2500 km, centered about Lake Ontario. With a grid distance of 127 km and a time interval of 30 min, the computer time required on Control Data Cyber 76 for a 24 h forecast for the case study is less than two minutes.

  9. Routes to turbulence in the rotating disk boundary-layer of a rotor-stator cavity

    Science.gov (United States)

    Yim, Eunok; Serre, Eric; Martinand, Denis; Chomaz, Jean-Marc

    2016-11-01

    The rotating disk is an important classical problem, due to the similarities between the 3D boundary layers on a disk and a swept aircraft wing. It is nowadays admitted that a direct transition to turbulence may exist through a steep-fronted nonlinear global mode located at the boundary between the locally connectively and absolutely unstable regions (Pier 2003; Viaud et al. 2008, 2011; Imayama et al. 2014 and others). However, recent studies (Healey 2010; Harris et al. 2012; Imayama et al. 2013) suggest that there may be an alternative route starting at lower critical Reynolds number, based on convective travelling waves but this scenario is still not fully validated and proven. To better characterize such transition, direct numerical simulations are performed in a closed cylindrical rotor-stator cavity (without hub) up to Re = O (105) . All boundaries are no slip and for the stable region around the rotation axis prevents the disturbances coming from the very unstable stator boundary to disturb the rotor boundary layer. Different transition scenarii to turbulence are investigated when the rotor boundary layer is forced at different positions and forcing amplitude. The associated dynamics of coherent structures in various flow regions are also investigated when increasing Re .

  10. The structural damping of composite beams with tapered boundaries

    Science.gov (United States)

    Coni, M.; Benchekchou, B.; White, R. G.

    1994-11-01

    Most metallic and composite structures of conventional construction are lightly damped. It is obviously advantageous, in terms of response to in-service dynamic loading, if damping can be increased with minimal weight addition. This report describes finite element analyses and complementary experiments carried out on composite, carbon fiber reinforced plastic, beams with tapered boundaries composed of layers of highly damped composite material. It is shown that modal damping of the structure may be significantly increased by this method.

  11. Structural Response Prediction: Full-field, Dynamic Pressure and Displacement Measurements of a Panel Excited by Shock Boundary-layer Interaction

    Science.gov (United States)

    2015-02-01

    interaction (SBLI) on the local response of outer mold line (OML) vehicle panel -structure. Vehicle bow -shocks and shocks emanating from vehicle corners...line (OML) vehicle panel -structure. Vehicle bow -shocks and shocks emanating from vehicle corners, protuberances, compression ramps and control...AFRL-RQ-WP-TP-2015-0046 STRUCTURAL RESPONSE PREDICTION: FULL-FIELD, DYNAMIC PRESSURE AND DISPLACEMENT MEASUREMENTS OF A PANEL EXCITED BY

  12. A Diagnostic Diagram to Understand the Marine Atmospheric Boundary Layer at High Wind Speeds

    Science.gov (United States)

    Kettle, Anthony

    2014-05-01

    Long time series of offshore meteorological measurements in the lower marine atmospheric boundary layer show dynamical regimes and variability that are forced partly by interaction with the underlying sea surface and partly by the passage of cloud systems overhead. At low wind speeds, the dynamics and stability structure of the surface layer depend mainly on the air-sea temperature difference and the measured wind speed at a standard height. The physical processes are mostly understood and the quantified through Monin-Obukhov (MO) similarity theory. At high wind speeds different dynamical regimes become dominant. Breaking waves contribute to the atmospheric loading of sea spray and water vapor and modify the character of air-sea interaction. Downdrafts and boundary layer rolls associated with clouds at the top of the boundary layer impact vertical heat and momentum fluxes. Data from offshore meteorological monitoring sites will typically show different behavior and the regime shifts depending on the local winds and synoptic conditions. However, the regular methods to interpret time series through spectral analysis give only a partial view of dynamics in the atmospheric boundary layer. Also, the spectral methods have limited use for boundary layer and mesoscale modellers whose geophysical diagnostics are mostly anchored in directly measurable quantities: wind speed, temperature, precipitation, pressure, and radiation. Of these, wind speed and the air-sea temperature difference are the most important factors that characterize the dynamics of the lower atmospheric boundary layer and they provide a dynamical and thermodynamic constraint to frame observed processes, especially at high wind speeds. This was recognized in the early interpretation of the Froya database of gale force coastal winds from mid-Norway (Andersen, O.J. and J. Lovseth, Gale force maritime wind. The Froya data base. Part 1: Sites and instrumentation. Review of the data base, Journal of Wind

  13. Effects of small-scale freestream turbulence on turbulent boundary layers with and without thermal convection

    OpenAIRE

    Nagata, Kouji; Sakai, Yasuhiko; Komori, Satoru

    2011-01-01

    Effects of weak, small-scale freestream turbulence on turbulent boundary layers with and without thermal convection are experimentally investigated using a wind tunnel. Two experiments are carried out: the first is isothermal boundary layers with and without grid turbulence, and the second is non-isothermal boundary layers with and without grid turbulence. Both boundary layers develop under a small favorable pressure gradient. For the latter case, the bottom wall of the test section is heated...

  14. Lidar investigation of tropical nocturnal boundary layer aerosols and cloud macrophysics

    Science.gov (United States)

    Manoj, M. G.; Devara, P. C. S.; Taraphdar, S.

    2013-10-01

    Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties over a tropical urban site is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

  15. The thermodynamic evolution of the hurricane boundary layer during eyewall replacement cycles

    Science.gov (United States)

    Williams, Gabriel J.

    2016-12-01

    Eyewall replacement cycles (ERCs) are frequently observed during the lifecycle of mature tropical cyclones. Although the kinematic structure and intensity changes during an ERC have been well-documented, comparatively little research has been done to examine the evolution of the tropical cyclone boundary layer (TCBL) during an ERC. This study will examine how the inner core thermal structure of the TCBL is affected by the presence of multiple concentric eyewalls using a high-resolution moist, hydrostatic, multilayer diagnostic boundary layer model. Within the concentric eyewalls above the cloud base, latent heat release and vertical advection (due to the eyewall updrafts) dominate the heat and moisture budgets, whereas vertical advection (due to subsidence) and vertical diffusion dominate the heat and moisture budgets for the moat region. Furthermore, it is shown that the development of a moat region within the TCBL depends sensitively on the moat width in the overlying atmosphere and the relative strength of the gradient wind field in the overlying atmosphere. These results further indicate that the TCBL contributes to outer eyewall formation through a positive feedback process between the vorticity in the nascent outer eyewall, boundary layer convergence, and boundary layer moist convection.

  16. Thermographic analysis of turbulent non-isothermal water boundary layer

    CERN Document Server

    Znamenskaya, Irina A

    2015-01-01

    The paper is devoted to the investigation of the turbulent water boundary layer in the jet mixing flows using high-speed infrared (IR) thermography. Two turbulent mixing processes were studied: a submerged water jet impinging on a flat surface and two intersecting jets in a round disc-shaped vessel. An infrared camera (FLIR Systems SC7700) was focused on the window transparent for IR radiation; it provided high-speed recordings of heat fluxes from a thin water layer close to the window. Temperature versus time curves at different points of water boundary layer near the wall surface were acquired using the IR camera with the recording frequency of 100 Hz. The time of recording varied from 3 till 20 min. The power spectra for the temperature fluctuations at different points on the hot-cold water mixing zone were calculated using the Fast Fourier Transform algorithm. The obtained spectral behavior was compared to the Kolmogorov "-5/3 spectrum" (a direct energy cascade) and the dual-cascade scenario predicted for...

  17. On the nature of the plasma sheet boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Hones, E.W. Jr. (Mission Research Corp., Los Alamos, NM (USA) Los Alamos National Lab., NM (USA))

    1990-01-01

    The regions of the plasma sheet adjacent to the north and south lobes of the magnetotail have been described by many experimenters as locations of beams of energetic ions and fast-moving plasma directed primarily earthward and tailward along magnetic field lines. Measurements taken as satellites passed through one or the other of these boundary layers have frequently revealed near-earth mirroring of ions and a vertical segregation of velocities of both earthward-moving and mirroring ions with the fastest ions being found nearest the lobe-plasma sheet interface. These are features expected for particles from a distant tail source {bar E} {times} {bar B} drifting in a dawn-to-dusk electric field and are consistent with the source being a magnetic reconnection region. The plasma sheet boundary layers are thus understood as separatrix layers, bounded at their lobeward surfaces by the separatrices from the distant neutral line. This paper will review the observations that support this interpretation. 10 refs., 7 figs.

  18. Wave boundary layer over a stone-covered bed

    DEFF Research Database (Denmark)

    Dixen, Martin; Hatipoglu, Figen; Sumer, B. Mutlu

    2008-01-01

    This paper summarizes the results of an experimental investigation on wave boundary layers over a bed with large roughness, simulating stone/rock/armour block cover on the sea bottom. The roughness elements used in the experiments were stones the size of 1.4cm and 3.85cm in one group of experiments...... and regular ping-pong balls the size 3.6cm in the other. The orbital-motion-amplitude-to-roughness ratio at the bed was rather small, in the range a/ks=0.6-3. The mean and turbulence properties of the boundary-layer flow were measured. Various configurations of the roughness elements were used in the ping......-pong ball experiments to study the influence of packing pattern, packing density, number of layers and surface roughness of the roughness elements. The results show that the friction factor seems to be not extremely sensitive to these factors. The results also show that the friction factor for small values...

  19. Vertical ozone characteristics in urban boundary layer in Beijing.

    Science.gov (United States)

    Ma, Zhiqiang; Xu, Honghui; Meng, Wei; Zhang, Xiaoling; Xu, Jing; Liu, Quan; Wang, Yuesi

    2013-07-01

    Vertical ozone and meteorological parameters were measured by tethered balloon in the boundary layer in the summer of 2009 in Beijing, China. A total of 77 tethersonde soundings were taken during the 27-day campaign. The surface ozone concentrations measured by ozonesondes and TEI 49C showed good agreement, albeit with temporal difference between the two instruments. Two case studies of nocturnal secondary ozone maxima are discussed in detail. The development of the low-level jet played a critical role leading to the observed ozone peak concentrations in nocturnal boundary layer (NBL). The maximum of surface ozone was 161.7 ppbv during the campaign, which could be attributed to abundant precursors storage near surface layer at nighttime. Vertical distribution of ozone was also measured utilizing conventional continuous analyzers on 325-m meteorological observation tower. The results showed the NBL height was between 47 and 280 m, which were consistent with the balloon data. Southerly air flow could bring ozone-rich air to Beijing, and the ozone concentrations exceeded the China's hourly ozone standard (approximately 100 ppb) above 600 m for more than 12 h.

  20. Large Eddy Simulation and Study of the Urban Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    苗世光; 蒋维楣

    2004-01-01

    Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.

  1. Three-Dimensional Waves in Tilt Thermal Boundary Layers

    Institute of Scientific and Technical Information of China (English)

    TAO Jian-Jun; YUAN Xiang-Jiang

    2009-01-01

    We numerically and theoretically study the stabilities of tilt thermal boundary layers immersed in stratified air. An interesting phenomenon is revealed: the stationary longitudinal-roll mode becomes unstable to some oscillating state even when the Grashof number is smaller than its corresponding critical value. By stability analysis, this phenomenon is explained in terms of a new three-dimensional wave mode. The effect of the tilt angle on the stability of the boundary flows is investigated. Since the new three-dimensional wave is found to be the most unstable mode when the title angle is between 30° and 64°, it is expected to play an important role in the transition to turbulence.

  2. Modified boundary layer analysis for a mode III crack problem

    Energy Technology Data Exchange (ETDEWEB)

    Beom, Hyeon Gyu; Kim, Yu Hwan; Cho, Chong Du; Kim, Chang Boo [Inha University, Incheon (Korea, Republic of)

    2008-04-15

    A modified boundary layer problem of a semi-infinite crack in an elastic-perfectly plastic material under a Mode III load is analyzed. The analytic solution of elastic fields is derived by using complex function theory. It is found that the size and the shape of the plastic zone near the crack tip depend on the elastic T-stress given on the remote boundary. A method for determining higher order singular solutions of elastic fields is also proposed. In order to determine the higher order singular solutions of the elastic fields, Williams expansion of the solution is used. Higher order terms in the Williams expansion are obtained through simple mathematical manipulation. The coefficients of each term in the Williams expansion are also calculated numerically with the J-based mutual integral

  3. Estimates of the height of the boundary layer using SODAR and rawinsoundings in Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, G [Instituto de Aeronautica e Espaco (IAE/CTA), Sao Jose dos Campos, 12228-904 (Brazil); Santos, L A R dos [Instituto Nacional de Meteorologia (INMET), BrasIlia, 70680-900 (Brazil)], E-mail: gfisch@iae.cta.br, E-mail: landre@inmet.gov.br

    2008-05-01

    During the LBA campaign in Amazonia 2002, simultaneous measurements were made of the boundary layer using different instruments (rawinsoundings and SODAR). The profiles of potential temperature and humidity were used to estimates the height of the boundary layer using 3 different techniques. The SODAR's measurements did not capture the shallow morning boundary layer observed at the profiles.

  4. Planetary Boundary Layer Dynamics over Reno, Nevada in Summer

    Science.gov (United States)

    Liming, A.; Sumlin, B.; Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.

    2014-12-01

    Quantifying the height of the planetary boundary layer (PBL) is important to understand the transport behavior, mixing, and surface concentrations of air pollutants. In Reno, NV, located in complex, mountainous terrain with high desert climate, the daytime boundary layer can rise to an estimated 3km or more on a summer day due to surface heating and convection. The nocturnal boundary layer, conversely, tends to be much lower and highly stable due to radiative cooling from the surface at night and downslope flow of cool air from nearby mountains. With limited availability of radiosonde data, current estimates of the PBL height at any given time or location are potentially over or underestimated. To better quantify the height and characterize the PBL physics, we developed portable, lightweight sensors that measure CO2 concentrations, temperature, pressure, and humidity every 5 seconds. Four of these sensors are used on a tethered balloon system to monitor CO2 concentrations from the surface up to 300m. We will combine this data with Radio Acoustic Sounding System (RASS) data that measures vertical profiles of wind speed, temperature, and humidity from 40m to 400m. This experiment will characterize the diurnal evolution of CO2 concentrations at multiple heights in the PBL, provide insight into PBL physics during stability transition periods at sunrise and sunset, and estimate the nighttime PBL depth during August in Reno. Further, we expect to gain a better understanding of the impact of mixing volume changes (i.e., PBL height) on air quality and pollution concentrations in Reno. The custom portable sensor design will also be presented. It is expected that these instruments can be used for indoor or outdoor air quality studies, where lightness, small size, and battery operation can be of benefit.

  5. Shock Train/Boundary-Layer Interaction in Rectangular Scramjet Isolators

    Science.gov (United States)

    Geerts, Jonathan Simon

    Numerous studies of the dual-mode scramjet isolator, a critical component in preventing inlet unstart and/or vehicle loss by containing a collection of flow disturbances called a shock train, have been performed since the dual-mode propulsion cycle was introduced in the 1960s. Low momentum corner flow and other three-dimensional effects inherent to rectangular isolators have, however, been largely ignored in experimental studies of the boundary layer separation driven isolator shock train dynamics. Furthermore, the use of two dimensional diagnostic techniques in past works, be it single-perspective line-of-sight schlieren/shadowgraphy or single axis wall pressure measurements, have been unable to resolve the three-dimensional flow features inside the rectangular isolator. These flow characteristics need to be thoroughly understood if robust dual-mode scramjet designs are to be fielded. The work presented in this thesis is focused on experimentally analyzing shock train/boundary layer interactions from multiple perspectives in aspect ratio 1.0, 3.0, and 6.0 rectangular isolators with inflow Mach numbers ranging from 2.4 to 2.7. Secondary steady-state Computational Fluid Dynamics studies are performed to compare to the experimental results and to provide additional perspectives of the flow field. Specific issues that remain unresolved after decades of isolator shock train studies that are addressed in this work include the three-dimensional formation of the isolator shock train front, the spatial and temporal low momentum corner flow separation scales, the transient behavior of shock train/boundary layer interaction at specific coordinates along the isolator's lateral axis, and effects of the rectangular geometry on semi-empirical relations for shock train length prediction. (Abstract shortened by ProQuest.).

  6. Research on Fractal-Scanning Path for Arbitrary Boundary Layer in Layered Manufacturing

    Institute of Scientific and Technical Information of China (English)

    阳佳; 宾鸿赞; 等

    2002-01-01

    The fractal curve is proposed as a novel scanning-path used in Layered Manufacturing.Aiming at a limitation that the fractal curve can only fill a square region,a method is developed to realize the trimming of fractal curve in arbitrary boundary layer by means of undging intersection points between parameterized arbitrary boundary and a FASS(space-filling,self-avoiding,simple and self-similar)fractal curve.Accordingly,the related algorithm concerning with determining intersection points has been investigated according to the recursion reature of the fractal curve,and in the process of the fractal curve traversed,the rule of udging intersection points is ascertained as well,so that the laser-scanning beam can “walk” along the fractal curve inside the desired boundary,and arbitrary contour components are fabricated.

  7. Perfectly-matched-layer boundary integral equation method for wave scattering in a layered medium

    CERN Document Server

    Lu, Wangtao; Qian, Jianliang

    2016-01-01

    For scattering problems of time-harmonic waves, the boundary integral equation (BIE) methods are highly competitive, since they are formulated on lower-dimension boundaries or interfaces, and can automatically satisfy outgoing radiation conditions. For scattering problems in a layered medium, standard BIE methods based on the Green's function of the background medium must evaluate the expensive Sommefeld integrals. Alternative BIE methods based on the free-space Green's function give rise to integral equations on unbounded interfaces which are not easy to truncate, since the wave fields on these interfaces decay very slowly. We develop a BIE method based on the perfectly matched layer (PML) technique. The PMLs are widely used to suppress outgoing waves in numerical methods that directly discretize the physical space. Our PML-based BIE method uses the Green's function of the PML-transformed free space to define the boundary integral operators. The method is efficient, since the Green's function of the PML-tran...

  8. Effect of roughness on the stability of boundary layers

    Science.gov (United States)

    Nayfeh, Ali H.; Ragab, Saad A.; Al-Maaitah, Ayman

    1987-01-01

    An analysis is conducted on the effect of imperfections consisting of humps and dips on the stability of incompressible flows over flat plates. The mean flow is calculated using interacting boundary layers. Linear quasiparallel spatial stability is used to calculate the growth rates and mode shapes of two-dimensional disturbances. Then, the amplification factor is computed. A search for the most dangerous frequency is conducted based on an amplification factor of 9 in the shortest distance. Correlations are made with the transition experiment of Walker and Greening using the e sup 9 method.

  9. Preliminary experimental investigation of boundary layer in decelerating flow

    Directory of Open Access Journals (Sweden)

    Příhoda J.

    2013-04-01

    Full Text Available Investigations of characteristics of turbulence inside boundary layer under decelerating flow were studied by means of constant temperature anemometer. The decelerating flow was simulated in the closed circuit wind tunnel 0.9 m × 0.5 m at IT AS CR. The free stream turbulence was either natural o risen up by square mesh plane grid. The details of experimental settings and measurement procedures of the instantaneous longitudinal velocity component are described and the distributions of intensity, skewness and kurtosis of turbulent fluctuations are discussed in the contribution.

  10. Calculation of Turbulent Boundary Layers Using the Dissipation Integral Method

    Institute of Scientific and Technical Information of China (English)

    MatthiasBuschmann

    1999-01-01

    This paper gives an introduction into the dissipation integral method.The general integral equations for the three-dimensional case are derved.It is found that for a practical calculation algorithm the integral monentum equation and the integral energy equation are msot useful.Using Two different sets of mean velocity profiles the hyperbolical character of a dissipation integral method is shown.Test cases for two-and three-dimensional boundary layers are analysed and discussed.The paper concludes with a discussion of the advantages and limits of dissipation integral methods.

  11. Heat and Moisture Transport in the Atmospheric Boundary Layer.

    Science.gov (United States)

    1987-01-05

    rapid distortion theory by considering the ’image’ of the eddies in the boundary (Goldstein & Durbin , 1980). The same techniques could be applied to...Fitzjarald, D.J. (1983) Katabatic wind in opposing flow NCAR3123-83/1 Goldstein, M.E. & Durbin , P.A. (1980) J. Fluid Mech. 98, 473. Geiger, R. (1965) The...Foldvick (1962), S -S (2.6a) or algebraically : S - SO (h m/Z) where N0 and U are the values at the height hm of the mid- dle layer, and hi is the vertical

  12. Lidar Scanning of Momentum Flux in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Mann, Jakob; Courtney, Michael;

    Momentum flux measurements are important for describing the wind profile in the atmospheric boundary layer, modeling the atmospheric flow over water, the accounting of exchange processes between air and sea, etc. It is also directly related to the friction velocity, which is a velocity scale...... turbulence measurements from a sonic anemometer, showing high agreement. In this study, a conical scanning lidar is used to derive the momentum flux, which compares well to the estimations from the bulk-derived method, but it also shows a filtering effect due to the large spatial-averaging volume...

  13. Large Eddy Simulation of the ventilated wave boundary layer

    DEFF Research Database (Denmark)

    Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2006-01-01

    A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... size. The results indicate that the large eddies develop in the resolved scale, corresponding to fluid with an effective viscosity decided by the sum of the kinematic and subgrid viscosity. Regarding case 2, the results are qualitatively in accordance with experimental findings. Injection generally...... significantly. Ventilation therefore results in a net current, even in symmetric waves....

  14. Full-Scale Spectrum of Boundary-Layer Winds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik

    2016-01-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used...... to estimate the spectrum from about 1 yr−1 to 0.05 min−1; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day−1 to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various...

  15. Notes on an Internal Boundary-Layer Height Formula

    Science.gov (United States)

    Savelyev, Sergiya.; Taylor, Petera.

    The derivation of the Panofsky-Dutton internal boundary-layer(IBL) height formula has been revisited. We propose that the upwindroughness length (rather than downwind) should be used in theformula and that a turbulent vertical velocity (w) ratherthan the surface friction velocity (u*) should be considered asthe appropriate scaling for the rate of propagation ofdisturbances into the turbulent flow. A published set ofwind-tunnel and atmospheric data for neutral stratification hasbeen used to investigate the influence of the magnitude ofroughness change on the IBL height.

  16. Streaming effect of wall oscillation to boundary layer separation

    Science.gov (United States)

    Wu, X. H.; Wu, J. Z.; Wu, J. M.

    1991-01-01

    This paper presents a preliminary theoretical result on the time averaged streaming effect of local forcing excitation to the boundary layer separation from smooth surface. The problem is formulated as a periodic disturbance to a basic steady breakaway separating flow, for which the data are taken from a numerical triple-deck solution. The ratio of Strouhal number St and Reynolds number Re plays an important role, both being assumed sufficiently high. The analytical and numerical results show that this streaming effect is quite strong at proper values of St/Re exp 1/4, which may delay or even suppress the separation.

  17. Transition in Hypersonic Boundary Layers: Role of Dilatational Waves

    CERN Document Server

    Zhu, Yiding; Yuan, Huijing; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2015-01-01

    Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 quiet wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second instability acoustic mode is the key modulator of the transition process. The second mode experiences a rapid growth and a very fast annihilation due to the effect of bulk viscosity. The second mode interacts strongly with the first vorticity mode to directly promote a fast growth of the latter and leads to immediate transition to turbulence.

  18. Long-term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, A S; Kollias, P; Giangrande, S E; Klein, S A

    2009-08-20

    A long-term study of the turbulent structure of the convective boundary layer (CBL) at the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility is presented. Doppler velocity measurements from insects occupying the lowest 2 km of the boundary layer during summer months are used to map the vertical velocity component in the CBL. The observations cover four summer periods (2004-08) and are classified into cloudy and clear boundary layer conditions. Profiles of vertical velocity variance, skewness, and mass flux are estimated to study the daytime evolution of the convective boundary layer during these conditions. A conditional sampling method is applied to the original Doppler velocity dataset to extract coherent vertical velocity structures and to examine plume dimension and contribution to the turbulent transport. Overall, the derived turbulent statistics are consistent with previous aircraft and lidar observations. The observations provide unique insight into the daytime evolution of the convective boundary layer and the role of increased cloudiness in the turbulent budget of the subcloud layer. Coherent structures (plumes-thermals) are found to be responsible for more than 80% of the total turbulent transport resolved by the cloud radar system. The extended dataset is suitable for evaluating boundary layer parameterizations and testing large-eddy simulations (LESs) for a variety of surface and cloud conditions.

  19. Ekman layers in the Southern Ocean: spectral models and observations, vertical viscosity and boundary layer depth

    Directory of Open Access Journals (Sweden)

    S. Elipot

    2009-02-01

    Full Text Available Spectral characteristics of the oceanic boundary-layer response to wind stress forcing are assessed by comparing surface drifter observations from the Southern Ocean to a suite of idealized models that parameterize the vertical flux of horizontal momentum using a first-order turbulence closure scheme. The models vary in their representation of vertical viscosity and boundary conditions. Each is used to derive a theoretical transfer function for the spectral linear response of the ocean to wind stress.

    The transfer functions are evaluated using observational data. The ageostrophic component of near-surface velocity is computed by subtracting altimeter-derived geostrophic velocities from observed drifter velocities (nominally drogued to represent motions at 15-m depth. Then the transfer function is computed to link these ageostrophic velocities to observed wind stresses. The traditional Ekman model, with infinite depth and constant vertical viscosity is among the worst of the models considered in this study. The model that most successfully describes the variability in the drifter data has a shallow layer of depth O(30–50 m, in which the viscosity is constant and O(100–1000 m2 s−1, with a no-slip bottom boundary condition. The second best model has a vertical viscosity with a surface value O(200 m2 s−1, which increases linearly with depth at a rate O(0.1–1 cm s−1 and a no-slip boundary condition at the base of the boundary layer of depth O(103m. The best model shows little latitudinal or seasonal variability, and there is no obvious link to wind stress or climatological mixed-layer depth. In contrast, in the second best model, the linear coefficient and the boundary layer depth seem to covary with wind stress. The depth of the boundary layer for this model is found to be unphysically large at some latitudes and seasons, possibly a consequence of the inability of

  20. Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schröder, A.; Geisler, R.; Elsinga, G.E.; Scarano, F.; Dierksheide, U.

    2007-01-01

    In this feasibility study the tomographic PIV technique has been applied to time resolved PIV recordings for the study of the growth of a turbulent spot in a laminar flat plate boundary layer and to visualize the topology of coherent flow structures within a tripped turbulent flat plate boundary lay

  1. THE EFFECT OF BOUNDARY SHAPE ON BOUNDARY LAYER OF P-MODEL PLATEPROBLEMS WITH HARD SIMPLY SUPPORT

    Institute of Scientific and Technical Information of China (English)

    LILIKANG; CHENJIUHUA

    1996-01-01

    The paper shows that: for a unit circular plate: Reissner-Mindlin plate model with hardsimply support does not capture the boundary, layer behaviour for the bending moment whenthe load is independent of θ, where (r,θ) is the polar coordinates in plane. In contrast p-modelshows this boundary layer, which is proved theoretically and numerically. But for the case whenthe boundary is a straight line, the boundary layer for p-model is weak and disappears as thePlate thickness tends to zero.

  2. Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer

    NARCIS (Netherlands)

    Blay-Carreras, E.; Pino, D.; Vilà-Guerau de Arellano, J.; Boer, van de A.; Coster, de O.; Darbieu, C.; Hartogensis, O.K.; Lohou, F.; Lothon, M.; Pietersen, H.P.

    2014-01-01

    Observations, mixed-layer theory and the Dutch Large-Eddy Simulation model (DALES) are used to analyze the dynamics of the boundary layer during an intensive operational period (1 July 2011) of the Boundary Layer Late Afternoon and Sunset Turbulence campaign. Continuous measurements made by remote s

  3. Effect of bulges on the stability of boundary layers

    Science.gov (United States)

    Nayfeh, Ali H.; Ragab, Saad A.; Al-Maaitah, Ayman A.

    1988-01-01

    The instability of flows around hump and dip imperfections is investigated. The mean flow is calculated using interacting boundary layers, thereby accounting for viscous/inviscid interaction and separation bubbles. Then, the two-dimensional linear stability of this flow is analyzed, and the amplification factors are computed. Results are obtained for several height/width ratios and locations. The theoretical results have been used to correlate the experimental results of Walker and Greening (1942). The observed transition locations are found to correspond to amplification factors varying between 7.4 and 10.0, consistent with previous results for flat plates. The method accounts for both viscous and shear-layer instabilities. Separation is found to increase significantly the amplification factor.

  4. Interactions between the thermal internal boundary layer and sea breezes

    Energy Technology Data Exchange (ETDEWEB)

    Steyn, D.G. [The Univ. of British Columbia, Dept. of Geography, Atmospheric Science Programme, Vancouver (Canada)

    1997-10-01

    In the absence of complex terrain, strongly curved coastline or strongly varying mean wind direction, the Thermal Internal Boundary Layer (TIBL) has well known square root behaviour with inland fetch. Existing slab modeling approaches to this phenomenon indicate no inland fetch limit at which this behaviour must cease. It is obvious however that the TIBL cannot continue to grow in depth with increasing fetch, since the typical continental Mixed Layer Depths (MLD) of 1500 to 2000 m must be reached between 100 and 200 km from the shoreline. The anticyclonic conditions with attendant strong convection and light winds which drive the TIBL, also drive daytime Sea Breeze Circulations (SBC) in the coastal zone. The onshore winds driving mesoscale advection of cool air are at the core of TIBL mechanisms, and are invariably part of a SBC. It is to be expected that TIBL and SBC be intimately linked through common mechanisms, as well as external conditions. (au)

  5. Analytical solutions for thermal forcing vortices in boundary layer and its applications

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-ran; LI Guo-ping

    2007-01-01

    Using the Boussinesq approximation, the vortex in the boundary layer is assumed to be axisymmetrical and thermal-wind balanced system forced by diabatic heating and friction, and is solved as an initial-value problem of linearized vortex equation set in cylindrical coordinates. The impacts of thermal forcing on the flow field structure of vortex are analyzed. It is found that thermal forcing has significant impacts on the flow field structure, and the material representative forms of these impacts are closely related to the radial distribution of heating. The discussion for the analytical solutions for the vortex in the boundary layer can explain some main structures of the vortex over the Tibetan Plateau.

  6. Stress induced grain boundaries in thin Co layer deposited on Au and Cu

    Science.gov (United States)

    Zientarski, Tomasz; Chocyk, Dariusz

    2016-10-01

    In this work, the structure and stress evolution in Co/Au and Co/Cu two-layer systems during deposition were studied. The growth of this system is evaluated by employing molecular dynamic simulations with potentials based on the embedded atom method theory. We used the kinematical scattering theory and the Ackland-Jones bond-angle method to the structural characterisation of deposited layers. In both systems, only compressive stress is observed during the deposition process and process relaxation of stress is visible. In Co/Au systems, creation of grains and grain boundaries is observed.

  7. Wing aeroelasticity analysis based on an integral boundary-layer method coupled with Euler solver

    Institute of Scientific and Technical Information of China (English)

    Ma Yanfeng; He Erming; Zeng Xianang; Li Junjie

    2016-01-01

    An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL) in a ‘‘semi-inverse” manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the compu-tational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD) Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are signif-icant for these cases and the further data analysis confirms the validity and practicability of the cou-pled method.

  8. Wing aeroelasticity analysis based on an integral boundary-layer method coupled with Euler solver

    Directory of Open Access Journals (Sweden)

    Ma Yanfeng

    2016-10-01

    Full Text Available An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL in a “semi-inverse” manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the computational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are significant for these cases and the further data analysis confirms the validity and practicability of the coupled method.

  9. The Diffusive Boundary-Layer of Sediments - Oxygen Microgradients Over a Microbial Mat

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; MARAIS, DJD

    1990-01-01

    Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sedimen-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate...... the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial...... resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane...

  10. On the impact of adverse pressure gradient on the supersonic turbulent boundary layer

    Science.gov (United States)

    Wang, Qian-Cheng; Wang, Zhen-Guo; Zhao, Yu-Xin

    2016-11-01

    By employing the particle image velocimetry, the mean and turbulent characteristics of a Mach 2.95 turbulent boundary layer are experimentally investigated without the impact of curvature. The physical mechanism with which the streamwise adverse pressure gradient affects the supersonic boundary layer is revealed. The data are compared to that of the concave boundary layer with similar streamwise distributions of wall static pressure to clarify the separate impacts of the adverse pressure gradient and the concave curvature. The logarithmic law is observed to be well preserved for both of the cases. The dip below the logarithmic law is not observed in present investigation. Theoretical analysis indicates that it could be the result of compromise between the opposite impacts of the compression wave and the increased turbulent intensity. Compared to the zero pressure gradient boundary layer, the principal strain rate and the turbulent intensities are increased by the adverse pressure gradient. The shear layer formed due the hairpin packets could be sharpened by the compression wave, which leads to higher principal strain rate and the associated turbulent level. Due to the additional impact of the centrifugal instability brought by the concave wall, even higher turbulent intensities than that of the adverse pressure gradient case are introduced. The existence of velocity modes within the zero pressure gradient boundary layer suggests that the large scale motions are statistically well organized. The generation of new velocity modes due to the adverse pressure gradient indicates that the turbulent structure is changed by the adverse pressure gradient, through which more turbulence production that cannot be effectively predicted by the Reynolds-stress transport equations could be brought.

  11. Stability and modal analysis of shock/boundary layer interactions

    Science.gov (United States)

    Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio

    2017-02-01

    The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).

  12. Experimental Study of Fully Developed Wind Turbine Array Boundary Layer

    Science.gov (United States)

    Turner v, John; Wosnik, Martin

    2014-11-01

    Results from an experimental study of an array of up to 100 model wind turbines with 0.25 m diameter, conducted in the turbulent boundary layer of the 6.0 m wide × 2.7 m tall × 72.0 m long test section of the UNH Flow Physics Facility, are reported. The study aims to address two questions. First, for a given configuration (turbine spacing, initial conditions, etc.), when will the model wind farm reach a ``fully developed'' condition, in which turbulence statistics remain the same from one row to the next within and above the wind turbine array. Second, how is kinetic energy transported in the wind turbine array boundary layer (WTABL). Measurements in the fully developed WTABL can provide valuable insight to the optimization of wind farm energy production. Previous experimental studies with smaller model wind farms were unable to reach the fully developed condition. Due to the size of the UNH facility and the current model array, the fully developed WTABL condition can be achieved. The wind turbine array was simulated by a combination of drag-matched porous disks, used in the upstream part of the array, and by a smaller array of realistic, scaled 3-bladed wind turbines immediately upstream of the measurement location.

  13. Scaling of pressure spectrum in turbulent boundary layers

    Science.gov (United States)

    Patwardhan, Saurabh S.; Ramesh, O. N.

    2014-04-01

    Scaling of pressure spectrum in zero-pressure-gradient turbulent boundary layers is discussed. Spatial DNS data of boundary layer at one time instant (Reθ = 4500) are used for the analysis. It is observed that in the outer regions the pressure spectra tends towards the -7/3 law predicted by Kolmogorov's theory of small-scale turbulence. The slope in the pressure spectra varies from -1 close to the wall to a value close to -7/3 in the outer region. The streamwise velocity spectra also show a -5/3 trend in the outer region of the flow. The exercise carried out to study the amplitude modulation effect of the large scales on the smaller ones in the near-wall region reveals a strong modulation effect for the streamwise velocity, but not for the pressure fluctuations. The skewness of the pressure follows the same trend as the amplitude modulation coefficient, as is the case for the velocity. In the inner region, pressure spectra were seen to collapse better when normalized with the local Reynolds stress than when scaled with the local turbulent kinetic energy

  14. On the development of turbulent boundary layer with wall transpiration

    Science.gov (United States)

    Ferro, Marco; Downs, Robert S., III; Fallenius, Bengt E. G.; Fransson, Jens H. M.

    2015-11-01

    An experimental study of the development of the transpired boundary layer in zero pressure gradient is carried out on a 6.4 m long hydrodynamically smooth and perforated plate. The relatively longer development length of the present perforated plate compared to the ones used in previous studies allows us to investigate whether an asymptotic suction boundary layer with constant thickness is achieved for the turbulent state, analogously to what happens in the laminar state. Velocity profiles are obtained via hot-wire anemometry while the wall shear stress is measured at several streamwise locations with hot-film and wall-wire probes as well as with oil-film interferometry. The threshold suction coefficient above which relaminarization starts to occur is examined. The scaling of the mean velocity and of higher order velocity moments is discussed in light of the measured wall shear stress data. Support from the European Research Council of the Advanced Fluid Research On Drag reduction in Turbulence Experiments (AFRODITE) is acknowledged.

  15. Retrievals of boundary layer methane and isotope fractionation on Titan

    Science.gov (United States)

    Adamkovics, Mate; Lora, Juan M.; Mitchell, Jonathan L.

    2016-10-01

    The amount of methane in the boundary layer on Titan is an interesting diagnostic of whether or not it might be seeping out of the regolith. We know that kinetic fractionation of methane isotopes can be diagnostic of evaporation at the surface and condensation in the atmosphere. If a parcel is constrained to follow a moist adiabat while condensation occurs, we can predict the amount of fractionation that is expected (Ádámkovics & Mitchell, 2016). We will present our most recent efforts to measure boundary layer methane abundance and isotopic composition, which include our recently published Keck NIRSPAO observations from 17 July 2014 (Ádámkovics et al., 2016), as well as preliminary results from follow-up measurements made on 15 May 2016. Our measurements are tantalizingly close to being able to distinguish between different hydrological parameterizations of the polar regions in the Titan Atmospheric Model (Lora & Ádámkovics, 2016). We will discuss the systematic uncertainties that can be evaluated with the combination of these two datasets and the prospects for exceptionally high S/N observations via particularly deep integrations over multiple nights.

  16. Stability and modal analysis of shock/boundary layer interactions

    Science.gov (United States)

    Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio

    2016-06-01

    The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).

  17. Sonic eddy model of the turbulent boundary layer

    Science.gov (United States)

    Breidenthal, Robert; Dintilhac, Paul; Williams, Owen

    2016-11-01

    A model of the compressible turbulent boundary layer is proposed. It is based on the notion that turbulent transport by an eddy requires that information of nonsteady events propagates across the diameter of that eddy during one rotation period. The finite acoustic signaling speed then controls the turbulent fluxes. As a consequence, the fluxes are limited by the largest eddies that satisfies this requirement. Therefore "sonic eddies" with a rotational Mach number of about unity would determine the skin friction, which is predicted to vary inversely with Mach number. This sonic eddy model contrasts with conventional models that are based on the energy equation and variations in the density. The effect of density variations is known to be weak in free shear flows, and the sonic eddy model assumes the same for the boundary layer. In general, Mach number plays two simultaneous roles in compressible flow, one related to signaling and the other related to the energy equation. The predictions of the model are compared with experimental data and DNS results from the literature.

  18. Optimizing EDMF parameterization for stratocumulus-topped boundary layer

    Science.gov (United States)

    Jones, C. R.; Bretherton, C. S.; Witek, M. L.; Suselj, K.

    2014-12-01

    We present progress in the development of an Eddy Diffusion / Mass Flux (EDMF) turbulence parameterization, with the goal of improving the representation of the cloudy boundary layer in NCEP's Global Forecast System (GFS), as part of a multi-institution Climate Process Team (CPT). Current GFS versions substantially under-predict cloud amount and cloud radiative impact over much of the globe, leading to large biases in the surface and top of atmosphere energy budgets. As part of the effort to correct these biases, the CPT is developing a new EDMF turbulence scheme for GFS, in which local turbulent mixing is represented by an eddy diffusion term while nonlocal shallow convection is represented by a mass flux term. The sum of both contributions provides the total turbulent flux. Our goal is for this scheme to more skillfully simulate cloud radiative properties without negatively impacting other measures of weather forecast skill. One particular challenge faced by an EDMF parameterization is to be able to handle stratocumulus regimes as well as shallow cumulus regimes. In order to isolate the behavior of the proposed EDMF parameterization and aid in its further development, we have implemented the scheme in a portable MATLAB single column model (SCM). We use this SCM framework to optimize the simulation of stratocumulus cloud top entrainment and boundary layer decoupling.

  19. On the coupling between a supersonic boundary layer and a flexible surface

    Science.gov (United States)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    The coupling between a two-dimensional, supersonic, laminar boundary layer and a flexible surface is studied using direct numerical computations of the Navier-Stokes equations coupled with the plate equation. The flexible surface is forced to vibrate by plane acoustic waves at normal incidence emanated by a sound source located on the side of the flexible surface opposite to the boundary layer. The effect of the source excitation frequency on the surface vibration and boundary layer stability is analyzed. We find that, for frequencies near the fifth natural frequency of the surface or lower, large disturbances are introduced in the boundary layer which may alter its stability characteristics. The interaction between a stable two-dimensional disturbance of Tollmien-Schlichting (TS) type with the vibrating surface is also studied. We find that the disturbance level is higher over the vibrating flexible surface than that obtained when the surface is rigid, which indicates a strong coupling between flow and structure. However, in the absence of the sound source the disturbance level over the rigid and flexible surfaces are identical. This result is due to the high frequency of the TS disturbance which does not couple with the flexible surface.

  20. Magnetic microscopy of layered structures

    CERN Document Server

    Kuch, Wolfgang; Fischer, Peter; Hillebrecht, Franz Ulrich

    2015-01-01

    This book presents the important analytical technique of magnetic microscopy. This method is applied to analyze layered structures with high resolution. This book presents a number of layer-resolving magnetic imaging techniques that have evolved recently. Many exciting new developments in magnetism rely on the ability to independently control the magnetization in two or more magnetic layers in micro- or nanostructures. This in turn requires techniques with the appropriate spatial resolution and magnetic sensitivity. The book begins with an introductory overview, explains then the principles of the various techniques and gives guidance to their use. Selected examples demonstrate the specific strengths of each method. Thus the book is a valuable resource for all scientists and practitioners investigating and applying magnetic layered structures.

  1. Shear, Stability and Mixing within the Ice-Shelf-Ocean Boundary Layer

    Science.gov (United States)

    Jenkins, Adrian

    2016-04-01

    Ocean-forced basal melting has been implicated in the widespread thinning of Antarctic ice shelves that has been causally linked with acceleration in the outflow of grounded ice. What determines the distribution and rates of basal melting and freezing beneath an ice shelf and how these respond to changes in the ocean temperature or circulation are therefore key questions. Recent years have seen major progress in our ability to observe basal melting and the ocean conditions that drive it, but data on the latter remain sparse, limiting our understanding of the key processes of ice-ocean heat transfer. In particular, we have no observations of current profiles through the buoyancy- and frictionally-controlled flows along the ice shelf base that drive mixing through the ice-ocean boundary layer. This presentation represents an attempt to address this gap in our knowledge through application of a very simple model of such boundary flows that considers only the spatial dimension perpendicular to the boundary. Initial results obtained with an unrealistic assumuption of constant eddy viscosity/diffusivity are nevertheless informative. For the buoyancy-driven flow two possible regimes exist: a weakly-stratified, geostrophic cross-slope current with an embedded Ekman layer, somewhat analogous to a conventional density current on a slope; or a strongly-stratified upslope jet with weak cross-slope flow, more analogous to an inverted katabatic wind. The latter is most appropriate when the ice-ocean interface is very steep, while for the gentle slopes typical of ice shelves the buoyant Ekman regime prevails. Introduction of a variable eddy viscosity/diffusivity derived from a local turbulence closure scheme modifies the current structure and stratification. There is a sharp step in properties across the surface layer, where the viscosity/diffusivity is low, weak gradients across the outer part of the boundary layer, where shear-driven mixing is strong, and a relatively strong

  2. Simultaneous profiling of the Arctic Atmospheric Boundary Layer

    Science.gov (United States)

    Mayer, S.; Jonassen, M.; Reuder, J.

    2009-09-01

    The structure of the Arctic atmospheric boundary layer (AABL) and the heat and moisture fluxes between relatively warm water and cold air above non-sea-ice-covered water (such as fjords, leads and polynyas) are of great importance for the sensitive Arctic climate system (e.g. Andreas and Cash, 1999). So far, such processes are not sufficiently resolved in numerical weather prediction (NWP) and climate models (e.g. Tjernström et al., 2005). Especially for regions with complex topography as the Svalbard mountains and fjords the state and diurnal evolution of the AABL is not well known yet. Knowledge can be gained by novel and flexible measurement techniques such as the use of an unmanned aerial vehicle (UAV). An UAV can perform vertical profiles as well as horizontal surveys of the mean meteorological parameters: temperature, relative humidity, pressure and wind. A corresponding UAV, called Small Unmanned Meteorological Observer (SUMO), has been developed at the Geophysical Institute at the University of Bergen in cooperation with Müller Engineering (www.pfump.org) and the Paparazzi Project (http://paparazzi.enac.fr). SUMO has been used under Arctic conditions at Longyear airport, Spitsbergen in March/April 2009. Besides vertical profiles up to 1500 m and horizontal surveys at flight levels of 100 and 200 m, SUMO could measure vertical profiles for the first time simultaneously in a horizontal distance of 1 km; one over the ice and snow-covered land surface and the other one above the open water of Isfjorden. This has been the first step of future multiple UAV operations in so called "swarms” or "flocks”. With this, corresponding measurements of the diurnal evolution of the AABL can be achieved with minimum technical efforts and costs. In addition, the Advanced Research Weather Forecasting model (AR-WRF version 3.1) has been run in high resolution (grid size: 1 km). First results of a sensitivity study where ABL schemes have been tested and compared with

  3. Inviscid/Boundary-Layer Aeroheating Approach for Integrated Vehicle Design

    Science.gov (United States)

    Lee, Esther; Wurster, Kathryn E.

    2017-01-01

    A typical entry vehicle design depends on the synthesis of many essential subsystems, including thermal protection system (TPS), structures, payload, avionics, and propulsion, among others. The ability to incorporate aerothermodynamic considerations and TPS design into the early design phase is crucial, as both are closely coupled to the vehicle's aerodynamics, shape and mass. In the preliminary design stage, reasonably accurate results with rapid turn-representative entry envelope was explored. Initial results suggest that for Mach numbers ranging from 9-20, a few inviscid solutions could reasonably sup- port surface heating predictions at Mach numbers variation of +/-2, altitudes variation of +/-10 to 20 kft, and angle-of-attack variation of +/- 5. Agreement with Navier-Stokes solutions was generally found to be within 10-15% for Mach number and altitude, and 20% for angle of attack. A smaller angle-of-attack increment than the 5 deg around times for parametric studies and quickly evolving configurations are necessary to steer design decisions. This investigation considers the use of an unstructured 3D inviscid code in conjunction with an integral boundary-layer method; the former providing the flow field solution and the latter the surface heating. Sensitivity studies for Mach number, angle of attack, and altitude, examine the feasibility of using this approach to populate a representative entry flight envelope based on a limited set of inviscid solutions. Each inviscid solution is used to generate surface heating over the nearby trajectory space. A subset of a considered in this study is recommended. Results of the angle-of-attack sensitivity studies show that smaller increments may be needed for better heating predictions. The approach is well suited for application to conceptual multidisciplinary design and analysis studies where transient aeroheating environments are critical for vehicle TPS and thermal design. Concurrent prediction of aeroheating

  4. Structure of grain boundaries in hexagonal materials

    CERN Document Server

    Sarrazit, F

    1998-01-01

    which allows the behaviour of line-defects to be studied in complex interfacial processes. The work presented in this thesis describes experimental and theoretical aspects associated with the structure of grain boundaries in hexagonal materials. It has been found useful to classify grain boundaries as low-angle, special or general on the basis of their structure. High-angle grain boundaries were investigated in tungsten carbide (WC) using conventional electron microscopy techniques, and three examples characteristic of the interfaces observed in this material were studied extensively. Three-dimensionally periodic patterns are proposed as plausible reference configurations, and the Burgers vectors of observed interfacial dislocations were predicted using a theory developed recently. The comparison of experimental observations with theoretical predictions proved to be difficult as contrast simulation techniques require further development for analysis to be completed confidently. Another part of this work invol...

  5. Measuring Plume Meander in the Nighttime Stable Boundary Layer with Lidar

    Science.gov (United States)

    Hiscox, A.; Miller, D. R.; Nappo, C. J.

    2009-12-01

    Complex dynamics of the stable planetary boundary layer (PBL), such as the effects of density currents, intermittent turbulence, surface-layer decoupling, internal gravity waves, cold air pooling, and katabatic flows affect plume transport and diffusion. A better understanding of these effects is needed for nighttime transport model development. The JORNADA (Joint Observational Research on Nocturnal Atmospheric Dispersion of Aerosols) field campaign, conducted in the New Mexico desert during April 2005, sought to address some of these issues The JORNADA data set includes simultaneous micrometeorological measurements of the boundary layer structure, turbulence, and wave activity along with continuous lidar measurement of aerosol plume releases. What makes JORNADA unique is the real-time monitoring of an elevated plume with a lidar. The quantification of plume meander will be presented in this paper. The application of these techniques to the JORNADA data allows for a more complete understanding of the nocturnal boundary layer (NBL). We will present an in-depth analysis of lidar measurements of plume meander and dispersion and their relationship to the complexities of NBL structure.

  6. Experimental Study of Turbulent Boundary Layers on Groove/Smooth Flat Surfaces

    Institute of Scientific and Technical Information of China (English)

    Hongwei MA; Qiao TIAN; Hui WU

    2005-01-01

    This paper presents an experimental investigation of the turbulent boundary layers on both groove and smooth flat surfaces. The flow structures were shown in a water tunnel using the hydrogen-bubble flow visualization technique. The measurement results indicate that: (1) the grooves can effectively reduce accumulation of low-speed fluids, decrease the number of the low-speed streaks and depress oscillation of the streaks in the sublayer; (2) the grooves can restrain forming of the horseshoe vortices in the buffer region; (3) the grooves bate oscillation and kinking of the quasi-streamwise vortices and restrain production of the hairpin vortices and the ring vortices, reducing both frequency and intensity of the turbulence bursting; (4) the grooves directly affect the flow structures in the sublayer of the boundary layer and then modulate the flow field up to the buffer region and the logarithmic region by restraining development and interaction of the vortices.

  7. Transition to turbulence in strongly heated vertical natural convection boundary layers

    CERN Document Server

    De Larochelambert, Thierry

    2008-01-01

    The mechanisms governing the transition to turbulence in natural convection boundary layers along strongly heated vertical walls remain neither very clear nor well understood, because of the lack of experiments and the difficulties of physical modelling. Our measurements bring experimental data focusing on this transition in quiescent air along radiating and conducting plates in the whole range of 2000 to 8000 W/m\\^2 heating rate. The analysis of the time series obtained by sliding window cross-correlation thermoanemometry leads us to point out coherent turbulent structures on short heights throughout the thin boundary layer, which seem to be governed by heat transfer and time-microscales of turbulence through the inner sublayer. Physical interpretations are given to relate to the observed heat transfer correlation and these turbulence transition structures along with radiation and conduction.

  8. Numerical investigations of shock wave interaction with laminar boundary layer on compressor profile

    Science.gov (United States)

    Piotrowicz, M.; Flaszyński, P.

    2016-10-01

    The investigation of shockwave boundary layer interaction on suction side of transonic compressor blade is one of main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to look more closely into the flow structure on suction side of a profile, a design of generic test section in linear transonic wind tunnel was proposed. The experimental and numerical results of flow structure on a suction side of the compressor profile investigations are presented. The numerical simulations are carried out for EARSM (Explicit Algebraic Reynolds Stress Model) turbulence model with transition model. The result are compared with oil flow visualisation, schlieren pictures, Pressure Sensitive Paint (PSP) and static pressure.

  9. Edge states as mediators of bypass transition in boundary-layer flows

    CERN Document Server

    Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Eckhardt, Bruno; Henningson, Dan S

    2016-01-01

    The concept of edge state is investigated in the asymptotic suction boundary layer in relation with the receptivity process to noisy perturbations and the nucleation of turbulent spots. Edge tracking is first performed numerically, without imposing any discrete symmetry, in a large computational domain allowing for full spatial localisation of the perturbation velocity. The edge state is a three-dimensional localised structure recurrently characterised by a single low-speed streak that experiences erratic bursts and planar shifts. This recurrent streaky structure is then compared with predecessors of individual spot nucleation events, triggered by non-localised initial noise. The present results suggest a nonlinear picture, rooted in dynamical systems theory, of the nucleation process of turbulent spots in boundary-layer flows, in which the localised edge state play the role of state-space mediator.

  10. Edge states as mediators of bypass transition in boundary-layer flows

    Science.gov (United States)

    Khapko, T.; Kreilos, T.; Schlatter, P.; Duguet, Y.; Eckhardt, B.; Henningson, D. S.

    2016-08-01

    The concept of edge state is investigated in the asymptotic suction boundary layer in relation with the receptivity process to noisy perturbations and the nucleation of turbulent spots. Edge tracking is first performed numerically, without imposing any discrete symmetry, in a large computational domain allowing for full spatial localisation of the perturbation velocity. The edge state is a three-dimensional localised structure recurrently characterised by a single low-speed streak that experiences erratic bursts and planar shifts. This recurrent streaky structure is then compared with predecessors of individual spot nucleation events, triggered by non-localised initial noise. The present results suggest a nonlinear picture, rooted in dynamical systems theory, of the nucleation process of turbulent spots in boundary-layer flows, in which the localised edge state play the role of state-space mediator.

  11. A nozzle boundary layer model including the subsonic sublayer usable for determining boundary layer effects on plume flowfields

    Science.gov (United States)

    Cooper, B. P., Jr.

    1979-01-01

    A model for the boundary layer at the exit plane of a rocket nozzle was developed which, unlike most previous models, includes the subsonic sublayer. The equations for the flow near the nozzle exit plane are presented and the method by which the subsonic sublayer transitions to supersonic flow in the plume is described. The resulting model describes the entire boundary layer and can be used to provide a startline for method-of-characteristics calculations of plume flowfields. The model was incorporated into a method of characteristics computer program and comparisons of computed results to experimental data show good agreement. The data used in the comparisons were obtained in tests in which mass fluxes from a 22.2-N (5 lbf) thrust engine were measured at angles off the nozzle centerline of up to 150 deg. Additional comparisons were made with data obtained during tests of a 0.89-N (0.2 lbr) monopropellant thruster and from the OH-64 space shuttle heating tests. The agreement with the data indicates that the model can be used for calculating plume backflow properties.

  12. A Lagrangian Study of Southeast Pacific Boundary Layer Clouds

    Science.gov (United States)

    Painter, Gallia

    concentration which extend far offshore into regions of normally very clean cloud. We use Lagrangian trajectories to investigate the source of the high droplet concentrations of the mesoscale "hooks", and evaluate whether boundary layer transport of coastal pollutants alone can account for their extent. We find that boundary layer trajectories past 85 W do not pass sufficiently close to the coastline to explain high aerosol concentrations offshore.

  13. Enhancing the prediction of turbulent kinetic energy in the marine atmospheric boundary layer

    Science.gov (United States)

    Foreman, R. J.; Emeis, S.

    2010-09-01

    A recent study by Shaikh and Siddiqui (2010) has shown definitively that the turbulent structure of boundary layer flows over water is fundamentally different compared with that over a smooth surface and with that over a solid wavy surface whose wave amplitude is similar to that of dynamically wind-generated waves. In light of this new information, the constants of the Mellor-Yamada boundary layer model, which are based on laboratory data over solid walls, are re-evaluated to suit the turbulent dynamics of a dynamic, wavy surface. The constants are based on the principal that the enhanced turbulent production in the vicinity of waves is redistributed among the normal stress components by virtue of the enhanced pressure-velocity covariances also found in the vicinity of waves. There is then a feedback mechanism whereby enhanced normal stresses modify the dynamic surface. The net effect of this is that in the marine boundary layer, one can expect an enhancement of turbulent kinetic energy due to the enhancement of normal stresses at the expense of shear stresses. The constants in the Mellor-Yamada-Janjic planetary boundary layer scheme within the Weather Research and Forecasting (WRF) model are changed to fit this principal. Simulations are then performed and compared with data (wind speed and turbulent kinetic energy) from the FINO1 platform in the North Sea. It is found that while predictions of the wind speed are barely changed, the magnitude of the tke error (RMS) is reduced by up to 50%. This is expected to be practically relevant for the estimation of blade fatigue of wind energy converters, where the tke is an important parameter in this assessment. It could also be relevant for pollution dispersion in marine boundary layers.

  14. Full-Scale Spectrum of Boundary-Layer Winds

    Science.gov (United States)

    Larsén, Xiaoli G.; Larsen, Søren E.; Petersen, Erik L.

    2016-05-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr^{-1} to 10 Hz. 10-min cup anemometer data are used to estimate the spectrum from about 1 yr^{-1} to 0.05 min^{-1}; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day^{-1} to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various spectral ranges, including the spectral gap, are revisited. Following the seasonal peak at 1 yr^{-1}, the frequency spectrum fS( f) increases with f^{+1} and gradually reaches a peak at about 0.2 day^{-1}. From this peak to about 1 hr^{-1}, the spectrum fS( f) decreases with frequency with a -2 slope, followed by a -2/3 slope, which can be described by fS(f)=a_1f^{-2/3}+a_2f^{-2}, ending in the frequency range for which the debate on the spectral gap is ongoing. It is shown here that the spectral gap exists and can be modelled. The linear composition of the horizontal wind variation from the mesoscale and microscale gives the observed spectrum in the gap range, leading to a suggestion that mesoscale and microscale processes are uncorrelated. Depending on the relative strength of the two processes, the gap may be deep or shallow, visible or invisible. Generally, the depth of the gap decreases with height. In the low frequency region of the gap, the mesoscale spectrum shows a two-dimensional isotropic nature; in the high frequency region, the classical three-dimensional boundary-layer turbulence is evident. We also provide the cospectrum of the horizontal and vertical components, and the power spectra of the three velocity components over a wide range from 1 day^{-1} to 10 Hz, which is useful in determining the necessary sample duration when measuring turbulence

  15. Structures and transitions in tungsten grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhu, Q. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marian, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rudd, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-07

    The objective of this study is to develop a computational methodology to predict structure, energies of tungsten grain boundaries as a function of misorientation and inclination. The energies and the mobilities are the necessary input for thermomechanical model of recrystallization of tungsten for magnetic fusion applications being developed by the Marian Group at UCLA.

  16. Shear-layer structures in near-wall turbulence

    Science.gov (United States)

    Johansson, A. V.; Alfredsson, P. H.; Kim, J.

    1987-01-01

    The structure of internal shear layer observed in the near-wall region of turbulent flows is investigated by analyzing flow fields obtained from numerical simulations of channel and boundary-layer flows. It is found that the shear layer is an important contributor to the turbulence production. The conditionally averaged production at the center of the structure was almost twice as large as the long-time mean value. The shear-layer structure is also found to retain its coherence over streamwise distances on the order of a thousand viscous length units, and propagates with a constant velocity of about 10.6 u sub rho throughout the near wall region.

  17. Group classification of steady two-dimensional boundary-layer stagnation-point flow equations

    OpenAIRE

    Nadjafikhah, Mehdi; Hejazi, Seyed Reza

    2010-01-01

    Lie symmetry group method is applied to study the boundary-layer equations for two-dimensional steady flow of an incompressible, viscous fluid near a stagnation point at a heated stretching sheet placed in a porous medium equation. The symmetry group and its optimal system are given, and group invariant solutions associated to the symmetries are obtained. Finally the structure of the Lie algebra symmetries is determined.

  18. Conserved variable analysis of the marine boundary layer and air-sea exchange processes using BOBMEX-pilot data sets

    Indian Academy of Sciences (India)

    N V Sam; U C Mohanty; A N V Satyanarayana

    2000-06-01

    The present study is based on the observed features of the MBL (Marine Boundary Layer) during the Bay of Bengal and Monsoon Experiment (BOBMEX) - Pilot phase. Conserved Variable Analysis (CVA) of the conserved variables such as potential temperature, virtual potential temperature, equivalent potential temperature, saturation equivalent potential temperature and specific humidity were carried out at every point of upper air observation obtained on board ORV Sagar Kanya. The values are estimated up to a maximum of 4 km to cover the boundary layer. The Marine Boundary Layer Height is estimated from the conserved thermodynamic profiles. During the disturbed period when the convective activity is observed, the deeper boundary layers show double mixing line structures. An attempt is also made to study the oceanic heat budget using empirical models. The estimated short-wave radiation flux compared well with the observations.

  19. The influence of boundary layers on supersonic inlet flow unstart induced by mass injection

    Science.gov (United States)

    Do, Hyungrok; Im, Seong-Kyun; Mungal, M. Godfrey; Cappelli, Mark A.

    2011-09-01

    A transverse jet is injected into a supersonic model inlet flow to induce unstart. Planar laser Rayleigh scattering from condensed CO2 particles is used to visualize flow dynamics during the unstart process, while in some cases, wall pressure traces are simultaneously recorded. Studies conducted over a range of inlet configurations reveal that the presence of turbulent wall boundary layers strongly affect the unstart dynamics. It is found that relatively thick turbulent boundary layers in asymmetric wall boundary layer conditions prompt the formation of unstart shocks; in symmetric boundary conditions lead to the propagation of pseudo-shocks; and in both cases facilitate fast inlet unstart, when compared with thin, laminar boundary layers. Incident shockwaves and associated reflections are found to affect the speed of pressure disturbances. These disturbances, which induce boundary layer separation, are found to precede the formation of unstart shocks. The results confirm the importance of and need to better understand shock-boundary layer interactions in inlet unstart dynamics.

  20. Contributions of the wall boundary layer to the formation of the counter-rotating vortex pair in transverse jets

    KAUST Repository

    SCHLEGEL, FABRICE

    2011-04-08

    Using high-resolution 3-D vortex simulations, this study seeks a mechanistic understanding of vorticity dynamics in transverse jets at a finite Reynolds number. A full no-slip boundary condition, rigorously formulated in terms of vorticity generation along the channel wall, captures unsteady interactions between the wall boundary layer and the jet - in particular, the separation of the wall boundary layer and its transport into the interior. For comparison, we also implement a reduced boundary condition that suppresses the separation of the wall boundary layer away from the jet nozzle. By contrasting results obtained with these two boundary conditions, we characterize near-field vortical structures formed as the wall boundary layer separates on the backside of the jet. Using various Eulerian and Lagrangian diagnostics, it is demonstrated that several near-wall vortical structures are formed as the wall boundary layer separates. The counter-rotating vortex pair, manifested by the presence of vortices aligned with the jet trajectory, is initiated closer to the jet exit. Moreover tornado-like wall-normal vortices originate from the separation of spanwise vorticity in the wall boundary layer at the side of the jet and from the entrainment of streamwise wall vortices in the recirculation zone on the lee side. These tornado-like vortices are absent in the case where separation is suppressed. Tornado-like vortices merge with counter-rotating vorticity originating in the jet shear layer, significantly increasing wall-normal circulation and causing deeper jet penetration into the crossflow stream. © 2011 Cambridge University Press.

  1. Flow noise predictions of a submerged cylinder under turbulent boundary layer excitations

    Science.gov (United States)

    Wu, Kuangcheng; Vlahopoulos, Nickolas

    2002-05-01

    The unsteady fluctuated pressure underneath turbulent boundary layers (TBL) is one of major noise sources in moving vehicles. Recently, discretized TBL forcing functions have been applied to planar structures in air [Y. F. Hwang and S. A. Hambric, Noise-Con, 2000; M. Allen and N. Vlahopoulos, Computers and Structures, 2000; M. Allen and N. Vlahopoulos, Finite Elements in Analysis and Design, 2001; M. Allen, R. Sbragio, and N. Vlahopoulos, AIAA J. 2001]. This paper discusses prediction of the flow-induced radiated noise and surface responses of a submerged hemisphere-capped cylindrical shell (L/D=11). The FEM/IFEM (infinite finite element method) approach is used to calculate structural acoustic transfer functions and to accurately account for the fluid loading effects. The effect on TBL due to the curvature of a cylinder is captured by utilizing the potential flow-boundary layer theory to determine key boundary layer parameters. Predictions of the surface intensity and far field responses are developed through stochastic analysis due to the natural of the TBL excitations. A MATLAB script is generated to determine the power spectral density of the responses. [Work supported by ONR Code 334.

  2. Heat Flux in the Strong-Wind Nocturnal Boundary Layer

    Science.gov (United States)

    Mahrt, L.

    2016-11-01

    Sonic anemometer measurements are analyzed from two primary field programs and 12 supplementary sites to examine the behaviour of the turbulent heat flux near the surface with high wind speeds in the nocturnal boundary layer. On average, large downward heat flux is found for high wind speeds for most of the sites where some stratification is maintained in spite of relatively intense vertical mixing. The stratification for high wind speeds is found to be dependent on wind direction, suggesting the importance of warm-air advection, even for locally homogenous sites. Warm-air advection is also inferred from a large imbalance of the heat budget of the air for strong winds. Shortcomings of our study are noted.

  3. The turning of the wind in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    at the Høvsøre site in Denmark, which is a flat farmland area with a nearly homogeneous easterly upstream sector. Therefore, within that sector, the turning of the wind is caused by a combination of atmospheric stability, Coriolis, roughness, horizontal pressure gradient and baroclinity effects. Atmospheric......Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... stability was measured using sonic anemometers placed at different heights on the mast. Horizontal pressure gradients and baroclinity are derived from outputs of a numerical weather prediction model and are used to estimate the geostrophic wind. It is found, for these specific and relatively short periods...

  4. THE UNSTABLE MODES OF NATURAL CONVECTION BOUNDARY LAYER

    Institute of Scientific and Technical Information of China (English)

    Tao Jianjun; Zhuang Fenggan; Yan Dachun

    2000-01-01

    The instability of natural convection boundary layer around a vertical heated flat plate is analyzed theoretically in this paper. The results illustrate that the “loop” in the neutral curve is not a real loop but a twist of the curve is the frequencywave number-Grashof number space, and there is only one unstable mode at small Prandtl numbers. Specially, when the Prandtl number is large enough two unstable modes will be found in the “loop” region. Along the amplifying surface intersection the two unstable modes have the same Grashof number, wave number and frequency but different amplifying rates. Their instability characteristics are analyzed and the criterion for determining the existence of the multi-unstable modes is also discussed.

  5. Aerodynamic Heating in Hypersonic Boundary Layers:\\ Role of Dilatational Waves

    CERN Document Server

    Zhu, Yiding; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2016-01-01

    The evolution of multi-mode instabilities in a hypersonic boundary layer and their effects on aerodynamic heating are investigated. Experiments are conducted in a Mach 6 wind tunnel using Rayleigh-scattering flow visualization, fast-response pressure sensors, fluorescent temperature-sensitive paint (TSP), and particle image velocimetry (PIV). Calculations are also performed based on both parabolized stability equations (PSE) and direct numerical simulations (DNS). It is found that second-mode dilatational waves, accompanied by high-frequency alternating fluid compression and expansion, produce intense aerodynamic heating in a small region that rapidly heats the fluid passing through it. As a result, the surface temperature rapidly increases and results in an overshoot over the nominal transitional value. When the dilatation waves decay downstream, the surface temperature decreases gradually until transition is completed. A theoretical analysis is provided to interpret the temperature distribution affected by ...

  6. Logarithmic boundary layers in highly turbulent Taylor-Couette flow

    CERN Document Server

    Huisman, Sander G; Cierpka, Christian; Kahler, Christian J; Lohse, Detlef; Sun, Chao

    2013-01-01

    We provide direct measurements of the boundary layer properties in highly turbulent Taylor-Couette flow up to $\\text{Ta}=6.2 \\times 10^{12}$ using high-resolution particle image velocimetry (PIV). We find that the mean azimuthal velocity profile at the inner and outer cylinder can be fitted by the von K\\'arm\\'an log law $u^+ = \\frac 1\\kappa \\ln y^+ +B$. The von K\\'arm\\'an constant $\\kappa$ is found to depend on the driving strength $\\text{Ta}$ and for large $\\text{Ta}$ asymptotically approaches $\\kappa \\approx 0.40$. The variance profiles of the local azimuthal velocity have a universal peak around $y^+ \\approx 12$ and collapse when rescaled with the driving velocity (and not with the friction velocity), displaying a log-dependence of $y^+$ as also found for channel and pipe flows [1,2].

  7. Compressible Turbulent Boundary Layers on a Strongly Heated Wall

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    This paper concerns the theoretical and experimental modelling of the flat wall,highly heated,compressible turbulent boundary layer.Its final objective is to develop a numerical Navier-Stokes solver and to conclude on its capability to correctly represent complex aerothermic viscous flows near the wall.The paper presents a constructed numerical method with particular attention given to the turbulence modelling at low Reynolds number and comparisons with supersonic and transonic experimental data.For the transonic experiment,very high wall temperature(Tw=1100K)is realized.The method of this difficult experimental set up is discussed.The comparison between experimental and computational data conducts to the first conclusion and gives some indications for the future work.

  8. EXPERIMENTAL STUDY ON TURBULENT BOUNDARY LAYER CHARACTERISTICS OVER STREAMWISE RIBLETS

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-yong; DONG Shou-ping; DU Ya-nan

    2004-01-01

    Measurements of characteristics by means of a two-component Laser Doppler Velocimeter (LDV) were carried out in turbulent boundary layers over both a symmetric V-shaped ribbed plate and a smooth one in a low speed wind tunnel. The present results clearly indicate that the logarithmic velocity profile over the riblets surface is shifted upward with a 30.9% increase in the thickness of the viscous sublayer. Also a change in the log-law region is found. And the maximum value of streamwise velocity fluctuations is reduced by approximately 17%. The skewness and flatness factors do not show any change besides those in the region of y+<0.6. It is evident that the Reynolds shear stress over the riblets is reduced. Further more, in log-law region, the Reynolds shear stress has a larger reduction of up to 18%.

  9. Laminar boundary-layer flow of non-Newtonian fluid

    Science.gov (United States)

    Lin, F. N.; Chern, S. Y.

    1979-01-01

    A solution for the two-dimensional and axisymmetric laminar boundary-layer momentum equation of power-law non-Newtonian fluid is presented. The analysis makes use of the Merk-Chao series solution method originally devised for the flow of Newtonian fluid. The universal functions for the leading term in the series are tabulated for n from 0.2 to 2. Equations governing the universal functions associated with the second and the third terms are provided. The solution together with either Lighthill's formula or Chao's formula constitutes a simple yet general procedure for the calculation of wall shear and surface heat transfer rate. The theory was applied to flows over a circular cylinder and a sphere and the results compared with published data.

  10. Concentration Boundary Layer Model of Mortar Corrosion by Sulfuric Acid

    Institute of Scientific and Technical Information of China (English)

    SONG Zhigang; ZHANG Xuesong; MIN Hongguang

    2011-01-01

    A long time immersion experiment of mortar specimens is carried out to investigate their degradation mechanism by sulfuric acid. Water-cement ratios of mortar are ranging from 0.5 to 0.7 and the pH value of sulfuric acid is 3.5 and 4.0 respectively. The pH meter is used to monitor the soak solution and the titration sulfuric acid with given concentration is added to maintain original pH value, through which the acid consumption of mortar is recorded. A theoretical reaction rate model is also proposed based on concentration boundary layer model. The results show that theoretical model fits the experimental results well and the corrosion mechanism can be modeled by a diffusion process accompanied with an irreversible chemical reaction when pH value of soak solution is no less than 3.5.

  11. A Qualitative Description of Boundary Layer Wind Speed Records

    CERN Document Server

    Kavasseri, R G; Nagarajan, Radhakrishnan

    2006-01-01

    The complexity of the atmosphere endows it with the property of turbulence by virtue of which, wind speed variations in the atmospheric boundary layer (ABL) exhibit highly irregular fluctuations that persist over a wide range of temporal and spatial scales. Despite the large and significant body of work on microscale turbulence, understanding the statistics of atmospheric wind speed variations has proved to be elusive and challenging. Knowledge about the nature of wind speed at ABL has far reaching impact on several fields of research such as meteorology, hydrology, agriculture, pollutant dispersion, and more importantly wind energy generation. In the present study, temporal wind speed records from twenty eight stations distributed through out the state of North Dakota (ND, USA), ($\\sim$ 70,000 square-miles) and spanning a period of nearly eight years are analyzed. We show that these records exhibit a characteristic broad multifractal spectrum irrespective of the geographical location and topography. The rapi...

  12. ON NONLINEAR STABILITY IN NONPARALLEL BOUNDARY LAYER FLOW

    Institute of Scientific and Technical Information of China (English)

    TANG Deng-bin; WANG Wei-zhi

    2004-01-01

    The nonlinear stability problem in nonparallel boundary layer flow for two-dimensional disturbances was studied by using a newly presented method called Parabolic Stability Equations (PSE). A series of new modes generated by the nonlinear interaction of disturbance waves were tabulately analyzed, and the Mean Flow Distortion (MFD) was numerically given. The computational techniques developed, including the higher-order spectral method and the more effective algebraic mapping, increased greatly the numerical accuracy and the rate of convergence. With the predictor-corrector approach in the marching procedure, the normalization condition was satisfied, and the stability of numerical calculation could be ensured. With different initial amplitudes, the nonlinear stability of disturbance wave was studied. The results of examples show good agreement with the data given by the DNS using the full Navier-Stokes equations.

  13. Radiative transfer in a polluted urban planetary boundary layer

    Science.gov (United States)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.

  14. Hypersonic Boundary-Layer Trip Development for Hyper-X

    Science.gov (United States)

    Berry, Scott A.; Auslender, Aaron H.; Dilley, Authur D.; Calleja, John F.

    2000-01-01

    Boundary layer trip devices for the Hper-X forebody have been experimentally examined in several wind tunnels. Five different trip configurations were compared in three hypersonic facilities, the LaRC 20-Inch Mach 6 Air Tunnel, the LaRC 31 -Inch Mach 10 Air Tunnel, and in the HYPULSE Reflected Shock Tunnel at GASL. Heat transfer distributions, utilizing the phosphor thermography and thin-film techniques, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 15.4 million: and inlet cowl door simulated in both open and closed positions. Comparisons of transition due to discrete roughness elements have led to the selection of a trip configuration for the Hyper-X Mach 7 flight vehicle.

  15. Tomo-TRPIV measurement of coherent structure spatial topology in turbulent boundary layer%湍流边界层相干结构空间拓扑形态的层析TRPIV测量

    Institute of Scientific and Technical Information of China (English)

    姜楠; 于培宁; 管新蕾

    2012-01-01

    用层析TRPIV(time-resolved paticle image velocimetry)技术精细测量了水洞中平板湍流边界层三分量速度的时空序列信号,提出了空间局部平均多尺度速度结构函数的新概念描述湍流多尺度涡结构的空间拉伸、压缩、剪切变形和旋转.用空间局部平均多尺度速度结构函数对湍流脉动速度进行了空间多尺度分解.用空间局部平均多尺度速度结构函数的新概念,根据湍流多尺度涡结构在空间流向的拉伸和压缩特征,提出了新的湍流相干结构条件采样方法,检测并提取了层析TRPIV数据中相干结构的"喷射"和"扫掠"事件中的速度、涡量等物理量的空间拓扑形态.发现在喷射和扫掠事件中均存在一对反向旋转的准流向"马蹄形"涡结构.%The spatial-temporal sequence of 3D-3C(three-dimensional-three-component) simultaneous velocity field in a turbulent boundary layer was finely measured by tomographic TRPIV(time-resolved particle image velocimetry) in a water channel.A new concept of spatial local averaged velocity structure function was introduced to describe the dilation,compression and shear distortion and rotation of multi-scale eddy structures in turbulent flow.The three fluctuating velocity components of TBL(turbulent boundary layer) were decomposed into multi-scale components by spatial local averaged velocity structure function.A new turbulence coherent structure conditional sampling method was proposed based on the dilation and compression features of turbulent multi-scale eddy structures and the new concept of spatial local averaged velocity structure function.The eject and sweep process due to large-scale coherent structure burst was conditionally detected and the characteristic spatial topology modes of physical quantities,such as velocity and vorticity,during coherent structure bursts,were extracted from the tomo-PIV(particle image velocimetry) experimental dataset.A pair

  16. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    Science.gov (United States)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  17. Nanoscale Hot-Wire Probes for Boundary-Layer Flows

    Science.gov (United States)

    Tedjojuwono, Ken T.; Herring, Gregory C.

    2003-01-01

    Hot-wire probes having dimensions of the order of nanometers have been proposed for measuring temperatures (and possibly velocities) in boundary-layer flows at spatial resolutions much finer and distances from walls much smaller than have been possible heretofore. The achievable resolutions and minimum distances are expected to be of the order of tens of nanometers much less than a typical mean free path of a molecule and much less than the thickness of a typical flow boundary layer in air at standard temperature and pressure. An additional benefit of the small scale of these probes is that they would perturb the measured flows less than do larger probes. The hot-wire components of the probes would likely be made from semiconducting carbon nanotubes or ropes of such nanotubes. According to one design concept, a probe would comprise a single nanotube or rope of nanotubes laid out on the surface of an insulating substrate between two metallic wires. According to another design concept, a nanotube or rope of nanotubes would be electrically connected and held a short distance away from the substrate surface by stringing it between two metal electrodes. According to a third concept, a semiconducting nanotube or rope of nanotubes would be strung between the tips of two protruding electrodes made of fully conducting nanotubes or ropes of nanotubes. The figure depicts an array of such probes that could be used to gather data at several distances from a wall. It will be necessary to develop techniques for fabricating the probes. It will also be necessary to determine whether the probes will be strong enough to withstand the aerodynamic forces and impacts of micron-sized particles entrained in typical flows of interest.

  18. Rapid cycling of reactive nitrogen in the marine boundary layer

    Science.gov (United States)

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L.; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S.; Apel, Eric C.; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N.; Ortega, John; Knote, Christoph

    2016-04-01

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A ‘renoxification’ process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth’s surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  19. Shock Wave-Boundary Layer Interaction in Forced Shock Oscillations

    Institute of Scientific and Technical Information of China (English)

    Piotr Doerffer; Oskar Szulc; Franco Magagnato

    2003-01-01

    The flow in transonic diffusers as well as in supersonic air intakes becomes often unsteady due to shock wave boundary layer interaction. The oscillations may be induced by natural separation unsteadiness or may be forced by boundary conditions. Significant improvement of CFD tools, increase of computer resources as well as development of experimental methods have again.drawn the attention of researchers to this topic.To investigate the problem forced oscillations of transonic turbulent flow in asymmetric two-dimensional Laval nozzle were considered. A viscous, perfect gas flow, was numerically simulated using the Reynolds-averaged compressible Navier-Stokes solver SPARC, employing a two-equation, eddy viscosity, turbulence closure in the URANS approach.For time-dependent and stationary flow simulations, Mach numbers upstream of the shock between 1.2 and 1.4 were considered. Comparison of computed and experimental data for steady states generally gave acceptable agreement. In the case of forced oscillations, a harmonic pressure variation was prescribed at the exit plane resulting in shock wave motion. Excitation frequencies between 0 Hz and 1024 Hz were investigated at the same pressure amplitude.The main result of the work carried out is the relation between the amplitude of the shock wave motion and the excitation frequency in the investigated range. Increasing excitation frequency resulted in decreasing amplitude of the shock movement. At high frequencies a natural mode of shock oscillation (of small amplitude) was observed which is not sensitive to forced excitement.

  20. Evidence of tropospheric layering: interleaved stratospheric and planetary boundary layer intrusions

    Directory of Open Access Journals (Sweden)

    J. Brioude

    2007-01-01

    Full Text Available We present a case study of interleaving in the free troposphere of 4 layers of non-tropospheric origin, with emphasis on their residence time in the troposphere. Two layers are stratospheric intrusions at 4.7 and 2.2 km altitude with residence times of about 2 and 6.5 days, respectively. The two other layers at 7 and 3 km altitude were extracted from the maritime planetary boundary layer by warm conveyor belts associated with two extratropical lows and have residence times of about 2 and 5.75 days, respectively. The event took place over Frankfurt (Germany in February 2002 and was observed by a commercial airliner from the MOZAIC programme with measurements of ozone, carbon monoxide and water vapour. Origins and residence times in the troposphere of these layers are documented with a trajectory and particle dispersion model. The combination of forward and backward simulations of the Lagrangian model allows the period of time during which the residence time can be assessed to be longer, as shown by the capture of the stratospheric-origin signature of the lowest tropopause fold just about to be completely mixed above the planetary boundary layer. This case study is of interest for atmospheric chemistry because it emphasizes the importance of coherent airstreams that produce laminae in the free troposphere and that contribute to the average tropospheric ozone. The interleaving of these 4 layers also provides the conditions for a valuable case study for the validation of global chemistry transport models used to perform tropospheric ozone budgets.

  1. Numerical simulation of quasi-streamwise hairpin-like vortex generation in turbulent boundary layer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nan; LU Li-peng; DUAN Zhen-zhen; YUAN Xiang-jiang

    2008-01-01

    A mechanism for generation of near wall quasi-streamwise hairpin-like vortex (QHV) and secondary quasi-streamwise vortices (SQV) is presented. The conceptual model of resonant triad in the theory of hydrodynamic instability and direct numerical simulation of a turbulent boundary layer were applied to reveal the formation of QHV and SQV. The generation procedures and the characteristics of the vortex structures are obtained, which share some similarities with previous numerical simulations. The research using resonant triad conceptual model and numerical simulation provides a possibility for investigating and controling the vortex structures, which play a dominant role in the evolution of coherent structures in the near-wall region.

  2. Schlieren and OH* chemiluminescence imaging of combustion in a turbulent boundary layer over a solid fuel

    Science.gov (United States)

    Jens, Elizabeth T.; Miller, Victor A.; Cantwell, Brian J.

    2016-03-01

    Combustion in a turbulent boundary layer over a solid fuel is studied using simultaneous schlieren and OH* chemiluminescence imaging. The flow configuration is representative of a hybrid rocket motor combustor. Six different hydrocarbon fuels, including both classical hybrid rocket fuels and a high regression rate fuel (paraffin wax), are burned in an undiluted oxygen free-stream at pressures ranging from atmospheric to 1524.2 kPa (221.1 psi). A detailed explanation of methods for registering the schlieren and OH* chemiluminescence images to one another is presented, and additionally, details of the routines used to extract flow features of interest (like the boundary layer height and flame location) are provided. At atmospheric pressure, the boundary layer location is consistent between all fuels; however, the flame location varies for each fuel. The flame zone appears to be smoothly distributed over the fuel surface at atmospheric pressure. At elevated pressures and correspondingly increased Dahmköhler number (but at constant Reynolds number), flame morphology is markedly different, exhibiting large rollers in a shear layer above the fuel grain and finer structures in the flame. The chemiluminescence intensity is found to be roughly proportional to the fuel burn rate at both atmospheric and elevated chamber pressures.

  3. Uncertainties in the CO2 buget associated to boundary layer dynamics and CO2-advection

    NARCIS (Netherlands)

    Kaikkonen, J.P.; Pino, D.; Vilà-Guerau de Arellano, J.

    2012-01-01

    The relationship between boundary layer dynamics and carbon dioxide (CO2) budget in the convective boundary layer (CBL) is investigated by using mixed-layer theory. We derive a new set of analytical relations to quantify the uncertainties on the estimation of the bulk CO2 mixing ratio and the inferr

  4. Studies of planetary boundary layer by infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  5. Surface layer similarity in the nocturnal boundary layer: the application of Hilbert-Huang transform

    Directory of Open Access Journals (Sweden)

    J. Hong

    2009-10-01

    Full Text Available Turbulence statistics such as flux-variance relationship is critical information in measuring and modeling carbon, water, energy, and momentum exchanges at the biosphere-atmosphere interface. Using a recently proposed mathematical technique, the Hilbert-Huang transform (HHT, this study highlights its possibility to quantify impacts of non-turbulent flows on turbulence statistics in the stable surface layer. The HHT is suitable for the analysis of non-stationary and intermittent data and thus very useful for better understanding of the interplay of the surface layer similarity with complex nocturnal environment. Our analysis showed that the HHT can successfully sift non-turbulent components and be used as a tool to estimate the relationships between turbulence statistics and atmospheric stability in complex environment such as nocturnal stable boundary layer.

  6. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  7. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Science.gov (United States)

    Zilitinkevich, S. S.; Esau, I. N.; Baklanov, A.

    2005-03-01

    Turbulent planetary boundary layers (PBLs) control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow). It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral) or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions) depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S were overlooked

  8. Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David D. [Univ. of Oklahoma, Norman, OK (United States); NOAA National Severe Storms Lab., Norman, OK (United States); Ferrare, Richard [NASA Langley Research Center, Hampton, VA (United States)

    2015-01-13

    The systematic and routine measurements of aerosol, water vapor, and clouds in the vertical column above the Atmospheric Radiation Measurement (ARM) sites from surface-based remote sensing systems provides a unique and comprehensive data source that can be used to characterize the boundary layer (i.e., the lowest 3 km of the atmosphere) and its evolution. New algorithms have been developed to provide critical datasets from ARM instruments, and these datasets have been used in long-term analyses to better understand the climatology of water vapor and aerosol over Darwin, the turbulent structure of the boundary layer and its statistical properties over Oklahoma, and to better determine the distribution of ice and aerosol particles over northern Alaska.

  9. Boundary Layer Ducting of Low-elevation GNSS Ocean Reflected Signals

    DEFF Research Database (Denmark)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    of the sea surface roughness, ocean wind and temperature, density and gradient of the water vapor profile in the boundary layer.The model for the sea surface roughness impedance, wind speed, and rms ocean wave-heightshow a stronger signal damping for a smoother ocean surfaces (sea state 0) compared...... reflection zone (and broader received power spectra).The spectral analysis of the simulated surface reflected signals shows spectral structures that could be used for the extraction of parameters as, boundary layer height and atmosphere water vapor density, sea surface roughness, ocean wave heights......, and surface wind speed. The presented simulations will quantify how these parameters are derived from the observations. Our simulator uses a finite difference solution to the parabolic wave equation using the split stepsine transformation. The ocean surface is modeled through the use of an impedance model...

  10. Development of plasma streamwise vortex generators for increased boundary layer control authority

    Science.gov (United States)

    Bowles, Patrick; Schatzman, David; Corke, Thomas; Thomas, Flint

    2009-11-01

    This experimental study focuses on active boundary layer flow control utilizing streamwise vorticity produced by a single dielectric barrier discharge plasma actuator. A novel plasma streamwise vortex generator (PSVG) layout is presented that mimics the passive flow control characteristics of the trapezoidal vane vortex generator. The PSVG consists of a common insulated electrode and multiple, exposed streamwise oriented electrodes used to produce counter-rotating vortical structures. Smoke and oil surface visualization of boundary layer flow over a flat plate compare the characteristics of passive control techniques and different PSVG designs. Passive and active control over a generic wall-mounted hump model, Rec = 288,000-575,000, are compared through static wall pressure measurements along the model's centerline. Different geometric effects of the PSVG electrode configuration were investigated. PSVG's with triangular exposed electrodes outperformed ordinary PSVG's under certain circumstances. The electrode arrangement produced flow control mechanisms and effectiveness similar to the passive trapezoidal vane vortex generators.

  11. Direct Numerical Simulation of Supersonic Turbulent Boundary Layer with Spanwise Wall Oscillation

    Directory of Open Access Journals (Sweden)

    Weidan Ni

    2016-03-01

    Full Text Available Direct numerical simulations (DNS of Mach = 2.9 supersonic turbulent boundary layers with spanwise wall oscillation (SWO are conducted to investigate the turbulent heat transport mechanism and its relation with the turbulent momentum transport. The turbulent coherent structures are suppressed by SWO and the drag is reduced. Although the velocity and temperature statistics are disturbed by SWO differently, the turbulence transports of momentum and heat are simultaneously suppressed. The Reynolds analogy and the strong Reynolds analogy are also preserved in all the controlled flows, proving the consistent mechanisms of momentum transport and heat transport in the turbulent boundary layer with SWO. Despite the extra dissipation and heat induced by SWO, a net wall heat flux reduction can be achieved with the proper selected SWO parameters. The consistent mechanism of momentum and heat transports supports the application of turbulent drag reduction technologies to wall heat flux controls in high-speed vehicles.

  12. Uranus evolution models with simple thermal boundary layers

    Science.gov (United States)

    Nettelmann, N.; Wang, K.; Fortney, J. J.; Hamel, S.; Yellamilli, S.; Bethkenhagen, M.; Redmer, R.

    2016-09-01

    The strikingly low luminosity of Uranus (Teff ≃ Teq) constitutes a long-standing challenge to our understanding of Ice Giant planets. Here we present the first Uranus structure and evolution models that are constructed to agree with both the observed low luminosity and the gravity field data. Our models make use of modern ab initio equations of state at high pressures for the icy components water, methane, and ammonia. Proceeding step by step, we confirm that adiabatic models yield cooling times that are too long, even when uncertainties in the ice:rock ratio (I:R) are taken into account. We then argue that the transition between the ice/rock-rich interior and the H/He-rich outer envelope should be stably stratified. Therefore, we introduce a simple thermal boundary and adjust it to reproduce the low luminosity. Due to this thermal boundary, the deep interior of the Uranus models are up to 2-3 warmer than adiabatic models, necessitating the presence of rocks in the deep interior with a possible I:R of 1 × solar. Finally, we allow for an equilibrium evolution (Teff ≃ Teq) that begun prior to the present day, which would therefore no longer require the current era to be a "special time" in Uranus' evolution. In this scenario, the thermal boundary leads to more rapid cooling of the outer envelope. When Teff ≃ Teq is reached, a shallow, subadiabatic zone in the atmosphere begins to develop. Its depth is adjusted to meet the luminosity constraint. This work provides a simple foundation for future Ice Giant structure and evolution models, that can be improved by properly treating the heat and particle fluxes in the diffusive zones.

  13. DNS Study for the origin of the flow Randomization in Late Boundary Layer Transition

    CERN Document Server

    Thapa, Manoj; Liu, Chaoqun

    2014-01-01

    This paper is devoted to the investigation of the origin and mechanism of randomization in late boundary layer transition over a flat plate without pressure gradient. The flow randomization is a crucial phase before flow transition to the turbulent state. According to existing literatures, the randomization was caused by the big background noises and non-periodic spanwise boundary conditions. It was assumed that the large ring structure is affected by background noises first, and then the change of large ring structure affects the small length scales quickly, which directly leads to randomization and formation of turbulence. However, by careful analysis of our high order DNS results, we believe that the internal instability of multiple ring cycles structure is the main reason. What we observed is that randomization begins when the third cycle overlaps the first and second cycles. A significant asymmetric phenomenon is originated from the second cycle in the middle of both streamwise and spanwise directions. M...

  14. Estimate of Boundary-Layer Depth Over Beijing, China, Using Doppler Lidar Data During SURF-2015

    Science.gov (United States)

    Huang, Meng; Gao, Zhiqiu; Miao, Shiguang; Chen, Fei; LeMone, Margaret A.; Li, Ju; Hu, Fei; Wang, Linlin

    2017-03-01

    Planetary boundary-layer (PBL) structure was investigated using observations from a Doppler lidar and the 325-m Institute of Atmospheric Physics (IAP) meteorological tower in the centre of Beijing during the summer 2015 Study of Urban-impacts on Rainfall and Fog/haze (SURF-2015) field campaign. Using six fair-weather days of lidar and tower data under clear to cloudy skies, we evaluate the ability of the Doppler lidar to probe the urban boundary-layer structure, and then propose a composite method for estimating the diurnal cycle of the PBL depth using the Doppler lidar. For the convective boundary layer (CBL), a threshold method using vertical velocity variance (σ _w^2 >0.1 m2s^{-2}) is used, since it provides more reliable CBL depths than a conventional maximum wind-shear method. The nocturnal boundary-layer (NBL) depth is defined as the height at which σ _w^2 decreases to 10 % of its near-surface maximum minus a background variance. The PBL depths determined by combining these methods have average values ranging from ≈ 270 to ≈ 1500 m for the six days, with the greatest maximum depths associated with clear skies. Release of stored and anthropogenic heat contributes to the maintenance of turbulence until late evening, keeping the NBL near-neutral and deeper at night than would be expected over a natural surface. The NBL typically becomes more shallow with time, but grows in the presence of low-level nocturnal jets. While current results are promising, data over a broader range of conditions are needed to fully develop our PBL-depth algorithms.

  15. Estimate of Boundary-Layer Depth Over Beijing, China, Using Doppler Lidar Data During SURF-2015

    Science.gov (United States)

    Huang, Meng; Gao, Zhiqiu; Miao, Shiguang; Chen, Fei; LeMone, Margaret A.; Li, Ju; Hu, Fei; Wang, Linlin

    2016-09-01

    Planetary boundary-layer (PBL) structure was investigated using observations from a Doppler lidar and the 325-m Institute of Atmospheric Physics (IAP) meteorological tower in the centre of Beijing during the summer 2015 Study of Urban-impacts on Rainfall and Fog/haze (SURF-2015) field campaign. Using six fair-weather days of lidar and tower data under clear to cloudy skies, we evaluate the ability of the Doppler lidar to probe the urban boundary-layer structure, and then propose a composite method for estimating the diurnal cycle of the PBL depth using the Doppler lidar. For the convective boundary layer (CBL), a threshold method using vertical velocity variance (σ _w^2 >0.1 m2s^{-2}) is used, since it provides more reliable CBL depths than a conventional maximum wind-shear method. The nocturnal boundary-layer (NBL) depth is defined as the height at which σ _w^2 decreases to 10 % of its near-surface maximum minus a background variance. The PBL depths determined by combining these methods have average values ranging from ≈ 270 to ≈ 1500 m for the six days, with the greatest maximum depths associated with clear skies. Release of stored and anthropogenic heat contributes to the maintenance of turbulence until late evening, keeping the NBL near-neutral and deeper at night than would be expected over a natural surface. The NBL typically becomes more shallow with time, but grows in the presence of low-level nocturnal jets. While current results are promising, data over a broader range of conditions are needed to fully develop our PBL-depth algorithms.

  16. Grain-boundary structures in hexagonal materials: Coincident and near coincident grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, D. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering)

    1994-07-01

    Embedded atom method (EAM) simulations of the structure of grain boundaries in hexagonal metal, are presented. The simulations use recently developed interatomic potentials for Ti and Co. Structures were calculated for various symmetrical tilt boundaries with the [1,100] tilt axis. The structures obtained for both metals are very similar. The energies for the Co boundaries are higher than those for Ti by a factor of 2. The structural unit model was applied to the computed grain-boundary structures in these hexagonal materials. As in cubic materials, the structural unit model can describe a series of symmetrical tilt coincident boundaries. In addition, when the coincidence ratio in the grain-boundary plane varies with the c/a ratio, a structural unit-type model can describe the variation of grain-boundary structure with c/a ratio. This model is adequate for describing series of symmetrical tilt boundaries with the grain-boundary plane oriented perpendicular to a fixed crystallographic direction and varying c/a ratios. For the structures of the so-called near coincident boundaries that appear in these materials, it was concluded that near coincident boundaries behave similarly to exact coincidence boundaries if there is a coincident periodic structure in the grain-boundary plane. This may occur even without a three-dimensional (3-D) coincident site lattice.

  17. An Analysis of the Characteristics of the Thermal Boundary Layer in Power Law Fluid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper presents a theoretical analysis of the heat transfer for the boundary layer flow on a continuous moving surface in power law fluid. The expressions of the thermal boundary layer thickness with the different heat conductivity coefficients are obtained according to the theory of the dimensional analysis of fluid dynamics and heat transfer. And the numerical results of CFD agree well with the proposed expressions. The estimate formulas can be successfully applied to giving the thermal boundary layer thickness.

  18. The high frequency acoustic radiation from the boundary layer of an axisymmetric body

    Institute of Scientific and Technical Information of China (English)

    LI Fuxin; MA Lin; MA Zhiming

    2001-01-01

    The mechanism of acoustic radiation from the boundary layer of an axisymmetric body is analyzed, and its sound pressure spectrum is predicted. It is shown that the acoustic radiation results from the transition region and the turbulent boundary layer; and that the acoustic radiation from transition region is predominant at low frequencies; while the turbulent boundary layer has the decisive effect on acoustic radiation at high frequencies. The calculated values are in good agreement with the experimental data.

  19. Boundary-layer height detection with a ceilometer at a coastal site in western Denmark

    DEFF Research Database (Denmark)

    Hannesdottir, Asta; Hansen, Aksel Walle

    One year of data from ceilometer measurements is used to estimate the atmospheric boundary-layer height at the coastal site Høvsøre in western Denmark. The atmospheric boundary-layer height is a fundamental parameter for the evaluation of the wind speed profile, and an essential parameter in atmo...... for easterly winds it is seldom possible. The ceilometer data shows potential to be used to perform extensive studies of the boundary layer....

  20. Influence of micrometeorological features on coastal boundary layer aerosol characteristics at the tropical station, Trivandrum

    Indian Academy of Sciences (India)

    K Parameswaran

    2001-09-01

    Characteristics of aerosols in the Atmospheric Boundary Layer (ABL) obtained from a bistatic CW lidar at Trivandrum for the last one decade are used to investigate the role of ABL micro- meteorological processes in controlling the altitude distribution and size spectrum. The altitude structure of number density shows three distinct zones depending on the prevailing boundary layer feature; viz, the well-mixed region, entertainment region and upper mixing region. In the lower altitudes vertical mixing is very strong (the well-mixed region) the upper limit of which is defined as aerosol-mixing height, is closely associated with the low level inversion. The aerosol mixing height generally lies in the range 150 to 400 m showing a strong dependence on the vertical eddy mixing processes in ABL. Above this altitude, the number density decreases almost exponentially with increase in altitude with a scale height of 0.5 -1.5 km. The aerosol mixing height is closely associated with the height of the Thermal Internal Boundary Layer (TIBL). Sea-spray aerosols generated as a result of the interaction of surface wind with sea surface forms an important component of mixing region aerosols at this location. This component shows a non-linear dependence on wind speed. On an average, depending on the season, the mixing region contributes about 10-30% of the columnar aerosol optical depth (AOD) at 0.5 m wavelength. A long term increasing trend (∼ 2.8% per year) is observed in mixing region AOD from 1989 to 1997. A study on the development of the aerosols in the nocturnal mixing region shows that the convectively driven daytime altitude structure continues to persist for about 4-5 hrs. after the sunset and thereafter the altitude structure is governed by vertical structure of horizontal wind. Stratified aerosol layers associated with stratified turbulence is very common during the late night hours.

  1. Wind-Turbine Wakes in a Convective Boundary Layer: A Wind-Tunnel Study

    Science.gov (United States)

    Zhang, Wei; Markfort, Corey D.; Porté-Agel, Fernando

    2013-02-01

    Thermal stability changes the properties of the turbulent atmospheric boundary layer, and in turn affects the behaviour of wind-turbine wakes. To better understand the effects of thermal stability on the wind-turbine wake structure, wind-tunnel experiments were carried out with a simulated convective boundary layer (CBL) and a neutral boundary layer. The CBL was generated by cooling the airflow to 12-15 °C and heating up the test section floor to 73-75 °C. The freestream wind speed was set at about 2.5 m s-1, resulting in a bulk Richardson number of -0.13. The wake of a horizontal-axis 3-blade wind-turbine model, whose height was within the lowest one third of the boundary layer, was studied using stereoscopic particle image velocimetry (S-PIV) and triple-wire (x-wire/cold-wire) anemometry. Data acquired with the S-PIV were analyzed to characterize the highly three-dimensional turbulent flow in the near wake (0.2-3.2 rotor diameters) as well as to visualize the shedding of tip vortices. Profiles of the mean flow, turbulence intensity, and turbulent momentum and heat fluxes were measured with the triple-wire anemometer at downwind locations from 2-20 rotor diameters in the centre plane of the wake. In comparison with the wake of the same wind turbine in a neutral boundary layer, a smaller velocity deficit (about 15 % at the wake centre) is observed in the CBL, where an enhanced radial momentum transport leads to a more rapid momentum recovery, particularly in the lower part of the wake. The velocity deficit at the wake centre decays following a power law regardless of the thermal stability. While the peak turbulence intensity (and the maximum added turbulence) occurs at the top-tip height at a downwind distance of about three rotor diameters in both cases, the magnitude is about 20 % higher in the CBL than in the neutral boundary layer. Correspondingly, the turbulent heat flux is also enhanced by approximately 25 % in the lower part of the wake, compared to that

  2. Solving Fluid Structure Interaction Problems with an Immersed Boundary Method

    Science.gov (United States)

    Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.

    2016-01-01

    An immersed boundary method for the compressible Navier-Stokes equations can be used for moving boundary problems as well as fully coupled fluid-structure interaction is presented. The underlying Cartesian immersed boundary method of the Launch Ascent and Vehicle Aerodynamics (LAVA) framework, based on the locally stabilized immersed boundary method previously presented by the authors, is extended to account for unsteady boundary motion and coupled to linear and geometrically nonlinear structural finite element solvers. The approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems. Keywords: Immersed Boundary Method, Higher-Order Finite Difference Method, Fluid Structure Interaction.

  3. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  4. Heat transfer through turbulent boundary layers - The effects of introduction of and recovery from convex curvature

    Science.gov (United States)

    Simon, T. W.; Moffat, R. J.

    1979-01-01

    Measurements have been made of the heat transfer through a turbulent boundary layer on a convexly curved isothermal wall and on a flat plate following the curved section. Data were taken for one free-stream velocity and two different ratios of boundary layer thickness to radius of curvature delta/R = 0.051 and delta/R = 0.077. Only small differences were observed in the distribution of heat transfer rates for the two boundary layer thicknesses tested, although differences were noted in the temperature distributions within the boundary layer

  5. Gelled propellant flow: Boundary layer theory for power-law fluids in a converging planar channel

    Science.gov (United States)

    Kraynik, Andrew M.; Geller, A. S.; Glick, J. H.

    1989-10-01

    A boundary layer theory for the flow of power-law fluids in a converging planar channel has been developed. This theory suggests a Reynolds number for such flows, and following numerical integration, a boundary layer thickness. This boundary layer thickness has been used in the generation of a finite element mesh for the finite element code FIDAP. FIDAP was then used to simulate the flow of power-law fluids through a converging channel. Comparison of the analytic and finite element results shows the two to be in very good agreement in regions where entrance and exit effects (not considered in the boundary layer theory) can be neglected.

  6. Numerical Study on Mechanism of Small Vortex Generation in Boundary Layer Transition

    CERN Document Server

    Lu, Ping

    2014-01-01

    The small vortex generation is a key issue of the mechanism for late flow transition and turbulence generation. It was widely accepted that small length vortices were generated by large vortex breakdown. According to our recent DNS, we find that the hairpin vortex structure is very stable and never breaks down to small pieces. On the other hand, we recognize that there are strong positive spikes besides the ring neck in the spanwise direction. The strongly positive spikes are caused by second sweeps which are generated by perfectly circular and perpendicularly standing vortex rings. The second sweep brings energy from the invisid region downdraft to the bottom of the boundary layers, which generates high shear layers around the positive spikes.Since the high shear layer is not stable, all small length scales (turbulence) are generated around high shear layers especially near the wall surface (bottom of boundary layers). This happens near the ring neck in the streamwise direction and besides the original vorte...

  7. Relation between the Atmospheric Boundary Layer and Impact Factors under Severe Surface Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Yinhuan Ao

    2017-01-01

    Full Text Available This paper reported a comprehensive analysis on the diurnal variation of the Atmospheric Boundary Layer (ABL in summer of Badain Jaran Desert and discussed deeply the effect of surface thermal to ABL, including the Difference in Surface-Air Temperature (DSAT, net radiation, and sensible heat, based on limited GPS radiosonde and surface observation data during two intense observation periods of experiments. The results showed that (1 affected by topography of the Tibetan Plateau, the climate provided favorable external conditions for the development of Convective Boundary Layer (CBL, (2 deep CBL showed a diurnal variation of three- to five-layer structure in clear days and five-layer ABL structure often occurred about sunset or sunrise, (3 the diurnal variation of DSAT influenced thickness of ABL through changes of turbulent heat flux, (4 integral value of sensible heat which rapidly converted by surface net radiation had a significant influence on the growth of CBL throughout daytime. The cumulative effect of thick RML dominated the role after CBL got through SBL in the development stage, especially in late summer, and (5 the development of CBL was promoted and accelerated by the variation of wind field and distribution of warm advection in high and low altitude.

  8. Measurements of a supersonic turbulent boundary layer by focusing schlieren deflectometry

    Science.gov (United States)

    Garg, S.; Settles, G. S.

    Some novel, non-intrusive, high-frequency, localized optical measurements of turbulence in compressible flows are described. The technique is based upon focusing schlieren optics coupled with high-speed quantitative measurement of light intensity fluctuations in the schlieren image. Measurements of density gradient fluctuations confined to a thin slice of the flowfield are thus obtained. The new instrument was used to investigate the structure of a two-dimensional, adiabatic, wind tunnel wall boundary layer at a Mach number of 3. The measurements were compared to data obtained using hot-wire anemometry and good agreement was found between the two. Distributions of broadband convection velocity of large-scale structures through the boundary later were also measured. In marked contrast to earlier results, it is shown here that the convection velocity is essentially identical to the local mean velocity. Further, results obtained using the VITA conditional sampling technique shed new light on the turbulent boundary layer structure. Overall, the data presented herein serve to validate the new measurement technique.

  9. Global instabilities and transient growth in Blasius boundary-layer flow over a compliant panel

    Indian Academy of Sciences (India)

    K Tsigklifis; A D Lucey

    2015-05-01

    We develop a hybrid of computational and theoretical approaches suited to study the fluid–structure interaction (FSI) of a compliant panel, flush between rigid upstream and downstream wall sections, with a Blasius boundary-layer flow. The ensuing linear-stability analysis is focused upon global instability and transient growth of disturbances. The flow solution is developed using a combination of vortex and source boundary-element sheets on a computational grid while the dynamics of a plate-spring compliant wall are couched in finite-difference form. The fully coupled FSI system is then written as an eigenvalue problem and the eigenvalues of the various flow- and wall-based instabilities are analysed. It is shown that coalescence or resonance of a structural eigenmode with either a flow-based Tollmien–Schlichting Wave (TSW) or wall-based travelling-wave flutter (TWF) modes can occur. This can render the nature of these well-known convective instabilities to become global for a finite compliant wall giving temporal growth of system disturbances. Finally, a non-modal analysis based on the linear superposition of the extracted temporal modes is presented. This reveals a high level of transient growth when the flow interacts with a compliant panel that has structural properties which render the FSI system prone to global instability. Thus, to design stable finite compliant panels for applications such as boundary-layer transition postponement, both global instabilities and transient growth must be taken into account.

  10. Uranus evolution models with simple thermal boundary layers

    CERN Document Server

    Nettelmann, N; Fortney, J J; Hamel, S; Yellamilli, S; Bethkenhagen, M; Redmer, R

    2016-01-01

    The strikingly low luminosity of Uranus (Teff ~ Teq) constitutes a long-standing challenge to our understanding of Ice Giant planets. Here we present the first Uranus structure and evolution models that are constructed to agree with both the observed low luminosity and the gravity field data. Our models make use of modern ab initio equations of state at high pressures for the icy components water, methane, and ammonia. Proceeding step by step, we confirm that adiabatic models yield cooling times that are too long, even when uncertainties in the ice:rock ratio (I:R) are taken into account. We then argue that the transition between the ice/rock-rich interior and the H/He-rich outer envelope should be stably stratified. Therefore, we introduce a simple thermal boundary and adjust it to reproduce the low luminosity. Due to this thermal boundary, the deep interior of the Uranus models are up to 2--3 warmer than adiabatic models, necessitating the presence of rocks in the deep interior with a possible I:R of $1\\tim...

  11. Kelvin-Helmholtz instability in the magnetopause-boundary layer region

    Science.gov (United States)

    Lee, L. C.; Albano, R. K.; Kan, J. R.

    1981-01-01

    The Kelvin-Helmholtz instability in the magnetopause-boundary layer region is studied on the basis of an idealized model which consists of three uniform plasma regions: the magnetosheath, the boundary layer, and the magnetosphere. There are two unstable modes in the magnetopause-boundary layer region: one is excited at the magnetopause (the magnetopause mode) and the other is excited at the inner surface of the boundary layer (the inner mode). The inner mode is found to be unstable most of the time, while the excitation of the magnetopause mode depends on the magnetic field in the magnetosheath. The observed variation of the boundary layer thickness can be attributed to the unstable inner mode. Possible relationships between the Pc 3-5 geomagnetic pulsations and the surface waves excited on the magnetospheric boundary are also discussed.

  12. Wind-US Code Contributions to the First AIAA Shock Boundary Layer Interaction Prediction Workshop

    Science.gov (United States)

    Georgiadis, Nicholas J.; Vyas, Manan A.; Yoder, Dennis A.

    2013-01-01

    This report discusses the computations of a set of shock wave/turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock/boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Four turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Baseline and Shear Stress Transport k-omega two-equation models, and an explicit algebraic stress k-omega formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.

  13. Modelling the internal boundary layer over the lower fraser valley, British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Batchvarova, E. [National Inst. of Meteorology and Hydrology, Sofia (Bulgaria); Steyn, D. [Univ. of British Columbia, Dept. of Geography, Vancouver (Canada); Cai, X. [Univ. of Birmingham, School of Geography, Edgbaston (United Kingdom); Gryning, S.E. [Risoe National Lab., Roskilde (Denmark); Baldi, M. [Inst. for Atmospheric Physics, IFA-CNR, Rome (Italy)

    1997-10-01

    In this study we use the very extensive data-set on temporal and spatial structure of the internal boundary layer on the Lower Faser Valley, Canada, collected during the so-called Pacific `93 field campaign, to study the ability of the simple applied model by Gryning and Batchvarova (1996) and the CSU-RAMS meso-scale model summarised in Pielke et al. (1992) to describe the development and variability of the internal boundary layer depth during the course of a day. Given the complexity of topography, coastline and land-use in the Lower Fraser Valley region, both models perform remarkably well. The simple applied model performs extremely well, given its simplicity. It is clear that correct specification of spatially resolved surface sensible heat flux and wind field are crucial to the success of this model which can be operated at very fine spatial resolution. The 3D model performs extremely well, though it too must capture the local wind field correctly for complete success. Its limited horizontal resolution results in strongly smoothed internal boundary layer height fields. (LN)

  14. The effect of non-Newtonian viscosity on the stability of the Blasius boundary layer

    Science.gov (United States)

    Griffiths, P. T.; Gallagher, M. T.; Stephen, S. O.

    2016-07-01

    We consider, for the first time, the stability of the non-Newtonian boundary layer flow over a flat plate. Shear-thinning and shear-thickening flows are modelled using a Carreau constitutive viscosity relationship. The boundary layer equations are solved in a self-similar fashion. A linear asymptotic stability analysis, that concerns the lower-branch structure of the neutral curve, is presented in the limit of large Reynolds number. It is shown that the lower-branch mode is destabilised and stabilised for shear-thinning and shear-thickening fluids, respectively. Favourable agreement is obtained between these asymptotic predictions and numerical results obtained from an equivalent Orr-Sommerfeld type analysis. Our results indicate that an increase in shear-thinning has the effect of significantly reducing the value of the critical Reynolds number, this suggests that the onset of instability will be significantly advanced in this case. This postulation, that shear-thinning destabilises the boundary layer flow, is further supported by our calculations regarding the development of the streamwise eigenfunctions and the relative magnitude of the temporal growth rates.

  15. Angular Momentum Transport and Variability in Boundary Layers of Accretion Disks Driven by Global Acoustic Modes

    CERN Document Server

    Belyaev, Mikhail A; Stone, James M

    2012-01-01

    Disk accretion onto a weakly magnetized central object, e.g. a star, is inevitably accompanied by the formation of a boundary layer near the surface, in which matter slows down from the highly supersonic orbital velocity of the disk to the rotational velocity of the star. We perform high resolution 2D hydrodynamical simulations in the equatorial plane of an astrophysical boundary layer with the goal of exploring the dynamics of non-axisymmetric structures that form there. We generically find that the supersonic shear in the boundary layer excites non-axisymmetric quasi-stationary acoustic modes that are trapped between the surface of the star and a Lindblad resonance in the disk. These modes rotate in a prograde fashion, are stable for hundreds of orbital periods, and have a pattern speed that is less than and of order the rotational velocity at the inner edge of the disk. The origin of these intrinsically global modes is intimately related to the operation of a corotation amplifier in the system. Dissipation...

  16. Separation control in a hypersonic shock wave / turbulent boundary-layer interaction

    Science.gov (United States)

    Schreyer, Anne-Marie; Bermejo-Moreno, Ivan; Kim, Jeonglae; Urzay, Javier

    2016-11-01

    Hypersonic vehicles play a key role for affordable access to space. The associated flow fields are strongly affected by shock wave/turbulent boundary-layer interactions, and the inherent separation causes flow distortion and low-frequency unsteadiness. Microramp sub-boundary layer vortex generators are a promising means to control separation and diminish associated detrimental effects. We investigate the effect of a microramp on the low-frequency unsteadiness in a fully separated interaction. A large eddy simulation of a 33 ∘ -compression-ramp interaction was performed for an inflow Mach number of 7.2 and a Reynolds number based on momentum thickness of Reθ = 3500 , matching the experiment of Schreyer et al. (2011). For the control case, we introduced a counter-rotating vortex pair, as induced by a single microramp, into the boundary layer through the inflow conditions. We applied a dynamic mode decomposition (DMD) on both cases to identify coherent structures that are responsible for the dynamic behavior. Based on the DMD, we discuss the reduction of the separation zone and the stabilization of the shock motion achieved by the microramp, and contribute to the description of the governing mechanisms. Pursued during the 2016 CTR Summer Program at Stanford University.

  17. Nonlinear interaction of waves in boundary-layer flows

    Science.gov (United States)

    Nayfeh, A. H.; Bozatli, A. N.

    1979-01-01

    First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed by using the method of multiple scales. For the case of two waves, a strong nonlinear interaction exists if one of the frequencies w2 is twice the other frequency w1. Numerical results for flow past a flat plate show that this interaction mechanism is strongly destabilizing even in regions where either the fundamental or its harmonic is damped in the absence of the interaction. For the case of three waves, a strong nonlinear interaction exists when w3 = w2- w1. This combination resonance causes the amplitude of the wave with the difference frequency w3 to multiply many times in magnitude in a short distance even if it is damped in the absence of the interaction. The initial amplitudes play a dominant role in determining the changes in the amplitudes of the waves in both of these mechanisms.

  18. Disturbance amplification in boundary layers over thin wall films

    Science.gov (United States)

    Saha, Sandeep; Page, Jacob; Zaki, Tamer A.

    2016-02-01

    In single-fluid boundary layers, streaks can amplify at sub-critical Reynolds numbers and initiate early transition to turbulence. Introducing a wall film of different viscosities can appreciably alter the stability of the base flow and, in particular, the transient growth of the perturbation streaks. The formalism of seminorms is used to identify optimal disturbances which maximize the kinetic energy in the two-fluid flow. An examination of optimal growth over a range of viscosity ratios of the film relative to the outer flow reveals three distinct regimes of amplification, each associated with a particular combination of the eigenfunctions. In order to elucidate the underlying amplification mechanisms, a model problem is formulated: An initial value problem is solved using an eigenfunction expansion and is used to compute the evolution of pairs of eigenfunctions. By appropriately selecting the pair, the initial value problem qualitatively reproduces the temporal evolution of the optimal disturbance, and provides an unambiguous explanation of the dynamics. Two regimes of transient growth are attributed to the evolution of the interface mode along with free-stream vortical modes; the third regime is due to the evolution of the interface and a discrete mode. The results demonstrate that a lower-viscosity film can effectively reduce the efficacy of the lift-up mechanism and, as a result, transient growth of disturbances. However, another mechanism of amplification of wall-normal vorticity arises due to the deformation of the two-fluid interface and becomes dominant below a critical viscosity ratio.

  19. NOx and NOy in the Tropical Marine Boundary Layer

    Science.gov (United States)

    Reed, Chris; Evans, Mathew J.; Lee, James D.; Carpenter, Lucy J.; Read, Katie A.; Mendes, Luis N.

    2016-04-01

    Nitrogen oxides (NOx=NO+NO2) and their reservoir species (NOy) play a central role in determining the chemistry of the troposphere. Although their concentrations are low (1-100 ppt) in regions such as the remote marine boundary layer, they have a profound impact on ozone production and the oxidizing capacity. There are very few observations of NOx and NOy in remote oceanic regions due to the technical challenges of measuring such low concentrations, and thus our understanding of this background chemistry is incomplete. Here we present long term measurements of NOx (2006-2015) and more recent measurements of speciated NOy (total peroxyacetyl nitrates, PANs; alkyl nitrates, ANs; nitric acid; and aerosol analogues) made at the Cape Verde Atmospheric Observatory (CVAO; 16° 51' N, 24° 52' W) located in the tropical Atlantic Ocean. We identify potential interferences in the NO2 and NOy measurements and methods to eliminate them. Diurnal and seasonal cycles are interpreted using a box model. We find a complex chemistry with interactions between organic and inorganic chemistry, between the aerosol and gas phase, and between the very local and large scales.

  20. Iodine oxide in the global marine boundary layer

    Directory of Open Access Journals (Sweden)

    C. Prados-Roman

    2014-08-01

    Full Text Available Emitted mainly by the oceans, iodine is a halogen compound important for atmospheric chemistry due to its high ozone depletion potential and effect on the oxidizing capacity of the atmosphere. Here we present a comprehensive dataset of iodine oxide (IO measurements in the open marine boundary layer (MBL made during the Malaspina 2010 circumnavigation. Results show IO mixing ratios ranging from 0.4 to 1 pmol mol−1 and, complemented with additional field campaigns, this dataset confirms through observations the ubiquitous presence of reactive iodine chemistry in the global marine environment. We use a global model with organic (CH3I, CH2ICl, CH2I2 and CH2IBr and inorganic (HOI and I2 iodine ocean emissions to investigate the contribution of the different iodine source gases to the budget of IO in the global MBL. In agreement with previous estimates, our results indicate that, globally averaged, the abiotic precursors contribute about 75% to the iodine oxide budget. However, this work reveals a strong geographical pattern in the contribution of organic vs. inorganic precursors to reactive iodine in the global MBL.