WorldWideScience

Sample records for boundary layer flow

  1. Boundary Layers in Laminar Vortex Flows.

    Science.gov (United States)

    Baker, Glenn Leslie

    A detailed experimental study of the flow in an intense, laminar, axisymmetric vortex has been conducted in the Purdue Tornado Vortex Simulator. The complicated nature of the flow in the boundary layer of laboratory vortices and presumably on that encountered in full-scale tornadoes has been examined. After completing a number of modifications to the existing facility to improve the quality of the flow in the simulator, hot-film anemometry was employed for making velocity-component and turbulence-intensity measurements of both the free-stream and boundary layer portions of the flow. The measurements represent the first experimental boundary layer investigation of a well-defined vortex flow to appear in the literature. These results were compared with recent theoretical work by Burggraf, Stewartson and Belcher (1971) and with an exact similarity solution for line-sink boundary layers developed by the author. A comparison is also made with the numerical simulation of Wilson (1981) in which the boundary conditions were matched to those of the present experimental investigation. Expressions for the vortex core radius, the maximum tangential velocity and the maximum pressure drop are given in terms of dimensionless modeling parameters. References. Burggraf, O. R., K. Stewartson and R. Belcher, Boundary layer. induced by a potential vortex. Phys. Fluids 14, 1821-1833 (1971). Wilson, T., M. S. thesis, Vortex Boundary Layer Dynamics, Univ. Calif. Davis (1981).

  2. High enthalpy hypersonic boundary layer flow

    Science.gov (United States)

    Yanow, G.

    1972-01-01

    A theoretical and experimental study of an ionizing laminar boundary layer formed by a very high enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with allowance for the presence of helium driver gas is described. The theoretical investigation has shown that the use of variable transport properties and their respective derivatives is very important in the solution of equilibrium boundary layer equations of high enthalpy flow. The effect of low level helium contamination on the surface heat transfer rate is minimal. The variation of ionization is much smaller in a chemically frozen boundary layer solution than in an equilibrium boundary layer calculation and consequently, the variation of the transport properties in the case of the former was not essential in the integration. The experiments have been conducted in a free piston shock tunnel, and a detailed study of its nozzle operation, including the effects of low levels of helium driver gas contamination has been made. Neither the extreme solutions of an equilibrium nor of a frozen boundary layer will adequately predict surface heat transfer rate in very high enthalpy flows.

  3. Modeling and computation of boundary-layer flows laminar, turbulent and transitional boundary layers in incompressible and compressible flows

    CERN Document Server

    Cebeci, Tuncer

    2005-01-01

    This second edition of our book extends the modeling and calculation of boundary-layer flows to include compressible flows. The subjects cover laminar, transitional and turbulent boundary layers for two- and three-dimensional incompressible and compressible flows. The viscous-inviscid coupling between the boundary layer and the inviscid flow is also addressed. The book has a large number of homework problems.

  4. Leaky waves in boundary layer flow

    Science.gov (United States)

    Pralits, Jan

    2005-11-01

    Linear stability analysis of boundary layer flow is traditionally performed by solving the Orr-Sommerfeld equation (OSE), either in a temporal or a spatial framework. The mode structure of the OSE is in both cases composed of a finite number of discrete modes which decay at infinity in the wall- normal direction y, and a continuous spectrum of propagating modes behaving as (±ik y) when y->∞, with real k. A peculiarity of this structure is that the number of discrete modes changes with the Reynolds number, Re. They indeed seem to disappear behind the continuous spectrum at certain Re. This phenomenon is here investigated by studying the response of the Blasius boundary layer forced instantaneously in space and time. Since the solution of the forced and homogeneous Laplace-transformed problem both depend on the free-stream boundary conditions, it is shown here that a suitable change of variables can remove the branch cut in the Laplace plane. As a result, integration of the inverse Laplace transform along the two sides of the branch cut, which gives rise to the continuous spectrum, can be replaced by a sum of residues corresponding to an additional set of discrete eigenvalues. These new modes grow at infinity in the y direction, and are analogous to the leaky waves found in the theory of optical waveguides, i.e. optical fibers, which are attenuated in the direction of the waveguide but grow unbounded in the direction perpendicular to it.

  5. Magnetohydrodynamic cross-field boundary layer flow

    Directory of Open Access Journals (Sweden)

    D. B. Ingham

    1982-01-01

    Full Text Available The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.

  6. Numerical simulation of turbulent atmospheric boundary layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Bennes, L.; Bodnar, T.; Kozel, K.; Sladek, I. [Czech Technical Univ., Prague (Czech Republic). Dept. of Technical Mathematics; Fraunie, P. [Universite Toulon et du Var, La Garde (France). Lab. de Sondages Electromagnetiques de l' Environment Terrestre

    2001-07-01

    The work deals with the numerical solution of viscous turbulent steady flows in the atmospheric boundary layer including pollution propagation. For its description we use two different mathematical models: - a model based on the Reynolds averaged Navier-Stokes equations for incompressible flows - a model based on a system of boundary layer equations. These systems are completed by two transport equations for the concentration of passive pollutants and the potential temperature in conservative form, respectively, and by an algebraic turbulence model. (orig.)

  7. Boundary Layer Flow Over a Moving Wavy Surface

    Science.gov (United States)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a

  8. Flow visualization of swept wing boundary layer transition

    NARCIS (Netherlands)

    Serpieri, J.; Kotsonis, M.

    2015-01-01

    In this work the flow visualization of the transition pattern occurring on a swept wing in a subsonic flow is presented. This is done by means of fluorescent oil flow technique and boundary layer hot-wire scans. The experiment was performed at Reynolds number of 2:15 . 106 and at angle of attack of

  9. On Cauchy conditions for asymmetric mixed convection boundary layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Amaouche, Mustapha [Laboratoire de Physique Theorique, Universite de Bejaia (Algeria); Kessal, Mohand [Departement Transport et Equipement Petrolier, Faculte des Hydrocarbures et de la Chimie, Universite de Boumerdes, 35000, Boumerdes (Algeria)

    2003-06-01

    The fundamental question of how and where does an asymmetric mixed convection boundary layer flow around a heated horizontal circular cylinder begin to develop is raised. We first transform the classical boundary layer equations by using an integral method of Karman-Pohlhausen type and obtain two coupled equations governing the evolutions of the dynamic and thermal boundary layers. Because of its global character, the implemented method allows to bypass the difficulty of downstream-upstream interactions. Cauchy conditions characterizing the starting of the boundary layers are found; they are obtained in a surprisingly simple manner for the limiting cases corresponding to Pr=1, Pr{yields}0 and Pr{yields}{infinity}. Otherwise, these conditions can be found by using a prediction correction algorithm. Some numerical experiments are finally performed in order to illustrate the theory. (authors)

  10. LAMINAR STABILITY ANALYSIS IN BOUNDARY LAYER FLOW

    Directory of Open Access Journals (Sweden)

    Mihaela CALUDESCU

    2009-09-01

    Full Text Available This study presents a numerical study concerning the flow control by suction and injection. The case study is over a symmetrical airfoil with suction and injection slots. The angle of attack is 3 degree with the Mach number 0.12.

  11. Analysis of diabatic flow modification in the internal boundary layer

    DEFF Research Database (Denmark)

    Floors, Rogier; Gryning, Sven-Erik; Pena Diaz, Alfredo;

    2011-01-01

    is controlled by a combination of both downstream and upstream stability and surface roughness conditions. A model based on a diffusion analogy is able to predict the internal boundary layer height well. Modeling the neutral and long-term wind profile with a 3 layer linear interpolation scheme gives good......Measurements at two meteorological masts in Denmark, Horns Rev in the sea and Høvsøre near the coastline on land, are used to analyze the behaviour of the flow after a smooth-to-rough change in surface conditions. The study shows that the wind profile within the internal boundary layer...... results at Høvsøre. Based on a comparison with a numerical model and the measurements, the constants in the interpolation scheme are slightly adjusted, which yields an improvement for the description of the wind profile in the internal boundary layer....

  12. Turbulent boundary-layer structure of flows over freshwater biofilms

    Science.gov (United States)

    Walker, J. M.; Sargison, J. E.; Henderson, A. D.

    2013-12-01

    The structure of the turbulent boundary-layer for flows over freshwater biofilms dominated by the diatom Tabellaria flocculosa was investigated. Biofilms were grown on large test plates under flow conditions in an Australian hydropower canal for periods up to 12 months. Velocity-profile measurements were obtained using LDV in a recirculating water tunnel for biofouled, smooth and artificially sandgrain roughened surfaces over a momentum thickness Reynolds number range of 3,000-8,000. Significant increases in skin friction coefficient of up to 160 % were measured over smooth-wall values. The effective roughnesses of the biofilms, k s, were significantly higher than their physical roughness measured using novel photogrammetry techniques and consisted of the physical roughness and a component due to the vibration of the biofilm mat. The biofilms displayed a k-type roughness function, and a logarithmic relationship was found between the roughness function and roughness Reynolds number based on the maximum peak-to-valley height of the biofilm, R t. The structure of the boundary layer adhered to Townsend's wall-similarity hypothesis even though the scale separation between the effective roughness height and the boundary-layer thickness was small. The biofouled velocity-defect profiles collapsed with smooth and sandgrain profiles in the outer region of the boundary layer. The Reynolds stresses and quadrant analysis also collapsed in the outer region of the boundary layer.

  13. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.;

    2014-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...

  14. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.;

    2012-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...

  15. Characteristics of turbulent boundary layer flow over algal biofilm

    Science.gov (United States)

    Murphy, Elizabeth; Barros, Julio; Schultz, Michael; Steppe, Cecily; Flack, Karen; Reidenbach, Matthew

    2015-11-01

    Algal biofilms are an important fouling community on ship hulls, with severe economic consequences due to drag-induced increases in fuel use and cleaning costs. Here, we characterize the boundary layer flow structure in turbulent flow over diatomaceous slime, a type of biofilm. Diatomaceous slime composed of three species of diatoms commonly found on ship hulls was grown on acrylic test plates under shear stress. The slime averages 1.6 mm in thickness and has a high density of streamers, which are flexible elongated growths with a length on the order of 1- 2 mm located at the top of the biofilm that interact with the flow. Fouled acrylic plates were placed in a water tunnel facility specialized for detailed turbulent boundary layer measurements. High resolution Particle Image Velocimetry (PIV) data are analyzed for mean velocity profile as well as local turbulent stresses and turbulent kinetic energy (TKE) production, dissipation and transport. Quadrant analysis is used to characterize the impact of the instantaneous events of Reynolds shear stress (RSS) in the flow. To investigate the coherence of the large-scale motion in the flow two-point correlation analysis is employed. Funding provided by the Office of Naval Research and the National Science Foundation.

  16. Logarithmic boundary layers in highly turbulent Taylor-Couette flow

    CERN Document Server

    Huisman, Sander G; Cierpka, Christian; Kahler, Christian J; Lohse, Detlef; Sun, Chao

    2013-01-01

    We provide direct measurements of the boundary layer properties in highly turbulent Taylor-Couette flow up to $\\text{Ta}=6.2 \\times 10^{12}$ using high-resolution particle image velocimetry (PIV). We find that the mean azimuthal velocity profile at the inner and outer cylinder can be fitted by the von K\\'arm\\'an log law $u^+ = \\frac 1\\kappa \\ln y^+ +B$. The von K\\'arm\\'an constant $\\kappa$ is found to depend on the driving strength $\\text{Ta}$ and for large $\\text{Ta}$ asymptotically approaches $\\kappa \\approx 0.40$. The variance profiles of the local azimuthal velocity have a universal peak around $y^+ \\approx 12$ and collapse when rescaled with the driving velocity (and not with the friction velocity), displaying a log-dependence of $y^+$ as also found for channel and pipe flows [1,2].

  17. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  18. Air-flow sensitive hairs: boundary layers in oscillatory flows around arthropod appendages

    NARCIS (Netherlands)

    Steinmann, T.; Casas, J.; Krijnen, G.J.M.; Dangles, O.

    2006-01-01

    The aim of this work is to characterize the boundary layer over small appendages in insects in longitudinal and transverse oscillatory flows. The problem of immediate interest is the early warning system in crickets perceiving flying predators using air-flow-sensitive hairs on cerci, two long append

  19. Boundary Layer Flows in Porous Media with Lateral Mass Flux

    DEFF Research Database (Denmark)

    Nemati, H; H, Bararnia; Noori, F;

    2015-01-01

    Solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium are presented using the Homotopy Analysis Method and Shooting Numerical Method. Homotopy Analysis Method yields an analytic solution in the form of a rapidly...

  20. Gelled propellant flow: Boundary layer theory for power-law fluids in a converging planar channel

    Science.gov (United States)

    Kraynik, Andrew M.; Geller, A. S.; Glick, J. H.

    1989-10-01

    A boundary layer theory for the flow of power-law fluids in a converging planar channel has been developed. This theory suggests a Reynolds number for such flows, and following numerical integration, a boundary layer thickness. This boundary layer thickness has been used in the generation of a finite element mesh for the finite element code FIDAP. FIDAP was then used to simulate the flow of power-law fluids through a converging channel. Comparison of the analytic and finite element results shows the two to be in very good agreement in regions where entrance and exit effects (not considered in the boundary layer theory) can be neglected.

  1. Mixed convection boundary layer flow adjacent to a vertical surface embedded in a stable stratified medium

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, Anuar; Nazar, Roslinda [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Pop, Ioan [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2008-07-01

    The steady mixed convection boundary layer flow through a stable stratified medium adjacent to a vertical surface is investigated. The velocity outside the boundary layer and the surface temperature are assumed to vary linearly from the leading edge of the surface. The transformed ordinary differential equations are solved numerically by the Keller-box method. It is found that dual solutions exist, and the thermal stratification delays the boundary layer separation. (author)

  2. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    Science.gov (United States)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  3. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    Science.gov (United States)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  4. Simulation of High Re Boundary Layer Flows on Uniform Grids Using Immersed Boundaries with Vorticity Confinement

    Science.gov (United States)

    Chitta, Subhashini; Steinhoff, John

    2015-11-01

    This paper describes the use of Vorticity Confinement (VC) to efficiently treat complex blunt bodies with thin shed vortex sheets and attached boundary layers. Because these flows involve turbulence in the vortical regions, there is currently no ab initio method to treat them on current or foreseeable computers. In fact, in spite of years of turbulence modeling efforts (such as LES or RANS), serious flaws in aerodynamic design involving vortex shedding may still be left undetected until the expensive prototype or production stage. Our basic premise is that, for a class of real-world problems requiring simulating ensembles of flow conditions for overall accuracy, conventional turbulence models suffer cost constraints. For these reasons, VC is used to rapidly simulate many operating conditions, as is often done in expensive testing programs for flying prototypes, and in realistic simulations. To achieve dramatically lower computational cost, VC treats the entire flow in a uniform, coarse grid with solid surfaces ``immersed'' in the grid so that they can be quickly generated for many configurations with no requirement for adaptive or conforming fine grids. Also, the VC method has the efficiency of panel methods, but the generality and ease of use of Euler equation methods. We would like to thank Dr. Frank Caradonna for his suggestions and support.

  5. Boundary Layer Flow of Second Grade Fluid in a Cylinder with Heat Transfer

    Directory of Open Access Journals (Sweden)

    S. Nadeem

    2012-01-01

    Full Text Available An analysis is carried out to obtain the similarity solution of the steady boundary layer flow and heat transfer of a second grade through a horizontal cylinder. The governing partial differential equations along with the boundary conditions are reduced to dimensionless form by using the boundary layer approximation and applying suitable similarity transformation. The resulting nonlinear coupled system of ordinary differential equations subject to the appropriate boundary conditions is solved by homotopy analysis method (HAM. The effects of the physical parameters on the flow and heat transfer characteristics of the model are presented. The behavior of skin friction coefficient and Nusselt numbers is studied for different parameters.

  6. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate

    Institute of Scientific and Technical Information of China (English)

    Krishnendu Bhattacharyya; Swati Mukhopadhyay; G.C.Layek

    2011-01-01

    An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented. A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method. In the boundary slip condition no local similarity occurs. Velocity and temperature distributions within the boundary layer are presented. Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate.%@@ An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented.A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method.In the boundary slip condition no local similarity occurs.Velocity and temperature distributions within the boundary layer are presented.Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate.

  7. Active control of Boundary Layer Separation & Flow Distortion in Adverse Pressure Gradient Flows via Supersonic Microjets

    Science.gov (United States)

    Alvi, Farrukh S.; Gorton, Susan (Technical Monitor)

    2005-01-01

    Inlets to aircraft propulsion systems must supply flow to the compressor with minimal pressure loss, flow distortion or unsteadiness. Flow separation in internal flows such as inlets and ducts in aircraft propulsion systems and external flows such as over aircraft wings, is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control this flow separation. In particular, the use of supersonic microjets as a means of controlling boundary layer separation was explored. The geometry used for the early part of this study was a simple diverging Stratford ramp, equipped with arrays of supersonic microjets. Initial results, based on the mean surface pressure distribution, surface flow visualization and Planar Laser Scattering (PLS) indicated a reverse flow region. We implemented supersonic microjets to control this separation and flow visualization results appeared to suggest that microjets have a favorable effect, at least to a certain extent. However, the details of the separated flow field were difficult to determine based on surface pressure distribution, surface flow patterns and PLS alone. It was also difficult to clearly determine the exact influence of the supersonic microjets on this flow. In the latter part of this study, the properties of this flow-field and the effect of supersonic microjets on its behavior were investigated in further detail using 2-component (planar) Particle Image Velocimetry (PIV). The results clearly show that the activation of microjets eliminated flow separation and resulted in a significant increase in the momentum of the fluid near the ramp surface. Also notable is the fact that the gain in momentum due to the elimination of flow separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very

  8. A Note on the bottom shear stress in oscillatory planetary boundary layer flow

    Directory of Open Access Journals (Sweden)

    Dag Myrhaug

    1988-07-01

    Full Text Available A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974 measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.

  9. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  10. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    International Nuclear Information System (INIS)

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated

  11. MHD Free Convective Boundary Layer Flow of a Nanofluid past a Flat Vertical Plate with Newtonian Heating Boundary Condition

    OpenAIRE

    Uddin, Mohammed J.; Khan, Waqar A.; Ahmed I Ismail

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first convert...

  12. Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers

    Science.gov (United States)

    Gajjar, J. S. B.

    1995-01-01

    The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.

  13. Unsteady compressible boundary layer flow over a circular cone near aplane of symmetry

    OpenAIRE

    Chamkha, AJ; Takhar, HS; G. Nath

    2005-01-01

    An analysis has been performed to study the unsteady laminar compressible boundary layer governing the hypersonic flow over a circular cone at an angle of attack near a plane of symmetry with either in flow or out flow in the presence of suction. The flow is assumed to be steady at time t= 0 and at t > 0 it becomes unsteady due to the time-dependent free stream velocity which varies arbitrarily with time. The nonlinear coupled parabolic partial differential equations under boundary layer a...

  14. Off-Body Boundary-Layer Measurement Techniques Development for Supersonic Low-Disturbance Flows

    Science.gov (United States)

    Owens, Lewis R.; Kegerise, Michael A.; Wilkinson, Stephen P.

    2011-01-01

    Investigations were performed to develop accurate boundary-layer measurement techniques in a Mach 3.5 laminar boundary layer on a 7 half-angle cone at 0 angle of attack. A discussion of the measurement challenges is presented as well as how each was addressed. A computational study was performed to minimize the probe aerodynamic interference effects resulting in improved pitot and hot-wire probe designs. Probe calibration and positioning processes were also developed with the goal of reducing the measurement uncertainties from 10% levels to less than 5% levels. Efforts were made to define the experimental boundary conditions for the cone flow so comparisons could be made with a set of companion computational simulations. The development status of the mean and dynamic boundary-layer flow measurements for a nominally sharp cone in a low-disturbance supersonic flow is presented.

  15. Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet

    OpenAIRE

    Masood Khan; Hashim

    2015-01-01

    This article studies the Carreau viscosity model (which is a generalized Newtonian model) and then use it to obtain a formulation for the boundary layer equations of the Carreau fluid. The boundary layer flow and heat transfer to a Carreau model over a nonlinear stretching surface is discussed. The Carreau model, adequate for many non-Newtonian fluids, is used to characterize the behavior of the fluids having shear thinning properties and fluids with shear thickening properties for numerical ...

  16. Flow Modification over Rotor Blade with Suction Boundary Layer Control Technique

    Directory of Open Access Journals (Sweden)

    Navneet Kumar

    2016-06-01

    Full Text Available The efficiency of transonic aircraft engines depend upon the performance of compressor rotor. To increase compressor rotors performance flow separation around rotor blades must be delayed and controlled. The aim was to control the flow separation of blades using suction boundary layer control method. Rotor blade has been modelled in designing software CATIA and then a suction surface has been created on blade and then import these geometries to ANSYS-CFX 14.5 for computational analysis of flow around blades. Suction slot has been applied at the trailing edge of suction surface and Shear stress transport model has been used for computational analysis. Two different suction mass flow rates 1 kg/s and 1.5 kg/s have been used here and boundary layer separation effects have been changed and this could be readily seen that the velocity vectors have reattached, preventing the boundary layer separation at the suction surface of the blade.

  17. Fluorescence Visualization of Hypersonic Flow Past Triangular and Rectangular Boundary-layer Trips

    Science.gov (United States)

    Danehy, Paul M.; Garcia, A. P.; Borg, Stephen E.; Dyakonov, Artem A.; Berry, Scott A.; Inman, Jennifer A.; Alderfer, David W.

    2007-01-01

    Planar laser-induced fluorescence (PLIF) flow visualization has been used to investigate the hypersonic flow of air over surface protrusions that are sized to force laminar-to-turbulent boundary layer transition. These trips were selected to simulate protruding Space Shuttle Orbiter heat shield gap-filler material. Experiments were performed in the NASA Langley Research Center 31-Inch Mach 10 Air Wind Tunnel, which is an electrically-heated, blowdown facility. Two-mm high by 8-mm wide triangular and rectangular trips were attached to a flat plate and were oriented at an angle of 45 degrees with respect to the oncoming flow. Upstream of these trips, nitric oxide (NO) was seeded into the boundary layer. PLIF visualization of this NO allowed observation of both laminar and turbulent boundary layer flow downstream of the trips for varying flow conditions as the flat plate angle of attack was varied. By varying the angle of attack, the Mach number above the boundary layer was varied between 4.2 and 9.8, according to analytical oblique-shock calculations. Computational Fluid Dynamics (CFD) simulations of the flowfield with a laminar boundary layer were also performed to better understand the flow environment. The PLIF images of the tripped boundary layer flow were compared to a case with no trip for which the flow remained laminar over the entire angle-of-attack range studied. Qualitative agreement is found between the present observed transition measurements and a previous experimental roughness-induced transition database determined by other means, which is used by the shuttle return-to-flight program.

  18. Boundary Layer Ignition of Hydrogen-Air Mixtures in Supersonic Flows

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    Due to viscous heating spontaneous ignition of a supersonic flow of premixed combustible gases can occur in boundary layers.This process is studied numerically for a hyedrogen-air mixture in the case of a laminar boundary layer over a flat plate.In a previous study the main structure of the reacting flow was given as well as a first mapping of the ignition conditions versus boundary conditions.In the present work computations are performed in order to further specify the controlling mechanisms and parameters of such a boundary layer ignition.We emphasize more precisely i) the elementary steps of the chemical process which efectively control the ignition ii) the unusual role played by the equivalence ratio of the mixture iii) the influence of the Soret effect (species transport due to temperature gradients).

  19. Thermocouple Rakes for Measuring Boundary Layer Flows Extremely Close to Surface

    Science.gov (United States)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.

    2001-01-01

    Of vital interest to aerodynamic researchers is precise knowledge of the flow velocity profile next to the surface. This information is needed for turbulence model development and the calculation of viscous shear force. Though many instruments can determine the flow velocity profile near the surface, none of them can make measurements closer than approximately 0.01 in. from the surface. The thermocouple boundary-layer rake can measure much closer to the surface than conventional instruments can, such as a total pressure boundary layer rake, hot wire, or hot film. By embedding the sensors (thermocouples) in the region where the velocity is equivalent to the velocity ahead of a constant thickness strut, the boundary-layer flow profile can be obtained. The present device fabricated at the NASA Glenn Research Center microsystem clean room has a heater made of platinum and thermocouples made of platinum and gold. Equal numbers of thermocouples are placed both upstream and downstream of the heater, so that the voltage generated by each pair at the same distance from the surface is indicative of the difference in temperature between the upstream and downstream thermocouple locations. This voltage differential is a function of the flow velocity, and like the conventional total pressure rake, it can provide the velocity profile. In order to measure flow extremely close to the surface, the strut is made of fused quartz with extremely low heat conductivity. A large size thermocouple boundary layer rake is shown in the following photo. The latest medium size sensors already provide smooth velocity profiles well into the boundary layer, as close as 0.0025 in. from the surface. This is about 4 times closer to the surface than the previously used total pressure rakes. This device also has the advantage of providing the flow profile of separated flow and also it is possible to measure simultaneous turbulence levels within the boundary layer.

  20. Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet

    Institute of Scientific and Technical Information of China (English)

    Krishnendu Bhattacharyya

    2011-01-01

    An analysis is made to study boundary layer flow and heat transfer over an exponentially shrinking sheet.Using similarity transformations in exponential form,the governing boundary layer equations are transformed into self-similar nonlinear ordinary differential equations,which are then solved numerically using a very effcient shooting method. The analysis reveals the conditions for the existence of steady boundary layer flow due to exponential shrinking of the sheet and it is found that when the mass suction parameter exceeds a certain critical value,steady flow is possible.The dual solutions for velocity and temperature distributions are obtained.With increasing values of the mass suction parameter,the skin friction coefficient increases for the first solution and decreases for the second solution.

  1. Theoretical Analysis of Stationary Potential Flows and Boundary Layers at High Speed

    Science.gov (United States)

    Oswaititsch, K.; Wieghardt, K.

    1948-01-01

    The present report consists of two parts. The first part deals with the two-dimensional stationary flow in the presence of local supersonic zones. A numerical method of integration of the equation of gas dynamics is developed. Proceeding from solutions at great distance from the body the flow pattern is calculated step by step. Accordingly the related body form is obtained at the end of the calculation. The second part treats the relationship between the displacement thickness of laminar and turbulent boundary layers and the pressure distribution at high speeds. The stability of the boundary layer is investigated, resulting in basic differences in the behavior of subsonic and supersonic flows. Lastly, the decisive importance of the boundary layer for the pressure distribution, particularly for thin profiles, is demonstrated.

  2. Boundary layer flow over a moving surface in a nanofluid with suction or injection

    Institute of Scientific and Technical Information of China (English)

    Norfifah Bachok; Anuar lshak; loan Pop

    2012-01-01

    An analysis is performed to study the heat transfer characteristcs of steady two-dimensional boundary layer flow past a moving permeable flat plate in a nanofluid.The effects of uniform suction and injection on the flow field and heat transfer characteristics are numerically studied by using an implicit finite difference method.It is found that dual solutions exist when the plate and the free stream move in the opposite directions.The results indicate that suction delays the boundary layer separation,while injection accelerates it.

  3. Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey;

    2015-01-01

    For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat...... transport, are mostly ignored. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include stability and Coriolis effects. The influence of these effects on the whole atmospheric boundary-layer are examined using a Reynolds-averaged Navier...

  4. First Signs of Flow Reversal Within a Separated Turbulent Boundary Layer

    Science.gov (United States)

    Hammerton, Jared; Lang, Amy

    2015-11-01

    A shark's skin is covered in millions of microscopic scales that have been shown to be able to bristle in a reversing flow. The motive of this project is to further explore a potential bio-inspired passive separation control mechanism which can reduce drag. To better understand this mechanism, a more complete understanding of flow reversal within the turbulent boundary layer is required. In order to capture this phenomenon, water tunnel testing at The University of Alabama was conducted. Using a long flat plate and a rotating cylinder, a large turbulent boundary layer and adverse pressure gradient were generated. Under our testing conditions the boundary layer had a Reynolds number of 200,000 and a boundary layer height in the testing window of 5.6 cm. The adverse pressure gradient causes the viscous length scale to increase and thus increase the size of the individual components of the turbulent boundary layer. This will make the low speed streaks approximately 1 cm in width and thus large enough to measure. Results will be presented that test our hypothesis that the first signs of flow reversal will occur within the section of lowest momentum located furthest from the wall, or within the low speed streaks. This Project was funded by NSF REU Site Award 1358991.

  5. RANS Modeling of Stably Stratified Turbulent Boundary Layer Flows in OpenFOAM®

    Directory of Open Access Journals (Sweden)

    Wilson Jordan M.

    2015-01-01

    Full Text Available Quantifying mixing processes relating to the transport of heat, momentum, and scalar quantities of stably stratified turbulent geophysical flows remains a substantial task. In a stably stratified flow, such as the stable atmospheric boundary layer (SABL, buoyancy forces have a significant impact on the flow characteristics. This study investigates constant and stability-dependent turbulent Prandtl number (Prt formulations linking the turbulent viscosity (νt and diffusivity (κt for modeling applications of boundary layer flows. Numerical simulations of plane Couette flow and pressure-driven channel flow are performed using the Reynolds-averaged Navier-Stokes (RANS framework with the standard k-ε turbulence model. Results are compared with DNS data to evaluate model efficacy for predicting mean velocity and density fields. In channel flow simulations, a Prandtl number formulation for wall-bounded flows is introduced to alleviate overmixing of the mean density field. This research reveals that appropriate specification of Prt can improve predictions of stably stratified turbulent boundary layer flows.

  6. Evaporation, Heat Transfer, and Velocity Distribution in Two-Dimensional and Rotationally Symmetrical Laminar Boundary-Layer Flow

    Science.gov (United States)

    Froessling, Nils

    1958-01-01

    The fundamental boundary layer equations for the flow, temperature and concentration fields are presented. Two dimensional symmetrical and unsymmetrical and rotationally symmetrical steady boundary layer flows are treated as well as the transfer boundary layer. Approximation methods for the calculation of the transfer layer are discussed and a brief survey of an investigation into the validity of the law that the Nusselt number is proportional to the cube root of the Prandtl number is presented.

  7. Numerical Solution of Boundary Layer MHD Flow with Viscous Dissipation

    Directory of Open Access Journals (Sweden)

    S. R. Mishra

    2014-01-01

    Full Text Available The present paper deals with a steady two-dimensional laminar flow of a viscous incompressible electrically conducting fluid over a shrinking sheet in the presence of uniform transverse magnetic field with viscous dissipation. Using suitable similarity transformations the governing partial differential equations are transformed into ordinary differential equations and then solved numerically by fourth-order Runge-Kutta method with shooting technique. Results for velocity and temperature profiles for different values of the governing parameters have been discussed in detail with graphical representation. The numerical evaluation of skin friction and Nusselt number are also given in this paper.

  8. Boundary-layer turbulence in experiments of quasi-Keplerian flows

    CERN Document Server

    Lopez, Jose M

    2016-01-01

    Most flows in nature and engineering are turbulent because of their large velocities and spatial scales. Laboratory experiments of rotating quasi-Keplerian flows, for which the angular velocity decreases radially but the angular momentum increases, are however laminar at Reynolds numbers exceeding one million. This is in apparent contradiction to direct numerical simulations showing that in these experiments turbulence transition is triggered by the axial boundaries. We here show numerically that as the Reynolds number increases turbulence becomes progressively confined to the boundary layers and the flow in the bulk fully relaminarizes. Our findings support that hydrodynamic turbulence cannot drive accretion in astrophysical disks.

  9. Mixed convection boundary layer flow over a vertical cylinder with prescribed surface heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, Anuar [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)], E-mail: anuar_mi@ukm.my

    2009-05-15

    The steady mixed convection boundary layer flow along a vertical cylinder with prescribed surface heat flux is investigated in this study. The free stream velocity and the surface heat flux are assumed to vary linearly with the distance from the leading edge. Both the case of the buoyancy forces assisting and opposing the development of the boundary layer are considered. Similarity equations are derived, their solutions being dependent on the mixed convection parameter, the curvature parameter, as well as of the Prandtl number. Dual solutions are found to exist for both buoyancy assisting and opposing flows. It is also found that the boundary layer separation is delayed for a cylinder compared to a flat plate.

  10. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    Science.gov (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  11. Prediction of mean flow data for adiabatic 2-D compressible turbulent boundary layers

    NARCIS (Netherlands)

    Motallebi, F.

    1997-01-01

    This book presents a method for the prediction of mean flow data (i.e. skin friction, velocity profile and shape parameter) for adiabatic two-dimensional compressible turbulent boundary layers at zero pressure gradient. The transformed law of the wall, law of the lake, the van Driest model for the c

  12. Boundary Layer Flow over a Continuously Moving Thin Needle in a Parallel Free Stream

    Institute of Scientific and Technical Information of China (English)

    Anuar Ishak; Roslinda Nazar; Ioan Pop

    2007-01-01

    We investigate the boundary-layer flow on a moving isothermal thin needle parallel to a moving stream. The governing equations are solved numerically by a finite-difference method. Dual solutions are found to exist when the needle and the free stream move in the opposite directions.

  13. On the Study of Viscoelastic Walters' B Fluid in Boundary Layer Flows

    Directory of Open Access Journals (Sweden)

    Seyed Ali Madani Tonekaboni

    2012-01-01

    Full Text Available Viscoelastic Walters' B fluid flows for three problems, stagnation-point flow, Blasius flow, and Sakiadis flow, have been investigated. In each problem, Cauchy equations are changed to a nondimensional differential equations using stream functions and with assumption of boundary layer flow. The fourth-order predictor-corrector finite-difference method for solving these nonlinear differential equations has been employed. The results that have been obtained using this method are compared with the results of the last studies, and it is clarified that this method is more accurate. It is also shown that the results of last study about Sakiadis flow of Walter's B fluid are not true. In addition, the effects of order of discretization in the boundaries are investigated. Moreover, it has been discussed about the valid region of Weissenberg numbers for the second-order approximation of viscoelastic fluids in each case of study.

  14. Mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, Anuar [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Nazar, Roslinda [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)], E-mail: rmn72my@yahoo.com; Pop, Ioan [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2008-03-31

    The mixed convection boundary layer flow through a stable stratified porous medium bounded by a vertical surface is investigated. The external velocity and the surface temperature are assumed to vary as x{sup m}, where x is measured from the leading edge of the vertical surface and m is a constant. Numerical solutions for the governing Darcy and energy equations are obtained. The results indicate that the thermal stratification significantly affects the surface shear stress as well as the surface heat transfer, besides delays the boundary layer separation.

  15. Numerical study and control method of interaction of nucleation and boundary layer separation in condensing flow

    Institute of Scientific and Technical Information of China (English)

    Liansuo AN; Zhi WANG; Zhonghe HAN

    2009-01-01

    The spontaneous nucleation flow in turbine cascade was numerically studied. The model was imple-mented within a full Navier-Stokes viscous flow solution procedure and the process of condensation was calculated by the quadrature method of moments that shows good accuracy with very broad size distributions.Results were presented for viscous and inviscous flow,showing the influence of boundary layer separation and wake vortices on spontaneous nucleation. The results show that the degree of flow separation in wet steam flow is greater than that in superheated steam flow due to condensation shock and that the loss cannot be neglected.Furthermore, the impact of boundary layer separation and wake vortices on velocity profiles and its implications for profile loss were considered. The calculations showed that layer separation and wake vortices influence nucleation rate, leading to different droplet distributions. A method for controlling homogeneous nucleation and for reducing degree of flow separation in high-speed transonic wet steam flow was presented. The liquid phase parameter distribution is sensitive to the suction side profile of turbine cascade, which impacts the nucleation rate distribution leading to different droplet distributions and affects the degree of flow separation. The numerical study provides a practical design method for turbine blade to reduce wetness losses.

  16. Unsteady Boundary-Layer Flow over Jerked Plate Moving in a Free Stream of Viscoelastic Fluid

    Directory of Open Access Journals (Sweden)

    Sufian Munawar

    2014-01-01

    Full Text Available This study aims to investigate the unsteady boundary-layer flow of a viscoelastic non-Newtonian fluid over a flat surface. The plate is suddenly jerked to move with uniform velocity in a uniform stream of non-Newtonian fluid. Purely analytic solution to governing nonlinear equation is obtained. The solution is highly accurate and valid for all values of the dimensionless time 0≤τ<∞. Flow properties of the viscoelastic fluid are discussed through graphs.

  17. Series Solution for Unsteady Boundary-Layer Flows Due to Impulsively Stretching Plate

    Institute of Scientific and Technical Information of China (English)

    Seripah Awang Kechil; Ishak Hashim

    2007-01-01

    @@ The third-order nonlinear partial differential equation modelling the unsteady boundary-layer flows caused by an impulsively stretching flat plate is solved by using the Adomian decomposition method (ADM). The ADM yields analytic solution in the form of a rapidly convergent infinite series with easily computable terms. The series solution using the ADM for the unsteady flows is presented for the first time.

  18. Boundary Layer Separation and Reattachment Detection on Airfoils by Thermal Flow Sensors

    Directory of Open Access Journals (Sweden)

    Peter Busche

    2012-10-01

    Full Text Available A sensor concept for detection of boundary layer separation (flow separation, stall and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor’s position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle. Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow and even negative flow values (back flow for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results.

  19. Boundary layer separation and reattachment detection on airfoils by thermal flow sensors.

    Science.gov (United States)

    Sturm, Hannes; Dumstorff, Gerrit; Busche, Peter; Westermann, Dieter; Lang, Walter

    2012-10-24

    A sensor concept for detection of boundary layer separation (flow separation, stall) and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor's position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted) on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle). Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow) and even negative flow values (back flow) for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results.

  20. MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing

    Institute of Scientific and Technical Information of China (English)

    Krishnendu Bhattacharyya; G.C.Layek

    2011-01-01

    @@ An analysis is carried out to study a steady magnetohydrodynamic(MHD) boundary layer How of an electrically conducting incompressible power-law non-Newtonian fluid through a divergent channel.The channel walls are porous and subjected to either suction or blowing of equal magnitude of the same kind of fluid on both walls.The fluid is permeated by a magnetic field produced by electric current along the line of intersection of the channel walls.The governing partial differential equation is transformed into a self-similar nonlinear ordinary differential equation using similarity transformations.The possibility of boundary layer flow in a divergent channel is analyzed with the power-law fluid model.The analysis reveals that the boundary layer flow (without separation) is possible for the case of the dilatant fluid model subjected to suitable suction velocity applied through its porous walls,even in the absence of a magnetic field.Further, it is found that the boundary layer flow is possible even in the presence of blowing for a suitable value of the magnetic parameter.It is found that the velocity increases with increasing values of the power-law index for the case of dilatant fluid.The effects of suction/blowing and magnetic field on the velocity are shown graphically and discussed physical尔

  1. Boundary layer Slip Flow and Heat Transfer of Nanofluid Induced by a Permeable Stretching Sheet with Convective Boundary Condition

    Directory of Open Access Journals (Sweden)

    A. Malvandi

    2015-01-01

    Full Text Available The objective of this paper is to consider both effects of slip and convective heat boundary conditions on steady two-dimensional boundary layer flow of a nanofluid over a stretching sheet in the presence of blowing/suction simultaneously. Flow meets the Navier's slip condition at the surface and Biot number is also used to consider the effects of convective heat transfer. The employed model for nanofluid includes two-component four-equation nonhomogeneous equilibrium model that incorporates the effects of nanoparticle migration owing to Brownian motion and thermophoresis. The basic partial boundary layer equations have been transformed into a two-point boundary value problem via similarity variables. Results for impermeable isothermal surface and also no-slip boundary condition were in best agreements with those existing in literatures. Effects of governing parameters such as Biot number (Bi, slip parameter (λ, thermophoresis (Nt, Prandtl number (Pr, Lewis number (Le, Brownian motion (Nb and blowing/suction (S on reduced Nusselt and Sherwood numbers are analyzed and discussed in details. The obtained results indicate that unlike heat transfer rate, concentration rate is very sensitive to all parameters among which Le, S and Pr are the most effective ones.

  2. Effects of flow and colony morphology on the thermal boundary layer of corals

    DEFF Research Database (Denmark)

    Jimenez, Isabel M; Kühl, Michael; Larkum, Anthony W D;

    2011-01-01

    .3 cm s(-1)), to 1 mm at 5 cm s(-1), with an exponent approximately 0.5 consistent with predictions from the heat transfer theory for simple geometrical objects and typical of laminar boundary layer processes. Measurements of mass transfer across the diffusive boundary layer using O(2) microelectrodes......The thermal microenvironment of corals and the thermal effects of changing flow and radiation are critical to understanding heat-induced coral bleaching, a stress response resulting from the destruction of the symbiosis between corals and their photosynthetic microalgae. Temperature microsensor...... measurements at the surface of illuminated stony corals with uneven surface topography (Leptastrea purpurea and Platygyra sinensis) revealed millimetre-scale variations in surface temperature and thermal boundary layer (TBL) that may help understand the patchy nature of coral bleaching within single colonies...

  3. Stability analysis of Boundary Layer in Poiseuille Flow Through A Modified Orr-Sommerfeld Equation

    CERN Document Server

    Monwanou, A V; Orou, J B Chabi; 10.5539/apr.v4n4p138

    2013-01-01

    For applications regarding transition prediction, wing design and control of boundary layers, the fundamental understanding of disturbance growth in the flat-plate boundary layer is an important issue. In the present work we investigate the stability of boundary layer in Poiseuille flow. We normalize pressure and time by inertial and viscous effects. The disturbances are taken to be periodic in the spanwise direction and time. We present a set of linear governing equations for the parabolic evolution of wavelike disturbances. Then, we derive modified Orr-Sommerfeld equations that can be applied in the layer. Contrary to what one might think, we find that Squire's theorem is not applicable for the boundary layer. We find also that normalization by inertial or viscous effects leads to the same order of stability or instability. For the 2D disturbances flow ($\\theta=0$), we found the same critical Reynolds number for our two normalizations. This value coincides with the one we know for neutral stability of the k...

  4. Experimental investigation of the flow over three d-type microgeometries for boundary layer control

    Science.gov (United States)

    Hildalgo Ardana, Pablo

    2008-04-01

    An experimental investigation of the flow over three microgeometries was conducted in order to study its boundary layer control capabilities. Drag reduction and boundary layer control are two of the most researched areas in fluid mechanics. The necessity of reducing drag over vehicles is imperative to reduce the power needed to move a vehicle, or to save millions of gallons of fuel; this can also contribute to a reduction of the emissions of pollutant gases to the atmosphere. It has been estimated that a reduction in drag of 1% on an airplane can save the airlines around 200,000 in fuel costs per airliner per year, and worldwide this could result in total savings in fuel of approximately 1 billion every year. This experimental research was inspired by fast swimming shark species and the denticles present on their skin. Among other purposes, these denticles have some hydrodynamic capabilities that are investigated in this experimental work. Replicas of the denticles of the Shortfin Mako shark (Isurus oxyrinchus), which is speculated to be the fastest swimming shark, have been fabricated and they were embedded on a flat plate. Two additional simplified models of the shark skin consisting of embedded cavities, a two-dimensional grooved surface and a squared sawtooth geometry, were also tested. Time-resolved digital particle image velocimetry (TR-DPIV) measurements were taken in order to characterize the cavity vortices formed inside the geometries, as well as velocity profile measurements to identify the stability of the boundary layer over the geometries. The cavity vortices introduce a partial slip condition into the flow which affects the stability of the boundary layer. The results indicate that the shark skin can work as a boundary layer control mechanism by delaying or inhibiting separation over the shark's body, thereby reducing pressure drag. The ribs on the front side of the shark skin denticles promoted secondary vorticity that was measured under both

  5. On the Asymptotic Approach to Thermosolutal Convection in Heated Slow Reactive Boundary Layer Flows

    Directory of Open Access Journals (Sweden)

    Stanford Shateyi

    2008-01-01

    Full Text Available The study sought to investigate thermosolutal convection and stability of two dimensional disturbances imposed on a heated boundary layer flow over a semi-infinite horizontal plate composed of a chemical species using a self-consistent asymptotic method. The chemical species reacts as it diffuses into the nearby fluid causing density stratification and inducing a buoyancy force. The existence of significant temperature gradients near the plate surface results in additional buoyancy and decrease in viscosity. We derive the linear neutral results by analyzing asymptotically the multideck structure of the perturbed flow in the limit of large Reynolds numbers. The study shows that for small Damkohler numbers, increasing buoyancy has a destabilizing effect on the upper branch Tollmien-Schlichting (TS instability waves. Similarly, increasing the Damkohler numbers (which corresponds to increasing the reaction rate has a destabilizing effect on the TS wave modes. However, for small Damkohler numbers, negative buoyancy stabilizes the boundary layer flow.

  6. Boundary layer flow on a moving surface in otherwise quiescent pseudo-plastic non-Newtonian fluids

    Institute of Scientific and Technical Information of China (English)

    Liancun Zheng; Liu Ting; Xinxin Zhang

    2008-01-01

    A theoretical analysis for the boundary layer flow over a continuous moving surface in an otherwise quiescent pseudo-plastic non-Newtonian fluid medium was presented. The types of potential flows necessary for similar solutions to the boundary layer equations were determined and the solutions were numerically presented for different values of power law exponent.

  7. Boundary Layer Transition in the Leading Edge Region of a Swept Cylinder in High Speed Flow

    Science.gov (United States)

    Coleman, Colin P.

    1998-01-01

    Experiments were conducted on a 76 degree swept cylinder to establish the behavior of the attachment line transition process in a low-disturbance level, Mach number 1.6 flow. For a near adiabatic wall condition, the attachment-line boundary layer remained laminar up to the highest attainable Reynolds number. The attachment-line boundary layer transition under the influence of trip wires depended on wind tunnel disturbance level, and a transition onset condition for this flow is established. Internal heating raised the surface temperature of the attachment line to induce boundary layer instabilities. This was demonstrated experimentally for the first time and the frequencies of the most amplified disturbances were determined over a range of temperature settings. Results were in excellent agreement to those predicted by a linear stability code, and provide the first experimental verification of theory. Transition onset along the heated attachment line at an R-bar of 800 under quiet tunnel conditions was found to correlate with an N factor of 13.2. Increased tunnel disturbance levels caused the transition onset to occur at lower cylinder surface temperatures and was found to correlate with an approximate N factor of 1 1.9, so demonstrating that the attachment-line boundary layer is receptive to increases in the tunnel disturbance level.

  8. MEMS flexible thermal flow sensor for measurement of boundary layer separation

    Science.gov (United States)

    Yu, Jui-Ming; Leu, Tzong-Shyng; Miau, Jiun-Jih; Chen, Shih-Jiun

    2016-05-01

    Micro-electro-mechanical systems (MEMS) thermal flow sensors featured with high spatial resolutions, fast frequency response and minimal interference with fluid flow have been applied widely in boundary-layer studies and aerodynamic flow sensing and control due to the inherent outstanding performances. In this study, MEMS thermal flow sensors were designed and fabricated on a flexible skin using the MEMS technology. The dimension of a single sensing element was 200 μm × 260 μm, which had a resistance of about 200 Ω after annealing. By configuring thermal flow sensors in either a single thermal flow sensor and a thermal tuft sensor, separation points of a two-dimensional (2D) LS(1) 0417 airfoil at various angles of attack could be precisely detected. The experimental results show good agreement with the hot wire sensor and particle traced flow visualization in detecting the separation point on the suction surface of the airfoil.

  9. RESEARCH ON THE FLOW STABILITY IN A CYLINDRICAL PARTICLE TWO-PHASE BOUNDARY LAYER

    Institute of Scientific and Technical Information of China (English)

    林建忠; 聂德明

    2003-01-01

    Based on the momentum and constitutive equations, the modified Orr-Sommerfeld equation describing the flow stability in a cylindrical particle two-phase flow was derived. For a cylindrical particle two-phase boundary layer, the neutral stability curves and critical Reynolds number were given with numerical simulation. The results show that the cylindrical particles have a suppression effect on the flow instability, the larger the particle volume fraction and the particle aspect-ratio are, the more obvious the suppression effect is.

  10. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface

    Institute of Scientific and Technical Information of China (English)

    Chandaneswar Midya

    2012-01-01

    An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible Buid over a linearly shrinking surface is presented. The Row is permeated by an externally applied magnetic Geld normal to the plane of the flow. The equations governing the Row and concentration Reid are reduced into a set of nonlinear ordinary differential equations using similarity variables. Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall mass flux (PMF) as boundary conditions. The study reveals that the concentration over a shrinking sheet is signiRcantly different from that of a stretching surface. It s found that te solute boundary layer thickness is enhanced with the increasing values of the Schmidt number and the power-law index parameter, but decreases with enhanced vaJues of magnetic and reaction rate parameters for the PSC case. For the PMF case, the solute boundary layer thickness decreases with the increase of the Schmidt number, magnetic and reaction rate parameter for power-law index parameter n = 0. Negative solute boundary layer thickness is observed for the PMF case when n = 1 and 2, and these facts may not be realized in real-world applications.%An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible fluid over a linearly shrinking surface is presented.The flow is permeated by an externally applied magnetic field normal to the plane of the flow.The equations governing the flow and concentration field are reduced into a set of nonlinear ordinary differential equations using similarity variables.Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall

  11. Global instabilities and transient growth in Blasius boundary-layer flow over a compliant panel

    Indian Academy of Sciences (India)

    K Tsigklifis; A D Lucey

    2015-05-01

    We develop a hybrid of computational and theoretical approaches suited to study the fluid–structure interaction (FSI) of a compliant panel, flush between rigid upstream and downstream wall sections, with a Blasius boundary-layer flow. The ensuing linear-stability analysis is focused upon global instability and transient growth of disturbances. The flow solution is developed using a combination of vortex and source boundary-element sheets on a computational grid while the dynamics of a plate-spring compliant wall are couched in finite-difference form. The fully coupled FSI system is then written as an eigenvalue problem and the eigenvalues of the various flow- and wall-based instabilities are analysed. It is shown that coalescence or resonance of a structural eigenmode with either a flow-based Tollmien–Schlichting Wave (TSW) or wall-based travelling-wave flutter (TWF) modes can occur. This can render the nature of these well-known convective instabilities to become global for a finite compliant wall giving temporal growth of system disturbances. Finally, a non-modal analysis based on the linear superposition of the extracted temporal modes is presented. This reveals a high level of transient growth when the flow interacts with a compliant panel that has structural properties which render the FSI system prone to global instability. Thus, to design stable finite compliant panels for applications such as boundary-layer transition postponement, both global instabilities and transient growth must be taken into account.

  12. Second Law Analysis for Variable Viscosity Hydromagnetic Boundary Layer Flow with Thermal Radiation and Newtonian Heating

    Directory of Open Access Journals (Sweden)

    Oluwole Daniel Makinde

    2011-08-01

    Full Text Available The present paper is concerned with the analysis of inherent irreversibility in hydromagnetic boundary layer flow of variable viscosity fluid over a semi-infinite flat plate under the influence of thermal radiation and Newtonian heating. Using local similarity solution technique and shooting quadrature, the velocity and temperature profiles are obtained numerically and utilized to compute the entropy generation number. The effects of magnetic field parameter, Brinkmann number, the Prandtl number, variable viscosity parameter, radiation parameter and local Biot number on the fluid velocity profiles, temperature profiles, local skin friction and local Nusselt number are presented. The influences of the same parameters and the dimensionless group parameter on the entropy generation rate in the flow regime and Bejan number are calculated, depicted graphically and discussed quantitatively. It is observed that the peak of entropy generation rate is attained within the boundary layer region and plate surface act as a strong source of entropy generation and heat transfer irreversibility.

  13. A high-resolution code for large eddy simulation of incompressible turbulent boundary layer flows

    KAUST Repository

    Cheng, Wan

    2014-03-01

    We describe a framework for large eddy simulation (LES) of incompressible turbulent boundary layers over a flat plate. This framework uses a fractional-step method with fourth-order finite difference on a staggered mesh. We present several laminar examples to establish the fourth-order accuracy and energy conservation property of the code. Furthermore, we implement a recycling method to generate turbulent inflow. We use the stretched spiral vortex subgrid-scale model and virtual wall model to simulate the turbulent boundary layer flow. We find that the case with Reθ ≈ 2.5 × 105 agrees well with available experimental measurements of wall friction, streamwise velocity profiles and turbulent intensities. We demonstrate that for cases with extremely large Reynolds numbers (Reθ = 1012), the present LES can reasonably predict the flow with a coarse mesh. The parallel implementation of the LES code demonstrates reasonable scaling on O(103) cores. © 2013 Elsevier Ltd.

  14. Structure and dynamics of turbulent boundary layer flow over healthy and algae-covered corals

    Science.gov (United States)

    Stocking, Jonathan B.; Rippe, John P.; Reidenbach, Matthew A.

    2016-09-01

    Fine-scale velocity measurements over healthy and algae-covered corals were collected in situ to characterize combined wave-current boundary layer flow and the effects of algal canopies on turbulence hydrodynamics. Data were collected using acoustic Doppler velocimetry and particle image velocimetry. Flow over healthy corals is well described by traditional wall-bounded shear layers, distinguished by a logarithmic velocity profile, a local balance of turbulence production and dissipation, and high levels of bed shear stress. Healthy corals exhibit significant spatial heterogeneity in boundary layer flow structure resulting from variations in large-scale coral topography. By contrast, the turbulence structure of algae-covered corals is best represented by a plane mixing layer, with a sharp inflection point in mean velocity at the canopy top, a large imbalance of turbulence production and dissipation, and strongly damped flow and shear stresses within the canopy. The presence of an algal canopy increases turbulent kinetic energy within the roughness sublayer by ~2.5 times compared to healthy corals while simultaneously reducing bed shear stress by nearly an order of magnitude. Reduced bed shear at the coral surface and within-canopy turbulent stresses imply reduced mass transfer of necessary metabolites (e.g., oxygen, nutrients), leading to negative impacts on coral health.

  15. Dissipative Effects in Hydromagnetic Boundary Layer Nanofluid Flow past a Stretching Sheet with Newtonian Heating

    OpenAIRE

    Bhupesh Kumar Mahatha; Raj Nandkeolyar; Goutam Kumar Mahato; Precious Sibanda

    2016-01-01

    Two dimensional steady hydromagnetic boundary layer flow of a viscous, incompressible, and electrically conducting nanofluid past a stretching sheet with Newtonian heating, in the presence of viscous and Joule dissipations is studied. The transport equations include the combined effects of Brownian motion and thermophoresis. The governing nonlinear partial differential equations are transformed to a set of nonlinear ordinary differential equations which are then solved using Spect...

  16. On the Asymptotic Approach to Thermosolutal Convection in Heated Slow Reactive Boundary Layer Flows

    OpenAIRE

    Stanford Shateyi; Precious Sibanda; Motsa, Sandile S.

    2008-01-01

    The study sought to investigate thermosolutal convection and stability of two dimensional disturbances imposed on a heated boundary layer flow over a semi-infinite horizontal plate composed of a chemical species using a self-consistent asymptotic method. The chemical species reacts as it diffuses into the nearby fluid causing density stratification and inducing a buoyancy force. The existence of significant temperature gradients near the plate surface results in additional buoyancy and decrea...

  17. A turbulent burst model for boundary layer flows with pressure gradient

    Science.gov (United States)

    Thomas, L. C.; Benton, D. J.

    The object of this paper is to develop a surface renewal model of the turbulent burst phenomenon for momentum and energy transfer in the wall region for turbulent boundary layer flows with pressure gradient. In addition to obtaining inner laws for the distributions in velocity and temperature, predictions are obtained for the effect of pressure gradient on the mean burst frequency and on the turbulent Prandtl number within the wall region for slight favorable and mild adverse pressure gradients.

  18. Embedded-LES and experiment of turbulent boundary layer flow around a floor-mounted cube

    DEFF Research Database (Denmark)

    Jørgensen, Nina Gall; Koss, Holger; Bennetsen, Jens Chr.

    An Embedded LES approach is used to numerically simulate fluctuating surface pressures on a floor-mounted cube in a turbulent boundary layer flow and compared to wind tunnel experiments. The computation were performed with the CFD software ANSYS FLUENT at a Reynolds number at cube height of Reh = 1...... correct velocity scales. However, the body induced turbulence is well captured in the fluctuating pressure coefficients....

  19. Investigation of the shock wave boundary layer interaction of scramjet intake flows

    OpenAIRE

    Neuenhahn, Thomas

    2010-01-01

    In the hypersonic regime scramjet engines offer a great potential for future propulsion systems of space transportation applications. The intake of a scramjet engine compresses the incoming air for an efficient combustion cycle while aiming to produce minimum drag and heat load. One feature of the scramjet intake’s flow field is the shock wave/boundary layer interaction (SWBLI) which causes high peak heat loads and affects the direction as well as the load of the aerodynamic force. The intera...

  20. Measurements of laminar and turbulent flow in a curved duct with thin inlet boundary layers

    Science.gov (United States)

    Taylor, A. M. K. P.; Whitelaw, J. H.; Yianneskis, M.

    1981-01-01

    Laser Doppler velocimetry was used to measure the laminar and turbulent flow in a 90 deg square bend of strong curvature. The boundary layers at the inlet to the bend were approximately 25 percent and 15 percent of the hydraulic diameter for the laminar and turbulent flows, respectively. The development of the pressure driven secondary motion is more rapid for laminar flow: the maximum cross stream component measured was 60 percent of the bulk velocity in contrast to 40 percent for turbulent flow. The streamwise isotachs show that, for laminar flow, large velocities are found progressively nearer to the outer radius of the bend and along the sidewalls. For turbulent flow, the isotachs move towards the inner radius until about 60 deg around the bend where strong secondary motion results in a similar redistribution. Turbulence level and shear stress measurements are also presented.

  1. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    1974-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  2. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; FU Song

    2009-01-01

    Based on Reynolds-averaged Navier-Stokes approach, a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows. The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy, ωthe specific dissipation rate and the intermittency factor γ.The particular features of the model are that: 1) k includes the non-turbulent, as well as turbulent fluctuations; 2) a transport equation for the intermittency factor γis proposed here with a source term set to trigger the transition onset; 3) through the introduction of a new length scale normal to wall, the present model employs the local variables only avoiding the use of the integral parameters, like the boundary layer thickness δ,which are often cost-ineffective with the modern CFD (Computational Fluid Dynamics) methods; 4) in the fully turbulent region, the model retreats to the well-known k-ωSST (Shear Stress Transport) model. This model is validated with a number of available experiments on boundary layer transitions including the incompressible, supersonic and hypersonic flows past flat plates, straight/flared cones at zero incidences, etc. It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition.

  3. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on Reynolds-averaged Navier-Stokes approach,a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows.The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy,ωthe specific dissipation rate and the intermittency factorγ.The particular features of the model are that:1)k includes the non-turbulent,as well as turbulent fluctuations;2)a transport equation for the intermittency factorγis proposed here with a source term set to trigger the transition onset;3)through the introduction of a new length scale normal to wall,the present model employs the local variables only avoiding the use of the integral parameters,like the boundary layer thicknessδ,which are often cost-ineffective with the modern CFD(Computational Fluid Dynamics)methods;4)in the fully turbulent region,the model retreats to the well-known k-ωSST(Shear Stress Transport)model.This model is validated with a number of available experiments on boundary layer transitions including the incompressible,supersonic and hypersonic flows past flat plates,straight/flared cones at zero incidences,etc.It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition.

  4. Nonlinear Excitation of Inviscid Stationary Vortex in a Boundary-Layer Flow

    Science.gov (United States)

    Choudhari, Meelan; Duck, Peter W.

    1996-01-01

    We examine the excitation of inviscid stationary crossflow instabilities near an isolated surface hump (or indentation) underneath a three-dimensional boundary layer. As the hump height (or indentation depth) is increased from zero, the receptivity process becomes nonlinear even before the stability characteristics of the boundary layer are modified to a significant extent. This behavior contrasts sharply with earlier findings on the excitation of the lower branch Tollmien-Schlichting modes and is attributed to the inviscid nature of the crossflow modes, which leads to a decoupling between the regions of receptivity and stability. As a result of this decoupling, similarity transformations exist that allow the nonlinear receptivity of a general three-dimensional boundary layer to be studied with a set of canonical solutions to the viscous sublayer equations. The parametric study suggests that the receptivity is likely to become nonlinear even before the hump height becomes large enough for flow reversal to occur in the canonical solution. We also find that the receptivity to surface humps increases more rapidly as the hump height increases than is predicted by linear theory. On the other hand, receptivity near surface indentations is generally smaller in comparison with the linear approximation. Extension of the work to crossflow receptivity in compressible boundary layers and to Gortler vortex excitation is also discussed.

  5. Wake structures of two side by side spheres in a tripped boundary layer flow

    Directory of Open Access Journals (Sweden)

    Canli Eyüb

    2014-03-01

    Full Text Available Two independent spheres were placed in a side by side arrangement and flow structure in the wake region of the spheres was investigated with a Particle Image Velocimetry (PIV system when the spheres were in a boundary layer over a flat plate as a special case. Reynolds number was 5000 based on the sphere diameter which was 42.5 mm. Boundary layer was tripped 8mm away from the leading edge of the flat plate with a 5 mm trip wire. The thickness of the hydrodynamically developed boundary layer was determined as 63mm which was larger than the sphere diameter of D=42.5mm. Wake region of the spheres was examined from point of flow physics for the different sphere locations in the ranges of 0≤G/D ≤1.5 and 0≤S/D ≤1.5 where G and S were the distance between the spheres and the distance between the bottom point of the spheres and the flat plate surface, respectively. Depending on the different sphere locations, instantaneous and time averaged vorticity data, scalar values of time-averaged velocity components and their root mean square (rms values and time averaged vorticity data are presented in the study for the evaluation of wake region of the spheres. It is demonstrated that the gap between the two spheres and the interaction between the gap and the boundary layer greatly affects flow pattern, especially when spheres are located near to the flat plate surface, i.e. S/D=0.1 for 0≤G/D ≤1.5. Different distances between the spheres resulted in various flow patterns as the spheres were approached to the flat plate. The distance S/D=0.1 for all gap values has the strongest effect on the wake structures. Beyond G/D=1.0, the sphere wakes tend to be similar to single sphere case. The instantaneous vorticity fields of the side by side arrangements comprised wavy structures in higher level comparing to an individual sphere case. The gap flow intensifies the occurrence of small scale eddies in the wake region. The submersion rate of the spheres

  6. Dissipative Effects in Hydromagnetic Boundary Layer Nanofluid Flow past a Stretching Sheet with Newtonian Heating

    Directory of Open Access Journals (Sweden)

    Bhupesh Kumar Mahatha

    2016-01-01

    Full Text Available Two dimensional steady hydromagnetic boundary layer flow of a viscous, incompressible, and electrically conducting nanofluid past a stretching sheet with Newtonian heating, in the presence of viscous and Joule dissipations is studied. The transport equations include the combined effects of Brownian motion and thermophoresis. The governing nonlinear partial differential equations are transformed to a set of nonlinear ordinary differential equations which are then solved using Spectral Relaxation Method (SRM and the results are validated by comparison with numerical approximations obtained using the Matlab in-built boundary value problem solver bvp4c, and with existing results available in literature. Numerical values of fluid velocity, fluid temperature and species concentration are displayed graphically versus boundary layer coordinate for various values of pertinent flow parameters whereas those of skin friction, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. Such nanofluid flows are useful in many applications in heat transfer, including microelectronics, fuel cells, pharmaceutical processes, and hybrid-powered engines, engine cooling/vehicle thermal management, domestic refrigerator, chiller, heat exchanger, in grinding, machining and in boiler flue gas temperature reduction.

  7. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    Science.gov (United States)

    Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement. PMID:23166688

  8. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    Directory of Open Access Journals (Sweden)

    Mohammed J Uddin

    Full Text Available Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.

  9. Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet

    Directory of Open Access Journals (Sweden)

    Masood Khan

    2015-10-01

    Full Text Available This article studies the Carreau viscosity model (which is a generalized Newtonian model and then use it to obtain a formulation for the boundary layer equations of the Carreau fluid. The boundary layer flow and heat transfer to a Carreau model over a nonlinear stretching surface is discussed. The Carreau model, adequate for many non-Newtonian fluids, is used to characterize the behavior of the fluids having shear thinning properties and fluids with shear thickening properties for numerical values of the power law exponent n. The modeled boundary layer conservation equations are converted to non-linear coupled ordinary differential equations by a suitable transformation. Numerical solution of the resulting equations are obtained by using the Runge-Kutta Fehlberg method along with shooting technique. This analysis reveals many important physical aspects of flow and heat transfer. Computations are performed for different values of the stretching parameter (m, the Weissenberg number (We and the Prandtl number (Pr. The obtained results show that for shear thinning fluid the fluid velocity is depressed by the Weissenberg number while opposite behavior for the shear thickening fluid is observed. A comparison with previously published data in limiting cases is performed and they are in excellent agreement.

  10. Flow around new wind fence with multi-scale fractal structure in an atmospheric boundary layer

    Science.gov (United States)

    McClure, Sarah; Lee, Sang-Joon; Zhang, Wei

    2015-11-01

    Understanding and controlling atmospheric boundary-layer flows with engineered structures, such as porous wind fences or windbreaks, has been of great interest to the fluid mechanics and wind engineering community. Previous studies found that the regular mono-scale grid fence of 50% porosity and a bottom gap of 10% of the fence height are considered to be optimal over a flat surface. Significant differences in turbulent flow structure have recently been noted behind multi-scale fractal wind fences, even with the same porosity. In this study, wind-tunnel tests on the turbulent flow and the turbulence kinetic energy transport of 1D and 2D multi-scale fractal fences under atmospheric boundary-layer were conducted. Velocity fields around the fractal fences were systematically measured using Particle Image Velocimetry to uncover effects of key parameters on turbulent flows around the fences at a Reynolds number of approximately 3.6x104 based on the free-stream speed and fence height. The turbulent flow structures induced by specific 1D/2D multi-scale fractal wind fences were compared to those of a conventional grid fence. The present results would contribute to the design of new-generation wind fences to reduce snow/sand deposition on critical infrastructure such as roads and bridges.

  11. Influence of the turbulent boundary layer pressure fluctuation on the sound intensity measurement in a mean flow

    DEFF Research Database (Denmark)

    SHI, Xiao-jun; Jacobsen, Finn

    2010-01-01

    The influence of turbulent boundary layer pressure fluctuation on the sound intensity measurement in a flow is a subject of practical concern, because the sound intensity probe is generally exposed to the airflow and is sensed the turbulent boundary layer (TBL) pressure fluctuation which may even...

  12. Analytic Study of Magnetohydrodynamic Flow and Boundary Layer Control Over a Wedge

    Institute of Scientific and Technical Information of China (English)

    M. Chandrasekar; S. Baskaran

    2008-01-01

    A genuine variational principle developed by Gyarmati, in the field of thermodynamics of irreversible processes unifying the theoretical requirements of technical, environmental and biological sciences is employed to study the effects of uniform suction and injection on MHD flow adjacent to an isothermal wedge with pressure gradient in the presence of a transverse magnetic field. The velocity distribution inside the boundary layer has been considered as a simple polynomial function and the variational principle is formulated. The Euler-Lagrange equation is reduced to a simple polynomial equation in terms of momentum boundary layer thickness. The velocity profiles, displacement thickness and the coefficient of skin friction are calculated for various values of wedge angle parameter m, magnetic parameter ε and suction/injection parameter H. The present results are compared with known available results and the comparison is found to be satisfactory. The present study establishes high accuracy of results obtained by this variational technique.

  13. Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Safaei

    2016-09-01

    Full Text Available In the present study, the heat transfer and flow of water/FMWCNT (functionalized multi-walled carbon nanotube nanofluids over a flat plate was investigated using a finite volume method. Simulations were performed for velocity ranging from 0.17 mm/s to 1.7 mm/s under laminar regime and nanotube concentrations up to 0.2%. The 2-D governing equations were solved using an in-house FORTRAN code. For a specific free stream velocity, the presented results showed that increasing the weight percentage of nanotubes increased the Nusselt number. However, an increase in the solid weight percentage had a negligible effect on the wall shear stress. The results also indicated that increasing the free stream velocity for all cases leads to thinner boundary layer thickness, while increasing the FMWCNT concentration causes an increase in the boundary layer thickness.

  14. On a boundary layer problem related to the gas flow in shales

    KAUST Repository

    Barenblatt, G. I.

    2013-01-16

    The development of gas deposits in shales has become a significant energy resource. Despite the already active exploitation of such deposits, a mathematical model for gas flow in shales does not exist. Such a model is crucial for optimizing the technology of gas recovery. In the present article, a boundary layer problem is formulated and investigated with respect to gas recovery from porous low-permeability inclusions in shales, which are the basic source of gas. Milton Van Dyke was a great master in the field of boundary layer problems. Dedicating this work to his memory, we want to express our belief that Van Dyke\\'s profound ideas and fundamental book Perturbation Methods in Fluid Mechanics (Parabolic Press, 1975) will live on-also in fields very far from the subjects for which they were originally invented. © 2013 US Government.

  15. Complexity of localised coherent structures in a boundary-layer flow

    CERN Document Server

    Khapko, Taras; Kreilos, Tobias; Schlatter, Philipp; Eckhardt, Bruno; Henningson, Dan S

    2013-01-01

    We study numerically transitional coherent structures in a boundary-layer flow with homogeneous suction at the wall (the so-called asymptotic suction boundary layer ASBL). The dynamics restricted to the laminar-turbulent separatrix is investigated in a spanwisely extended domain that allows for robust localisation of all edge states. We work at fixed Reynolds number and study the edge states as a function of the streamwise period. We demonstrate the complex spatio-temporal dynamics of these localised states, which exhibits multistability and undergoes complex bifurcations leading from periodic to chaotic regimes. It is argued that in all regimes the dynamics restricted to the edge is essentially low-dimensional and non-extensive.

  16. Edge states as mediators of bypass transition in boundary-layer flows

    CERN Document Server

    Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Eckhardt, Bruno; Henningson, Dan S

    2016-01-01

    The concept of edge state is investigated in the asymptotic suction boundary layer in relation with the receptivity process to noisy perturbations and the nucleation of turbulent spots. Edge tracking is first performed numerically, without imposing any discrete symmetry, in a large computational domain allowing for full spatial localisation of the perturbation velocity. The edge state is a three-dimensional localised structure recurrently characterised by a single low-speed streak that experiences erratic bursts and planar shifts. This recurrent streaky structure is then compared with predecessors of individual spot nucleation events, triggered by non-localised initial noise. The present results suggest a nonlinear picture, rooted in dynamical systems theory, of the nucleation process of turbulent spots in boundary-layer flows, in which the localised edge state play the role of state-space mediator.

  17. Edge states as mediators of bypass transition in boundary-layer flows

    Science.gov (United States)

    Khapko, T.; Kreilos, T.; Schlatter, P.; Duguet, Y.; Eckhardt, B.; Henningson, D. S.

    2016-08-01

    The concept of edge state is investigated in the asymptotic suction boundary layer in relation with the receptivity process to noisy perturbations and the nucleation of turbulent spots. Edge tracking is first performed numerically, without imposing any discrete symmetry, in a large computational domain allowing for full spatial localisation of the perturbation velocity. The edge state is a three-dimensional localised structure recurrently characterised by a single low-speed streak that experiences erratic bursts and planar shifts. This recurrent streaky structure is then compared with predecessors of individual spot nucleation events, triggered by non-localised initial noise. The present results suggest a nonlinear picture, rooted in dynamical systems theory, of the nucleation process of turbulent spots in boundary-layer flows, in which the localised edge state play the role of state-space mediator.

  18. Stable Stratification Effects on Flow and Pollutant Dispersion in Boundary Layers Entering a Generic Urban Environment

    Science.gov (United States)

    Tomas, J. M.; Pourquie, M. J. B. M.; Jonker, H. J. J.

    2016-05-01

    Large-eddy simulations (LES) are used to investigate the effect of stable stratification on rural-to-urban roughness transitions. Smooth-wall turbulent boundary layers are subjected to a generic urban roughness consisting of cubes in an in-line arrangement. Two line sources of pollutant are added to investigate the effect on pollutant dispersion. Firstly, the LES method is validated with data from wind-tunnel experiments on fully-developed flow over cubical roughness. Good agreement is found for the vertical profiles of the mean streamwise velocity component and mean Reynolds stress. Subsequently, roughness transition simulations are done for both neutral and stable conditions. Results are compared with fully-developed simulations with conventional double-periodic boundary conditions. In stable conditions, at the end of the domain the streamwise velocity component has not yet reached the fully-developed state even though the surface forces are nearly constant. Moreover, the internal boundary layer is shallower than in the neutral case. Furthermore, an investigation of the turbulence kinetic energy budget shows that the buoyancy destruction term is reduced in the internal boundary layer, above which it is equal to the undisturbed (smooth wall) value. In addition, in stable conditions pollutants emitted above the urban canopy enter the canopy farther downstream due to decreased vertical mixing. Pollutants emitted below the top of the urban canopy are 85 % higher in concentration in stable conditions mostly due to decreased advection. If this is taken into account concentrations remain 17 % greater in stable conditions due to less rapid internal boundary-layer growth. Finally, it is concluded that in the first seven streets the vertical advective pollutant flux is significant, in contrast to the fully-developed case.

  19. The impact of plasma induced flow on the boundary layer in a narrow channel

    Directory of Open Access Journals (Sweden)

    Procházka P.

    2015-01-01

    Full Text Available The induced flow generated by dielectric barrier discharge (DBD actuator working in steady and unsteady regime will be used to modify properties of naturally developed boundary layer (BL in short and long rectangular perspex channel which is connected to the blow-down wind tunnel. The actuator is placed in spanwise configuration and the inlet velocities will range between 5 and 20 m•s-1. Previously, mean flow field and statistical quantities were subjugated to investigation. In this paper, there will be presented dynamical features of the BL. Oscillation pattern decomposition (OPD of influenced flow field and frequency analysis will be presented. These results should be taken into account regarding to use in the flow around a bluff body.

  20. An integral analysis of transonic normal shock wave/turbulent boundary layer interactions in internal flow

    Science.gov (United States)

    Om, D.; Childs, M. E.

    1983-01-01

    An approximate integral viscous-inviscid interaction method is presented for calculating the development of a turbulent boundary layer subjected to a normal shock wave induced adverse pressure gradient in an internal axisymmetric flow. The inflow conditions and the downstream pressure are provided for the computation. In the supersonic region of shock pressure rise, the Prandtl-Meyer function is used to couple the viscous and inviscid flows. An analytical model for the coupling process is postulated and appropriate equations are defined. Downstream of the sonic point, one-dimensional inviscid flow is assumed for coupling with the viscous flow. The turbulent boundary layer is calculated using Green's integral lag-entrainment method. Comparisons of the solutions with the experimental data are made for interactions which are unseparated, near separation and separated. For comparison purposes, solutions to the time-dependent, mass-averaged, Navier-Stokes equations incorporating a two-equation, Wilcox-Rubesin turbulence model are also shown. The computed results from the integral method show good agreement with experimental data for unseparated interactions and reasonable agreement with the trend of the viscous effects when the interaction becomes increasingly separated.

  1. MHD flow in a cylindrical vessel of finite size with turbulent boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Gorbachev, L.P.; Nikitin, N.V.

    1979-01-01

    The hydrodynamic characteristics of flows generated by electromagnetic forces in a cylindrical vessel of finite size, for the case of large values of the hydrodynamic and small values of the magnetic Reynolds numbers have been inadequately analyzed in previous literature, since neither the nonlinear nor the linear theory adequately accounts for secondary flows due to the strong action of boundary layers formed at the end faces of the cylinders at large Reynolds numbers and the results do not agree with experimental data. This paper generalizes the previously more accurate nonlinear scheme of the same authors, the basis for which was the fact that viscosity at large Reynolds numbers is manifest only close to solid surfaces. Two cases are treated: crossed fields and a rotating magnetic field in the cylindrical vessel, where the entire flow region is broken down into an inviscid core and end face boundary layers. It is assumed that the velocity distribution near the end surfaces obeys an empirical one-seventh power law, which is applicable to turbulent liquid flow in a tube in a range of Re = 3 x 10/sup 3/ to 10/sup 5/ simple engineering formulas are derived for the angular velocity, which exhibit good agreement with the experimental data for Hartmann numbers less than 10. The procedure can be generalized to the case of a rotating magnetic field having several pairs of poles. 6 references, 2 figures.

  2. Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, K A [Univ. of California, Berkeley, CA (United States)

    2010-05-12

    use of flux (non-zero) boundary conditions. This anabatic flow set-up is further coupled to atmospheric physics parameterizations, which calculate surface fluxes, demonstrating that the IBM can be coupled to various land-surface parameterizations in atmospheric models. Additionally, the IB method is extended to three dimensions, using both trilinear and inverse distance weighted interpolations. Results are presented for geostrophic flow over a three-dimensional hill. It is found that while the IB method using trilinear interpolation works well for simple three-dimensional geometries, a more flexible and robust method is needed for extremely complex geometries, as found in three-dimensional urban environments. A second, more flexible, immersed boundary method is devised using inverse distance weighting, and results are compared to the first IBM approach. Additionally, the functionality to nest a domain with resolved complex geometry inside of a parent domain without resolved complex geometry is described. The new IBM approach is used to model urban terrain from Oklahoma City in a one-way nested configuration, where lateral boundary conditions are provided by the parent domain. Finally, the IB method is extended to include wall model parameterizations for rough surfaces. Two possible implementations are presented, one which uses the log law to reconstruct velocities exterior to the solid domain, and one which reconstructs shear stress at the immersed boundary, rather than velocity. These methods are tested on the three-dimensional canonical case of neutral atmospheric boundary layer flow over flat terrain.

  3. Boundary Layer Flow and Heat Transfer over a Permeable Stretching/Shrinking Sheet with a Convective Boundary Condition

    Directory of Open Access Journals (Sweden)

    Khairy Zaimi

    2015-01-01

    Full Text Available This paper concerns with the boundary layer flow and heat transfer over a permeable stretching/shrinking sheet in a viscous fluid, with the bottom surface of the plate is heated by convection from a hot fluid. The partial differential equations governing the flow and heat transfer are converted into ordinary differential equations using a similarity transformation, before being solved numerically. The effects of the suction, convection and stretching/shrinking parameters on the skin friction coefficient and the local Nusselt number are examined and graphically illustrated. Dual solutions are found to exist for a certain range of the suction and stretching/shrinking parameters. The numerical results also show that suction widens the range of the stretching/shrinking parameter for which the solution exists.

  4. Viscous pressure correction in the irrotational flow outside Prandtl's boundary layer

    Science.gov (United States)

    Joseph, Daniel; Wang, Jing

    2004-11-01

    We argue that boundary layers on solid with irrotational motion outside are like a gas bubble because the shear stress vanishes at the edge of the boundary layer but the irrotational shear stress does not. This discrepancy induces a pressure correction and an additional drag which can be advertised as due to the viscous dissipation of the irrotational flow. Typically, this extra correction to the drag would be relatively small. A much more interesting implication of the extra pressure theory arises from the consideration of the effects of viscosity on the normal stress on a solid boundary which are entirely neglected in Prandtl's theory. It is very well known and easily demonstrated that as a consequence of the continuity equation the viscous normal stress must vanish on a rigid solid. It follows that all the greatly important effects of viscosity on the normal stress are buried in the pressure and the leading order effects of viscosity on the normal stress can be obtained from the viscous correction of viscous potential flow.

  5. Mean velocity profiles in a boundary layer under the joint action of surface roughness and external turbulent flow

    Directory of Open Access Journals (Sweden)

    Jonáš P.

    2008-12-01

    Full Text Available This paper considers the knowledge of the individual action and joint action of surface roughness and external flow turbulence on the mean flow in boundary layer. The experimental evidence of this problem has been reviewed. A lack of results has been ascertain of the investigation on the joint action of the mentioned influences on the development of a boundary layer from the state with laminar flow up to a turbulent boundary layer. The knowledge on the actions of individual effects has been gathered with the regard to the improvement of the evaluation and analysis of the mean flow characteristics of the zero pressure gradient boundary layer developing under the joint action of the uniform roughness of the surface and homogeneous, close to isotropy, free stream turbulence.

  6. Marginally stable and turbulent boundary layers in low-curvature Taylor-Couette flow

    CERN Document Server

    Brauckmann, Hannes J

    2016-01-01

    Marginal stability arguments are used to describe the rotation-number dependence of torque in Taylor-Couette (TC) flow for radius ratios $\\eta \\geq 0.9$ and shear Reynolds number $Re_S=2\\times 10^4$. With an approximate representation of the mean profile by piecewise linear functions, characterized by the boundary-layer thicknesses at the inner and outer cylinder and the angular momentum in the center, profiles and torques are extracted from the requirement that the boundary layers represent marginally stable TC subsystems and that the torque at the inner and outer cylinder coincide. This model then explains the broad shoulder in the torque as a function of rotation number near $R_\\Omega\\approx 0.2$. For rotation numbers $R_\\Omega < 0.07$ the TC stability conditions predict boundary layers in which shear Reynolds numbers are very large. Assuming that the TC instability is bypassed by some shear instability, a second maximum in torque appears, in very good agreement with numerical simulations. The results s...

  7. Series solutions of boundary-layer flows in porous media with lateral mass flux

    Energy Technology Data Exchange (ETDEWEB)

    Awang Kechil, Seripah [Universiti Tekonologi MARA, Department of Mathematics, Shah Alam Selangor (Malaysia); Hashim, Ishak [Universiti Kebangsaan Malaysia, School of Mathematical Sciences, UKM Bangi Selangor (Malaysia)

    2008-08-15

    Approximate analytical solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium are presented using the modified Adomian decomposition method and Pade technique. Several values of the wall temperature exponent for illustrating the effects of suction/injection parameter on the flow and heat transfer are considered. This study also includes the influence of the exponent on an impermeable surface. The results obtained are comparable to the exact analytical solutions and elucidate reliability and efficiency of the technique. (orig.)

  8. MHD visco elastic boundary layer flow with free convention past a continuous moving surface

    International Nuclear Information System (INIS)

    The behaviour of free convective boundary layer flow of an electrically conducting, viscoelastic, incompressible fluid over a continuously moving flat surface in presence of uniform magnetic field with constant suction is studied in this section. A uniform magnetic field is assumed to be applied perpendicular to the moving flat surface. The velocity and temperature field are obtained. The effect of R (small Reynold's number), M (Hartmann number), G (Grashoff number) and Ko (visco-elastic parameter) on velocity field and temperature field are discussed with the help of graphs. (author)

  9. Homotopy simulation of axisymmetric laminar mixed convection nanofluid boundary layer flow over a vertical cylinder

    Directory of Open Access Journals (Sweden)

    Freidooni Mehr N.

    2012-01-01

    Full Text Available In this paper, the semi-analytical/numerical technique known as the homotopy analysis method (HAM is employed to derive solutions for the laminar axisymmetric mixed convection boundary-layer nanofluid flow past a vertical cylinder. The similarity solutions are employed to transform the parabolic partial differential conservation equations into system of nonlinear, coupled ordinary differential equations, subject to appropriate boundary conditions. A comparison has been done to verify the obtained results with the purely numerical results of Grosan and Pop (2011 with excellent correlation achieved. The effects of nanoparticle volume fraction, curvature parameter and mixed convection or buoyancy parameter on the dimensionless velocity and temperature distributions, skin friction and wall temperature gradients are illustrated graphically. HAM is found to demonstrate excellent potential for simulating nanofluid dynamics problems. Applications of the study include materials processing and also thermal enhancement of energy systems.

  10. Turbulent boundary layer flow with a step change from smooth to rough surface

    International Nuclear Information System (INIS)

    Highlights: • Evidence for mean flow universality for turbulent boundary layer with 2-D roughness is provided. • Characteristics of overshooting behavior for the statistics are presented. • It is shown direct evidence for predominance of hairpin vortices over the rough wall. • A possible cause for spanwise scale growth of structures over the rough wall is examined. - Abstract: A direct numerical simulation (DNS) dataset of a turbulent boundary layer (TBL) with a step change from a smooth to a rough surface is analyzed to examine the characteristics of a spatially developing flow. The roughness elements are periodically arranged two-dimensional (2-D) spanwise rods, with the first rod placed 80θin downstream from the inlet, where θin denotes the inlet momentum thickness. Based on an accurate estimation of relevant parameters, clear evidence for mean flow universality is provided when scaled properly, even for the present roughness configuration, which is believed to have one of the strongest impacts on the flow. Compared to previous studies, it is shown that overshooting behavior is present in the first- and second-order statistics and is locally created either within the cavity or at the leading edge of the roughness depending on the type of statistics and the wall-normal measurement location. Inspection of spatial two-point correlations of the streamwise velocity fluctuations shows a continuous increase of spanwise length scales of structures over the rough wall after the step change at a greater growth rate than that over smooth wall TBL flow. This is expected because spanwise energy spectrum shows presence of much energetic wider structures over the rough wall. Full images of the DNS data are presented to describe not only predominance of hairpin vortices but also a possible spanwise scale growth mechanism via merging over the rough wall

  11. Investigation of Effect of Boundary Layer on Flow Structure Around a Cylinder with a Strip

    Directory of Open Access Journals (Sweden)

    Yayla Sedat

    2015-01-01

    Full Text Available In this study, the flow characteristic of the circular cylinder was placed vertically in channel which has dimensions as 8000 mm, 1000 mm, 750 mm, lenght, width and height repectively, was investigated. The cylinder was located in boundary layer with a diameter of 60 mm (D and a elastic stripwhich has a 1400 N/mm2 modulus of elasticity vinyl PVC transperent film was attached behind the cylinder. Lenght of the strip (L was 240 mm L/D=4. The Reynolds number was fixed at Re=7500. The time-averaged and instantaneous velocity vector maps, vorticity contours, Reynold shear and normal stresses, turbulent kinetic energy and frequency of shedding were obtained using the particle image velocimetry (PIV technique. It was found that the elastic plate which exists behind the cylinder has a slight influence on the flow structure of the wake-boundary layer interaction. Values of turbulent kinetic energy, streamwise Reynold stress, transverse Reynold stresses were decreased by attaching strip.

  12. On role of kinetic fluctuations in laminar-turbulent transition in chemically nonequilibrium boundary layer flows

    Science.gov (United States)

    Tumin, Anatoli

    2015-11-01

    Zavol'skii and Reutov (1983), Luchini (2008, 2010), Fedorov (2010, 2012, 2014) explored potential role of kinetic fluctuations (KF) in incompressible and calorically perfect gas boundary layer flows. The results indicate that role of KF is comparable with other disturbance sources in flight experiments and in quiet wind tunnels. The analysis is based on the Landau and Lifshitz (1957) concept of fluctuating hydrodynamics representing the dissipative fluxes as an average and fluctuating parts. We are extending analysis of the receptivity problem to the fluctuating dissipative fluxes in chemically reacting nonequilibrium boundary layer flows of binary mixtures. There are new terms in the energy, and the species equations. The species conservation equation includes the dissipative diffusion flux and the species generation due to dissociation. The momentum equation includes fluctuating stress tensor. The energy equation includes fluctuating heat flux, energy flux due to diffusion of the species, and fluctuating dissipative flux due to viscosity. The effects are compared for the cases stemming from constraints of the HTV project (Klentzman and Tumin, AIAA Paper 2013-2882). Supported by AFOSR.

  13. New Findings by High-Order DNS for Late Flow Transition in a Boundary Layer

    Directory of Open Access Journals (Sweden)

    Chaoqun Liu

    2011-01-01

    Full Text Available This paper serves as a summary of new discoveries by DNS for late stages of flow transition in a boundary layer. The widely spread concept “vortex breakdown” is found theoretically impossible and never happened in practice. The ring-like vortex is found the only form existing inside the flow field. The ring-like vortex formation is the result of the interaction between two pairs of counter-rotating primary and secondary streamwise vortices. Following the first Helmholtz vortex conservation law, the primary vortex tube rolls up and is stretched due to the velocity gradient. In order to maintain vorticity conservation, a bridge must be formed to link two Λ-vortex legs. The bridge finally develops as a new ring. This process keeps going on to form a multiple ring structure. The U-shaped vortices are not new but existing coherent vortex structure. Actually, the U-shaped vortex, which is a third level vortex, serves as a second neck to supply vorticity to the multiple rings. The small vortices can be found on the bottom of the boundary layer near the wall surface. It is believed that the small vortices, and thus turbulence, are generated by the interaction of positive spikes and other higher level vortices with the solid wall. The mechanism of formation of secondary vortex, second sweep, positive spike, high shear distribution, downdraft and updraft motion, and multiple ring-circle overlapping is also investigated.

  14. Open-loop control of noise amplification in a separated boundary layer flow

    CERN Document Server

    Boujo, Edouard; Gallaire, François

    2014-01-01

    Linear optimal gains are computed for the subcritical two-dimensional separated boundary-layer flow past a bump. Very large optimal gain values are found, making it possible for small-amplitude noise to be strongly amplified and to destabilize the flow. The optimal forcing is located close to the summit of the bump, while the optimal response is the largest in the shear layer. The largest amplification occurs at frequencies corresponding to eigenvalues which first become unstable at higher Reynolds number. Nonlinear direct numerical simulations show that a low level of noise is indeed sufficient to trigger random flow unsteadiness, characterized here by large-scale vortex shedding. Next, a variational technique is used to compute efficiently the sensitivity of optimal gains to steady control (through source of momentum in the flow, or blowing/suction at the wall). A systematic analysis at several frequencies identifies the bump summit as the most sensitive region for control with wall actuation. Based on thes...

  15. Velocity Boundary Layer Analysis of a Flat Plate Heat Exchanger in Laminar Flow: A Case Study

    Directory of Open Access Journals (Sweden)

    M. Mirdrikvand

    2012-01-01

    Full Text Available In this article, a behavioral analysis of velocity boundary layer in a flat plate heat exchanger in laminar flow condition through CFD simulation using FLUENT software is done. The main objective of this study is to determine the velocity vectors between the flat plates of the heat exchanger. In addition, wake occurrence, differences of velocity at different surfaces between plates, angles of velocity vectors and the effect of wake phenomenon on the shear stresses exerted on the plates are discussed in detail. The study graphically illustrates results based on fluid’s behavior by a 3D and 2D simulation with air and water as cold and hot streams that affect plate’s situation and its hydro dynamical operations. Consequently, some important design features regarding wake point occurrence and pressure loss are investigated. In addition, eddy current and reverse flows in the wake area and the angles of the velocity vectors are described.

  16. Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schröder, A.; Geisler, R.; Elsinga, G.E.; Scarano, F.; Dierksheide, U.

    2007-01-01

    In this feasibility study the tomographic PIV technique has been applied to time resolved PIV recordings for the study of the growth of a turbulent spot in a laminar flat plate boundary layer and to visualize the topology of coherent flow structures within a tripped turbulent flat plate boundary lay

  17. Boundary Layer Control on Airfoils.

    Science.gov (United States)

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  18. RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Schløer, Signe; Sterner, Johanna

    2013-01-01

    of a number of local factors important within cross-shore wave boundary layer and sediment transport dynamics. The hydrodynamic model is validated for both hydraulically smooth and rough conditions, based on wave friction factor diagrams and boundary layer streaming profiles, with the results in excellent...

  19. The hub wall boundary layer development and losses in an axial flow compressor rotor passage

    Science.gov (United States)

    Murthy, K. N. S.; Lakshminarayana, B.

    1987-02-01

    The hub wall boundary layer development in a compressor stage including the rotor passage is experimentally investigated. A miniature five-hole probe was employed to measure the hub wall boundary layer inside the inlet guide vane passage, upstream and far downstream of the rotor. The hub wall boundary layer inside the rotor passage was acquired using a rotating miniature five-hole probe. The boundary layer is well behaved upstream and far downstream of the rotor. The migration of the hub wall boundary layer towards the suction surface corner is observed. The limiting streamline angles and static pressure distribution across the stage were also measured. The mean velocity profiles and the integral properties upstream, inside and downstream of the rotor, and the losses are presented and interpreted.

  20. Numerical simulations of sink-flow boundary layers over rough surfaces

    Science.gov (United States)

    Yuan, J.; Piomelli, U.

    2014-01-01

    Turbulent sink flows over smooth or rough walls with sand-grain roughness are studied using large-eddy and direct numerical simulations. Mild and strong levels of acceleration are applied, yielding a wide range of Reynolds number (Reθ = 372 - 2748) and cases close to the reverse-transitional state. Flow acceleration and roughness are shown to exert opposite effects on boundary-layer integral parameters, on the Reynolds stresses, budgets of turbulent kinetic energy, and properties of turbulent structures in the vicinity of the rough surface; statistics exhibit similarity when plotted using inner scaling for cases with the same roughness Reynolds number, k+. Acceleration leads to a decrease of k+, while roughness increases it. For cases with higher k+, the low-speed streaks become destabilized, and turbulent structures near the wall are distributed more uniformly in the wall-parallel plane; they are less extended in the streamwise direction, but more densely packed. Higher k+ also causes decorrelation of the outer-layer hairpin packets with the near-wall structures, probably due to the direct impact of random roughness elements on the hairpin legs. Wall-similarity applies for the fully turbulent cases, in which the outer-layer turbulent statistics are affected by acceleration only. It is shown that being in the hydraulically smooth regime is a necessary condition for reverse-transition, supporting the idea that relaminarization starts from the inner region, where roughness effects dominate.

  1. Predicting the flow & noise of a rotor in a turbulent boundary layer using an actuator disk -- RANS approach

    Science.gov (United States)

    Buono, Armand C.

    The numerical method presented in this study attempts to predict the mean, non-uniform flow field upstream of a propeller partially immersed in a thick turbulent boundary layer with an actuator disk using CFD based on RANS in ANSYS FLUENT. Three different configurations, involving an infinitely thin actuator disk in the freestream (Configuration 1), an actuator disk near a wall with a turbulent boundary layer (Configuration 2), and an actuator disk with a hub near a wall with a turbulent boundary layer (Configuration 3), were analyzed for a variety of advance ratios ranging from J = 0.48 to J =1.44. CFD results are shown to be in agreement with previous works and validated with experimental data of reverse flow occurring within the boundary layer above the flat plate upstream of a rotor in the Virginia Tech's Stability Wind Tunnel facility. Results from Configuration 3 will be used in future aero-acoustic computations.

  2. The Magnetohydrodynamic Boundary Layer Flow of a Nanofluid past a Stretching/Shrinking Sheet with Slip Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Syahira Mansur

    2014-01-01

    Full Text Available The magnetohydrodynamic (MHD boundary layer flow of a nanofluid past a stretching/shrinking sheet with velocity, thermal, and solutal slip boundary conditions is studied. Numerical solutions to the governing equations were obtained using a shooting method. The skin friction coefficient and the local Sherwood number increase as the stretching/shrinking parameter increases. However, the local Nusselt number decreases with increasing the stretching/shrinking parameter. The range of the stretching/shrinking parameter for which the solution exists increases as the velocity slip parameter and the magnetic parameter increase. For the shrinking sheet, the skin friction coefficient increases as the velocity slip parameter and the magnetic parameter increase. For the stretching sheet, it decreases when the velocity slip parameter and the magnetic parameter increase. The local Nusselt number diminishes as the thermal slip parameter increases while the local Sherwood number decreases with increasing the solutal slip parameter. The local Nusselt number is lower for higher values of Lewis number, Brownian motion parameter, and thermophoresis parameter.

  3. Thermal Boundary Layer in Flow due to an Exponentially Stretching Surface with an Exponentially Moving Free Stream

    OpenAIRE

    Krishnendu Bhattacharyya; Layek, G. C.

    2014-01-01

    A numerical investigation is made to study the thermal boundary layer for flow of incompressible Newtonian fluid over an exponentially stretching sheet with an exponentially moving free stream. The governing partial differential equations are transformed into self-similar ordinary differential equations using similarity transformations in exponential forms. Then those are solved numerically by shooting technique using Runge-Kutta method. The study reveals that the momentum boundary layer thic...

  4. Revisiting Surface Heat-Flux and Temperature Boundary Conditions in Models of Stably Stratified Boundary-Layer Flows

    Science.gov (United States)

    Gibbs, Jeremy A.; Fedorovich, Evgeni; Shapiro, Alan

    2015-02-01

    Two formulations of the surface thermal boundary condition commonly employed in numerical modelling of atmospheric stably stratified surface-layer flows are evaluated using analytical considerations and observational data from the Cabauw site in the Netherlands. The first condition is stated in terms of the surface heat flux and the second is stated in terms of the vertical potential temperature difference. The similarity relationships used to relate the flux and the difference are based on conventional log-linear expressions for vertical profiles of wind velocity and potential temperature. The heat-flux formulation results in two physically meaningful values for the friction velocity with no obvious criteria available to choose between solutions. Both solutions can be obtained numerically, which casts doubt on discarding one of the solutions as was previously suggested based on stability arguments. This solution ambiguity problem is identified as the key issue of the heat-flux condition formulation. In addition, the agreement between the temperature difference evaluated from similarity solutions and their measurement-derived counterparts from the Cabauw dataset appears to be very poor. Extra caution should be paid to the iterative procedures used in the model algorithms realizing the heat-flux condition as they could often provide only partial solutions for the friction velocity and associated temperature difference. Using temperature difference as the lower boundary condition bypasses the ambiguity problem and provides physically meaningful values of heat flux for a broader range of stability condition in terms of the flux Richardson number. However, the agreement between solutions and observations of the heat flux is again rather poor. In general, there is a great need for practicable similarity relationships capable of treating the vertical turbulent transport of momentum and heat under conditions of strong stratification in the surface layer.

  5. On the hydrodynamic stability of a particle-laden flow in growing flat plate boundary layer

    Institute of Scientific and Technical Information of China (English)

    XIE Ming-liang; LIN Jian-zhong; XING Fu-tang

    2007-01-01

    The parabolized stability equation (PSE) was derived to study the linear stability of particle-laden flow in growing Blasius boundary layer. The stability characteristics for various Stokes numbers and particle concentrations were analyzed after solving the equation numerically using the perturbation method and finite difference. The inclusion of the nonparallel terms produces a reduction in the values of the critical Reynolds number compared with the parallel flow. There is a critical value for the effect of Stokes number, and the critical Stokes number being about unit, and the most efficient instability suppression takes place when Stokes number is of order 10. But the presence of the nonparallel terms does not affect the role of the particles in gas. That is, the addition of fine particles (Stokes number is much smaller than 1) reduces the critical Reynolds number while the addition of coarse particles (Stokes number is much larger than 1) enhances it. Qualitatively the effect of nonparallel mean flow is the same as that for the case of plane parallel flows.

  6. On the Nonlinear Evolution of a Stationary Cross-Flow Vortex in a Fully Three-Dimensional Boundary Layer Flow

    Science.gov (United States)

    Gajjar, J. S. B.

    1995-01-01

    We consider the nonlinear stability of a fully three-dimensional boundary layer flow in an incompressible fluid and derive an equation governing the nonlinear development of a stationary cross-flow vortex. The amplitude equation is a novel integro-differential equation which has spatial derivatives of the amplitude occurring in the kernal function. It is shown that the evolution of the cross-flow vortex is strongly coupled to the properties of an unsteady wall layer which is in fact driven by an unknown slip velocity, proportional to the amplitude of the cross-flow vortex. The work is extended to obtain the corresponding equation for rotating disk flow. A number of special cases are examined and the numerical solution for one of cases, and further analysis, demonstrates the existence of finite-distance as well as focussing type singularities. The numerical solutions also indicate the presence of a new type of nonlinear wave solution for a certain set of parameter values.

  7. Observations of the atmospheric boundary layer height under marine upstream flow conditions at a coastal site

    DEFF Research Database (Denmark)

    Peña, Alfredo; Gryning, Sven-Erik; Hahmann, Andrea N.

    2013-01-01

    and an aerosol lidar reveal similar BLHs, but their agreement depends on the presence of clouds and the instrument signal, among others. BLHs derived by a threshold on the carrier-to-noise profiles of a wind lidar agree well with those derived by using a threshold on the backscatter profile of the ceilometer......We investigate several lidar-type instruments and methodologies for boundary layer height (BLH) estimation during 2 days at a coastal site for winds that experience marine upstream flow conditions. Wavelet and profile fitting procedures on the aerosol backscatter signals from a ceilometer...... and are used as reference for a 10 day BLH intercomparison. Furthermore, the BLHs from the aerosol analysis are comparable to those derived from wind speed and direction profiles from combined mast/wind lidar measurements. The BLH derived from simulations performed with the Weather Research and Forecasting...

  8. Boundary layer flow and heat transfer of Cross fluid over a stretching sheet

    CERN Document Server

    Khan, Masood; Rahman, Masood ur

    2016-01-01

    The current study is a pioneering work in presenting the boundary layer equations for the two-dimensional flow and heat transfer of the Cross fluid over a linearly stretching sheet. The system of partial differential equations is turned down into highly non-linear ordinary differential equations by applying suitable similarity transformations. The stretching sheet solutions are presented via. a numerical technique namely the shooting method and graphs are constructed for the shear-thinning as well as shear-thickening regime. The impact of the emerging parameters namely the power-law index , the local Weissenberg number and the Prandtl number on the velocity and temperature fields are investigated through graphs. Numerical values of the local skin friction coefficient and the local Nusselt number are also presented in tabular form. For some limiting cases, comparisons with previously available results in the literature are made and an excellent agreement is achieved.

  9. UNSTEADY PLANE MHD BOUNDARY LAYER FLOW OF A FLUID OF VARIABLE ELECTRICAL CONDUCTIVITY

    Directory of Open Access Journals (Sweden)

    Zoran B Boričić

    2010-01-01

    Full Text Available This paper is devoted to the analysis of unsteady plane laminar magnetohydrodynamic (MHD boundary layer flow of incompressible and variable electrical conductivity fluid. The present magnetic field is homogenous and perpendicular to the body surface. Outer electric filed is neglected and magnetic Reynolds number is significantly lower then one i.e. considered problem is in induction-less approximation. Free stream velocity is an arbitrary differentiable function. Fluid electrical conductivity is decreasing function of velocity ratio. In order to solve the described problem multiparametric (generalized similarity method is used and so-called universal equations are obtained. Obtained universal equations are solved numerically in appropriate approximation and a part of obtained results is given in the form of figures and corresponding conclusions.

  10. Stochastic Structural Stability Theory applied to roll/streak formation in boundary layer shear flow

    CERN Document Server

    Farrell, Brian F

    2010-01-01

    Stochastic Structural Stability Theory (SSST) provides an autonomous, deterministic, nonlinear dynamical system for evolving the statistical mean state of a turbulent system. In this work SSST is applied to the problem of understanding the formation of the roll/streak structures that arise from free-stream turbulence (FST) and are associated with bypass transition in boundary layers. Roll structures in the cross-stream/spanwise plane and associated streamwise streaks are shown to arise as a linear instability of interaction between the FST and the mean flow. In this interaction incoherent Reynolds stresses arising from FST are organized by perturbation streamwise streaks to coherently force perturbation rolls giving rise to an amplification of the streamwise streak perturbation and through this feedback to an instability of the combined roll/streak/turbulence complex. The dominant turbulent perturbation structures involved in supporting the roll/streak/turbulence complex instability are non-normal optimal per...

  11. Effects of Joule Heating and Viscous Dissipation on MHD Marangoni Convection Boundary Layer Flow

    Directory of Open Access Journals (Sweden)

    Rohana Abdul Hamid

    2011-09-01

    Full Text Available An analysis is performed to study the effects of the Joule heating and viscous dissipation on the magnetohydrodynamics (MHD Marangoni convection boundary layer flow. The governing partial differential equations are reduced to a system of ordinary differential equations via the similarity transformations. Numerical results of the similarity equations are obtained using the Runge-Kutta-Fehlberg method. Effects of the magnetic field parameter, and the combined effects of the Joule heating and the viscous dissipation are investigated and the numerical results are tabulated in tables and figures. It is found that the magnetic field reduces the fluid velocity but increases the fluid temperature. On the other hand, the combined effects of the Joule heating and viscous dissipation have significantly influenced the surface temperature gradient.

  12. Nonlinear Radiation Effects on Hydromagnetic Boundary Layer Flow and Heat Transfer over a Shrinking Surface

    Directory of Open Access Journals (Sweden)

    anjali devi

    2015-01-01

    Full Text Available The effects of nonlinear radiation on hydromagnetic boundary layer flow and heat transfer over a shrinking surface is investigated in the present work. Using suitable similarity transformations, the governing nonlinear partial differential equations are transformed into nonlinear ordinary differential equations. The resultant equations which are highly nonlinear are solved numerically using Nachtsheim Swigert shooting iteration scheme together with Fourth Order Runge Kutta method. Numerical solutions for velocity, skin friction coefficient and temperature are obtained for various values of physical parameters involved in the study namely Suction parameter, Magnetic parameter, Prandtl number, Radiation parameter and Temperature ratio parameter. Numerical values for dimensionless rate of heat transfer are also obtained for various physical parameters and are shown through tables. The analytical solution of the energy equation when the radiation term is taken in linear form is obtained using Confluent hypergeometric function.

  13. Effect of structural defects in fine particle on heat energy flow toward the boundary layer

    International Nuclear Information System (INIS)

    As the number of swipe samples around nuclear facilities is apt to increase, establishing simple and speedy analysis technique has become an urgent subject for the Fission Track (FT) method. In this method, a lot of trajectories induced by nuclear fission fragments will lead to drop an interested particle containing fissile materials from a film during etching process. Nuclear fission fragments are highly charged, so they can ionize, scatter and excite the other constituent molecules along their trajectory. This physical process could cause local temperature increase within or without the particle through the molecular collision. We try to investigate the relationship between the structural defects of the particle and heat energy flow toward the boundary layer by Molecular Dynamics Method. In this report, the computer code we have been developing is presented and what problems we should overcome to carry on this study are also stated. (author)

  14. Turbulent flow over a house in a simulated hurricane boundary layer

    CERN Document Server

    Taylor, Zachary; Gurka, Roi; Kopp, Gregory

    2009-01-01

    Every year hurricanes and other extreme wind storms cause billions of dollars in damage worldwide. For residential construction, such failures are usually associated with roofs, which see the largest aerodynamic loading. However, determining aerodynamic loads on different portions of North American houses is complicated by the lack of clear load paths and non-linear load sharing in wood frame roofs. This problem of fluid-structure interaction requires both wind tunnel testing and full-scale structural testing. A series of wind tunnel tests have been performed on a house in a simulated atmospheric boundary layer (ABL), with the resulting wind-induced pressures applied to the full-scale structure. The ABL was simulated for flow over open country terrain where both velocity and turbulence intensity profiles, as well as spectra, were matched with available full scale measurements for this type of terrain. The first set of measurements was 600 simultaneous surface pressure measurements over the entire house. A key...

  15. A Modeling Study of Boundary Layer Wind Flow over Tehran Region during a High Pollution Episode

    Directory of Open Access Journals (Sweden)

    H. Malakooti

    2014-01-01

    Full Text Available The influence of a mega-city on the atmospheric boundary layer wind field was examined in the complex-terrain, semi-arid Tehran region using the Pennsylvania State University/National Center for Atmospheric Research fifth-generation Mesoscale Model (MM5 during a high pollution period. In addition, model sensitivity studies were conducted to evaluate the performance of the urban canopy and urban soil model "SM2-U (3D" parameterization on the wind field. The topographic flows and urban effects were found to play important roles in modulating the wind field, and the urbanized areas exerted important local effects on the boundary layer meteorology. An emission inventory of heat generation was developed and updated for 2005 in this work. By using a detailed methodology, we calculated spatial and temporal distributions of the anthropogenic heat flux (Qf for Tehran during 2005. Wintertime Qf is found larger than summertime Qf, which reflects the importance of heating emissions from buildings and traffic during cold and warm periods respectively. Different urban parameterizations were used as a tool to investigate the modifications induced by the presence of an urban area in the area of interest. It is found that, for local meteorological simulations, the drag-force approach (DA coupled with an urban soil model (SM2-U is preferable to the roughness approach (RA coupled with a slab soil model. The comparisons indicated that the most important features of the wind field, in urban areas are well reproduced by the DA-SM2-U configuration with the anthropogenic heat flux being taken into account. This modeling option showed that the suburban part of the city is dominated by topographic flows whereas the center and south of Tehran are more affected by urban heat island (UHI forcing especially during the night in studied episodes.

  16. MHD effect of mixed convection boundary-layer flow of Powell-Eyring fluid past nonlinear stretching surface

    Institute of Scientific and Technical Information of China (English)

    S PANIGRAHI; M REZA; A K MISHRA

    2014-01-01

    Sufficient conditions are found for the existence of similar solutions of the mixed convection flow of a Powell-Eyring fluid over a nonlinear stretching permeable sur-face in the presence of magnetic field. To achieve this, one parameter linear group trans-formation is applied. The governing momentum and energy equations are transformed to nonlinear ordinary differential equations by use of a similarity transformation. These equations are solved by the homotopy analysis method (HAM) to obtain the approximate solutions. The effects of magnetic field, suction, and buoyancy on the Powell-Eyring fluid flow with heat transfer inside the boundary layer are analyzed. The effects of the non-Newtonian fluid (Powell-Eyring model) parametersεandδ on the skin friction and local heat transfer coefficients for the cases of aiding and opposite flows are investigated and discussed. It is observed that the momentum boundary layer thickness increases and the thermal boundary layer thickness decreases with the increase inεwhereas the momentum boundary layer thickness decreases and thermal boundary layer thickness increases with the increase in δ for both the aiding and opposing mixed convection flows.

  17. Numerical Analysis of Effect of Boundary Layer Characteristics on the Flow Field in S-shaped Inlet

    Directory of Open Access Journals (Sweden)

    Ren Jia

    2015-01-01

    Full Text Available In order to explore the effect of boundary layer thickness and pressure gradient on the performance of the flow field in the inlet, we design a high offset rate S-shaped inlet based on a certain unmanned aerial vehicle (UAV, and its author has analyzed the effect of boundary layer characteristics on the inlet with numerical simulation method. The suction of boundary layer which leads to separation zone not only becomes longer in the inlet, but also moves to the center plane of symmetry, the separation point of boundary layer appears in advance as pressure gradient increases. Considering the influence of the boundary layer, various performance parameters all exceeds that of the uniform entrance inlet conditions, especially the circumferential total pressure distortion of outlet increased by 58.2% at most, obviously can’t meet the engine to work properly, so we must consider and pay attention to the effect of the boundary layer characteristics on the flow field in the S-shaped inlet.

  18. Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel

    KAUST Repository

    Budiman, Alexander Christantho

    2014-12-04

    Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.

  19. Taylor-Goertler instabilities of Tollmien-Schlichting waves and other flows governed by the interactive boundary layer equations

    Science.gov (United States)

    Hall, P.

    1985-01-01

    The Taylor-Gortler vortex instability equations are formulated for steady and unsteady interacting boundary layer flows of the type which arise in triple-deck theory. The effective Gortler number is shown to be a function of the all shape in the boundary layer and the possibility of both steady and unsteady Taylor-Gortler modes exists. As an example the steady flow in a symmetrically constricted channel is considered and it is shown that unstable Gortler vortices exist before the boundary layers at the wall develop the Goldstein singularity. As an example of an unsteady spatially varying basic state the instability of high frequency large amplitude Tollmien-Schlichting waves in a curved channel were considered. It is shown that they are unstable in the first Stokes layer stage of the hierarchy of nonlinear states. The Tollmien-Schlichting waves are shown to be unstable in the presence of both convex and concave curvature.

  20. Unsteady boundary layer flow and heat transfer over an exponentially shrinking sheet with suction in a copper-water nanofluid

    Institute of Scientific and Technical Information of China (English)

    Aurang Zaib; Krishnendu Bhattacharyya; Sharidan Shafie

    2015-01-01

    An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented. Water is treated as a base fluid. In the investigation, non-uniform mass suction through the porous sheet is considered. Using Keller-box method the transformed equations are solved numerically. The results of skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles are presented for different flow parameters. The results showed that the dual non-similar solutions exist only when certain amount of mass suction is applied through the porous sheet for various unsteady parameters and nanoparticle volume fractions. The ranges of suction where dual non-similar solution exists, become larger when values of unsteady parameter as well as nanoparticle volume fraction increase. So, due to unsteadiness of flow dynamics and the presence of nanoparticles in flow field, the requirement of mass suction for existence of solution of boundary layer flow past an exponentially shrinking sheet is less. Furthermore, the velocity boundary layer thickness decreases and thermal boundary layer thickness increases with increasing of nanoparticle volume fraction in both non-similar solutions. Whereas, for stronger mass suction, the velocity boundary layer thickness becomes thinner for the first solution and the effect is opposite in the case of second solution. The temperature inside the boundary layer increases with nanoparticle volume fraction and decreases with mass suction. So, for the unsteadiness and for the presence of nanoparticles, the flow separation is delayed to some extent.

  1. Understanding the Flow Physics of Shock Boundary-Layer Interactions Using CFD and Numerical Analyses

    Science.gov (United States)

    Friedlander, David J.

    2013-01-01

    Computational fluid dynamic (CFD) analyses of the University of Michigan (UM) Shock/Boundary-Layer Interaction (SBLI) experiments were performed as an extension of the CFD SBLI Workshop held at the 48th AIAA Aerospace Sciences Meeting in 2010. In particular, the UM Mach 2.75 Glass Tunnel with a semi-spanning 7.75deg wedge was analyzed in attempts to explore key physics pertinent to SBLI's, including thermodynamic and viscous boundary conditions as well as turbulence modeling. Most of the analyses were 3D CFD simulations using the OVERFLOW flow solver, with additional quasi-1D simulations performed with an in house MATLAB code interfacing with the NIST REFPROP code to explore perfect verses non-ideal air. A fundamental exploration pertaining to the effects of particle image velocimetry (PIV) on post-processing data is also shown. Results from the CFD simulations showed an improvement in agreement with experimental data with key contributions including adding a laminar zone upstream of the wedge and the necessity of mimicking PIV particle lag for comparisons. Results from the quasi-1D simulation showed that there was little difference between perfect and non-ideal air for the configuration presented.

  2. Concerning the interaction of non-stationary cross-flow vortices in a three-dimensional boundary layer

    Science.gov (United States)

    Bassom, Andrew P.; Hall, Philip

    1990-01-01

    Recently there has been much work devoted to considering some of the many and varied interaction mechanisms which may be operative in three-dimensional boundary layer flows. This paper is concerned with resonant triads of crossflow vortices. The effects of interactions upon resonant triads is examined where each member of the triad has the property of being linearly neutrally stable so that the importance of the interplay between modes can be relatively easily assessed. Modes within the boundary layer flow above a rotating disc are investigated because of the similarity between this disc flow and many important practical flows and, secondly, because the selected flow is an exact solution of the Navier-Stokes equations which makes its theoretical analysis especially attractive. It is demonstrated that the desired triads of linearly neutrally stable modes can exist within the chosen boundary layer flow. Evolution equations are obtained to describe the development of the amplitudes of these modes once the interaction mechanism is accounted for. It is found that the coefficients of the interaction terms within the evolution equations are, in general, given by quite intricate expressions although some elementary numerical work shows that the evaluation of these coefficients is practicable. The basis of the work lends itself to generalization to more complicated boundary layers, and effects of detuning or non-parallelism could be provided for within the asymptotic framework.

  3. Fractional boundary layer flow and radiation heat transfer of MHD viscoelastic fluid over an unsteady stretching surface

    Directory of Open Access Journals (Sweden)

    Bingyu Shen

    2015-10-01

    Full Text Available This paper presents an investigation for magnetohydrodynamic (MHD viscoelastic fluid boundary layer flow and radiation heat transfer over an unsteady stretching sheet in presence of heat source. Time dependent fractional derivative is first introduced in formulating the boundary layer equations. Numerical solutions are obtained by using the finite difference scheme and L1-algorithm approximation. Results indicate that the proposed model describes a basic delaying times framework for viscoelastic flow and radiation heat transfer. The effects of involved parameters on velocity and temperature fields are shown graphically and analyzed in detail.

  4. Fractional boundary layer flow and radiation heat transfer of MHD viscoelastic fluid over an unsteady stretching surface

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bingyu; Zheng, Liancun, E-mail: liancunzheng@ustb.edu.cn; Chen, Shengting [School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-10-15

    This paper presents an investigation for magnetohydrodynamic (MHD) viscoelastic fluid boundary layer flow and radiation heat transfer over an unsteady stretching sheet in presence of heat source. Time dependent fractional derivative is first introduced in formulating the boundary layer equations. Numerical solutions are obtained by using the finite difference scheme and L1-algorithm approximation. Results indicate that the proposed model describes a basic delaying times framework for viscoelastic flow and radiation heat transfer. The effects of involved parameters on velocity and temperature fields are shown graphically and analyzed in detail.

  5. Fractional boundary layer flow and radiation heat transfer of MHD viscoelastic fluid over an unsteady stretching surface

    International Nuclear Information System (INIS)

    This paper presents an investigation for magnetohydrodynamic (MHD) viscoelastic fluid boundary layer flow and radiation heat transfer over an unsteady stretching sheet in presence of heat source. Time dependent fractional derivative is first introduced in formulating the boundary layer equations. Numerical solutions are obtained by using the finite difference scheme and L1-algorithm approximation. Results indicate that the proposed model describes a basic delaying times framework for viscoelastic flow and radiation heat transfer. The effects of involved parameters on velocity and temperature fields are shown graphically and analyzed in detail

  6. Three Dimensional Separation with Spiral-Focus in a Decelerating Duct Flow (Effect of Asymmetric Inlet Boundary Layer Thickness)

    Institute of Scientific and Technical Information of China (English)

    Yoichi Kinoue; Toshiaki Setoguchi; Kenji Kaneko; Mamun Mohammad; Masahiro Inoue

    2003-01-01

    An experimental apparatus was developed to study the three dimensional separated flow with spiral-foci. The internal decelerating flow was generated by the air suction from a side wall to produce the separation on an opposite-side wall. The relation between the upstream boundary layer and the generation of spiral-foci in the separation region was observed by a tuft method. As a result, it was clarified that the spiral-focus type separation could be produced on the side wall and its behavior was closely related to the vortices supplied into the separation region from the boundary layer developing along top wall or bottom one.

  7. Turbulent Boundary Layer on a Finely Perforated Surface Under Conditions of Air Injection at the Expense of External Flow Resources

    Science.gov (United States)

    Kornilov, V. I.; Boiko, A. V.; Kavun, I. N.

    2015-11-01

    The characteristics of an incompressible turbulent boundary layer on a flat plate with air blown in though a finely perforated surface from an external confined flow through an input device, located on the "idle" side of the plate, have been investigated experimentally and numerically. A stable decrease in the local values of the coefficient of surface friction along the plate length that attains 85% at the end of the perforated portion is shown. The experimental and calculated data obtained point to the possibility of modeling, under earth conditions, the process of controlling a turbulent boundary layer with air injection by using the resources of an external confined flow.

  8. Radiation, Heat Generation and Viscous Dissipation Effects on MHD Boundary Layer Flow for the Blasius and Sakiadis Flows with a Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    K. GANGADHAR

    2015-01-01

    Full Text Available This study is devoted to investigate the radiation, heat generation viscous dissipation and magnetohydrodynamic effects on the laminar boundary layer about a flat-plate in a uniform stream of fluid (Blasius flow, and about a moving plate in a quiescent ambient fluid (Sakiadis flow both under a convective surface boundary condition. Using a similarity variable, the governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically by using shooting technique alongside with the forth order of Runge-Kutta method and the variations of dimensionless surface temperature and fluid-solid interface characteristics for different values of Magnetic field parameter M, Grashof number Gr, Prandtl number Pr, radiation parameter NR, Heat generation parameter Q, Convective parameter  and the Eckert number Ec, which characterizes our convection processes are graphed and tabulated. Quite different and interesting behaviors were encountered for Blasius flow compared with a Sakiadis flow. A comparison with previously published results on special cases of the problem shows excellent agreement.

  9. Orientation distribution of fibers and rheological property in fiber suspensions flowing in a turbulent boundary layer

    Institute of Scientific and Technical Information of China (English)

    Jian Zhong Lin; Ke Sun; Weifeng Zhang

    2008-01-01

    A model relating the translational and rotational transport of orientation distribution function (ODF) of fibers to the gradient of mean ODF and the dispersion coefficients is proposed to derive the mean equation for the ODE Then the ODF of fibers is predicted by numerically solving the mean equation for the ODF together with the equations of turbulent boundary layer flow. Finally the shear stress and first normal stress difference of fiber suspensions are obtained. The results, some of which agree with the available relevant experimental data, show that the most fibers tend to orient to the flow direction. The fiber aspect ratio and Reynolds number have significant and negligible effects on the orientation distribution of fibers, respectively. The additional normal stress due to the presence of fibers is anisotropic. The shear stress of fiber suspension is larger than that of Newtonian solvent, and the first normal stress difference is much less than the shear stress. Both the additional shear stress and the first normal stress difference increase with increasing the fiber concentration and decreasing fiber aspect ratio.

  10. Characteristics of the turbulent flow in the boundary layer of a Tropical Glacier

    Science.gov (United States)

    Litt, M.; Sicart, J.

    2012-12-01

    An extensive micro-meteorological experiment has been deployed within the atmospheric boundary layer over the ablation zone of the tropical Zongo glacier, Bolivia, during the dry season from July to August, 2007. It included two complete eddy correlation systems (Campbell CSAT and LICOR7500) at a 2-m mean level and a 6-m mast measuring the mean profiles of air temperature (type-T artificially ventilated thermocouples) and of wind speed (Vector A100R). Weakly stable conditions prevailed in the first meters above the ice or snow surface. With weak large scale forcing, a katabatic downslope flow with a wind maximum at about 2-m height usually appeared in the middle of the afternoon and maintained itself during most of the night. Characteristics and structure of the turbulent flow were studied using spectral and quadrant analysis, along with the study of statistical moments of high frequency wind speed and temperature data. The wind regime was found to be highly gusty and irregular: more than 50% of the flux was exchanged during less than 10% of the time. Stationary conditions were rarely encountered. The spectral analysis shows that the observed turbulence cannot be generated only by local shear, and that some outside layer perturbations must transport kinetic energy in the vicinity of the surface. Flux exchanges are thus found to be greater than predicted by aerodynamic approaches which use mean temperature and wind speed measurements and stability-correction functions based on the Monin-Obukhov similarity theory. The net surface energy balance is quantified during selected periods using fusion measurements derived from height variations of the ice surface (measured with an ultrasonic depth gauge). It is compared to the energy balance computed from radiative balance along with mean wind speed and temperature or eddy covariance fluxes.This data helps us to quantify errors made with classical similarity methods, and their variation regarding to meteorological forcings.

  11. Shear Force Distribution and Heat Transfer in Laminar Boundary Layer Flows for Power Law Fluid

    Institute of Scientific and Technical Information of China (English)

    郑连存; 张欣欣

    2002-01-01

    Analytical and numerical solutions are presented for the momentum and energy laminar boundary layer equations in power law fluids utilizing a similarity transformation and the shooting technique. The results indicated that for power law exponents 0<n≤1, the skin friction σ decreases with increasing n, and the dimensionless shear force decreases with increasing dimensionless velocity t. When Pr=1, the velocity distribution in the viscous boundary layer is the same as the temperature distribution in the thermal boundary layer and δ=δT. For Pr>1, the increase of the viscous diffusion exceeds that of thermal diffusion with increasing Pr, i.e., δT(t)<δ(t). The thermal diffusion ratio increases with increasing n(0<n≤1).

  12. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  13. Effect of end-wall boundary layer and inlet turbulence on the flow field structures in the turbine stage

    Science.gov (United States)

    Jelinek, Tomas; Straka, Petr; Uruba, Vaclav

    2016-06-01

    The article deals with the effects of the inlet flow parameters on the flow field structures in axial turbine stage. The experiment was performed on the axial turbine stage rig with an air as a working medium. The variable inlet channel produced the different inlet turbulence intensity and different inlet end-wall boundary layer thickness, resp. different inlet velocity distribution was applied. The turbulence was measured by CTA probes. The measured parameters of the inlet velocity distribution and turbulence intensity across the inlet channel height are presented. Based on the experimental inlet parameters the CFD fully turbulent calculation of the flow field was made. The differences in outlet kinetic energy loss, outlet vane angle and the turbulence distribution in the vane mid-span section are depicted. Changes of secondary flow structures with the different inlet end-wall boundary layer thickness were observed on the vane outlet parameters.

  14. Displaced logarithmic profile of the velocity distribution in the boundary layer of a turbulent flow over an unbounded flat surface

    Science.gov (United States)

    Talpos, Simona; Apostol, Marian

    2015-12-01

    It is shown that the Reynolds equations for a turbulent flow over an unbounded flat surface in the presence of a constant pressure-gradient lead to a displaced logarithmic profile of the velocity distribution; the displaced logarithmic profile is obtained by assuming a constant production rate of turbulence energy. The displacement height measured on the (vertical) axis perpendicular to the surface is either positive or negative. For a positive displacement height the boundary layer exhibits an inversion, while for a negative displacement height the boundary layer is a direct one. In an inversion boundary layer the logarithmic velocity profile is disrupted into two distinct branches separated by a logarithmic singularity. The viscosity transforms this logarithmic singularity into a sharp edge, governed by a generalized Reynolds number. The associated temperature distribution is calculated, and the results are discussed in relation to meteorological boundary-layer jets and stratified layers. The effects of gravitation and atmospheric thermal or fluid-mixture concentration gradients ("external forcings") are also considered; it is shown that such circumstances may lead to various modifications of the boundary layers. A brief presentation of a similar situation is described for a circular pipe.

  15. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

    Science.gov (United States)

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

  16. HEAT TRANSFER IN THREE DIMENSIONAL MHD BOUNDARY LAYER FLOW OVER A CONTINUOUS POROUS SURFACE MOVING IN A PARALLEL FREE STREAM

    OpenAIRE

    KHEM CHAND

    2011-01-01

    The heat transfer and hydromagnetic boundary layer flow of an electrically conducting viscous ,incompressible fluid over a continuous flat surface moving in a parallel free stream is investigated. The porous infinite surface is subjected to a slightly sinusoidal transverse suction velocity distribution. The flow becomes three dimensional due to this type of suction velocity without taking into account the induced magnetic field; the mathematical analysis is presented for the hydromagnetic lam...

  17. Influences of the Exhaust Flow on the Boundary Layer Flow on the Wafer Surface in Spin Coating System

    Institute of Scientific and Technical Information of China (English)

    Seiichi KIMURA; Mizue MUNEKATA; Hiroaki KURISHIMA; Kazuyoshi MATSUZAKI; Hideki OHBA

    2005-01-01

    @@ Recently, development of high technology has been required for the formation of thin uniform film in manufacturing processes of semiconductor as the semiconductor become more sophisticated. Spin coating is usually used for spreading photoresist on a wafer surface. However, since rotating speed of the disk is very high in spin coating, the dropped resist scatters outward and reattaches to the film surface. So, the scattered resist is removed by the exhaust flow generated at the gap between the wafer edge and the catch cup. It is seriously concemed that the stripes called Ekman spiral vortices appears on the disk in the case of high rotating speed and the film thickness increases near the wafer edge in the case of low rotating speed, because it prevent the formation of uniform film. The purpose of this study is to make clear the generation mechanism of Ekman spiral vortices and the influence of exhaust flow on it. Moreover the influence of the catch cup geometry on the wafer surface boundary layer flow is investigated.

  18. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    Science.gov (United States)

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  19. ANALYTICAL AND NUMERICAL ANALYSIS OF MHD BOUNDARY-LAYER FLOW OF AN INCOMPRESSIBLE UPPER-CONVECTED MAXWELLFLUID

    Directory of Open Access Journals (Sweden)

    M. RAHIMI EOSBOEE,

    2010-12-01

    Full Text Available In this study magnetohydrodynamics (MHD boundary layer flow of an upper-convected Maxwell fluid has been investigated. Similarity transformation has been used to reduce the governing differential equations into an ordinary non-linear differential equation. homotopy perturbation Method (HPM has applied to solve this developed nonlinear equation. In this article firstly, the basic idea of the HPM for solving nonlinear differential equations is briefly ntroduced and then it is employed to derive solution of nonlinear governing equation of MHD boundary layer flow with highly nonlinear term. The obtained results from HPM have been compared with numerical Boundary Value problem Method (BVP to verify the accuracy of the proposed method. The effects of the Hartman number (M and Deborah number (β for various conditions have been shown through graphs.

  20. Stable Stratification Effects on Flow and Pollutant Dispersion in Boundary Layers Entering a Generic Urban Environment

    NARCIS (Netherlands)

    Tomas, J.M.; Pourquie, M.J.B.M.; Jonker, H.J.J.

    2016-01-01

    Large-eddy simulations (LES) are used to investigate the effect of stable stratification on rural-to-urban roughness transitions. Smooth-wall turbulent boundary layers are subjected to a generic urban roughness consisting of cubes in an in-line arrangement. Two line sources of pollutant are added to

  1. Taylor-Goertler instabilities of Tollmien-Schlichting waves and other flows governed by the interactive boundary-layer equations

    Science.gov (United States)

    Hall, Philip; Bennett, James

    1986-01-01

    The Taylor-Goertler vortex instability equations are formulated for steady and unsteady interacting boundary-layer flows. The effective Goertler number is shown to be a function of the wall shape in the boundary layer and the possibility of both steady and unsteady Taylor-Goertler modes exists. As an example the steady flow in a symmetrically constricted channel is considered and it is shown that unstable Goertler vortices exist before the boundary layers at the wall develop the Goldstein singularity discussed by Smith and Daniels (1981). As an example of an unsteady spatially varying basic state, it is considered the instability of high-frequency large-amplitude two- and three-dimensional Tollmien-Schlichting waves in a curved channel. It is shown that they are unstable in the first 'Stokes-layer stage' of the hierarchy of nonlinear states discussed by Smith and Burggraf (1985). This instability of Tollmien-Schlichting waves in an internal flow can occur in the presence of either convex or concave curvature. Some discussion of this instability in external flows is given.

  2. Turbulent combined-convection boundary layer with aiding flows along a heated vertical flat plate at higher freestream velocity

    Science.gov (United States)

    Abedina, Mohammad Zoynal; Islam, Mohammed Moinul; Hanif, Md. Abu; Alam, Md. Jahangir

    2016-07-01

    A numerical investigation is performed in the turbulent combined-convection boundary layer with aiding flows in air along a heated vertical flat plate at a higher freestream velocity (Reδ0 = 600) by time-developing direct numerical simulation (DNS). At higher freestream velocity, the transition from laminar to turbulent delays for aiding flows and relatively a lower and higher heat transfer rates are observed, respectively, in the laminar and turbulent region compared to that of lower freestream velocity. The wall shear stresses are higher in the laminar region compared to that in the turbulent region, and at higher freestream velocity, the wall shear stress in the transition region shows a higher peak value. The intensity of velocity and temperature fluctuations for aiding flows with higher freestream velocity become appreciably lower than that for lower freestream velocity due to the laminarization of the boundary layer.

  3. Unsteady boundary layer flow of a micro-polar fluid near the rear stagnation point of a plane surface

    Energy Technology Data Exchange (ETDEWEB)

    Lok, Yian Yian [Academic Service Center, Kolej Universiti Teknikal Kebangsaan Malaysia, 75450 Ayer Keroh, Melaka (Malaysia); Amin, Norsarahaida [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, Ioan [Faculty of Mathematics, University of Cluj, R-3400, CP 253, Cluj (Romania)

    2003-11-01

    The growth of the boundary layer flow of a viscous and incompressible micro-polar fluid started impulsively from rest near the rear stagnation point of a two-dimensional plane surface is studied theoretically. The transformed non-similar boundary-layer equations are solved numerically using a very efficient finite-difference method known as Keller-box method. This method may present well-behaved solutions for the transient (small time) solution up to the separation boundary layer flow. Numerical results are given for the reduced velocity and micro-rotation profiles, as well as for the skin friction coefficient when the material parameter K takes the values K=0 (Newtonian fluid), 0.5, 1, 1.1, 1.5, 2, 2.5 and 3 with the boundary condition for micro-rotation n=0 (strong concentration of microelements) and n=1/2 (weak concentration of microelements), respectively. Important features of these flow characteristics are shown on graphs and in tables. (authors)

  4. Shockwave-boundary layer interactions

    NARCIS (Netherlands)

    Glepman, R.

    2014-01-01

    Shock wave-boundary layer interactions are a very common feature in both transonic and supersonic flows. They can be encountered on compressor and turbine blades, in supersonic jet inlets, on transonic wings, on the stabilization fins of missiles and in many more situations. Because of their major i

  5. BOUNDARY-LAYER SIMILAR SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR AND APPLICATION TO THE CALCULATION OF LAMINAR HEATTRANSFER DISTRIBUTION ON BLUNT BODIES IN HIGH-SPEED FLOW

    Science.gov (United States)

    Beckwith, I. E.; Cohen, N. B.

    1963-01-01

    Flat plate and stagnation flow heat transfer coefficients, similarity solutions of the laminar boundary layer for air in dissociation equilibrium and calculation of laminar heat-transfer distribution on blunt three-dimensional bodies in high speed flow

  6. Computation of Boundary Layers

    Directory of Open Access Journals (Sweden)

    József Dénes

    2004-11-01

    Full Text Available This paper is the first part of a series of studies where we examine several methods for the solution of the boundary layer equation of the fluid mechanics. The first of these is the analytical or rather quasi analytical method due to Blasius. This method reduces a system of partial differential equations to a system of ordinary differential equations and these in turn are solved by numerical methods since no exact solution of the Blasius type equations is known. We determind all the Blasius equation neccessary for up to 11-th order approximation. Our further aim to study the finite difference numerical solutions of the boundary layer equation and some of the methods applying weighted residual principles and by comparing these with the ”exact” solutions arrived at by Blasius method develop a quick reliable method for solving the boundary layer equation.

  7. An efficient analytical decomposition and numerical procedure for boundary layer flow on a continuous stretching surface

    Institute of Scientific and Technical Information of China (English)

    Xuehui Chen; Liancun Zheng; Xinxin Zhang

    2006-01-01

    An efficient Adomian analytical decomposition technique for studying the momentum and heat boundary layer equations with exponentially stretching surface conditions was presented and an approximate analytical solution was obtained, which can be represented in terms of a rapid convergent power series with elegantly computable terms. The reliability and efficiency of the approximate solution were verified using numerical solutions in the literature. The approximate solution can be successfully applied to provide the values of skin friction and the temperature gradient coefficient.

  8. Active control of flow noise sources in turbulent boundary layer on a flat-plate using piezoelectric bimorph film

    Energy Technology Data Exchange (ETDEWEB)

    Song, Woo Seog; Lee, Seung Bae [Inha University, Incheon (Korea, Republic of); Shin, Dong Shin [Hongik University, Seoul (Korea, Republic of); Na, Yang [Konkuk University, Seoul (Korea, Republic of)

    2006-11-15

    The piezoelectric bimorph film, which, as an actuator, can generate more effective displacement than the usual PVDF film, is used to control the turbulent boundary-layer flow. The change of wall pressures inside the turbulent boundary layer is observed by using the multi-channel microphone array flush-mounted on the surface when actuation at the non-dimensional frequency f{sub b}{sup +} =0.008 and 0.028 is applied to the turbulent boundary layer. The wall pressure characteristics by the actuation to produce local displacement are more dominantly influenced by the size of the actuator module than the actuation frequency. The movement of large-scale turbulent structures to the upper layer is found to be the main mechanism of the reduction in the wall-pressure energy spectrum when the 700{nu}/u{sub {tau}}-long bimorph film is periodically actuated at the non-dimensional frequency f{sub b}{sup +} =0.008 and 0.028. The bimorph actuator is triggered with the time delay for the active forcing at a single frequency when a 1/8' pressure-type, pin-holed microphone sensor detects the large-amplitude pressure event by the turbulent spot. The wall-pressure energy in the late-transitional boundary layer is partially reduced near the convection wavenumber by the open-loop control based on the large amplitude event.

  9. Tomographic PIV investigation of coherent structures in a turbulent boundary layer flow

    Institute of Scientific and Technical Information of China (English)

    Zhan-Qi Tang; Nan Jiang; Andreas Schr(ǒ)der; Reinhard Geisler

    2012-01-01

    Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in the logarithmic region of the turbulent boundary layer in a water tunnel.The Reynolds number based on momentum thickness is Reθ =2 460.The instantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low speed fluid,which is flanked on either side by highspeed ones.Statistical support for the existence of hairpins is given by conditional averaged eddy within an increasing spanwise width as the distance from the wall increases,and the main vortex characteristic in different wall-normal regions can be reflected by comparing the proportion of ejection and its contribution to Reynolds stress with that of sweep event.The pre-multiplied power spectra and two-point correlations indicate the presence of large-scale motions in the boundary layer,which are consistent with what have been termed very large scale motions (VLSMs).The three dimensional spatial correlations of three components of velocity further indicate that the elongated low-speed and highspeed regions will be accompanied by a counter-rotating roll modes,as the statistical imprint of hairpin packet structures,all of which together make up the characteristic of coherent structures in the logarithmic region of the turbulent boundary layer (TBL).

  10. A depth-of-field limited particle image velocimetry technique applied to oscillatory boundary layer flow over a porous bed

    Energy Technology Data Exchange (ETDEWEB)

    Lara, J.L. [Ocean and Coastal Research Group, Universidad de Cantabria, E.T.S.I.C.C. y P., Av. Los Castros s/n, 39005 Santander (Spain); Cowen, E.A.; Sou, I.M. [DeFrees Hydraulics Laboratory, School of Civil and Environmental Engineering, Hollister Hall, Cornell University, Ithaca, NY 14853-3501 (United States)

    2002-07-01

    Boundary layer flows are ubiquitous in the environment, but their study is often complicated by their thinness, geometric irregularity and boundary porosity. In this paper, we present an approach to making laboratory-based particle image velocimetry (PIV) measurements in these complex flow environments. Clear polycarbonate spheres were used to model a porous and rough bed. The strong curvature of the spheres results in a diffuse volume illuminated region instead of the more traditional finite and thin light sheet illuminated region, resulting in the imaging of both in-focus and significantly out-of-focus particles. Results of a traditional cross-correlation-based PIV-type analysis of these images demonstrate that the mean and turbulent features of an oscillatory boundary layer driven by a free-surface wave over an irregular-shaped porous bed can be robustly measured. Measurements of the mean flow, turbulent intensities, viscous and turbulent stresses are presented and discussed. Velocity spectra have been calculated showing an inertial subrange confirming that the PIV analysis is sufficiently robust to extract turbulence. The presented technique is particularly well suited for the study of highly dynamic free-surface flows that prevent the delivery of the light sheet from above the bed, such as swash flows. (orig.)

  11. Two-way coupling model for shock-induced laminar boundary-layer flows of a dusty gas

    Institute of Scientific and Technical Information of China (English)

    Boyi Wang; Yi Xiong; A.N. Osiptsov

    2005-01-01

    The present paper describes a numerical two-way coupling model for shock-induced laminar boundary-layer flows of a dust-laden gas and studies the transverse migration of fine particles under the action of Saffman lift force.The governing equations are formulated in the dilute twophase continuum framework with consideration of the finiteness of the particle Reynolds and Knudsen numbers. The full Lagrangian method is explored for calculating the dispersedphase flow fields (including the number density of particles) in the regions of intersecting particle trajectories. The computation results show a significant reaction of the particles on the two-phase boundary-layer structure when the mass loading ratio of particles takes finite values.

  12. MHD mixed convective boundary layer flow of a nanofluid through a porous medium due to an exponentially stretching sheet

    KAUST Repository

    Ferdows, M.

    2012-01-01

    Magnetohydrodynamic (MHD) boundary layer flow of a nanofluid over an exponentially stretching sheet was studied. The governing boundary layer equations are reduced into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration schemes. The effects of the governing parameters on the flow field and heat transfer characteristics were obtained and discussed. The numerical solutions for the wall skin friction coefficient, the heat and mass transfer coefficient, and the velocity, temperature, and concentration profiles are computed, analyzed, and discussed graphically. Comparison with previously published work is performed and excellent agreement is observed. 2012 M. Ferdows et al.

  13. MHD Mixed Convective Boundary Layer Flow of a Nanofluid through a Porous Medium due to an Exponentially Stretching Sheet

    Directory of Open Access Journals (Sweden)

    M. Ferdows

    2012-01-01

    Full Text Available Magnetohydrodynamic (MHD boundary layer flow of a nanofluid over an exponentially stretching sheet was studied. The governing boundary layer equations are reduced into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration schemes. The effects of the governing parameters on the flow field and heat transfer characteristics were obtained and discussed. The numerical solutions for the wall skin friction coefficient, the heat and mass transfer coefficient, and the velocity, temperature, and concentration profiles are computed, analyzed, and discussed graphically. Comparison with previously published work is performed and excellent agreement is observed.

  14. Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    2012-01-01

    Full Text Available The steady boundary layer flow and heat transfer of a viscous fluid on a moving flat plate in a parallel free stream with variable fluid properties are studied. Two special cases, namely, constant fluid properties and variable fluid viscosity, are considered. The transformed boundary layer equations are solved numerically by a finite-difference scheme known as Keller-box method. Numerical results for the flow and the thermal fields for both cases are obtained for various values of the free stream parameter and the Prandtl number. It is found that dual solutions exist for both cases when the fluid and the plate move in the opposite directions. Moreover, fluid with constant properties shows drag reduction characteristics compared to fluid with variable viscosity.

  15. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  16. Round Pipe Flow Linear Stability Famous Century-Old Paradox Resolving and the New Boundary Layer Turbulence Arising Theory

    CERN Document Server

    Chefranov, Sergey G

    2010-01-01

    For Gagen-Poiseuille flow, we show that exponential instability (to extremely small, axially symmetric disturbances represented by Galerkin's approximation) is possible only if there exists conditionally periodic variability of the disturbances along the pipe axis when the threshold Reynolds number depends on the ratio of two longitudinal periods. Absolute minimum (for) is obtained that corresponds to the observed conditions of transition from the laminar resistance law to the turbulent one and Tollmien-Schlichting waves exciting in the boundary layer.

  17. Mean flow structure of non-equilibrium boundary layers with adverse pressure gradient

    Indian Academy of Sciences (India)

    B C Mandal; H P Mazumdar; S S Dutta

    2014-10-01

    In this paper Spalding’s formulation for the law of the wall with constants modified by Persen is used to describe the inner region (viscous sub-layer and certain portion of logarithmic layer) and a wake law due to Persen is used to describe the wake region (outer region). These two laws are examined in the light of measured data by Marušić and Perry for non-equilibrium adverse pressure gradient layers. It is observed that structure of turbulence for this flow is well-described by these two laws. From the known structure of turbulence eddy viscosity for the flow under consideration is calculated. Self similarity in eddy viscosity is observed in the wall region.

  18. An Improvement of the Differential Transformation Method and Its Application for Boundary Layer Flow of a Nanofluid

    Directory of Open Access Journals (Sweden)

    Abdelhalim Ebaid

    2013-01-01

    Full Text Available The main feature of the boundary layer flow problems of nanofluids or classical fluids is the inclusion of the boundary conditions at infinity. Such boundary conditions cause difficulties for any of the series methods when applied to solve such a kind of problems. In order to solve these difficulties, the authors usually resort to either Padé approximants or the commercial numerical codes. However, an intensive work is needed to perform the calculations using Padé technique. Due to the importance of the nanofluids flow as a growing field of research and the difficulties caused by using Padé approximants to solve such problems, a suggestion is proposed in this paper to map the semi-infinite domain into a finite one by the help of a transformation. Accordingly, the differential equations governing the fluid flow are transformed into singular differential equations with classical boundary conditions which can be directly solved by using the differential transformation method. The numerical results obtained by using the proposed technique are compared with the available exact solutions, where excellent accuracy is found. The main advantage of the present technique is the complete avoidance of using Padé approximants to treat the infinity boundary conditions.

  19. Laminar or turbulent boundary-layer flows of perfect gases or reacting gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Lewis, C. H.

    1971-01-01

    Turbulent boundary layer flows of non-reacting gases are predicted for both interal (nozzle) and external flows. Effects of favorable pressure gradients on two eddy viscosity models were studied in rocket and hypervelocity wind tunnel flows. Nozzle flows of equilibrium air with stagnation temperatures up to 10,000 K were computed. Predictions of equilibrium nitrogen flows through hypervelocity nozzles were compared with experimental data. A slender spherically blunted cone was studied at 70,000 ft altitude and 19,000 ft/sec. in the earth's atmosphere. Comparisons with available experimental data showed good agreement. A computer program was developed and fully documented during this investigation for use by interested individuals.

  20. Large eddy simulation and wind tunnel experiment of turbulent boundary-layer flow around a floor-mounted cube

    DEFF Research Database (Denmark)

    Jørgensen, Nina Gall; Koss, Holger; Bennetsen, Jens Chr.

    2014-01-01

    Large Eddy Simulations (LES) are used to numerically simulate the flow around and the surface pressure on a floor-mounted cube in a turbulent boundary layer flow. Both a full LES and an embedded- LES (ELES) approach was used and the simulation results were compared to data from wind tunnel....... Furthermore, the fluctuating surface pressure simulated by the ELES is also discussed. The computed time-averaged flow is comparable to the wind tunnel measurements while the frequency spectrum of the upstream flow has deficits in the low and high frequency ranges. The time-averaged surface pressures...... experiments. The computations were performed with the commercial CFD software ANSYS FLUENT at a Reynolds number at the cube height of Reh = 1.3x105. The object was to evaluate the numerically generated flow upstream and around the cube and the accuracy of the timeaveraged surface pressure on the cube...

  1. Analysis of the separated boundary layer flow on the surface and in the wake of blunt trailing edge airfoils

    Science.gov (United States)

    Goradia, S. H.; Mehta, J. M.; Shrewsbury, G. S.

    1977-01-01

    The viscous flow phenomena associated with sharp and blunt trailing edge airfoils were investigated. Experimental measurements were obtained for a 17 percent thick, high performance GAW-1 airfoil. Experimental measurements consist of velocity and static pressure profiles which were obtained by the use of forward and reverse total pressure probes and disc type static pressure probes over the surface and in the wake of sharp and blunt trailing edge airfoils. Measurements of the upper surface boundary layer were obtained in both the attached and separated flow regions. In addition, static pressure data were acquired, and skin friction on the airfoil upper surface was measured with a specially constructed device. Comparison of the viscous flow data with data previously obtained elsewhere indicates reasonable agreement in the attached flow region. In the separated flow region, considerable differences exist between these two sets of measurements.

  2. The Effect of Heat Transfer on MHD Marangoni Boundary Layer Flow Past a Flat Plate in Nanofluid

    Directory of Open Access Journals (Sweden)

    D. R. V. S. R. K. Sastry

    2013-01-01

    Full Text Available The problem of heat transfer on the Marangoni convection boundary layer flow in an electrically conducting nanofluid is studied. Similarity transformations are used to transform the set of governing partial differential equations of the flow into a set of nonlinear ordinary differential equations. Numerical solutions of the similarity equations are then solved through the MATLAB “bvp4c” function. Different nanoparticles like Cu, Al2O3, and TiO2 are taken into consideration with water as base fluid. The velocity and temperature profiles are shown in graphs. Also the effects of the Prandtl number and solid volume fraction on heat transfer are discussed.

  3. Investigation of Laminar Boundary Layer on Airfoil

    OpenAIRE

    林, 秀千人; 佐々木, 壮一; 児玉, 好雄; 清水, 光昭

    1999-01-01

    The development of the laminar boundary layer on the NACA symmetrical airfoils and the separation of it are simulated by using the boundary layer theory and discrete vortex method. The arrangement of the discrete vortices on the airfoil affects on the separation position very much because the separation is sensitive to the velocity gradient of the main flow. It needs the very small increment 1/500 in boundary layer simulation to get the exact position of the separation. The simulation of both...

  4. Boundary layer transition determination for periodic and static flows using phase-averaged pressure data

    Science.gov (United States)

    Gardner, A. D.; Richter, K.

    2015-06-01

    A method of boundary layer transition measurement is presented for wind tunnel models instrumented with surface pressure taps. The measurement relies on taking a number of theoretically identical measurements at different times and then analysing the standard deviation of the pressures. Due to the slight unsteady movement of the transition position, a peak in the standard deviation of pressure is found at the transition position, and this is correlated with measurements of the transition position with an infrared camera and hot-film anemometers. In contrast to microphone measurements, it is shown that the transition detection works for data which have been low-pass filtered with a cut-off of 1 Hz. The application to static and dynamic transition measurements on static and periodically pitching helicopter rotor blade airfoils at Mach 0.3-0.5 is demonstrated.

  5. Large-eddy simulations of geophysical turbulent flows with applications to planetary boundary layer research

    CERN Document Server

    Esau, Igor

    2009-01-01

    The present study gives an overview and emphasizes principal moments of the applications of the turbulence-resolving modeling with large-eddy simulation (LES) numerical technique to planetary boundary layer (PBL) research and climate studies. LES proved to be very useful in understanding of the atmospheric and ocean turbulent exchange and ultimately in parameterization improvement in traditional meteorological models. LES have played a key role in recognizing the importance of previously ignored self-organized structures in the geophysical turbulence. LES assisted theoreticians and weather/climate modelers with reliable information about the averaged vertical structure of the PBL in convection and shear regimes as well as with better estimations of key PBL parameters, e.g. an entrainment rate, for model calibrations. At present, LES are an essential, indispensible part of geosciences, while the mainstream of the LES research still deals with idealized case studies with rather simple micro-physics.

  6. Bifurcation Behaviour in the Reverse-Flow Boundary Layer with Special Injection or Suction

    Institute of Scientific and Technical Information of China (English)

    ZHENG Lian-Cun; ZHANG Xin-Xin; HE Ji-Cheng

    2003-01-01

    Bifurcation solutions are numerically presented for reverse Bow boundary layer equations with special suction/injection by utilizing similarity transformation and shooting technique. The results indicate that both superior solution and inferior solution are noticeable. The skin friction and shear stress for the superior solution decrease with the increases of the ratio of surface velocity to free stream velocity and suction/injection. The behaviour is opposite to that for the inferior solution. Both the skin frictions for the superior and inferior solutions decrease with increasing the power law parameter. The inferior solution approaches the superior solution with increasing the velocity ratio and suction/injection. When power law is unit and suction/injection is zero, the superior solution approaches the classical Blasius solution as the velocity ratio approaches zero.

  7. Hierarchical random additive process and logarithmic scaling of generalized high order, two-point correlations in turbulent boundary layer flow

    Science.gov (United States)

    Yang, X. I. A.; Marusic, I.; Meneveau, C.

    2016-06-01

    Townsend [Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, UK, 1976)] hypothesized that the logarithmic region in high-Reynolds-number wall-bounded flows consists of space-filling, self-similar attached eddies. Invoking this hypothesis, we express streamwise velocity fluctuations in the inertial layer in high-Reynolds-number wall-bounded flows as a hierarchical random additive process (HRAP): uz+=∑i=1Nzai . Here u is the streamwise velocity fluctuation, + indicates normalization in wall units, z is the wall normal distance, and ai's are independently, identically distributed random additives, each of which is associated with an attached eddy in the wall-attached hierarchy. The number of random additives is Nz˜ln(δ /z ) where δ is the boundary layer thickness and ln is natural log. Due to its simplified structure, such a process leads to predictions of the scaling behaviors for various turbulence statistics in the logarithmic layer. Besides reproducing known logarithmic scaling of moments, structure functions, and correlation function [" close="]3/2 uz(x ) uz(x +r ) >, new logarithmic laws in two-point statistics such as uz4(x ) > 1 /2, 1/3, etc. can be derived using the HRAP formalism. Supporting empirical evidence for the logarithmic scaling in such statistics is found from the Melbourne High Reynolds Number Boundary Layer Wind Tunnel measurements. We also show that, at high Reynolds numbers, the above mentioned new logarithmic laws can be derived by assuming the arrival of an attached eddy at a generic point in the flow field to be a Poisson process [Woodcock and Marusic, Phys. Fluids 27, 015104 (2015), 10.1063/1.4905301]. Taken together, the results provide new evidence supporting the essential ingredients of the attached eddy hypothesis to describe streamwise velocity fluctuations of large, momentum transporting eddies in wall-bounded turbulence, while observed deviations suggest the need for further extensions of the

  8. MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Mabood, F., E-mail: mabood1971@yahoo.com [School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800 (Malaysia); Khan, W.A., E-mail: wkhan_2000@yahoo.com [Department of Mechanical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Ismail, A.I.M., E-mail: izani@cs.usm.my [School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800 (Malaysia)

    2015-01-15

    The MHD laminar boundary layer flow with heat and mass transfer of an electrically conducting water-based nanofluid over a nonlinear stretching sheet with viscous dissipation effect is investigated numerically. This is the extension of the previous study on flow and heat transfer of a nanofluid over nonlinear stretching sheet (Rana and Bhargava, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 212–226). The governing equations are reduced to nonlinear ordinary differential equations using suitable similarity transformation. The effects of the governing parameters on dimensionless quantities like velocity, temperature, nanoparticle concentration, friction factor, local Nusselt, and Sherwood numbers are explored. It is found that the dimensionless velocity decreases and temperature increases with magnetic parameter, and the thermal boundary layer thickness increases with Brownian motion and thermophoresis parameters. - Highlights: • MHD flow of nanofluid and heat transfer over a nonlinear stretching sheet has not been studied yet. • Numerical solutions are computed with Runge–Kutta Fehlberg fourth–fifth order method. • Previous published results can be obtained from present study. • Reduced Nusselt and Sherwood numbers decrease with magnetic parameter.

  9. Finite element solution of double-diffusive boundary layer flow of viscoelastic nanofluids over a stretching sheet

    Science.gov (United States)

    Goyal, M.; Bhargava, R.

    2014-05-01

    This paper deals with the double-diffusive boundary layer flow of non-Newtonian nanofluid over a stretching sheet. In this model, where binary nanofluid is used, the Brownian motion and thermophoresis are classified as the main mechanisms which are responsible for the enhancement of the convection features of the nanofluid. The boundary layer equations governed by the partial differential equations are transformed into a set of ordinary differential equations with the help of group theory transformations. The variational finite element method (FEM) is used to solve these ordinary differential equations. We have examined the effects of different controlling parameters, namely, the Brownian motion parameter, the thermophoresis parameter, modified Dufour number, viscoelastic parameter, Prandtl number, regular Lewis number, Dufour Lewis number, and nanofluid Lewis number on the flow field and heat transfer characteristics. Graphical display of the numerical examine are performed to illustrate the influence of various flow parameters on the velocity, temperature, concentration, reduced Nusselt, reduced Sherwood and reduced nanofluid Sherwood number distributions. The present study has many applications in coating and suspensions, movement of biological fluids, cooling of metallic plate, melt-spinning, heat exchangers technology, and oceanography.

  10. Influence Of Thermal Radiation On Magnetohydrodynamic (Mhd Boundary Layer Flow Of A Viscous Fluid Over An Exponentially Stretching Sheet

    Directory of Open Access Journals (Sweden)

    A.S. Idowu

    2015-03-01

    Full Text Available Radiation on magnetohydrodynamic (MHD boundary layer flow of a viscous fluid over an exponentially stretching sheet was considered together with it’s effects. The new technique of homotopy analysis method (nHAM was used to obtain the convergent series expressions for velocity and temperature, where the governig system of partial differential equations has been transformed into ordinary differential equations. The interpretation to these expressions is shown physically through graphs. We observed that the effects of Prandtl and Magnetic number acts in opposite to each other on the temperature.

  11. Cyclone separator having boundary layer turbulence control

    Science.gov (United States)

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  12. Heat transfer in boundary layer stagnation-point flow towards a shrinking sheet with non-uniform heat flux

    Institute of Scientific and Technical Information of China (English)

    Krishnendu Bhattacharyya

    2013-01-01

    In this paper,the effect of non-uniform heat flux on heat transfer in boundary layer stagnation-point flow over a shrinking sheet is studied.The variable boundary heat fluxes are considered of two types:direct power-law variation with the distance along the sheet and inverse power-law variation with the distance.The governing partial differential equations (PDEs) are transformed into non linear self-similar ordinary differential equations (ODEs) by similarity transformations,and then those are solved using very efficient shooting method.The direct variation and inverse variation of heat flux along the sheet have completely different effects on the temperature distribution.Moreover,the heat transfer characteristics in the presence of non-uniform heat flux for several values of physical parameters are also found to be interesting.

  13. Microgravity Effects on Plant Boundary Layers

    Science.gov (United States)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  14. Influence of a recent Transition Model on Complex Nonsteady Boundary Layer Flows with Dynamic Stall and Multiple Phases

    Science.gov (United States)

    Lavely, Adam; Kinzel, Michael; Vijayakumar, Ganesh; Brasseur, James; Paterson, Eric; Lindau, Jules

    2010-11-01

    Computational fluid dynamics (CFD) simulations are prone to inaccuracies associated with incorrectly formulated physical models. Common in CFD is the spurious treatment as locally laminar flow regions as turbulent, resulting in incorrect turbulent-boundary-layer profiles, separated-flow behavior, and local skin-friction coefficients. The combined effects impacts global measures like drag, lift coefficient, and wake intensity. Recently, Menter & Langtry (AIAA 47 2009) developed a transition model applicable to unsteady three-dimensional CFD codes that shows promise to improve the prediction of local laminar regions. Our aim is to evaluate the accuracy of this model with the additional complexities of unsteady flow around rotating wind turbine blades and multiphase flows using codes designed within OpenFOAM. We investigate how transition and locally laminar flow regions impact various complex problems of interest including: (1) stationary S809 airfoil through stall, (2) an oscillating S809 airfoil in dynamic stall, and (3) a ventilated gaseous cavity in a liquid flow. We will evaluate the efficacy of the model by comparing with experimental results, and shall evaluate the impact on integral measures and flow details. Supported by NSF & DOE.

  15. Boundary layer control device for duct silencers

    Science.gov (United States)

    Schmitz, Fredric H. (Inventor); Soderman, Paul T. (Inventor)

    1993-01-01

    A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations.

  16. Scaling group transformation for MHD boundary layer flow over permeable stretching sheet in presence of slip flow with Newtonian heating effects

    Institute of Scientific and Technical Information of China (English)

    A A AFIFY; M J UDDIN; M FERDOWS

    2014-01-01

    Taking into account the slip flow effects, Newtonian heating, and thermal radiation, two-dimensional magnetohydrodynamic (MHD) flows and heat transfer past a permeable stretching sheet are investigated numerically. We use one parameter group transformation to develop similarity transformation. By using the similarity transfor-mation, we transform the governing boundary layer equations along with the boundary conditions into ordinary differential equations with relevant boundary conditions. The ob-tained ordinary differential equations are solved with the fourth-fifth order Runge-Kutta-Fehlberg method using MAPLE 13. The present paper is compared with a published one. Good agreement is obtained. Numerical results for dimensionless velocity, temperature distributions, skin friction factor, and heat transfer rates are discussed for various values of controlling parameters.

  17. Intermittent Behavior of the Separated Boundary Layer along the Suction Surface of a Low Pressure Turbine Blade under Periodic Unsteady Flow Conditions

    Science.gov (United States)

    Oeztuerk, B; Schobeiri, M. T.; Ashpis, David E.

    2005-01-01

    The paper experimentally and theoretically studies the effects of periodic unsteady wake flow and aerodynamic characteristics on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experiments were carried out at Reynolds number of 110,000 (based on suction surface length and exit velocity). For one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, intermittency behaviors were experimentally and theoretically investigated. The current investigation attempts to extend the intermittency unsteady boundary layer transition model developed in previously to the LPT cases, where separation occurs on the suction surface at a low Reynolds number. The results of the unsteady boundary layer measurements and the intermittency analysis were presented in the ensemble-averaged and contour plot forms. The analysis of the boundary layer experimental data with the flow separation, confirms the universal character of the relative intermittency function which is described by a Gausssian function.

  18. Boundary-layer linear stability theory

    Science.gov (United States)

    Mack, L. M.

    1984-06-01

    Most fluid flows are turbulent rather than laminar and the reason for this was studied. One of the earliest explanations was that laminar flow is unstable, and the linear instability theory was first developed to explore this possibility. A series of early papers by Rayleigh produced many notable results concerning the instability of inviscid flows, such as the discovery of inflectional instability. Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles appeared to be stable. The investigations that led to a viscous theory of boundary layer instability was reported. The earliest application of linear stability theory to transition prediction calculated the amplitude ratio of the most amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this quantity had values between five and nine at the observed Ret. The experiment of Schubauer and Skramstad (1947) completely reversed the prevailing option and fully vindicated the Gottingen proponents of the theory. This experiment demonstrated the existence of instability waves in a boundary layer, their connection with transition, and the quantitative description of their behavior by the theory of Tollmien and Schlichting. It is generally accepted that flow parameters such as pressure gradient, suction and heat transfer qualitatively affect transition in the manner predicted by the linear theory, and in particular that a flow predicted to be stable by the theory should remain laminar. The linear theory, in the form of the e9, or N-factor is today in routine use in engineering studies of laminar flow. The stability theory to boundary layers with pressure gradients and suction was applied. The only large body of numerical results for exact boundary layer solutions before the advent of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity profiles are given. When the digital computer

  19. Calculation of compressible nonadiabatic boundary layers in laminar, transitional and turbulent flow by the method of integral relations

    Science.gov (United States)

    Kuhn, G. D.

    1971-01-01

    A computer program was developed to do the calculations for two-dimensional or axisymmetric configurations from low speeds to hypersonic speeds with arbitrary streamwise pressure, temperature, and Mach number distributions. Options are provided for obtaining initial conditions either from experimental information or from a theoretical similarity solution. The transition region can be described either by an arbitrary distribution of intermittency or by a function based on Emmons' probability theory. Correlations were developed for use in estimating the parameters of the theoretical intermittency function. Correlations obtained from other sources are used for estimating the transition point. Comparisons were made between calculated and measured boundary layer quantities for laminar, transitional, and turbulent flows on flat plates, cones, cone flares, and a waisted body of revolution. Excellent agreement was obtained between the present theory and two other theories based on the method of finite differences. The intermittency required to reproduce some experimental heat transfer results in hypersonic flow was found to be quite different from the theoretical function. It is suggested that the simple probability theory of Emmons may not be valid for representing the intermittency of hypersonic transitional boundary layers and that the program could be useful as a tool for detailed study of the intermittency of the transition region.

  20. Calculation methods for compressible turbulent boundary layers, 1976

    Science.gov (United States)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  1. Boundary layer flow of three-dimensional viscoelastic nanofluid past a bi-directional stretching sheet with Newtonian heating

    Directory of Open Access Journals (Sweden)

    M. Ramzan

    2015-05-01

    Full Text Available This paper deals with steady three dimensional boundary layer flow of an incompressible viscoelastic nanofluid flow in the presence of Newtonian heating. An appropriate transformation is employed to convert the highly non linear partial differential equations into ordinary differential equations. Homotopy Analysis method (HAM is used to find series solution of the obtained coupled highly non linear differential equations. The convergence of HAM solutions is discussed via h-curves. Graphical illustrations displaying the influence of emerging parameters on velocity, temperature and concentration profiles are given. It is observed that γ the conjugate parameter for Newtonian heating show increasing behavior on both temperature and concentration profiles. However, the temperature and concentration profiles are increasing and decreasing functions of Brownian motion parameter Nb respectively.

  2. Analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer

    Institute of Scientific and Technical Information of China (English)

    Krishnendu Bhattacharyya; Tasawar Hayat; Ahmed Alsaedi

    2013-01-01

    In this analysis,the magnetohydrodynamic boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet in the presence of wall mass transfer is studied.Using similarity transformations,the governing equations are converted to an ordinary differential equation and then solved analytically.The introduction of a magnetic field changes the behavior of the entire flow dynamics in the shrinking sheet case and also has a major impact in the stretching sheet case.The similarity solution is always unique in the stretching case,and in the shrinking case the solution shows dual nature for certain values of the parameters.For stronger magnetic field,the similarity solution for the shrinking sheet case becomes unique.

  3. DNS of heat transfer in transitional, accelerated boundary layer flow over a flat plate affected by free-stream fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Wissink, Jan G. [School of Engineering and Design, Howell Building, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: jan.wissink@brunel.ac.uk; Rodi, Wolfgang [Institute for Hydromechanics, University of Karlsruhe, Kaiserstr. 12, D-76128 Karlsruhe (Germany)

    2009-10-15

    Direct numerical simulations (DNS) of flow over and heat transfer from a flat plate affected by free-stream fluctuations were performed. A contoured upper wall was employed to generate a favourable streamwise pressure gradient along a large portion of the flat plate. The free-stream fluctuations originated from a separate LES of isotropic turbulence in a box. In the laminar portions of the accelerating boundary layer flow the formation of streaks was observed to induce an increase in heat transfer by the exchange of hot fluid near the surface of the plate and cold fluid from the free-stream. In the regions where the streamwise pressure gradient was only mildly favourable, intermittent turbulent spots were detected which relaminarised downstream as the streamwise pressure gradient became stronger. The relaminarisation of the turbulent spots was reflected by a slight decrease in the friction coefficient, which converged to its laminar value in the region where the streamwise pressure gradient was strongest.

  4. State space approach to viscoelastic fluid flow of hydromagnetic fluctuating boundary-layer through a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ezzat, M.A. [Alexandria Univ. (Egypt). Dept. of Mathematics; Abd-Elaal, M.Z. [Alexandria Univ. (Egypt). Dept. of Mathematics

    1997-08-01

    The method of the matrix exponential, which constitutes the basis of the state space approach of modern control theory, is applied to the non-dimensional equations of a viscoelastic fluid flow of hydromagnetic fluctuating boundary-layer through a porous medium bounded by an infinite non-magnetic vertical plate. The formulation is valid for one-dimensional problems. The resulting formulation together with the Laplace transform technique is applied to a variety of problems. The solution to a problem of an electrically conducting viscoelastic fluid in the presence of a transverse magnetic field and to a problem for the flow between two parallel fixed plates is obtained. The inversion of the Laplace transforms is carried out using a nuermical approach. Numerical results for the velocity distribution and the induced magnetic field are given and illustrated graphically for each problem. (orig.)

  5. A study of the stable boundary layer in strong gap flows in northwest Greenland using a research aircraft

    Science.gov (United States)

    Heinemann, Günther; Drüe, Clemens

    2016-04-01

    Gap flows and the stable boundary layer (SBL) were studied in northwest Greenland during the aircraft-based experiment IKAPOS (Investigation of Katabatic winds and Polynyas during Summer) in June 2010. The measurements were performed using the research aircraft POLAR 5 of Alfred Wegener Institute (AWI, Bremerhaven). Besides navigational and basic meteorological instrumentation, the aircraft was equipped with radiation and surface temperature sensors, two laser altimeters, and video and digital cameras. In order to determine turbulent heat and momentum fluxes, POLAR 5 was instrumented with a turbulence measurement system collecting data on a nose boom with a sampling rate of 100 Hz. In the area of the Nares Strait a stable, but fully turbulent boundary layer with strong winds of 15 m s-1 to 20 m s-1 was found during conditions of relatively warm synoptically induced northerly winds through the Nares Strait. Strong surface inversions were present in the lowest 100 m to 200 m. As a consequence of channeling effects a well-pronounced low-level jet (LLJ) system was documented. The channeling process is consistent with gap flow theory and can be shown to occur at the topographic gap between Greenland and Canada represented by the Smith Sound. While the flow through the gap and over the surrounding mountains leads to the lowering of isotropic surfaces and the acceleration of the flow, the strong turbulence associated with the LLJ leads to the development of an internal thermal SBL past the gap. Turbulence statistics in this fully turbulent SBL can be shown to follow the local scaling behaviour.

  6. Interferometric and numerical study of the temperature field in the boundary layer and heat transfer in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Lucic, Anita; Emans, Maximilian; Mayinger, Franz; Zenger, Christoph

    2004-04-01

    An interferometric study and a numerical simulation are presented of the combined process of the bulk turbulent convection and the dynamic of a vapor bubble which is formed in the superheated boundary layer of a subcooled flowing liquid, in order to determine the heat transfer to the flowing subcooled liquid. In this investigation focus has been given on a single vapor bubble at a defined cavity site to provide reproducible conditions. In the experimental study single bubbles were generated at a single artificial cavity by means of a CO{sub 2}-laser as a spot heater at a uniformly heated wall of a vertical rectangular channel with water as the test fluid. The experiments were performed at various degrees of subcooling and mass flow rates. The bubble growth and the temporal decrease of the bubble volume were captured by means of the high-speed cinematography. The thermal boundary layer and the temperature field at the phase-interface between fluid and bubble were visualized by means of the optical measurement method holographic interferometry with a high temporal and spatial resolution, and thus the local and temporal heat transfer could be quantified. The experimental results form a significant data basis for the description of the mean as well as the local heat transfer as a function of the flow conditions. According to the experimental configuration and the obtained data the numerical simulations were performed. A numerical method has been developed to simulate the influence of single bubbles on the surrounding fluid which is based on a Lagrangian approach to describe the motion of the bubbles. The method is coupled to a large-eddy simulations by the body force term which is locally evaluated based on the density field. The obtained experimental data correspond well with the numerical predictions, both of which demonstrate the thermo- and fluiddynamic characteristics of the interaction between the vapor bubble and the subcooled liquid.

  7. Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer

    Science.gov (United States)

    Celic, Alan; Zilliac, Gregory G.

    1998-01-01

    The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.

  8. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    simulation and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid......Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM...

  9. Radiation Effect on Mixed Convection Boundary Layer Flow of a Viscoelastic Fluid over a Horizontal Circular Cylinder with Constant Heat Flux

    OpenAIRE

    Hussain Ahmad; Tariq Javed; Abuzar Ghaffari

    2016-01-01

    In the present article, radiation effect on mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder with constant heat flux has been numerically analyzed. The governing boundary layer equations are transformed to dimensionless nonlinear partial differential equations. The equations are solved numerically by using Keller-box method. The computed results are in excellent agreement with the previous studies. Skin friction coefficient and Nusselt number ar...

  10. Wake Turbulence of Two NREL 5-MW Wind Turbines Immersed in a Neutral Atmospheric Boundary-Layer Flow

    CERN Document Server

    Bashioum, Jessica L; Schmitz, Sven; Duque, Earl P N

    2013-01-01

    The fluid dynamics video considers an array of two NREL 5-MW turbines separated by seven rotor diameters in a neutral atmospheric boundary layer (ABL). The neutral atmospheric boundary-layer flow data were obtained from a precursor ABL simulation using a Large-Eddy Simulation (LES) framework within OpenFOAM. The mean wind speed at hub height is 8m/s, and the surface roughness is 0.2m. The actuator line method (ALM) is used to model the wind turbine blades by means of body forces added to the momentum equation. The fluid dynamics video shows the root and tip vortices emanating from the blades from various viewpoints. The vortices become unstable and break down into large-scale turbulent structures. As the wakes of the wind turbines advect further downstream, smaller-scale turbulence is generated. It is apparent that vortices generated by the blades of the downstream wind turbine break down faster due to increased turbulence levels generated by the wake of the upstream wind turbine.

  11. Boundary-Layer & health

    Science.gov (United States)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  12. Experimental investigation of wave boundary layer

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2003-01-01

    with an oscillating seabed. A brief account is given of measured quantities, measurement techniques (LDA, PIV, flow visualization) and limitations/constraints in the experimental investigation of the wave boundary layer in the laboratory. The second section concentrates on uniform oscillating boundary layers...... with a smooth bed. The boundary layer process is described over the entire range of the Reynolds number (Re from practically nil to Re = O(107)), from the laminar regime to the transitional regime and to the fully developed turbulent regime. The third section focuses on the effect of the boundary roughness......-dominated regime, is covered. Processes such as turbulence reduction/re-laminarization, and increase/decrease in the bed shear stress are presented. The fifth section considers various effects on the wave boundary layer such as the non-uniformity (that due to change in the boundary roughness and that due to change...

  13. Multigrid mapping and box relaxation for simulation of the whole process of flow transition in 3-D boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Liu, Z. [Univ. of Colorado, Denver, CO (United States)

    1994-12-31

    A new multilevel technology was developed in this study which provides a successful numerical simulation for the whole process of flow transition in 3-D flat plate boundary layers, including linear growth, secondary instability, breakdown, and transition on a relatively coarse grid with low CPU cost. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time-marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all employed for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to catch the large eddies and represent main roles of small eddies to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The computation also reproduced the K-type and C-type transition observed by laboratory experiments. The CPU cost for a typical case is around 2-9 CRAY-YMP hours.

  14. MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation

    Science.gov (United States)

    Swati, Mukhopadhyay; Iswar, Chandra Moindal; Tasawar, Hayat

    2014-10-01

    This article numerically examines the boundary layer flow due to an exponentially stretching surface in the presence of an applied magnetic field. Casson fluid model is used to characterize the non-Newtonian fluid behavior. The flow is subjected to suction/blowing at the surface. Analysis is carried out in presence of thermal radiation and prescribed surface heat flux. In this study, an exponential order stretching velocity and prescribed exponential order surface heat flux are accorded with each other. The governing partial differential equations are first converted into nonlinear ordinary differential equations by using appropriate transformations and then solved numerically. The effect of increasing values of the Casson parameter is to suppress the velocity field. However the temperature is enhanced when Casson parameter increases. It is found that the skin-friction coefficient increases with increasing values of suction parameter. Temperature also increases for large values of power index n in both suction and blowing cases at the boundary. It is observed that the thermal radiation enhances the effective thermal diffusivity and hence the temperature rises.

  15. Influence of inclined Lorentz forces on boundary layer flow of Casson fluid over an impermeable stretching sheet with heat transfer

    Science.gov (United States)

    Abdul Hakeem, A. K.; Renuka, P.; Vishnu Ganesh, N.; Kalaivanan, R.; Ganga, B.

    2016-03-01

    The inclined magnetic field effect on the boundary layer flow of a Casson model non-Newtonian fluid over a stretching sheet in the existence of thermal radiation and velocity slip boundary condition is investigated for both prescribed surface temperature and power law of surface heat flux cases. It is assumed that the magnetic field is applied with an aligned angle which varied from 0° to 90°. Both analytical and numerical solutions are obtained for the transformed non-dimensional ODE's using confluent hypergeometric function and fourth order Runge-Kutta method with shooting technique respectively. The combined effects of inclined magnetic field with other pertinent parameters such as Casson parameter, velocity slip parameter, radiation parameter and Prandtl number on velocity profile, temperature profile, local skin friction coefficient, local Nusselt number and non-dimensional wall temperature are discussed through graphs. It is found that the aligned angle plays a vital role in controlling the magnetic field strength on the Casson fluid flow region and the increasing values of aligned angle of the magnetic field lead to decrease the skin friction coefficient and the Nusselt number and increase the non-dimensional wall temperature.

  16. MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation

    International Nuclear Information System (INIS)

    This article numerically examines the boundary layer flow due to an exponentially stretching surface in the presence of an applied magnetic field. Casson fluid model is used to characterize the non-Newtonian fluid behavior. The flow is subjected to suction/blowing at the surface. Analysis is carried out in presence of thermal radiation and prescribed surface heat flux. In this study, an exponential order stretching velocity and prescribed exponential order surface heat flux are accorded with each other. The governing partial differential equations are first converted into nonlinear ordinary differential equations by using appropriate transformations and then solved numerically. The effect of increasing values of the Casson parameter is to suppress the velocity field. However the temperature is enhanced when Casson parameter increases. It is found that the skin-friction coefficient increases with increasing values of suction parameter. Temperature also increases for large values of power index n in both suction and blowing cases at the boundary. It is observed that the thermal radiation enhances the effective thermal diffusivity and hence the temperature rises. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Boundary Layer Flow and Heat Transfer over a Permeable Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

    Directory of Open Access Journals (Sweden)

    Ezad Hafidzuddin

    2016-01-01

    Full Text Available In this paper, the steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is studied. The flow and heat transfer induced by stretching/shrinking sheets are important in the study of extrusion processes and is a subject of considerable interest in the contemporary literature. Appropriate similarity variables are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary (similarity differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual (upper and lower branch solutions are found for a certain range of the suction and stretching/shrinking parameters. Stability analysis is performed to determine which solutions are stable and physically realizable and which are not stable. The effects of suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed in detail. It is found that the introduction of the generalized slip boundary condition resulted in the reduction of the local skin friction coefficient and local Nusselt number. Finally, it is concluded from the stability analysis that the first (upper branch solution is stable while the second (lower branch solution is not stable.

  18. Experimental Evidence of Near-Wall Reverse Flow Events in a Zero Pressure Gradient Turbulent Boundary Layer

    CERN Document Server

    Willert, Christian E

    2015-01-01

    This study reports on experimentally observed near-wall reverse flow events in a fully developed flat plate boundary layer at zero pressure gradient with Reynolds numbers between $Re_\\tau = 1000$ and $Re_\\tau = 2700$. The reverse flow events are captured using high magnification particle image velocimetry sequences with record lengths varying from 50,000 to 126,000 samples. Time resolved particle image sequences allow singular reverse flow events to be followed over several time steps whereas long records of nearly statistically independent samples provide a variety of single snapshots at a higher spatial resolution. The probability of occurrence lies in the range of 0.01% to 0.1% which matches predictions made with direct numerical simulations (DNS). The self-similar size of the reverse flow bubble is about 30-50 wall units in length and 5 wall units in height which also agrees well to DNS data provided by Lenaers et al. (ETC13, Journal of Physics: Conference Series 318 (2011) 022013).

  19. Homotopy analysis method for mixed convective boundary layer flow of a nanofluid over a vertical circular cylinder

    Directory of Open Access Journals (Sweden)

    Dinarvand Saeed

    2015-01-01

    Full Text Available This article deals with the study of the steady axisymmetric mixed convective boundary layer flow of a nanofluid over a vertical circular cylinder with prescribed external flow and surface temperature. By means of similarity transformation, the governing partial differential equations are reduced into highly non-linear ordinary differential equations. The resulting non-linear system has been solved analytically using an efficient technique namely homotopy analysis method (HAM. Expressions for velocity and temperature fields are developed in series form. In this study, three different types of nanoparticles are considered, namely alumina (, titania (, and copper ( with water as the base fluid. For copper-water nanofluid, graphical results are presented to describe the influence of the nanoparticle volume fraction on the velocity and temperature fields for the forced and mixed convection flows. Moreover, the features of the flow and heat transfer characteristics are analyzed and discussed for foregoing nanofluids. It is found that the skin friction coefficient and the heat transfer rate at the surface are highest for copper-water nanofluid compared to the alumina-water and titania-water nanofluids.

  20. The Impact of Upstream Flow on the Atmospheric Boundary Layer in a Valley on a Mountainous Island

    Science.gov (United States)

    Adler, Bianca; Kalthoff, Norbert

    2016-03-01

    Comprehensive measurements on the mountainous island of Corsica were used to investigate how the mountain atmospheric boundary layer (mountain ABL) in a valley downstream of the main mountain ridge was influenced by the upstream flow. The data used were mainly collected with the mobile observation platform KITcube during the first special observation period of the Hydrological cycle in the Mediterranean Experiment (HyMeX) in 2012 and were based on various in situ, remote sensing and aircraft measurements. Two days in autumn 2012 were analyzed in detail. On these days the mountain ABL evolution was a result of convection and thermally-driven circulations as well as terrain-induced dynamically-driven flows. During periods when dynamically-driven flows were dominant, warm and dry air from aloft with a large-scale westerly wind component was transported downwards into the valley. On one day, these flows controlled the mountain ABL characteristics in a large section of the valley for several hours, while on the other day their impact was observed in a smaller section of the valley for about 1 h only. To explain the observations we considered a theoretical concept based on uniform upstream stratification and wind speed, and calculated the non-dimensional mountain height and the horizontal aspect ratio of the barrier to relate the existing conditions to diagnosed regimes of stratified flow past a ridge. On both days, wave breaking, flow splitting and lee vortices were likely to occur. Besides the upstream conditions, a reduction of stability in the valley seemed to be important for the downward transport to reach the ground. The spatio-temporal structure of such a mountain ABL over complex terrain, which was affected by various interacting flows, differed a lot from that of the classical ABL over homogeneous, flat terrain and it is stressed that the traditional ABL definitions need to be revised when applying them to complex terrain.

  1. Characterization of wake turbulence in a wind turbine array submerged in atmospheric boundary layer flow

    Science.gov (United States)

    Jha, Pankaj Kumar

    Wind energy is becoming one of the most significant sources of renewable energy. With its growing use, and social and political awareness, efforts are being made to harness it in the most efficient manner. However, a number of challenges preclude efficient and optimum operation of wind farms. Wind resource forecasting over a long operation window of a wind farm, development of wind farms over a complex terrain on-shore, and air/wave interaction off-shore all pose difficulties in materializing the goal of the efficient harnessing of wind energy. These difficulties are further amplified when wind turbine wakes interact directly with turbines located downstream and in adjacent rows in a turbulent atmospheric boundary layer (ABL). In the present study, an ABL solver is used to simulate different atmospheric stability states over a diurnal cycle. The effect of the turbines is modeled by using actuator methods, in particular the state-of-the-art actuator line method (ALM) and an improved ALM are used for the simulation of the turbine arrays. The two ALM approaches are used either with uniform inflow or are coupled with the ABL solver. In the latter case, a precursor simulation is first obtained and data saved at the inflow planes for the duration the turbines are anticipated to be simulated. The coupled ABL-ALM solver is then used to simulate the turbine arrays operating in atmospheric turbulence. A detailed accuracy assessment of the state-of-the-art ALM is performed by applying it to different rotors. A discrepancy regarding over-prediction of tip loads and an artificial tip correction is identified. A new proposed ALM* is developed and validated for the NREL Phase VI rotor. This is also applied to the NREL 5-MW turbine, and guidelines to obtain consistent results with ALM* are developed. Both the ALM approaches are then applied to study a turbine-turbine interaction problem consisting of two NREL 5-MW turbines. The simulations are performed for two ABL stability

  2. THERMAL BOUNDARY LAYER IN CFB BOILER RISER

    Institute of Scientific and Technical Information of China (English)

    Jinwei; Wang; Xinmu; Zhao; Yu; Wang; Xing; Xing; Jiansheng; Zhang; Guangxi; Yue

    2006-01-01

    Measurement of temperature profiles of gas-solid two-phase flow at different heights in commercial-scale circulating fluidized bed (CFB) boilers was carried out. Experimental results showed that the thickness of thermal boundary layer was generally independent of the distance from the air distributor, except when close to the riser outlet. Through analysis of flow and combustion characteristics in the riser, it was found that the main reasons for the phenomena were: 1) the hydrodynamic boundary layer was thinner than the thermal layer and hardly changed along the CFB boiler height, and 2) both radial and axial mass and heat exchanges were strong in the CFB boiler. Numerical simulation of gas flow in the outlet zone confirmed that the distribution of the thermal boundary layer was dominated by the flow field characteristics.

  3. Boundary layer flow past a stretching surface in a porous medium saturated by a nanofluid: Brinkman-Forchheimer model.

    Directory of Open Access Journals (Sweden)

    Waqar A Khan

    Full Text Available In this study, the steady forced convection flow and heat transfer due to an impermeable stretching surface in a porous medium saturated with a nanofluid are investigated numerically. The Brinkman-Forchheimer model is used for the momentum equations (porous medium, whereas, Bongiorno's model is used for the nanofluid. Uniform temperature and nanofluid volume fraction are assumed at the surface. The boundary layer equations are transformed to ordinary differential equations in terms of the governing parameters including Prandtl and Lewis numbers, viscosity ratio, porous medium, Brownian motion and thermophoresis parameters. Numerical results for the velocity, temperature and concentration profiles, as well as for the reduced Nusselt and Sherwood numbers are obtained and presented graphically.

  4. Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate

    Science.gov (United States)

    Motsumi, T. G.; Makinde, O. D.

    2012-10-01

    The effects of suction, viscous dissipation, thermal radiation and thermal diffusion are numerically studied on a boundary layer flow of nanofluids over a moving flat plate. The partial differential equations governing the motion are transformed into ordinary differential equations using similarity solutions, and are solved using the Runge-Kutta-Fehlberg method with the shooting technique. The effects of nanoparticle volume fraction, the type of nanoparticles, the radiation parameter, the Brinkman number, the suction/injection parameter and the relative motion of the plate on the nanofluids velocity, temperature, skin friction and heat transfer characteristics are graphically presented and then discussed quantitatively. A comparative study between the previously published and the present results in a limiting sense reveals excellent agreement between them.

  5. Wave bottom boundary layer processes below irregular surfzone breaking waves with light-weight sheet flow particle transport

    Science.gov (United States)

    Chassagneux, François Xavier; Hurther, David

    2014-03-01

    The present work investigates the structure of the near-bed flow below irregular surfzone breaking waves inducing light-weight sheet flow particle transport. The experiments are carried out in the LEGI flume under steady equilibrium conditions between the wave forcing and the underlying bed morphology. Synchronized ACVP and video images provide detailed information about the mean wave and current characteristics and the coupled flow regimes across the entire wave breaking region including the outer and the inner surfzones. An analysis of the impact of breaking eddies in the Wave Boundary Layer (WBL) is undertaken at the beginning of the inner surfzone. Subsequently, the intrawave variation of several contributions of the total shearing force per unit area and the net values of the Reynolds stress related to phase-averaged velocities are analyzed. It is found that -ρu˜w˜ is the dominant term. The turbulent Reynolds stress, the low frequency, and the mean terms are at least 1 order of magnitude lower. Due to the irregular wave forcing, the net values are separated into the net wave-by-wave Reynolds stress and the wave Reynolds stress averaged over the entire irregular wave sequence. All these measured bed shear stress terms are then compared to estimations obtained with two different parameterized models in order to evaluate their prediction performances. The values of the model parameters are discussed in comparison to those found in the literature. Finally, the vertical profile of net Reynolds shear stress exhibits a nearly constant value across the sheet-flow layer.

  6. Human convective boundary layer and its interaction with room ventilation flow

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra;

    2015-01-01

    of an average person. Particle image velocimetry (PIV) andpseudocolor visualization (PCV) are applied to identify the flow around themanikin’s body. The findings show that the direction and magnitude ofthe surrounding airflows considerably influence the airflow distribution aroundthe human body. Downward flow...

  7. On the Structure and Adjustment of Inversion-Capped Neutral Atmospheric Boundary-Layer Flows: Large-Eddy Simulation Study

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Gryning, Sven-Erik; Kelly, Mark C.

    2014-01-01

    of a super-geostrophic jet near the top of the boundary layer. The analytical wind-shear models included do not account for such a jet, and the best agreement with simulated wind shear is seen in cases with weak stratification above the boundary layer. Increasing the surface heat flux decreases the magnitude...... and vertical extent of the jet and leads to better agreement between analytical and simulated wind-speed profiles. Over a range of different inversion strengths and surface heat fluxes, we also find good agreement between the performed simulations and models of the equilibrium boundary-layer height......, and of the budget of turbulent kinetic energy integrated across the boundary layer....

  8. Milli-DPIV studies of a boundary-layer-based flow-control system for a transonic cascade

    Science.gov (United States)

    Estevadeordal, Jordi; Copenhaver, William

    2002-11-01

    A flow-control system for a high-turning-stator cascade is investigated using Digital Particle Image Velocimetry (DPIV). The system employs small (millimetric) blowing cavities and suction holes in the blades. Velocity measurements on these small areas and at the thin boundary layer during blowndown tests are necessary for verifying the flow-control device performance and also for yielding details of the flow very near the blade. The millimetric size of the viewing areas prevents the direct application of standard DPIV since the laser thickness is typically greater than the hole size and because regular optics cannot be used in a standard manner for viewing very small areas. Issues related to volumetric illumination, fiber-optic delivery, particle-seeding image size, scattering direction, optical focusing, and speckle and glare reduction are explored. An advantage of making measurements in small areas is that high resolution can be accomplished with regular 1k x 1k CCD sensors (e.g., 1000 pix/mm). This also makes it feasible to use digital-holography approaches for measuring velocities in small volumes and micro-volumes.

  9. Modeling the urban boundary layer

    Science.gov (United States)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  10. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    International Nuclear Information System (INIS)

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades

  11. Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet

    Energy Technology Data Exchange (ETDEWEB)

    Bachok, Norfifah [Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Ishak, Anuar [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Pop, Ioan, E-mail: popm.ioan@yahoo.co.u [Faculty of Mathematics, University of Cluj, CP 253 (Romania)

    2010-09-06

    An analysis is carried out to study the steady two-dimensional stagnation-point flow and heat transfer from a warm, laminar liquid flow to a melting stretching/shrinking sheet. The governing partial differential equations are converted into ordinary differential equations by similarity transformation, before being solved numerically using the Runge-Kutta-Fehlberg method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. Effects of the melting parameter, stretching/shrinking parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique.

  12. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    Science.gov (United States)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  13. Evaluation of RANS turbulence models for flow problems with signigicant impact of boundary layers

    OpenAIRE

    Furbo, Eric

    2010-01-01

    This master’s thesis was provided by the Swedish Defence Research Agency, FOI. The task is to test several RANS (Reynolds-averaged Navier-Stokes) models on two different case geometries and compare the results with LES and experimental data. The first is two dimensional, constructed for flow separation at a sharp edge. The second is three dimensional and flow separation occurs at a smooth surface. The models tested are implemented in the open source CFD (Computational Fluid Dynamics) program, ...

  14. Self-similar magnetohydrodynamic boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel; Lastra, Alberto, E-mail: mnjmhd@am.uva.e [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2010-10-15

    The boundary layer created by parallel flow in a magnetized fluid of high conductivity is considered in this paper. Under appropriate boundary conditions, self-similar solutions analogous to the ones studied by Blasius for the hydrodynamic problem may be found. It is proved that for these to be stable, the size of the Alfven velocity at the outer flow must be smaller than the flow velocity, a fact that has a ready physical explanation. The process by which the transverse velocity and the thickness of the layer grow with the size of the Alfven velocity is detailed.

  15. Lubricating grease shear flow and boundary layers in a concentric cylinder configuration

    NARCIS (Netherlands)

    Li, J.X.; Westerberg, L.G.; Höglund, E.; Lugt, P.M.; Baart, P.

    2014-01-01

    Grease is extensively used to lubricate various machine elements such as rolling bearings, seals, and gears. Understanding the flow dynamics of grease is relevant for the prediction of grease distribution for optimum lubrication and for the migration of wear and contaminant particles. In this study,

  16. Effect of Catch Cup Geometry on 3D Boundary Layer Flow over the Wafer Surface in a Spin Coating

    Institute of Scientific and Technical Information of China (English)

    Mizue MUNEKATA; Seiichi KIMURA; Hiroaki KURISHIMA; Jinsuke TANAKA; Sohei YAMAMOTO; Hiroyuki YOSHIKAWA; Kazuyoshi MATSUZAKI; Hideki OHBA

    2008-01-01

    Recently, development of high technology has been required for the formation of thin uniform fdm in manufacturing processes of semiconductor as the semiconductor instruments become more sophisticated. Spin coating is usually used for spreading photoresist on a wafer surface. However, since rotating speed of the disk is very high in spin coating, the dropped photoresist scatters outward and reattaches on the film surface. A catch cup is set up outside the wafer in spin coating, and scattered photoresist mist is removed from the wafer edge by the exhaust flow generated at the gap between the wafer edge and the catch cup. In the dry process of a spin coating, it is a serious concern that the film thickness increases near the wafer edge in the case of low rotating speed. The purpose of this study is to make clear the effect of the catch cup geometry on the 3D boundary layer flow over the wafer surface and the drying rate of liquid film.

  17. Dual Solutions of MHD Boundary Layer Flow past an Exponentially Stretching Sheet with Non-Uniform Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    Raju CSK

    2016-01-01

    Full Text Available In this study we analyzed the momentum and heat transfer characteristics of MHD boundary layer flow over an exponentially stretching surface in porous medium in the presence of radiation, non-uniform heat source/sink, external pressure and suction/injection. Dual solutions are presented for both suction and injection cases. The heat transfer analysis is carried out for both prescribed surface temperature (PST and prescribed heat flux (PHF cases. The governing equations of the flow are transformed into system of nonlinear ordinary differential equations by using similarity transformation and solved numerically using bvp4c Matlab package. The impact of various non-dimensional governing parameters on velocity, temperature profiles for both PST and PHF cases, friction factor and rate of heat transfer is discussed and presented with the help of graphs and tables. Results indicate that dual solutions exist only for certain range of suction or injection parameters. It is also observed that the exponential parameter have tendency to increase the heat transfer rate for both PST and PHF cases.

  18. Unsteady three-dimensional boundary layer flow due to a permeable shrinking sheet

    Institute of Scientific and Technical Information of China (English)

    N.BACHOK; A.ISHAK; I.POP

    2010-01-01

    The unsteady viscous flow over a continuously permeable shrinking surface is studied.Similarity equations are obtained through the application of similar transformation techniques.Numerical techniques are used to solve the similarity equations for different values of the unsteadiness parameter,the mass suction parameter,the shrinking parameter and the Prandtl number on the velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number.It is found that,different from an unsteady stretching sheet,dual solutions exist in a certain range of mass suction and unsteadiness parameters.

  19. Numerical Investigation on Two-dimensional Boundary Layer Flow with Transition

    Institute of Scientific and Technical Information of China (English)

    Yong Zhao; Tianlin Wang; Zhi Zong

    2014-01-01

    As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows’ simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition’s behavior.

  20. Boundary-layer theory for blast waves

    Science.gov (United States)

    Kim, K. B.; Berger, S. A.; Kamel, M. M.; Korobeinikov, V. P.; Oppenheim, A. K.

    1975-01-01

    It is profitable to consider the blast wave as a flow field consisting of two regions: the outer, which retains the properties of the inviscid solution, and the inner, which is governed by flow equations including terms expressing the effects of heat transfer and, concomitantly, viscosity. The latter region thus plays the role of a boundary layer. Reported here is an analytical method developed for the study of such layers, based on the matched asymptotic expansion technique combined with patched solutions.

  1. Analysis of Unsteady Flow Phenomena: Shock - Vortex and Shock - Boundary Layer Interactions

    Science.gov (United States)

    Grasso, Francesco

    1999-01-01

    The interaction of shock waves with vortices has received much attention in the past, mainly because shock-vortex interaction closely models the interaction of a shock wave with the coherent structures of a turbulent flow-field, and is a key feature in the broad-band shock noise for supersonic jets in off-project conditions. Chu and Kovasznay have shown that a weak disturbance in a viscous heat conducting fluid can be decomposed as the sum of three basic modes, namely acoustic, vortical and entropy mode; the interaction of any of these modes with a shock wave gives rise to all three disturbance modes downstream of the shock. The vortical mode is important since it constitutes the basis of the coherent structures that have been observed to dominate turbulence for low- to moderate-flow speed. Hollingsworth et al. have experimentally investigated the interaction of a cylindrical shock-induced starting vortex with a plane normal shock, and have shown that the interaction generates a cylindrical acoustic pulse that exhibits a quadrupolar structure consisting of four alternate compression and expansion regions centered around the transmitted vortex. The investigations of Hollingsworth and Richards have been extended by Dosanjh and Weeks that have analyzed the interaction of a columnar spiral vortex with a normal shock wave, thus obtaining quantitative measurements and confirming the generation of a progressive cylindrical wavefront of alternate compression-expansion nature. Naumann and Hermanns' have experimentally addressed the non-linear aspects of shock-vortex interaction, and have shown that the interaction causes both a diffraction and a reflection of the shock with a pattern consisting of either a regular-or a Mach-reflection depending on the shock and the vortex strengths. An attempt to theoretically explain the production of sound from the shock-vortex interaction was carried out by Ribner. Pao and Salas have numerically studied two-dimensional shock

  2. Evolutions of hairpin vortexes over a superhydrophobic surface in turbulent boundary layer flow

    Science.gov (United States)

    Zhang, Jingxian; Tian, Haiping; Yao, Zhaohui; Hao, Pengfei; Jiang, Nan

    2016-09-01

    Turbulent flows over a superhydrophobic surface and a smooth surface have been measured and studied by particle image velocimetry technology at Reθ = 990. The Reynolds shear stress distributions over the two surfaces are significantly different. Specifically, for the superhydrophobic surface, the Reynolds shear stress is suppressed in the near-wall region (y/δ curve. Evolutions of hairpin vortexes are analyzed to interpret differences in the Reynolds shear stress, based on some comparisons in the low-speed streaks and Q2/Q4 (ejection/sweep) events. The results show that, in the near wall region, the turbulent coherent structures (low-speed streaks and hairpin vortex) over the superhydrophobic surface are more stable and flat, due to the suppression in the strength and the lifting effect of the hairpin vortex. In the outer region, the superhydrophobic surface lifts the hairpin vortex away from the wall with a value of 0.14δ in our experiment, which makes the Q4 events occur further from the wall and contribute less to skin friction.

  3. Wind-tunnel experiments of turbulent flow over a surface-mounted 2-D block in a thermally-stratified boundary layer

    Science.gov (United States)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-11-01

    Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).

  4. Global stability analysis of axisymmetric boundary layers

    CERN Document Server

    Vinod, N

    2016-01-01

    This paper presents the linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inlet. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes(LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes are nega...

  5. Self-similar analysis of fluid flow and heat-mass transfer of nanofluids in boundary layer

    Science.gov (United States)

    Avramenko, A. A.; Blinov, D. G.; Shevchuk, I. V.

    2011-08-01

    Processes of heat, momentum, and concentration transport in a boundary layer of a nanofluid near a flat wall were studied. The study was performed by means of numerical analysis of boundary layer equations in a self-similar form. Self-similar forms of these equations were obtained based on symmetry properties (Lie groups). In doing so, dependence of physical properties (viscosity, thermal conductivity, and diffusion coefficient) on concentration of nanofluids and temperature were taken into account. Effects of concentration of the nano-particles on velocity and temperature profiles, as well as on the relative Nusselt numbers and skin-friction coefficients, were elucidated.

  6. Proceedings of the 17th and 18th NAL Workshops on Investigation and Control of Boundary-Layer Transition

    OpenAIRE

    National Aerospace Laboratory; 航空宇宙技術研究所

    1996-01-01

    The following topics were discussed: vortex shedding, laminar boundary layer measurement, vortex ring, turbulent flow measurement, high Reynolds number turbulence, pulsed flow, boundary layer instability, Ekman boundary layer, sound receptivity, Tollmien-Schlichting wave in supersonic boundary layer, flow field instability, turbulent flow pattern, vorticity distribution in shear flow, turbulence wedge, streamwise vortex mixing, thermal convection, oblique wave generation in boundary layer, in...

  7. A Coordinate Transformation for Unsteady Boundary Layer Equations

    Directory of Open Access Journals (Sweden)

    Paul G. A. CIZMAS

    2011-12-01

    Full Text Available This paper presents a new coordinate transformation for unsteady, incompressible boundary layer equations that applies to both laminar and turbulent flows. A generalization of this coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently derived. In addition, the boundary layer equations are derived using a time linearization approach and assuming harmonically varying small disturbances.

  8. New methods to cope with temperature elevations in heated segments of flat plates cooled by boundary layer flow

    Directory of Open Access Journals (Sweden)

    Hajmohammadi Mohammad R.

    2016-01-01

    Full Text Available This paper documents two reliable methods to cope with the rising temperature in an array of heated segments with a known overall heat load and exposed to forced convective boundary layer flow. Minimization of the hot spots (peak temperatures in the array of heated segments constitutes the primary goal that sets the platform to develop the methods. The two proposed methods consist of: 1 Designing an array of unequal heaters so that each heater has a different size and generates heat at different rates, and 2 Distancing the unequal heaters from each other using an insulated spacing. Multi-scale design based on constructal theory is applied to estimate the optimal insulated spacing, heaters size and heat generation rates, such that the minimum hot spots temperature is achieved when subject to space constraint and fixed overall heat load. It is demonstrated that the two methods can considerably reduce the hot spot temperatures and consequently, both can be utilized with confidence in industry to achieve optimized heat transfer.

  9. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    Science.gov (United States)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  10. The impact of non-stationary flows on the surface stress in the weak-wind stable boundary layer

    Science.gov (United States)

    Thomas, Christoph; Mahrt, Larry

    2016-04-01

    The behaviour of turbulent transport in the weak-wind stably stratified boundary layer is examined in terms of the non-stationarity of the wind field based upon field observations. Extensive sonic anemometer measurements from horizontal networks and vertical towers ranging from 12 to 20 m height and innovative fiber-optic distributed temperature sensing observations were collected from three field programs in moderately sloped terrain with a varying degree of surface heterogeneity, namely the Shallow Cold Pool (SCP) and the Flow Over Snow Surfaces (FLOSS) II experiments in Colorado (USA), and the Advanced Canopy Resolution Experiment (ARCFLO) in Oregon (USA). The relationship of the friction velocity to the stratification and small non-stationary submeso motions is studied from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected due to the important submeso-scale motions. Consequently, the roles of the wind speed and stratification are not adequately accommodated by a single non-dimensional combination, such as the bulk Richardson number. However, cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases of downward transport of momentum. The latter may be significant in explaining the small-scale weak turbulence during stable stratification and deviations from conventional flux-profile relationships. Contrary to expectations, the vertical coherence was strongest for weakest winds and declined fast with increasing velocities, which suggests that submeso-scale motions are much deeper than previously thought.

  11. Mixed Convection Boundary-layer Flow of a Nanofluid Near Stagnation-point on a Vertical Plate with Effects of Buoyancy Assisting and Opposing Flows

    Directory of Open Access Journals (Sweden)

    Hossein Tamim

    2013-07-01

    Full Text Available In this study, the steady laminar mixed convection boundary layer flow of a nanofluid near the stagnation-point on a vertical plate with prescribed surface temperature is investigated. Here, both assisting and opposing flows are considered and studied. Using appropriate transformations, the system of partial differential equations is transformed into an ordinary differential system of two equations, which is solved numerically by shooting method, coupled with Runge-Kutta scheme. Three different types of nanoparticles, namely copper Cu, alumina Al2O3 and titania TiO2 with water as the base fluid are considered. Numerical results are obtained for the skin-friction coefficient and Nusselt number as well as for the velocity and temperature profiles for some values of the governing parameters, namely, the nanoparticle volume fraction parameter &Phiand mixed convection parameter &lambda It is found that the highest rate of heat transfer occurs in the mixed convection with assisting flow while the lowest one occurs in the mixed convection with opposing flow. Moreover, the skin friction coefficient and the heat transfer rate at the surface are highest for copper–water nanofluid compared to the alumina–water and titania–water nanofluids.

  12. Analysis of Laminar Boundary Layer Equations

    Directory of Open Access Journals (Sweden)

    R. Yesman

    2012-01-01

    Full Text Available The paper proposes methodology for analysis and calculation of laminar fluid flow processes in a boundary layer.The presented dependences can be used for practical calculations while power carriers of various application are moving in the channels of heat and power devices. 

  13. Boundary Layer Flow and Heat Transfer over a Permeable Exponentially Shrinking Sheet in the Presence of Thermal Radiation and Partial Slip

    Directory of Open Access Journals (Sweden)

    Rajesh Sharma

    2014-01-01

    Full Text Available The steady boundary layer flow of a viscous fluid with heat transfer over an exponentially shrinking sheet in the presence of thermal radiation with mass suction is studied. Velocity and temperature slip is considered on the boundary. Using a similarity transformation, the governing boundary layer equations are transformed into a system of nonlinear ordinary differential equations, which are then solved numerically using MATLAB routine solver. Dual solutions exist for a certain range of mass suction parameter. It is also found that the range of mass suction parameter for obtaining the steady solution is enhanced with the increase of velocity slip parameter and is independent of the thermal slip parameter as well as the radiation parameter.

  14. Analytic Approximate Solutions for MHD Boundary-Layer Viscoelastic Fluid Flow over Continuously Moving Stretching Surface by Homotopy Analysis Method with Two Auxiliary Parameters

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2012-01-01

    Full Text Available In this study, a steady, incompressible, and laminar-free convective flow of a two-dimensional electrically conducting viscoelastic fluid over a moving stretching surface through a porous medium is considered. The boundary-layer equations are derived by considering Boussinesq and boundary-layer approximations. The nonlinear ordinary differential equations for the momentum and energy equations are obtained and solved analytically by using homotopy analysis method (HAM with two auxiliary parameters for two classes of visco-elastic fluid (Walters’ liquid B and second-grade fluid. It is clear that by the use of second auxiliary parameter, the straight line region in ℏ-curve increases and the convergence accelerates. This research is performed by considering two different boundary conditions: (a prescribed surface temperature (PST and (b prescribed heat flux (PHF. The effect of involved parameters on velocity and temperature is investigated.

  15. Boundary layer physics over snow and ice

    Directory of Open Access Journals (Sweden)

    P. S. Anderson

    2007-06-01

    Full Text Available A general understanding of the physics of advection and turbulent mixing within the near surface atmosphere assists the interpretation and predictive power of air chemistry theory. The theory of the physical processes involved in diffusion of trace gas reactants in the near surface atmosphere is still incomplete. Such boundary layer theory is least understood over snow and ice covered surfaces, due in part to the thermo-optical properties of the surface. Polar boundary layers have additional aspects to consider, due to the possibility of long periods without diurnal forcing and enhanced Coriolis effects.

    This paper provides a review of present concepts in polar boundary layer meteorology, which will generally apply to atmospheric flow over snow and ice surfaces. It forms a companion paper to the chemistry review papers in this special issue of ACP.

  16. Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid

    Science.gov (United States)

    Alkasasbeh, Hamzeh Taha; Sarif, Norhafizah Md; Salleh, Mohd Zuki; Tahar, Razman Mat; Nazar, Roslinda; Pop, Ioan

    2015-02-01

    In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter NR, the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed.

  17. Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid

    Energy Technology Data Exchange (ETDEWEB)

    Alkasasbeh, Hamzeh Taha, E-mail: zukikuj@yahoo.com; Sarif, Norhafizah Md, E-mail: zukikuj@yahoo.com; Salleh, Mohd Zuki, E-mail: zukikuj@yahoo.com [Futures and Trends Research Group, Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang (Malaysia); Tahar, Razman Mat [Faculty of Technology, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang (Malaysia); Nazar, Roslinda [School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Pop, Ioan [Department of Mathematics, Babeş-Bolyai University, R-400084 Cluj-Napoca (Romania)

    2015-02-03

    In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N{sub R}, the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed.

  18. MHD Boundary Layer Slip Flow and Heat Transfer of Ferrofluid along a Stretching Cylinder with Prescribed Heat Flux

    OpenAIRE

    Muhammad Qasim; Zafar Hayat Khan; Waqar Ahmad Khan; Inayat Ali Shah

    2014-01-01

    This study investigates the magnetohydrodynamic (MHD) flow of ferrofluid along a stretching cylinder. The velocity slip and prescribed surface heat flux boundary conditions are employed on the cylinder surface. Water as conventional base fluid containing nanoparticles of magnetite (Fe3O4) is used. Comparison between magnetic (Fe3O4) and non-magnetic (Al2O3) nanoparticles is also made. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equat...

  19. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    OpenAIRE

    Matejka Milan; Souckova Natalie; Simurda David; Kuklova Jana; Popelka Lukas; Uruba Vaclav

    2012-01-01

    Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in...

  20. Lie Group Method for Studying the Heat Generation Effect on Freeconvection Laminar Boundary-layer Flow Over a Vertical Flat Plate

    OpenAIRE

    Abd-el-Malek, MB; Badran, NA; Hassan, HS; Abbas, HH

    2015-01-01

    The nonlinear equations of heat and mass transfer in two-dimensional free-convection, laminar, boundary layer flow of a viscous incompressible fluid over a vertical plate with thermophoresis and heat generation effect have been considered. We apply Lie-group method for determining symmetry reductions of partial differential equations. Liegroup method starts out with a general infinitesimal group of transformations under which the given partial differential equations are inva...

  1. Pressure gradient influence in turbulent boundary layers

    Science.gov (United States)

    Reuther, Nico; Kaehler, Christian J.

    2015-11-01

    Understanding wall-bounded turbulence is still an ongoing process. Although remarkable progress has been made in the last decades, many challenges still remain. Mean flow statistics are well understood in case of zero pressure gradient flows. However, almost all turbulent boundary layers in technical applications, such as aircrafts, are subjected to a streamwise pressure gradient. When subjecting turbulent boundary layers to adverse pressure gradients, significant changes in the statistical behavior of the near-wall flow have been observed in experimental studies conducted however the details dynamics and characteristics of these flows has not been fully resolved. The sensitivity to Reynolds number and the dependency on several parameters, including the dependence on the pressure gradient parameter, is still under debate and very little information exists about statistically averaged quantities such as the mean velocity profile or Reynolds stresses. In order to improve the understanding of wall-bounded turbulence, this work experimentally investigates turbulent boundary layer subjected to favorable and adverse pressure gradients by means of Particle Image Velocimetry over a wide range of Reynolds numbers, 4200 statistics was found to increase significantly for a flow subjected to an adverse pressure gradient.

  2. 收缩喷嘴中的湍流(I)——边界层解%Turbulent Flow in Converging Nozzles Part(Ⅰ)-Boundary Layer Solution

    Institute of Scientific and Technical Information of China (English)

    R·马达核安; B·法哈涅; B·费入扎巴迪; 吴承平

    2011-01-01

    应用边界层积分法,研究锥形喷嘴入口区域中湍动涡流的发展.球面坐标系中的控制方程,通过边界层的假定得到简化,并对边界层进行了积分.应用4阶Adams预测校正法求解该微分方程组.入口区域的切向和轴向速度,分别应用自由涡流和均匀速度分布来表示.由于缺乏收缩喷嘴中涡流的实验数据,需要用数值模拟对该发展模式进行逆向验证.数值模拟的结果证明,该解析模型在预测边界层参数中的能力,例如边界层的生长、剪切率和边界层厚度,以及不同锥度角时的涡流强度衰减率等.为所提出的方法引进一个简明而有效的程序,用以研究几何形状收缩设备内的边界层参数.%In this research the boundary layer integral method was used to investigate the development of turbulent swirling flow at the entrance region of a conical nozzle.The governing equations in the spherical coordinate system were simplified with the boundary layer assumptions and integrated through the boundary layer.The resulting sets of differential equations were then solved by the forth-order Adams predictor-corrector method.The free vortex and uniform velocity profiles were applied for tangential and axial velocities at the inlet region respectively.Due to the lack of experimental data for swirling flow in converging nozzles, the developed model was validated against the numerical simulations.The results of numerical simulations demonstrate the capability of the analytical model in predicting boundary layer parameters, such as boundary layer growth, shear rate and boundary layer thickness, as well as the swirl intensity decay rate for different cone angles.The proposed method introduces a simple and robust procedure in order to investigate the boundary layer parameters inside converging geometries.

  3. A study on turbulence transportation and modification of Spalart–Allmaras model for shock-wave/turbulent boundary layer interaction flow

    Directory of Open Access Journals (Sweden)

    Ma Li

    2014-04-01

    Full Text Available It is of great significance to improve the accuracy of turbulence models in shock-wave/boundary layer interaction flow. The relationship between the pressure gradient, as well as the shear layer, and the development of turbulent kinetic energy in impinging shock-wave/turbulent boundary layer interaction flow at Mach 2.25 is analyzed based on the data of direct numerical simulation (DNS. It is found that the turbulent kinetic energy is amplified by strong shear in the separation zone and the adverse pressure gradient near the separation point. The pressure gradient was non-dimensionalised with local density, velocity, and viscosity. Spalart–Allmaras (S–A model is modified by introducing the non-dimensional pressure gradient into the production term of the eddy viscosity transportation equation. Simulation results show that the production and dissipation of eddy viscosity are strongly enhanced by the modification of S–A model. Compared with DNS and experimental data, the wall pressure and the wall skin friction coefficient as well as the velocity profile of the modified S–A model are obviously improved. Thus it can be concluded that the modification of S–A model with the pressure gradient can improve the predictive accuracy for simulating the shock-wave/turbulent boundary layer interaction.

  4. Nonlinear Transient Growth and Boundary Layer Transition

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  5. Three-dimensional MHD boundary layer flow due to an axisymmetric shrinking sheet with radiation, viscous dissipation and heat source/sink

    Science.gov (United States)

    Madhu, M.; Balaswamy, B.; Kishan, N.

    2016-05-01

    An analysis is made to study a three dimensional MHD boundary layer flow and heat transfer due to a porous axisymmetric shrinking sheet. The governing partial differential equations of momentum and energy are transformed into self similar non-linear ordinary differential equations by using the suitable similarity transformations. These equations are, then solved by using the variational finite element method. The flow phenomena is characterised by the magnetic parameter M, suction parameter S, porosity parameter Kp, heat source/sink parameter Q, Prandtl number Pr, Eckert number Ec and radiation parameter Rd. The numerical results of the velocity and temperature profiles are obtained and displayed graphically.

  6. Experimental Investigation of “Why an AC Dielectric Barrier Discharge Plasma Actuator is Preferred to DC Corona Wind Actuator in Boundary Layer Flow Control?”

    OpenAIRE

    Gholam reza Tathiri; Esmaeil Esmaeilzadeh; seyyed mahdi mirsajedi; hossein mahdavy moghaddam

    2014-01-01

    In this paper, characteristics of the flow induced in the boundary layer by an AC-Dielectric Barrier Discharge (DBD) plasma actuator are compared against those of a DC-corona wind actuator. This is achieved by visualization of the induced flow using smoke injection and measuring the horizontal induced velocity. Our measurements show that the maximum induced velocity of an AC-DBD actuator is about one order of magnitude larger than that of a DC-corona actuator. For an AC-DBD actuator, the indu...

  7. Hydrodynamic and Thermal Slip Effect on Double-Diffusive Free Convective Boundary Layer Flow of a Nanofluid Past a Flat Vertical Plate in the Moving Free Stream

    Science.gov (United States)

    Khan, Waqar A.; Uddin, Md Jashim; Ismail, A. I. Md.

    2013-01-01

    The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving. The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal slip parameters. PMID:23533566

  8. Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: a numerical study.

    Directory of Open Access Journals (Sweden)

    Meraj Mustafa

    Full Text Available The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter.

  9. Some Exact Solutions of Boundary Layer Flows along a Vertical Plate with Buoyancy Forces Combined with Lorentz Forces under Uniform Suction

    Directory of Open Access Journals (Sweden)

    Asterios Pantokratoras

    2008-01-01

    Full Text Available Exact analytical solutions of boundary layer flows along a vertical porous plate with uniform suction are derived and presented in this paper. The solutions concern the Blasius, Sakiadis, and Blasius-Sakiadis flows with buoyancy forces combined with either MHD Lorentz or EMHD Lorentz forces. In addition, some exact solutions are presented specifically for water in the temperature range of 0∘C≤≤8∘C, where water density is nearly parabolic. Except for their use as benchmarking means for testing the numerical solution of the Navier-Stokes equations, the presented exact solutions with EMHD forces have use in flow separation control in aeronautics and hydronautics, whereas the MHD results have applications in process metallurgy and fusion technology. These analytical solutions are valid for flows with strong suction.

  10. Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Intermittency Behavior Along the Suction Surface of a Low Pressure Turbine Blade

    Science.gov (United States)

    Schobeiri, M. T.; Ozturk, B.; Ashpis, David E.

    2007-01-01

    The paper experimentally studies the effects of periodic unsteady wake flow and different Reynolds numbers on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University. The experiments were carried out at Reynolds numbers of 110,000 and 150,000 (based on suction surface length and exit velocity). One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The reduced frequencies chosen cover the operating range of LP turbines. In addition to the unsteady boundary layer measurements, surface pressure measurements were performed. The inception, onset, and the extent of the separation bubble information collected from the pressure measurements were compared with the hot wire measurements. The results presented in ensemble-averaged, and the contour plot forms help to understand the physics of the separation phenomenon under periodic unsteady wake flow and different Reynolds number. It was found that the suction surface displayed a strong separation bubble for these three different reduced frequencies. For each condition, the locations defining the separation bubble were determined carefully analyzing and examining the pressure and mean velocity profile data. The location of the boundary layer separation was dependent of the Reynolds number. It is observed that starting point of the separation bubble and the re-attachment point move further downstream by increasing Reynolds number from 110,000 to 150,000. Also, the size of the separation bubble is smaller when compared to that for Re=110,000.

  11. Temperature structure in the atmospheric boundary layer

    Science.gov (United States)

    Smedman, Ann-Sofi

    2010-05-01

    Temperature structure in the atmospheric boundary layer It is well established from experimental and theoretical studies that the temperature structure in the atmospheric boundary layer is depends on stability. During free convection conditions the flow is dominated by circular thermals but when stratification is becoming slightly unstable longitudinal roll structures that extend vertically throughout the entire boundary layer will be present. In close to neutral conditions on the unstable side (the UVCN regime) when the Obukhov length is much greater than the surface layer depth, it is observed that the structure of the surface layer turbulence does not accord with standard similarity theory. In particular the efficiency of the turbulent exchange of sensible and latent heat is observed to be more strongly enhanced than is consistent with the standard model. Also the profiles of dissipation of turbulent kinetic energy and temperature fluctuation variance are found to depend on the structure of the whole boundary layer (i.e. are non-local), indicating that a large-scale transport process is at work. At the same time, co-spectral analysis shows how the large scale eddy motions that determine the heat transport process near the surface are typically 1/5 of the surface layer depth. All these features are found to be similar in measurements at two marine sites, in the Baltic Sea and in Lake Ontario respectively and at several flat land sites ( around Uppsala and at the Island of Gotland), indicating that they are determined by the dynamics of the whole boundary layer rather than being simply dependent on the surface boundary conditions. The observed structures can also be interpreted as possible manifestations of a bifurcation of the large scale eddy structure towards a state in which there are quasi-steady longitudinal rolls and, on a smaller scale, unsteady detached eddies. Our interpretation of the results from the measurements is that, in the UVCN regime, the latter

  12. Stabilised dG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes

    CERN Document Server

    Schroeder, Philipp W

    2016-01-01

    This paper presents heavily grad-div and pressure jump stabilised, equal- and mixed-order discontinuous Galerkin finite element methods for non-isothermal incompressible flows based on the Oberbeck-Boussinesq approximation. In this framework, the enthalpy-porosity model for multiphase flow in melting and solidification problems can be employed. By considering the differentially heated cavity and the melting of pure gallium in a rectangular enclosure, it is shown that both boundary layers and sharp moving interior layers can be handled naturally by the proposed class of non-conforming methods. Due to the stabilising effect of the grad-div term and the robustness of discontinuous Galerkin methods, it is possible to solve the underlying problems accurately on coarse, non-adapted meshes. The interaction of heavy grad-div stabilisation and discontinuous Galerkin methods significantly improves the mass conservation properties and the overall accuracy of the numerical scheme which is observed for the first time. Hen...

  13. Radiation Effect on Mixed Convection Boundary Layer Flow of a Viscoelastic Fluid over a Horizontal Circular Cylinder with Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    Hussain Ahmad

    2016-01-01

    Full Text Available In the present article, radiation effect on mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder with constant heat flux has been numerically analyzed. The governing boundary layer equations are transformed to dimensionless nonlinear partial differential equations. The equations are solved numerically by using Keller-box method. The computed results are in excellent agreement with the previous studies. Skin friction coefficient and Nusselt number are emphasized specifically. These quantities are displayed against the curvature parameter. The effects of pertinent parameters involved in the problem namely effective Prandtl number and mixed convection parameter on skin friction coefficient and Nusselt number are shown through graphs and table. Boundary layer separation points are also calculated with and without radiation and a comparison is shown. The presence of radiation helps to decrease or increase the skin friction coefficient for the negative or positive values of the mixed convection parameter accordingly. The decrease in value of effective Prandtl number helps to increase the value of skin friction coefficient and Nusselt number for viscoelastic fluids.

  14. The Boundary Layer Interaction with Shock Wave and Expansion Fan

    Institute of Scientific and Technical Information of China (English)

    MaratA.Goldfeld; RomanV.Nestoulia; 等

    2000-01-01

    The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented.They include the study of the shock wave and /or expansion fan action upon the boundary layer,boundary layer sepqartion and its relaxation.Complex events of paired interactions and the flow on compression convex-concave surfaces were studied.The posibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented.Different model configurations for wide range conditions were investigated.Comparison of results for different interactions was carried out.

  15. Experimental Investigation of “Why an AC Dielectric Barrier Discharge Plasma Actuator is Preferred to DC Corona Wind Actuator in Boundary Layer Flow Control?”

    Directory of Open Access Journals (Sweden)

    Gholam reza Tathiri

    2014-01-01

    Full Text Available In this paper, characteristics of the flow induced in the boundary layer by an AC-Dielectric Barrier Discharge (DBD plasma actuator are compared against those of a DC-corona wind actuator. This is achieved by visualization of the induced flow using smoke injection and measuring the horizontal induced velocity. Our measurements show that the maximum induced velocity of an AC-DBD actuator is about one order of magnitude larger than that of a DC-corona actuator. For an AC-DBD actuator, the induced velocity is maximized on the plate surface while for a DC-corona actuator the induced velocity peaks at about 20mm above the surface. Using flow visualization, we demonstrate that the induced velocity of an AC-DBD actuator is parallel to the surface, while the induced velocity of a DC-corona actuator has components perpendicular to surface.

  16. Unsteady Similarity Solution of Free convective boundary layer flow over porous plate with variable properties considering viscous dissipation and Slip Effect

    Directory of Open Access Journals (Sweden)

    Md.Jashim Uddin

    2015-10-01

    Full Text Available The combined effects of viscous dissipation and slip effect on the momentum and thermal transport for the unsteady boundary layer flow over porous plate have been carried out. We have applied free parameter method to solve governing partial differential equations. The governing non-linear partial differential equations are transformed into a system of coupled non-linear ordinary differential equations using similarity transformations and then solved numerically using the Runge–Kutta method with shooting technique for better accuracy. The flow and temperature fields as well as the free convective parameter and heat transfer coefficient are determined and displayed graphically involved in the similarity transformation. Effects of the slip parameter, free convection parameter, Prandtl number and unsteadiness parameter on the flow and heat transfer are examined and analyzed

  17. Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet

    Science.gov (United States)

    Krishnamurthy, M. R.; Gireesha, B. J.; Prasannakumara, B. C.; Gorla, Rama Subba Reddy

    2016-09-01

    A theoretically investigation has been performed to study the effects of thermal radiation and chemical reaction on MHD velocity slip boundary layer flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. The Brownian motion and thermophoresis effects are incorporated in the present nanofluid model. A set of proper similarity variables is used to reduce the governing equations into a system of nonlinear ordinary differential equations. An efficient numerical method like Runge-Kutta-Fehlberg-45 order is used to solve the resultant equations for velocity, temperature and volume fraction of the nanoparticle. The effects of different flow parameters on flow fields are elucidated through graphs and tables. The present results have been compared with existing one for some limiting case and found excellent validation.

  18. Lie Group Analysis and Similarity Solutions for Mixed Convection Boundary Layers in the Stagnation-Point Flow toward a Stretching Vertical Sheet

    Directory of Open Access Journals (Sweden)

    Sarkhosh Seddighi Chaharborj

    2013-01-01

    Full Text Available An analysis for the mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet is carried out via symmetry analysis. By employing Lie group method to the given system of nonlinear partial differential equations, we can obtain information about the invariants and symmetries of these equations. This information can be used to determine the similarity variables that will reduce the number of independent variables in the system. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using fifth-order Improved Runge-Kutta Method (IRK5 coupled with shooting method. The features of the flow and heat transfer characteristics are analyzed and discussed in detail. Both cases of assisting and opposing flows are considered. This paper' results in comparison with known results are excellent.

  19. Scaling Group Transformation for MHD Boundary Layer Slip Flow of a Nanofluid over a Convectively Heated Stretching Sheet with Heat Generation

    Directory of Open Access Journals (Sweden)

    Md. Jashim Uddin

    2012-01-01

    Full Text Available Steady viscous incompressible MHD laminar boundary layer slip flow of an electrically conducting nanofluid over a convectively heated permeable moving linearly stretching sheet has been investigated numerically. The effects of Brownian motion, thermophoresis, magnetic field, and heat generation/absorption are included in the nanofluid model. The similarity transformations for the governing equations are developed. The effects of the pertinent parameters, Lewis number, magnetic field, Brownian motion, heat generation, thermophoretic, momentum slip and Biot number on the flow field, temperature, skin friction factor, heat transfer rate, and nanoparticle, volume fraction rate are displayed in both graphical and tabular forms. Comparisons of analytical (for special cases and numerical solutions with the existing results in the literature are made and is found a close agreement, that supports the validity of the present analysis and the accuracy of our numerical computations. Results for the reduced Nusselt and Sherwood numbers are provided in tabular and graphical forms for various values of the flow controlling parameters which govern the momentum, energy, and the nanoparticle volume fraction transport in the MHD boundary layer.

  20. A numerical investigation of the evolution of 2-D disturbances in hypersonic boundary layers and the effect on the flow structure due to the existence of shocklets

    Institute of Scientific and Technical Information of China (English)

    CAO; Wei; ZHOU; Heng

    2004-01-01

    The evolution of 2-D disturbances in hypersonic boundary layer with Mach number 6,8, and 10 was investigated numerically by three different numerical schemes.At the entrance, second mode T-S waves with different amplitudes were introduced, and the relation between the Mach number and the amplitude of the disturbance when shocklets started to appear was investigated. By comparing the disturbance velocity profiles with those provided by linear stability theory, the effects of shocklets on flow structures were also investigated.

  1. Effects of heat and mass transfer on nonlinear MHD boundary layer flow over a shrinking sheet in the presence of suction

    Institute of Scientific and Technical Information of China (English)

    Muhaimin; R. Kandasamy; Azme B. Khamis

    2008-01-01

    This work is concerned with Magnetohydrodynamic viscous flow due to a shrinking sheet in the presence of suction. The cases of two dimensional and axisymmetric shrinking are discussed. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are numerically solved by using an advanced numeric technique. Favorability comparisons with previously published work are presented. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.

  2. Active control of ionized boundary layers

    CERN Document Server

    Mendes, R V

    1997-01-01

    The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.

  3. Preferential transport of water and 131Iodide in a clay loam assessed with TDR-techniques and boundary-layer flow theory

    Directory of Open Access Journals (Sweden)

    A. Mdaghri Alaoui

    1997-01-01

    Full Text Available Rapid soil moisture variations were measured with TDR equipment at five depths ranging from 0.1 to 0.9 m during five consecutive infiltration experiments under ponding. Each time, 27 mm of water were applied. The water of the second experiment was spiked with 200 mbq of K131I-tracer. Its activity was recorded as functions of depth and time with Geiger-Müller probes in 12 vertically installed access tubes. The soil moisture variations were classified as showing (i no reaction, (ii monotonous increase, and (iii rapid increase followed by a gradual decrease. Reaction type (iii was investigated further according to the boundary-layer flow theory and diagnosed as preferential flow. Rapid variations of 131I-activities occurred at all depths showing soil moisture reaction type (iii. However, some of the reaction types (i and (ii also included rapid variations of the activities. The approach based on boundary-laver flow theory allows fluxes to be estimated from soil moisture variations. Seven estimated total volumes of rapid flow ranged from 0.15 to 1.1 of the applied volume of water, and in only one case was the total volume badly overestimated by a factor of almost 3. The approach is worth further exploration.

  4. Bristled shark skin: a microgeometry for boundary layer control?

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A W; Hidalgo, P; Westcott, M [Aerospace Engineering and Mechanics Department, University of Alabama, Box 870280, Tuscaloosa, AL 35487 (United States); Motta, P [Biology Department, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)], E-mail: alang@eng.ua.edu

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  5. MHD forced convective laminar boundary layer flow from a convectively heated moving vertical plate with radiation and transpiration effect.

    Science.gov (United States)

    Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295

  6. MHD forced convective laminar boundary layer flow from a convectively heated moving vertical plate with radiation and transpiration effect.

    Directory of Open Access Journals (Sweden)

    Md Jashim Uddin

    Full Text Available A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1/2 where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.

  7. MHD boundary layer slip flow and heat transfer of ferrofluid along a stretching cylinder with prescribed heat flux.

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    Full Text Available This study investigates the magnetohydrodynamic (MHD flow of ferrofluid along a stretching cylinder. The velocity slip and prescribed surface heat flux boundary conditions are employed on the cylinder surface. Water as conventional base fluid containing nanoparticles of magnetite (Fe3O4 is used. Comparison between magnetic (Fe3O4 and non-magnetic (Al2O3 nanoparticles is also made. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equations and then solved numerically using shooting method. Present results are compared with the available data in the limiting cases. The present results are found to be in an excellent agreement. It is observed that with an increase in the magnetic field strength, the percent difference in the heat transfer rate of magnetic nanoparticles with Al2O3 decreases. Surface shear stress and the heat transfer rate at the surface increase as the curvature parameter increases, i.e curvature helps to enhance the heat transfer.

  8. MHD boundary layer slip flow and heat transfer of ferrofluid along a stretching cylinder with prescribed heat flux.

    Science.gov (United States)

    Qasim, Muhammad; Khan, Zafar Hayat; Khan, Waqar Ahmad; Ali Shah, Inayat

    2014-01-01

    This study investigates the magnetohydrodynamic (MHD) flow of ferrofluid along a stretching cylinder. The velocity slip and prescribed surface heat flux boundary conditions are employed on the cylinder surface. Water as conventional base fluid containing nanoparticles of magnetite (Fe3O4) is used. Comparison between magnetic (Fe3O4) and non-magnetic (Al2O3) nanoparticles is also made. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equations and then solved numerically using shooting method. Present results are compared with the available data in the limiting cases. The present results are found to be in an excellent agreement. It is observed that with an increase in the magnetic field strength, the percent difference in the heat transfer rate of magnetic nanoparticles with Al2O3 decreases. Surface shear stress and the heat transfer rate at the surface increase as the curvature parameter increases, i.e curvature helps to enhance the heat transfer. PMID:24465388

  9. MHD forced convective laminar boundary layer flow from a convectively heated moving vertical plate with radiation and transpiration effect.

    Science.gov (United States)

    Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.

  10. MHD boundary layer slip flow and heat transfer of ferrofluid along a stretching cylinder with prescribed heat flux.

    Science.gov (United States)

    Qasim, Muhammad; Khan, Zafar Hayat; Khan, Waqar Ahmad; Ali Shah, Inayat

    2014-01-01

    This study investigates the magnetohydrodynamic (MHD) flow of ferrofluid along a stretching cylinder. The velocity slip and prescribed surface heat flux boundary conditions are employed on the cylinder surface. Water as conventional base fluid containing nanoparticles of magnetite (Fe3O4) is used. Comparison between magnetic (Fe3O4) and non-magnetic (Al2O3) nanoparticles is also made. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equations and then solved numerically using shooting method. Present results are compared with the available data in the limiting cases. The present results are found to be in an excellent agreement. It is observed that with an increase in the magnetic field strength, the percent difference in the heat transfer rate of magnetic nanoparticles with Al2O3 decreases. Surface shear stress and the heat transfer rate at the surface increase as the curvature parameter increases, i.e curvature helps to enhance the heat transfer.

  11. Instability of the stable boundary layer?

    NARCIS (Netherlands)

    Wiel, van de B.J.H.; Moene, A.F.; Steeneveld, G.J.; Holtslag, A.A.M.

    2006-01-01

    Many observations of artic boundary layers and nighttime boundary layers in general show low temperatures and weak winds near the surface. These weak wind conditions coincide with extremely low intensities of turbulence. As a result, the upper part of the boundary seems to be de-coupled from the sur

  12. Mixed convection boundary layer flow over a stretching surface filled with a Maxwell fluid in presence of Soret and Dufour effects

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Dept. of Mathematics, Quaid-i-Azam Univ., Islamabad (Pakistan); Dept. of Mathematics, Coll. of Sciences, KS Univ., Riyadh (Saudi Arabia); Mustafa, Meraj [Dept. of Mathematics, Quaid-i-Azam Univ., Islamabad (Pakistan); Mesloub, Said [Dept. of Mathematics, Coll. of Sciences, KS Univ., Riyadh (Saudi Arabia)

    2010-05-15

    This article looks at the heat and mass transfer characteristics in mixed convection boundary layer flow about a linearly stretching vertical surface. An incompressible Maxwell fluid occupying the porous space takes into account the diffusion-thermo (Dufour) and thermal-diffusion (Soret) effects. The governing partial differential equations are transformed into a set of coupled ordinary differential equations, by invoking similarity transformations. The involved nonlinear differential system is solved analytically using the homotopy analysis method (HAM) to determine the convergent series expressions of velocity, temperature, and concentration. The physical interpretation to these expressions is assigned through graphs and tables for the Nusselt number {theta}'(0) and the Sherwood number {phi}'(0). The dependence of suction parameter S, mixed convection parameter {lambda}, Lewis number Le, Prandtl number Pr, Deborah number {beta}, concentration buoyancy parameter N, porosity parameter {gamma}, Dufour number Df, and Soret number Sr is seen on the flow quantities. (orig.)

  13. Unsteady laminar mixed convection boundary layer flow near a vertical wedge due to oscillations in the free-stream and surface temperature

    Directory of Open Access Journals (Sweden)

    Roy N.C.

    2016-02-01

    Full Text Available The unsteady laminar boundary layer characteristics of mixed convection flow past a vertical wedge have been investigated numerically. The free-stream velocity and surface temperature are assumed to be oscillating in the magnitude but not in the direction of the oncoming flow velocity. The governing equations have been solved by two distinct methods, namely, the straightforward finite difference method for the entire frequency range, and the extended series solution for low frequency range and the asymptotic series expansion method for high frequency range. The results demonstrate the effects of the Richardson number, Ri, introduced to quantify the influence of mixed convection and the Prandtl number, Pr, on the amplitudes and phase angles of the skin friction and heat transfer. In addition, the effects of these parameters are examined in terms of the transient skin friction and heat transfer.

  14. Heat Transfer Analysis for Stationary Boundary Layer Slip Flow of a Power-Law Fluid in a Darcy Porous Medium with Plate Suction/Injection.

    Science.gov (United States)

    Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J I

    2015-01-01

    In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined.

  15. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R. W.

    2015-03-25

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.

  16. Definition of Turbulent Boundary-Layer with Entropy Concept

    Directory of Open Access Journals (Sweden)

    Zhao Rui

    2016-01-01

    Full Text Available The relationship between the entropy increment and the viscosity dissipation in turbulent boundary-layer is systematically investigated. Through theoretical analysis and direct numerical simulation (DNS, an entropy function fs is proposed to distinguish the turbulent boundary-layer from the external flow. This approach is proved to be reliable after comparing its performance in the following complex flows, namely, low-speed airfoil flows with different wall temperature, supersonic cavity-ramp flow dominated by the combination of free-shear layer, larger recirculation and shocks, and the hypersonic flow past an aeroplane configuration. Moreover, fs is deduced from the point of energy, independent of any particular turbulent quantities. That is, this entropy concept could be utilized by other engineering applications related with turbulent boundary-layer, such as turbulence modelling transition prediction and engineering thermal protection.

  17. Turbulent boundary layer over a chine.

    Science.gov (United States)

    Panchapakesan, N. R.; Joubert, P. N.

    1999-11-01

    The flow over an edge aligned with the streamwise direction is studied as a representative of the turbulent boundary layers developing over hard chines found on the hulls of ships and catamarans. We present results of a traditional experimental investigation of this geometry in a wind tunnel with pitot tubes and hot-wires. The chine model consisted of two surfaces made of varnished fibre boards with leading edges of airfoil sections and a 90 degree corner. The boundary layer was tripped with wires close to the leading edge. The model was housed in a test section of length 6.5 m in a closed circuit wind tunnel. The experiments were conducted at a unit Reynolds number of 680,000 /m corresponding to a nominal free stream velocity of 10 m/s. The mean velocity field and the associated integral parameters obtained with pitot tube measurements are presented for different streamwise locations from 0.2 to 4.7 m from the trip wire. The flow at the two farthest locations were also studied with single and 'x' hot-wires. The secondary mean flow and the turbulence field in the corner region are described with these measurements.

  18. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    , is newly extended to incorporate a transitional variant of the standard two-equation k–ω turbulence closure. The developed numerical model is successfully validated against recent experimental measurements involving transient solitary wave boundary layers as well as for oscillatory flows, collectively......This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scalewaves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...

  19. A Cautionary Note on the Thermal Boundary Layer Similarity Scaling for the Turbulent Boundary Layer

    CERN Document Server

    Weyburne, David

    2016-01-01

    Wang and Castillo have developed empirical parameters for scaling the temperature profile of the turbulent boundary layer flowing over a heated wall in the paper X. Wang and L. Castillo, J. Turbul., 4, 1(2003). They presented experimental data plots that showed similarity type behavior when scaled with their new scaling parameters. However, what was actually plotted, and what actually showed similarity type behavior, was not the temperature profile but the defect profile formed by subtracting the temperature in the boundary layer from the temperature in the bulk flow. We show that if the same data and same scaling is replotted as just the scaled temperature profile, similarity is no longer prevalent. This failure to show both defect profile similarity and temperature profile similarity is indicative of false similarity. The nature of this false similarity problem is discussed in detail.

  20. Fluid flow enhances the effectiveness of toxin export by aquatic microorganisms: A first-passage perspective on microvilli and the concentration boundary layer

    Science.gov (United States)

    Licata, Nicholas A.; Clark, Aaron

    2015-01-01

    A central challenge for organisms during development is determining a means to efficiently export toxic molecules from inside the developing embryo. For aquatic microorganisms, the strategies employed should be robust with respect to the variable ocean environment and limit the chances that exported toxins are reabsorbed. As a result, the problem of toxin export is closely related to the physics of mass transport in a fluid. In this paper, we consider a model first-passage problem for the uptake of exported toxins by a spherical embryo. By considering how macroscale fluid turbulence manifests itself on the microscale of the embryo, we determine that fluid flow enhances the effectiveness of toxin export as compared to the case of diffusion-limited transport. In the regime of a large Péclet number, a perturbative solution of the advection-diffusion equation reveals that a concentration boundary layer forms at the surface of the embryo. The model results suggest a functional role for cell surface roughness in the export process, with the thickness of the concentration boundary layer setting the length scale for cell membrane protrusions known as microvilli. We highlight connections between the model results and experiments on the development of sea urchin embryos.

  1. MIXED CONVECTION BOUNDARY LAYER FLOW ON A VERTICAL SURFACE IN A POROUS MEDIUM SATURATED BY A NANOFLUID WITH SUCTION OR INJECTION

    Directory of Open Access Journals (Sweden)

    M. H.M. Yasin

    2013-01-01

    Full Text Available An analysis of the steady mixed convection boundary layer flow past a vertical permeable surface embedded in a porous medium saturated by a nanofluid is performed in this study. Numerical solutions of the similarity equations are obtained using the shooting method. Three types of metallic or nonmetallic nanoparticles, namely Copper (Cu, Alumina (Al2O3 and Titania (TiO2 are considered by using a water-based fluid to investigate the effect of the solid volume fraction or nanoparticle volume fraction parameter φ of the nanofluid. The numerical results of the skin friction coefficient and the velocity profiles are presented and discussed. It is found that the imposition of suction is to increase the velocity profiles and to delay the separation of boundary layer, while the injection parameter decreases the velocity profiles. On the other hand, the range of solutions for the injection case is largest for Al2O3 nanoparticles and smallest for Cu nanoparticles.

  2. Compressibility Effects in Turbulent Boundary Layers

    Institute of Scientific and Technical Information of China (English)

    CAO Yu-Hui; PEI Jie; CHEN Jun; SHE Zhen-Su

    2008-01-01

    Local cascade (LC) scheme and space-time correlations are used to study turbulent structures and their convection behaviour in the near-wall region of compressible boundary layers at Ma = 0.8 and 1.3. The convection velocities of fluctuating velocity components u (streamwise) and v (vertical) are investigated by statistically analysing scale-dependent ensembles of LC structures. The results suggest that u is convected with entropy perturbations while v with an isentropic process. An abnormal thin layer distinct from the conventional viscous sub-layer is discovered in the immediate vicinity of the wall (y+≤1) in supersonic flows. While in the region 1 < y+ < 30,streamwise streaks dominate velocity, density and temperature fluctuations, the abnormal thin layer is dominated by spanwise streaks in vertical velocity and density fluctuations, where pressure and density fluctuations are strongly correlated. The LC scheme is proven to be effective in studying the nature of supersonic flows and compressibility effects on wall-bounded motions.

  3. Reactive Flow Calculation Near a Free Boundary

    Science.gov (United States)

    Partom, Yehuda

    2007-12-01

    In reactive flow calculations of detonation in a rod, an unreacted or slow reacting layer is formed at the boundary, affecting the diameter effect outcome. We investigate the origin of this boundary layer, and propose a simple and practical way to eliminate it. We show that it is an artifact of the finite rise time of the shock, caused by artificial viscosity. When the shock reaches a boundary cell, it is released right away, so that pressure and temperature there only reach a fraction of their shock levels, and the reaction rate is slow. We propose to remedy this artifact by delaying the boundary motion for a short while (about 40 ns for a 10 cells per mm mesh) after arrival of the shock. In this way boundary cells can reach the appropriate pressure and temperature and react at the appropriate rate. In the paper we show how this remedy works. We compute detonation in a rod with different values of the boundary motion delay, compare the breakout curve from the far end with data from the literature, and obtain good agreement. This finite rise time effect near a low impedance boundary plays a role also in calculations of corner turning situations. But there the detonation borders with a dead zone, and the boundary contour is not known in advance.

  4. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Directory of Open Access Journals (Sweden)

    Matejka Milan

    2012-04-01

    Full Text Available Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  5. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Science.gov (United States)

    Popelka, Lukas; Kuklova, Jana; Simurda, David; Souckova, Natalie; Matejka, Milan; Uruba, Vaclav

    2012-04-01

    Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  6. Viscous Dissipation and Variable Viscosity Effects on MHD Boundary Layer Flow in Porous Medium Past a Moving Vertical Plate with Suction

    Directory of Open Access Journals (Sweden)

    P. K. Singh

    2012-06-01

    Full Text Available This paper deals with the problem of a steady two dimensional boundary layer flow of an incompressible, viscous and electrically conducting fluid, with heat and mass transfer, past a moving vertical porous plate in the presence of uniform magnetic field applied normal to the plate, taking into account the effects of variable viscosity and viscous dissipation. The equations of motion, heat and mass transfer are transformed into a system of coupled ordinary differential equations in the non-dimensional form which are solved numerically. The effects of various parameters such as Prandtl number, Eckert number and Schmidt number on the velocity, temperature and concentration fields are discussed with the help of graphs.

  7. Entropy generation analysis of the revised Cheng-Minkowycz problem for natural convective boundary layer flow of nanofluid in a porous medium

    Directory of Open Access Journals (Sweden)

    Rashidi Mohammad Mehdi

    2015-01-01

    Full Text Available The similar solution on the equations of the revised Cheng-Minkowycz problem for natural convective boundary layer flow of nanofluid through a porous medium gives (using an analytical method, a system of non-linear partial differential equations which are solved by optimal homotopy analysis method. Effects of various drastic parameters on the fluid and heat transfer characteristics have been analyzed. A very good agreement is observed between the obtained results and the numerical ones. The entropy generation has been derived and a comprehensive parametric analysis on that has been done. Each component of the entropy generation has been analyzed separately and the contribution of each one on the total value of entropy generation has been determined. It is found that the entropy generation as an important aspect of the industrial applications has been affected by various parameters which should be controlled to minimize the entropy generation.

  8. MHD Marangoni boundary layer flow and heat transfer of pseudo-plastic nanofluids over a porous medium with a modified model

    Science.gov (United States)

    Lin, Yanhai; Zheng, Liancun; Zhang, Xinxin

    2015-11-01

    We present a research for the MHD Marangoni boundary layer flow and heat transfer in pseudo-plastic power law nanofluids over a porous medium driven by temperature gradient. A variable magnetic field is considered. Four different types of nanoparticles, copper, aluminum oxide, copper oxide, and titanium oxide are considered with pseudo-plastic power-law carboxy methyl cellulose (CMC)-water used as base fluids. A generalized Fourier law proposed by Zheng for varying thermal conductivity of nanofluids is taken into account, and the surface tension is assumed a quadratic function of the temperature. The governing partial differential equations (PDEs) are formulated, and similarity solutions are obtained numerically using shooting technique combined with Runge-Kutta iteration program and Newton's scheme. The effects of various physical parameters on horizontal velocity component and temperature curves are discussed and graphically illustrated in details.

  9. Effect of double stratification on mixed convection boundary layer flow of a nanofluid past a vertical plate in a porous medium

    Science.gov (United States)

    Srinivasacharya, D.; Surender, Ontela

    2015-01-01

    The effect of thermal and mass stratification on mixed convection boundary layer flow over a vertical flat plate embedded in a porous medium saturated by a nanofluid has been investigated. The vertical plate is maintained at uniform and constant heat, mass and nanoparticle fluxes, and the behavior of the porous medium is described by the Darcy model. The model considered for nanofluids incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. A suitable coordinate transformation is introduced, and the obtained system of non-similar, coupled and non-linear partial differential equations is solved numerically. The influence of pertinent parameters on the non-dimensional velocity, temperature, concentration and nanoparticle volume fraction are discussed. In addition, the variation of heat, mass and nanoparticle transfer rates at the plate are exhibited graphically for different values of physical parameters.

  10. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar re

  11. Blow-up and control of marginally separated boundary layers.

    Science.gov (United States)

    Braun, Stefan; Kluwick, Alfred

    2005-05-15

    Interactive solutions for steady two-dimensional laminar marginally separated boundary layers are known to exist up to a critical value Gamma(c) of the controlling parameter (e.g. the angle of attack of a slender airfoil) Gamma only. Here, we investigate three-dimensional unsteady perturbations of such boundary layers, assuming that the basic flow is almost critical, i.e. in the limit Gamma(c)-Gamma-->0. It is then shown that the interactive equations governing such perturbations simplify significantly, allowing, among others, a systematic study of the blow-up phenomenon observed in earlier investigations and the optimization of devices used in boundary-layer control.

  12. Non-Darcy effect on boundary layer flow of TiO2-water/kerosene nanofluid over an extensible sheet

    Science.gov (United States)

    Tausif Sk, Md; Das, Kalidas; Kundu, Prabir Kumar

    2016-09-01

    An analytical and numerical enquiry has been executed to measure up to the numerical data and graphical figures of two different types of nanofluid boundary layer flow in a non-Darcy porous medium with TiO2 nanoparticles in the fluid. The current surface is continuously protracted under a fixed law and the base liquids are water and kerosene. A mathematical model of the stream has been developed and after renovating the non-linear partial differential equations into a system of ODE, it has been solved both analytically by Differential Transformation Method (DTM) in cooperation with Padé Approximant and numerically by Runge-Kutta 4th order shooting technique. The aggregate of the relations between various flow parameters with the skin friction and the heat transfer rate of two different fluids have been gauged by correlation coefficients and the impact of the relation has been verified using Fisher's t-Test. One of the most interesting verdicts of the progress survey is that the rate of heat transfer rate in the TiO2 -kerosene nanofluid is almost 83-88% higher than that of TiO2 -water nanofluid. Also the relation between various pertinent parameters with the Nusselt number and the skin friction coefficient are highly significant and they can be regulated according to our requirement by controlling these parameters of the flow.

  13. Coherent structures in wave boundary layers. Part 1. Oscillatory motion

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen

    2010-01-01

    This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i...... spots, isolated arrowhead-shaped areas close to the bed in an otherwise laminar boundary layer where the flow ‘bursts’ with violent oscillations. The emergence of the turbulent spots marks the onset of turbulence. Turbulent spots cause single or multiple violent spikes in the bed shear stress signal......) Vortex tubes, essentially two-dimensional vortices close to the bed extending across the width of the boundary-layer flow, caused by an inflectional-point shear layer instability. The imprint of these vortices in the bed shear stress is a series of small, insignificant kinks and dips. (ii) Turbulent...

  14. Flow control and boundary layer separated transition induced by dimple structure%球窝的流动控制及分离转捩特性研究

    Institute of Scientific and Technical Information of China (English)

    谢永慧; 申仲旸; 张荻

    2012-01-01

    流体经过一定的逆压梯度容易发生流动分离从而大大减小流动效率,球窝结构具有良好的流动控制效果,在机翼、航空发动机、汽轮机叶片等工业领域有较大的应用前景.对一典型收缩扩张通道的流动分离转捩状况进行了数值模拟,并提出了一种带有球窝结构的被动控制方法.研究结果表明:球窝结构作为一种被动流动控制方法,布置在具有明显逆压梯度的通道上能起到良好的流动控制作用,并且能诱导层流边界层提前向湍流边界层转捩,抑制了通道中的流动分离,减小分离泡的尺度,其中球窝的布置位置以及流动Re均对球窝的控制作用有重要影响.球窝的引入还将减小通道的总压损失系数,起到了流动减阻的效果,表明球窝结构是一种较优的流动控制方法.%Fluids are easy separated under adverse pressure gradient which results in low flow efficiency. Dimple structures are optimal flow control approach which has broad application prospects on industrial areas such as airfoils, aero engines and turbine blades. The three-dimensional Reynolds- averaged Navier-Stokes (RANS) equations were resolved using shear- stress-transport (SST) turbulence model and γ-Reθ transition model. Flow separation and boundary layer transition characteristics of a typical convergent-divergent channel were investigated by the numerical method. Dimple structure was adopted to control the flow process passively. After comparing with the none-control channel, results indicate that: As a passive flow control method, dimple structure can control the flow process on a channel with obvious adverse pressure gradient. It induces the boundary layer transition from laminar to turbulent. Dimple restrains the flow separation while decreasing separation bubble scale. The parameters of dimple position and Reynolds number affect the flow control process considerably. The import of dimple structure also decreases the total

  15. Local heat transfer around a wall-mounted cube at 45 deg. to flow in a turbulent boundary layer

    International Nuclear Information System (INIS)

    The flow and local heat transfer around a wall-mounted cube oriented 45 deg. to the flow is investigated experimentally in the range of Reynolds number 4.2 x 103-3.3 x 104 based on the cube height. The distribution of local heat transfer on the cube and its base wall are examined, and it is clarified that the heat transfer distribution under the angled condition differs markedly to that for cube oriented perpendicular to the flow, particularly on the top face of the cube. The surface pressure distribution is also investigated, revealing a well-formed pair of leading-edge vortices extending from the front corner of the top face downstream along both front edges for Re>(1-2)x104. Regions of high heat transfer and low pressure are formed along the flow reattachment and separation lines caused by these vortices. In particular, near the front corner of the top face, pressure suction and heat transfer enhancement are pronounced. The average heat transfer on the top face is enhanced at Re>(1-2)x104 over that of a cube aligned perpendicular to the flow

  16. Plasma boundary layer and magnetopause layer of the earth's magnetosphere

    International Nuclear Information System (INIS)

    IMP 6 observations of the plasma boundary layer (PBL) and magnetopause layer (MPL) of the earth's magnetosphere indicate that plasma in the low-latitude portion of the PBL is supplied primarily by direct transport of magnetosheath plasma across the MPL and that this transport process is relatively widespread over the entire sunward magnetospheric boundary

  17. Numerical study of boundary layer flow and heat transfer of oldroyd-B nanofluid towards a stretching sheet.

    Directory of Open Access Journals (Sweden)

    Sohail Nadeem

    Full Text Available In the present article, we considered two-dimensional steady incompressible Oldroyd-B nanofluid flow past a stretching sheet. Using appropriate similarity variables, the partial differential equations are transformed to ordinary (similarity equations, which are then solved numerically. The effects of various parameters, namely, Deborah numbers [Formula: see text] and [Formula: see text], Prandtl parameter [Formula: see text], Brownian motion [Formula: see text], thermophoresis parameter [Formula: see text] and Lewis number [Formula: see text], on flow and heat transfer are investigated. To see the validity of the present results, we have made the comparison of present results with the existing literature.

  18. Numerical Study of Boundary Layer Flow and Heat Transfer of Oldroyd-B Nanofluid towards a Stretching Sheet

    Science.gov (United States)

    Nadeem, Sohail; Ul Haq, Rizwan; Akbar, Noreen Sher; Lee, Changhoon; Khan, Zafar Hayat

    2013-01-01

    In the present article, we considered two-dimensional steady incompressible Oldroyd-B nanofluid flow past a stretching sheet. Using appropriate similarity variables, the partial differential equations are transformed to ordinary (similarity) equations, which are then solved numerically. The effects of various parameters, namely, Deborah numbers and , Prandtl parameter , Brownian motion , thermophoresis parameter and Lewis number , on flow and heat transfer are investigated. To see the validity of the present results, we have made the comparison of present results with the existing literature. PMID:24015172

  19. The study of the effect of the surface wave on turbulent stably-stratified boundary layer air-flow by direct numerical simulation

    Science.gov (United States)

    Druzhinin, Oleg; Troitskaya, Yliya; Zilitinkevich, Sergej

    2015-04-01

    Detailed knowledge of the interaction of surface water waves with the wind flow is of primary importance for correct parameterization of turbulent momentum and heat fluxes which define the energy and momentum transfer between the atmosphere and hydrosphere. The objective of the present study is to investigate the properties of the stably stratified turbulent boundary-layer (BL) air-flow over waved water surface by direct numerical simulation (DNS) at a bulk Reynolds number varying from 15000 to 80000 and the surface-wave slope up to ka = 0.2. The DNS results show that the BL-flow remains in the statistically stationary, turbulent regime if the Reynolds number (ReL) based on the Obukhov length scale and friction velocity is sufficiently large (ReL > 100). In this case, mean velocity and temperature vertical profiles are well predicted by log-linear asymptotic solutions following from the Monin-Obukhov similarity theory provided the velocity and temperature roughness parameters, z0U and z0T, are appropriately prescribed. Both z0U and z0T increase for larger surface-wave slope. DNS results also show that turbulent momentum and heat fluxes and turbulent velocity and temperature fluctuations are increased for larger wave slope (ka) whereas the mean velocity and temperature derivatives remain practically the same for different ka. Thus, we conclude that the source of turbulence enhancement in BL-flow are perturbations induced by the surface wave, and not the shear instability of the bulk flow. On the other hand, if stratification is sufficiently strong, and the surface-wave slope is sufficiently small, the BL-flow over waved surface relaminarizes in the bulk of the domain. However, if the surface-wave slope exceeds a threshold value, the velocity and temperature fluctuations remain finite in the vicinity of the critical-layer level, where the surface-wave phase velocity coincides with the mean flow velocity. We call this new stably-stratified BL-flow regime observed in

  20. CISM Course on Recent Advances in Boundary Layer Theory

    CERN Document Server

    1998-01-01

    Recent advances in boundary-layer theory have shown how modern analytical and computational techniques can and should be combined to deepen the understanding of high Reynolds number flows and to design effective calculation strategies. This is the unifying theme of the present volume which addresses laminar as well as turbulent flows.

  1. Electroosmotic flow phenomena in packed capillaries: From the interstitial velocities to intraparticle and boundary layer mass transfer

    NARCIS (Netherlands)

    Tallarek, U.; Rapp, E.; Seidel-Morgenstern, A.; As, van H.

    2002-01-01

    Pulsed field gradient nuclear magnetic resonance studies of electrokinetic flow through a 250 m i.d. cylindrical fused-silica capillary packed with spherical porous particles (dp = 41 m) have revealed the following phenomena and parameters: (i) An electrokinetic wall effect exists due to a mismatch

  2. Existence theory for a one-dimensional problem arising from the boundary layer analysis of radiative flows

    International Nuclear Information System (INIS)

    We consider a simplified system of equations which models the transfer of energy with conductive, convective and radiative effects inside a convex region filled with a compressible fluid whose velocity field is known. The asymptotic analysis for positive but small opacity leads to a one-dimensional system of differential equation which couples the temperature and the radiative intensity. We show that this system obeys a conservation law and this feature is explored in order to reduce the problem to a single one-dimension transport equation with anisotropic scattering. This equation admits a formulation in terms of integral operators in a suitable function space which allows us to establish the existence of a solution and infer its behaviour far from the boundary. (author)

  3. Calculation methods for compressible turbulent boundary layers

    Science.gov (United States)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1976-01-01

    Calculation procedures for non-reacting compressible two- and three-dimensional turbulent boundary layers were reviewed. Integral, transformation and correlation methods, as well as finite difference solutions of the complete boundary layer equations summarized. Alternative numerical solution procedures were examined, and both mean field and mean turbulence field closure models were considered. Physics and related calculation problems peculiar to compressible turbulent boundary layers are described. A catalog of available solution procedures of the finite difference, finite element, and method of weighted residuals genre is included. Influence of compressibility, low Reynolds number, wall blowing, and pressure gradient upon mean field closure constants are reported.

  4. Modelling of the Evolving Stable Boundary Layer

    Science.gov (United States)

    Sorbjan, Zbigniew

    2014-06-01

    A single-column model of the evolving stable boundary layer (SBL) is tested for self-similar properties of the flow and effects of ambient forcing. The turbulence closure of the model is diagnostic, based on the K-theory approach, with a semi-empirical form of the mixing length, and empirical stability functions of the Richardson number. The model results, expressed in terms of local similarity scales, are universal functions, satisfied in the entire SBL. Based on similarity expression, a realizability condition is derived for the minimum allowable turbulent heat flux in the SBL. Numerical experiments show that the development of "horse-shoe" shaped, fixed-elevation hodographs in the interior of the SBL around sunrise is controlled by effects imposed by surface thermal forcing.

  5. Bypass transition and spot nucleation in boundary layers

    CERN Document Server

    Kreilos, Tobias; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S; Eckhardt, Bruno

    2016-01-01

    The spatio-temporal aspects of the transition to turbulence are considered in the case of a boundary layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly fitted from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  6. Bypass transition and spot nucleation in boundary layers

    Science.gov (United States)

    Kreilos, Tobias; Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S.; Eckhardt, Bruno

    2016-08-01

    The spatiotemporal aspects of the transition to turbulence are considered in the case of a boundary-layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly obtained from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  7. Heat Generation/Absorption Effects in a Boundary Layer Stretched Flow of Maxwell Nanofluid: Analytic and Numeric Solutions.

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    Full Text Available Analysis has been done to investigate the heat generation/absorption effects in a steady flow of non-Newtonian nanofluid over a surface which is stretching linearly in its own plane. An upper convected Maxwell model (UCM has been utilized as the non-Newtonian fluid model in view of the fact that it can predict relaxation time phenomenon which the Newtonian model cannot. Behavior of the relaxations phenomenon has been presented in terms of Deborah number. Transport phenomenon with convective cooling process has been analyzed. Brownian motion "Db" and thermophoresis effects "Dt" occur in the transport equations. The momentum, energy and nanoparticle concentration profiles are examined with respect to the involved rheological parameters namely the Deborah number, source/sink parameter, the Brownian motion parameters, thermophoresis parameter and Biot number. Both numerical and analytic solutions are presented and found in nice agreement. Comparison with the published data is also made to ensure the validity. Stream lines for Maxwell and Newtonian fluid models are presented in the analysis.

  8. New non-orthogonality treatment for atmospheric boundary layer flow simulation above highly non-uniform terrains

    Directory of Open Access Journals (Sweden)

    Mirkov Nikola S.

    2016-01-01

    Full Text Available In this paper we validate an improved finite volume approximation of Reynolds Averaged Navier-Stokes equations for simulation of wind flows in body-fitted grids generated by algebraic extrusion from digital terrain elevation data, proposed in N. Mirkov et. al. J. Comput. Phys. 287, 18-45(2015, [1]. The approach is based on second-order accurate finite volume method with collocated variable arrangement and pressure-velocity coupling trough SIMPLE algorithm. The main objective is the attenuation of spurious pressure field oscillations in regions with discontinuity in grid line slopes, as encountered in grids representing highly non-uniform terrains. Moreover, the approach relaxes the need for grid generation based on elliptic PDEs or grid smoothing by applying fixed point iterations (i.e. Gauss-Seidel to initial grid node positions resulting from algebraic grid generators. Drawbacks of previous approaches which ignored treatment of finite volume grid cell cases with intersection point offset in non-orthogonality corrections are removed. Application to real-life wind farm project at Dobrič (Srvljig, Serbia is used to assess the effectiveness of the method. The results validate the view in which accurate discretization of governing equations play more important role than the choice of turbulence modelling closures. [Projekat Ministarstva nauke Republike Srbije, br. TR-33036

  9. Mixed Convection Boundary Layer Stagnation-Point Flow of a Jeffery Fluid Past a Permeable Vertical Flat Plate

    Science.gov (United States)

    Rahman, Mohammad M.; Ioan, Pop

    2014-12-01

    This paper analyzes the combined effects of buoyancy force, mass flux, and variable surface temperature on the stagnation point flow and heat transfer due to a Jeffery fluid over a vertical surface. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and then solved numerically using the function bvp4c from computer algebra software Matlab. Numerical results are obtained for skin friction coefficient, Nusselt number as well as dimensionless velocity and temperature profiles for various values of the controlling parameters namely mixed convection parameter λ, mass flux parameter s, elastic parameter (Deborah number) γ, and the ratio of relaxation and retardation time parameter λ1. The results indicate that dual solutions exist in a certain range of the mixed convection and mass flux parameters. In order to establish the physically realizable of these solutions, a stability analysis has also been performed. The results indicate that mixed convection and mass flux significantly affects the nature of the solutions, skin friction, and Nusselt number of a Jeffery fluid.

  10. Heat Generation/Absorption Effects in a Boundary Layer Stretched Flow of Maxwell Nanofluid: Analytic and Numeric Solutions.

    Science.gov (United States)

    Awais, Muhammad; Hayat, Tasawar; Irum, Sania; Alsaedi, Ahmed

    2015-01-01

    Analysis has been done to investigate the heat generation/absorption effects in a steady flow of non-Newtonian nanofluid over a surface which is stretching linearly in its own plane. An upper convected Maxwell model (UCM) has been utilized as the non-Newtonian fluid model in view of the fact that it can predict relaxation time phenomenon which the Newtonian model cannot. Behavior of the relaxations phenomenon has been presented in terms of Deborah number. Transport phenomenon with convective cooling process has been analyzed. Brownian motion "Db" and thermophoresis effects "Dt" occur in the transport equations. The momentum, energy and nanoparticle concentration profiles are examined with respect to the involved rheological parameters namely the Deborah number, source/sink parameter, the Brownian motion parameters, thermophoresis parameter and Biot number. Both numerical and analytic solutions are presented and found in nice agreement. Comparison with the published data is also made to ensure the validity. Stream lines for Maxwell and Newtonian fluid models are presented in the analysis.

  11. Stabilization of boundary layer streaks by plasma actuators

    International Nuclear Information System (INIS)

    A flow's transition from laminar to turbulent leads to increased levels of skin friction. In recent years, dielectric barrier discharge actuators have been shown to be able to delay the onset of turbulence in boundary layers. While the laminar to turbulent transition process can be initiated by several different instability mechanisms, so far, only stabilization of the Tollmien–Schlichting path to transition has received significant attention, leaving the stabilization of other transition paths using these actuators less explored. To fill that void, a bi-global stability analysis is used here to examine the stabilization of boundary layer streaks in a laminar boundary layer. These streaks, which are important to both transient and by-pass instability mechanisms, are damped by the addition of a flow-wise oriented plasma body force to the boundary layer. Depending on the magnitude of the plasma actuation, this damping can be up to 25% of the perturbation's kinetic energy. The damping mechanism appears to be due to highly localized effects in the immediate vicinity of the body force, and when examined using a linearized Reynolds-averaged Navier–Stokes energy balance, indicate negative production of the perturbation's kinetic energy. Parametric studies of the stabilization have also been performed, varying the magnitude of the plasma actuator's body force and the spanwise wavenumber of the actuation. Based on these parametric studies, the damping of the boundary layer streaks appears to be linear with respect to the total amount of body force applied to the flow. (paper)

  12. Characterization of internal boundary layer capacitors

    International Nuclear Information System (INIS)

    Internal boundary layer capacitors were characterized by scanning transmission electron microscopy and by microscale electrical measurements. Data are given for the chemical and physical characteristics of the individual grains and boundaries, and their associated electric and dielectric properties. Segregated internal boundary layers were identified with resistivities of 1012-1013 Ω-cm. Bulk apparent dielectric constants were 10,000-60,000. A model is proposed to explain the dielectric behavior in terms of an equivalent n-c-i-c-n representation of ceramic microstructure, which is substantiated by capacitance-voltage analysis

  13. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  14. Fluid flow enhances the effectiveness of toxin export by aquatic microorganisms: a first-passage perspective on microvilli and the concentration boundary layer

    CERN Document Server

    Licata, Nicholas A

    2014-01-01

    A central challenge for organisms during development is determining a means to efficiently export toxic molecules from inside the developing embryo. For aquatic microorganisms, the strategies employed should be robust with respect to the variable ocean environment and limit the chances that exported toxins are reabsorbed. As a result, the problem of toxin export is closely related to the physics of mass transport in a fluid. In this paper we consider a model first-passage problem for the uptake of exported toxins by a spherical embryo. By considering how macroscale fluid turbulence manifests itself on the microscale of the embryo, we determine that fluid flow enhances the effectiveness of toxin export as compared to the case of diffusion-limited transport. In the regime of large P\\'eclet number, a perturbative solution of the advection-diffusion equation reveals that a concentration boundary layer forms at the surface of the embryo. The model results suggest a functional role for cell surface roughness in the...

  15. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    The present study covers both a numerical and experimental investigation of the processes in the oscillatory boundary layer. In the first part a direct numerical simulation (DNS) is conducted to study the vertical pressure gradient, and its role in relation to laminar to turbulent transition...... and its role in the fully turbulent boundary layer. The pressure in the flow is obtained from the flow fields of the oscillatory boundary layer. What differs, the vertical pressure gradient, from other turbulent quantities, like e.g. velocity fluctuations is that it can detect newly generated turbulence....... This is in contrast to velocity fluctuations that are diffusive, so they can also contain residual turbulence from the previous half cycle until they are dissipated. Furthermore, the magnitude of the mean value of conditionally averaged vertical pressure gradient (for −∂p∗/∂x∗ 2 > 0) is compared to the submerged...

  16. On the interaction between turbulence grids and boundary layers

    Directory of Open Access Journals (Sweden)

    Irps Thomas

    2016-01-01

    Full Text Available Turbulence grids are widely used in wind tunnels to produce representative turbulence levels when testing aerodynamic phenomena around models. Although the purpose of the grid is to introduce a desired turbulence level in the freestream flow, the wall boundary layers of the tunnel are subjected to modification due to the presence of such grids. This could have major implications to the flow around the models to be tested and hence there is a need to further understand this interaction. The study described in this paper examines wind tunnel wall boundary layer modification by turbulence grids of different mesh sizes and porosities to understand the effect of these parameters on such interaction. Experimental results are presented in the form of pressure loss coefficients, boundary layer velocity profiles and the statistics of turbulence modification.

  17. Coherent structures in wave boundary layers. Part 2. Solitary motion

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Jensen, Palle Martin; Sørensen, Lone B.;

    2010-01-01

    in an oscillating water tunnel. Two kinds of measurements were made: bed shear stress measurements and velocity measurements. The experiments show that the solitary-motion boundary layer experiences three kinds of flow regimes as the Reynolds number is increased: (i) laminar regime; (ii) laminar regime where...... the boundary-layer flow experiences a regular array of vortex tubes near the bed over a short period of time during the deceleration stage; and (iii) transitional regime characterized with turbulent spots, revealed by single/multiple, or, sometimes, quite dense spikes in the bed shear stress traces....... Supplementary synchronized flow visualization tests confirmed the presence of the previously mentioned flow features. Information related to flow resistance are also given in the paper....

  18. Boundary Layer Cloudiness Parameterizations Using ARM Observations

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Albrecht

    2004-09-15

    This study used DOE ARM data and facilities to: (1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, (2) develop a scientific basis for understanding the processes responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and (3) evaluate cumulus cloud characteristics retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: (1) develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, (2) evaluate the capability and limitations of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low- signal-to-noise conditions associated with weak no n-precipitating clouds, (3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and (4) retrieve updraft and downdraft structures under precipitating conditions.

  19. Boundary-layer control by electric fields A feasibility study

    CERN Document Server

    Mendes, R V

    1998-01-01

    A problem of great concern in aviation and submarine propulsion is the control of the boundary layer and, in particular, the methods to extend the laminar region as a means to decrease noise and fuel consumption. In this paper we study the flow of air along an airfoil when a layer of ionized gas and a longitudinal electric field are created in the boundary layer region. By deriving scaling solutions and more accurate numerical solutions we discuss the possibility of achieving significant boundary layer control for realistic physical parameters. Practical design formulas and criteria are obtained. We also discuss the perspectives for active control of the laminar-to-turbulent transition fluctuations by electromagnetic field modulation.

  20. Boundary Layer on a Moving Wall with Suction and Injection

    Institute of Scientific and Technical Information of China (English)

    Anuar Ishak; Roslinda Nazar; Ioan Pop

    2007-01-01

    @@ We investigate the boundary-layer flow on a moving permeable plate parallel to a moving stream. The governing equations are solved numerically by a finite-difference method. Dual solutions are found to exist when the plate and the free stream move in the opposite directions.

  1. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  2. Nature, theory and modelling of geophysical convective planetary boundary layers

    Science.gov (United States)

    Zilitinkevich, Sergej

    2015-04-01

    Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in

  3. An experimental study on the aeromechanics and wake characteristics of a novel twin-rotor wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Wang, Zhenyu; Tian, Wei; Ozbay, Ahmet; Sharma, Anupam; Hu, Hui

    2016-09-01

    The aeromechanic performance and wake characteristics of a novel twin-rotor wind turbine (TRWT) design, which has an extra set of smaller, auxiliary rotor blades appended in front of the main rotor, was evaluated experimentally, in comparison with those of a conventional single-rotor wind turbine (SRWT) design. The comparative study was performed in a large-scale wind tunnel with scaled TRWT and SRWT models mounted in the same incoming turbulent boundary layer flow. In addition to quantifying power outputs and the dynamic wind loadings acting on the model turbines, the wake characteristics behind the model turbines were also measured by using a particle image velocimetry system and a Cobra anemometry probe. The measurement results reveal that, while the TRWT design is capable of harnessing more wind energy from the same incoming airflow by reducing the roots losses incurred in the region near the roots of the main rotor blades, it also cause much greater dynamic wind loadings acting on the TRWT model and higher velocity deficits in the near wake behind the TRWT model, in comparison with those of the SRWT case. Due to the existence of the auxiliary rotor, more complex vortex structures were found to be generated in the wake behind the TRWT model, which greatly enhanced the turbulent mixing in the turbine wake, and caused a much faster recovery of the velocity deficits in the turbine far wake. As a result, the TRWT design was also found to enable the same downstream turbine to generate more power when sited in the wake behind the TRWT model than that in the SRWT wake, i.e., by mitigating wake losses in typical wind farm settings.

  4. Non-Equilibrium Effects on Hypersonic Turbulent Boundary Layers

    Science.gov (United States)

    Kim, Pilbum

    Understanding non-equilibrium effects of hypersonic turbulent boundary layers is essential in order to build cost efficient and reliable hypersonic vehicles. It is well known that non-equilibrium effects on the boundary layers are notable, but our understanding of the effects are limited. The overall goal of this study is to improve the understanding of non-equilibrium effects on hypersonic turbulent boundary layers. A new code has been developed for direct numerical simulations of spatially developing hypersonic turbulent boundary layers over a flat plate with finite-rate reactions. A fifth-order hybrid weighted essentially non-oscillatory scheme with a low dissipation finite-difference scheme is utilized in order to capture stiff gradients while resolving small motions in turbulent boundary layers. The code has been validated by qualitative and quantitative comparisons of two different simulations of a non-equilibrium flow and a spatially developing turbulent boundary layer. With the validated code, direct numerical simulations of four different hypersonic turbulent boundary layers, perfect gas and non-equilibrium flows of pure oxygen and nitrogen, have been performed. In order to rule out uncertainties in comparisons, the same inlet conditions are imposed for each species, and then mean and turbulence statistics as well as near-wall turbulence structures are compared at a downstream location. Based on those comparisons, it is shown that there is no direct energy exchanges between internal and turbulent kinetic energies due to thermal and chemical non-equilibrium processes in the flow field. Instead, these non-equilibria affect turbulent boundary layers by changing the temperature without changing the main characteristics of near-wall turbulence structures. This change in the temperature induces the changes in the density and viscosity and the mean flow fields are then adjusted to satisfy the conservation laws. The perturbation fields are modified according to

  5. Pressure gradient effect in natural convection boundary layers

    OpenAIRE

    Higuera Antón, Francisco; Liñán Martínez, Amable

    1993-01-01

    The high Grashof number laminar natural convection flow around the lower stagnation point of a symmetric bowl- shaped heated body is analyzed. A region is identified where the direct effect on the flow of the component of the buoyancy force tangential to the body surface is comparable to the indirect effect of the component normal to the surface, which acts through the gradient of the nonuniform pressure that it induces in the boundary layer. Analysis of this region provides a description ...

  6. Turbulent Boundary Layer at Large Re

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2016-03-01

    Full Text Available The fluids as deformable bodies without own shape, when starting from rest, experience interactions between the flowing fluid and the physical surfaces marking the bounds of flow. These interactions are a kind of impact process where there is a momentum exchange between two colliding bodies, i.e. the flow and its boundary surfaces. Within a short time of contact a post-impact shear flow occurs where two main effects are triggered off by the flow-induced collision: dramatic redistribution of the momentum and the boundary vorticity followed by the shear stress/viscosity change in the microstructure of the fluid which at the beginning behaves as linear reactive medium and latter as nonlinear dispersive medium. The disturbance of the starting flow induces the entanglement of the wall-bounded flow in the form of point-vortices or concentrated vorticity balls whence waves are emitted and propagated through flow field. The paper develops a wave mechanism for the transport of the concentrated boundary vorticity, directly related to the fascinating turbulence phenomenon, using the torsion concept of vorticity filaments associated with the hypothesis of thixotropic/nonlinear viscous fluid.

  7. Studies of stability of blade cascade suction surface boundary layer

    Institute of Scientific and Technical Information of China (English)

    DONG Xue-zhi; YAN Pei-gang; HAN Wan-jin

    2007-01-01

    Compressible boundary layers stability on blade cascade suction surface was discussed by wind tunnel experiment and numerical solution. Three dimensional disturbance wave Parabolized Stability Equations(PSE) of orthogonal Curvilinear Coordinates in compressible flow was deducted. The surface pressure of blade in wind tunnel experiment was measured. The Falkner-Skan equation was solved under the boundary conditions of experiment result, and velocity, pressure and temperature of average flow were obtained. Substituted this result for discretization of the PSE Eigenvalue Problem, the stability problem can be solved.

  8. DNS of stratified spatially-developing turbulent thermal boundary layers

    Science.gov (United States)

    Araya, Guillermo; Castillo, Luciano; Jansen, Kenneth

    2012-11-01

    Direct numerical simulations (DNS) of spatially-developing turbulent thermal boundary layers under stratification are performed. It is well known that the transport phenomena of the flow is significantly affected by buoyancy, particularly in urban environments where stable and unstable atmospheric boundary layers are encountered. In the present investigation, the Dynamic Multi-scale approach by Araya et al. (JFM, 670, 2011) for turbulent inflow generation is extended to thermally stratified boundary layers. Furthermore, the proposed Dynamic Multi-scale approach is based on the original rescaling-recycling method by Lund et al. (1998). The two major improvements are: (i) the utilization of two different scaling laws in the inner and outer parts of the boundary layer to better absorb external conditions such as inlet Reynolds numbers, streamwise pressure gradients, buoyancy effects, etc., (ii) the implementation of a Dynamic approach to compute scaling parameters from the flow solution without the need of empirical correlations as in Lund et al. (1998). Numerical results are shown for ZPG flows at high momentum thickness Reynolds numbers (~ 3,000) and a comparison with experimental data is also carried out.

  9. Linear Stability of the boundary layer under a solitary wave

    CERN Document Server

    Verschaeve, Joris C G

    2013-01-01

    A theoretical and numerical analysis of the linear stability of the boundary layer flow under a solitary wave is presented. In the present work, the nonlinear boundary layer equations are solved. The result is compared to the linear boundary layer solution in Liu et al. (2007) reveal- ing that both profiles are disagreeing more than has been found before. A change of frame of reference has been used to allow for a classical linear stability analysis without the need to redefine the notion of stability for this otherwise unsteady flow. For the linear stability the Orr-Sommerfeld equation and the parabolic stability equation were used. The results are compared to key results of inviscid stability theory and validated by means of a direct numerical simulation using a Legendre-Galerkin spectral ele- ment Navier-Stokes solver. Special care has been taken to ensure that the numerical results are valid. Linear stability predicts that the boundary layer flow is unstable for the entire parameter range considered, conf...

  10. Analysis on Boundary Layer Flow Stability of Hypersonic Wedge%高超声速楔面边界层流动稳定性分析

    Institute of Scientific and Technical Information of China (English)

    张红军; 袁湘江; 沈清

    2012-01-01

    To analyze the effect of leading edge bluntness on two dimensional hypersonic inlet boundary layer transition for the abstract wedge configurations, the linear stability analysis on boundary layer of wedges ,with leading edge radius R = 0 and R = 0.5mm,respectively,was carried out at the condition of wind tunnel test. The boundary layer instability station, the wave number and increasing rate of the most unstable wave were obtained with R = 0 and R = 0. 5mm respectively. It has been found that the instability station of wedges with leading edge radius R = O. 5mm is far greater than that with leading edge radius R = 0. This shows that the bluntness effect of leading edge has an observable impact on wedge boundary layer unsteady characteris- tic.%为分析前缘钝化对高超声速二元进气道压缩面边界层转捩的影响,针对抽象出的楔面外形,在风洞来流条件下,应用线性稳定性理论(Linear Steady Theory)分析了前缘钝化半径R=0及R=0.5mm的楔面边界层流动稳定性,得到各自前缘构形的边界层失稳位置及最不稳定波的波数和增长率。研究发现,前缘钝化半径R=0.5mm的楔面边界层失稳位置远远大于前缘钝化半径R=0的楔面边界层失稳位置,表明前缘钝化对楔面边界层失稳特性具有显著影响。

  11. Particle motion inside Ekman and Bödewadt boundary layers

    Science.gov (United States)

    Duran Matute, Matias; van der Linden, Steven; van Heijst, Gertjan

    2014-11-01

    We present results from both laboratory experiments and numerical simulations of the motion of heavy particles inside Ekman and Bödewadt boundary layers. The particles are initially at rest on the bottom of a rotating cylinder filled with water and with its axis parallel to the axis of rotation. The particles are set into motion by suddenly diminishing the rotation rate and the subsequent creation of a swirl flow with the boundary layer above the bottom plate. We consider both spherical and non-spherical particles with their size of the same order as the boundary layer thickness. It was found that the particle trajectories define a clear logarithmic spiral with its shape depending on the different parameters of the problem. Numerical simulations show good agreement with experiments and help explain the motion of the particles. This research is funded by NWO (the Netherlands) through the VENI Grant 863.13.022.

  12. Localized travelling waves in the asymptotic suction boundary layer

    CERN Document Server

    Kreilos, Tobias; Schneider, Tobias M

    2016-01-01

    We present two spanwise-localized travelling wave solutions in the asymptotic suction boundary layer, obtained by continuation of solutions of plane Couette flow. One of the solutions has the vortical structures located close to the wall, similar to spanwise-localized edge states previously found for this system. The vortical structures of the second solution are located in the free stream far above the laminar boundary layer and are supported by a secondary shear gradient that is created by a large-scale low-speed streak. The dynamically relevant eigenmodes of this solution are concentrated in the free stream, and the departure into turbulence from this solution evolves in the free stream towards the walls. For invariant solutions in free-stream turbulence, this solution thus shows that that the source of energy of the vortical structures can be a dynamical structure of the solution itself, instead of the laminar boundary layer.

  13. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    Science.gov (United States)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  14. Astrophysical Boundary Layers: A New Picture

    Science.gov (United States)

    Belyaev, Mikhail; Rafikov, Roman R.; Mclellan Stone, James

    2016-04-01

    Accretion is a ubiquitous process in astrophysics. In cases when the magnetic field is not too strong and a disk is formed, accretion can proceed through the mid plane all the way to the surface of the central compact object. Unless that compact object is a black hole, a boundary layer will be formed where the accretion disk touches its surfaces. The boundary layer is both dynamically and observationally significant as up to half of the accretion energy is dissipated there.Using a combination of analytical theory and computer simulations we show that angular momentum transport and accretion in the boundary layer is mediated by waves. This breaks with the standard astrophysical paradigm of an anomalous turbulent viscosity that drives accretion. However, wave-mediated angular momentum transport is a natural consequence of "sonic instability." The sonic instability, which we describe analytically and observe in our simulations, is a close cousin of the Papaloizou-Pringle instability. However, it is very vigorous in the boundary layer due to the immense radial velocity shear present at the equator.Our results are applicable to accreting neutron stars, white dwarfs, protostars, and protoplanets.

  15. Highly buoyant bent-over plumes in a boundary layer

    Science.gov (United States)

    Tohidi, Ali; Kaye, Nigel B.

    2016-04-01

    Highly buoyant plumes, such as wildfire plumes, in low to moderate wind speeds have initial trajectories that are steeper than many industrial waste plumes. They will rise further into the atmosphere before bending significantly. In such cases the plume's trajectory will be influenced by the vertical variation in horizontal velocity of the atmospheric boundary layer. This paper examined the behavior of a plume in an unstratified environment with a power-law ambient velocity profile. Examination of previously published experimental measurements of plume trajectory show that inclusion of the boundary layer velocity profile in the plume model often provides better predictions of the plume trajectory compared to algebraic expressions developed for uniform flow plumes. However, there are many cases in which uniform velocity profile algebraic expressions are as good as boundary layer models. It is shown that it is only important to model the role of the atmospheric boundary layer velocity profile in cases where either the momentum length (square root of source momentum flux divided by the reference wind speed) or buoyancy length (buoyancy flux divided by the reference wind speed cubed) is significantly greater than the plume release height within the boundary layer. This criteria is rarely met with industrial waste plumes, but it is important in modeling wildfire plumes.

  16. Controls on boundary layer ventilation: Boundary layer processes and large-scale dynamics

    Science.gov (United States)

    Sinclair, V. A.; Gray, S. L.; Belcher, S. E.

    2010-06-01

    Midlatitude cyclones are important contributors to boundary layer ventilation. However, it is uncertain how efficient such systems are at transporting pollutants out of the boundary layer, and variations between cyclones are unexplained. In this study 15 idealized baroclinic life cycles, with a passive tracer included, are simulated to identify the relative importance of two transport processes: horizontal divergence and convergence within the boundary layer and large-scale advection by the warm conveyor belt. Results show that the amount of ventilation is insensitive to surface drag over a realistic range of values. This indicates that although boundary layer processes are necessary for ventilation they do not control the magnitude of ventilation. A diagnostic for the mass flux out of the boundary layer has been developed to identify the synoptic-scale variables controlling the strength of ascent in the warm conveyor belt. A very high level of correlation (R2 values exceeding 0.98) is found between the diagnostic and the actual mass flux computed from the simulations. This demonstrates that the large-scale dynamics control the amount of ventilation, and the efficiency of midlatitude cyclones to ventilate the boundary layer can be estimated using the new mass flux diagnostic. We conclude that meteorological analyses, such as ERA-40, are sufficient to quantify boundary layer ventilation by the large-scale dynamics.

  17. The viscous boundary layer at the free surface of a rotating baroclinic fluid

    OpenAIRE

    Hide, R.

    2011-01-01

    The properties of the viscous boundary layer at the free surface of a rotating baroclinic fluid are analyzed and compared with those of the well-known Ekman boundary layer at a rigid surface. Although the ageostrophic components of the flow in the free surface boundary layer are weaker than in the Ekman layer, there are problems of practical interest in which their effects are not negligible.DOI: 10.1111/j.2153-3490.1964.tb00188.x

  18. Wind and boundary layers in Rayleigh-Benard convection. Part 2: boundary layer character and scaling

    CERN Document Server

    van Reeuwijk, Maarten; Hanjalic, Kemo

    2007-01-01

    The effect of the wind of Rayleigh-Benard convection on the boundary layers is studied by direct numerical simulation of an L/H=4 aspect-ratio domain with periodic side boundary conditions for Ra={10^5, 10^6, 10^7} and Pr=1. It is shown that the kinetic boundary layers on the top- and bottom plate have some features of both laminar and turbulent boundary layers. A continuous spectrum, as well as significant forcing due to Reynolds stresses indicates undoubtedly a turbulent character, whereas the classical integral boundary layer parameters -- the shape factor and friction factor (the latter is shown to be dominated by the pressure gradient) -- scale with Reynolds number more akin to laminar boundary layers. This apparent dual behavior is caused by the large influence of plumes impinging onto and detaching from the boundary layer. The plume-generated Reynolds stresses have a negligible effect on the friction factor at the Rayleigh numbers we consider, which indicates that they are passive with respect to momen...

  19. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    Science.gov (United States)

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  20. DNS of compressible turbulent boundary layer around a sharp cone

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20° cone angle (or 10° half-cone angle) is performed by using the mixed seventh- order up-wind biased finite difference scheme and sixth-order central difference scheme. The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch. The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer. Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow. The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations. The turbulent energy equation in the cylindrical coordinate is given and turbulent en-ergy budget is studied. The computed results show that the effect of circumferen-tial curvature on turbulence characteristics is not obvious.

  1. Boundary-Layer Wind Structure in a Landfalling Tropical Cyclone

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components of horizontal wind in the tropical cyclone boundary layer at landfall. For a steady tropical cyclone on a straight coastline at landfall, the magnitude of the radial component is greater in the offshoreflow side and the tangential component is greater over the sea, slightly offshore, therefore the greater total wind speed occurs in the offshore-flow side over the sea. The budget analysis suggests that: (1) a greater surface friction over land produces a greater inflow and the nonlinear effect advects the maximum inflow downstream, and (2) a smaller surface friction over the sea makes the decrease of the tangential wind component less than that over land. Moreover, the boundary layer wind structures in a tropical cyclone are related to the locations of the tropical cyclone relative to the coastline due to the different surface frictions. During tropical cyclone landfall, the impact of rough terrain on the cyclone increases, so the magnitude of the radial component of wind speed increases in the offshore-flow side and the tangential component outside the radius of maximum wind speed decreases gradually.

  2. Passive Control of Supersonic Rectangular Jets through Boundary Layer Swirl

    Science.gov (United States)

    Han, Sang Yeop; Taghavi, Ray R.; Farokhi, Saeed

    2013-06-01

    Mixing characteristics of under-expanded supersonic jets emerging from plane and notched rectangular nozzles are computationally studied using nozzle exit boundary layer swirl as a mean of passive flow control. The coupling of the rectangular jet instability modes, such as flapping, and the swirl is investigated. A three-dimensional unsteady Reynolds-Averaged Navier-Stokes (RANS) code with shock adaptive grids is utilized. For plane rectangular nozzle with boundary layer swirl, the flapping and spanwise oscillations are captured in the jet's small and large dimensions at twice the frequencies of the nozzles without swirl. A symmetrical oscillatory mode is also observed in the jet with double the frequency of spanwise oscillation mode. For the notched rectangular nozzle with boundary layer swirl, the flapping oscillation in the small jet dimension and the spanwise oscillation in the large jet dimension are observed at the same frequency as those without boundary layer swirl. The mass flow rates in jets at 11 and 8 nozzle heights downstream of the nozzles increased by nearly 25% and 41% for the plane and notched rectangular nozzles respectively, due to swirl. The axial gross thrust penalty due to induced swirl was 5.1% for the plane and 4.9% for the notched rectangular nozzle.

  3. Hair receptor sensitivity to changes in laminar boundary layer shape

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, B T, E-mail: btdickinson@lifetime.oregonstate.ed [Air Force Research Laboratory, Munitions Directorate, Eglin Air Force Base, FL 32542 (United States)

    2010-03-15

    Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.

  4. Hair receptor sensitivity to changes in laminar boundary layer shape.

    Science.gov (United States)

    Dickinson, B T

    2010-03-01

    Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.

  5. On the Effects of Surface Roughness on Boundary Layer Transition

    Science.gov (United States)

    Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack

    2009-01-01

    Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.

  6. DNS of compressible turbulent boundary layer around a sharp cone

    Institute of Scientific and Technical Information of China (English)

    LI XinLiang; FU DeXun; MA YanWen

    2008-01-01

    Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20° cone angle (or 10° half-cone angle) is performed by using the mixed seventh-order up-wind biased finite difference scheme and sixth-order central difference scheme.The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch.The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer,Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow.The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations,The turbulent energy equation in the cylindrical coordinate is given and turbulent en-ergy budget is studied.The computed results show that the effect of circumferen-tial curvature on turbulence characteristics is not obvious.

  7. Numerical Modeling of the Evolving Stable Boundary Layer

    Science.gov (United States)

    Sorbjan, Z.

    2013-12-01

    A single-column model of the evolving stable boundary layer is tested for the consistency of turbulence parameterization, self-similar properties of the flow, and effects of ambient forcing. The turbulence closure of the model is based on the K-theory approach, with stability functions based on empirical data, and a semi-empirical form of the mixing length. The model has one internal, governing stability parameter, the Richardson number Ri, which dynamically adjusts to the boundary conditions and to external forcing. Model results, expressed in terms of local similarity scales, are universal functions of the Richardson number, i.e. they are satisfied in the entire stable boundary layer, for all instants of time, and all kinds of external forcing. Based on similarity expression, a realizability condition is derived for the minimum turbulent heat flux in the stable boundary layer. Numerical experiments show that the development of 'horse-shoe' shaped, 'fixed-elevation' wind hodographs in the interior of the stable boundary layer are solely caused by effects imposed by surface thermal forcing, and are not related to the inertial oscillation mechanism.

  8. New Theories on Boundary Layer Transition and Turbulence Formation

    Directory of Open Access Journals (Sweden)

    Chaoqun Liu

    2012-01-01

    Full Text Available This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.

  9. BUBBLE - an urban boundary layer meteorology project

    DEFF Research Database (Denmark)

    Rotach, M.W.; Vogt, R.; Bernhofer, C.;

    2005-01-01

    The Basel urban Boundary Layer Experiment (BUBBLE) was a year-long experimental effort to investigate in detail the boundary layer structure in the City of Basel, Switzerland. At several sites over different surface types (urban, sub-urban and rural reference) towers up to at least twice the main...... ground truth, as well as on urban turbulence and profiling (sodar, RASS, tethered balloon) were performed. Also tracer experiments with near-roof-level release and sampling were performed. In parallel to the experimental activities within BUBBLE, a meso-scale numerical atmospheric model, which contains...... a surface exchange parameterization, especially designed for urban areas was evaluated and further developed. Finally, the area of the full-scale tracer experiment which also contains several sites of other special projects during the IOP (street canyon energetics, satellite ground truth) is modeled using...

  10. Instabilities and transition in boundary layers

    Indian Academy of Sciences (India)

    N Vinod; Rama Govindarajan

    2005-03-01

    Some recent developments in boundary layer instabilities and transition are reviewed. Background disturbance levels determine the instability mechanism that ultimately leads to turbulence. At low noise levels, the traditional Tollmien–Schlichting route is followed, while at high levels, a `by-pass' route is more likely. Our recent work shows that spot birth is related to the pattern of secondary instability in either route.

  11. Submarine design optimization using boundary layer control

    OpenAIRE

    Christopher L Warren

    1997-01-01

    Several hull designs are studied with parametric based volume and area estimates to obtain preliminary hull forms. The volume and area study includes the effects of technologies which manifest themselves in the parametric study through stack length requirements. Subsequently, the hull forms are studied using a Reynolds Averaged Navier Stokes analysis coupled with a vortex lattice propeller design code. Optimization is done through boundary layer control analysis and through studies on the eff...

  12. Coupled wake boundary layer model of windfarms

    Science.gov (United States)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  13. Boundary layer emission in luminous LMXBs

    CERN Document Server

    Gilfanov, M

    2005-01-01

    We show that aperiodic and quasiperiodic variability of bright LMXBs - atoll and Z- sources, on ~sec - msec time scales is caused primarily by variations of the boundary layer luminosity. The accretion disk emission is less variable on these time scales and its power density follows 1/f law, contributing to observed flux variation at low frequencies and low energies only. The kHz QPOs have the same origin as variability at lower frequencies - independent of the nature of the "clock", the actual luminosity modulation takes place on the NS surface. The boundary layer spectrum remains nearly constant during luminosity variations and can be represented by the Fourier frequency resolved spectrum. In the range of Mdot~(0.1-1)*Mdot_Edd it depends weakly on the global mass accretion rate and in the limit Mdot~Mdot_Edd is close to Wien spectrum with kT~2.4 keV. Its independence on the Mdot lends support to the suggestion by Inogamov & Sunyaev (1999) that the boundary layer is radiation pressure supported. Based on...

  14. Numerical Simulation of Magnetohydrodynamic Forced Convective Boundary Layer Flow past a Stretching/Shrinking Sheet Prescribed with Variable Heat Flux in the Presence of Heat Source and Constant Suction

    Directory of Open Access Journals (Sweden)

    S. P. Anjali Devi

    2014-01-01

    Full Text Available A study has been carried out on MHD boundary layer forced convection flow along a shrinking surface with variable heat flux in the presence of heat source. The flow is generated due to linear shrinking of the sheet and is influenced by uniform transverse magnetic field. The basic boundary layer momentum and heat transfer equations, which are nonlinear partial differential equations, are converted into nonlinear ordinary differential equations by means of similarity transformation. Numerical solution of the resulting boundary value problem is obtained using Nachtsheim Swigert shooting iteration scheme for the satisfaction of asymptotic boundary conditions along with the Fourth Order Runge Kutta method. The effects of suction parameter, magnetic parameter, Prandtl number, heat source parameter, stretching/shrinking parameter and heat flux parameter on velocity and temperature are shown in several plots. The results are in good agreement with the earlier published works under some limiting cases. Skin friction coefficient and wall temperature are also explored for typical values of the parameter involved in the study.

  15. A Spectral Relaxation Approach for Unsteady Boundary-Layer Flow and Heat Transfer of a Nanofluid over a Permeable Stretching/Shrinking Sheet

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2014-01-01

    Full Text Available This paper introduces two novel numerical algorithms for the efficient solution of coupled systems of nonlinear boundary value problems. The methods are benchmarked against existing methods by finding dual solutions of the highly nonlinear system of equations that model the flow of a viscoelastic liquid of Oldroyd-B type in a channel of infinite extent. The methods discussed here are the spectral relaxation method and spectral quasi-linearisation method. To verify the accuracy and efficiency of the proposed methods a comparative evaluation of the performance of the methods against established numerical techniques is given.

  16. Shear Capacity as Prognostic of Nocturnal Boundary Layer Regimes

    Science.gov (United States)

    van Hooijdonk, Ivo; Donda, Judith; Bosveld, Fred; Moene, Arnold; Clercx, Herman; van de Wiel, Bas

    2015-04-01

    After sunset the surface temperature can drop rapidly in some nights and may lead to ground frost. This sudden drop is closely related to the occurrence of fundamentally different behaviour of turbulence in the nocturnal boundary layer. Recent theoretical findings predict the appearance of two different regimes: the continuously turbulent (weakly stable) boundary layer and the relatively 'quiet' (very stable) boundary layer. Field observations from a large number of nights (approx. 4500 in total) are analysed using an ensemble averaging technique. The observations support the existence of these two fundamentally different regimes: weakly stable (turbulent) nights rapidly reach a steady state (within 2-3 hours). In contrast, very stable nights reach a steady state much later after a transition period (2-6 hours). During this period turbulence is weak and non-stationary. To characterise the regime a new parameter is introduced: the Shear Capacity. This parameter compares the actual shear after sunset with the minimum shear needed to sustain continuous turbulence. In turn, the minimum shear is dictated by the heat flux demand at the surface (net radiative cooling), so that the Shear Capacity combines flow information with knowledge on the boundary condition. It is shown that the Shear Capacity enables prediction of the flow regimes. The prognostic strength of this non-dimensional parameter appears to outperform the traditional ones like z/L and Ri as regime indicator.

  17. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    OpenAIRE

    Elena-Carmen Teleman; Radu Silion; Elena Axinte; Radu Pescaru

    2008-01-01

    The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence sca...

  18. An Analysis of the Characteristics of the Thermal Boundary Layer in Power Law Fluid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper presents a theoretical analysis of the heat transfer for the boundary layer flow on a continuous moving surface in power law fluid. The expressions of the thermal boundary layer thickness with the different heat conductivity coefficients are obtained according to the theory of the dimensional analysis of fluid dynamics and heat transfer. And the numerical results of CFD agree well with the proposed expressions. The estimate formulas can be successfully applied to giving the thermal boundary layer thickness.

  19. Manipulation of Turbulent Boundary Layers Using Synthetic Jets

    Science.gov (United States)

    Berger, Zachary; Gomit, Guillaume; Lavoie, Philippe; Ganapathisubramani, Bharath

    2015-11-01

    This work focuses on the application of active flow control, in the form of synthetic jet actuators, of turbulent boundary layers. An array of 2 synthetic jets are oriented in the spanwise direction and located approximately 2.7 meters downstream from the leading edge of a flat plate. Actuation is applied perpendicular to the surface of the flat plate with varying blowing ratios and reduced frequencies (open-loop). Two-component large window particle image velocimetry (PIV) was performed at the University of Southampton, in the streamwise-wall-normal plane. Complementary stereo PIV measurements were performed at the University of Toronto Institute for Aerospace Studies (UTIAS), in the spanwise-wall-normal plane. The freestream Reynolds number is 3x104, based on the boundary layer thickness. The skin friction Reynolds number is 1,200 based on the skin friction velocity. The experiments at Southampton allow for the observation of the control effects as the flow propagates downstream. The experiments at UTIAS allow for the observation of the streamwise vorticity induced from the actuation. Overall the two experiments provide a 3D representation of the flow field with respect to actuation effects. The current work focuses on the comparison of the two experiments, as well as the effects of varying blowing ratios and reduced frequencies on the turbulent boundary layer. Funded Supported by Airbus.

  20. A parametric study of adverse pressure gradient turbulent boundary layers

    International Nuclear Information System (INIS)

    There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure gradients and this is confounded by the large parameter space that may affect these flows. While there have been many valuable investigations conducted within this parameter space, there are still insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gradient parameter, β, the Reynolds number and the acceleration parameter, K. The statistics analyzed are limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there appears to be no measurable logarithmic region in these cases. It is also found that the large-scale motions scaling with outer variables are energised by the pressure gradient. These increasingly strong large-scale motions are found to be the dominant contributor to the increase in turbulence intensity (scaled with friction velocity) with increasing pressure gradient across the boundary layer.

  1. A global boundary-layer height climatology

    Energy Technology Data Exchange (ETDEWEB)

    Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)

    1997-10-01

    In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)

  2. Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Re-attachment along the Suction Surface of a Low Pressure Turbine Blade

    Science.gov (United States)

    Ozturk, B.; Schobeiri, M. T.; Ashpis, David E.

    2005-01-01

    The paper experimentally studies the effects of periodic unsteady wake flow and different Reynolds numbers on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University. The experiments were carried out at Reynolds numbers of 110,000 and 150,000 (based on suction surface length and exit velocity). One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The reduced frequencies chosen cover the operating range of LP turbines. In addition to the unsteady boundary layer measurements, surface pressure measurements were performed. The inception, onset, and the extent of the separation bubble information collected from the pressure measurements were compared with the hot wire measurements. The results presented in ensemble-averaged, and the contour plot forms help to understand the physics of the separation phenomenon under periodic unsteady wake flow and different Reynolds number. It was found that the suction surface displayed a strong separation bubble for these three different reduced frequencies. For each condition, the locations defining the separation bubble were determined carefully analyzing and examining the pressure and mean velocity profile data. The location of the boundary layer separation was dependent of the Reynolds number. It is observed that starting point of the separation bubble and the re-attachment point move further downstream by increasing Reynolds number from 110,000 to 150,000. Also, the size of the separation bubble is smaller when compared to that for Re=110,000.

  3. Mixed convective boundary layer flow over a vertical wedge embedded in a porous medium saturated with a nanofluid: Natural Convection Dominated Regime

    Directory of Open Access Journals (Sweden)

    Chamkha Ali

    2011-01-01

    Full Text Available Abstract A boundary layer analysis is presented for the mixed convection past a vertical wedge in a porous medium saturated with a nano fluid. The governing partial differential equations are transformed into a set of non-similar equations and solved numerically by an efficient, implicit, iterative, finite-difference method. A parametric study illustrating the influence of various physical parameters is performed. Numerical results for the velocity, temperature, and nanoparticles volume fraction profiles, as well as the friction factor, surface heat and mass transfer rates have been presented for parametric variations of the buoyancy ratio parameter Nr, Brownian motion parameter Nb, thermophoresis parameter Nt, and Lewis number Le. The dependency of the friction factor, surface heat transfer rate (Nusselt number, and mass transfer rate (Sherwood number on these parameters has been discussed.

  4. Mixed convective boundary layer flow over a vertical wedge embedded in a porous medium saturated with a nanofluid: Natural Convection Dominated Regime.

    Science.gov (United States)

    Gorla, Rama Subba Reddy; Chamkha, Ali Jawad; Rashad, Ahmed Mohamed

    2011-01-01

    A boundary layer analysis is presented for the mixed convection past a vertical wedge in a porous medium saturated with a nano fluid. The governing partial differential equations are transformed into a set of non-similar equations and solved numerically by an efficient, implicit, iterative, finite-difference method. A parametric study illustrating the influence of various physical parameters is performed. Numerical results for the velocity, temperature, and nanoparticles volume fraction profiles, as well as the friction factor, surface heat and mass transfer rates have been presented for parametric variations of the buoyancy ratio parameter Nr, Brownian motion parameter Nb, thermophoresis parameter Nt, and Lewis number Le. The dependency of the friction factor, surface heat transfer rate (Nusselt number), and mass transfer rate (Sherwood number) on these parameters has been discussed.

  5. Control of Stationary Cross-Flow Modes in a Mach 3.5 Boundary Layer Using Patterned Passive and Active Roughness

    Science.gov (United States)

    Schuele, Chan Yong

    2011-01-01

    Spanwise-periodic roughness designed to excite selected wavelengths of stationary cross- ow modes was investigated in a 3-D boundary layer at Mach 3.5. The test model was a sharp-tipped 14deg right-circular cone. The model and integrated sensor traversing system were placed in the Mach 3.5 Supersonic Low Disturbance Tunnel (SLDT) equipped with a "quiet design" nozzle at the NASA Langley Research Center. The model was oriented at a 4:2deg angle of attack to produce a mean cross-fl ow velocity component in the boundary layer over the cone. Five removable cone tips have been investigated. One has a smooth surface that is used to document the baseline ("natural") conditions. Two had minute (20 - 40 micron) "dimples" that are equally spaced around the circumference, at a streamwise location that is just upstream of the linear stability neutral growth branch for cross- ow modes. The azimuthal mode numbers of the dimpled tips were selected to either enhance the most amplified wave numbers, or to suppress the growth of the most amplified wave numbers. Two of the cone tips had an array of plasma streamwise vortex generators that were designed to simulate the disturbances produced by the passive patterned roughness. The results indicate that the stationary cross-fl ow modes were highly receptive to the patterned roughness of both passive and active types. The patterned passive roughness that was designed to suppress the growth of the most amplified modes had an azimuthal wavelength that was 66% smaller that that of the most amplified stationary cross- ow mode. This had the effect to increase the transition Reynolds number from 25% to 50% depending on the measurement technique. The application of the research is on turbulent transition control on swept wings of supersonic aircraft. The plasma-based roughness has the advantage over the passive roughness of being able to be adaptable to different conditions that would occur during a flight mission.

  6. Coherent vorticity extraction in turbulent boundary layers using orthogonal wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Khujadze, George; Oberlack, Martin [Chair of Fluid Dynamics, Technische Universitaet Darmstadt (Germany); Yen, Romain Nguyen van [Institut fuer Mathematik, Freie Universitaet Berlin (Germany); Schneider, Kai [M2P2-CNRS and CMI, Universite de Provence, Marseille (France); Farge, Marie, E-mail: khujadze@fdy.tu-darmstadt.de [LMD-IPSL-CNRS, Ecole Normale Superieure, Paris (France)

    2011-12-22

    Turbulent boundary layer data computed by direct numerical simulation are analyzed using orthogonal anisotropic wavelets. The flow fields, originally given on a Chebychev grid, are first interpolated on a locally refined dyadic grid. Then, they are decomposed using a wavelet basis, which accounts for the anisotropy of the flow by using different scales in the wall-normal direction and in the planes parallel to the wall. Thus the vorticity field is decomposed into coherent and incoherent contributions using thresholding of the wavelet coefficients. It is shown that less than 1% of the coefficients retain the coherent structures of the flow, while the majority of the coefficients corresponds to a structureless, i.e., noise-like background flow. Scale-and direction-dependent statistics in wavelet space quantify the flow properties at different wall distances.

  7. A wavenumber-frequency spectral model for atmospheric boundary layers

    International Nuclear Information System (INIS)

    Motivated by the need to characterize power fluctuations in wind farms, we study spatio-temporal correlations of a neutral atmospheric boundary layer in terms of the joint wavenumber-frequency spectrum of the streamwise velocity fluctuations. To this end, we perform a theoretical analysis of a simple advection model featuring the advection of small- scale velocity fluctuations by the mean flow and large-scale velocity fluctuations. The model is compared to data from large-eddy simulations (LES). We find that the model captures the trends observed in LES, specifically a Doppler shift of frequencies due to the mean flow as well as a Doppler broadening due to random sweeping effects

  8. Integral method for the calculation of three-dimensional, laminar and turbulent boundary layers

    Science.gov (United States)

    Stock, H. W.

    1978-01-01

    The method for turbulent flows is a further development of an existing method; profile families with two parameters and a lag entrainment method replace the simple entrainment method and power profiles with one parameter. The method for laminar flows is a new development. Moment of momentum equations were used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings were calculated. The influence of wing tapering on the boundary layer development was shown. The turbulent boundary layer for a revolution ellipsoid is calculated for 0 deg and 10 deg incidence angles.

  9. Marine boundary layer simulation and verification during BOBMEX-Pilot using NCMRWF model

    Indian Academy of Sciences (India)

    Swati Basu

    2000-06-01

    A global spectral model (T80L18) that is operational at NCMRWF is utilized to study the structure of the marine boundary layer over the Bay of Bengal during the BOBMEX-Pilot period. The vertical profiles of various meteorological parameters within the boundary layer are studied and verified against the available observations. The diurnal variation of various surface fields are also studied. The impact of non-local closure scheme for the boundary layer parameterisation is seen in simulation of the flow pattern as well as on the boundary layer structure over the oceanic region.

  10. Turbulent thermal boundary layers with temperature-dependent viscosity

    International Nuclear Information System (INIS)

    Highlights: • Turbulent thermal boundary layers with temperature-dependent viscosity are simulated. • Effect of temperature-dependent viscosity on the statistics of the scalar field. • An identity for the Stanton number is derived and analyzed. • Effect of temperature-dependent viscosity on the statistics of scalar transfer rate. • Modification of turbulent flow field leads to an enhanced scalar transfer rate. - Abstract: Direct numerical simulations (DNS) of turbulent boundary layers (TBLs) over isothermally heated walls were performed, and the influence of the wall-heating on the thermal boundary layers was investigated. The DNS adopt an empirical relation for the temperature-dependent viscosity of water. The Prandtl number therefore changes with temperature, while the Péclet number is constant. Two wall temperatures (Tw = 70 °C and 99 °C) were considered relative to T∞ = 30 °C, and a reference simulation of TBL with constant viscosity was also performed for comparison. In the variable viscosity flow, the mean and variance of the scalar, when normalized by the friction temperature deficit, decrease relative to the constant viscosity flow. A relation for the mean scalar which takes into account the variable viscosity is proposed. Appropriate scalings for the scalar fluctuations and the scalar flux are also introduced, and are shown to be applicable for both variable and constant viscosity flows. Due to the modification of the near-wall turbulence, the Stanton number and the Reynolds analogy factor are augmented by 10% and 44%, respectively, in the variable viscosity flow. An identity for the Stanton number is derived and shows that the mean wall-normal velocity and wall-normal scalar flux cause the increase in the heat transfer coefficient. Finally, the augmented near-wall velocity fluctuations lead to an increase of the wall-normal scalar flux, which contributes favorably to the enhanced heat transfer at the wall

  11. Turbulent Plasmaspheric Boundary Layer: Observables and Consequences

    Science.gov (United States)

    Mishin, Evgeny

    2014-10-01

    In situ satellite observations reveal strong lower hybrid/fast magnetosonic turbulence and broadband hiss-like VLF waves in the substorm subauroral geospace at and earthward of the electron plasmasheet boundary. These coincide with subauroral ion drifts/polarization streams (SAID/SAPS) in the plasmasphere and topside ionosphere. SAID/SAPS appear in ~10 min after the substorm onset consistent with the fast propagation of substorm injection fronts. The SAID channel follows the dispersionless cutoff of the energetic electron flux at the plasmapause. This indicates that the cold plasma maintains charge neutrality within the channel, thereby short-circuiting the injected plasma jet (injection fronts over the plasmasphere. Plasma turbulence leads to the circuit resistivity and magnetic diffusion as well as significant electron heating and acceleration. As a result, a turbulent boundary layer forms between the inner edge of the electron plasmasheet and plasmasphere. The SAID/SAPS-related VLF emissions appear to constitute a distinctive subset of substorm/storm-related VLF activity in the region co-located with freshly injected energetic ions inside the plasmasphere. Significant pitch-angle diffusion coefficients suggest that substorm SAID/SAPS-related VLF waves could be responsible for the alteration of the outer radiation belt boundary during (sub)storms. Supported by the Air Force Office of Scientific Research.

  12. Halogen chemistry in the trosopheric boundary layer

    Science.gov (United States)

    Plane, John M. C.; Mahajan, Anoop; Oetjen, Hilke

    Iodine and bromine chemistry can affect the lower troposphere in several important ways: (1), change the oxidizing capacity by destroying ozone and affecting the hydroxyl radical concentration; (2), react efficiently with dimethyl sulphide (in the marine boundary layer) and mercury (in the polar regions); and (3), form ultra-fine particles (iodine oxides are highly condensable), which may contribute to cloud condensation nuclei and hence affect climate. This paper will report measurements of IO, BrO, OIO and I2 , made by the technique of differential optical absorption spectroscopy (DOAS), in several contrasting environments: equatorial clean mid-ocean (Cape Verde); mid-latitude clean coastal (Mace Head, Ireland); polluted coastal (Roscoff, France); and the polar boundary layer (Halley Bay, Antarctica and Hudson Bay, Canada). Both IO and BrO are observed in all these locations at concentrations (> 1 pptv), and so have a major impact on (1) and (2) above. The concentrations of IO in coastal Antarctica, and coastlines rich in certain species of macro-algae, are large enough (> 10 pptv) to promote ultra-fine particle formation. Recently, the first satellite measurements of IO, using the SCIAMACHY instrument on ENVISAT, have been reported by two groups; their results will be compared with the ground-based measurements.

  13. Advances in Unsteady Boundary Layer Transition Research, Part I: Theory and Modeling

    Directory of Open Access Journals (Sweden)

    M. T. Schobeiri

    2003-01-01

    Full Text Available This two-part article presents recent advances in boundary layer research that deal with the unsteady boundary layer transition modeling and its validation. A new unsteady boundary layer transition model was developed based on a universal unsteady intermittency function. It accounts for the effects of periodic unsteady wake flow on the boundary layer transition. To establish the transition model, an inductive approach was implemented; the approach was based on the results of comprehensive experimental and theoretical studies of unsteady wake flow and unsteady boundary layer flow. The experiments were performed on a curved plate at a zero streamwise pressure gradient under a periodic unsteady wake flow, where the frequency of the periodic unsteady flow was varied. To validate the model, systematic experimental investigations were performed on the suction and pressure surfaces of turbine blades integrated into a high-subsonic cascade test facility, which was designed for unsteady boundary layer investigations. The analysis of the experiment's results and comparison with the model's prediction confirm the validity of the model and its ability to predict accurately the unsteady boundary layer transition.

  14. Geometric invariance of compressible turbulent boundary layers

    Science.gov (United States)

    Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle

    2015-11-01

    A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.

  15. CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions

    DEFF Research Database (Denmark)

    Koblitz, Tilman

    For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important to the atmo......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important...... to the atmospheric boundary-layer, are mostly ignored so far. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include atmospheric stability and the Coriolis effect. Within the present work a RANS model framework is developed and implemented...

  16. Halogen chemistry in the marine boundary layer

    Science.gov (United States)

    Plane, J. M. C.; Gomez Martin, J. C.; Kumar, R.; Mahajan, A. S.; Oetjen, H.; Saunders, R. W.

    2009-04-01

    Important atmospheric sources of iodine include the air-sea exchange of biogenic iodocarbons, and the emission of I2 from macro-algae. The major source of bromine is the release of bromide ions from sea-salt aerosol. The subsequent atmospheric chemistry of these halogens (1), changes the oxidizing capacity of the marine boundary layer by destroying ozone and changing the hydroxyl radical concentration; (2), reacts efficiently with dimethyl sulphide and mercury (in the polar regions); and (3), leads to the formation of ultra-fine particles which may contribute to cloud condensation nuclei (CCN) and hence affect climate. This paper will report observations of IO, BrO, OIO and I2 made by the technique of differential optical absorption spectroscopy, in several contrasting marine environments: the equatorial mid-Atlantic (Cape Verde); mid-latitude clean coastal (Mace Head, Ireland); polluted coastal (Roscoff, France); and the polar marine boundary layer (Hudson Bay, Canada). Both IO and BrO are observed in all these locations at significant concentrations (> 1 pptv), and so have a major impact on (1) and (2) above. To complement the field campaigns we have also carried out wide-ranging laboratory investigation. A new study of OIO photochemistry shows that absorption in the visible bands between 490 and 630 nm leads to I atom production with a quantum yield of unity, which now means that iodine is a particularly powerful ozone-depleting agent. We have also studied the formation and growth kinetics of iodine oxide nano-particles, and their uptake of water, sulphuric acid and di-carboxylic organic acids, in order to model their growth to a size where they can act as CCN. Their ice-nucleating properties will also be reported.

  17. Wave boundary layer over a stone-covered bed

    DEFF Research Database (Denmark)

    Dixen, Martin; Hatipoglu, Figen; Sumer, B. Mutlu;

    2008-01-01

    This paper summarizes the results of an experimental investigation on wave boundary layers over a bed with large roughness, simulating stone/rock/armour block cover on the sea bottom. The roughness elements used in the experiments were stones the size of 1.4cm and 3.85cm in one group of experiments...... and regular ping-pong balls the size 3.6cm in the other. The orbital-motion-amplitude-to-roughness ratio at the bed was rather small, in the range a/ks=0.6-3. The mean and turbulence properties of the boundary-layer flow were measured. Various configurations of the roughness elements were used in the ping...... for small values of a/ks. The results further show that the phase lead of the bed friction velocity over the surface elevation does not seem to change radically with a/ks, and found to be in the range 12°-23°. Furthermore the results show that the boundary-layer turbulence also is not extremely sensitive...

  18. RANS Modeling of Benchmark Shockwave / Boundary Layer Interaction Experiments

    Science.gov (United States)

    Georgiadis, Nick; Vyas, Manan; Yoder, Dennis

    2010-01-01

    This presentation summarizes the computations of a set of shock wave / turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock / boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Three turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Shear Stress Transport wavenumber-angular frequency two-equation model, and an explicit algebraic stress wavenumber-angular frequency formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.!

  19. Boundary element method for internal axisymmetric flow

    Directory of Open Access Journals (Sweden)

    Gokhman Alexander

    1999-01-01

    Full Text Available We present an accurate fast method for the computation of potential internal axisymmetric flow based on the boundary element technique. We prove that the computed velocity field asymptotically satisfies reasonable boundary conditions at infinity for various types of inlet/exit. Computation of internal axisymmetric potential flow is an essential ingredient in the three-dimensional problem of computation of velocity fields in turbomachines. We include the results of a practical application of the method to the computation of flow in turbomachines of Kaplan and Francis types.

  20. On the partially reacted boundary layer in rate sticks

    Science.gov (United States)

    Partom, Y.

    2014-05-01

    Using our temperature dependent reactive flow model (TDRR) to simulate detonation in a rate stick, we observe that a partially reacted layer (PRL) is formed near the boundary. We are not aware that such a PRL has been observed in tests, and this is why we regarded it in the past as a numerical artifact. Assuming that such an artefact may be caused by the finite rise time of the detonation shock, we showed in [1] how it can be eliminated by delaying the outward boundary motion for a length of time comparable with the shock rise time. Here we revisit the PRL problem. We first show that it is not a numerical artifact but a real phenomenon. We do this by repeating the reactive flow run with a finer mesh. By looking at the PRL structure, we see that doubling the resolution affects the PRL only slightly. We then conjecture that the PRL formation has to do with the finite duration of the reaction process (or the finite extent of the reaction zone). By the time the boundary rarefaction reaches a cell near the boundary, it may be only partially reacted, and its reaction may therefore be cut off. To establish our conjecture we show how the PRL structure changes with the reaction duration.

  1. Turbulent dispersion in cloud-topped boundary layers

    Science.gov (United States)

    Verzijlbergh, R. A.; Jonker, H. J. J.; Heus, T.; Vilöguerau de Arellano, J.

    2009-02-01

    Compared to dry boundary layers, dispersion in cloud-topped boundary layers has received less attention. In this LES based numerical study we investigate the dispersion of a passive tracer in the form of Lagrangian particles for four kinds of atmospheric boundary layers: 1) a dry convective boundary layer (for reference), 2) a "smoke" cloud boundary layer in which the turbulence is driven by radiative cooling, 3) a stratocumulus topped boundary layer and 4) a shallow cumulus topped boundary layer. We show that the dispersion characteristics of the smoke cloud boundary layer as well as the stratocumulus situation can be well understood by borrowing concepts from previous studies of dispersion in the dry convective boundary layer. A general result is that the presence of clouds enhances mixing and dispersion - a notion that is not always reflected well in traditional parameterization models, in which clouds usually suppress dispersion by diminishing solar irradiance. The dispersion characteristics of a cumulus cloud layer turn out to be markedly different from the other three cases and the results can not be explained by only considering the well-known top-hat velocity distribution. To understand the surprising characteristics in the shallow cumulus layer, this case has been examined in more detail by 1) determining the velocity distribution conditioned on the distance to the nearest cloud and 2) accounting for the wavelike behaviour associated with the stratified dry environment.

  2. Radiative instabilities of atmospheric jets and boundary layers

    International Nuclear Information System (INIS)

    Complex flows occur in the atmosphere and they can be source of internal gravity waves. We focus here on the sources associated with radiative and shear (or Kelvin-Helmholtz) instabilities. Stability studies of shear layers in a stably stratified fluid concern mainly cases where shear and stratification are aligned along the same direction. In these cases, Miles (1961) and Howard (1961) found a necessary condition for stability based on the Richardson number: Ri ≥ 1/4. In this thesis, we show that this condition is not necessary when shear and stratification are not aligned: we demonstrate that a two-dimensional planar Bickley jet can be unstable for all Richardson numbers. Although the most unstable mode remains 2D, we show there exists an infinite family of 3D unstable modes exhibiting a radiative structure. A WKBJ theory is found to provide the main characteristics of these modes. We also study an inviscid and stratified boundary layer over an inclined wall with non-Boussinesq and compressible effects. We show that this flow is unstable as soon as the wall is not horizontal for all Froude numbers and that strongly stratified 3D perturbations behave exactly like compressible 2D perturbations. Applications of the results to the jet stream and the atmospheric boundary layer are proposed. (author)

  3. Vortex Generators to Control Boundary Layer Interactions

    Science.gov (United States)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  4. Mixed convection boundary layer flow at the lower stagnation point of a sphere embedded in a porous medium in presence of heat source/sink: Constant heat flux case

    Science.gov (United States)

    Fauzi, Nur Fatihah; Ahmad, Syakila; Pop, Ioan

    2014-07-01

    The steady mixed convection flow of an incompressible viscous fluid over an isoflux sphere embedded in a porous medium with the existence of heat source/sink is theoretically considered for both the assisting and opposing flow cases with small Prandtl number. The transformed equations of the non-similar boundary layer at the lower stagnation point of the sphere are solved numerically using a finite-difference method known as the Keller-box scheme. Numerical results are presented for the skin friction coefficient and the local wall temperature, as well as the velocity and temperature profiles for different values of the porosity parameter, the heat source/sink parameter and the mixed convection parameter for air. It is noticed that the solution has two branches in a certain range of the mixed convection parameter.

  5. Application of Arnoldi method to boundary layer instability

    Science.gov (United States)

    Zhang, Yong-Ming; Luo, Ji-Sheng

    2015-12-01

    The Arnoldi method is applied to boundary layer instability, and a finite difference method is employed to avoid the limit of the finite element method. This modus operandi is verified by three comparison cases, i.e., comparison with linear stability theory (LST) for two-dimensional (2D) disturbance on one-dimensional (1D) basic flow, comparison with LST for three-dimensional (3D) disturbance on 1D basic flow, and comparison with Floquet theory for 3D disturbance on 2D basic flow. Then it is applied to secondary instability analysis on the streaky boundary layer under spanwise-localized free-stream turbulence (FST). Three unstable modes are found, i.e., an inner mode at a high-speed center streak, a sinuous type outer mode at a low-speed center streak, and a sinuous type outer mode at low-speed side streaks. All these modes are much more unstable than Tollmien-Schlichting (TS) waves, implying the dominant contribution of secondary instability in bypass transition. The modes at strong center streak are more unstable than those at weak side streaks, so the center streak is ‘dangerous’ in secondary instability. Project supported by the National Natural Science Foundation of China (Grant Nos. 11202147, 11332007, 11172203, and 91216111) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032120007).

  6. Delaying natural transition of a boundary layer using smooth steps

    CERN Document Server

    Xu, Hui; Sherwin, Spencer J

    2015-01-01

    The boundary layer flow over a smooth forward-facing stepped plate is studied with particular emphasis on the delay of the transition to turbulence. The interaction between the Tollmien-Schlichting (T-S) waves and the base flow over a single/two forward facing smooth steps is conducted by linear analysis indicating the amplitude of the T-S waves are attenuated in the boundary layer over a single smooth plate. Furthermore, we show that two smooth forward facing steps give rise to a further reduction of the amplitude of the T-S waves. A direct numerical simulation (DNS) is performed for the two smooth forward steps correlating favourably with the linear analysis and showing that for the investigated parameters, the K-type transition is inhibited whereas the turbulence onset of the H-type transition is postponed albeit not suppressed. Transition is indeed delayed and drag reduced for both these transition scenarios suggesting smooth forward facing steps could be leveraged as a passive flow control strategy to de...

  7. Direct simulation of the turbulent boundary layer on a plate

    Science.gov (United States)

    Krupa, V. G.

    2016-08-01

    A numerical method for the integration of three-dimensional Navier-Stokes equations for compressible fluid as applied to direct numerical simulation is proposed. By way of example, the boundary layer on a plate is simulated. The computations were carried out for Reθ = 1500. The computational grid consisted of a half billion nodes. The flow region includes the laminar, transitional, and turbulent zones. The numerically obtained distributions of average velocity, friction, and pulsations are compared with experimental data and available numerical solutions.

  8. STUDY OF SWEPT SHOCK WAVE AND BOUNDARY LAYER INTERACTIONS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    This paper presents briefly the recent progress on study of swept shock wave/boundary layer interactions with emphasis on application of zonalanalysis and correlation analysis to them. Based on the zonal analysis an overall framework of complicated interaction flow structure including both surface flowfield and space flowfield is discussed. Based on correlation analysis the conical interactions induced by four families of shock wave generators have been discussedin detail. Some control parameter and physical mechanism of conical interaction have been revealed. Finally some aspects of the problem and the prospects for future work are suggested.

  9. Lidar Scanning of Momentum Flux in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Mann, Jakob; Courtney, Michael;

    Momentum flux measurements are important for describing the wind profile in the atmospheric boundary layer, modeling the atmospheric flow over water, the accounting of exchange processes between air and sea, etc. It is also directly related to the friction velocity, which is a velocity scale...... turbulence measurements from a sonic anemometer, showing high agreement. In this study, a conical scanning lidar is used to derive the momentum flux, which compares well to the estimations from the bulk-derived method, but it also shows a filtering effect due to the large spatial-averaging volume...

  10. Wave phenomena in a high Reynolds number compressible boundary layer

    Science.gov (United States)

    Bayliss, A.; Maestrello, L.; Parikh, P.; Turkel, E.

    1987-01-01

    The behavior of spatially unstable waves in a high Reynolds number compressible laminar boundary layer is investigated by solution of the laminar two-dimensional compressible Navier-Stokes equations (solved to fourth-order accuracy) over a flat plate with a fluctuating disturbance generated at the inflow. A significant nonlinear distortion is produced, in qualitative agreement with experimental data. It is shown that increasing compressibility can significantly stabilize the flow over a flat plate, and that the mechanism of phase cancellation is a viable mechanism for the control of growing disturbances.

  11. Role of the vertical pressure gradient in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna;

    2014-01-01

    By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....

  12. Notes on an Internal Boundary-Layer Height Formula

    Science.gov (United States)

    Savelyev, Sergiya.; Taylor, Petera.

    The derivation of the Panofsky-Dutton internal boundary-layer(IBL) height formula has been revisited. We propose that the upwindroughness length (rather than downwind) should be used in theformula and that a turbulent vertical velocity (w) ratherthan the surface friction velocity (u*) should be considered asthe appropriate scaling for the rate of propagation ofdisturbances into the turbulent flow. A published set ofwind-tunnel and atmospheric data for neutral stratification hasbeen used to investigate the influence of the magnitude ofroughness change on the IBL height.

  13. Study of interaction between shock wave and unsteady boundary layer

    Institute of Scientific and Technical Information of China (English)

    董志勇; 韩肇元

    2003-01-01

    This paper reports theoretical and experimental study of a new type of interaction of a moving shock wave with an unsteady boundary layer. This type of shock wave-boundary layer interaction describes a moving shock wave interaction with an unsteady boundary layer induced by another shock wave and a rarefaction wave. So it is different from the interaction of a stationary shock wave with steady boundary layer, also different from the interaction of a reflected moving shock wave at the end of a shock tube with unsteady boundary layer induced by an incident shock. Geometrical shock dynamics is used for the theoretical analysis of the shock wave-unsteady boundary layer interaction, and a double-driver shock tube with a rarefaction wave bursting diaphragm is used for the experimental investigation in this work.

  14. Experimental Research on Mass Transfer Coefficient in Liquid-Liquid Flow Boundary Layer%液-液流动边界层传质系数的实验研究

    Institute of Scientific and Technical Information of China (English)

    李明明; 李强; 李琳; 邹宗树

    2012-01-01

    为了研究冶金反应器内渣-金界面的传质,设计了研究液-液流动边界层传质实验.实验在保证油-水界面稳定的情况下,研究了苯甲酸钠示踪物质在油-水界面的传质现象.通过改变水流量Q(0.44~1.60m3/h),利用电导率仪测量苯甲酸钠示踪物质在水中的浓度变化,实验确定了液-液界面流动边界层传质系数的准数方程式,并尝试性地给出了液体黏度以及表面张力与传质系数之间的准数关系式.实验结果与液体流过平板边界层的传质过程作了比较讨论.%Experiment research concerning the mass transfer of flowing boundary layer on a liquid-liquid interface was performed to discuss the mass transfer on the molten slag-metal interface in metallurgical reactor.The mass transfer phenomenon of sodium benzoate on the oil-water interface was analyzed in the condition of keeping oil-water interface flat.The concentration change of sodium benzoate with time in water was measured by conductivity meter when the volume flow of water varied from 0.44 to 1.60 m3/h.A dimensionless number equation with respect to the mass transfer coefficient of flowing boundary layer on the liquid-liquid interface was obtained.Then,a dimensionless number equation between the mass transfer coefficient and viscosity as well as surface tension was given tentatively.The results were compared with the mass transfer of boundary layer in the case of fluid flowing through a flat.

  15. An investigation of the effects of the propeller slipstream of a laminar wing boundary layer

    Science.gov (United States)

    Howard, R. M.; Miley, S. J.; Holmes, B. J.

    1985-01-01

    A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.

  16. Large Eddy Simulation of Stable Boundary Layer Turbulent Processes in Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Skyllingstad

    2005-01-26

    Research was performed using a turbulence boundary layer model to study the behavior of cold, dense flows in regions of complex terrain. Results show that flows develop a balance between turbulent entrainment of warm ambient air and dense, cold air created by surface cooling. Flow depth and strength is a function of downslope distance, slope angle and angle changes, and the ambient air temperature.

  17. Three-Dimensional Waves in Tilt Thermal Boundary Layers

    Institute of Scientific and Technical Information of China (English)

    TAO Jian-Jun; YUAN Xiang-Jiang

    2009-01-01

    We numerically and theoretically study the stabilities of tilt thermal boundary layers immersed in stratified air. An interesting phenomenon is revealed: the stationary longitudinal-roll mode becomes unstable to some oscillating state even when the Grashof number is smaller than its corresponding critical value. By stability analysis, this phenomenon is explained in terms of a new three-dimensional wave mode. The effect of the tilt angle on the stability of the boundary flows is investigated. Since the new three-dimensional wave is found to be the most unstable mode when the title angle is between 30° and 64°, it is expected to play an important role in the transition to turbulence.

  18. Shock Wave-Boundary Layer Interaction in Forced Shock Oscillations

    Institute of Scientific and Technical Information of China (English)

    Piotr Doerffer; Oskar Szulc; Franco Magagnato

    2003-01-01

    The flow in transonic diffusers as well as in supersonic air intakes becomes often unsteady due to shock wave boundary layer interaction. The oscillations may be induced by natural separation unsteadiness or may be forced by boundary conditions. Significant improvement of CFD tools, increase of computer resources as well as development of experimental methods have again.drawn the attention of researchers to this topic.To investigate the problem forced oscillations of transonic turbulent flow in asymmetric two-dimensional Laval nozzle were considered. A viscous, perfect gas flow, was numerically simulated using the Reynolds-averaged compressible Navier-Stokes solver SPARC, employing a two-equation, eddy viscosity, turbulence closure in the URANS approach.For time-dependent and stationary flow simulations, Mach numbers upstream of the shock between 1.2 and 1.4 were considered. Comparison of computed and experimental data for steady states generally gave acceptable agreement. In the case of forced oscillations, a harmonic pressure variation was prescribed at the exit plane resulting in shock wave motion. Excitation frequencies between 0 Hz and 1024 Hz were investigated at the same pressure amplitude.The main result of the work carried out is the relation between the amplitude of the shock wave motion and the excitation frequency in the investigated range. Increasing excitation frequency resulted in decreasing amplitude of the shock movement. At high frequencies a natural mode of shock oscillation (of small amplitude) was observed which is not sensitive to forced excitement.

  19. Turbulence transition in the asymptotic suction boundary layer

    CERN Document Server

    Kreilos, Tobias; Schneider, Tobias M; Veble, Gregor; Duguet, Yohann; Schlatter, Philipp; Henningson, Dan S; Eckhardt, Bruno

    2015-01-01

    We study the transition to turbulence in the asymptotic suction boundary layer (ASBL) by direct numerical simulation. Tracking the motion of trajectories intermediate between laminar and turbulent states we can identify the invariant object inside the laminar-turbulent boundary, the edge state. In small domains, the flow behaves like a travelling wave over short time intervals. On longer times one notes that the energy shows strong bursts at regular time intervals. During the bursts the streak structure is lost, but it reforms, translated in the spanwise direction by half the domain size. Varying the suction velocity allows to embed the flow into a family of flows that interpolate between plane Couette flow and the ASBL. Near the plane Couette limit, the edge state is a travelling wave. Increasing the suction, the travelling wave and a symmetry-related copy of it undergo a saddle-node infinite-period (SNIPER) bifurcation that leads to bursting and discrete-symmetry shifts. In wider domains, the structures loc...

  20. 层流翼型三维边界层横流驻波精确测量方法研究%On the Accurate Measurement Method of Standing Cross-flow for Three-dimensional Laminar Airfoil Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    马彪; 白存儒; 杨广珺; 李栋

    2011-01-01

    Laminar flow control (LFC) of swept-back wing is a complex but very significant topic for drag reduction. The study of standing cross-flow has a great significance for LFC. For this reason, the experimental method of standing cross-flow measurement was analyzed and studied by using hot wire anemometer and sublimation method in a low turbulence wind tunnel. Corresponding technical details about the setup of hot wire anemometer system and process of sublimation surface spray are elaborated in this paper. The velocity profile curve in boundary layer, the image of sublimation result, the distance between standing waves and the wedge transition line were obtained in experiment. Synthetical analysis of experimental results shows that there is a high agreement between hot wire anemometer and sublimation method. This indicates that flow state in a 3-D boundary layer can be measured conveniently by hot wire anemometer; that at a suitable angle, the hot wire anemometer support does not impact the measurement; that hot wire probe has less effect on flow in boundary layer. So the results measured by hot wire anemometer may be regarded as actual flow in boundary layer. Analysis of experimental data shows that the combination of hot wire anemometer and sublimation method is a very effective method.%后掠机翼的层流控制对于气动减阻有着重要的意义,同时也是非常复杂的研究课题.而对横流驻波的研究是实现层流翼型的一个关健.为此,本文分析并研究了在低湍流度风洞中,采用热线风速仪(CTA)与表面升华法相结合研究由横流不稳定性产生的驻波及其对转捩影响的实验技术,阐述了该实验中架设热线测量系统与升华法表面喷涂的相关技术与细节.实验得到了边界层内的速度剖面图、升华法图形、驻波间距和楔形转捩线.实验结果的综合分析表明热线和升华法一致性很高.说明通过热线风速仪可以方便地测得三维边界层内的流动

  1. TBA boundary flows in the tricritical Ising field theory

    Energy Technology Data Exchange (ETDEWEB)

    Nepomechie, Rafael I. E-mail: nepomechie@physics.miami.edu; Ahn, Changrim

    2002-12-30

    Boundary S matrices for the boundary tricritical Ising field theory (TIM), both with and without supersymmetry, have previously been proposed. Here we provide support for these S matrices by showing that the corresponding boundary entropies are consistent with the expected boundary flows. We develop the fusion procedure for boundary RSOS models, with which we derive exact inversion identities for the TIM. We confirm the TBA description of nonsupersymmetric boundary flows of Lesage et al. and we obtain corresponding descriptions of supersymmetric boundary flows.

  2. PIV-based pressure fluctuations in the turbulent boundary layer

    Science.gov (United States)

    Ghaemi, Sina; Ragni, Daniele; Scarano, Fulvio

    2012-12-01

    The unsteady pressure field is obtained from time-resolved tomographic particle image velocimetry (Tomo-PIV) measurement within a fully developed turbulent boundary layer at free stream velocity of U ∞ = 9.3 m/s and Reθ = 2,400. The pressure field is evaluated from the velocity fields measured by Tomo-PIV at 10 kHz invoking the momentum equation for unsteady incompressible flows. The spatial integration of the pressure gradient is conducted by solving the Poisson pressure equation with fixed boundary conditions at the outer edge of the boundary layer. The PIV-based evaluation of the pressure field is validated against simultaneous surface pressure measurement using calibrated condenser microphones mounted behind a pinhole orifice. The comparison shows agreement between the two pressure signals obtained from the Tomo-PIV and the microphones with a cross-correlation coefficient of 0.6 while their power spectral densities (PSD) overlap up to 3 kHz. The impact of several parameters governing the pressure evaluation from the PIV data is evaluated. The use of the Tomo-PIV system with the application of three-dimensional momentum equation shows higher accuracy compared to the planar version of the technique. The results show that the evaluation of the wall pressure can be conducted using a domain as small as half the boundary layer thickness (0.5δ99) in both the streamwise and the wall normal directions. The combination of a correlation sliding-average technique, the Lagrangian approach to the evaluation of the material derivative and the planar integration of the Poisson pressure equation results in the best agreement with the pressure measurement of the surface microphones.

  3. Shercliff layers in strongly magnetic cylindrical Taylor-Couette flow

    Science.gov (United States)

    Hollerbach, Rainer; Hulot, Deborah

    2016-07-01

    We numerically compute the axisymmetric Taylor-Couette flow in the presence of axially periodic magnetic fields, with Hartmann numbers up to Ha2 =107. The geometry of the field singles out special field lines on which Shercliff layers form. These are simple shear layers for insulating boundaries, versus super-rotating or counter-rotating layers for conducting boundaries. Some field configurations have previously studied spherical analogs, but fundamentally new configurations also exist, having no spherical analogs. Finally, we explore the influence of azimuthal fields Bϕ ∼r-1eˆϕ on these layers, and show that the flow is suppressed for conducting boundaries, but enhanced for insulating boundaries. xml:lang="fr"

  4. Characteristics of the boundary layer of magnetic clouds and a new definition of the cloud boundary

    Institute of Scientific and Technical Information of China (English)

    WEI; Fengsi(魏奉思); LIU; Rui(刘睿); FAN; Quanlin(范全林); FENG; Xueshang(冯学尚)

    2003-01-01

    Based on the analysis of the boundaries of 70 magnetic clouds from 1967 to 1998, and relatively complete spacecraft observations, it is indicated that the magnetic cloud boundaries are boundary layers formed through the interaction between the magnetic clouds and the ambient medium. Most of the outer boundaries of the layers, with relatively high proton temperature, density and plasma β, are magnetic reconnection boundaries, while the inner boundaries, with low proton temperature, proton density and plasma β, separate the main body of magnetic clouds, which has not been affected by the interaction, from the boundary layers. The average time scale of the front boundary layer is 1.7 h and that of the tail boundary layer 3.1 h. It is also found that the magnetic probability distribution function undergoes significant changes across the boundary layers. This new definition, supported by the preliminary numerical simulation in principle, could qualitatively explain the observations of interplanetary magnetic clouds, and could help resolve the controversy in identifying the boundaries of magnetic clouds. Our concept of the boundary layer may provide some understanding of what underlies the observations, and a fresh train of thought in the interplanetary dynamics research.

  5. Hypersonic boundary-layer transition on a flared cone

    Institute of Scientific and Technical Information of China (English)

    Chuan-Hong Zhang; Qing Tang; Cun-Biao Lee

    2013-01-01

    Transition on a flared cone with zero angle of attack was studied in our newly established Mach 6 quiet wind tunnel (M6QT) via wall pressure measurement and flow visualization.High-frequency pressure transducers were used to measure the second-mode waves' amplitudes and frequencies.Using pulsed schlieren diagnostic and Rayleigh scattering technique,we got a clear evolution of the second-mode disturbances.The second-mode waves exist for a long distance,which means that the second-mode waves grow linearly in a large region.Strong Mach waves are radiated from the edge of the boundary layer.With further development,the second-mode waves reach their maximum magnitude and harmonics of the second-mode instability appear.Then the disturbances grow nonlinearly.The second modes become weak and merge with each other.Finally,the nonlinear interaction of disturbance leads to a relatively quiet zone,which further breaks down,resulting in the transition of the boundary layer.Our results show that transition is determined by the second mode.The quiet zone before the final breakdown is observed in flow visualization for the first time.Eventual transition requires the presence of a quiet zone generated by nonlinear interactions.

  6. Transition Delay in Hypersonic Boundary Layers via Optimal Perturbations

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.

  7. Second Law Analysis of the Turbulent Flat Plate Boundary Layer

    Directory of Open Access Journals (Sweden)

    Dragos Isvoranu

    2000-09-01

    Full Text Available

    Until now the second law analysis of turbulent flow relied only on the irreversibilities performed by the mean velocity and mean temperature gradients. Using the Reynolds decomposition of the volumetric entropy generation rate expression we found that the dissipation rates of both, turbulent kinetic energy and fluctuating temperature variance, also represent the irreversibilities of the flow. Applying the above results, the second law analysis of the turbulent boundary layer shows that the maximum values of the "mean motion irreversibilities" (generated by the mean velocity and mean temperature gradient are located at the wall, while the maximum values of the "turbulent irreversibilities" (performed by the dissipation rate of turbulent kinetic energy and fluctuating temperature variance are located in the buffer sublayer. As a consequence, for a given location on the plate, the integral values of the "mean motion irreversibilities" are approximately constant and the "turbulent irreversibilities" grow up with the boundary layer thickness.

    •  This paper was presented at the ECOS’00 Conference in Enschede, July 5-7, 2000

  8. Enhancing aerodynamic performances of a high-turning compressor cascade via boundary layer suction

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Experimental investigation was carried out to study the effect of suction positions and suction flow rates on the aerodynamic performance of a compressor cascade with a large camber angle. The ink-trace flow visualization was conducted and the flow fields of the cascade were also measured. Three types of boundary layer suction configurations are compared,i.e. the suction surface suction,the endwall suction and the compound suction. Experimental results show that the large amount of suction flow rate gains more losses reduction than the small amount for a certain proper suction configuration,but the speed of loss decline slows down as the suction flow rate goes on increasing. Boundary layer suction on the suction surface obviously enhances the ability of the boundary layer around the midspan to withstand the negative pressure gradient of the flow passage. The range of the suction surface corner is also decreased. If the suction slot locates in the corner separation region where severe separation has happened,the flow separation will be terminated at the slot and redevelop downstream. And boundary layer suction on the endwall mainly influences the endwall corner region in remarkably delaying,lessening and reorganizing the corner separation. While the whole flow field is remarkably improved at both midspan and the corner region in the compound suction schemes. At higher suction flow rates,the aerodynamic performance of the compressor cascade is better than that with boundary layer suction simply on the suction surface or on the endwall. When the suction flow rate is 1.5% of the inlet mass flow,the compound suction scheme achieves a maximum loss reduction of 17% compared with the cascade without boundary layer suction.

  9. Green House Gases Flux Model in Boundary Layer

    Science.gov (United States)

    Nurgaliev, Ildus

    Analytical dynamic model of the turbulent flux in the three-layer boundary system is presented. Turbulence is described as a presence of the non-zero vorticity. The generalized advection-diffusion-reaction equation is derived for an arbitrary number of components in the flux. The fluxes in the layers are objects for matching requirements on the boundaries between the layers. Different types of transport mechanisms are dominant on the different levels of the layers.

  10. Complex variable boundary elements for fluid flow

    International Nuclear Information System (INIS)

    The Complex Variable Boundary Element Method is a numerical method for solving two-dimensional problems of Laplace or Poisson type. It is based on the theory of analytic functions. This paper resumes the basic facts about the method. Application of the method to the stationary incompressible irrotational flow is carried out after that. At the end, a sample problem of flow through an abrupt area change channel is shown. (author)

  11. Lie Group Analysis for Boundary Layer Flow of Nanofluids near the Stagnation-Point over a Permeable Stretching Surface Embedded in a Porous Medium in the Presence of Radiation and Heat Generation/Absorption

    Directory of Open Access Journals (Sweden)

    P. Sreenivasulu

    2015-01-01

    Full Text Available This study investigates the influence of thermal radiation and heat generation/absorption on a two dimensional steady boundary layer flow near the stagnation-point on a permeable stretching sheet in a porous medium saturated with nanofluids. The governing partial differential equations with the appropriate boundary conditions are reduced to a set of ordinary differential equations via Lie-group analysis. The resultant equations are then solved numerically using Runge - Kutta fourth order method along with shooting technique. Two types of nanofluids, namely, copper-water and alumina-water are considered. The velocity and temperature as well as the shear stress and heat transfer rates are computed. The influence of pertinent parameters such as radiation parameter Nr, nanofluid volume fraction parameter , the ratio of free stream velocity and stretching velocity parameter a/c , the permeability parameter K1, suction/blowing parameter S, and heat source/sink parameter  on the flow and heat transfer characteristics is discussed. The present study helps to understand the efficiency of heat transfer transport in nanofluids which are likely to be the smart coolants of the next generation.

  12. Shock wave boundary layer interaction on suction side of compressor profile in single passage test section

    Science.gov (United States)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Kaczynski, Piotr; Piotrowicz, Michal

    2015-11-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to investigate the flow structure on the suction side of a profile, a design of a generic test section in linear transonic wind tunnel was proposed. The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. Near the sidewalls the suction slots are applied for the corner flow structure control. It allows to control the Axial Velocity Density Ratio (AVDR), important parameter for compressor cascade investigations. Numerical results for Explicit Algebraic Reynolds Stress Model with transition modeling are compared with oil flow visualization, schlieren and Pressure Sensitive Paint. Boundary layer transition location is detected by Temperature Sensitive Paint.

  13. Vertical ozone characteristics in urban boundary layer in Beijing.

    Science.gov (United States)

    Ma, Zhiqiang; Xu, Honghui; Meng, Wei; Zhang, Xiaoling; Xu, Jing; Liu, Quan; Wang, Yuesi

    2013-07-01

    Vertical ozone and meteorological parameters were measured by tethered balloon in the boundary layer in the summer of 2009 in Beijing, China. A total of 77 tethersonde soundings were taken during the 27-day campaign. The surface ozone concentrations measured by ozonesondes and TEI 49C showed good agreement, albeit with temporal difference between the two instruments. Two case studies of nocturnal secondary ozone maxima are discussed in detail. The development of the low-level jet played a critical role leading to the observed ozone peak concentrations in nocturnal boundary layer (NBL). The maximum of surface ozone was 161.7 ppbv during the campaign, which could be attributed to abundant precursors storage near surface layer at nighttime. Vertical distribution of ozone was also measured utilizing conventional continuous analyzers on 325-m meteorological observation tower. The results showed the NBL height was between 47 and 280 m, which were consistent with the balloon data. Southerly air flow could bring ozone-rich air to Beijing, and the ozone concentrations exceeded the China's hourly ozone standard (approximately 100 ppb) above 600 m for more than 12 h.

  14. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    Directory of Open Access Journals (Sweden)

    Elena-Carmen Teleman

    2008-01-01

    Full Text Available The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence scales of the wind action in urban environment were conducted. The data obtained were processed and analyzed and interpreted with specific software. The results are used for a synthesis regarding the scales of turbulence of the model of flow and the actual accuracy of measurements. The paper presents some of the important elements of this synthesis.

  15. The large Reynolds number - Asymptotic theory of turbulent boundary layers.

    Science.gov (United States)

    Mellor, G. L.

    1972-01-01

    A self-consistent, asymptotic expansion of the one-point, mean turbulent equations of motion is obtained. Results such as the velocity defect law and the law of the wall evolve in a relatively rigorous manner, and a systematic ordering of the mean velocity boundary layer equations and their interaction with the main stream flow are obtained. The analysis is extended to the turbulent energy equation and to a treatment of the small scale equilibrium range of Kolmogoroff; in velocity correlation space the two-thirds power law is obtained. Thus, the two well-known 'laws' of turbulent flow are imbedded in an analysis which provides a great deal of other information.

  16. Propeller slipstream/wing boundary layer effects at low Reynolds numbers

    Science.gov (United States)

    Miley, S. J.; Howard, R. M.; Holmes, B. J.

    1985-01-01

    The effects of propeller slipstream on the wing laminar boundary are being investigated. Hot-wire velocity sensor measurements have been performed in flight and in a wind tunnel. It is shown that the boundary layer cycles between a laminar state and a turbulent state at the propeller blade passage rate. The cyclic length of the turbulent state increases with decreasing laminar stability. Analyses of the time varying velocity profiles show the turbulent state to lie in a transition region between fully laminar and fully turbulent. The observed cyclic boundary layer has characteristics similar to relaminarizing flow and laminar flow with external turbulence.

  17. Spatially Developing Secondary Instabilities in Compressible Swept Airfoil Boundary Layers

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.

    2011-01-01

    Two-dimensional eigenvalue analysis is used on a massive scale to study spatial instabilities of compressible shear flows with two inhomogeneous directions. The main focus of the study is crossflow dominated swept-wing boundary layers although the methodology can also be applied to study other type of flows, such as the attachment-line flow. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed, namely, fixing the spatial growth direction unambiguously through a non-orthogonal formulation of the linearized disturbance equations. A primary test case used for parameter study corresponds to the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. Implications of this finding for transition control in swept wing boundary layers are examined.

  18. Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities

    Science.gov (United States)

    Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei

    2010-01-01

    Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.

  19. EFFECTS OF NONPARALLELISM ON THE BOUNDARY LAYER STABILITY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The nonparallel effects on the stability of the boundary layer flow was investigated using the Parabolie Stability Equations (PSE). In order to improve the accuracy of the calculation which is very important for the investigation of stability, higher order expansions in orthogonal functions in normal direction and the effective algebraic mapping to deal with the problem of infinite region were used and the way to collocate the boundary point based on its characteristics was adopted. With the effective control of step size in the marching procedure, the special condition was satisfied, and the stability of calculation was assured. From the curves of the neutral stability, the growth rate, the amplitude variation and disturbed velocity profile, the effects of the nonparallelism were given accurately and analyzed detailedly. It is found that the nonparallelism of the flow amplifies the amplitude and growth rate of disturbances, especially for three-dimensional disturbances, even can change the sign of flow stability from stability to instability for some cases. Computed results are in good agreement with the classical experimental results.

  20. Effect of Pulsed Plasma Jets on the Recovering Boundary Layer Downstream of a Reflected Shock Interaction

    Science.gov (United States)

    Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus

    2015-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.

  1. High frequency ground temperature fluctuation in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Kleissl, J.; Lothon, M.; Lohou, F.; Pardyjak, E.; Saïd, F.; Cuxart, J.; Steeneveld, G.J.; Yaguë, C.; Derrien, S.; Alexander, D.; Villagrasa, D.M.

    2012-01-01

    To study influence of the turbulent structures in the convective boundary layer (CBL) on the ground temperature, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) observational campaign, high frequency ground temperature was recorded through infra-red imagery from 13 June - 8 J

  2. Stretched flow of Carreau nanofluid with convective boundary condition

    Indian Academy of Sciences (India)

    T Hayat; M Waqas; S A Shehzad; A Alsaedi

    2016-01-01

    The steady laminar boundary layer flow of Carreau nanofluid over a stretching sheet is investigated. Effects of Brownian motion and thermophoresis are present. Heat transfer is characterized using convective boundary condition at the sheet. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations through suitable transformations. Results of velocity, temperature and concentration fields are computed via homotopic procedure. Numerical values of skin-friction coefficient, local Nusselt and Sherwood numbers are computed and discussed. A comparative study with existing solutions in a limiting sense is made.

  3. Numerical simulations of two-fluid boundary layers beneath free-stream turbulence

    Science.gov (United States)

    Jung, Seo Yoon; Zaki, Tamer

    2011-11-01

    In two-fluid boundary layers, a wall-film is sheared by an external stream with different density and viscosity. As a result, the flow becomes prone to both shear and interfacial instabilities. In this study, the evolution of two-fluid boundary layers beneath free-stream vortical forcing is investigated using DNS. The simulations employ a conservative level-set technique in conjunction with a ghost fluid approach in order to capture a sharp interface. The wall film is less viscous than the outer flow, and its thickness is 10 % of that of the boundary layer at the inlet. The choice of viscosity ratio influences the spatial development of disturbances within the boundary layer. The spatial growth of instabilities is examined into the non-linear regime, which includes the region of breakdown to turbulence. We demonstrate that, at moderate levels of free-stream turbulence intensities, appropriate choice of the viscosity ratio can yield considerable transition delay.

  4. Corrections for attached sidewall boundary-layer effects in 2-dimensional airfoil testing

    Science.gov (United States)

    Murthy, A. V.

    1985-01-01

    The problems of sidewall boundary-layer effects in airfoil testing is treated by considering the changes in the flow area due to boundary-layer thinning under the influence of the airfoil flowfield. Using von Karman's momentum integral equation, it is shown that the sidewall boundary-layer thickness in the region of the airfoil can reduce to about half the undisturbed value under the conditions prevailing in testing of supercritical airfoils. A Mach number correction due to this increased width of the flow passage is proposed. Using the small disturbance approximation, the effect of the sidewall boundary-layers is shown to be equivalent to a change in the test Mach number and also in the airfoil thickness. Comparison of the results of this approach with other similarity rules and correlation of the experimental data demonstrate the applicability of the analysis presented from low speeds to transonic speeds.

  5. A model for turbulent dissipation rate in a constant pressure boundary layer

    Indian Academy of Sciences (India)

    J DEY; P PHANI KUMAR

    2016-04-01

    Estimation of the turbulent dissipation rate in a boundary layer is a very involved process.Experimental determination of either the dissipation rate or the Taylor microscale, even in isotropic turbulence,which may occur in a portion of the turbulent boundary layer, is known to be a difficult task. For constant pressure boundary layers, a model for the turbulent dissipation rate is proposed here in terms of the local mean flow quantities. Comparable agreement between the estimated Taylor microscale and Kolmogorov length scale with other data in the logarithmic region suggests usefulness of this model in obtaining these quantitiesexperimentally

  6. Local boundary layer scales in turbulent Rayleigh-Benard convection

    CERN Document Server

    Scheel, Janet D

    2014-01-01

    We compute fully local boundary layer scales in three-dimensional turbulent Rayleigh-Benard convection. These scales are directly connected to the highly intermittent fluctuations of the fluxes of momentum and heat at the isothermal top and bottom walls and are statistically distributed around the corresponding mean thickness scales. The local boundary layer scales also reflect the strong spatial inhomogeneities of both boundary layers due to the large-scale, but complex and intermittent, circulation that builds up in closed convection cells. Similar to turbulent boundary layers, we define inner scales based on local shear stress which can be consistently extended to the classical viscous scales in bulk turbulence, e.g. the Kolmogorov scale, and outer scales based on slopes at the wall. We discuss the consequences of our generalization, in particular the scaling of our inner and outer boundary layer thicknesses and the resulting shear Reynolds number with respect to Rayleigh number. The mean outer thickness s...

  7. Boundary Layer to a System of Viscous Hyperbolic Conservation Laws

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, we investigate the large-time behavior of solutions to the initial-boundary value problem for nxn hyperbolic system of conservation laws with artificial viscosity in the half line (0, ∞). We first show that a boundary layer exists if the corresponding hyperbolic part contains at least one characteristic field with negative propagation speed. We further show that such boundary layer is nonlinearly stable under small initial perturbation. The proofs are given by an elementary energy method.

  8. Theoretical flow pattern of a vortex in the neighbourhood of a solid boundary

    OpenAIRE

    Smith, R C; SMITH, P.

    2011-01-01

    A two-layer model of a vortex in the neighbourhood of a plane solid boundary is proposed. Series solutions in terms of a small parameter are used to determine the flow pattern in the turbulent boundary layer beneath the vortex. It is then found that the axial velocity in the vortex is defined by the flow in the boundary layer. The results are shown to bear a close resemblance to known flows in tornadoes.DOI: 10.1111/j.2153-3490.1965.tb01413.x

  9. Operator-splitting errors in coupled reactive transport codes for flow and transport under atmospheric boundary conditions or layered soil profiles

    Science.gov (United States)

    One possible way of integrating subsurface flow and transport processes with (bio)geochemical reactions is to couple by means of an operator-splitting approach two completely separate codes, one for variably-saturated flow and solute transport and one for equilibrium and kinetic biogeochemical react...

  10. Role of boundary layer processes on the mixed layer CO2-budget

    OpenAIRE

    D. Pino; Vilà-Guerau de Arellano, J.

    2010-01-01

    The diurnal and vertical variability of temperature, humidity and specially CO2 in the atmospheric boundary layer is studied by combining detailed observations taken at Cabauw (The Netherlands), Large-Eddy simulations (LES) and mixed layer theory. The research focus on the role played by the entrainment and other boundary layer driven processes on the distribution and diurnal evolution of CO2 in the boundary layer. The relative importance of this entrained air to ventilate CO2 will be analyze...

  11. PIV measurements of the bottom boundary layer under nonlinear surface waves

    NARCIS (Netherlands)

    Henriquez, M.; Reniers, A. J H M; Ruessink, B. G.; Stive, M. J F

    2014-01-01

    Sediment in the nearshore is largely mobilized in the wave bottom boundary layer (wbbl) hereby emphasizing the importance of this relatively thin layer to nearshore morphology. This paper presents a laboratory experiment where hydrodynamic properties of the wbbl were quantified by measuring flow vel

  12. Is Ultra-High Reynolds Number Necessary for Comprehensive Log Scaling in a Turbulent Boundary Layer?

    CERN Document Server

    Dixit, Shivsai Ajit

    2015-01-01

    Experiments in an extraordinary turbulent boundary layer called the sink flow, displaying a perfect streamwise invariance, show a wide extent of logarithmic scaling for moments of streamwise velocity up to order 12, even at moderate Reynolds numbers. This is in striking contrast to canonical constant-pressure turbulent boundary layers that show such comprehensive log scaling only at ultra-high Reynolds numbers. This suggests that for comprehensive log scaling, ultra-high-Reynolds-number is not a necessary condition; while specific details of the sink flow are special, the relevance to general turbulent boundary layers is that the sink flow underscores the importance of the streamwise invariance condition that needs to be met in a general flow for obtaining log scaling. Indeed, a simple theory shows that, for log scaling in the inertial sublayer, the invariance of dimensionless mean velocity and higher-order moments along a mean streamline is a necessary and sufficient condition. Ultra-high Reynolds number pri...

  13. Natural convection boundary layer with suction and mass transfer in a porous medium

    International Nuclear Information System (INIS)

    The free convection boundary layer flow with simultaneous heat and mass transfer in a porous medium is studied when the boundary wall moves in its own plane with suction. The study also incorporates chemical reaction for the very simple model of a binary reaction with Arrhenius activation energy. For large suction asymptotic approximate solutions are obtained for the flow variables for various values of the activation energy. (author). 10 refs, 2 figs

  14. Heat Transfer in MHD Dusty Boundary Layer Flow over an Inclined Stretching Sheet with Non-Uniform Heat Source/Sink

    OpenAIRE

    G. K. Ramesh; Gireesha, B. J.; C. S. Bagewadi

    2012-01-01

    This paper presents the study of momentum and heat transfer characteristics in a hydromagnetic flow of dusty fluid over an inclined stretching sheet with non-uniform heat source/sink, where the flow is generated due to a linear stretching of the sheet. Using a similarity transformation, the governing equations of the problem are reduced to a coupled third-order nonlinear ordinary differential equations and are solved numerically by Runge-Kutta-Fehlberg fourth-fifth-order method using symbolic...

  15. Characterization of the Martian Convective Boundary Layer

    OpenAIRE

    Martínez, Germán; Valero Rodríguez, Francisco; Vázquez Martínez, Luis

    2009-01-01

    The authors have carried out an extensive characterization of the Martian mixed layer formed under convective conditions. The values of the mixed layer height, convective velocity scale, convective temperature scale, mean temperature standard deviation, mean horizontal and vertical velocity standard deviations, and mean turbulent viscous dissipation rate have been obtained during the strongest convective hours for the mixed layer. In addition, the existing database of the surface layer has be...

  16. Geostrophic convective turbulence: The effect of boundary layers

    CERN Document Server

    Ostilla-Mónico, Rodolfo; Kunnen, Rudie P J; Verzicco, Roberto; Lohse, Detlef

    2014-01-01

    This Letter presents results of the first direct numerical simulations of rotating Rayleigh--B\\'enard convection in the so-called geostrophic regime, (hence very small Ekman numbers $\\mathcal{O}(10^{-7})$ and high Rayleigh numbers~$Ra=10^{10}$ and~$5\\cdot 10^{10}$), employing the \\emph{full} Navier--Stokes equations. In the geostrophic regime the criteria of very strong rotation and large supercriticality are met simultaneously, which is true for many geophysical and astrophysical flows. Until now, numerical approaches of this regime have been based on \\emph{reduced} versions of the Navier--Stokes equations (cf. Sprague \\emph{et al.} J. Fluid Mech., \\textbf{551}, 141 (2006)), omitting the effect of the viscous (Ekman) boundary layers. By using different velocity boundary conditions at the plates, we study the effect of these Ekman layers. We find that the formation of large-scale structures (Rubio \\emph{et al.} (Phys. Rev. Lett. \\textbf{112} (2014)), which indicates the presence of an inverse energy cascade, ...

  17. Numerical modeling of the transitional boundary layer over a flat plate

    Science.gov (United States)

    Ivanov, Dimitry; Chorny, Andrei

    2015-11-01

    Our example is connected with fundamental research on understanding how an initially laminar boundary layer becomes turbulent. We have chosen the flow over a flat plate as a prototype for boundary-layer flows around bodies. Special attention was paid to the near-wall region in order to capture all levels of the boundary layer. In this study, the numerical software package OpenFOAM has been used in order to solve the flow field. The results were used in a comparative study with data obtained from Large Eddy Simulation (LES). The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. Presently this model is extended to the LES of the zero-pressure gradient, flat-plate turbulent boundary layer. In current study the time discretization is based on a second order Crank-Nicolson/Adams-Bashforth method. LES solver using Smagorinsky and the one-equation LES turbulence models. The transition models significantly improve the prediction of the onset location compared to the fully turbulent models.LES methods appear to be the most promising new tool for the design and analysis of flow devices including transition regions of the turbulent flow.

  18. Mixed Convection Boundary Layer Flow Near the Stagnation Point on a Vertical Surface With Slip%滑移垂直壁面驻点附近的混合对流边界层流动

    Institute of Scientific and Technical Information of China (English)

    F·阿曼; A·艾萨克; I·伯普; 黄锋

    2011-01-01

    A steady mixed convection boundary layer flow of a viscous and incompressible fluid near the stagnation point on a vertical surface with slip effect at the boundary was considered. The temperature of the sheet and the velocity of the external flow were assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations were first transformed into a system of ordinary differential equations, which was then solved numerically by a shooting method. The features of the flow and heat transfer characteristics for different values of the governing parameters were analyzed and discussed. Both assisting and opposing flows were considered. The results indicate that for the opposing flow, dual solutions exist for a certain range of the buoyancy parameter, while for the assisting flow, the solution is unique. In general, the velocity slip increases the heat transfer rate at the surface, while the thermal slip decreases it.%就粘性不可压缩流体,研究垂直壁面的滑移,对壁面驻点附近稳定混合对流边界层流动的影响.假定表面温度和外部流动速度与到驻点的距离呈线性变化.首先,将偏微分的控制方程,转变为常微分方程组,然后应用打靶法进行数值求解.对不同数值的控制参数,按分顺流和逆流两种情况,分析和讨论了流动特性和热传导特征.结果表明,逆流时,在浮力参数的某一范围内出现双解;顺流时,解是唯一的.一般而言,速度滑移导致壁面热传导率增大,而热滑移使之减小.

  19. Coherent Structures Generated by a Circular Jet Issuing into a Cross Laminar Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Visualisations by LASER topogratphies and velocity measurements by LDV have allowed the study of the flow resulting form the interaction between a circular jet and a cross boundary layer.This type of flow is dominated by the presence of many complex vortices that come from the recombining of the vorticity created in the injction tube and that created along the chamber floor.

  20. Geometry effect of isolated roughness on boundary layer transition investigated by tomographic PIV

    NARCIS (Netherlands)

    Ye, Q.; Schrijer, F.F.J.; Scarano, F.

    2015-01-01

    Transitional flow over isolated roughness elements is investigated in the incompressible flow regime using Tomographic PIV. Three different geometries are considered (micro-ramp, cylinder and square) with same height and span. Their effect on accelerating boundary layer transition is compared and di

  1. Boundary Layer Ventilation Processes During a High Pressure Event

    Science.gov (United States)

    Gray, S. L.; Dacre, H. F.; Belcher, S. E.

    2006-12-01

    It is often assumed that ventilation of the atmospheric boundary layer is weak during high pressure events. But is this always true? Here we investigate the processes responsible for ventilation of the atmospheric boundary layer during a high pressure event that occured on the 9 May 2005 using the UK Met Office Unifed Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include a sea breeze circulation, turbulent mixing across the top of the boundary layer followed by large-scale ascent, and shallow convection. Vertical distributions of tracer are validated with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree impressively well. Budget calculations of tracers are performed in order to determine the relative importance of these ventilation processes. The sea breeze circulation was found to ventilate 26% of the boundary layer tracer by sunset of which 2% was above 2km. A combination of the sea breeze circulation and turbulent mixing ventilated 46% of the boundary layer tracer, of which 10% was above 2km. Finally, the sea breeze circulation, turbulent mixing and shallow convection processes together ventilated 52% of the tracer into the free troposphere, of which 26% was above 2km. Hence this study shows that signicant ventilation of the boundary layer can occur during high pressure events; turbulent mixing and convection processes can double the amount of pollution ventilated from the boundary layer.

  2. Heat Transfer in MHD Dusty Boundary Layer Flow over an Inclined Stretching Sheet with Non-Uniform Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    G. K. Ramesh

    2012-01-01

    Full Text Available This paper presents the study of momentum and heat transfer characteristics in a hydromagnetic flow of dusty fluid over an inclined stretching sheet with non-uniform heat source/sink, where the flow is generated due to a linear stretching of the sheet. Using a similarity transformation, the governing equations of the problem are reduced to a coupled third-order nonlinear ordinary differential equations and are solved numerically by Runge-Kutta-Fehlberg fourth-fifth-order method using symbolic software Maple. Our numerical solutions are shown to agree with the available results in the literature and then employ the numerical results to bring out the effects of the fluid-particle interaction parameter, local Grashof number, angle of inclination, heat source/sink parameter, Chandrasekhar number, and the Prandtl number on the flow and heat transfer characteristics. The results have possible technological applications in liquid-based systems involving stretchable materials.

  3. Data report: the wake of a horizontal-axis wind turbine model, measurements in uniform approach flow and in a simulated atmospheric boundary layer

    NARCIS (Netherlands)

    Talmon, A.M.

    1985-01-01

    Wake effects will cause power loss when wínd turbínes are grouped in so called wind turbine parks. Wind tunnel measurements of the wake of a wind turbíne model are conducted in order to refine calculatíons of wake effects. Wake effects caused by tower and nacelle are studied in uniform flow. Wake de

  4. Stable Boundary Layer Education (STABLE) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region, a low-level jet. To advance our understanding of the nocturnal stable boundary layer, high temporal and vertical resolution data on the temperature and wind properties are needed, along with both large-eddy simulation and cloud-resolving modeling.

  5. Experimental characterization of airfoil boundary layers for improvement of aeroacoustic and aerodynamic modeling

    DEFF Research Database (Denmark)

    Fischer, Andreas

    2011-01-01

    blades makes a transition from laminar to turbulent. In the turbulent boundary layer eddies are created which are a potential noise sources. They are ineffective as noise source on the airfoil surface or in free flow, but when convecting past the trailing edge of the airfoil their efficiency is much......The present work aims at the characterization of aerodynamic noise from wind turbines. There is a consensus among scientists that the dominant aerodynamic noise mechanism is turbulent boundary trailing edge noise. In almost all operational conditions the boundary layer flow over the wind turbine...... increased and audible sound is radiated. We performed measurements of the boundary layer velocity fluctuations and the fluctuating surface pressure field in two different wind tunnels and on three different airfoils. The first wind tunnel is the one of LM Wind Power A/S following the classic concept...

  6. Size distributions of boundary-layer clouds

    Energy Technology Data Exchange (ETDEWEB)

    Stull, R.; Berg, L.; Modzelewski, H. [Univ. of Wisconsin, Madison, WI (United States)

    1996-04-01

    Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.

  7. Segregation in the Atmospheric Boundary Layer - A Discussion

    Science.gov (United States)

    Dlugi, Ralph; Berger, Martina; Zelger, Michael; Hofzumahaus, Andreas; Rohrer, Franz; Holland, Frank; Lu, Keding; Tsokankunku, Anywhere; Sörgel, Matthias; Kramm, Gerhard; Mölders, Nicole

    2016-04-01

    Segregation is a well known topic in technical chemistry and means an incomplete mixing of the reactants. Incomplete mixing reduces the rate of reaction which is of utmost importance in technical chemistry but has been payed less attention in atmospheric chemistry. Different observational and modelling studies on chemical reactions in the turbulent and convective atmospheric boundary layer are analysed for the influences of segregation in the systems NO ‑ NO2 ‑ O3 and OH + V OCs (with main focus on isoprene). Also some estimates on reactions like HO2 + NO (an important recycling mechanism for OH) will be given. Especially, different terms of the intensity of segregation IS (correlation coefficients, standard deviations of mixing ratios) are compared and are related to characteristics of the flow regimes, such as mixing conditions and Damköhler numbers. Also influences of fluctuations of actinic fluxes are discussed which influence the mostly photo chemically driven reactions that were investigated.

  8. Compressible Turbulent Boundary Layers on a Strongly Heated Wall

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    This paper concerns the theoretical and experimental modelling of the flat wall,highly heated,compressible turbulent boundary layer.Its final objective is to develop a numerical Navier-Stokes solver and to conclude on its capability to correctly represent complex aerothermic viscous flows near the wall.The paper presents a constructed numerical method with particular attention given to the turbulence modelling at low Reynolds number and comparisons with supersonic and transonic experimental data.For the transonic experiment,very high wall temperature(Tw=1100K)is realized.The method of this difficult experimental set up is discussed.The comparison between experimental and computational data conducts to the first conclusion and gives some indications for the future work.

  9. Aerodynamic Heating in Hypersonic Boundary Layers:\\ Role of Dilatational Waves

    CERN Document Server

    Zhu, Yiding; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2016-01-01

    The evolution of multi-mode instabilities in a hypersonic boundary layer and their effects on aerodynamic heating are investigated. Experiments are conducted in a Mach 6 wind tunnel using Rayleigh-scattering flow visualization, fast-response pressure sensors, fluorescent temperature-sensitive paint (TSP), and particle image velocimetry (PIV). Calculations are also performed based on both parabolized stability equations (PSE) and direct numerical simulations (DNS). It is found that second-mode dilatational waves, accompanied by high-frequency alternating fluid compression and expansion, produce intense aerodynamic heating in a small region that rapidly heats the fluid passing through it. As a result, the surface temperature rapidly increases and results in an overshoot over the nominal transitional value. When the dilatation waves decay downstream, the surface temperature decreases gradually until transition is completed. A theoretical analysis is provided to interpret the temperature distribution affected by ...

  10. Unsteady Phenomena in Shock Wave/Boundary Layer Interaction

    Science.gov (United States)

    Dolling, D. S.

    1993-01-01

    A brief review is given of the unsteadiness of shock wave/turbulent boundary layer interaction. The focus is on interactions generated by swept and unswept compression ramps, by flares, steps and incident shock waves, by cylinders and blunt fins, and by glancing shock waves. The effects of Mach number, Reynolds number, and separated flow scale are discussed as are the physical causes of the unsteadiness. The implications that the unsteadiness has for interpreting time-average surface and flowfield data, and for comparisons of such experimental data with computation, is also briefly discussed. Finally, some suggestions for future work are given. It is clear that there are large gaps in the data base and that many aspects of such phenomena are poorly understood. Much work remains to be done.

  11. Temperature and velocity profiles in sooting free boundary layer flames

    Science.gov (United States)

    Ang, J. A.; Pagni, P. J.; Mataga, T. G.; Margle, J. M.; Lyons, V. J.

    1986-01-01

    Temperature and velocity profiles are presented for cyclohexane, n-heptane, and iso-octane free, laminar, boundary layer, sooting, diffusion flames. Temperatures are measured with 3 mil Pt/Pt-13 percent Rh thermocouples. Corrected gas temperatures are derived by performing an energy balance of convection to and radiation from the thermocouple bead incorporating the variation of air conductivity and platinum emissivity with temperature. Velocities are measured using laser doppler velocimetry techniques. Profiles are compared with previously reported analytic temperature and velocity fields. Comparison of theoretical and experimental temperature profiles suggests improvement in the analytical treatment is needed, which accounts more accurately for the local soot radiation. The velocity profiles are in good agreement, with the departure of the theory from observation partially due to the small fluctuations inherent in these free flows.

  12. Reactive boundary layers in metallic rolling contacts

    International Nuclear Information System (INIS)

    thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 - 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 - 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates of the

  13. Reactive boundary layers in metallic rolling contacts

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, John

    2016-05-01

    more thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 - 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 - 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates

  14. Boundary Layer Ventilation by Convection and Coastal Processes

    Science.gov (United States)

    Dacre, H.

    2008-12-01

    Several observational studies measuring aerosol in the atmosphere have found multiple aerosol layers located above the marine boundary layer. It is hypothesized that the existence of these layers is influenced by the diurnal variation in the structure of the upwind continental boundary layer. Furthermore, collision between a sea breeze and the prevailing wind can result in enhanced convection at the coast which can also lead to elevated layers of pollution. In this study we investigate the processes responsible for ventilation of the atmospheric boundary layer near the coast using the UK Met Office Unified Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include shallow convection, a sea breeze circulation and coastal outflow. Vertical distributions of tracer at the coast are validated qualitatively with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree well.

  15. Boundary Layer Transition over Blunt Hypersonic Vehicles Including Effects of Ablation-Induced Out-Gassing

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan; Chang, Chau-Lyan; White, Jeffery

    2011-01-01

    Computations are performed to study the boundary layer instability mechanisms pertaining to hypersonic flow over blunt capsules. For capsules with ablative heat shields, transition may be influenced both by out-gassing associated with surface pyrolysis and the resulting modification of surface geometry including the formation of micro-roughness. To isolate the effects of out-gassing, this paper examines the stability of canonical boundary layer flows over a smooth surface in the presence of gas injection into the boundary layer. For a slender cone, the effects of out-gassing on the predominantly second mode instability are found to be stabilizing. In contrast, for a blunt capsule flow dominated by first mode instability, out-gassing is shown to be destabilizing. Analogous destabilizing effects of outgassing are also noted for both stationary and traveling modes of crossflow instability over a blunt sphere-cone configuration at angle of attack.

  16. Diagnostic analysis of turbulent boundary layer data by a trivariate Lagrangian partitioning method

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, P.T. [Florida State Univ., Tallahassee, FL (United States)

    1994-12-31

    The rapid scientific and technological advances in meteorological theory and modeling predominantly have occurred on the large (or synoptic) scale flow characterized by the extratropical cyclone. Turbulent boundary layer flows, in contrast, have been slower in developing both theoretically and in accuracy for several reasons. There are many existing problems in boundary layer models, among them are limits to computational power available, the inability to handle countergradient fluxes, poor growth matching to real boundary layers, and inaccuracy in calculating the diffusion of scalar concentrations. Such transport errors exist within the boundary layer as well as into the free atmosphere above. This research uses a new method, which can provide insight into these problems, and ultimately improve boundary layer models. There are several potential applications of the insights provided by this approach, among them are estimation of cloud contamination of satellite remotely sensed surface parameters, improved flux and vertical transport calculations, and better understanding of the diurnal boundary layer growth process and its hysteresis cycle.

  17. Boundary-layer and stalling characteristics of two symmetrical NACA low-drag airfoil sections

    Science.gov (United States)

    Mccullough, George B; Gault, Donald E

    1947-01-01

    Two symmetrical airfoils, an NACA 633-018 and an NACA 631-012, were investigated for the purpose of determining their stalling and boundary-layer characteristics with a view toward the eventual application of this information to the problem of boundary-layer control. Force measurements, pressure distributions, tuft studies, and boundary-layer-profile measurements were made at a value of 5,800,000 Reynolds number. It was found that the 18-percent-thick airfoil stalled progressively from the trailing edge because of separation of the turbulent boundary layer. In contrast, the12-percent-thick airfoil stalled abruptly from a separation of flow near the leading edge before the turbulent boundary layer became subject to separation. From this it was concluded that if high values of lift are to be obtained with thin, high-critical-speed sections by means of boundary-layer control, the work must be directed toward delaying the separation of flow near the leading edge. It was found that the presence of a nose flap on the 12-percent-thick section caused the airfoil to stall in a manner similar to that of the 18-percent-thick section.

  18. PLIF Visualization of Active Control of Hypersonic Boundary Layers Using Blowing

    Science.gov (United States)

    Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Berry, Scott A.

    2008-01-01

    Planar laser-induced fluorescence (PLIF) imaging was used to visualize the boundary layer flow on a 1/3-scale Hyper-X forebody model. The boundary layer was perturbed by blowing out of orifices normal to the model surface. Two blowing orifice configurations were used: a spanwise row of 17-holes spaced at 1/8 inch, with diameters of 0.020 inches and a single-hole orifice with a diameter of 0.010 inches. The purpose of the study was to visualize and identify laminar and turbulent structures in the boundary layer and to make comparisons with previous phosphor thermography measurements of surface heating. Jet penetration and its influence on the boundary layer development was also examined as was the effect of a compression corner on downstream boundary layer transition. Based upon the acquired PLIF images, it was determined that global surface heating measurements obtained using the phosphor thermography technique provide an incomplete indicator of transitional and turbulent behavior of the corresponding boundary layer flow. Additionally, the PLIF images show a significant contribution towards transition from instabilities originating from the underexpanded jets. For this experiment, a nitric oxide/nitrogen mixture was seeded through the orifices, with nitric oxide (NO) serving as the fluorescing gas. The experiment was performed in the 31-inch Mach 10 Air Tunnel at NASA Langley Research Center.

  19. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Science.gov (United States)

    Zilitinkevich, S. S.; Esau, I. N.; Baklanov, A.

    2005-03-01

    Turbulent planetary boundary layers (PBLs) control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow). It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral) or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions) depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S were overlooked

  20. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  1. Symmetries of boundary layer equations of power-law fluids of second grade

    Institute of Scientific and Technical Information of China (English)

    Mehmet Pakdemirli; Yi(g)it Aksoy; Muhammet Y(u)r(u)soy; Chaudry Masood Khalique

    2008-01-01

    A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. The equations of motion are derived for two dimensional incom-pressible flows, and from which the boundary layer equations are derived. Symmetries of the boundary layer equations are found by using Lie group theory, and then group classifica-tion with respect to power-law index is performed. By using one of the symmetries, namely the scaling symmetry, the partial differential system is transformed into an ordinary differential system, which is numerically integrated under the classical boundary layer conditions. Effects of power-law index and second grade coefficient on the boundary layers are shown and solutions are contrasted with the usual second grade fluid solutions.

  2. Change of Surface Roughness and Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1978-01-01

    The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent ...... numerical results from higher-order closure models, it is found that, even at a downwind distance such that the internal boundary layer has grown to the full height of the planetary boundary layers, the surface stress still considerably exceeds the equilibrium value......The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent...

  3. Steady boundary layer slip flow along with heat and mass transfer over a flat porous plate embedded in a porous medium.

    Science.gov (United States)

    Aziz, Asim; Siddique, J I; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile.

  4. High-resolution PIV measurements of a transitional shock wave-boundary layer interaction

    Science.gov (United States)

    Giepman, R. H. M.; Schrijer, F. F. J.; van Oudheusden, B. W.

    2015-06-01

    This study investigates the effects of boundary layer transition on an oblique shock wave reflection. The Mach number was 1.7, the unit Reynolds number was 35 × 106 m-1, and the pressure ratio over the interaction was 1.35. Particle image velocimetry is used as the main flow diagnostics tool, supported by oil-flow and Schlieren visualizations. At these conditions, the thickness of the laminar boundary layer is only 0.2 mm, and seeding proved to be problematic as practically no seeding was recorded in the lower 40 % of the boundary layer. The top 60 % could, however, still be resolved with good accuracy and is found to be in good agreement with the compressible Blasius solution. Due to the effects of turbulent mixing, the near-wall seeding deficiency disappears when the boundary layer transitions to a turbulent state. This allowed the seeding distribution to be used as an indicator for the state of the boundary layer, permitting to obtain an approximate intermittency distribution for the boundary layer transition region. This knowledge was then used for positioning the oblique shock wave in the laminar, transitional (50 % intermittency) or turbulent region of the boundary layer. Separation is only recorded for the laminar and transitional interactions. For the laminar interaction, a large separation bubble is found, with a streamwise length of 96. The incoming boundary layer is lifted over the separation bubble and remains in a laminar state up to the impingement point of the shock wave. After the shock, transition starts and a turbulent profile is reached approximately 80-90 downstream of the shock. Under the same shock conditions, the transitional interaction displays a smaller separation bubble (43), and transition is found to be accelerated over the separation bubble.

  5. A note on boundary-layer friction in baroclinic cyclones

    CERN Document Server

    Boutle, I A; Belcher, S E; Plant, R S

    2008-01-01

    The interaction between extratropical cyclones and the underlying boundary layer has been a topic of recent discussion in papers by Adamson et. al. (2006) and Beare (2007). Their results emphasise different mechanisms through which the boundary layer dynamics may modify the growth of a baroclinic cyclone. By using different sea-surface temperature distributions and comparing the low-level winds, the differences are exposed and both of the proposed mechanisms appear to be acting within a single simulation.

  6. Tropical boundary layer equilibrium in the last ice age

    Science.gov (United States)

    Betts, Alan K.; Ridgway, W.

    1992-01-01

    A radiative-convective boundary layer model is used to assess the effect of changing sea surface temperature, pressure, wind speed, and the energy export from the tropics on the boundary layer equilibrium equivalent potential temperature. It remains difficult to reconcile the observations that during the last glacial maximum (18,000 yr BP) the snowline on the tropical mountains fell 950 m, while the tropical sea surface temperatures fell only 1-2 K.

  7. Theoretical investigation on shocklets in compressible boundary layers

    Institute of Scientific and Technical Information of China (English)

    袁湘江; 刘智勇; 沈洁; 李国良

    2014-01-01

    By the shock relationships, the wavy characteristics and the forming condi-tions of a shock wave are analyzed. The wavy characteristics of an Euler system are stud-ied theoretically. The present research focuses on the wavy characteristics of Tollmien-Schlichting (T-S) waves, the excitation conditions of shocklets in compressible boundary layers, and the viscous effect on shock. The possibility of existence of shocklets in the compressible boundary layer and the physical mechanism of formation are theoretically interpreted.

  8. LES model intercomparisons for the stable atmospheric boundary layer

    NARCIS (Netherlands)

    Moene, A.F.; Baas, P.; Bosveld, F.C.; Basu, S.

    2011-01-01

    Model intercomparisons are one possible method to gain confidence in Large-Eddy Simulation (LES) as a viable tool to study turbulence in the atmospheric boundary-layer. This paper discusses the setup and some results of two intercomparison cases focussing on the stably stratified nocturnal boundary-

  9. BOUNDARY LAYER AND VANISHING DIFFUSION LIMIT FOR NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    彭艳

    2014-01-01

    In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as the diffusion parameterαgoes to zero.

  10. Measurements in Transitional Boundary Layers Under High Free-Stream Turbulence and Strong Acceleration Conditions.

    Science.gov (United States)

    Volino, Ralph John

    1995-01-01

    Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong (K = {nuover U_sp{infty} {2}}{dUinftyover dx} as high as 9times 10^{ -6}) acceleration. The high FSTI experiments are the main focus of the work. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. The high FSTI boundary layers undergo transition from a strongly disturbed non-turbulent state to a fully-turbulent state. Due to the stabilizing effect of strong acceleration, the transition zones are of extended length in spite of the high FSTI. Transitional values of skin friction coefficients and Stanton numbers drop below flat-plate, low FSTI, turbulent flow correlations, but remain well above laminar flow values. Mean velocity and temperature profiles exhibit clear changes in shape as the flow passes through transition. Turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. Turbulent transport is strongly suppressed below values in unaccelerated turbulent boundary layers. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Octant analysis shows a fundamental difference between transitional and fully-turbulent boundary layers. Transitional boundary layers are characterized by incomplete mixing compared to fully-turbulent boundary layers. Similar octant analysis results are observed in both low and high FSTI cases. Spectral analysis suggests that the non-turbulent zone of the high FSTI flow is dominated by large scale

  11. Large Eddy Simulation of a Film Cooling Flow Injected from an Inclined Discrete Cylindrical Hole into a Crossflow with Zero-Pressure Gradient Turbulent Boundary Layer

    Science.gov (United States)

    Johnson, Perry L.; Shyam, Vikram

    2012-01-01

    A Large Eddy Simulation (LES) is performed of a high blowing ratio (M = 1.7) film cooling flow with density ratio of unity. Mean results are compared with experimental data to show the degree of fidelity achieved in the simulation. While the trends in the LES prediction are a noticeable improvement over Reynolds-Averaged Navier-Stokes (RANS) predictions, there is still a lack a spreading on the underside of the lifted jet. This is likely due to the inability of the LES to capture the full range of influential eddies on the underside of the jet due to their smaller structure. The unsteady structures in the turbulent coolant jet are also explored and related to turbulent mixing characteristics

  12. Sensor for Boundary Shear Stress in Fluid Flow

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Chang, Zensheu; Trease, Brian P.; Kerenyi, Kornel; Widholm, Scott E.; Ostlund, Patrick N.

    2012-01-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex and lead to low-fidelity results. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear stress, normal stress, and their fluctuations are attractive alternatives. However, most direct-measurement shear sensors are bulky in size or not compatible to fluid flow. A sensor has been developed that consists of a floating plate with folded beam support and an optical grid on the back, combined with a high-resolution optical position probe. The folded beam support makes the floating plate more flexible in the sensing direction within a small footprint, while maintaining high stiffness in the other directions. The floating plate converts the shear force to displacement, and the optical probe detects the plate s position with nanometer resolution by sensing the pattern of the diffraction field of the grid through a glass window. This configuration makes the sensor compatible with liquid flow applications.

  13. Effects of boundary-layer separation controllers on a desktop fume hood.

    Science.gov (United States)

    Huang, Rong Fung; Chen, Jia-Kun; Hsu, Ching Min; Hung, Shuo-Fu

    2016-10-01

    A desktop fume hood installed with an innovative design of flow boundary-layer separation controllers on the leading edges of the side plates, work surface, and corners was developed and characterized for its flow and containment leakage characteristics. The geometric features of the developed desktop fume hood included a rearward offset suction slot, two side plates, two side-plate boundary-layer separation controllers on the leading edges of the side plates, a slanted surface on the leading edge of the work surface, and two small triangular plates on the upper left and right corners of the hood face. The flow characteristics were examined using the laser-assisted smoke flow visualization technique. The containment leakages were measured by the tracer gas (sulphur hexafluoride) detection method on the hood face plane with a mannequin installed in front of the hood. The results of flow visualization showed that the smoke dispersions induced by the boundary-layer separations on the leading edges of the side plates and work surface, as well as the three-dimensional complex flows on the upper-left and -right corners of the hood face, were effectively alleviated by the boundary-layer separation controllers. The results of the tracer gas detection method with a mannequin standing in front of the hood showed that the leakage levels were negligibly small (≤0.003 ppm) at low face velocities (≥0.19 m/s). PMID:27104797

  14. Structure and Growth of the Marine Boundary Layer

    Science.gov (United States)

    Mccumber, M.

    1984-01-01

    LANDSAT visible imagery and a one-dimensional Lagrangian boundary layer model were used to hypothesize the nature and the development of the marine boundary layer during a winter episode of strong seaward cold air advection. Over-water heating and moistening of the cold, dry continental air is estimable from linear relations involving horizontal gradients of the near-surface air temperature and humidity. A line of enhanced convection paralleling the Atlantic U.S. coast from south of New York Bay to the vicinity of Virginia Beach, VA was attributed to stronger convergence at low levels. This feature was characterized as a mesoscale front. With the assistance of a three-dimensional mesoscale boundary layer model, initialized with data obtained from the MASEX, the marine boundary layer can be mapped over the entire Atlantic coastal domain and the evolution of the boundary layer can be studied as a function of different characteristics of important surface level forcings. The effects on boundary layer growth due to the magnitude and pattern of sea surface temperature, to the shape of the coastline, and to atmospheric conditions, such as the orientation of the prevailing wind are examined.

  15. Mechanism of transition in a hypersonic sharp cone boundary layer with zero angle of attack

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Firstly, the steady laminar flow field of a hypersonic sharp cone boundary layer with zero angle of attack was computed. Then, two groups of finite amplitude T-S wave disturbances were introduced at the entrance of the computational field, and the spatial mode transition process was studied by direct numerical simulation (DNS) method.The mechanism of the transition process was analyzed. It was found that the change of the stability characteristics of the mean flow profile was the key issue. Furthermore, the characteristics of evolution for the disturbances of different modes in the hypersonic sharp cone boundary layer were discussed.

  16. Boundary layers in turbulent Rayleigh-B\\'enard convection in air

    CERN Document Server

    Puits, Ronald du; Resagk, Christian; Thess, André

    2012-01-01

    The boundary layer flow in a Rayleigh-B\\'enard convection cell of rectangular shape has been visualized in this fluid dynamics video. The experiment has been undertaken in air at a Rayleigh number $Ra=1.3\\times 10^{10}$ and a Prandtl number $Pr=0.7$. Various sequences captured at selected positions of the heating plate show that the boundary layer is a very transient flow region characterized by coherent structures that permanently evolve. It becomes fully turbulent in the areas where the large-scale circulation impinge or leave the bottom plate.

  17. Immersed boundary methods for viscoelastic particulate flows

    Science.gov (United States)

    Krishnan, Sreenath; Shaqfeh, Eric; Iaccarino, Gianluca

    2015-11-01

    Viscoelastic particulate suspensions play key roles in many energy applications. Our goal is to develop a simulation-based tool for engineering such suspensions. This study is concerned with fully resolved simulations, wherein all flow scales associated with the particle motion are resolved. The present effort is based on Immersed Boundary methods, in which the domain grids do not conform to particle geometry. In this approach, the conservation of momentum equations, which include both Newtonian and non-Newtonian stresses, are solved over the entire domain including the region occupied by the particles. The particles are defined on a separate Lagrangian mesh that is free to move over an underlying Eulerian grid. The development of an immersed boundary forcing technique for moving bodies within an unstructured-mesh, massively parallel, non-Newtonian flow solver is thus developed and described. The presentation will focus on the numerical algorithm and measures taken to enable efficient parallelization and transfer of information between the underlying fluid grid and the particle mesh. Several validation test cases will be presented including sedimentation under orthogonal shear - a key flow in drilling muds and fracking fluids.

  18. Similarity solution to three dimensional boundary layer flow of second grade nanofluid past a stretching surface with thermal radiation and heat source/sink

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia); Muhammad, Taseer [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Shehzad, S. A., E-mail: ali-qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Alsaedi, A. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2015-01-15

    Development of human society greatly depends upon solar energy. Heat, electricity and water from nature can be obtained through solar power. Sustainable energy generation at present is a critical issue in human society development. Solar energy is regarded one of the best sources of renewable energy. Hence the purpose of present study is to construct a model for radiative effects in three-dimensional of nanofluid. Flow of second grade fluid by an exponentially stretching surface is considered. Thermophoresis and Brownian motion effects are taken into account in presence of heat source/sink and chemical reaction. Results are derived for the dimensionless velocities, temperature and concentration. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration. Numerical computations are presented to examine the values of skin-friction coefficients, Nusselt and Sherwood numbers. It is observed that the values of skin-friction coefficients are more for larger values of second grade parameter. Moreover the radiative effects on the temperature and concentration are quite reverse.

  19. Radiation and MHD Boundary Layer Stagnation-Point of Nanofluid Flow towards a Stretching Sheet Embedded in a Porous Medium: Analysis of Suction/Injection and Heat Generation/Absorption with Effect of the Slip Model

    Directory of Open Access Journals (Sweden)

    Emad H. Aly

    2015-01-01

    Full Text Available In existence of the velocity slip model, suction/injection, and heat source/sink, the boundary layer flow near a stagnation-point over a heated stretching sheet in a porous medium saturated by a nanofluid, with effect of the thermal radiation and magnetic field, has been studied. The governing system of partial differential equations was transformed into a system of nonlinear ordinary equations using the appropriate similarity transforms. Then, the obtained system has been numerically solved by the Chebyshev pseudospectral differentiation matrix (ChPDM approach. It was found that, at some special cases, the current results are in a very good agreement with those presented in the literature. In addition, the flow velocity, surface shear stress, temperature, and concentration are strongly influenced on applying the slip model, which is, therefore, extremely important to predict the flow characteristics accurately in the nanofluid mechanics. It was proved that this velocity slip condition is mandatory and should be taken into account in nanoscale research; otherwise, false results and a spurious physical sight are to be gained. Further, it was deduced that the influence of the stream velocity and shear stress reaches very rapidly the stable manner for both cases of the velocity ratio. However, when this ratio is equal to one, the skin friction coefficient, reduced Nusselt number, and reduced Sherwood number are constant and equal to zero, 0.721082, and 3.06155, respectively. Furthermore, it was proved that the reduced Nusselt number decreases with increase of Brownian motion and thermophoresis; has a very weak effect on increasing Lewis number; increases with increase of Prandtl number; and is higher in the cases of suction, velocity ratio > 1 and heat source in comparison with injection, velocity ratio 1 in comparison with injection and velocity ratio < 1, respectively; and is approximately the same in the heat source and heat sink cases. Finally

  20. An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent fluid-structure interaction problems

    Science.gov (United States)

    Farhat, Charbel; Lakshminarayan, Vinod K.

    2014-04-01

    Embedded Boundary Methods (EBMs) for Computational Fluid Dynamics (CFD) are usually constructed in the Eulerian setting. They are particularly attractive for complex Fluid-Structure Interaction (FSI) problems characterized by large structural motions and deformations. They are also critical for flow problems with topological changes and FSI problems with cracking. For all of these problems, the alternative Arbitrary Lagrangian-Eulerian (ALE) methods are often unfeasible because of the issue of mesh crossovers. However for viscous flows, Eulerian EBMs for CFD do not track the boundary layers around dynamic rigid or flexible bodies. Consequently, the application of these methods to viscous FSI problems requires either a high mesh resolution in a large part of the computational fluid domain, or adaptive mesh refinement. Unfortunately, the first option is computationally inefficient, and the second one is labor intensive. For these reasons, an alternative approach is proposed in this paper for maintaining all moving boundary layers resolved during the simulation of a turbulent FSI problem using an EBM for CFD. In this approach, which is simple and computationally reasonable, the underlying non-body-fitted mesh is rigidly translated and/or rotated in order to track the rigid component of the motion of the dynamic obstacle. Then, the flow computations away from the embedded surface are performed using the ALE framework, and the wall boundary conditions are treated by the chosen Eulerian EBM for CFD. Hence, the solution of the boundary layer tracking problem proposed in this paper can be described as an ALE implementation of a given EBM for CFD. Its basic features are illustrated with the Large Eddy Simulation using a non-body-fitted mesh of a turbulent flow past an airfoil in heaving motion. Its strong potential for the solution of challenging FSI problems at reasonable computational costs is also demonstrated with the simulation of turbulent flows past a family of