WorldWideScience

Sample records for boundary layer effect

  1. Experimental study on effects of inlet boundary layer thickness and boundary layer fence in a turbine cascade

    International Nuclear Information System (INIS)

    Jun, Y. M.; Chung, J. T.

    2000-01-01

    The working fluid from the combustor to the turbine stage of a gas turbine makes various boundary layer thickness. Since the inlet boundary layer thickness is one of the important factors that affect the turbine efficiency, It is necessary to investigate secondary flow and loss with various boundary layer thickness conditions. In the present study, the effect of various inlet boundary layer thickness on secondary flow and loss and the proper height of the boundary layer fences for various boundary layer thickness were investigated. Measurements of secondary flow velocity and total pressure loss within and downstream of the passage were taken under 5 boundary layer thickness conditions, 16, 36, 52, 69, 110mm. It was found that total pressure loss and secondary flow areas were increased with increase of thickness but they were maintained almost at the same position. At the following research about the boundary layer fences, 1/6, 1/3, 1/2 of each inlet boundary layer thickness and 12mm were used as the fence heights. As a result, it was observed that the proper height of the fences was generally constant since the passage vortex remained almost at the same position. Therefore once the geometry of a cascade is decided, the location of the passage vortex and the proper fence height are appeared to be determined at the same time. When the inlet boundary layer thickness is relatively small, the loss caused by the proper fence becomes bigger than end wall loss so that it dominates secondary loss. In these cases the proper fence height is decided not by the cascade geometry but by the inlet boundary layer thickness as previous investigations

  2. Boundary-layer effects in droplet splashing

    Science.gov (United States)

    Riboux, Guillaume; Gordillo, Jose Manuel

    2017-11-01

    A drop falling onto a solid substrate will disintegrate into smaller parts when its impact velocity exceeds the so called critical velocity for splashing. Under these circumstances, the very thin liquid sheet ejected tangentially to the solid after the drop touches the substrate, lifts off as a consequence of the aerodynamic forces exerted on it and finally breaks into smaller droplets, violently ejected radially outwards, provoking the splash. Here, the tangential deceleration experienced by the fluid entering the thin liquid sheet is investigated making use of boundary layer theory. The velocity component tangent to the solid, computed using potential flow theory provides the far field boundary condition as well as the pressure gradient for the boundary layer equations. The structure of the flow permits to find a self similar solution of the boundary layer equations. This solution is then used to calculate the boundary layer thickness at the root of the lamella as well as the shear stress at the wall. The splash model presented in, which is slightly modified to account for the results obtained from the boundary layer analysis, provides a very good agreement between the measurements and the predicted values of the critical velocity for the splash.

  3. Effect of externally generated turbulence on wave boundary layer

    DEFF Research Database (Denmark)

    Fredsøe, Jørgen; Sumer, B. Mutlu; Kozakiewicz, A.

    2003-01-01

    This experimental study deals with the effect of externally generated turbulence on the oscillatory boundary layer to simulate the turbulence in the wave boundary layer under broken waves in the swash zone. The subject has been investigated experimentally in a U-shaped, oscillating water tunnel...... results. The mean and turbulence quantities in the outer flow region are increased substantially with the introduction of the grids. It is shown that the externally generated turbulence is able to penetrate the bed boundary layer, resulting in an increase in the bed shear stress, and therefore...

  4. Study of effect of a smooth hump on hypersonic boundary layer instability

    Science.gov (United States)

    Park, Donghun; Park, Seung O.

    2016-12-01

    Effect of a two-dimensional smooth hump on linear instability of hypersonic boundary layer is studied by using parabolized stability equations. Linear evolution of mode S over a hump is analyzed for Mach 4.5 and 5.92 flat plate and Mach 7.1 sharp cone boundary layers. Mean flow for stability analysis is obtained by solving the parabolized Navier-Stokes equations. Hump with height smaller than local boundary layer thickness is considered. The case of flat plate and sharp cone without the hump are also studied to provide comparable data. For flat plate boundary layers, destabilization and stabilization effect is confirmed for hump located at upstream and downstream of synchronization point, respectively. Results of parametric studies to examine the effect of hump height, location, etc., are also given. For sharp cone boundary layer, stabilization influence of hump is also identified for a specific range of frequency. Stabilization influence of hump on convective instability of mode S is found to be a possible cause of previous experimental observations of delaying transition in hypersonic boundary layers.

  5. Effect of boundary layer thickness on the flow characteristics around a rectangular prism

    International Nuclear Information System (INIS)

    Ji, Ho Seong; Kim, Kyung Chun

    2001-01-01

    Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers (thick, medium and thin) were generated in the atmospheric boundary layer wind tunnel at Pusan National University. The thick boundary layer having 670mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer(δ=270mm) was the natural turbulent boundary layer at the test section with fully long developing length(18m). The thin boundary layer with 36.5mm thickness was generated by on a smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity and the height of the model was 7.9X10 3 . The mean velocity vector fields and turbulent kinetic energy distribution were measured and compared. The effect of boundary layer thickness is clearly observed not only in the length of separation bubble but also in the reattachment points. The thinner boundary layer thickness, the higher turbulent kinetic energy peak around the model roof. It is strongly recommended that the height ratio between model and approaching boundary layer thickness should be a major parameter

  6. Effects of shock on hypersonic boundary layer stability

    Science.gov (United States)

    Pinna, F.; Rambaud, P.

    2013-06-01

    The design of hypersonic vehicles requires the estimate of the laminar to turbulent transition location for an accurate sizing of the thermal protection system. Linear stability theory is a fast scientific way to study the problem. Recent improvements in computational capabilities allow computing the flow around a full vehicle instead of using only simplified boundary layer equations. In this paper, the effect of the shock is studied on a mean flow provided by steady Computational Fluid Dynamics (CFD) computations and simplified boundary layer calculations.

  7. The effects of external conditions in turbulent boundary layers

    Science.gov (United States)

    Brzek, Brian G.

    The effects of multiple external conditions on turbulent boundary layers were studied in detail. These external conditions include: surface roughness, upstream turbulence intensity, and pressure gradient. Furthermore, the combined effects of these conditions show the complicated nature of many realistic flow conditions. It was found that the effects of surface roughness are difficult to generalize, given the importance of so many parameters. These parameters include: roughness geometry, roughness regime, roughness height to boundary layer thickness, (k/delta), roughness parameter, ( k+), Reynolds number, and roughness function (Delta B+). A further complication, is the difficulty in computing the wall shear stress, tauw/rho. For the sand grain type roughness, the mean velocity and Reynolds stresses were studied in inner and outer variables, as well as, boundary layer parameters, anisotropy tensor, production term, and viscous stress and form drag contributions. To explore the effects of roughness and Reynolds number dependence in the boundary layer, a new experiment was carefully designed to properly capture the x-dependence of the single-point statistics. It was found that roughness destroys the viscous layer near the wall, thus, reducing the contribution of the viscous stress in the wall region. As a result, the contribution in the skin friction due to form drag increases, while the viscous stress decreases. This yields Reynolds number invariance in the skin friction, near-wall roughness parameters, and inner velocity profiles as k + increases into the fully rough regime. However, in the transitionally rough regime, (i.e., 5 component shows the largest influence of roughness, where the high peak near the wall was decreased and became nearly flat for the fully rough regime profiles. In addition, the Reynolds stresses in outer variables show self-similarity for fixed experimental conditions. However, as the roughness parameter, k +, increases, all Reynolds stress

  8. Turbulent boundary layer heat transfer experiments: Convex curvature effects including introduction and recovery

    Science.gov (United States)

    Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1982-01-01

    Measurements were made of the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15% to 20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: the effect of initial boundary layer thickness, the effect of freestream velocity, the effect of freestream acceleration, the effect of unheated starting length, and the effect of the maturity of the boundary layer. An existing curvature prediction model was tested against this broad heat transfer data base to determine where it could appropriately be used for heat transfer predictions.

  9. Boundary-layer diabatic processes, the virtual effect, and convective self-aggregation

    Science.gov (United States)

    Yang, D.

    2017-12-01

    The atmosphere can self-organize into long-lasting large-scale overturning circulations over an ocean surface with uniform temperature. This phenomenon is referred to as convective self-aggregation and has been argued to be important for tropical weather and climate systems. Here we use a 1D shallow water model and a 2D cloud-resolving model (CRM) to show that boundary-layer diabatic processes are essential for convective self-aggregation. We will show that boundary-layer radiative cooling, convective heating, and surface buoyancy flux help convection self-aggregate because they generate available potential energy (APE), which sustains the overturning circulation. We will also show that evaporative cooling in the boundary layer (cold pool) inhibits convective self-aggregation by reducing APE. Both the shallow water model and CRM results suggest that the enhanced virtual effect of water vapor can lead to convective self-aggregation, and this effect is mainly in the boundary layer. This study proposes new dynamical feedbacks for convective self-aggregation and complements current studies that focus on thermodynamic feedbacks.

  10. Boundary-Layer Effects on Acoustic Transmission Through Narrow Slit Cavities.

    Science.gov (United States)

    Ward, G P; Lovelock, R K; Murray, A R J; Hibbins, A P; Sambles, J R; Smith, J D

    2015-07-24

    We explore the slit-width dependence of the resonant transmission of sound in air through both a slit array formed of aluminum slats and a single open-ended slit cavity in an aluminum plate. Our experimental results accord well with Lord Rayleigh's theory concerning how thin viscous and thermal boundary layers at a slit's walls affect the acoustic wave across the whole slit cavity. By measuring accurately the frequencies of the Fabry-Perot-like cavity resonances, we find a significant 5% reduction in the effective speed of sound through the slits when an individual viscous boundary layer occupies only 5% of the total slit width. Importantly, this effect is true for any airborne slit cavity, with the reduction being achieved despite the slit width being on a far larger scale than an individual boundary layer's thickness. This work demonstrates that the recent prevalent loss-free treatment of narrow slit cavities within acoustic metamaterials is unrealistic.

  11. Effects of micro-ramps on a shock wave/turbulent boundary layer interaction

    NARCIS (Netherlands)

    Blinde, P.L.; Humble, R.A.; Van Oudheusden, B.W.; Scarano, F.

    2009-01-01

    Stereoscopic particle image velocimetry is used to investigate the effects of micro-ramp sub-boundary layer vortex generators, on an incident shock wave/boundary layer interaction at Mach 1.84. Single- and double-row arrangements of micro-ramps are considered. The micro-ramps have a height of 20% of

  12. Microbubble drag reduction in liquid turbulent boundary layers

    International Nuclear Information System (INIS)

    Merkle, C.L.; Deutsch, S.

    1992-01-01

    The interactions between a dense cloud of small bubbles and a liquid turbulent boundary layer are reviewed on the basis of available experimental observations to understand and quantify their capability for reducing skin friction. Gas bubbles are generally introduced into the boundary layer by injection through a porous surface or by electrolysis. After injection, the bubbles stay near the wall in boundary-layer-like fashion giving rise to strong gradients in both velocity and gas concentration. In general, the magnitude of the skin friction reduction increases as the volume of bubbles in the boundary layer is increased until a maximum skin friction reduction of typically 80-90% of the undisturbed skin friction level is reached. The volumetric gas flow required for this maximum is nominally equal to the volume flow of the liquid in the boundary layer. Bubble size estimates indicate that in most microbubble experiments the bubbles have been intermediate in size between the inner and outer scales of the undisturbed boundary layer. Additional studies with other nondimensional bubble sizes would be useful. However, the bubble size is most likely controlled by the injection process, and considerably different conditions would be required to change this ratio appreciably. The trajectories of the bubble clouds are primarily determined by the random effects of turbulence and bubble-bubble interactions. The effects of buoyancy represent a weaker effect. The trajectories are unlike the deterministic trajectory of an individual bubble in a time-averaged boundary layer. Bubbles are most effective in high speed boundary layers and, for the bubble sizes tested to date, produce an effect that persists for some on hundred boundary layer thicknesses. Modeling suggests that microbubbles reduce skin friction by increasing the turbulence Reynolds number in the buffer layer in a manner similar to polymers

  13. Development of boundary layers

    International Nuclear Information System (INIS)

    Herbst, R.

    1980-01-01

    Boundary layers develop along the blade surfaces on both the pressure and the suction side in a non-stationary flow field. This is due to the fact that there is a strongly fluctuating flow on the downstream blade row, especially as a result of the wakes of the upstream blade row. The author investigates the formation of boundary layers under non-stationary flow conditions and tries to establish a model describing the non-stationary boundary layer. For this purpose, plate boundary layers are measured, at constant flow rates but different interferent frequency and variable pressure gradients. By introducing the sample technique, measurements of the non-stationary boundary layer become possible, and the flow rate fluctuation can be divided in its components, i.e. stochastic turbulence and periodical fluctuation. (GL) [de

  14. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    1974-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  15. Removing Boundary Layer by Suction

    Science.gov (United States)

    Ackeret, J

    1927-01-01

    Through the utilization of the "Magnus effect" on the Flettner rotor ship, the attention of the public has been directed to the underlying physical principle. It has been found that the Prandtl boundary-layer theory furnishes a satisfactory explanation of the observed phenomena. The present article deals with the prevention of this separation or detachment of the flow by drawing the boundary layer into the inside of a body through a slot or slots in its surface.

  16. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    Science.gov (United States)

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  17. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  18. Boundary Layer Effect on Behavior of Discrete Models.

    Science.gov (United States)

    Eliáš, Jan

    2017-02-10

    The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson's ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.

  19. The effect of moving waves on neutral marine atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    Sam Ali Al

    2014-01-01

    Full Text Available Large eddy simulations are performed to study the effects of wind-wave direction misalignment of the neutral marine atmospheric boundary layer over a wavy wall. The results show that the wind-wave misalignment has a significant effect on the velocity profiles and the pressure fluctuation over the wave surface. These effects are not confined to the near wave surface region but extend over the whole atmospheric surface layer.

  20. Stability of spatially developing boundary layers

    Science.gov (United States)

    Govindarajan, Rama

    1993-07-01

    A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms of O(1) and O(R(exp -1)) in the boundary-layer Reynolds number R. Although containing the Orr-Sommerfeld operator, the present approach does not yield the Orr-Sommerfeld equation in any rational limit. In Blasius flow, the present stability equation is consistent with that of Bertolotti et al. (1992) to terms of O(R(exp -1)). For the Falkner-Skan similarity solutions neutral boundaries are computed without the necessity of having to march in space. Results show that the effects of spatial growth are striking in flows subjected to adverse pressure gradients.

  1. Effects of Nose Bluntness on Hypersonic Boundary-Layer Receptivity and Stability Over Cones

    Science.gov (United States)

    Kara, Kursat; Balakumar, Ponnampalam; Kandil, Osama A.

    2011-01-01

    The receptivity to freestream acoustic disturbances and the stability properties of hypersonic boundary layers are numerically investigated for boundary-layer flows over a 5 straight cone at a freestream Mach number of 6.0. To compute the shock and the interaction of the shock with the instability waves, the Navier-Stokes equations in axisymmetric coordinates were solved. In the governing equations, inviscid and viscous flux vectors are discretized using a fifth-order accurate weighted-essentially-non-oscillatory scheme. A third-order accurate total-variation-diminishing Runge-Kutta scheme is employed for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. The appearance of instability waves near the nose region and the receptivity of the boundary layer with respect to slow mode acoustic waves are investigated. Computations confirm the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary-layer transition. The current solutions, compared with experimental observations and other computational results, exhibit good agreement.

  2. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  3. Effects of Boundary Layer Height on the Model of Ground-Level PM2.5 Concentrations from AOD: Comparison of Stable and Convective Boundary Layer Heights from Different Methods

    Directory of Open Access Journals (Sweden)

    Zengliang Zang

    2017-06-01

    Full Text Available The aerosol optical depth (AOD from satellites or ground-based sun photometer spectral observations has been widely used to estimate ground-level PM2.5 concentrations by regression methods. The boundary layer height (BLH is a popular factor in the regression model of AOD and PM2.5, but its effect is often uncertain. This may result from the structures between the stable and convective BLHs and from the calculation methods of the BLH. In this study, the boundary layer is divided into two types of stable and convective boundary layer, and the BLH is calculated using different methods from radiosonde data and National Centers for Environmental Prediction (NCEP reanalysis data for the station in Beijing, China during 2014–2015. The BLH values from these methods show significant differences for both the stable and convective boundary layer. Then, these BLHs were introduced into the regression model of AOD-PM2.5 to seek the respective optimal BLH for the two types of boundary layer. It was found that the optimal BLH for the stable boundary layer is determined using the method of surface-based inversion, and the optimal BLH for the convective layer is determined using the method of elevated inversion. Finally, the optimal BLH and other meteorological parameters were combined to predict the PM2.5 concentrations using the stepwise regression method. The results indicate that for the stable boundary layer, the optimal stepwise regression model includes the factors of surface relative humidity, BLH, and surface temperature. These three factors can significantly enhance the prediction accuracy of ground-level PM2.5 concentrations, with an increase of determination coefficient from 0.50 to 0.68. For the convective boundary layer, however, the optimal stepwise regression model includes the factors of BLH and surface wind speed. These two factors improve the determination coefficient, with a relatively low increase from 0.65 to 0.70. It is found that the

  4. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM......) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation...... and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically...

  5. The effect of small streamwise velocity distortion on the boundary layer flow over a thin flat plate with application to boundary layer stability theory

    Science.gov (United States)

    Goldstein, M. E.; Leib, S. J.; Cowley, S. J.

    1990-01-01

    Researchers show how an initially linear spanwise disturbance in the free stream velocity field is amplified by leading edge bluntness effects and ultimately leads to a small amplitude but linear spanwise motion far downstream from the edge. This spanwise motion is imposed on the boundary layer flow and ultimately causes an order-one change in its profile shape. The modified profiles are highly unstable and can support Tollmein-Schlichting wave growth well upstream of the theoretical lower branch of the neutral stability curve for a Blasius boundary layer.

  6. An investigation of the effects of the propeller slipstream of a laminar wing boundary layer

    Science.gov (United States)

    Howard, R. M.; Miley, S. J.; Holmes, B. J.

    1985-01-01

    A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.

  7. Effects of boundary-layer separation controllers on a desktop fume hood.

    Science.gov (United States)

    Huang, Rong Fung; Chen, Jia-Kun; Hsu, Ching Min; Hung, Shuo-Fu

    2016-10-02

    A desktop fume hood installed with an innovative design of flow boundary-layer separation controllers on the leading edges of the side plates, work surface, and corners was developed and characterized for its flow and containment leakage characteristics. The geometric features of the developed desktop fume hood included a rearward offset suction slot, two side plates, two side-plate boundary-layer separation controllers on the leading edges of the side plates, a slanted surface on the leading edge of the work surface, and two small triangular plates on the upper left and right corners of the hood face. The flow characteristics were examined using the laser-assisted smoke flow visualization technique. The containment leakages were measured by the tracer gas (sulphur hexafluoride) detection method on the hood face plane with a mannequin installed in front of the hood. The results of flow visualization showed that the smoke dispersions induced by the boundary-layer separations on the leading edges of the side plates and work surface, as well as the three-dimensional complex flows on the upper-left and -right corners of the hood face, were effectively alleviated by the boundary-layer separation controllers. The results of the tracer gas detection method with a mannequin standing in front of the hood showed that the leakage levels were negligibly small (≤0.003 ppm) at low face velocities (≥0.19 m/s).

  8. Nonlinear Transient Growth and Boundary Layer Transition

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  9. Sublayer of Prandtl Boundary Layers

    Science.gov (United States)

    Grenier, Emmanuel; Nguyen, Toan T.

    2018-03-01

    The aim of this paper is to investigate the stability of Prandtl boundary layers in the vanishing viscosity limit {ν \\to 0} . In Grenier (Commun Pure Appl Math 53(9):1067-1091, 2000), one of the authors proved that there exists no asymptotic expansion involving one of Prandtl's boundary layer, with thickness of order {√{ν}} , which describes the inviscid limit of Navier-Stokes equations. The instability gives rise to a viscous boundary sublayer whose thickness is of order {ν^{3/4}} . In this paper, we point out how the stability of the classical Prandtl's layer is linked to the stability of this sublayer. In particular, we prove that the two layers cannot both be nonlinearly stable in L^∞. That is, either the Prandtl's layer or the boundary sublayer is nonlinearly unstable in the sup norm.

  10. Boundary layer effects on the vortex shedding in a Donaldson- type hydrofoil

    International Nuclear Information System (INIS)

    Fontanals, A; Guardo, A; Egusquiza, E; Zobeiri, A; Farhat, M; Avellan, F

    2014-01-01

    Fluid - Structure Interaction (FSI) phenomena is becoming a relevant study field for the design or revamping of hydropower plants. The generalized trend of increasing flow rates and reducing rotor blades/stay vanes thickness in order to improve the efficiency of the machine together with a major push from plant owners/operators for production flexibility (partial load operation is more common nowadays) make the FSI between the vortex shedding phenomenon and the vanes/blades of the machine an area of interest. From a design point of view, the machine structure has to resist all the hydrodynamic forces generated and maintain tension stresses under the fatigue limit to ensure a machine lifetime of several decades. To accomplish that goal, designers have to assure there is no presence of strong coupling phenomena (lock-in) between the vortex shedding frequency and the eigenfrequencies of the structure. As the vortex street is directly related to the state of the boundary layer along the hydrofoil, in this paper the effect of the boundary layer on the vortex shedding in a Donaldson-type hydrofoil is studied using Computational Fluid Dynamics (CFD). The development of the boundary layer along the Donaldson trailing edge hydrofoil chord is presented under lock-off conditions. The results are validated against previously obtained experimental results. Since the Donaldson trailing edge is non-symmetric, the boundary layer velocity profiles are reported for the suction and pressure side of the hydrofoil. In addition, the effect of the Donaldson trailing edge on laminar-to-turbulent transition on both sides of the hydrofoil is studied

  11. Effect of leading-edge geometry on boundary-layer receptivity to freestream sound

    Science.gov (United States)

    Lin, Nay; Reed, Helen L.; Saric, W. S.

    1991-01-01

    The receptivity to freestream sound of the laminar boundary layer over a semi-infinite flat plate with an elliptic leading edge is simulated numerically. The incompressible flow past the flat plate is computed by solving the full Navier-Stokes equations in general curvilinear coordinates. A finite-difference method which is second-order accurate in space and time is used. Spatial and temporal developments of the Tollmien-Schlichting wave in the boundary layer, due to small-amplitude time-harmonic oscillations of the freestream velocity that closely simulate a sound wave travelling parallel to the plate, are observed. The effect of leading-edge curvature is studied by varying the aspect ratio of the ellipse. The boundary layer over the flat plate with a sharper leading edge is found to be less receptive. The relative contribution of the discontinuity in curvature at the ellipse-flat-plate juncture to receptivity is investigated by smoothing the juncture with a polynomial. Continuous curvature leads to less receptivity. A new geometry of the leading edge, a modified super ellipse, which provides continuous curvature at the juncture with the flat plate, is used to study the effect of continuous curvature and inherent pressure gradient on receptivity.

  12. Experimental investigation of wave boundary layer

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2003-01-01

    A review is presented of experimental investigation of wave boundary layer. The review is organized in six main sections. The first section describes the wave boundary layer in a real-life environment and its simulation in the laboratory in an oscillating water tunnel and in a water tank...... with an oscillating seabed. A brief account is given of measured quantities, measurement techniques (LDA, PIV, flow visualization) and limitations/constraints in the experimental investigation of the wave boundary layer in the laboratory. The second section concentrates on uniform oscillating boundary layers...

  13. Analysis of Ground Effects on Aerodynamic Characteristics of Aerofoils Using Boundary Layer Approximation

    Science.gov (United States)

    Takahashi, Yuji; Kikuchi, Masanori; Hirano, Kimitaka

    A study of a new high-speed zero-emission transportation “Aerotrain” is being carried out in Tohoku University and the University of Miyazaki. Because the aerotrain utilizes the ground effect, research on the aerofoil section, which can harness the ground effect effectively, is important. The aerotrain moves along a U-shaped guideway, which has a ground and sidewalls, so it has many viscous interference elements. In an analysis of the ground effects on the aerodynamic characteristics of aerofoils, the boundary layers on the aerofoil surface must be considered. At first, velocity distributions on the surfaces of aerofoils in potential flows are computed using the vortex method, then the momentum integration equations of the boundary layer are solved with experimental formulas. This procedure has the following advantages: modifications of the aerofoil section are easy because it is not necessary to make complicated computational grids, boundary layer transition and separation can be predicted using empirical procedures. The aerodynamic characteristics of four types of aerofoil sections are investigated to clarify the relationship between aerofoil sections and ground effects. Computational results are compared with experimental results obtained using a towing wind tunnel to verify computational precisions. In addition, aerofoil characteristics at an actual cruise speed are analyzed.

  14. Boundary layer on a flat plate with suction

    International Nuclear Information System (INIS)

    Favre, A.; Dumas, R.; Verollet, E.

    1961-01-01

    This research done in wind tunnel concerns the turbulent boundary layer of a porous flat plate with suction. The porous wall is 1 m long and begins 1 m downstream of the leading edge. The Reynolds number based on the boundary layer thickness is of the order of 16.300. The suction rate defined as the ratio of the velocity perpendicular to the wall to the external flow velocity ranges from 0 to 2 per cent. The pressure gradient can be controlled. The mean velocity profiles have been determined for various positions and suction rates by means of total pressure probes together with the intensities of the turbulent velocity fluctuations components, energy spectra and correlations by means of hot wire anemometers, spectral analyser and correlator. The stream lines, the values of the viscous and turbulent shear stresses, of the local wall friction, of the turbulent energy production term, with some information on the dissipation of the energy have been derived from these measurements. For these data the integral of equation of continuity in boundary layer have been drawn. The suction effects on the boundary layer are important. The suction thoroughly alters the mean velocity profiles by increasing the viscous shear stresses near the wall and decreasing them far from the wall, it diminishes the longitudinal and transversal turbulence intensities, the turbulent shear stresses, and the production of energy of turbulence. These effects are much stressed in the inner part of the boundary layer. On the other hand the energy spectra show that the turbulence scale is little modified, the boundary layer thickness being not much diminished by the suction. The suction effects can be appreciated by comparing twice the suction rate to the wall friction coefficient (assumed airtight), quite noticeable as soon as the rate is about unity, they become very important when it reaches ten. (author) [fr

  15. Density effects on turbulent boundary layer structure: From the atmosphere to hypersonic flow

    Science.gov (United States)

    Williams, Owen J. H.

    This dissertation examines the effects of density gradients on turbulent boundary layer statistics and structure using Particle Image Velocimetry (PIV). Two distinct cases were examined: the thermally stable atmospheric surface layer characteristic of nocturnal or polar conditions, and the hypersonic bounder layer characteristic of high speed aircraft and reentering spacecraft. Previous experimental studies examining the effects of stability on turbulent boundary layers identified two regimes, weak and strong stability, separated by a critical bulk stratification with a collapse of near-wall turbulence thought to be intrinsic to the strongly stable regime. To examine the characteristics of these two regimes, PIV measurements were obtained in conjunction with the mean temperature profile in a low Reynolds number facility over smooth and rough surfaces. The turbulent stresses were found to scale with the wall shear stress in the weakly stable regime prior relaminarization at a critical stratification. Changes in profile shape were shown to correlate with the local stratification profile, and as a result, the collapse of near-wall turbulence is not intrinsic to the strongly stable regime. The critical bulk stratification was found to be sensitive to surface roughness and potentially Reynolds number, and not constant as previously thought. Further investigations examined turbulent boundary layer structure and changes to the motions that contribute to turbulent production. To study the characteristics of a hypersonic turbulent boundary layer at Mach 8, significant improvements were required to the implementation and error characterization of PIV. Limited resolution or dynamic range effects were minimized and the effects of high shear on cross-correlation routines were examined. Significantly, an examination of particle dynamics, subject to fluid inertia, compressibility and non-continuum effects, revealed that particle frequency responses to turbulence can be up to an

  16. Effects of external boundary layer flow on jet noise in flight

    Science.gov (United States)

    Sarohia, V.; Massier, P. F.

    1976-01-01

    The effects on jet flow of the external boundary layer flow emanating from the trailing edge of an engine cowl in flight has been shown to be the main reason for the disparity between predicted and experimental results obtained from flight measurements. Flight simulation experiments indicate that the external boundary layer flow tends to shield the jet flow in flight. This in turn modifies the jet noise source in flight and consequently the radiated noise from aircraft in flight. Close to 90 deg angle to the intake and in the forward quadrant, this study indicates that the far field jet noise and its spectrum scales approximately with the absolute jet velocity instead of the relative velocity as has been assumed in the existing prediction models.

  17. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    Science.gov (United States)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  18. Effects of resolved boundary layer turbulence on near-ground rotation in simulated quasi-linear convective systems (QLCSs)

    Science.gov (United States)

    Nowotarski, C. J.

    2017-12-01

    Though most strong to violent tornadoes are associated with supercell thunderstorms, quasi-linear convective systems (QLCSs) pose a risk of tornadoes, often at times and locations where supercell tornadoes are less common. Because QLCS low-level mesocyclones and tornado signatures tend to be less coherent, forecasting such tornadoes remains particularly difficult. The majority of simulations of such storms rely on horizontally homogeneous base states lacking resolved boundary layer turbulence and surface fluxes. Previous work has suggested that heterogeneities associated with boundary layer turbulence in the form of horizontal convective rolls can influence the evolution and characteristics of low-level mesocyclones in supercell thunderstorms. This study extends methods for generating boundary layer convection to idealized simulations of QLCSs. QLCS simulations with resolved boundary layer turbulence will be compared against a control simulation with a laminar boundary layer. Effects of turbulence, the resultant heterogeneity in the near-storm environment, and surface friction on bulk storm characteristics and the intensity, morphology, and evolution of low-level rotation will be presented. Although maximum surface vertical vorticity values are similar, when boundary layer turbulence is included, a greater number of miso- and meso-scale vortices develop along the QLCS gust front. The source of this vorticity is analyzed using Eulerian decomposition of vorticity tendency terms and trajectory analysis to delineate the relative importance of surface friction and baroclinicity in generating QLCS vortices. The role of anvil shading in suppressing boundary layer turbulence in the near-storm environment and subsequent effects on QLCS vortices will also be presented. Finally, implications of the results regarding inclusion of more realistic boundary layers in future idealized simulations of deep convection will be discussed.

  19. The Bottom Boundary Layer.

    Science.gov (United States)

    Trowbridge, John H; Lentz, Steven J

    2018-01-03

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  20. The Bottom Boundary Layer

    Science.gov (United States)

    Trowbridge, John H.; Lentz, Steven J.

    2018-01-01

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  1. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment.

    Science.gov (United States)

    Zhang, Chao; Liao, Qiang; Chen, Rong; Zhu, Xun

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effects of freestream on the characteristics of thermally-driven boundary layers along a heated vertical flat plate

    International Nuclear Information System (INIS)

    Abedin, Mohammad Zoynal; Tsuji, Toshihiro; Lee, Jinho

    2012-01-01

    Highlights: ► A time-developing direct numerical simulations are done for water along a heated vertical plate. ► The objective is to see the effects of free streams on the combined-convection boundary layers. ► There are no reports for water with direct numerical simulation in this regards. ► An experiment is also conducted on the transitional and turbulent boundary layer in water. ► This is to collect informations on the integral thickness of the velocity boundary layer. - Abstract: Time-developing thermally-driven boundary layers created by imposing aiding and opposing freestreams on the natural-convection boundary layer in water along a heated vertical flat plate have been examined with a direct numerical simulation to clarify their transition and turbulence behaviors. The numerical results for aiding flow reveal that the transition begins at a thick laminar boundary layer due to the delay of the transition and large-scale vortexes centering on the spanwise direction are followed, while, for opposing flow, the transition begins at a thin laminar boundary layer due to the quickening of the transition and relatively small-scale vortexes are generated with the progress of transition. To improve the significance of the present numerical results, the association of turbulence statistics between time- and space-developing flows has been investigated. Consequently, the numerical results for time-developing flow are converted to those for space-developing flow through the integral thickness of the velocity boundary layer for pure natural convection, and thus the regimes of boundary layer flows can be quantitatively assessed. Moreover, the turbulence statistics and the flow structures in the thermally-driven boundary layers are also presented.

  3. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    International Nuclear Information System (INIS)

    Zhang, Chao; Liao, Qiang; Chen, Rong; Zhu, Xun

    2015-01-01

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated

  4. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  5. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R. W.

    2015-03-25

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.

  6. Control of Boundary Layers for Aero-optical Applications

    Science.gov (United States)

    2015-06-23

    with some difficulty) from hot-wire velocity measurements, or computed directly from CFD results (e.g. Wang & Wang, 2012). Several different density...of experimental and computational research, especially applied to supersonic and hypersonic boundary layers; see Smits & Dussauge (1996), Spina et...Duan, L., Beekman, I. and Martin, M.P. (2010) Direct Numerical Simulation of Hypersonic Turbulent Boundary Layers. Part 2. Effect of Wall

  7. Hairpin vortices in turbulent boundary layers

    International Nuclear Information System (INIS)

    Eitel-Amor, G; Schlatter, P; Flores, O

    2014-01-01

    The present work addresses the question whether hairpin vortices are a dominant feature of near-wall turbulence and which role they play during transition. First, the parent-offspring mechanism is investigated in temporal simulations of a single hairpin vortex introduced in a mean shear flow corresponding to turbulent channels and boundary layers up to Re τ = 590. Using an eddy viscosity computed from resolved simulations, the effect of a turbulent background is also considered. Tracking the vortical structure downstream, it is found that secondary hairpins are created shortly after initialization. Thereafter, all rotational structures decay, whereas this effect is enforced in the presence of an eddy viscosity. In a second approach, a laminar boundary layer is tripped to transition by insertion of a regular pattern of hairpins by means of defined volumetric forces representing an ejection event. The idea is to create a synthetic turbulent boundary layer dominated by hairpin-like vortices. The flow for Re τ < 250 is analysed with respect to the lifetime of individual hairpin-like vortices. Both the temporal and spatial simulations demonstrate that the regeneration process is rather short-lived and may not sustain once a turbulent background has formed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former DNS studies is an outer layer phenomenon not being connected to the onset of near-wall turbulence.

  8. Analysis of dimensionality effect on shock wave boundary layer interaction in laminar hypersonic flows

    International Nuclear Information System (INIS)

    John, Bibin; Surendranath, Srikanth; Natarajan, Ganesh; Kulkarni, Vinayak

    2016-01-01

    Highlights: • Leading edge bluntness based separation control has been analysed numerically for 2D and axi-symmetric flows. • Differential growth of entropy layer in the streamwise direction in these cases leads to different interaction with respective boundary layers. • Separation control is found possible for planar flows beyond a critical radius called as equivalent radius. • No equivalent radius has been noticed in axi-symmertric flows in the present studies due to thin entropy layer and lack of favourable pressure gradient. - Abstract: Present investigations are centered on passive control of shock wave boundary layer interaction (SWBLI) for double cone and double wedge configurations with leading edge bluntness. This study seeks the differences in the flow physics of SWBLI in case of two dimensional (2D) and axisymmetric flow fields. In-house developed second order accurate finite-volume 2D axisymmetric compressible flow solver is employed for these studies. It is observed that the idea of leading edge bluntness offers reduction in separation bubble for 2D flow fields, whereas it leads to enhanced separation zone in case of axisymmetric flow fields. Relevant flow physics is well explored herein using wall pressure profile and relative thicknesses of boundary layer and entropy layer. Thicker entropy layer and stronger favorable pressure gradient are found responsible for the possibility of separation control in case of 2D flow fields. Thin entropy layer due to three dimensional relieving effect and its swallowing by the boundary layer are attributed for higher separation bubble size in case of cone with range of radii under consideration.

  9. Thermal Boundary Layer Effects on Line-of-Sight Tunable Diode Laser Absorption Spectroscopy (TDLAS) Gas Concentration Measurements.

    Science.gov (United States)

    Qu, Zhechao; Werhahn, Olav; Ebert, Volker

    2018-06-01

    The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO 2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.

  10. Structure of the low-latitude boundary layer

    International Nuclear Information System (INIS)

    Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B.U.O.; Bame, S.J.; Forbes, T.G.; Hones, E.W. Jr.; Russell, C.T.

    1981-01-01

    Observations at high temporal resolution of the frontside magnetopause and plasma boundary layer, made with the Los Alamos Scientific Laboratory/Max-Planck-Institut, Institut fuer Extraterrestrische Physik, fast plasma analyzer on board the Isee 1 and 2 spacecraft, have revealed a complex quasi-periodic structure of some of the observed boundary layers: cool tailward streaming boundary layer plasma is seen intermittently, with intervening periods of hot tenuous plasma which has properties similar to the magnetospheric population. While individual encounters with the boundary layer plasma last only a few minutes, the total observation time may extend over 1 hour or more. One such crossing, at 0800 hours local time and 40 0 northern GSM latitude, is examined in detail, including a quantitative comparison of the boundary layer entry and exit times of the two spacecraft. The data are found to be compatible with a boundary layer that is always attached to the magnetopause but where the layer thickness has a large-scale spatial modulation pattern which travels tailward past the spacecraft. Included are periods when the thickness is essentially zero and others when it is of the order of 1 R/sub E/. The duration of these periods is highly variable but is typically in the range of 2--5 min, corresponding to a distance along the magnetopause of the order of 3--8 R/sub E/. The observed boundary layer features include a steep density gradient at the magnetopause, with an approximately constant boundary layer plasma density amounting to about 25% of the magnetosheath density, and a second abrupt density decrease at the inner edge of the layer. It also appears that the purely magnetospheric plasma is ocassionally separated from the boundary layer by a halo region in which the plasma density is somewhat higher, and the temperature somewhat lower, than in the magnetosphere. A tentative model is proposed

  11. Effect of inlet conditions for numerical modelling of the urban boundary layer

    Science.gov (United States)

    Gnatowska, Renata

    2018-01-01

    The paper presents the numerical results obtained with the use of the ANSYS FLUENT commercial code for analysing the flow structure around two rectangular inline surface-mounted bluff bodies immersed in a boundary layer. The effects of the inflow boundary layer for the accuracy of the numerical modelling of the flow field around a simple system of objects are described. The analysis was performed for two concepts. In the former case, the inlet velocity profile was defined using the power law, whereas the kinetic and dissipation energy was defined from the equations according to Richards and Hoxey [1]. In the latter case, the inlet conditions were calculated for the flow over the rough area composed of the rectangular components.

  12. Benthic boundary layer modelling studies

    International Nuclear Information System (INIS)

    Richards, K.J.

    1984-01-01

    A numerical model has been developed to study the factors which control the height of the benthic boundary layer in the deep ocean and the dispersion of a tracer within and directly above the layer. This report covers tracer clouds of horizontal scales of 10 to 100 km. The dispersion of a tracer has been studied in two ways. Firstly, a number of particles have been introduced into the flow. The trajectories of these particles provide information on dispersion rates. For flow conditions similar to those observed in the abyssal N.E. Atlantic the diffusivity of a tracer was found to be 5 x 10 6 cm 2 s -1 for a tracer within the boundary layer and 8 x 10 6 cm 2 s -1 for a tracer above the boundary layer. The results are in accord with estimates made from current meter measurements. The second method of studying dispersion was to calculate the evolution of individual tracer clouds. Clouds within and above the benthic boundary layer often show quite different behaviour from each other although the general structure of the clouds in the two regions were found to have no significant differences. (author)

  13. Problems of matter-antimatter boundary layers

    International Nuclear Information System (INIS)

    Lehnert, B.

    1975-01-01

    This paper outlines the problems of the quasi-steady matter-antimatter boundary layers discussed in Klein-Alfven's cosmological theory, and a crude model of the corresponding ambiplasma balance is presented: (i) at interstellar particle densities, no well-defined boundary layer can exist in presence of neutral gas, nor can such a layer be sustained in an unmagnetized fully ionized ambiplasma. (ii) Within the limits of applicability of the present model, sharply defined boundary layers are under certain conditions found to exist in a magnetized ambiplasma. Thus, at beta values less than unity, a steep pressure drop of the low-energy components of matter and antimatter can be balanced by a magnetic field and the electric currents in the ambiplasma. (iii) The boundary layer thickness is of the order of 2x 0 approximately 10/BT 0 sup(1/4) meters, where B is the magnetic field strength in MKS units and T 0 the characteristic temperature of the low-energy components in the layer. (Auth.)

  14. Frequency effects of upstream wake and blade interaction on the unsteady boundary layer flow

    International Nuclear Information System (INIS)

    Kang, Dong Jin; Bae, Sang Su

    2002-01-01

    Effects of the reduced frequency of upstream wake on downstream unsteady boundary layer flow were simulated by using a Navier-Stokes code. The Navier-Stokes code is based on an unstructured finite volume method and uses a low Reynolds number turbulence model to close the momentum equations. The geometry used in this paper is the MIT flapping foil experimental set-up and the reduced frequency of the upstream wake is varied in the range of 0.91 to 10.86 to study its effect on the unsteady boundary layer flow. Numerical solutions show that they can be divided into two categories. One is so called the low frequency solution, and behaves quite similar to a Stokes layer. Its characteristics is found to be quite similar to those due to either a temporal or spatial wave. The low frequency solutions are observed clearly when reduced frequency is smaller than 3.26. The other one is the high frequency solution. It is observed for the reduced frequency larger than 7.24. It shows a sudden shift of the phase angle of the unsteady velocity around the edge of the boundary layer. The shift of phase angle is about 180 degree, and leads to separation of the boundary layer flow from corresponding outer flow. The high frequency solution shows the characteristics of a temporal wave whose wave length is half of the upstream frequency. This characteristics of the high frequency solution is found to be caused by the strong interaction between unsteady vortices. This strong interaction also leads to destroy of the upstream wake stripe inside the viscous sublayer as well as the buffer layer

  15. Magnetohydrodynamic boundary layer on a wedge

    International Nuclear Information System (INIS)

    Rao, B.N.; Mittal, M.L.

    1981-01-01

    The effects of the Hall and ionslip currents on the gas-dynamic boundary layer are investigated in view of the increasing prospects for using the MHD principle in electric power generation. The currents are included in the analysis using the generalized Ohm's law (Sherman and Sutton, 1964), and the resulting two nonlinear coupled equations are solved using a modification in the method suggested by Nachtsheim and Swigert (1965), Dewey and Gross (1967), and Steinheuer (1968). Solutions are presented for the incompressible laminar boundary-layer equations in the absence and the presence of the load parameter, and for the pressure gradient parameter for flow separation

  16. Streaming effect of wall oscillation to boundary layer separation

    Science.gov (United States)

    Wu, X. H.; Wu, J. Z.; Wu, J. M.

    1991-01-01

    This paper presents a preliminary theoretical result on the time averaged streaming effect of local forcing excitation to the boundary layer separation from smooth surface. The problem is formulated as a periodic disturbance to a basic steady breakaway separating flow, for which the data are taken from a numerical triple-deck solution. The ratio of Strouhal number St and Reynolds number Re plays an important role, both being assumed sufficiently high. The analytical and numerical results show that this streaming effect is quite strong at proper values of St/Re exp 1/4, which may delay or even suppress the separation.

  17. Boundary Layer Studies on a Spinning Tangent-Ogive-Cylinder Model

    Science.gov (United States)

    1975-07-01

    ca) An experimental investigation of the Magnus effect on a seven caliber tangent-I ;’ ogive- cylinder model in supersonic flow is reported. The...necessary and Identify by block number) Three-Dimiensional Boundary Layer Compressible Flow Body of Revolution Magnus Effects Boundary Layer...factors have resulted in renewed interest in the study of the Magnus effect . This report describes an experimental study of the effects of spin on

  18. Boundary layers of the earth's outer magnetosphere

    Science.gov (United States)

    Eastman, T. E.; Frank, L. A.

    1984-01-01

    The magnetospheric boundary layer and the plasma-sheet boundary layer are the primary boundary layers of the earth's outer magnetosphere. Recent satellite observations indicate that they provide for more than 50 percent of the plasma and energy transport in the outer magnetosphere although they constitute less than 5 percent by volume. Relative to the energy density in the source regions, plasma in the magnetospheric boundary layer is predominantly deenergized whereas plasma in the plasma-sheet boundary layer has been accelerated. The reconnection hypothesis continues to provide a useful framework for comparing data sampled in the highly dynamic magnetospheric environment. Observations of 'flux transfer events' and other detailed features near the boundaries have been recently interpreted in terms of nonsteady-state reconnection. Alternative hypotheses are also being investigated. More work needs to be done, both in theory and observation, to determine whether reconnection actually occurs in the magnetosphere and, if so, whether it is important for overall magnetospheric dynamics.

  19. Boundary layers of the earth's outer magnetosphere

    International Nuclear Information System (INIS)

    Eastman, T.E.; Frank, L.A.

    1984-01-01

    The magnetospheric boundary layer and the plasma-sheet boundary layer are the primary boundary layers of the earth's outer magnetosphere. Recent satellite observations indicate that they provide for more than 50 percent of the plasma and energy transport in the outer magnetosphere although they constitute less than 5 percent by volume. Relative to the energy density in the source regions, plasma in the magnetospheric boundary layer is predominantly deenergized whereas plasma in the plasma-sheet boundary layer has been accelerated. The reconnection hypothesis continues to provide a useful framework for comparing data sampled in the highly dynamic magnetospheric environment. Observations of flux transfer events and other detailed features near the boundaries have been recently interpreted in terms of nonsteady-state reconnection. Alternative hypotheses are also being investigated. More work needs to be done, both in theory and observation, to determine whether reconnection actually occurs in the magnetosphere and, if so, whether it is important for overall magnetospheric dynamics. 30 references

  20. Boundary-Layer Characteristics Over a Coastal Megacity

    Science.gov (United States)

    Melecio-Vazquez, D.; Ramamurthy, P.; Arend, M.; Moshary, F.; Gonzalez, J.

    2017-12-01

    Boundary-layer characteristics over New York City are analyzed for various local and synoptic conditions over several seasons. An array of vertical profilers, including a Doppler LiDAR, a micro-pulse LiDAR and a microwave radiometer are used to observe the structure and evolution of the boundary-layer. Additionally, an urbanized Weather Research and Forecasting (uWRF) model coupled to a high resolution landcover/land-use database is used to study the spatial variability in boundary layer characteristics. The summer daytime averaged potential temperature profile from the microwave radiometer shows the presence of a thermal internal boundary layer wherein a superadiabatic layer lies underneath a stable layer instead of a mixed-layer. Both the winter daytime and nighttime seasonal averages show that the atmosphere remains unstable near the surface and does not reach stable conditions during the nighttime. The mixing ratio seasonal averages show peaks in humidity near 200-m and 1100-m, above instrument level, which could result from sea breeze and anthropogenic sources. Ceilometer measurements show a high degree of variability in boundary layer height depending on wind direction. Comparison with uWRF results show that the model tends to overestimate convective efficiency for selected summer and winter cases and therefore shows a much deeper thermal boundary layer than the observed profiles. The model estimates a less humid atmosphere than seen in observations.

  1. Diamagnetic boundary layers: a kinetic theory

    International Nuclear Information System (INIS)

    Lemaire, J.; Burlaga, L.F.

    1976-01-01

    A kinetic theory for boundary layers associated with MHD tangential 'discontinuities' in a collisionless magnetized plasma such as those observed in the solar wind is presented. The theory consists of finding self-consistent solutions of Vlasov's equation and Maxwell's equation for stationary, one-dimensional boundary layers separating two Maxwellian plasma states. Layers in which the current is carried by electrons are found to have a thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying electrons is found to exceed the Alfven speed, and accordingly such layers are not stable. Several types of layers, in which the current is carried by protons are discussed; in particular, cases in which the magnetic field intensity and/or direction changed across the layer were considered. In every case, the thickness was of the order of a few proton gyroradii and the field changed smoothly , although the characteristics depended somewhat on the boundary conditions. The drift speed was always less than the Alfven speed, consistent with stability of such structures. The results are consistent with the observations of boundary layers in the solar wind near 1 AU. (Auth.)

  2. An effective absorbing layer for the boundary condition in acoustic seismic wave simulation

    Science.gov (United States)

    Yao, Gang; da Silva, Nuno V.; Wu, Di

    2018-04-01

    Efficient numerical simulation of seismic wavefields generally involves truncating the Earth model in order to keep computing time and memory requirements down. Absorbing boundary conditions, therefore, are applied to remove the boundary reflections caused by this truncation, thereby allowing for accurate modeling of wavefields. In this paper, we derive an effective absorbing boundary condition for both acoustic and elastic wave simulation, through the simplification of the damping term of the split perfectly matched layer (SPML) boundary condition. This new boundary condition is accurate, cost-effective, and easily implemented, especially for high-performance computing. Stability analysis shows that this boundary condition is effectively as stable as normal (non-absorbing) wave equations for explicit time-stepping finite differences. We found that for full-waveform inversion (FWI), the strengths of the effective absorbing layer—a reduction of the computational and memory cost coupled with a simplistic implementation—significantly outweighs the limitation of incomplete absorption of outgoing waves relative to the SPML. More importantly, we demonstrate that this limitation can easily be overcome through the use of two strategies in FWI, namely variable cell size and model extension thereby fully compensating for the imperfectness of the proposed absorbing boundary condition.

  3. An integral boundary layer method for modelling the effects of vortex generators

    NARCIS (Netherlands)

    Baldacchino, D.; Ragni, D.; Simao Ferreira, C.J.; Van Bussel, G.J.W.

    2015-01-01

    In this work, the measured modulated integral boundary layer (IBL) characteristics of low-profile vortex generators (VGs) are used to validate new developments in a viscousinviscid interaction code which is modified to incorporate the effect of the passive mixing devices. The motivations are laid

  4. Fifty Years of Boundary-Layer Theory and Experiment

    Science.gov (United States)

    Dryden, Hugh L.

    1955-01-01

    The year 1954 marked the 50th anniversary of the Prandtl boundary-layer theory from which we may date the beginning of man's understanding of the dynamics of real fluids. A backward look at this aspect of the history of the last 50 years may be instructive. This paper (1) attempts to compress the events of those 50 years into a few thousand words, to tell in this brief space the interesting story of the development of a new concept, its slow acceptance and growth, its spread from group to group within its country of origin, and its diffusion to other countries of the world. The original brief paper of Prandtl (2) was presented at the Third International Mathematical Congress at Heidelberg in 1904 and published in the following year. It was an attempt to explain the d'Alembert paradox, namely, that the neglect of the small friction of air in the theory resulted in the prediction of zero resistance to motion. Prandtl set himself the task of computing the motion of a fluid of small friction, so small that its effect could be neglected everywhere except where large velocity differences were present or a cumulative effect of friction occurred This led to the concept of boundary layer, or transition layer, near the wall of a body immersed in a fluid stream in which the velocity rises from zero to the free-stream value. It is interesting that Prandtl used the term Grenzsehicht (boundary layer) only once and the term Ubergangsschicht (transition layer) seven times in the brief article. Later writers also used Reibungsschicht (friction layer), but most writers today use Grenzschicht (boundary layer).

  5. INCOMPRESSIBLE LAMINAR BOUNDARY LAYER CONTROL BY BLOWING AND SUCTION

    Directory of Open Access Journals (Sweden)

    AZZEDINE NAHOUI

    2013-12-01

    Full Text Available A two-dimensional incompressible laminar boundary layer and its control using blowing and suction over a flat plate and around the NACA 0012 and 661012 profiles, is studied numerically. The study is based on the Prandtl boundary layer model using the finite differences method and the Crank-Nicolson scheme. The velocity distribution, the boundary layer thickness and the friction coefficient, are determined and presented with and without control. The application of the control technique, has demonstrated its positive effect on the transition point and the friction coefficient. Both control procedures are compared for different lengths, speeds and angles of blowing and suction.

  6. Diagnosis of boundary-layer circulations.

    Science.gov (United States)

    Beare, Robert J; Cullen, Michael J P

    2013-05-28

    Diagnoses of circulations in the vertical plane provide valuable insights into aspects of the dynamics of the climate system. Dynamical theories based on geostrophic balance have proved useful in deriving diagnostic equations for these circulations. For example, semi-geostrophic theory gives rise to the Sawyer-Eliassen equation (SEE) that predicts, among other things, circulations around mid-latitude fronts. A limitation of the SEE is the absence of a realistic boundary layer. However, the coupling provided by the boundary layer between the atmosphere and the surface is fundamental to the climate system. Here, we use a theory based on Ekman momentum balance to derive an SEE that includes a boundary layer (SEEBL). We consider a case study of a baroclinic low-level jet. The SEEBL solution shows significant benefits over Ekman pumping, including accommodating a boundary-layer depth that varies in space and structure, which accounts for buoyancy and momentum advection. The diagnosed low-level jet is stronger than that determined by Ekman balance. This is due to the inclusion of momentum advection. Momentum advection provides an additional mechanism for enhancement of the low-level jet that is distinct from inertial oscillations.

  7. Self-consistent model of the low-latitude boundary layer

    International Nuclear Information System (INIS)

    Phan, T.D.; Sonnerup, B.U.Oe.; Lotko, W.

    1989-01-01

    A simple two-dimensional, steady state, viscous model of the dawnside and duskside low-latitude boundary layer (LLBL) has been developed. It incorporates coupling to the ionosphere via field-aligned currents and associated field-aligned potential drops, governed by a simple conductance law, and it describes boundary layer currents, magnetic fields, and plasma flow in a self-consistent manner. The magnetic field induced by these currents leads to two effects: (1) a diamagnetic depression of the magnetic field in the equatorial region and (2) bending of the field lines into parabolas in the xz plane with their vertices in the equatorial plane, at z = 0, and pointing in the flow direction, i.e., tailward. Both effects are strongest at the magnetopause edge of the boundary layer and vanish at the magnetospheric edge. The diamagnetic depression corresponds to an excess of plasma pressure in the equatorial boundary layer near the magnetopause. The boundary layer structure is governed by a fourth-order, nonlinear, ordinary differential equation in which one nondimensional parameter, the Hartmann number M, appears. A second parameter, introduced via the boundary conditions, is a nondimensional flow velocity v 0 * at the magnetopause. Numerical results from the model are presented and the possible use of observations to determine the model parameters is discussed. The main new contribution of the study is to provide a better description of the field and plasma configuration in the LLBL itself and to clarify in quantitative terms the circumstances in which induced magnetic fields become important

  8. Characteristics of the magnetospheric boundary layer and magnetopause layer as observed by Imp 6

    International Nuclear Information System (INIS)

    Eastman, T.E.; Hones, E.W. Jr.

    1979-01-01

    Imp 6 observations of the low-latitude magnetospheric boundary layer indicate that the plasma within it is supplied primarily by direct entry of magnetosheath plasma across the magnetopause layer. We define the magnetopause layer as the current layer (separating the magnetosheath from the boundary layer) through which the magnetic field shifts in direction. High temporal resolution (3-s average) data reveal that in a majority of Imp 6 magnetopause crossing, no distinct changes in electron density or energry spectra are observed at the magne opause layer. In all Imp 6 crossings, some magnetosheathlike plasma is observed earthward of the magnetopause layer, implying the existence of a boundary layer. Boundary layer electron energy spectra are often virtually indistinguishable from the adjacent magnetosheath spectra. Low-latitude boundary layer bulk plasma flow as observed by Imp 6 almost always has an antisunward component and often has a significant cross-field component. The boundary layer thickness is highly variable and is generally much larger than the magnetopause layer thickness. Energetic electron pitch angle distributions indicate that the low-latitude boundary layers is normally on closed field lines. We conclude that diffusive as well as nondiffusive processes probably contribute to the entry of magnetosheath plasma into the boundary layer

  9. Rotor blade boundary layer measurement hardware feasibility demonstration

    Science.gov (United States)

    Clark, D. R.; Lawton, T. D.

    1972-01-01

    A traverse mechanism which allows the measurement of the three dimensional boundary layers on a helicopter rotor blade has been built and tested on a full scale rotor to full scale conditions producing centrifugal accelerations in excess of 400 g and Mach numbers of 0.6 and above. Boundary layer velocity profiles have been measured over a range of rotor speeds and blade collective pitch angles. A pressure scanning switch and transducer were also tested on the full scale rotor and found to be insensitive to centrifugal effects within the normal main rotor operating range. The demonstration of the capability to measure boundary layer behavior on helicopter rotor blades represents the first step toward obtaining, in the rotating system, data of a quality comparable to that already existing for flows in the fixed system.

  10. Suction of MHD boundary layer flows

    International Nuclear Information System (INIS)

    Rao, B.N.

    1985-01-01

    The boundary layer growth with tensor electrical conductivity and the transpiration number has been examined using local nonsimilarity solutions method. It is found that suction will cause the increase in wall shearing stress and decrease in thicknesses of the boundary layer. (Auth.)

  11. Notes on the Prediction of Shock-induced Boundary-layer Separation

    Science.gov (United States)

    Lange, Roy H.

    1953-01-01

    The present status of available information relative to the prediction of shock-induced boundary-layer separation is discussed. Experimental results showing the effects of Reynolds number and Mach number on the separation of both laminar and turbulent boundary layer are given and compared with available methods for predicting separation. The flow phenomena associated with separation caused by forward-facing steps, wedges, and incident shock waves are discussed. Applications of the flat-plate data to problems of separation on spoilers, diffusers, and scoop inlets are indicated for turbulent boundary layers.

  12. Boundary-layer effects on cold fronts at a coastline

    Science.gov (United States)

    Garratt, J. R.

    1986-07-01

    The present note discusses one physical mechanism which may contribute to cold air channelling, manifest as a frontal bulge on a surface-analysis chart, in the coastal region of Victoria in southeast Australia. This involves the modification of boundary-layer air in both offshore (prefrontal) and onshore (postfrontal) flow, and the effect on cross-frontal thermal contrast. The problem is discussed in terms of a north-south-oriented cold front behaving as an atmospheric gravity current, propagating along an east-west-oriented coastline, in the presence of a prefrontal offshore stream.

  13. RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds

    Science.gov (United States)

    Vogelmann, Andrew M.; McFarquhar, Greg M.; Ogren, John A.; Turner, David D.; Comstock, Jennifer M.; Feingold, Graham; Long, Charles N.; Jonsson, Haflidi H.; Bucholtz, Anthony; Collins, Don R.; hide

    2012-01-01

    Small boundary-layer clouds are ubiquitous over many parts of the globe and strongly influence the Earths radiative energy balance. However, our understanding of these clouds is insufficient to solve pressing scientific problems. For example, cloud feedback represents the largest uncertainty amongst all climate feedbacks in general circulation models (GCM). Several issues complicate understanding boundary-layer clouds and simulating them in GCMs. The high spatial variability of boundary-layer clouds poses an enormous computational challenge, since their horizontal dimensions and internal variability occur at spatial scales much finer than the computational grids used in GCMs. Aerosol-cloud interactions further complicate boundary-layer cloud measurement and simulation. Additionally, aerosols influence processes such as precipitation and cloud lifetime. An added complication is that at small scales (order meters to 10s of meters) distinguishing cloud from aerosol is increasingly difficult, due to the effects of aerosol humidification, cloud fragments and photon scattering between clouds.

  14. Bed slope effects on turbulent wave boundary layers: 2. Comparison with skewness, asymmetry, and other effects

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2009-01-01

    currents or undertow). The effects from each of the four components are isolated and quantified using a standard set of bed shear stress quantities, allowing their easy comparison. For conditions representing large shallow-water waves on steep slopes, the results suggest that converging-diverging effects......A numerical model solving incompressible Reynolds-averaged Navier-Stokes equations, combined with a two-equation k-omega model for turbulence closure, is used to systematically compare the relative strength of bed shear stress quantities and boundary layer streaming under wave motions from four...... from beach slope may make a significant onshore bed load contribution. Generally, however, the results suggest wave skewness (in addition to conventional steady streaming) as the most important onshore contribution outside the surf zone. Streaming induced within the wave boundary layer is also...

  15. Unequilibrium kinetic of collisionless boundary layers in binary plasmas

    International Nuclear Information System (INIS)

    Kotelnikov, V.A.; Nikolaev, F.A.; Cherepanov, V.V.

    1985-01-01

    Relaxation processes of kinetic nonequilibrium collisionless boundary layers near spherical charged full absorbing surfaces in binary low-temperature plasmas are investigated. The effect of magnetic field on relaxation processes was neglected. The dynamics of components of the ionized gas was treated near the boundary layer. The potential distribution and the space dependence of concentration were calculated numerically. These results agree well with the experimental data. (D.Gy.)

  16. Anthropogenic moisture production and its effect on boundary layer circulations over New York City

    International Nuclear Information System (INIS)

    Bornstein, R.D.; Tam, Y.T.

    1975-01-01

    A heat and moisture excess over New York City is shown to exist by the analysis of helicopter soundings of temperature and wet bulb depression. The magnitude of the temporal and spatial distribution of anthropogenic moisture emissions in New York City were estimated from fuel usage data. The URBMET urban boundary layer model was used to evaluate the effects on the dynamics of the urban boundary layer resulting from the observed urban moisture excess. Work is currently in progress which seeks to determine the fraction of the observed moisture excess over New York that is due to anthropogenic sources. (auth)

  17. RANS Modeling of Benchmark Shockwave / Boundary Layer Interaction Experiments

    Science.gov (United States)

    Georgiadis, Nick; Vyas, Manan; Yoder, Dennis

    2010-01-01

    This presentation summarizes the computations of a set of shock wave / turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock / boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Three turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Shear Stress Transport wavenumber-angular frequency two-equation model, and an explicit algebraic stress wavenumber-angular frequency formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.!

  18. A fast wind-farm boundary-layer model to investigate gravity wave effects and upstream flow deceleration

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2017-11-01

    Wind farm design and control often relies on fast analytical wake models to predict turbine wake interactions and associated power losses. Essential input to these models are the inflow velocity and turbulent intensity at hub height, which come from prior measurement campaigns or wind-atlas data. Recent LES studies showed that in some situations large wind farms excite atmospheric gravity waves, which in turn affect the upstream wind conditions. In the current study, we develop a fast boundary-layer model that computes the excitation of gravity waves and the perturbation of the boundary-layer flow in response to an applied force. The core of the model is constituted by height-averaged, linearised Navier-Stokes equations for the inner and outer layer, and the effect of atmospheric gravity waves (excited by the boundary-layer displacement) is included via the pressure gradient. Coupling with analytical wake models allows us to study wind-farm wakes and upstream flow deceleration in various atmospheric conditions. Comparison with wind-farm LES results shows excellent agreement in terms of pressure and boundary-layer displacement levels. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  19. Rotor boundary layer development with inlet guide vane (IGV) wake impingement

    Science.gov (United States)

    Jia, Lichao; Zou, Tengda; Zhu, Yiding; Lee, Cunbiao

    2018-04-01

    This paper examines the transition process in a boundary layer on a rotor blade under the impingement of an inlet guide vane wake. The effects of wake strengths and the reduced frequency on the unsteady boundary layer development on a low-speed axial compressor were investigated using particle image velocimetry. The measurements were carried out at two reduced frequencies (fr = fIGVS0/U2i, fr = 1.35, and fr = 0.675) with the Reynolds number, based on the blade chord and the isentropic inlet velocity, being 97 500. At fr = 1.35, the flow separated at the trailing edge when the wake strength was weak. However, the separation was almost totally suppressed as the wake strength increased. For the stronger wake, both the wake's high turbulence and the negative jet behavior of the wake dominated the interaction between the unsteady wake and the separated boundary layer on the suction surface of the airfoil. The boundary layer displacement thickened first due to the negative jet effect. Then, as the disturbances developed underneath the wake, the boundary layer thickness reduced gradually. The high disturbance region convected downstream at a fraction of the free-stream velocity and spread in the streamwise direction. The separation on the suction surface was suppressed until the next wake's arrival. Because of the long recovery time at fr = 0.675, the boundary layer thickened gradually as the wake convected further downstream and finally separated due to the adverse pressure gradient. The different boundary layer states in turn affected the development of disturbances.

  20. Stabilization of the hypersonic boundary layer by finite-amplitude streaks

    Science.gov (United States)

    Ren, Jie; Fu, Song; Hanifi, Ardeshir

    2016-02-01

    Stabilization of two-dimensional disturbances in hypersonic boundary layer flows by finite-amplitude streaks is investigated using nonlinear parabolized stability equations. The boundary-layer flows at Mach numbers 4.5 and 6.0 are studied in which both first and second modes are supported. The streaks considered here are driven either by the so-called optimal perturbations (Klebanoff-type) or the centrifugal instability (Görtler-type). When the streak amplitude is in an appropriate range, i.e., large enough to modulate the laminar boundary layer but low enough to not trigger secondary instability, both first and second modes can effectively be suppressed.

  1. Leading edge effect in laminar boundary layer excitation by sound

    International Nuclear Information System (INIS)

    Leehey, P.; Shapiro, P.

    1980-01-01

    Essentially plane pure tone sound waves were directed downstream over a heavily damped smooth flat plate installed in a low turbulence (0.04%) subsonic wind tunnel. Laminar boundary layer disturbance growth rates were measured with and without sound excitation and compared with numerical results from spatial stability theory. The data indicate that the sound field and Tollmien-Schlichting (T-S) waves coexist with comparable amplitudes when the latter are damped; moreover, the response is linear. Higher early growth rates occur for excitation by sound than by stream turbulence. Theoretical considerations indicate that the boundary layer is receptive to sound excitation primarily at the test plate leading edge. (orig.)

  2. Beta limitation of matter-antimatter boundary layers

    International Nuclear Information System (INIS)

    Lehnert, B.

    1987-08-01

    A model has earlier been proposed for a boundary layer which separates a cloud of matter from one of antimatter in a magnetized ambiplasma. In this model steady pressure equilibrium ceases to exist when a certain beta limit is exceeded. The latter is defined as the ratio between the ambiplasma and magnetic field pressures which balance each other in the boundary layer. Thus, at an increasing density, the high-energy particles created by annihilation within the layer are 'pumped up' to a pressure which cannot be balanced by a given magnetic field. The boundary layer then 'disrupts'. The critical beta limit thus obtained falls within the observed parameter ranges of galaxies and other large cosmical objects. Provided that the considered matter-antimatter balance holds true, this limit is thus expected to impose certain existence conditions on matter-antimatter boundary layers. Such a limitation may apply to certain cosmical objects and cosmological models. The maximum time scale for the corresponding disruption development has been estimated to be in the range from about 10 -4 to 10 2 seconds for boundary layers at ambiplasma particle densities in the range from 10 4 to 10 -2 m -3 , respectively. (author)

  3. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  4. Coupled wake boundary layer model of windfarms

    Science.gov (United States)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  5. Interaction Between Aerothermally Compliant Structures and Boundary-Layer Transition in Hypersonic Flow

    Science.gov (United States)

    Riley, Zachary Bryce

    The use of thin-gauge, light-weight structures in combination with the severe aero-thermodynamic loading makes reusable hypersonic cruise vehicles prone to fluid-thermal-structural interactions. These interactions result in surface perturbations in the form of temperature changes and deformations that alter the stability and eventual transition of the boundary layer. The state of the boundary layer has a significant effect on the aerothermodynamic loads acting on a hypersonic vehicle. The inherent relationship between boundary-layer stability, aerothermodynamic loading, and surface conditions make the interaction between the structural response and boundary-layer transition an important area of study in high-speed flows. The goal of this dissertation is to examine the interaction between boundary layer transition and the response of aerothermally compliant structures. This is carried out by first examining the uncoupled problems of: (1) structural deformation and temperature changes altering boundary-layer stability and (2) the boundary layer state affecting structural response. For the former, the stability of boundary layers developing over geometries that typify the response of surface panels subject to combined aerodynamic and thermal loading is numerically assessed using linear stability theory and the linear parabolized stability equations. Numerous parameters are examined including: deformation direction, deformation location, multiple deformations in series, structural boundary condition, surface temperature, the combined effect of Mach number and altitude, and deformation mode shape. The deformation-induced pressure gradient alters the boundary-layer thickness, which changes the frequency of the most-unstable disturbance. In regions of small boundary-layer growth, the disturbance frequency modulation resulting from a single or multiple panels deformed into the flowfield is found to improve boundary-layer stability and potentially delay transition. For the

  6. Stability of hypersonic boundary-layer flows with chemistry

    Science.gov (United States)

    Reed, Helen L.; Stuckert, Gregory K.; Haynes, Timothy S.

    1993-01-01

    The effects of nonequilibrium chemistry and three dimensionality on the stability characteristics of hypersonic flows are discussed. In two-dimensional (2-D) and axisymmetric flows, the inclusion of chemistry causes a shift of the second mode of Mack to lower frequencies. This is found to be due to the increase in size of the region of relative supersonic flow because of the lower speeds of sound in the relatively cooler boundary layers. Although this shift in frequency is present in both the equilibrium and nonequilibrium air results, the equilibrium approximation predicts modes which are not observed in the nonequilibrium calculations (for the flight conditions considered). These modes are superpositions of incoming and outgoing unstable disturbances which travel supersonically relative to the boundary-layer edge velocity. Such solutions are possible because of the finite shock stand-off distance. Their corresponding wall-normal profiles exhibit an oscillatory behavior in the inviscid region between the boundary-layer edge and the bow shock. For the examination of three-dimensional (3-D) effects, a rotating cone is used as a model of a swept wing. An increase of stagnation temperature is found to be only slightly stabilizing. The correlation of transition location (N = 9) with parameters describing the crossflow profile is discussed. Transition location does not correlate with the traditional crossflow Reynolds number. A new parameter that appears to correlate for boundary-layer flow was found. A verification with experiments on a yawed cone is provided.

  7. Epitaxially influenced boundary layer model for size effect in thin metallic films

    International Nuclear Information System (INIS)

    Bazant, Zdenek P.; Guo Zaoyang; Espinosa, Horacio D.; Zhu Yong; Peng Bei

    2005-01-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films

  8. Epitaxially influenced boundary layer model for size effect in thin metallic films

    Science.gov (United States)

    Bažant, Zdeněk P.; Guo, Zaoyang; Espinosa, Horacio D.; Zhu, Yong; Peng, Bei

    2005-04-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films.

  9. Bypass transition in compressible boundary layers

    Science.gov (United States)

    Vandervegt, J. J.

    1992-01-01

    Transition to turbulence in aerospace applications usually occurs in a strongly disturbed environment. For instance, the effects of free-stream turbulence, roughness and obstacles in the boundary layer strongly influence transition. Proper understanding of the mechanisms leading to transition is crucial in the design of aircraft wings and gas turbine blades, because lift, drag and heat transfer strongly depend on the state of the boundary layer, laminar or turbulent. Unfortunately, most of the transition research, both theoretical and experimental, has focused on natural transition. Many practical flows, however, defy any theoretical analysis and are extremely difficult to measure. Morkovin introduced in his review paper the concept of bypass transition as those forms of transition which bypass the known mechanisms of linear and non-linear transition theories and are currently not understood by experiments. In an effort to better understand the mechanisms leading to transition in a disturbed environment, experiments are conducted studying simpler cases, viz. the effects of free stream turbulence on transition on a flat plate. It turns out that these experiments are very difficult to conduct, because generation of free stream turbulence with sufficiently high fluctuation levels and reasonable homogeneity is non trivial. For a discussion see Morkovin. Serious problems also appear due to the fact that at high Reynolds numbers the boundary layers are very thin, especially in the nose region of the plate where the transition occurs, which makes the use of very small probes necessary. The effects of free-stream turbulence on transition are the subject of this research and are especially important in a gas turbine environment, where turbulence intensities are measured between 5 and 20 percent, Wang et al. Due to the fact that the Reynolds number for turbine blades is considerably lower than for aircraft wings, generally a larger portion of the blade will be in a laminar

  10. Three-dimensional turbulent boundary layers; Proceedings of the Symposium, Berlin, West Germany, March 29-April 1, 1982

    Science.gov (United States)

    Fernholz, H. H.; Krause, E.

    Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036

  11. Tokamak plasma boundary layer model

    International Nuclear Information System (INIS)

    Volkov, T.F.; Kirillov, V.D.

    1983-01-01

    A model has been developed for the limiter layer and for the boundary region of the plasma column in a tokamak to facilitate analytic calculations of the thickness of the limiter layers, the profiles and boundary values of the temperature and the density under various conditions, and the difference between the electron and ion temperatures. This model can also be used to analyze the recycling of neutrals, the energy and particle losses to the wall and the limiter, and other characteristics

  12. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R.  W.; Pratt, L.  J.

    2015-01-01

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom

  13. Measurements in a synthetic turbulent boundary layer

    Science.gov (United States)

    Arakeri, J. H.; Coles, D. E.

    Some measurements in a synthetic turbulent boundary layer (SBL) are reported. The main diagnostic tool is an X-wire probe. The velocity of the large eddies is determined to be 0.842 times the freestream velocity. The mean properties of the SBL are reasonably close to those of a natural turbulent boundary layer. The large eddy in the SBL appears to be a pair of counterrotating eddies in the stream direction, inclined at a shallow angle and occupying much of the boundary-layer thickness.

  14. Particle motion in atmospheric boundary layers of Mars and Earth

    Science.gov (United States)

    White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

    1975-01-01

    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

  15. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  16. A Coordinate Transformation for Unsteady Boundary Layer Equations

    Directory of Open Access Journals (Sweden)

    Paul G. A. CIZMAS

    2011-12-01

    Full Text Available This paper presents a new coordinate transformation for unsteady, incompressible boundary layer equations that applies to both laminar and turbulent flows. A generalization of this coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently derived. In addition, the boundary layer equations are derived using a time linearization approach and assuming harmonically varying small disturbances.

  17. High Enthalpy Effects on Two Boundary Layer Disturbances in Supersonic and Hypersonic Flow

    Science.gov (United States)

    Wagnild, Ross Martin

    The fluid flow phenomenon of boundary layer transition is a complicated and difficult process to model and predict. The importance of the state of the boundary layer with regard to vehicle design cannot be understated. The high enthalpy environment in which high speed vehicles operate in further complicates the transition process by adding several more degrees of freedom. In this environment, the internal properties of the gas can stabilize or destabilize the boundary layer as well as modify the disturbances that cause transition. In the current work, the interaction of two types of disturbances with the high enthalpy flow environment are analyzed. The first is known as a second mode disturbance, which is acoustic in nature. The second type is known as a transient growth disturbance and is associated with flows behind roughness elements. Theoretical analyses, linear stability analyses, and computation fluid dynamics (CFD) are used to determine the ways in which these disturbances interact with the high enthalpy environment as well as the consequences of these interactions. First, acoustic wave are directly studied in order to gain a basic understanding of the response of second mode disturbances in the high enthalpy boundary layer. Next, this understanding is used in interpreting the results of several computations attempting to simulate the flow through a high enthalpy flow facility as well as experiments attempting to take advantage of the acoustic interaction with the high enthalpy environment. Because of the difficulty in modeling these experiments, direct simulations of acoustic waves in a hypersonic flow of a gas with molecular vibration are performed. Lastly, compressible transient growth disturbances are simulated using a linear optimal disturbance solver as well as a CFD solver. The effect of an internal molecular process on this type of disturbance is tested through the use of a vibrational mode. It is the goal of the current work to reinforce the

  18. Influence of boundary on the effect of double-layer polarization and the electrophoretic behavior of soft biocolloids.

    Science.gov (United States)

    Yeh, Li-Hsien; Fang, Kuo-Ying; Hsu, Jyh-Ping; Tseng, Shiojenn

    2011-12-01

    The electrophoresis of a soft particle comprising a rigid core and a charged porous membrane layer in a narrow space is modeled. This simulates, for example, the capillary electrophoresis of biocolloids such as cells and microorganisms, and biosensor types of device. We show that, in addition to the boundary effect, the effects of double-layer polarization (DLP) and the electroosmotic retardation flow can be significant, yielding interesting electrophoretic behaviors. For example, if the friction coefficient of the membrane layer and/or the boundary is large, then the DLP effect can be offset by the electroosmotic retardation flow, making the particle mobility to decrease with increasing double layer thickness, which is qualitatively consistent with many experimental observations in the literature, but has not been explained clearly in previous analyses. In addition, depending upon the thickness of double layer, the friction of the membrane layer of a particle can either retard or accelerate its movement, an interesting result which has not been reported previously. This work is the first attempt to show solid evidence for the influence of a boundary on the effect of DLP and the electrophoretic behavior of soft particles. The model proposed is verified by the experimental data in the literature. The results of numerical simulation provide valuable information for the design of bio-analytical apparatus such as nanopore-based sensing applications and for the interpretation of relevant experimental data. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Longitudinal vortices in a transitioning boundary layer

    International Nuclear Information System (INIS)

    Anders, J.B.; Backwelder, R.F.

    1980-01-01

    Naturally occurring spanwise variations of the streamwise velocity component, characteristic of longitudinal vortices embedded in a transitioning boundary layer were explored using hot-wire anemometers. A vibrating ribbon introduced stable or unstable Tollmien-Schlichting waves into the laminar boundary layer. These damped or growing disturbances always developed a strong three-dimensional pattern even though no spanwise perturbations were artificially induced. Changing the radius of the leading edge and other modifications to the flat plate, wind tunnel and boundary layer did not alter the spanwise wavelength of the vortices. (orig.)

  20. Active Boundary Layer Control on a Highly Loaded Turbine Exit Case Profile

    Directory of Open Access Journals (Sweden)

    Julia Kurz

    2018-03-01

    Full Text Available A highly loaded turbine exit guide vane with active boundary layer control was investigated experimentally in the High Speed Cascade Wind Tunnel at the University of the German Federal Armed Forces, Munich. The experiments include profile Mach number distributions, wake traverse measurements as well as boundary layer investigations with a flattened Pitot probe. Active boundary layer control by fluidic oscillators was applied to achieve improved performance in the low Reynolds number regime. Low solidity, which can be applied to reduce the number of blades, increases the risk of flow separation resulting in increased total pressure losses. Active boundary layer control is supposed to overcome these negative effects. The experiments show that active boundary layer control by fluidic oscillators is an appropriate way to suppress massive open separation bubbles in the low Reynolds number regime.

  1. Characterization of the atmospheric boundary layer from radiosonde ...

    Indian Academy of Sciences (India)

    In this paper, a comparison of two methods for the calculation of the height of atmospheric boundary layer (ABL) ... Boundary layer; GPS sonde; mixed layer height; turbulent flow depth. J. Earth Syst. ..... for her PhD research work. References.

  2. Understanding and representing the effect of wind shear on the turbulent transfer in the convective boundary layer

    NARCIS (Netherlands)

    Ronda, R.J.; Vilà-Guerau de Arellano, J.; Pino, D.

    2012-01-01

    Goal of this study is to quantify the effect of wind shear on the turbulent transport in the dry Convective Boundary Layer (CBL). Questions addressed include the effect of wind shear on the depth of the mixed layer, the effect of wind shear on the depth and structure of the capping inversion, and

  3. The influence of compressibility on nonlinear spectral energy transfer - Part 2: Effect on hypersonic boundary layer transition

    Science.gov (United States)

    Mittal, Ankita; Girimaji, Sharath

    2017-11-01

    We examine the effect of compressible spectral energy transfer in the nonlinear regime of transition to turbulence of hypersonic boundary layers. The nature of spectral energy transfer between perturbation modes is profoundly influenced by two compressibility mechanisms. First and foremost, the emergence of nonlinear pressure-dilatation mechanism leads to kinetic-internal energy exchange within the perturbation field. Such interchange is absent in incompressible flow as pressure merely reorients the perturbation amplitude vector while conserving kinetic energy. Secondly, the nature of triadic interactions also changes due to variability in density. In this work, we demonstrate that the efficiency of nonlinear spectral energy transfer is diminished in compressible boundary layers. Emergence of new perturbation modes or `broad-banding' of the perturbation field is significantly delayed in comparison to incompressible boundary layer undergoing transition. A significant amount of perturbation energy is transformed to internal energy and thus unavailable for `tripping' the flow into turbulent state. These factors profoundly change the nature of the nonlinear stage of transition in compressible boundary layer leading to delayed onset of full-fledged turbulence.

  4. Heat transfer through turbulent boundary layers - The effects of introduction of and recovery from convex curvature

    Science.gov (United States)

    Simon, T. W.; Moffat, R. J.

    1979-01-01

    Measurements have been made of the heat transfer through a turbulent boundary layer on a convexly curved isothermal wall and on a flat plate following the curved section. Data were taken for one free-stream velocity and two different ratios of boundary layer thickness to radius of curvature delta/R = 0.051 and delta/R = 0.077. Only small differences were observed in the distribution of heat transfer rates for the two boundary layer thicknesses tested, although differences were noted in the temperature distributions within the boundary layer

  5. Effect of nose bluntness on boundary layer stability and transition

    Science.gov (United States)

    Malik, M. R.; Spall, R. E.; Chang, C.-L.

    1990-01-01

    The effect of nose bluntness on boundary layer instability is studied theoretically for a Mach 8 flow past a 7 degree semivertex cone. The basic flow is computed by solving the parabolized Navier-Stokes equations. Linear stability analysis of the basic flow reveals that, with small amount of bluntness, the critical Reynolds number for the onset of instability increases by an order of magnitude compared to the sharp cone value. The computed second mode frequencies are also in reasonable agreement with the experimental results. The results are used to explain the effect of unit Reynolds number on transition present in the quiet aeroballistic range data.

  6. Superfluid Boundary Layer.

    Science.gov (United States)

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  7. Role of residual layer and large-scale phenomena on the evolution of the boundary layer

    NARCIS (Netherlands)

    Blay, E.; Pino, D.; Vilà-Guerau de Arellano, J.; Boer, van de A.; Coster, de O.; Faloona, I.; Garrouste, O.; Hartogensis, O.K.

    2012-01-01

    Mixed-layer theory and large-eddy simulations are used to analyze the dynamics of the boundary layer on two intensive operational periods during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign: 1st and 2nd of July 2011, when convective boundary layers (CBLs) were observed.

  8. Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae).

    Science.gov (United States)

    Benz, Brett W; Martin, Craig E

    2006-04-01

    We examined the relationships between H2O and CO2 gas exchange parameters and leaf trichome cover in 12 species of Tillandsia that exhibit a wide range in trichome size and trichome cover. Previous investigations have hypothesized that trichomes function to enhance boundary layers around Tillandsioid leaves thereby buffering the evaporative demand of the atmosphere and retarding transpirational water loss. Data presented herein suggest that trichome-enhanced boundary layers have negligible effects on Tillandsia gas exchange, as indicated by the lack of statistically significant relationships in regression analyses of gas exchange parameters and trichome cover. We calculated trichome and leaf boundary layer components, and their associated effects on H2O and CO2 gas exchange. The results further indicate trichome-enhanced boundary layers do not significantly reduce transpirational water loss. We conclude that although the trichomes undoubtedly increase the thickness of the boundary layer, the increase due to Tillandsioid trichomes is inconsequential in terms of whole leaf boundary layers, and any associated reduction in transpirational water loss is also negligible within the whole plant gas exchange pathway.

  9. Boundary Layer Ducting of Low-elevation GNSS Ocean Reflected Signals

    DEFF Research Database (Denmark)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    for the data retrievals and the precision and the accuracy, are of interest for assessing the observational data content.Simulations of the low-elevation ocean reflected GNSS signal reveal a ducting of the signalwhen applying a model of the boundary layer. This effect is presented during varying conditions...... of the sea surface roughness, ocean wind and temperature, density and gradient of the water vapor profile in the boundary layer.The model for the sea surface roughness impedance, wind speed, and rms ocean wave-heightshow a stronger signal damping for a smoother ocean surfaces (sea state 0) compared...... to a rough sea (sea state 4). While the real part of the signal shows the reverse effect. At the same time the reflection zone enhances for rough sea states. Simulations, including a standard atmosphere and a boundary layer, give a significant ducting of the received signal, leading to a much larger...

  10. Self-similar magnetohydrodynamic boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel; Lastra, Alberto, E-mail: mnjmhd@am.uva.e [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2010-10-15

    The boundary layer created by parallel flow in a magnetized fluid of high conductivity is considered in this paper. Under appropriate boundary conditions, self-similar solutions analogous to the ones studied by Blasius for the hydrodynamic problem may be found. It is proved that for these to be stable, the size of the Alfven velocity at the outer flow must be smaller than the flow velocity, a fact that has a ready physical explanation. The process by which the transverse velocity and the thickness of the layer grow with the size of the Alfven velocity is detailed.

  11. Self-similar magnetohydrodynamic boundary layers

    International Nuclear Information System (INIS)

    Nunez, Manuel; Lastra, Alberto

    2010-01-01

    The boundary layer created by parallel flow in a magnetized fluid of high conductivity is considered in this paper. Under appropriate boundary conditions, self-similar solutions analogous to the ones studied by Blasius for the hydrodynamic problem may be found. It is proved that for these to be stable, the size of the Alfven velocity at the outer flow must be smaller than the flow velocity, a fact that has a ready physical explanation. The process by which the transverse velocity and the thickness of the layer grow with the size of the Alfven velocity is detailed.

  12. Manipulation of Turbulent Boundary Layers Using Synthetic Jets

    Science.gov (United States)

    Berger, Zachary; Gomit, Guillaume; Lavoie, Philippe; Ganapathisubramani, Bharath

    2015-11-01

    This work focuses on the application of active flow control, in the form of synthetic jet actuators, of turbulent boundary layers. An array of 2 synthetic jets are oriented in the spanwise direction and located approximately 2.7 meters downstream from the leading edge of a flat plate. Actuation is applied perpendicular to the surface of the flat plate with varying blowing ratios and reduced frequencies (open-loop). Two-component large window particle image velocimetry (PIV) was performed at the University of Southampton, in the streamwise-wall-normal plane. Complementary stereo PIV measurements were performed at the University of Toronto Institute for Aerospace Studies (UTIAS), in the spanwise-wall-normal plane. The freestream Reynolds number is 3x104, based on the boundary layer thickness. The skin friction Reynolds number is 1,200 based on the skin friction velocity. The experiments at Southampton allow for the observation of the control effects as the flow propagates downstream. The experiments at UTIAS allow for the observation of the streamwise vorticity induced from the actuation. Overall the two experiments provide a 3D representation of the flow field with respect to actuation effects. The current work focuses on the comparison of the two experiments, as well as the effects of varying blowing ratios and reduced frequencies on the turbulent boundary layer. Funded Supported by Airbus.

  13. Compressibility effects on the non-linear receptivity of boundary layers to dielectric barrier discharges

    Science.gov (United States)

    Denison, Marie F. C.

    The reduction of drag and aerodynamic heating caused by boundary layer transition is of central interest for the development of hypersonic vehicles. Receptivity to flow perturbation in the form of Tollmien-Schlichting (TS) wave growth often determines the first stage of the transition process, which can be delayed by depositing specific excitations into the boundary layer. Weakly ionized Dielectric Barrier Discharge (DBD) actuators are being investigated as possible sources of such excitations, but little is known today about their interaction with high-speed flows. In this framework, the first part of the thesis is dedicated to a receptivity study of laminar compressible boundary layers over a flat plate by linear stability analysis following an adjoint operator formulation, under DBD representative excitations assumed independent of flow conditions. The second part of the work concentrates on the development of a coupled plasma-Navier and Stokes solver targeted at the study of supersonic flow and compressibility effects on DBD forcing and non-parallel receptivity. The linear receptivity study of quasi-parallel compressible flows reveals several interesting features such as a significant shift of the region of maximum receptivity deeper into the flow at high Mach number and strong wave amplitude reduction compared to incompressible flows. The response to DBD relevant excitation distributions and to variations of the base flow conditions and system length scales follows these trends. Observed absolute amplitude changes and relative sensitivity modifications between source types are related to the evolution of the offset between forcing peak profile and relevant adjoint mode maximum. The analysis highlights the crucial importance of designing and placing the actuator in a way that matches its force field to the position of maximum boundary layer receptivity for the specific flow conditions of interest. In order to address the broad time and length scale spectrum

  14. Simulation and optimal control of wind-farm boundary layers

    Science.gov (United States)

    Meyers, Johan; Goit, Jay

    2014-05-01

    In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a

  15. High-energy X-ray production in a boundary layer of an accreting neutron star

    International Nuclear Information System (INIS)

    Hanawa, Tomoyuki

    1991-01-01

    It is shown by Monte Carlo simulation that high-energy X-rays are produced through Compton scattering in a boundary layer of an accreting neutron star. The following is the mechanism for the high-energy X-ray production. An accreting neutron star has a boundary layer rotating rapidly on the surface. X-rays radiated from the star's surface are scattered in part in the boundary layer. Since the boundary layer rotates at a semirelativistic speed, the scattered X-ray energy is changed by the Compton effect. Some X-rays are scattered repeatedly between the neutron star and the boundary layer and become high-energy X-rays. This mechanism is a photon analog of the second-order Fermi acceleration of cosmic rays. When the boundary layer is semitransparent, high-energy X-rays are produced efficiently. 17 refs

  16. Measurements of the turbulent transport of heat and momentum in convexly curved boundary layers - Effects of curvature, recovery and free-stream turbulence

    Science.gov (United States)

    Kim, J.; Simon, T. W.

    1987-01-01

    The effects of streamwise convex curvature, recovery, and freestream turbulence intensity on the turbulent transport of heat and momentum in a mature boundary layer are studied using a specially designed three-wire hot-wire probe. Increased freestream turbulence is found to increase the profiles throughout the boundary layer on the flat developing wall. Curvature effects were found to dominate turbulence intensity effects for the present cases considered. For the higher TI (turbulence intensity) case, negative values of the turbulent Prandtl number are found in the outer half of the boundary layer, indicating a breakdown in Reynolds analogy.

  17. Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of parabolized linear stability equations (PSE) is used in a variational approach to extend the previous body of results for the optimal, non-modal disturbance growth in boundary layer flows. This methodology includes the non-parallel effects associated with the spatial development of boundary layer flows. As noted in literature, the optimal initial disturbances correspond to steady counter-rotating stream-wise vortices, which subsequently lead to the formation of stream-wise-elongated structures, i.e., streaks, via a lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach number regime without any high enthalpy effects, and the effect of wall cooling is studied with particular emphasis on the role of the initial disturbance location and the value of the span-wise wavenumber that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS) equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and also for the weak shock wave emanating from that region. These differences in the base flow lead to an increasing reduction with Mach number in the magnitude of optimal growth relative to the predictions based on self-similar mean-flow approximation. Finally, the maximum optimal energy gain for the favorable pressure gradient boundary layer near a planar stagnation point is found to be substantially weaker than that in a zero pressure gradient Blasius boundary layer.

  18. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled:

    Modelling Stable Atmospheric Boundary Layers over Snow

    H.A.M. Sterk

    Wageningen, 29th of April, 2015

    Summary

    The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs

  19. Enhanced air pollution via aerosol-boundary layer feedback in China.

    Science.gov (United States)

    Petäjä, T; Järvi, L; Kerminen, V-M; Ding, A J; Sun, J N; Nie, W; Kujansuu, J; Virkkula, A; Yang, X-Q; Fu, C B; Zilitinkevich, S; Kulmala, M

    2016-01-12

    Severe air pollution episodes have been frequent in China during the recent years. While high emissions are the primary reason for increasing pollutant concentrations, the ultimate cause for the most severe pollution episodes has remained unclear. Here we show that a high concentration of particulate matter (PM) will enhance the stability of an urban boundary layer, which in turn decreases the boundary layer height and consequently cause further increases in PM concentrations. We estimate the strength of this positive feedback mechanism by combining a new theoretical framework with ambient observations. We show that the feedback remains moderate at fine PM concentrations lower than about 200 μg m(-3), but that it becomes increasingly effective at higher PM loadings resulting from the combined effect of high surface PM emissions and massive secondary PM production within the boundary layer. Our analysis explains why air pollution episodes are particularly serious and severe in megacities and during the days when synoptic weather conditions stay constant.

  20. A Numerical Study of 2-D Surface Roughness Effects on the Growth of Wave Modes in Hypersonic Boundary Layers

    Science.gov (United States)

    Fong, Kahei Danny

    The current understanding and research efforts on surface roughness effects in hypersonic boundary-layer flows focus, almost exclusively, on how roughness elements trip a hypersonic boundary layer to turbulence. However, there were a few reports in the literature suggesting that roughness elements in hypersonic boundary-layer flows could sometimes suppress the transition process and delay the formation of turbulent flow. These reports were not common and had not attracted much attention from the research community. Furthermore, the mechanisms of how the delay and stabilization happened were unknown. A recent study by Duan et al. showed that when 2-D roughness elements were placed downstream of the so-called synchronization point, the unstable second-mode wave in a hypersonic boundary layer was damped. Since the second-mode wave is typically the most dangerous and dominant unstable mode in a hypersonic boundary layer for sharp geometries at a zero angle of attack, this result has pointed to an explanation on how roughness elements delay transition in a hypersonic boundary layer. Such an understanding can potentially have significant practical applications for the development of passive flow control techniques to suppress hypersonic boundary-layer transition, for the purpose of aero-heating reduction. Nevertheless, the previous study was preliminary because only one particular flow condition with one fixed roughness parameter was considered. The study also lacked an examination on the mechanism of the damping effect of the second mode by roughness. Hence, the objective of the current research is to conduct an extensive investigation of the effects of 2-D roughness elements on the growth of instability waves in a hypersonic boundary layer. The goal is to provide a full physical picture of how and when 2-D roughness elements stabilize a hypersonic boundary layer. Rigorous parametric studies using numerical simulation, linear stability theory (LST), and parabolized

  1. Pitot-probe displacement in a supersonic turbulent boundary layer

    Science.gov (United States)

    Allen, J. M.

    1972-01-01

    Eight circular pitot probes ranging in size from 2 to 70 percent of the boundary-layer thickness were tested to provide experimental probe displacement results in a two-dimensional turbulent boundary layer at a nominal free-stream Mach number of 2 and unit Reynolds number of 8 million per meter. The displacement obtained in the study was larger than that reported by previous investigators in either an incompressible turbulent boundary layer or a supersonic laminar boundary layer. The large probes indicated distorted Mach number profiles, probably due to separation. When the probes were small enough to cause no appreciable distortion, the displacement was constant over most of the boundary layer. The displacement in the near-wall region decreased to negative displacement in some cases. This near-wall region was found to extend to about one probe diameter from the test surface.

  2. Diffusion processes in the magnetopause boundary layer

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Thorne, R.M.

    1982-01-01

    Anomalous cross-field diffusion of magnetosheath ions and electrons is a direct consequence of cyclotron-resonant scattering by electrostatic and electromagnetic emissions which are continuously present within the magnetopause boundary layer. Expressions for the rate of cross-field diffusion involving either type of wave are developed and expressed in terms of the absolute upper limit referred to as Bohm diffusion. For the typical average intensity of waves observed in the boundary layer, resonant electron cross-field diffusion is always insignificant. However, magnetosheath ions, resonant with low frequency electrostatic waves, may be transported inward at a rate approaching one tenth the Bohm rate (D/sub perpendiculartsperpendicular/roughly-equal10 3 km 2 /s). While this is not the only mechanism capable of explaining the presence of the low latitude boundary layer it is adequate to account for the typical boundary layer thickness and it should occur at all local times and under all interplanetary conditions. It consequently provides a continuous mechanism for significant mass and momentum transfer across the magnetopause under conditions when field merging is inoperative

  3. Slow Manifolds and Multiple Equilibria in Stratocumulus-Capped Boundary Layers

    Directory of Open Access Journals (Sweden)

    Junya Uchida

    2010-12-01

    Full Text Available In marine stratocumulus-capped boundary layers under strong inversions, the timescale for thermodynamic adjustment is roughly a day, much shorter than the multiday timescale for inversion height adjustment. Slow-manifold analysis is introduced to exploit this timescale separation when boundary layer air columns experience only slow changes in their boundary conditions. Its essence is that the thermodynamic structure of the boundary layer remains approximately slaved to its inversion height and the instantaneous boundary conditions; this slaved structure determines the entrainment rate and hence the slow evolution of the inversion height. Slow-manifold analysis is shown to apply to mixed-layer model and large-eddy simulations of an idealized nocturnal stratocumulus- capped boundary layer; simulations with different initial inversion heights collapse onto single relationships of cloud properties with inversion height. Depending on the initial inversion height, the simulations evolve toward a shallow thin-cloud boundary layer or a deep, well-mixed thick cloud boundary layer. In the large-eddy simulations, these evolutions occur on two separate slow manifolds (one of which becomes unstable if cloud droplet concentration is reduced. Applications to analysis of stratocumulus observations and to pockets of open cells and ship tracks are proposed.

  4. The curved kinetic boundary layer of active matter.

    Science.gov (United States)

    Yan, Wen; Brady, John F

    2018-01-03

    A body submerged in active matter feels the swim pressure through a kinetic accumulation boundary layer on its surface. The boundary layer results from a balance between translational diffusion and advective swimming and occurs on the microscopic length scale . Here , D T is the Brownian translational diffusivity, τ R is the reorientation time and l = U 0 τ R is the swimmer's run length, with U 0 the swim speed [Yan and Brady, J. Fluid. Mech., 2015, 785, R1]. In this work we analyze the swim pressure on arbitrary shaped bodies by including the effect of local shape curvature in the kinetic boundary layer. When δ ≪ L and l ≪ L, where L is the body size, the leading order effects of curvature on the swim pressure are found analytically to scale as J S λδ 2 /L, where J S is twice the (non-dimensional) mean curvature. Particle-tracking simulations and direct solutions to the Smoluchowski equation governing the probability distribution of the active particles show that λδ 2 /L is a universal scaling parameter not limited to the regime δ, l ≪ L. The net force exerted on the body by the swimmers is found to scale as F net /(n ∞ k s T s L 2 ) = f(λδ 2 /L), where f(x) is a dimensionless function that is quadratic when x ≪ 1 and linear when x ∼ 1. Here, k s T s = ζU 0 2 τ R /6 defines the 'activity' of the swimmers, with ζ the drag coefficient, and n ∞ is the uniform number density of swimmers far from the body. We discuss the connection of this boundary layer to continuum mechanical descriptions of active matter and briefly present how to include hydrodynamics into this purely kinetic study.

  5. Transition to turbulence in the Hartmann boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Thess, A.; Krasnov, D.; Boeck, T.; Zienicke, E. [Dept. of Mechanical Engineering, Ilmenau Univ. of Tech. (Germany); Zikanov, O. [Dept. of Mechanical Engineering, Univ. of Michigan, Dearborn, MI (United States); Moresco, P. [School of Physics and Astronomy, The Univ. of Manchester (United Kingdom); Alboussiere, T. [Lab. de Geophysique Interne et Tectonophysique, Observatoire des Science de l' Univers de Grenoble, Univ. Joseph Fourier, Grenoble (France)

    2007-07-01

    The Hartmann boundary layer is a paradigm of magnetohydrodynamic (MHD) flows. Hartmann boundary layers develop when a liquid metal flows under the influence of a steady magnetic field. The present paper is an overview of recent successful attempts to understand the mechanisms by which the Hartmann layer undergoes a transition from laminar to turbulent flow. (orig.)

  6. Internal and external 2-d boundary layer flows

    Science.gov (United States)

    Crawford, M. E.; Kays, W. M.

    1978-01-01

    Computer program computes general two dimensional turbulent boundary-layer flow using finite-difference techniques. Structure allows for user modification to accommodate unique problems. Program should prove useful in many applications where accurate boundary-layer flow calculations are required.

  7. Ground observations of magnetospheric boundary layer phenomena

    International Nuclear Information System (INIS)

    McHenry, M.A.; Clauer, C.R.; Friis-Christensen, E.; Newell, P.T.; Kelly, J.D.

    1990-01-01

    Several classes of traveling vortices in the dayside ionospheric convection have been detected and tracked using the Greenland magnetometer chain (Friis-Christensen et al., 1988, McHenry et al., 1989). One class observed during quiet times consists of a continuous series of vortices moving generally anti-sunward for several hours at a time. The vortices strength is seen to be approximately steady and neighboring vortices rotate in opposite directions. Sondrestrom radar observations show that the vortices are located at the ionospheric convection reversal boundary. Low altitude DMSP observations indicate the vortices are on field lines which map to the inner edge of the low latitude boundary layer. Because the vortices are conjugate to the boundary layer, repeat in a regular fashion and travel antisunward, the authors argue that this class of vortices is caused by the Kelvin-Helmholtz instability of the inner edge of the magnetospheric boundary layer

  8. Change of Surface Roughness and Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1978-01-01

    The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent...... numerical results from higher-order closure models, it is found that, even at a downwind distance such that the internal boundary layer has grown to the full height of the planetary boundary layers, the surface stress still considerably exceeds the equilibrium value...

  9. Investigation of Materials for Boundary Layer Control in a Supersonic Wind Tunnel

    Science.gov (United States)

    Braafladt, Alexander; Lucero, John M.; Hirt, Stefanie M.

    2013-01-01

    During operation of the NASA Glenn Research Center 15- by 15-Centimeter Supersonic Wind Tunnel (SWT), a significant, undesirable corner flow separation is created by the three-dimensional interaction of the wall and floor boundary layers in the tunnel corners following an oblique-shock/ boundary-layer interaction. A method to minimize this effect was conceived by connecting the wall and floor boundary layers with a radius of curvature in the corners. The results and observations of a trade study to determine the effectiveness of candidate materials for creating the radius of curvature in the SWT are presented. The experiments in the study focus on the formation of corner fillets of four different radii of curvature, 6.35 mm (0.25 in.), 9.525 mm (0.375 in.), 12.7 mm (0.5 in.), and 15.875 mm (0.625 in.), based on the observed boundary layer thickness of 11.43 mm (0.45 in.). Tests were performed on ten candidate materials to determine shrinkage, surface roughness, cure time, ease of application and removal, adhesion, eccentricity, formability, and repeatability. Of the ten materials, the four materials which exhibited characteristics most promising for effective use were the heavy body and regular type dental impression materials, the basic sculpting epoxy, and the polyurethane sealant. Of these, the particular material which was most effective, the heavy body dental impression material, was tested in the SWT in Mach 2 flow, and was observed to satisfy all requirements for use in creating the corner fillets in the upcoming experiments on shock-wave/boundary-layer interaction.

  10. See-saw motion of thermal boundary layer under vibrations: An implication of forced piston effect

    Science.gov (United States)

    Sharma, D.; Erriguible, A.; Amiroudine, S.

    2017-12-01

    The phenomenon of piston effect is well known in supercritical fluids wherein the thermal homogenization of the bulk occurs on a very short time scale due to pressure change caused by expansion or contraction of the fluid in the thermal boundary layer. In this article, we highlight an interesting phenomenon wherein by the application of external forces (vibration) normal to the temperature gradient, see-saw motion of the thermal boundary layer is observed in weightlessness conditions. This is attributed to the thermomechanical coupling caused by the temperature change due to external forces. We term this change in the temperature field due to external forces as forced piston effect (FPE). A detailed investigation of this intriguing behavior shows that the see-saw motion is attributed to the variation of the relative thickness of the thermal boundary layer, defined on the basis of relative local bulk temperature, along the direction of vibration. This change in the temperature field, which is observed to be caused by FPE in vibration, is shown to depend on the compressibility (and thus proximity to the critical point), the imposed acceleration and the cell size. It is also found that see-saw motion persists in the presence of gravity and thus is described ubiquitous in nature for all conditions. A plot illustrating the maximum change in the temperature as a function of these parameters is further proposed.

  11. Shear flow beneath oceanic plates: Local nonsimilarity boundary layers for olivine rheology

    International Nuclear Information System (INIS)

    Yuen, D.A.; Tovish, A.; Schubert, G.

    1978-01-01

    The principle of local similarity, which has been used to model the two-dimensional boundary layers in the oceanic upper mantle, permits calculation of the temperature, velocity, and stress fields with essentially analytic techniques. Finite difference numerical methods are hard pressed to resolve the detail required by the large variation of viscosity between the lithosphere and the asthenosphere. In this paper the local similarity approximation has been justified by quantitatively evaluating the effect of nonsimilarity due to viscous heating, nonlinear temperature- and pressure-dependent rheology, buoyancy, adiabatic cooling, etc. Nonsimilar effects produce only small modifications of the locally similar boundary layers; important geophysical observables such as surface heat flux and ocean floor topography are given to better than 10% by the locally similar solution. A posteriori evaluations of the term neglected in the boundary layer simplification of the complete equations have been conducted on the locally similar temperature and velocity profiles close to the spreading ridge. The boundary layer models are valid to depths of 100 km at 3 m.y. and 10 km at 0.3 m.y

  12. The effect of baroclinicity on the wind in the planetary boundary layer

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Peña, Alfredo; Gryning, Sven-Erik

    2015-01-01

    close to zero and a standard deviation of approximately 3ms−1km−1. The geostrophic wind shear had a strong seasonal dependence because of temperature differences between land and sea. The mean wind profile in Hamburg, observed during an intensive campaign using radio sounding and during the whole year...... using the wind lidar, was influenced by baroclinicity. For easterly winds at Høvsøre, the estimated gradient wind decreased rapidly with height, resulting in a mean low-level jet. The turning of the wind in the boundary layer, the boundary-layer height and the empirical constants in the geostrophic drag...

  13. Coupled vs. decoupled boundary layers in VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. R. Jones

    2011-07-01

    Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture and temperature stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150 m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.

    We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the "mixed layer cloud thickness", defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling.

    In the deeper boundary layers observed well offshore, there was frequently nearly 100 % boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.

  14. Effects of Mach number on pitot-probe displacement in a turbulent boundary layer

    Science.gov (United States)

    Allen, J. M.

    1974-01-01

    Experimental pitot-probe-displacement data have been obtained in a turbulent boundary layer at a local free-stream Mach number of 4.63 and unit Reynolds number of 6.46 million meter. The results of this study were compared with lower Mach number results of previous studies. It was found that small probes showed displacement only, whereas the larger probes showed not only displacement but also distortion of the shape of the boundary-layer profile. The distortion pattern occurred lower in the boundary layer at the higher Mach number than at the the lower Mach number. The maximum distortion occurred when the center of the probe was about one probe diameter off the test surface. For probes in the wall contact position, the indicated Mach numbers were, for all probes tested, close to the true profile. Pitot-probe displacement was found to increase significantly with increasing Mach number.

  15. Computational Study of Hypersonic Boundary Layer Stability on Cones

    Science.gov (United States)

    Gronvall, Joel Edwin

    Due to the complex nature of boundary layer laminar-turbulent transition in hypersonic flows and the resultant effect on the design of re-entry vehicles, there remains considerable interest in developing a deeper understanding of the underlying physics. To that end, the use of experimental observations and computational analysis in a complementary manner will provide the greatest insights. It is the intent of this work to provide such an analysis for two ongoing experimental investigations. The first focuses on the hypersonic boundary layer transition experiments for a slender cone that are being conducted at JAXA's free-piston shock tunnel HIEST facility. Of particular interest are the measurements of disturbance frequencies associated with transition at high enthalpies. The computational analysis provided for these cases included two-dimensional CFD mean flow solutions for use in boundary layer stability analyses. The disturbances in the boundary layer were calculated using the linear parabolized stability equations. Estimates for transition locations, comparisons of measured disturbance frequencies and computed frequencies, and a determination of the type of disturbances present were made. It was found that for the cases where the disturbances were measured at locations where the flow was still laminar but nearly transitional, that the highly amplified disturbances showed reasonable agreement with the computations. Additionally, an investigation of the effects of finite-rate chemistry and vibrational excitation on flows over cones was conducted for a set of theoretical operational conditions at the HIEST facility. The second study focuses on transition in three-dimensional hypersonic boundary layers, and for this the cone at angle of attack experiments being conducted at the Boeing/AFOSR Mach-6 quiet tunnel at Purdue University were examined. Specifically, the effect of surface roughness on the development of the stationary crossflow instability are investigated

  16. Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey

    2015-01-01

    For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat...

  17. Short climatology of the atmospheric boundary layer using acoustic methods

    International Nuclear Information System (INIS)

    Schubert, J.F.

    1975-06-01

    A climatology of the boundary layer of the atmosphere at the Savannah River Laboratory is being compiled using acoustic methods. The atmospheric phenomenon as depicted on the facsimile recorder is classified and then placed into one of sixteen categories. After classification, the height of the boundary layer is measured. From this information, frequency tables of boundary layer height and category are created and then analyzed for the percentage of time that each category was detected by the acoustic sounder. The sounder also accurately depicts the diurnal cycle of the boundary layer and, depending on the sensitivity of the system, shows microstructure that is normally unavailable using other methods of profiling. The acoustic sounder provides a means for continuous, real time measurements of the time rate of change of the depth of the boundary layer. This continuous record of the boundary layer with its convective cells, gravity waves, inversions, and frontal system passages permits the synoptic and complex climatology of the local area to be compiled. (U.S.)

  18. Stability of boundary layer flow based on energy gradient theory

    Science.gov (United States)

    Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong

    2018-05-01

    The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.

  19. Turbulent boundary layer in high Rayleigh number convection in air.

    Science.gov (United States)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  20. Structure of reconnection boundary layers in incompressible MHD

    International Nuclear Information System (INIS)

    Sonnerup, B.U.Oe.; Wang, D.J.

    1987-01-01

    The incompressible MHD equations with nonvanishing viscosity and resistivity are simplified by use of the boundary layer approximation to describe the flow and magnetic field in the exit flow regions of magnetic field reconnection configurations when the reconnection rate is small. The conditions are derived under which self-similar solutions exist of the resulting boundary layer equations. For the case of zero viscosity and resistivity, the equations describing such self-similar layers are then solved in terms of quadratures, and the resulting flow and field configurations are described. Symmetric solutions, relevant, for example, to reconnection in the geomagnetic tail, as well as asymmetric solutions, relevant to reconnection at the earth's magnetopause, are found to exist. The nature of the external solutions to which the boundary layer solutions should be matched is discussed briefly, but the actual matching, which is to occur at Alfven-wave characteristic curves in the boundary layer solutions, is not carried out. Finally, it is argued that the solutions obtained may also be used to describe the structure of the intense vortex layers observed to occur at magnetic separatrices in computer simulations and in certain analytical models of the reconnection process

  1. Accretion disc boundary layers - geometrically and optically thin case

    International Nuclear Information System (INIS)

    Regev, Oded; Hougerat, A.A.

    1988-01-01

    The method of matched asymptotic expansions is applied to an optically and geometrically thin boundary layer between an accretion disc and the accreting star. Analytical solutions are presented for a particular viscosity prescription in the boundary layer. For a typical example we find that the disc closely resembles standard steady-disc theory. It is identical to it everywhere save a narrow boundary layer, where the temperature increases rapidly inward (by an order of magnitude), the angular velocity achieves maximum and decreases to its surface value and other variables also undergo rapid changes. This and previous work can now be used to calculate the emission from accretion discs including the boundary layers for a wide range of parameters. (author)

  2. Boundary-layer interactions in the plane-parallel incompressible flows

    International Nuclear Information System (INIS)

    Nguyen, Toan T; Sueur, Franck

    2012-01-01

    We study the inviscid limit problem of incompressible flows in the presence of both impermeable regular boundaries and a hypersurface transversal to the boundary across which the inviscid flow has a discontinuity jump. In the former case, boundary layers have been introduced by Prandtl as correctors near the boundary between the inviscid and viscous flows. In the latter case, the viscosity smoothes out the discontinuity jump by creating a transition layer which has the same amplitude and thickness as the Prandtl layer. In the neighbourhood of the intersection of the impermeable boundary and of the hypersurface, interactions between the boundary and the transition layers must then be considered. In this paper, we initiate a mathematical study of this interaction and carry out a strong convergence in the inviscid limit for the case of the plane-parallel flows introduced by Di Perna and Majda (1987 Commun. Math. Phys. 108 667–89). (paper)

  3. Boundary layer flow past a circular cylinder in axial flow

    International Nuclear Information System (INIS)

    Sawchuk, S.P.; Zamir, M.; Camiletti, S.E.

    1985-01-01

    This paper discusses a study of the laminar boundary layer on a semi-infinite circular cylinder in axial incompressible flow. Unlike previous studies, the present study investigates a full range of this boundary layer problem to determine skin friction, heat transfer and other integral properties of the boundary layer

  4. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scalewaves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equation...

  5. Experimental investigation of a supercritical airfoil boundary layer in pitching motion

    Energy Technology Data Exchange (ETDEWEB)

    Masdari, Mehran; Tabrizian, Arshia [Faculty of New Science and Technology, University of Tehran, Tehran (Iran, Islamic Republic of); Jahanmiri, Mohsen; Gorji, Mohamamd [Dept. of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Soltani, Mohammad Reza [Dept. of Aerospace Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2017-01-15

    In this study, the boundary layer velocity profile on the upper surface of a supercritical airfoil in a forced sinusoidal pitching motion was measured and experimentally investigated. Measurements were performed using a boundary layer rake, including total pressure tubes positioned at 25 % of the chord far from the leading edge on the upper surface. For static measurements, the effects of the angle of attack between −3° and 14° and free-stream velocity between 40 m/s and 70 m/s were investigated; for dynamic measurements, the effects of oscillation amplitude variation between ±3° and ±10°, reduced frequency from 0.007 to 0.0313, and mean angle of attack between −3° and 6° were studied during one oscillation cycle. Results indicated that the boundary layer thickness decreased in upstroke motion. Increasing the oscillation frequency led to the extension of hysteresis loops. Fast Fourier transform was used on pressure signals to study the amplitude of the dominant frequency in the velocity profile. Spectral analysis showed that the dominant forced frequency of oscillation in the boundary layer and the amplitude of this frequency were varied by increasing the reduced frequency and other parameters.

  6. Boundary-layer theory

    CERN Document Server

    Schlichting (Deceased), Hermann

    2017-01-01

    This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

  7. Convection Cells in the Atmospheric Boundary Layer

    Science.gov (United States)

    Fodor, Katherine; Mellado, Juan-Pedro

    2017-04-01

    layers of the same depth, defined from the surface to the height at which the turbulent kinetic energy (TKE) is zero (in non-penetrative cases) or less than 10% of its maximum value (in penetrative cases). We find that with increasing filter width, the contribution of the filtered flow to the total TKE in the middle of the boundary layer decreases much more rapidly in the penetrative cases than in the non-penetrative cases. In particular, around 20-25% of the TKE at this height comes from small-scale turbulence with a length scale less than or equal to 15% of the boundary layer depth in the CBL, whereas in Rayleigh-Bénard convection, it is just 6-7%. This is consistent with visualisations, which show that entrainment creates additional small-scale mixing within the large-scale circulations in the CBL. Without entrainment, large-scale organisation predominates. Neither spatial nor temporal filtering are as successful at extracting superstructures in the penetrative cases as in the non-penetrative cases. Hence, these techniques depend not on the steadiness of the system, but rather on the presence of entrainment. We therefore intend to try other detection techniques, such as proper orthogonal decomposition, in order to make a rigorous assessment of which is most effective for isolating superstructures in all four cases.

  8. Global stability analysis of axisymmetric boundary layer over a circular cylinder

    Science.gov (United States)

    Bhoraniya, Ramesh; Vinod, Narayanan

    2018-05-01

    This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.

  9. Bristled shark skin: a microgeometry for boundary layer control?

    International Nuclear Information System (INIS)

    Lang, A W; Hidalgo, P; Westcott, M; Motta, P

    2008-01-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry

  10. Analytical solution for the convectively-mixed atmospheric boundary layer

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.

    2013-01-01

    Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation

  11. Fuselage boundary-layer refraction of fan tones radiated from an installed turbofan aero-engine.

    Science.gov (United States)

    Gaffney, James; McAlpine, Alan; Kingan, Michael J

    2017-03-01

    A distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is extended to include the refraction effects caused by the fuselage boundary layer. The model is a simple representation of an installed turbofan, where fan tones are represented in terms of spinning modes radiated from a semi-infinite circular duct, and the aircraft's fuselage is represented by an infinitely long, rigid cylinder. The distributed source is a disk, formed by integrating infinitesimal volume sources located on the intake duct termination. The cylinder is located adjacent to the disk. There is uniform axial flow, aligned with the axis of the cylinder, everywhere except close to the cylinder where there is a constant thickness boundary layer. The aim is to predict the near-field acoustic pressure, and in particular, to predict the pressure on the cylindrical fuselage which is relevant to assess cabin noise. Thus no far-field approximations are included in the modelling. The effect of the boundary layer is quantified by calculating the area-averaged mean square pressure over the cylinder's surface with and without the boundary layer included in the prediction model. The sound propagation through the boundary layer is calculated by solving the Pridmore-Brown equation. Results from the theoretical method show that the boundary layer has a significant effect on the predicted sound pressure levels on the cylindrical fuselage, owing to sound radiation of fan tones from an installed turbofan aero-engine.

  12. Comparison of turbulence in a transitional boundary layer to turbulence in a developed boundary layer*

    Science.gov (United States)

    Park, G. I.; Wallace, J.; Wu, X.; Moin, P.

    2010-11-01

    Using a recent DNS of a flat-plate boundary layer, statistics of turbulence in transition at Reθ= 500 where spots merge (distributions of the mean velocity, rms velocity and vorticity fluctuations, Reynolds shear stress, kinetic energy production and dissipation rates and enstrophy) have been compared to these statistics for the developed boundary layer turbulence at Reθ= 1850. When the distributions in the transitional region, determined in narrow planes 0.03 Reθ wide, exclude regions and times when the flow is not turbulent, they closely resemble those in the developed turbulent state at the higher Reynolds number, especially in the buffer and sublayers. The skin friction coefficient, determined in this conditional manner in the transitional flow is, of course, much larger than that obtained by including both turbulent and non-turbulent information there, and is consistent with a value obtained by extrapolating from the developed turbulent region. We are attempting to perform this data analysis even further upstream in the transitioning flow at Reθ= 300 where the turbulent spots are individuated. These results add further evidence to support the view that the structure of a developed turbulent boundary layer is little different from its structure in its embryonic form in turbulent spots. *CTR 2010 Summer Program research.

  13. Analysis and Modeling of Boundary Layer Separation Method (BLSM).

    Science.gov (United States)

    Pethő, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-09-01

    Nowadays rules of environmental protection strictly regulate pollution material emission into environment. To keep the environmental protection laws recycling is one of the useful methods of waste material treatment. We have developed a new method for the treatment of industrial waste water and named it boundary layer separation method (BLSM). We apply the phenomena that ions can be enriched in the boundary layer of the electrically charged electrode surface compared to the bulk liquid phase. The main point of the method is that the boundary layer at correctly chosen movement velocity can be taken out of the waste water without being damaged, and the ion-enriched boundary layer can be recycled. Electrosorption is a surface phenomenon. It can be used with high efficiency in case of large electrochemically active surface of electrodes. During our research work two high surface area nickel electrodes have been prepared. The value of electrochemically active surface area of electrodes has been estimated. The existence of diffusion part of the double layer has been experimentally approved. The electrical double layer capacity has been determined. Ion transport by boundary layer separation has been introduced. Finally we have tried to estimate the relative significance of physical adsorption and electrosorption.

  14. Prediction of boundary-layer transition caused by crossflow disturbances

    OpenAIRE

    Nomura, Toshiyuki; 野村 聡幸

    1999-01-01

    A prediction system for boundary layer transition is developed which consists of the Navier-Stokes code computing a compressible boundary layer, the linear PSE (Parabolized Stability Equations) code computing the spatial growth of a disturbance, and the N-factor code integrating the growth rate. The system is applied to the case that the transition of the compressible boundary layer on a swept cylinder is caused by cross flow disturbances which have the same spanwise wavelength as observed in...

  15. INCOMPRESSIBLE LAMINAR BOUNDARY LAYER CONTROL BY BLOWING AND SUCTION

    OpenAIRE

    AZZEDINE NAHOUI; LAKHDAR BAHI

    2013-01-01

    A two-dimensional incompressible laminar boundary layer and its control using blowing and suction over a flat plate and around the NACA 0012 and 661012 profiles, is studied numerically. The study is based on the Prandtl boundary layer model using the finite differences method and the Crank-Nicolson scheme. The velocity distribution, the boundary layer thickness and the friction coefficient, are determined and presented with and without control. The application of the control technique, has de...

  16. Unsteady turbulent boundary layers in swimming rainbow trout.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2015-05-01

    The boundary layers of rainbow trout, Oncorhynchus mykiss, swimming at 1.02±0.09 L s(-1) (mean±s.d., N=4), were measured by the particle image velocimetry (PIV) technique at a Reynolds number of 4×10(5). The boundary layer profile showed unsteadiness, oscillating above and beneath the classical logarithmic law of the wall with body motion. Across the entire surface regions that were measured, local Reynolds numbers based on momentum thickness, which is the distance that is perpendicular to the fish surface through which the boundary layer momentum flows at free-stream velocity, were greater than the critical value of 320 for the laminar-to-turbulent transition. The skin friction was dampened on the convex surface while the surface was moving towards a free-stream flow and increased on the concave surface while retreating. These observations contradict the result of a previous study using different species swimming by different methods. Boundary layer compression accompanied by an increase in local skin friction was not observed. Thus, the overall results may not support absolutely the Bone-Lighthill boundary layer thinning hypothesis that the undulatory motions of swimming fish cause a large increase in their friction drag because of the compression of the boundary layer. In some cases, marginal flow separation occurred on the convex surface in the relatively anterior surface region, but the separated flow reattached to the fish surface immediately downstream. Therefore, we believe that a severe impact due to induced drag components (i.e. pressure drag) on the swimming performance, an inevitable consequence of flow separation, was avoided. © 2015. Published by The Company of Biologists Ltd.

  17. Grain boundary layer behavior in ZnO/Si heterostructure

    International Nuclear Information System (INIS)

    Liu Bingce; Liu Cihui; Yi Bo

    2010-01-01

    The grain boundary layer behavior in ZnO/Si heterostucture is investigated. The current-voltage (I-V) curves, deep level transient spectra (DLTS) and capacitance-voltage (C-V) curves are measured. The transport currents of ZnO/Si heterojunction are dominated by grain boundary layer as high densities of interfacial states existed. The interesting phenomenon that the crossing of In I-V curves of ZnO/Si heterojunction at various measurement temperatures and the decrease of its effective barrier height with the decrement of temperature are in contradiction with the ideal heterojunction thermal emission model is observed. The details will be discussed in the following. (semiconductor physics)

  18. Comments on Hypersonic Boundary-Layer Transition

    Science.gov (United States)

    1990-09-01

    mechanism by which boundary-layer disturbance growth is generally initiated and establishes the initial distur- banca amplitude at the onset of disturbance...Patankar, S. V., and Spalding, P. B., Heat and Mass Transfer in Boundary Lavers, CRC Press , Cleveland, Ohio, 1968. 87. Neumann, R. D., and Patterson, .J. 1

  19. Vortex sheet approximation of boundary layers

    International Nuclear Information System (INIS)

    Chorin, A.J.

    1978-01-01

    a grid free method for approximating incomprssible boundary layers is introduced. The computational elements are segments of vortex sheets. The method is related to the earlier vortex method; simplicity is achieved at the cost of replacing the Navier-Stokes equations by the Prandtl boundary layer equations. A new method for generating vorticity at boundaries is also presented; it can be used with the earlier voartex method. The applications presented include (i) flat plate problems, and (ii) a flow problem in a model cylinder- piston assembly, where the new method is used near walls and an improved version of the random choice method is used in the interior. One of the attractive features of the new method is the ease with which it can be incorporated into hybrid algorithms

  20. An Examination of the Effect of Boundary Layer Ingestion on Turboelectric Distributed Propulsion Systems

    Science.gov (United States)

    Felder, James L.; Kim, Huyn Dae; Brown, Gerald V.; Chu, Julio

    2011-01-01

    A Turboelectric Distributed Propulsion (TeDP) system differs from other propulsion systems by the use of electrical power to transmit power from the turbine to the fan. Electrical power can be efficiently transmitted over longer distances and with complex topologies. Also the use of power inverters allows the generator and motors speeds to be independent of one another. This decoupling allows the aircraft designer to place the core engines and the fans in locations most advantageous for each. The result can be very different installation environments for the different devices. Thus the installation effects on this system can be quite different than conventional turbofans where the fan and core both see the same installed environments. This paper examines a propulsion system consisting of two superconducting generators, each driven by a turboshaft engine located so that their inlets ingest freestream air, superconducting electrical transmission lines, and an array of superconducting motor driven fan positioned across the upper/rear fuselage area of a hybrid wing body aircraft in a continuous nacelle that ingests all of the upper fuselage boundary layer. The effect of ingesting the boundary layer on the design of the system with a range of design pressure ratios is examined. Also the impact of ingesting the boundary layer on off-design performance is examined. The results show that when examining different design fan pressure ratios it is important to recalculate of the boundary layer mass-average Pt and MN up the height for each inlet height during convergence of the design point for each fan design pressure ratio examined. Correct estimation of off-design performance is dependent on the height of the column of air measured from the aircraft surface immediately prior to any external diffusion that will flow through the fan propulsors. The mass-averaged Pt and MN calculated for this column of air determine the Pt and MN seen by the propulsor inlet. Since the height

  1. Bristled shark skin: a microgeometry for boundary layer control?

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A W; Hidalgo, P; Westcott, M [Aerospace Engineering and Mechanics Department, University of Alabama, Box 870280, Tuscaloosa, AL 35487 (United States); Motta, P [Biology Department, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)], E-mail: alang@eng.ua.edu

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  2. Shock-like structures in the tropical cyclone boundary layer

    Science.gov (United States)

    Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.

    2013-06-01

    This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).

  3. Definition of Turbulent Boundary-Layer with Entropy Concept

    Directory of Open Access Journals (Sweden)

    Zhao Rui

    2016-01-01

    Full Text Available The relationship between the entropy increment and the viscosity dissipation in turbulent boundary-layer is systematically investigated. Through theoretical analysis and direct numerical simulation (DNS, an entropy function fs is proposed to distinguish the turbulent boundary-layer from the external flow. This approach is proved to be reliable after comparing its performance in the following complex flows, namely, low-speed airfoil flows with different wall temperature, supersonic cavity-ramp flow dominated by the combination of free-shear layer, larger recirculation and shocks, and the hypersonic flow past an aeroplane configuration. Moreover, fs is deduced from the point of energy, independent of any particular turbulent quantities. That is, this entropy concept could be utilized by other engineering applications related with turbulent boundary-layer, such as turbulence modelling transition prediction and engineering thermal protection.

  4. Dynamics, thermodynamics, radiation, and cloudiness associated with cumulus-topped marine boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, Virendra P. [Argonne National Lab. (ANL), Argonne, IL (United States); Miller, Mark [Rutgers Univ., New Brunswick, NJ (United States)

    2016-11-01

    The overall goal of this project was to improve the understanding of marine boundary clouds by using data collected at the Atmospheric Radiation Measurement (ARM) sites, so that they can be better represented in global climate models (GCMs). Marine boundary clouds are observed regularly over the tropical and subtropical oceans. They are an important element of the Earth’s climate system because they have substantial impact on the radiation budget together with the boundary layer moisture, and energy transports. These clouds also have an impact on large-scale precipitation features like the Inter Tropical Convergence Zone (ITCZ). Because these clouds occur at temporal and spatial scales much smaller than those relevant to GCMs, their effects and the associated processes need to be parameterized in GCM simulations aimed at predicting future climate and energy needs. Specifically, this project’s objectives were to (1) characterize the surface turbulent fluxes, boundary layer thermodynamics, radiation field, and cloudiness associated with cumulus-topped marine boundary layers; (2) explore the similarities and differences in cloudiness and boundary layer conditions observed in the tropical and trade-wind regions; and (3) understand similarities and differences by using a simple bulk boundary layer model. In addition to working toward achieving the project’s three objectives, we also worked on understanding the role played by different forcing mechanisms in maintaining turbulence within cloud-topped boundary layers We focused our research on stratocumulus clouds during the first phase of the project, and cumulus clouds during the rest of the project. Below is a brief description of manuscripts published in peer-reviewed journals that describe results from our analyses.

  5. Direct numerical simulation of hypersonic boundary-layer flow on a flared cone

    Energy Technology Data Exchange (ETDEWEB)

    Pruett, C.D. [James Madison Univ., Harrisonburg, VA (United States). Dept. of Math. and Comput. Sci.; Chang Chau-Lyan [High Technology Corporation, Hampton, VA 23666 (United States)

    1998-03-01

    The forced transition of the boundary layer on an axisymmetric flared cone in Mach 6 flow is simulated by the method of spatial direct numerical simulation (DNS). The full effects of the flared afterbody are incorporated into the governing equations and boundary conditions; these effects include nonzero streamwise surface curvature, adverse streamwise pressure gradient, and decreasing boundary-layer edge Mach number. Transition is precipitated by periodic forcing at the computational inflow boundary with perturbations derived from parabolized stability equation (PSE) methodology and based, in part, on frequency spectra available from physical experiments. Significant qualitative differences are shown to exist between the present results and those obtained previously for a cone without afterbody flare. In both cases, the primary instability is of second-mode type; however, frequencies are much higher for the flared cone because of the decrease in boundary-layer thickness in the flared region. Moreover, Goertler modes, which are linearly stable for the straight cone, are unstable in regions of concave body flare. Reynolds stresses, which peak near the critical layer for the straight cone, exhibit peaks close to the wall for the flared cone. The cumulative effect appears to be that transition onset is shifted upstream for the flared cone. However, the length of the transition zone may possibly be greater because of the seemingly more gradual nature of the transition process on the flared cone. (orig.) With 20 figs., 28 refs.

  6. A Comment Upon Previous Studies on 3-D Boundary Layer Transition

    OpenAIRE

    ÇARPINLIOĞLU, Melda Özdinç

    2014-01-01

    The common feature of the experimental studies upon 3-D boundary layer development on swept flat plates cited in the available literature is the application of streamwise and/or spanwise pressure gradients. In fact; presence of the pressure gradients was suggested to be vital for having crossflow effective in 3-D boundary layer transition. In the presented paper here, this idea is questioned evaluating the results of an experimental investigation conducted on swept flat plates under the ab...

  7. Numerical simulations of the stratified oceanic bottom boundary layer

    Science.gov (United States)

    Taylor, John R.

    Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory

  8. The laminar boundary layer equations

    CERN Document Server

    Curle, N

    2017-01-01

    Thorough introduction to boundary layer problems offers an ordered, logical presentation accessible to undergraduates. The text's careful expositions of the limitations and accuracy of various methods will also benefit professionals. 1962 edition.

  9. Direct numerical simulation of stable and unstable turbulent thermal boundary layers

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Houra, Tomoya; Nagano, Yasutaka

    2007-01-01

    This paper presents direct numerical simulations (DNS) of stable and unstable turbulent thermal boundary layers. Since a buoyancy-affected boundary layer is often encountered in an urban environmental space where stable and unstable stratifications exist, exploring a buoyancy-affected boundary layer is very important to know the transport phenomena of the flow in an urban space. Although actual observation may qualitatively provide the characteristics of these flows, the relevant quantitative turbulent quantities are very difficult to measure. Thus, in order to quantitatively investigate a buoyancy-affected boundary layer in detail, we have here carried out for the first time time- and space-developing DNS of slightly stable and unstable turbulent thermal boundary layers. The DNS results show the quantitative turbulent statistics and structures of stable and unstable thermal boundary layers, in which the characteristic transport phenomena of thermally stratified boundary layers are demonstrated by indicating the budgets of turbulent shear stress and turbulent heat flux. Even though the input of buoyant force is not large, the influence of buoyancy is clearly revealed in both stable and unstable turbulent boundary layers. In particular, it is found that both stable and unstable thermal stratifications caused by the weak buoyant force remarkably alter the structure of near-wall turbulence

  10. A variable K - planetary boundary layer model

    International Nuclear Information System (INIS)

    Misra, P.K.

    1976-07-01

    The steady-state, homogeneous and barotropic equations of motion within the planetary boundary layer are solved with the assumption that the coefficient of eddy viscosity varies as K(Z) = K 0 (1-Z/h)sup(p), where h is the height of the boundary layer and p a parameter which depends on the atmospheric stability. The solutions are compared with the observed velocity profiles based on the Wangara data. They compare favourably. (author)

  11. Assessment of a transitional boundary layer theory at low hypersonic Mach numbers

    Science.gov (United States)

    Shamroth, S. J.; Mcdonald, H.

    1972-01-01

    An investigation was carried out to assess the accuracy of a transitional boundary layer theory in the low hypersonic Mach number regime. The theory is based upon the simultaneous numerical solution of the boundary layer partial differential equations for the mean motion and an integral form of the turbulence kinetic energy equation which controls the magnitude and development of the Reynolds stress. Comparisions with experimental data show the theory is capable of accurately predicting heat transfer and velocity profiles through the transitional regime and correctly predicts the effects of Mach number and wall cooling on transition Reynolds number. The procedure shows promise of predicting the initiation of transition for given free stream disturbance levels. The effects on transition predictions of the pressure dilitation term and of direct absorption of acoustic energy by the boundary layer were evaluated.

  12. Boundary Layer Control on Airfoils.

    Science.gov (United States)

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  13. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara

    Directory of Open Access Journals (Sweden)

    J. H. Marsham

    2008-12-01

    Full Text Available Observations of the Saharan boundary layer, made during the GERBILS field campaign, show that mesoscale land surface temperature variations (which were related to albedo variations induced mesoscale circulations. With weak winds along the aircraft track, land surface temperature anomalies with scales of greater than 10 km are shown to significantly affect boundary-layer temperatures and winds. Such anomalies are expected to affect the vertical mixing of the dusty and weakly stratified Saharan Residual Layer (SRL. Mesoscale variations in winds are also shown to affect dust loadings in the boundary layer.

    Using the aircraft observations and data from the COSMO model, a region of local dust uplift, with strong along-track winds, was identified in one low-level flight. Large eddy model (LEM simulations based on this location showed linearly organised boundary-layer convection. Calculating dust uplift rates from the LEM wind field showed that the boundary-layer convection increased uplift by approximately 30%, compared with the uplift rate calculated neglecting the convection. The modelled effects of boundary-layer convection on uplift are shown to be larger when the boundary-layer wind is decreased, and most significant when the mean wind is below the threshold for dust uplift and the boundary-layer convection leads to uplift which would not otherwise occur.

    Both the coupling of albedo features to the atmosphere on the mesoscale, and the enhancement of dust uplift by boundary-layer convection are unrepresented in many climate models, but may have significant impacts on the vertical transport and uplift of desert dust. Mesoscale effects in particular tend to be difficult to parametrise.

  14. Receptivity of Hypersonic Boundary Layers over Straight and Flared Cones

    Science.gov (United States)

    Balakumar, Ponnampalam; Kegerise, Michael A.

    2010-01-01

    The effects of adverse pressure gradients on the receptivity and stability of hypersonic boundary layers were numerically investigated. Simulations were performed for boundary layer flows over a straight cone and two flared cones. The steady and the unsteady flow fields were obtained by solving the two-dimensional Navier-Stokes equations in axi-symmetric coordinates using the 5th order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The mean boundary layer profiles were analyzed using local stability and non-local parabolized stability equations (PSE) methods. After the most amplified disturbances were identified, two-dimensional plane acoustic waves were introduced at the outer boundary of the computational domain and time accurate simulations were performed. The adverse pressure gradient was found to affect the boundary layer stability in two important ways. Firstly, the frequency of the most amplified second-mode disturbance was increased relative to the zero pressure gradient case. Secondly, the amplification of first- and second-mode disturbances was increased. Although an adverse pressure gradient enhances instability wave growth rates, small nose-tip bluntness was found to delay transition due to the low receptivity coefficient and the resulting weak initial amplitude of the instability waves. The computed and measured amplitude-frequency spectrums in all three cases agree very well in terms of frequency and the shape except for the amplitude.

  15. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)

    Science.gov (United States)

    Balakumar, P.

    2015-01-01

    Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.

  16. Destiny of earthward streaming plasma in the plasmasheet boundary layer

    Science.gov (United States)

    Green, J. L.; Horwitz, J. L.

    1986-01-01

    The dynamics of the earth's magnetotail have been investigated, and it has become clear that the plasmasheet boundary layer field lines map into the Region I Field-Aligned Currents (FAC) of the auroral zone. It is pointed out that the role of earthward streaming ions in the plasmasheet boundary layer may be of fundamental importance in the understanding of magnetotail dynamics, auroral zone physics, and especially for ionospheric-magnetospheric interactions. The present paper has the objective to evaluate propagation characteristics for the earthward streaming ions observed in the plasmasheet boundary layer. An investigation is conducted of the propagation characteristics of protons in the plasmasheet boundary layer using independent single particle dynamics, and conclusions are discussed. The density of earthward streaming ions found in the plasmasheet boundary layer should include the ring current as well as the auroral zone precipitaiton and inner plasmasheet regions of the magnetosphere.

  17. Transpiration and film cooling boundary layer computer program. Volume 1: Numerical solutions of the turbulent boundary layer equations with equilibrium chemistry

    Science.gov (United States)

    Levine, J. N.

    1971-01-01

    A finite difference turbulent boundary layer computer program has been developed. The program is primarily oriented towards the calculation of boundary layer performance losses in rocket engines; however, the solution is general, and has much broader applicability. The effects of transpiration and film cooling as well as the effect of equilibrium chemical reactions (currently restricted to the H2-O2 system) can be calculated. The turbulent transport terms are evaluated using the phenomenological mixing length - eddy viscosity concept. The equations of motion are solved using the Crank-Nicolson implicit finite difference technique. The analysis and computer program have been checked out by solving a series of both laminar and turbulent test cases and comparing the results to data or other solutions. These comparisons have shown that the program is capable of producing very satisfactory results for a wide range of flows. Further refinements to the analysis and program, especially as applied to film cooling solutions, would be aided by the acquisition of a firm data base.

  18. Boundary layer friction of solvate ionic liquids as a function of potential.

    Science.gov (United States)

    Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob

    2017-07-01

    Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.

  19. Mean flow structure of non-equilibrium boundary layers with adverse ...

    Indian Academy of Sciences (India)

    According to them, an equilibrium boundary layer might exist if the pressure ... of adverse pressure gradient on the turbulent boundary layer at the flat plate for ..... of a constant-pressure turbulent layer to the sudden application of an sudden.

  20. Large Eddy Simulations of a Bottom Boundary Layer Under a Shallow Geostrophic Front

    Science.gov (United States)

    Bateman, S. P.; Simeonov, J.; Calantoni, J.

    2017-12-01

    The unstratified surf zone and the stratified shelf waters are often separated by dynamic fronts that can strongly impact the character of the Ekman bottom boundary layer. Here, we use large eddy simulations to study the turbulent bottom boundary layer associated with a geostrophic current on a stratified shelf of uniform depth. The simulations are initialized with a spatially uniform vertical shear that is in geostrophic balance with a pressure gradient due to a linear horizontal temperature variation. Superposed on the temperature front is a stable vertical temperature gradient. As turbulence develops near the bottom, the turbulence-induced mixing gradually erodes the initial uniform temperature stratification and a well-mixed layer grows in height until the turbulence becomes fully developed. The simulations provide the spatial distribution of the turbulent dissipation and the Reynolds stresses in the fully developed boundary layer. We vary the initial linear stratification and investigate its effect on the height of the bottom boundary layer and the turbulence statistics. The results are compared to previous models and simulations of stratified bottom Ekman layers.

  1. Compressibility effect on thermal coherent structures in spatially-developing turbulent boundary layers via DNS

    Science.gov (United States)

    Araya, Guillermo; Jansen, Kenneth

    2017-11-01

    DNS of compressible spatially-developing turbulent boundary layers is performed at a Mach number of 2.5 over an isothermal flat plate. Turbulent inflow information is generated by following the concept of the rescaling-recycling approach introduced by Lund et al. (J. Comp. Phys. 140, 233-258, 1998); although, the proposed methodology is extended to compressible flows. Furthermore, a dynamic approach is employed to connect the friction velocities at the inlet and recycle stations (i.e., there is no need of an empirical correlation as in Lund et al.). Additionally, the Morkovin's Strong Reynolds Analogy (SRA) is used in the rescaling process of the thermal fluctuations from the recycle plane. Low/high order flow statistics is compared with direct simulations of an incompressible isothermal ZPG boundary layer at similar Reynolds numbers and temperature regarded as a passive scalar. Focus is given to the effect assessment of flow compressibility on the dynamics of thermal coherent structures. AFOSR #FA9550-17-1-0051.

  2. Comments on deriving the equilibrium height of the stable boundary layer

    NARCIS (Netherlands)

    Steeneveld, G.J.; Wiel, van de B.J.H.; Holtslag, A.A.M.

    2007-01-01

    Recently, the equilibrium height of the stable boundary layer received much attention in a series of papers by Zilitinkevich and co-workers. In these studies the stable boundary-layer height is derived in terms of inverse interpolation of different boundary-layer height scales, each representing a

  3. Direct numerical simulation of thermally-stratified turbulent boundary layer subjected to adverse pressure gradient

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Kono, Amane; Houra, Tomoya

    2016-01-01

    Highlights: • We study various thermally-stratified turbulent boundary layers having adverse pressure gradient (APG) by means of DNS. • The detailed turbulent statistics and structures in various thermally-stratified turbulent boundary layers having APG are discussed. • It is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification. • In the case of strong stable stratification with or without APG, the flow separation is observed in the downstream region. - Abstract: The objective of this study is to investigate and observe turbulent heat transfer structures and statistics in thermally-stratified turbulent boundary layers subjected to a non-equilibrium adverse pressure gradient (APG) by means of direct numerical simulation (DNS). DNSs are carried out under conditions of neutral, stable and unstable thermal stratifications with a non-equilibrium APG, in which DNS results reveal heat transfer characteristics of thermally-stratified non-equilibrium APG turbulent boundary layers. In cases of thermally-stratified turbulent boundary layers affected by APG, heat transfer performances increase in comparison with a turbulent boundary layer with neutral thermal stratification and zero pressure gradient (ZPG). Especially, it is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification (WSBL). Thus, the analysis for both the friction coefficient and Stanton number in the case of WSBL with/without APG is conducted using the FIK identity in order to investigate contributions from the transport equations, in which it is found that both Reynolds-shear-stress and the mean convection terms

  4. Discussion of boundary-layer characteristics near the casing of an axial-flow compressor

    Science.gov (United States)

    Mager, Artur; Mahoney, John J; Budinger, Ray E

    1951-01-01

    Boundary-layer velocity profiles on the casing of an axial-flow compressor behind the guide vanes and rotor were measured and resolved into two components: along the streamline of the flow and perpendicular to it. Boundary-layer thickness and the deflection of the boundary layer at the wall were the generalizing parameters. By use of these results and the momentum-integral equations, the characteristics of boundary on the walls of axial-flow compressor are qualitatively discussed. Important parameters concerning secondary flow in the boundary layer appear to be turning of the flow and the product of boundary-layer thickness and streamline curvature outside the boundary layer. Two types of separation are shown to be possible in three dimensional boundary layer.

  5. On hairpin vortices in a transitional boundary layer

    Directory of Open Access Journals (Sweden)

    Uruba Václav

    2012-04-01

    Full Text Available In the presented paper the results of experiments on transitional boundary layer are presented. The boundary layer was generated on smooth flat wall with zero pressure gradient forming one side of the channel of rectangular cross section. The hairpin vortices, packets of hairpin vortices, turbulent spots and calmed regions were experimentally investigated using time-resolved PIV technique.

  6. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble-liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined. The predicted boundary layer thickness is found to be in good agreement with the experimental results. The calculated axial liquid velocity and the void fraction in the two-phase region are also presented along with the observed flow behavior

  7. Optimal Growth in Hypersonic Boundary Layers

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous- inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow.

  8. Boundary layer and fundamental problems of hydrodynamics (compatibility of a logarithmic velocity profile in a turbulent boundary layer with the experience values)

    Science.gov (United States)

    Zaryankin, A. E.

    2017-11-01

    The compatibility of the semiempirical turbulence theory of L. Prandtl with the actual flow pattern in a turbulent boundary layer is considered in this article, and the final calculation results of the boundary layer is analyzed based on the mentioned theory. It shows that accepted additional conditions and relationships, which integrate the differential equation of L. Prandtl, associating the turbulent stresses in the boundary layer with the transverse velocity gradient, are fulfilled only in the near-wall region where the mentioned equation loses meaning and are inconsistent with the physical meaning on the main part of integration. It is noted that an introduced concept about the presence of a laminar sublayer between the wall and the turbulent boundary layer is the way of making of a physical meaning to the logarithmic velocity profile, and can be defined as adjustment of the actual flow to the formula that is inconsistent with the actual boundary conditions. It shows that coincidence of the experimental data with the actual logarithmic profile is obtained as a result of the use of not particular physical value, as an argument, but function of this value.

  9. Investigation of turbulent boundary layer over forward-facing step via direct numerical simulation

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Nagano, Yasutaka

    2010-01-01

    This paper presents observations and investigations of the detailed turbulent structure of a boundary layer over a forward-facing step. The present DNSs are conducted under conditions with three Reynolds numbers based on step height, or three Reynolds numbers based on momentum thickness so as to investigate the effects of step height and inlet boundary layer thickness. DNS results show the quantitative turbulent statistics and structures of boundary layers over a forward-facing step, where pronounced counter-gradient diffusion phenomena (CDP) are especially observed on the step near the wall. Also, a quadrant analysis is conducted in which the results indicate in detail the turbulence motion around the step.

  10. A numerical investigation of the impact of surface topology on laminar boundary layers

    Science.gov (United States)

    Beratlis, Nikolaos; Squires, Kyle; Balaras, Elias

    2015-11-01

    Surface topology, such as dimples or trip wires, has been utilized in the past for passive separation control over bluff bodies. The majority of the work, however, has focused on the indirect effects on the drag and lift forces, while the details of the impact on the boundary layer evolution are not well understood. Here we report a series of DNS of flow over a single row of spherical and hexagonal dimples, as well as, circular grooves. The Reynolds number and the thickness of the incoming laminar boundary layer is carefully controlled. In all cases transition to turbulence downstream of the elements comes with reorientation of the spanwise vorticity into hairpin like vortices. Although qualitatively the transition mechanism amongst different dimples and grooves is similar, important quantitative differences exist: two-dimensional geometries such as the groove, are more stable than three-dimensional geometries. In addition, it was found that the cavity geometry controls the initial thickness of the boundary layer and practically results in a shift of the virtual origin of the turbulent boundary layer. Important differences in the momentum transport downstream of the dimples exist, but in all cases the boundary layer evolves in a self-similar manner.

  11. Coastal boundary layers in ocean modelling: an application to the Adriatic Sea

    International Nuclear Information System (INIS)

    Malanotte Rizzoli, P.; Dell'Orto, F.

    1981-01-01

    Boundary layers play an important role in modelling geophysical fluid-dynamical flows, in as much as they constitute regions of ageostrophic dynamics in which the physical balances characterizing the main interior of the water mass break down. A short synopsis is given of important boundary layers in ocean circulation modelling with specific emphasis drawn upon side wall boundary layers, namely those adjacent to the coastlines of the considered basin. Application of boundary layer analysis is thereafter made for one specific phenomenological situation, namely the Northern Adriatic Sea and the problem posed by its wintertime seasonal circulation. The analysis furnishes a mathematical model fo the coastal strip adjacent to the Italian shoreline, treated as a boundary layer in the density field, starting from general model equations valid throughout the interior of the Northern Adriatic. The boundary layer model is consequently used to modify the side wall boundary condition for the interior density field. Related numerical experiments are shown and compared with previous standard experiments in which the boundary layer contribution to the density field has not been considered. (author)

  12. On the modeling of electrical boundary layer (electrode layer) and ...

    Indian Academy of Sciences (India)

    In the first part of the paper, equations and methodology are discussed and in the second, we discuss results. 2. Methodology. In the atmospheric electricity, the earth's surface is one electrode and electrode layer or electrical boundary layer is a region near the surface of the earth in which profiles of atmospheric electrical.

  13. Large Eddy Simulation of the ventilated wave boundary layer

    DEFF Research Database (Denmark)

    Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2006-01-01

    A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean bed shear stress...

  14. Exploring the magnetospheric boundary layer

    International Nuclear Information System (INIS)

    Hapgood, M.A.; Bryant, D.A.

    1992-01-01

    We show how, for most crossings of the boundary layer, one can construct a 'transition parameter', based on electron density and temperature, which orders independent plasma measurements into well-defined patterns which are consistent from case to case. We conclude that there is a gradual change in the balance of processes which determine the structure of the layer and suggest that there is no advantage in dividing the layer into different regions. We further conclude that the mixing processes in layer act in an organised way to give the consistent patterns revealed by the transition parameter. More active processes must sometimes take to give the extreme values (e.g. in velocity) which are seen in some crossings

  15. Boundary layer separation method for recycling of sodium ions from industrial wastewater.

    Science.gov (United States)

    Petho, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-12-01

    The most effective technological solution for waste treatment is recycling. We have developed a new method for the treatment of industrial wastewaters and have called it the boundary layer separation method (BLSM). We have used the phenomenon that, on the surface of an electrically charged electrode, ions can be enriched in the boundary layer, as compared with the inside of the phase. The essence of the method is that, with an appropriately chosen velocity, the boundary layer can be removed from the wastewater, and the boundary layer, which is rich in ions, can be recycled. The BLSM can be executed as a cyclic procedure. The capacitance of the boundary layer was examined. The best mass transport can be achieved with the use of 1000 and 1200 mV polarization potentials in the examined system, with its value being 1200 mg/m2 per cycle. The necessary operation times were determined by the examination of the velocity of the electrochemical processes. When using 1000 mV polarization potential, the necessary adsorption time is at least 25 seconds, and the desorption time at least 300 seconds. The advantage of the procedure is that it does not use dangerous chemicals, only inert electrodes. The drawback is that it is not selective to ions, the achievable separation in one step is low, and the hydrogen that emerges during the electrolysis might be dangerous.

  16. The Atmospheric Boundary Layer

    Science.gov (United States)

    Garratt, J. R.

    1994-05-01

    A comprehensive and lucid account of the physics and dynamics of the lowest one to two kilometers of the Earth's atmosphere in direct contact with the Earth's surface, known as the atmospheric boundary layer (ABL). Dr. Garratt emphasizes the application of the ABL problems to numerical modeling of the climate, which makes this book unique among recent texts on the subject. He begins with a brief introduction to the ABL before leading to the development of mean and turbulence equations and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modeling of the ABL is crucially dependent for its realism on the surface boundary conditions, so chapters four and five deal with aerodynamic and energy considerations, with attention given to both dry and wet land surfaces and the sea. The author next treats the structure of the clear-sky, thermally stratified ABL, including the convective and stable cases over homogeneous land, the marine ABL, and the internal boundary layer at the coastline. Chapter seven then extends this discussion to the cloudy ABL. This is particularly relevant to current research because the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic have been identified as key players in the climate system. In the final chapters, Dr. Garratt summarizes the book's material by discussing appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate stimulation.

  17. The kinetic boundary layer around an absorbing sphere and the growth of small droplets

    International Nuclear Information System (INIS)

    Widder, M.E.; Titulaer, U.M.

    1989-01-01

    Deviations from the classical Smoluchowski expression for the growth rate of a droplet in a supersaturated vapor can be expected when the droplet radius is not large compared to the mean free path of a vapor molecule. The growth rate then depends significantly on the structure of the kinetic boundary layer around a sphere. The authors consider this kinetic boundary layer for a dilute system of Brownian particles. For this system a large class of boundary layer problems for a planar wall have been solved. They show how the spherical boundary layer can be treated by a perturbation expansion in the reciprocal droplet radius. In each order one has to solve a finite number of planar boundary layer problems. The first two corrections to the planar problem are calculated explicitly. For radii down to about two velocity persistence lengths (the analog of the mean free path for a Brownian particle) the successive approximations for the growth rate agree to within a few percent. A reasonable estimate of the growth rate for all radii can be obtained by extrapolating toward the exactly known value at zero radius. Kinetic boundary layer effects increase the time needed for growth from 0 to 10 (or 2 1/2) velocity persistence lengths by roughly 35% (or 175%)

  18. Boundary layers as the primary transport regions of the earth's magnetotail

    International Nuclear Information System (INIS)

    Eastman, T.E.; Frank, L.A.; Huang, C.Y.

    1985-01-01

    A comprehensive survey of ISEE and IMP LEPEDEA plasma measurements in the earth's magnetotail reveals that the magnetospheric boundary layer and the plasma sheet boundary layer are the primary transport regions there. These plasma measurements also distinguish various components of the plasma sheet, including the central plasma sheet and plasma sheet boundary layer. A significant new result reported here is the existence of cold-and hot-plasma components that are spatially copresent within the central plasma sheet. Such plasma components cannot be explained merely by temporal variations in spectra involving the entire plasma sheet. Contributions to a low-temperature component of the plasma sheet enter directly from the boundary layer located along the magnetotail flanks. Field-aligned flows predominate within the plasma sheet boundary layer, which is almost always present and is located near the northern and southern border of the plasma sheet. The plasma sheet boundary layer comprises highly anisotropic ion distributions, including counteracting ion beams, that evolve into the hot, isotropic component of the plasma sheet

  19. Experimental measurements and modelling of the WEGA boundary layer plasma

    International Nuclear Information System (INIS)

    El Shaer, M.; Ichtchenko, G.

    1983-02-01

    The boundary layer of the WEGA Tokamak has been investigated by using specific diagnostics: movable 4 mm microwave interferometer, several types of movable and fixed probes, Katsumata probe, and multigrid electrostatic analyzer. During the RF heating at the lower hybrid frequency, some modifications in the parameters of the boundary layer are observed which are interpreted by the ponderomotive force effects. A comparison between the measured reflection coefficients of the grill waveguides and their predicted values by a coupling theory (not taking into account the real conditions facing the Grill) is presented. A diffusion model was also made to describe this particular region and to fit the experimental results

  20. Plasma-based actuators for turbulent boundary layer control in transonic flow

    Science.gov (United States)

    Budovsky, A. D.; Polivanov, P. A.; Vishnyakov, O. I.; Sidorenko, A. A.

    2017-10-01

    The study is devoted to development of methods for active control of flow structure typical for the aircraft wings in transonic flow with turbulent boundary layer. The control strategy accepted in the study was based on using of the effects of plasma discharges interaction with miniature geometrical obstacles of various shapes. The conceptions were studied computationally using 3D RANS, URANS approaches. The results of the computations have shown that energy deposition can significantly change the flow pattern over the obstacles increasing their influence on the flow in boundary layer region. Namely, one of the most interesting and promising data were obtained for actuators basing on combination of vertical wedge with asymmetrical plasma discharge. The wedge considered is aligned with the local streamlines and protruding in the flow by 0.4-0.8 of local boundary layer thickness. The actuator produces negligible distortion of the flow at the absence of energy deposition. Energy deposition along the one side of the wedge results in longitudinal vortex formation in the wake of the actuator providing momentum exchange in the boundary layer. The actuator was manufactured and tested in wind tunnel experiments at Mach number 1.5 using the model of flat plate. The experimental data obtained by PIV proved the availability of the actuator.

  1. Modelization of a large wind farm, considering the modification of the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, A; Gomez-Elvira, R [Univ. Politecnica de Madrid, Mecanica de Fluidos, E.T.S.I. Industriales, Madrid (Spain); Frandsen, S; Larsen, S E [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    A method is presented to adapt existing models of wind farms to very large ones that may affect the whole planetary boundary layer. An internal boundary layer is considered that starts developing at the leading edge of the farm until it reaches, sufficiently far downstream, the top of the planetary boundary layer, and a new equilibrium region is reached. The wind farm is simulated by an artificial roughness that is function of the turbine spacing, drag and height. From this model the flow conditions are calculated at a certain reference height and then are used as boundary conditions for a numerical code used to model a wind farm. Three-dimensional effects are considered by applying appropriate conditions at the sides of the farm. Calculations are carried out to estimate the energy production in large wind farms, and it is found that additional losses due to modification of the planetary boundary layer may be of importance for wind farms of size larger than about 100 km. (au)

  2. Effect of a Roughness Element on the Receptivity of a Hypersonic Boundary Layer over a Blunt Cone Due to Pulse Entropy Disturbance with a Single Frequency

    Directory of Open Access Journals (Sweden)

    Zhenqing Wang

    2018-05-01

    Full Text Available A high-order finite difference method was used to simulate the hypersonic flow field over a blunt cone with different height roughness elements. The unsteady flow field induced by pulse disturbances was analyzed and compared with that under continuous disturbances. The temporal and spatial evolution characteristics of disturbances in the boundary layer were investigated and the propagation of different disturbance modes in the boundary layer was researched through the fast Fourier transform (FFT method. The effect of the roughness element on the receptivity characteristic of the hypersonic boundary layer under pulse entropy disturbances was explored. The results showed that the different mode disturbances near roughness in the boundary layer were enlarged in the upstream half of the roughness element and suppressed in the downstream half. However, the effect of roughness weakened gradually as the disturbance frequency increased in the boundary layer. A phenomenon of mode competition in the downstream region of the roughness element exited. As the disturbances propagated downstream, the fundamental mode gradually became the dominant mode. A certain promotion effect on the mode competition was induced by the roughness element and the effect was enhanced with the increase in the roughness element height.

  3. Large artificially generated turbulent boundary layers for the study of atmospheric flows

    International Nuclear Information System (INIS)

    Guimaraes, Joao Henrique D.; Santos Junior, Sergio J.F. dos; Freire, Atila P. Silva; Jian, Su

    1999-01-01

    The present work discusses in detail the experimental conditions for the establishment of thick artificially generated turbulent boundary layer which can be classified as having the near characteristics of an atmospheric boundary layer. The paper describes the experimental arrangement, including the features of the designed wind tunnel and of the instrumentation. the boundary layer is made to develop over a surface fitted with wedge generators which are used to yield a very thick boundary layer. The flow conditions were validated against the following features: growth, structure, equilibrium and turbulent transport momentum. Results are presented for the following main flow variables: mean velocity, local skin-friction coefficient, boundary layer momentum thickness and the Clauser factor. The velocity boundary layer characteristics were shown to be in good agreement with the expected trend in view of the classical expressions found in literature. (author)

  4. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined

  5. Rough-wall turbulent boundary layers with constant skin friction

    KAUST Repository

    Sridhar, A.

    2017-03-28

    A semi-empirical model is presented that describes the development of a fully developed turbulent boundary layer in the presence of surface roughness with length scale ks that varies with streamwise distance x . Interest is centred on flows for which all terms of the von Kármán integral relation, including the ratio of outer velocity to friction velocity U+∞≡U∞/uτ , are streamwise constant. For Rex assumed large, use is made of a simple log-wake model of the local turbulent mean-velocity profile that contains a standard mean-velocity correction for the asymptotic fully rough regime and with assumed constant parameter values. It is then shown that, for a general power-law external velocity variation U∞∼xm , all measures of the boundary-layer thickness must be proportional to x and that the surface sand-grain roughness scale variation must be the linear form ks(x)=αx , where x is the distance from the boundary layer of zero thickness and α is a dimensionless constant. This is shown to give a two-parameter (m,α) family of solutions, for which U+∞ (or equivalently Cf ) and boundary-layer thicknesses can be simply calculated. These correspond to perfectly self-similar boundary-layer growth in the streamwise direction with similarity variable z/(αx) , where z is the wall-normal coordinate. Results from this model over a range of α are discussed for several cases, including the zero-pressure-gradient ( m=0 ) and sink-flow ( m=−1 ) boundary layers. Trends observed in the model are supported by wall-modelled large-eddy simulation of the zero-pressure-gradient case for Rex in the range 108−1010 and for four values of α . Linear streamwise growth of the displacement, momentum and nominal boundary-layer thicknesses is confirmed, while, for each α , the mean-velocity profiles and streamwise turbulent variances are found to collapse reasonably well onto z/(αx) . For given α , calculations of U+∞ obtained from large-eddy simulations are streamwise

  6. Receptivity of a high-speed boundary layer to temperature spottiness

    OpenAIRE

    Fedorov, A. V.; Ryzhov, A. A.; Soudakov, V. G.; Utyuzhnikov, S. V.

    2013-01-01

    Two-dimensional direct numerical simulation (DNS) of the receptivity of a flat-plate boundary layer to temperature spottiness in the Mach 6 free stream is carried out. The influence of spottiness parameters on the receptivity process is studied. It is shown that the temperature spots propagating near the upper boundary-layer edge generate mode F inside the boundary layer. Further downstream mode F is synchronized with unstable mode S (Mack second mode) and excites the latter via the inter-mod...

  7. Axisymmetric free convection boundary-layer flow past slender bodies

    NARCIS (Netherlands)

    Kuiken, H.K.

    1968-01-01

    Radial curvature effects on axisymmetric free convection boundary-layer flow are investigated for vertical cylinders and cones for some special non-uniform temperature differences between the surface and the ambient fluid. The solution is given as a power series expansion, the first term being equal

  8. Airfoil boundary layer separation and control at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Yarusevych, S.; Sullivan, P.E. [University of Toronto, Department of Mechanical and Industrial Engineering, Toronto, ON (Canada); Kawall, J.G. [Ryerson University, Department of Mechanical and Industrial Engineering, Toronto, ON (Canada)

    2005-04-01

    The boundary layer separation on a NACA 0025 airfoil was studied experimentally via hot-wire anemometry and surface pressure measurements. The results provide added insight into periodic boundary layer control, suggesting that matching the excitation frequency with the most amplified disturbance in the separated shear layer is optimal for improving airfoil performance. (orig.)

  9. Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle

    Science.gov (United States)

    Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.

  10. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  11. Cloud-Scale Numerical Modeling of the Arctic Boundary Layer

    Science.gov (United States)

    Krueger, Steven K.

    1998-01-01

    The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.

  12. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent

    2016-01-04

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  13. Scaling the heterogeneously heated convective boundary layer

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J.; De Lozar, A.

    2013-12-01

    We have studied the heterogeneously heated convective boundary layer (CBL) by means of large-eddy simulations (LES) and direct numerical simulations (DNS). What makes our study different from previous studies on this subject are our very long simulations in which the system travels through multiple states and that from there we have derived scaling laws. In our setup, a stratified atmosphere is heated from below by square patches with a high surface buoyancy flux, surrounded by regions with no or little flux. By letting a boundary layer grow in time we let the system evolve from the so-called meso-scale to the micro-scale regime. In the former the heterogeneity is large and strong circulations can develop, while in the latter the heterogeneity is small and does no longer influence the boundary layer structure. Within each simulation we can now observe the formation of a peak in kinetic energy, which represents the 'optimal' heterogeneity size in the meso-scale, and the subsequent decay of the peak and the development towards the transition to the micro-scale. We have created a non-dimensional parameter space that describes all properties of this system. By studying the previously described evolution for different combinations of parameters, we have derived three important conclusions. First, there exists a horizontal length scale of the heterogeneity (L) that is a function of the boundary layer height (h) and the Richardson (Ri) number of the inversion at the top of the boundary layer. This relationship has the form L = h Ri^(3/8). Second, this horizontal length scale L allows for expressing the time evolution, and thus the state of the system, as a ratio of this length scale and the distance between two patches Xp. This ratio thus describes to which extent the circulation fills up the space that exists between two patch centers. The timings of the transition from the meso- to the micro-scale collapse under this scaling for all simulations sharing the same flux

  14. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    Science.gov (United States)

    2016-12-16

    behaviour of the velocity and pressure changes with the curvature. This work aims to extend the results of the flat-plate boundary layer to a Rankine...example, consume an enormous amount of energy due to friction, many works have been directed to the suppression of transitional boundary layer disturbances...decrease of the enormous amount of energy consumed by airplanes during flight, moreover flight costs and aerodynamic noise could be reduced and number

  15. Modelling the artic stable boundary layer and its coupling to the surface

    NARCIS (Netherlands)

    Steeneveld, G.J.; Wiel, van de B.J.H.; Holtslag, A.A.M.

    2006-01-01

    The impact of coupling the atmosphere to the surface energy balance is examined for the stable boundary layer, as an extension of the first GABLS (GEWEX Atmospheric Boundary-Layer Study) one-dimensional model intercomparison. This coupling is of major importance for the stable boundary-layer

  16. Turbulent Helicity in the Atmospheric Boundary Layer

    Science.gov (United States)

    Chkhetiani, Otto G.; Kurgansky, Michael V.; Vazaeva, Natalia V.

    2018-05-01

    We consider the assumption postulated by Deusebio and Lindborg (J Fluid Mech 755:654-671, 2014) that the helicity injected into the Ekman boundary layer undergoes a cascade, with preservation of its sign (right- or alternatively left-handedness), which is a signature of the system rotation, from large to small scales, down to the Kolmogorov microscale of turbulence. At the same time, recent direct field measurements of turbulent helicity in the steppe region of southern Russia near Tsimlyansk Reservoir show the opposite sign of helicity from that expected. A possible explanation for this phenomenon may be the joint action of different scales of atmospheric flows within the boundary layer, including the sea-breeze circulation over the test site. In this regard, we consider a superposition of the classic Ekman spiral solution and Prandtl's jet-like slope-wind profile to describe the planetary boundary-layer wind structure. The latter solution mimics a hydrostatic shallow breeze circulation over a non-uniformly heated surface. A 180°-wide sector on the hodograph plane exists, within which the relative orientation of the Ekman and Prandtl velocity profiles favours the left rotation with height of the resulting wind velocity vector in the lowermost part of the boundary layer. This explains the negative (left-handed) helicity cascade toward small-scale turbulent motions, which agrees with the direct field measurements of turbulent helicity in Tsimlyansk. A simple turbulent relaxation model is proposed that explains the measured positive values of the relatively minor contribution to turbulent helicity from the vertical components of velocity and vorticity.

  17. Effects of non-adiabatic walls on shock/boundary-layer interaction using direct numerical simulations

    Science.gov (United States)

    Volpiani, Pedro S.; Bernardini, Matteo; Larsson, Johan

    2017-11-01

    The influence of wall thermal conditions on the properties of an impinging shock wave interacting with a turbulent supersonic boundary layer is a research topic that still remains underexplored. In the present study, direct numerical simulations (DNS) are employed to investigate the flow properties of a shock wave interacting with a turbulent boundary layer at free-stream Mach number M∞ = 2.28 with distinct wall thermal conditions and shock strengths. Instantaneous and mean flow fields, wall quantities and the low-frequency unsteadiness are analyzed. While heating contributes to increase the extent of the interaction zone, wall cooling turns out to be a good candidate for flow control. The distribution of the Stanton number shows a good agreement with prior experimental studies and confirms the strong heat transfer and complex pattern within the interaction region. Numerical results indicate that the changes in the interaction length are mainly linked to the incoming boundary layer as suggested in previous studies (Souverein et al., 2013 and Jaunet et al., 2014). This work was supported by the Air Force Office of Scientific Research, Grant FA95501610385.

  18. Linear segmentation algorithm for detecting layer boundary with lidar.

    Science.gov (United States)

    Mao, Feiyue; Gong, Wei; Logan, Timothy

    2013-11-04

    The automatic detection of aerosol- and cloud-layer boundary (base and top) is important in atmospheric lidar data processing, because the boundary information is not only useful for environment and climate studies, but can also be used as input for further data processing. Previous methods have demonstrated limitations in defining the base and top, window-size setting, and have neglected the in-layer attenuation. To overcome these limitations, we present a new layer detection scheme for up-looking lidars based on linear segmentation with a reasonable threshold setting, boundary selecting, and false positive removing strategies. Preliminary results from both real and simulated data show that this algorithm cannot only detect the layer-base as accurate as the simple multi-scale method, but can also detect the layer-top more accurately than that of the simple multi-scale method. Our algorithm can be directly applied to uncalibrated data without requiring any additional measurements or window size selections.

  19. Evaluation of the Atmospheric Boundary-Layer Electrical Variability

    Science.gov (United States)

    Anisimov, Sergey V.; Galichenko, Sergey V.; Aphinogenov, Konstantin V.; Prokhorchuk, Aleksandr A.

    2017-12-01

    Due to the chaotic motion of charged particles carried by turbulent eddies, electrical quantities in the atmospheric boundary layer (ABL) have short-term variability superimposed on long-term variability caused by sources from regional to global scales. In this study the influence of radon exhalation rate, aerosol distribution and turbulent transport efficiency on the variability of fair-weather atmospheric electricity is investigated via Lagrangian stochastic modelling. For the mid-latitude lower atmosphere undisturbed by precipitation, electrified clouds, or thunderstorms, the model is capable of reproducing the diurnal variation in atmospheric electrical parameters detected by ground-based measurements. Based on the analysis of field observations and numerical simulation it is found that the development of the convective boundary layer, accompanied by an increase in turbulent kinetic energy, forms the vertical distribution of radon and its decaying short-lived daughters to be approximately coincident with the barometric law for several eddy turnover times. In the daytime ABL the vertical distribution of atmospheric electrical conductivity tends to be uniform except within the surface layer, due to convective mixing of radon and its radioactive decay products. At the same time, a decrease in the conductivity near the ground is usually observed. This effect leads to an enhanced ground-level atmospheric electric field compared to that normally observed in the nocturnal stably-stratified boundary layer. The simulation showed that the variability of atmospheric electric field in the ABL associated with internal origins is significant in comparison to the variability related to changes in global parameters. It is suggested that vertical profiles of electrical quantities can serve as informative parameters on ABL turbulent dynamics and can even more broadly characterize the state of the environment.

  20. 3D LDV Measurements in Oscillatory Boundary Layers

    Science.gov (United States)

    Mier, J. M.; Garcia, M. H.

    2012-12-01

    The oscillatory boundary layer represents a particular case of unsteady wall-bounded flows in which fluid particles follow a periodic sinusoidal motion. Unlike steady boundary layer flows, the oscillatory flow regime and bed roughness character change in time along the period for every cycle, a characteristic that introduces a high degree of complexity in the analysis of these flows. Governing equations can be derived from the general Navier-Stokes equations for the motion of fluids, from which the exact solution for the laminar oscillatory boundary layer is obtained (also known as the 2nd Stokes problem). No exact solution exists for the turbulent case, thus, understanding of the main flow characteristics comes from experimental work. Several researchers have reported experimental work in oscillatory boundary layers since the 1960's; however, larger scale facilities and the development of newer measurement techniques with improved temporal and spatial resolution in recent years provides a unique opportunity to achieve a better understanding about this type of flows. Several experiments were performed in the Large Oscillatory Water and Sediment Tunnel (LOWST) facility at the Ven Te Chow Hydrosystems Laboratory, for a range of Reynolds wave numbers between 6x10^4 3D Laser Doppler Velocimetry (LDV) system was used to measure instantaneous flow velocities with a temporal resolution up to ~ 1,000 Hz. It was mounted on a 3-axis traverse with a spatial resolution of 0.01 mm in all three directions. The closest point to the bottom was measured at z = 0.2 mm (z+ ≈ 4), which allowed to capture boundary layer features with great detail. In order to achieve true 3D measurements, 2 probes were used on a perpendicular configuration, such that u and w components were measured from a probe on the side of the flume and v component was measured from a probe pointing down through and access window on top of the flume. The top probe was submerged in a water container, such that the

  1. Theoretical skin-friction law in a turbulent boundary layer

    International Nuclear Information System (INIS)

    Cheskidov, A.

    2005-01-01

    We study transitional and turbulent boundary layers using a turbulent velocity profile equation recently derived from the Navier-Stokes-alpha and Leray-alpha models. From this equation we obtain a theoretical prediction of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce the maximal value of c f max =0.0063 for turbulent velocity profiles. A two-parameter family of solutions to the equation matches experimental data in the transitional boundary layers with different free-stream turbulence intensity, while one-parameter family of solutions, obtained using our skin-friction coefficient law, matches experimental data in the turbulent boundary layer for moderately large Reynolds numbers

  2. Factors Influencing Pitot Probe Centerline Displacement in a Turbulent Supersonic Boundary Layer

    Science.gov (United States)

    Grosser, Wendy I.

    1997-01-01

    When a total pressure probe is used for measuring flows with transverse total pressure gradients, a displacement of the effective center of the probe is observed (designated Delta). While this phenomenon is well documented in incompressible flow and supersonic laminar flow, there is insufficient information concerning supersonic turbulent flow. In this study, three NASA Lewis Research Center Supersonic Wind Tunnels (SWT's) were used to investigate pitot probe centerline displacement in supersonic turbulent boundary layers. The relationship between test conditions and pitot probe centerline displacement error was to be determined. For this investigation, ten circular probes with diameter-to-boundary layer ratios (D/delta) ranging from 0.015 to 0.256 were tested in the 10 ft x 10 ft SWT, the 15 cm x 15 cm SWT, and the 1 ft x 1 ft SWT. Reynolds numbers of 4.27 x 10(exp 6)/m, 6.00 x 10(exp 6)/in, 10.33 x 10(exp 6)/in, and 16.9 x 10(exp 6)/m were tested at nominal Mach numbers of 2.0 and 2.5. Boundary layer thicknesses for the three tunnels were approximately 200 mm, 13 mm, and 30 mm, respectively. Initial results indicate that boundary layer thickness, delta, and probe diameter, D/delta play a minimal role in pitot probe centerline offset error, Delta/D. It appears that the Mach gradient, dM/dy, is an important factor, though the exact relationship has not yet been determined. More data is needed to fill the map before a conclusion can be drawn with any certainty. This research provides valuable supersonic, turbulent boundary layer data from three supersonic wind tunnels with three very different boundary layers. It will prove a valuable stepping stone for future research into the factors influencing pitot probe centerline offset error.

  3. The atmospheric boundary layer — advances in knowledge and application

    Science.gov (United States)

    Garratt, J. R.; Hess, G. D.; Physick, W. L.; Bougeault, P.

    1996-02-01

    We summarise major activities and advances in boundary-layer knowledge in the 25 years since 1970, with emphasis on the application of this knowledge to surface and boundary-layer parametrisation schemes in numerical models of the atmosphere. Progress in three areas is discussed: (i) the mesoscale modelling of selected phenomena; (ii) numerical weather prediction; and (iii) climate simulations. Future trends are identified, including the incorporation into models of advanced cloud schemes and interactive canopy schemes, and the nesting of high resolution boundary-layer schemes in global climate models.

  4. Coherent structures in wave boundary layers. Part 2. Solitary motion

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Jensen, Palle Martin; Sørensen, Lone B.

    2010-01-01

    This study continues the investigation of wave boundary layers reported by Carstensen, Sumer & Fredsøe (J. Fluid Mech., 2010, part 1 of this paper). The present paper summarizes the results of an experimental investigation of turbulent solitary wave boundary layers, simulated by solitary motion...... the boundary-layer flow experiences a regular array of vortex tubes near the bed over a short period of time during the deceleration stage; and (iii) transitional regime characterized with turbulent spots, revealed by single/multiple, or, sometimes, quite dense spikes in the bed shear stress traces...

  5. Structure measurements in a synthetic turbulent boundary layer

    Science.gov (United States)

    Arakeri, Jaywant H.

    1987-09-01

    Extensive hot-wire measurements have been made to determine the structure of the large eddy in a synthejc turbulent boundary layer on a flat-plate model. The experiments were carried out in a wind tunnel at a nominal free-stream velocity of 12 m/s. The synthetic turbulent boundary layer had a hexagonal pattern of eddies and a ratio of streamwise scale to spanwise scale of 3.2:1. The measured celerity of the large eddy was 84.2 percent of the free-stream velocity. There was some loss of coherence, but very little distortion, as the eddies moved downstream. Several mean properties of the synthetic boundary layer were found to agree quite well with the mean properties of a natural turbulent boundary layer at the same Reynolds number. The large eddy is composed of a pair of primary counter-rotating vortices about five [...] long in the streamwise direction and about one [...] apart in the spanwise direction, where [...] is the mean boundary-layer thickness. The sense of the primary pair is such as to pump fluid away from the wall in the region between the vortices. A secondary pair of counter-rotating streamwise vortices, having a sense opposite to that of the primary pair, is observed outside of and slightly downstream from the primary vortices. Both pairs of vortices extend across the full thickness of the boundary layer and are inclined at a shallow angle to the surface of the flat plate. The data show that the mean vorticity vectors are not tangential to the large-eddy vortices. In fact, the streamwise and normal vorticity components that signal the presence of the eddy are of the same order of magnitude. Definite signatures are obtained in terms of the mean skin-friction coefficient and the mean wake parameter averaged at constant phase. Velocities induced by the vortices are partly responsible for entrainment of irrotational fluid, for transport of momentum, for generation of Reynolds stresses, and for maintenance of streamwise and normal vorticity in the outer

  6. Experiments in a boundary layer subjected to free stream turbulence. Part 1: Boundary layer structure and receptivity

    International Nuclear Information System (INIS)

    Westin, K.J.A.; Boiko, A.V.; Klingmann, B.G.B.; Kozlov, V.V.; Alfredsson, P.H.

    1993-12-01

    The modification of the mean and fluctuating characteristics of a flat plate boundary layer subjected to nearly isotropic free stream turbulence (FST) is studied experimentally using hot-wire anemometry. The study is focussed on the region upstream of the transition onset, where the fluctuations inside the boundary layer are dominated by elongated flow structures which grow downstream both in amplitude and length. Their downstream development and scaling is investigated, and the results are compared to those obtained by previous authors. This allows some conclusions about the parameters which are relevant for the modelling of the transition process. The mechanisms underlying the transition process and the relative importance of the Tollmien-Schlichting wave instability in this flow are treated in an accompanying paper. 25 refs

  7. White dwarf radii and boundary-layer constraints in three dwarf novae

    International Nuclear Information System (INIS)

    Wood, J.H.

    1990-01-01

    The structure of the boundary layer between the accretion disc and white dwarf in three quiescent dwarf novae is explored with high signal-to-noise eclipse light curves obtained by phase folding 12-20 eclipses. Models of the eclipse shapes of various white dwarf/boundary layer configurations that might be at the centres of the accretion discs are calculated and compared with observations of the eclipses in Z Cha, OY Car and HT Cas. Possible models for the central objects are found to be a white dwarf with or without its lower hemisphere occulted by the disc, or a white dwarf with an optically thick boundary layer significantly extended in latitude up and down its sides. The most likely of these models for each system is an unocculted white dwarf with no boundary layer contributing significantly to the optical flux, or a white dwarf totally covered by an optically thick boundary layer. (author)

  8. Boundary layer stability on a yawed spinning body of revolution and its effect on the magnus force and moment

    Science.gov (United States)

    Jacobson, I. D.; Morton, J. B.

    1972-01-01

    The parameters are established which are important to the stability of a boundary layer flow over a yawed spinning cylinder in a uniform stream. It is shown that transition occurs asymmetrically in general and this asymmetry can be important for the prediction of aerodynamic forces and moments (e.g., the Magnus effect). Instability of the steady-state boundary layer flow is determined using small disturbance theory. Although the approach is strictly valid only for the calculation of the conditions for stability in the small, experimental data indicate that in many problems, it provides a good estimate for the transition to turbulence.

  9. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2012-01-01

    Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear...... of efficient angular momentum transport in the inner disk regions. This suggests that the detailed structure of turbulent MHD accretion disk boundary layers could differ appreciably from those derived within the standard framework of turbulent shear viscosity...

  10. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

    Science.gov (United States)

    Martín, Juan A.; Paredes, Pedro

    2017-12-01

    A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

  11. Stability characteristics of compressible boundary layers over thermo-mechanically compliant walls

    Science.gov (United States)

    Dettenrieder, Fabian; Bodony, Daniel

    2017-11-01

    Transition prediction at hypersonic flight conditions continues to be a challenge and results in conservative safety factors that increase vehicle weight. The weight and thus cost reduction of the outer skin panels promises significant impact; however, fluid-structure interaction due to unsteady perturbations in the laminar boundary layer regime has not been systematically studied at conditions relevant for reusable, hypersonic flight. In this talk, we develop and apply convective and global stability analyses for compressible boundary layers over thermo-mechanically compliant panels. This compliance is shown to change the convective stability of the boundary layer modes, with both stabilization and destabilization observed. Finite panel lengths are shown to affect the global stability properties of the boundary layer.

  12. The boundary layers as the primary transport regions of the earth's magnetotail

    Science.gov (United States)

    Eastman, T. E.; Frank, L. A.; Huang, C. Y.

    1985-01-01

    A comprehensive survey of ISEE and IMP LEPEDEA plasma measurements in the earth's magnetotail reveals that the magnetospheric boundary layer and the plasma sheet boundary layer are the primary transport regions there. These plasma measurements also reveal various components of the plasma sheet, including the central plasma sheet and plasma sheet boundary layer. A significant new result reported here is that of cold- and hot-plasma components that are spatially co-present within the central plasma sheet. Such plasma components cannot be explained merely by temporal variations in spectra involving the entire plasma sheet. Contributions to a low temperature component of the plasma sheet enter directly from the boundary layer located along the magnetotail flanks. Field-aligned flows predominate within the plasma sheet boundary layer which is almost always present and is located near the high- and low-latitude border of the plasma sheet. The plasma sheet boundary layer comprises highly anisotropic ion distributions, including counter-streaming ion beams, that evolve into the hot, isotropic component of the plasma sheet. Tailward acceleration regions generate these ion beams with plasma input from the magnetospheric boundary layer. Antisunward-flowing ion beams, at E/q less than 1 kV and of ionospheric composition, are frequently observed in the plasma sheet boundary layer and in tail lobes. These ion beams are likely accelerated at low altitude over the polar cap and especially along auroral field lines.

  13. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    Directory of Open Access Journals (Sweden)

    Zhenqing Wang

    2014-01-01

    Full Text Available The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  14. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    Science.gov (United States)

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  15. Convection and reaction in a diffusive boundary layer in a porous medium: nonlinear dynamics.

    Science.gov (United States)

    Andres, Jeanne Therese H; Cardoso, Silvana S S

    2012-09-01

    We study numerically the nonlinear interactions between chemical reaction and convective fingering in a diffusive boundary layer in a porous medium. The reaction enhances stability by consuming a solute that is unstably distributed in a gravitational field. We show that chemical reaction profoundly changes the dynamics of the system, by introducing a steady state, shortening the evolution time, and altering the spatial patterns of velocity and concentration of solute. In the presence of weak reaction, finger growth and merger occur effectively, driving strong convective currents in a thick layer of solute. However, as the reaction becomes stronger, finger growth is inhibited, tip-splitting is enhanced and the layer of solute becomes much thinner. Convection enhances the mass flux of solute consumed by reaction in the boundary layer but has a diminishing effect as reaction strength increases. This nonlinear behavior has striking differences to the density fingering of traveling reaction fronts, for which stronger chemical kinetics result in more effective finger merger owing to an increase in the speed of the front. In a boundary layer, a strong stabilizing effect of reaction can maintain a long-term state of convection in isolated fingers of wavelength comparable to that at onset of instability.

  16. High frequency ground temperature fluctuation in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Kleissl, J.; Lothon, M.; Lohou, F.; Pardyjak, E.; Saïd, F.; Cuxart, J.; Steeneveld, G.J.; Yaguë, C.; Derrien, S.; Alexander, D.; Villagrasa, D.M.

    2012-01-01

    To study influence of the turbulent structures in the convective boundary layer (CBL) on the ground temperature, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) observational campaign, high frequency ground temperature was recorded through infra-red imagery from 13 June - 8

  17. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  18. Numerical study on effect of boundary layer trips on aerodynamic performance of E216 airfoil

    Directory of Open Access Journals (Sweden)

    B.K. Sreejith

    2018-02-01

    Full Text Available Simulation is carried out to find the performance of airfoil E216 using Transition γ-Reθ model at Reynolds number of 100,000. Flow behaviour and effect of angle of attack (AOA on laminar separation bubble (LSB formation are examined. The results are validated with wind tunnel experimental results. LSB formation is clearly spotted in the velocity vector plot and coefficient of pressure distribution over airfoil. LSB moved upstream towards the leading edge with increase in AOA. Effect of boundary layer trip on LSB formation over the airfoil and performance of airfoil are studied. Two different trip locations, 17% of chord and 10% of chord from leading edge, and different trip heights (0.3 mm, 0.5 mm, 0.7 mm, 1 mm are investigated in this study. Results showed that boundary layer trip could eliminate LSB partially or completely and improve aerodynamic performance of the airfoil. Maximum improvement in drag by 15.48% and lift to drag ratio by 21.62% are obtained at angle of attack of 60. In all the cases, improvement in performance is observed only up to trip height of 0.5 mm.

  19. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

    NARCIS (Netherlands)

    Lothon, M.; Lohou, F.; Pino, D.; Vilà-Guerau De Arellano, J.; Hartogensis, O.K.; Boer, van de A.; Coster, de O.; Moene, A.F.; Steeneveld, G.J.

    2014-01-01

    Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary

  20. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2016-12-15

    The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L) (mean±s.d.); N=6], swimming at 1.6±0.09 L s -1 (N=6) in an experimental flow channel (Reynolds number, Re=4×10 5 ) with medium turbulence (5.6% intensity) were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, l x =71±8 mm, N=3, and l x =110±13 mm, N=4, respectively) were approximated by a laminar boundary layer model, the Falkner-Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (l x =163±22 mm, N=3). The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment. © 2016. Published by The Company of Biologists Ltd.

  1. An experimental study of low Re cavity vortex formation embedded in a laminar boundary layer

    Science.gov (United States)

    Gautam, Sashank; Lang, Amy; Wilroy, Jacob

    2016-11-01

    Laminar boundary layer flow across a grooved surface leads to the formation of vortices inside rectangular cavities. The nature and stability of the vortex inside any single cavity is determined by the Re and cavity geometry. According to the hypothesis, under low Re and stable vortex conditions a single cavity vortex leads to a roller-bearing effect which results in a decrease in drag as quantified by velocity profiles measured within the boundary layer. At higher Re once the vortex becomes unstable, drag should increase due to the mixing of low-momentum fluid within the cavity and the outer boundary layer flow. The primary objective of this experiment is to document the phenomenon using DPIV in a tow tank facility. This study focuses on the transition of the cavity flow from a steady to an unsteady state as the Re is increased above a critical value. The change in boundary layer momentum and cavity vortex characteristics are documented as a function of Re and boundary layer thickness. Funding from NSF CBET fluid dynamics Grant 1335848 is gratefully acknowledged.

  2. Turbulent boundary layer noise : direct radiation at Mach number 0.5

    OpenAIRE

    Gloerfelt , Xavier; Berland , Julien

    2013-01-01

    International audience; Boundary layers constitute a fundamental source of aerodynamic noise. A turbulent boundary layer over a plane wall can provide an indirect contribution to the noise by exciting the structure, and a direct noise contribution. The latter part can play a significant role even if its intensity is very low, explaining why it is hardly measured unambiguously. In the present study, the aerodynamic noise generated by a spatially developing turbulent boundary layer is computed ...

  3. Competitive separation of di- vs. mono-valent cations in electrodialysis: effects of the boundary layer properties.

    Science.gov (United States)

    Kim, Younggy; Walker, W Shane; Lawler, Desmond F

    2012-05-01

    In electrodialysis desalination, the boundary layer near ion-exchange membranes is the limiting region for the overall rate of ionic separation due to concentration polarization over tens of micrometers in that layer. Under high current conditions, this sharp concentration gradient, creating substantial ionic diffusion, can drive a preferential separation for certain ions depending on their concentration and diffusivity in the solution. Thus, this study tested a hypothesis that the boundary layer affects the competitive transport between di- and mono-valent cations, which is known to be governed primarily by the partitioning with cation-exchange membranes. A laboratory-scale electrodialyzer was operated at steady state with a mixture of 10mM KCl and 10mM CaCl(2) at various flow rates. Increased flows increased the relative calcium transport. A two-dimensional model was built with analytical solutions of the Nernst-Planck equation. In the model, the boundary layer thickness was considered as a random variable defined with three statistical parameters: mean, standard deviation, and correlation coefficient between the thicknesses of the two boundary layers facing across a spacer. Model simulations with the Monte Carlo method found that a greater calcium separation was achieved with a smaller mean, greater standard deviation, or more negative correlation coefficient. The model and experimental results were compared for the cationic transport number as well as the current and potential relationship. The mean boundary layer thickness was found to decrease from 40 to less than 10 μm as the superficial water velocity increased from 1.06 to 4.24 cm/s. The standard deviation was greater than the mean thickness at slower water velocities and smaller at faster water velocities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. A numerical investigation of fine sediment resuspension in the wave boundary layer - effect of hindered settling and bedforms

    Science.gov (United States)

    Hsu, T. J.; Cheng, Z.; Yu, X.

    2016-02-01

    The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to the continental margin. Hence, studying the fine sediment resuspension in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycle. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with the sediment availability. As the sediment availability and hence the sediment-induced stable stratification increase, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to the floc dynamics and hindered settling. This study further investigate the effect of hindered settling. Particularly, for flocs with lower gelling concentrations, the hindered settling effect can play a key role in sustaining large amount of suspended sediment load and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A condition for the occurrence of gelling ignition is proposed for a range of wave intensities as a function of sediment/floc properties and erodibility parameters. These aforementioned studies are limited to fine sediment transport over a flat bed. However, recent field and laboratory observation show that a small amount of sand fraction can lead to the formation of small bedforms, which can armor the bed while in the meantime enhance near bed turbulence. Preliminary investigation on the effect of bedforms on the resulting transport modes will also be presented.

  5. Control of a shock wave-boundary layer interaction using localized arc filament plasma actuators

    Science.gov (United States)

    Webb, Nathan Joseph

    Supersonic flight is currently possible, but expensive. Inexpensive supersonic travel will require increased efficiency of high-speed air entrainment, an integral part of air-breathing propulsion systems. Although mixed compression inlet geometry can significantly improve entrainment efficiency, numerous Shock Wave-Boundary Layer Interactions (SWBLIs) are generated in this configuration. The boundary layer must therefore develop through multiple regions of adverse pressure gradient, causing it to thicken, and, in severe cases, separate. The associated increase in unsteadiness can have adverse effects on downstream engine hardware. The most severe consequence of these interactions is the increased aerodynamic blockage generated by the thickened boundary layer. If the increase is sufficient, it can choke the flow, causing inlet unstart, and resulting in a loss of thrust and high transient forces on the engine, airframe, and aircraft occupants. The potentially severe consequences associated with SWBLIs require flow control to ensure proper operation. Traditionally, boundary layer bleed has been used to control the interaction. Although this method is effective, it has inherent efficiency penalties. Localized Arc Filament Plasma Actuators (LAFPAs) are designed to generate perturbations for flow control. Natural flow instabilities act to amplify certain perturbations, allowing the LAFPAs to control the flow with minimal power input. LAFPAs also have the flexibility to maintain control over a variety of operating conditions. This work seeks to examine the effectiveness of LAFPAs as a separation control method for an oblique, impinging SWBLI. The low frequency unsteadiness in the reflected shock was thought to be the natural manifestation of a Kelvin-Helmholtz instability in the shear layer above the separation region. The LAFPAs were therefore placed upstream of the interaction to allow their perturbations to convect to the receptivity region (near the shear layer origin

  6. Defects and boundary layers in non-Euclidean plates

    International Nuclear Information System (INIS)

    Gemmer, J A; Venkataramani, S C

    2012-01-01

    We investigate the behaviour of non-Euclidean plates with constant negative Gaussian curvature using the Föppl–von Kármán reduced theory of elasticity. Motivated by recent experimental results, we focus on annuli with a periodic profile. We prove rigorous upper and lower bounds for the elastic energy that scales like the thickness squared. In particular we show that are only two types of global minimizers—deformations that remain flat and saddle shaped deformations with isolated regions of stretching near the edge of the annulus. We also show that there exist local minimizers with a periodic profile that have additional boundary layers near their lines of inflection. These additional boundary layers are a new phenomenon in thin elastic sheets and are necessary to regularize jump discontinuities in the azimuthal curvature across lines of inflection. We rigorously derive scaling laws for the width of these boundary layers as a function of the thickness of the sheet. (paper)

  7. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  8. Pre-LBA Rondonia Boundary Layer Experiment (RBLE) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The atmospheric boundary layer (ABL) is the layer of air closest to the ground which is directly influenced on a daily basis by the heating and cooling of the...

  9. Pre-LBA Rondonia Boundary Layer Experiment (RBLE) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The atmospheric boundary layer (ABL) is the layer of air closest to the ground which is directly influenced on a daily basis by the heating and cooling of...

  10. Temperature boundary layer profiles in turbulent Rayleigh-Benard convection

    Science.gov (United States)

    Ching, Emily S. C.; Emran, Mohammad S.; Horn, Susanne; Shishkina, Olga

    2017-11-01

    Classical boundary-layer theory for steady flows cannot adequately describe the boundary layer profiles in turbulent Rayleigh-Benard convection. We have developed a thermal boundary layer equation which takes into account fluctuations in terms of an eddy thermal diffusivity. Based on Prandtl's mixing length ideas, we relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal boundary layer equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters: θ(ξ) =1/b∫0b ξ [ 1 +3a3/b3(η - arctan(η)) ] - c dη , where ξ is the similarity variable and the parameters a, b, and c are related by the condition θ(∞) = 1 . With a proper choice of the parameters, our predictions of the temperature profile are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers (Pr), from Pr=0.01 to Pr=2547.9. OS, ME and SH acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grants Sh405/4-2 (Heisenberg fellowship), Sh405/3-2 and Ho 5890/1-1, respectively.

  11. Receptivity of Boundary Layer over a Blunt Wedge due to Freestream Pulse Disturbances at Mach 6

    Directory of Open Access Journals (Sweden)

    Jianqiang Shi

    2016-01-01

    Full Text Available Direct numerical simulation (DNS of a hypersonic compressible flow over a blunt wedge with fast acoustic disturbances in freestream is performed. The receptivity characteristics of boundary layer to freestream pulse acoustic disturbances are numerically investigated at Mach 6, and the frequency effects of freestream pulse wave on boundary layer receptivity are discussed. Results show that there are several main disturbance mode clusters in boundary layer under acoustic pulse wave, and the number of main disturbance clusters decreases along the streamwise. As disturbance wave propagates from upstream to downstream direction, the component of the modes below fundamental frequency decreases, and the component of the modes above second harmonic components increases quickly in general. There are competition and disturbance energy transfer between different boundary layer modes. The nose boundary layer is dominated by the nearby mode of fundamental frequency. The number of the main disturbance mode clusters decreases as the freestream disturbance frequency increases. The frequency range with larger growth narrows along the streamwise. In general, the amplitudes of both fundamental mode and harmonics become larger with the decreasing of freestream disturbance frequency. High frequency freestream disturbance accelerates the decay of disturbance wave in downstream boundary layer.

  12. A class of backward free-convective boundary-layer similarity solutions

    NARCIS (Netherlands)

    Kuiken, H.K.

    1983-01-01

    This paper presents a class of backward free-convective boundary-layer similarity solutions. It is shown that these boundary layers can be produced along slender downward-projecting slabs of prescribed thickness variation, which are infinitely long. It is pointed out that these solutions can be used

  13. Mitigation of Adverse Effects Caused by Shock Wave Boundary Layer Interactions Through Optimal Wall Shaping

    Science.gov (United States)

    Liou, May-Fun; Lee, Byung Joon

    2013-01-01

    It is known that the adverse effects of shock wave boundary layer interactions in high speed inlets include reduced total pressure recovery and highly distorted flow at the aerodynamic interface plane (AIP). This paper presents a design method for flow control which creates perturbations in geometry. These perturbations are tailored to change the flow structures in order to minimize shock wave boundary layer interactions (SWBLI) inside supersonic inlets. Optimizing the shape of two dimensional micro-size bumps is shown to be a very effective flow control method for two-dimensional SWBLI. In investigating the three dimensional SWBLI, a square duct is employed as a baseline. To investigate the mechanism whereby the geometric elements of the baseline, i.e. the bottom wall, the sidewall and the corner, exert influence on the flow's aerodynamic characteristics, each element is studied and optimized separately. It is found that arrays of micro-size bumps on the bottom wall of the duct have little effect in improving total pressure recovery though they are useful in suppressing the incipient separation in three-dimensional problems. Shaping sidewall geometry is effective in re-distributing flow on the side wall and results in a less distorted flow at the exit. Subsequently, a near 50% reduction in distortion is achieved. A simple change in corner geometry resulted in a 2.4% improvement in total pressure recovery.

  14. The time development of the plasma-glass boundary layer in a T-tube

    International Nuclear Information System (INIS)

    Pavlov, M.; Djurovic, S.

    1982-01-01

    The refraction of a laser beam by a flat boundary layer between the plasma and the glass plate is analysed. A boundary layer with a constant gradient electron density is assumed. Results of the analysis for plasmas produced in a small T-tube show that the boundary layer thickness increases with time faster than linearly. This means that a relatively fast collapse due to cooling through the boundary layer happens at the second half of the reflected plasma life time, while the boundary layer is negligible thin during the first 2μs after the reflected shock front has passed the point of observation. (author)

  15. Active flow control insight gained from a modified integral boundary layer equation

    Science.gov (United States)

    Seifert, Avraham

    2016-11-01

    Active Flow Control (AFC) can alter the development of boundary layers with applications (e.g., reducing drag by separation delay or separating the boundary layers and enhancing vortex shedding to increase drag). Historically, significant effects of steady AFC methods were observed. Unsteady actuation is significantly more efficient than steady. Full-scale AFC tests were conducted with varying levels of success. While clearly relevant to industry, AFC implementation relies on expert knowledge with proven intuition and or costly and lengthy computational efforts. This situation hinders the use of AFC while simple, quick and reliable design method is absent. An updated form of the unsteady integral boundary layer (UIBL) equations, that include AFC terms (unsteady wall transpiration and body forces) can be used to assist in AFC analysis and design. With these equations and given a family of suitable velocity profiles, the momentum thickness can be calculated and matched with an outer, potential flow solution in 2D and 3D manner to create an AFC design tool, parallel to proven tools for airfoil design. Limiting cases of the UIBL equation can be used to analyze candidate AFC concepts in terms of their capability to modify the boundary layers development and system performance.

  16. Application of the perturbation iteration method to boundary layer type problems.

    Science.gov (United States)

    Pakdemirli, Mehmet

    2016-01-01

    The recently developed perturbation iteration method is applied to boundary layer type singular problems for the first time. As a preliminary work on the topic, the simplest algorithm of PIA(1,1) is employed in the calculations. Linear and nonlinear problems are solved to outline the basic ideas of the new solution technique. The inner and outer solutions are determined with the iteration algorithm and matched to construct a composite expansion valid within all parts of the domain. The solutions are contrasted with the available exact or numerical solutions. It is shown that the perturbation-iteration algorithm can be effectively used for solving boundary layer type problems.

  17. Modeling of the heat transfer in bypass transitional boundary-layer flows

    Science.gov (United States)

    Simon, Frederick F.; Stephens, Craig A.

    1991-01-01

    A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed.

  18. Wing aeroelasticity analysis based on an integral boundary-layer method coupled with Euler solver

    Directory of Open Access Journals (Sweden)

    Ma Yanfeng

    2016-10-01

    Full Text Available An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL in a “semi-inverse” manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the computational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are significant for these cases and the further data analysis confirms the validity and practicability of the coupled method.

  19. A numerical investigation on the effects of slot geometry on shock boundary layer interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bazazzadeh, M.; Menshadi, M. D.; Karbasizadeh, M. [Dept. of Mechanical and Aerospace Engineering, Malek Ashtar University of Technology, Esfahan (Turkmenistan)

    2017-01-15

    Slot is one of the features that control Shock wave-boundary layer interaction (SBLI), which is generally used to prevent strong interference from shockwaves to the boundary layer in supersonic flows. With this feature, the height of the triple point of λ shock significantly increases, and this increase causes a decline in shock power and pressure drop rate. In the current paper, the main focus is on the monitoring of the geometrical effect of slot as an influential parameter on the structure of the shock and flow characteristics by using numerical methods. Therefore, the averaged implicit Navier-Stokes equations and two equation standard k-ω turbulence models for the numerical simulation of the flow field have been used. Results indicate that the numerical results are fairly consistent with the experimental data. Because of the increase in the number of slots (n), and the leading leg of the λ shock is located within the slot, the height of the triple point increases. However, because of the increasing drops due to viscosity, the total pressure changes are negligible. In addition, with an increase in this parameter, changes in the static pressure caused by the leading leg of the shock have increased. By increasing the width of the slots, the height of the triple point has had an upward trend up to s = 8 mm and then had nearly constant values. In this mode, the static pressure changes resulting from the leading leg of the shock are negligible. For increasing the number or the width of slots, the re-expansion waves formed within the slot are removed because of the reduction in the severity of the changes in the boundary layer. To simulate and compare the results with the data obtained from the experimental tests, results from the Cambridge University's wind tunnel tests have been used.

  20. Numerical analysis of viscoelastic boundary layers : the case of plate withdrawal in a Maxwellian fluid

    International Nuclear Information System (INIS)

    Sadeghy, K.; Sharifi, M.

    2002-01-01

    The effect of a fluid's elasticity on the characteristics of its boundary layer was investigated in this work. A viscoelastic fluid of Maxwellian type was selected for this purpose and the flow induced in this fluid by a plate withdrawing at a constant velocity was studied. Conventional boundary layer assumptions were invoked to reduce the equations of motion to a simple form incorporating an elastic term in addition to the familiar inertial, viscous and pressure terms. It was shown that for elastic effects to be of an importance in a boundary layer, the fluid's relaxation time should be of an order much larger than its kinematic viscosity. By introducing a stream function, the governing equation was transformed into a nonlinear ODE with x-coordinate still appearing in the equation demonstrating that no similarity solution existed for this flow. The resulting equation was then solved numerically for Deborah numbers as large as 1.0. The results showed a marked formation of boundary layer adjacent to a moving wall for a Maxwellian fluid. The boundary layer thickness and the wall shear stress were found to scale with fluid's elasticity - both decreasing the higher the fluid's elasticity. It is thus anticipated that in free coating processes, the force required to impart a constant velocity to a withdrawing belt or plate would be lower if fluid's elasticity is significant. (author)

  1. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. I - Pressure distribution

    Science.gov (United States)

    Messiter, A. F.

    1980-01-01

    Asymptotic solutions are derived for the pressure distribution in the interaction of a weak normal shock wave with a turbulent boundary layer. The undisturbed boundary layer is characterized by the law of the wall and the law of the wake for compressible flow. In the limiting case considered, for 'high' transonic speeds, the sonic line is very close to the wall. Comparisons with experiment are shown, with corrections included for the effect of longitudinal wall curvature and for the boundary-layer displacement effect in a circular pipe.

  2. Response of neutral boundary-layers to changes of roughness

    DEFF Research Database (Denmark)

    Sempreviva, Anna Maria; Larsen, Søren Ejling; Mortensen, Niels Gylling

    1990-01-01

    boundary layer where again the drag laws can be used to estimate the surface wind. To study this problem, data have been sampled for two years from four 30-m meteorological masts placed from 0 to 30 km inland from the North Sea coast of Jutland in Denmark. The present analysis is limited to neutral......When air blows across a change in surface roughness, an internal boundary layer (IBL) develops within which the wind adapts to the new surface. This process is well described for short fetches, > 1 km. However, few data exist for large fetches on how the IBL grows to become a new equilibrium...... stratification, and the surface roughness is the main parameter. The analysis of wind data and two simple models, a surface layer and a planetary boundary layer (PBL) model, are described. Results from both models are discussed and compared with data analysis. Model parameters have been evaluated and the model...

  3. Convective instability in a time-dependent buoyancy driven boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.M.H.; Patterson, J.C.; Graham, T.; Schoepf, W. [University of Western Australia, Nedlands (Australia). Centre for Water Research

    2000-01-01

    The stability of the parallel time-dependent boundary layer adjacent to a suddenly heated vertical wall is described. The flow is investigated through experiments in water, through direct numerical simulation and also through linear stability analysis. The full numerical simulation of the flow shows that small perturbations to the wall boundary conditions, that are also present in the experimental study, are responsible for triggering the instability. As a result, oscillatory behaviour in the boundary layer is observed well before the transition to a steady two-dimensional flow begins. The properties of the observed oscillations are compared with those predicted by a linear stability analysis of the unsteady boundary layer using a quasi-stationary assumption and also using non-stationary assumptions by the formulation of parabolized equations (PSE). (Author)

  4. Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations

    Science.gov (United States)

    van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.

    2018-02-01

    We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.

  5. Exact solution of nonsteady thermal boundary layer equation

    International Nuclear Information System (INIS)

    Dorfman, A.S.

    1995-01-01

    There are only a few exact solutions of the thermal boundary layer equation. Most of them are derived for a specific surface temperature distribution. The first exact solution of the steady-state boundary layer equation was given for a plate with constant surface temperature and free-stream velocity. The same problem for a plate with polynomial surface temperature distribution was solved by Chapmen and Rubesin. Levy gave the exact solution for the case of a power law distribution of both surface temperature and free-stream velocity. The exact solution of the steady-state boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution was given by the author in two forms: of series and of the integral with an influence function of unheated zone. A similar solution of the nonsteady thermal boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution is presented here. In this case, the coefficients of series depend on time, and in the limit t → ∞ they become the constant coefficients of a similar solution published before. This solution, unlike the one presented here, does not satisfy the initial conditions at t = 0, and, hence, can be used only in time after the beginning of the process. The solution in the form of a series becomes a closed-form exact solution for polynomial surface temperature and a power law free-stream velocity distribution. 7 refs., 2 figs

  6. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate

    International Nuclear Information System (INIS)

    Bhattacharyya, Krishnendu; Mukhopadhyay, Swati; Layek, G. C.

    2011-01-01

    An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented. A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method. In the boundary slip condition no local similarity occurs. Velocity and temperature distributions within the boundary layer are presented. Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate. (fundamental areas of phenomenology(including applications))

  7. Collisional boundary layer analysis for neoclassical toroidal plasma viscosity in tokamaks

    International Nuclear Information System (INIS)

    Shaing, K. C.; Cahyna, P.; Becoulet, M.; Park, J.-K.; Sabbagh, S. A.; Chu, M. S.

    2008-01-01

    It is demonstrated that the pitch angle integrals in the transport fluxes in the ν regime calculated in K. C. Shang [Phys. Plasmas 10, 1443 (2003)] are divergent as the trapped-circulating boundary is approached. Here, ν is the collision frequency. The origin of this divergence results from the logarithmic dependence in the bounce averaged radial drift velocity. A collisional boundary layer analysis is developed to remove the singularity. The resultant pitch angle integrals now include not only the original physics of the ν regime but also the boundary layer physics. The transport fluxes, caused by the particles inside the boundary layer, scale as √(ν)

  8. Transonic shock wave. Boundary layer interaction at a convex wall

    NARCIS (Netherlands)

    Koren, B.; Bannink, W.J.

    1984-01-01

    A standard finite element procedure has been applied to the problem of transonic shock wave – boundary layer interaction at a convex wall. The method is based on the analytical Bohning-Zierep model, where the boundary layer is perturbed by a weak normal shock wave which shows a singular pressure

  9. Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators

    Science.gov (United States)

    Zaman, K. B. M. Q.; Hirt, S. M.; Bencic, T. J.

    2012-01-01

    Flow field survey results for the effect of ramp-shaped vortex generators (VG) on a turbulent boundary layer are presented. The experiments are carried out in a low-speed wind tunnel and the data are acquired primarily by hot-wire anemometry. Distributions of mean velocity and turbulent stresses as well as streamwise vorticity, on cross-sectional planes at various downstream locations, are obtained. These detailed flow field properties, including the boundary layer characteristics, are documented with the primary objective of aiding possible computational investigations. The results show that VG orientation with apex upstream, that produces a downwash directly behind it, yields a stronger pair of streamwise vortices. This is in contrast to the case with apex downstream that produces a pair of vortices of opposite sense. Thus, an array of VG s with the former orientation, usually considered for film-cooling application, may also be superior for mixing enhancement and boundary layer separation control. The data files can be found on a supplemental CD.

  10. Study of flow control by localized volume heating in hypersonic boundary layers

    Science.gov (United States)

    Keller, M. A.; Kloker, M. J.; Kirilovskiy, S. V.; Polivanov, P. A.; Sidorenko, A. A.; Maslov, A. A.

    2014-12-01

    Boundary-layer flow control is a prerequisite for a safe and efficient operation of future hypersonic transport systems. Here, the influence of an electric discharge—modeled by a heat-source term in the energy equation—on laminar boundary-layer flows over a flat plate with zero pressure gradient at Mach 3, 5, and 7 is investigated numerically. The aim was to appraise the potential of electro-gasdynamic devices for an application as turbulence generators in the super- and hypersonic flow regime. The results with localized heat-source elements in boundary layers are compared to cases with roughness elements serving as classical passive trips. The numerical simulations are performed using the commercial code ANSYS FLUENT (by ITAM) and the high-order finite-difference DNS code NS3D (by IAG), the latter allowing for the detailed analysis of laminar flow instability. For the investigated setups with steady heating, transition to turbulence is not observed, due to the Reynolds-number lowering effect of heating.

  11. MPLNET V3 Cloud and Planetary Boundary Layer Detection

    Science.gov (United States)

    Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.

    2016-01-01

    The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.

  12. BOREAS AFM-6 Boundary Layer Height Data

    Science.gov (United States)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  13. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  14. Two-phase wall function for modeling of turbulent boundary layer in subcooled boiling flow

    International Nuclear Information System (INIS)

    Bostjan Koncar; Borut Mavko; Yassin A Hassan

    2005-01-01

    Full text of publication follows: The heat transfer and phase-change mechanisms in the subcooled flow boiling are governed mainly by local multidimensional mechanisms near the heated wall, where bubbles are generated. The structure of such 'wall boiling flow' is inherently non-homogeneous and is further influenced by the two-phase flow turbulence, phase-change effects in the bulk, interfacial forces and bubble interactions (collisions, coalescence, break-up). In this work the effect of two-phase flow turbulence on the development of subcooled boiling flow is considered. Recently, the modeling of two-phase flow turbulence has been extensively investigated. A notable progress has been made towards deriving reliable models for description of turbulent behaviour of continuous (liquid) and dispersed phase (bubbles) in the bulk flow. However, there is a lack of investigation considering the modeling of two-phase flow boundary layer. In most Eulerian two-fluid models standard single-phase wall functions are used for description of turbulent boundary layer of continuous phase. That might be a good approximation at adiabatic flows, but their use for boundary layers with high concentration of dispersed phase is questionable. In this work, the turbulent boundary layer near the heated wall will be modeled with the so-called 'two-phase' wall function, which is based on the assumption of additional turbulence due to bubble-induced stirring in the boundary layer. In the two-phase turbulent boundary layer the wall function coefficients strongly depend on the void fraction. Moreover, in the turbulent boundary layer with nucleating bubbles, the bubble size variation also has a significant impact on the liquid phase. As a basis, the wall function of Troshko and Hassan (2001), developed for adiabatic bubbly flows will be used. The simulations will be performed by a general-purpose CFD code CFX-4.4 using additional models provided by authors. The results will be compared to the boiling

  15. Diagnostic analysis of turbulent boundary layer data by a trivariate Lagrangian partitioning method

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, P.T. [Florida State Univ., Tallahassee, FL (United States)

    1994-12-31

    The rapid scientific and technological advances in meteorological theory and modeling predominantly have occurred on the large (or synoptic) scale flow characterized by the extratropical cyclone. Turbulent boundary layer flows, in contrast, have been slower in developing both theoretically and in accuracy for several reasons. There are many existing problems in boundary layer models, among them are limits to computational power available, the inability to handle countergradient fluxes, poor growth matching to real boundary layers, and inaccuracy in calculating the diffusion of scalar concentrations. Such transport errors exist within the boundary layer as well as into the free atmosphere above. This research uses a new method, which can provide insight into these problems, and ultimately improve boundary layer models. There are several potential applications of the insights provided by this approach, among them are estimation of cloud contamination of satellite remotely sensed surface parameters, improved flux and vertical transport calculations, and better understanding of the diurnal boundary layer growth process and its hysteresis cycle.

  16. Turbulent fluxes in stably stratified boundary layers

    International Nuclear Information System (INIS)

    L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii

    2008-01-01

    We present here an extended version of an invited talk we gave at the international conference 'Turbulent Mixing and Beyond'. The dynamical and statistical description of stably stratified turbulent boundary layers with the important example of the stable atmospheric boundary layer in mind is addressed. Traditional approaches to this problem, based on the profiles of mean quantities, velocity second-order correlations and dimensional estimates of the turbulent thermal flux, run into a well-known difficulty, predicting the suppression of turbulence at a small critical value of the Richardson number, in contradiction to observations. Phenomenological attempts to overcome this problem suffer from various theoretical inconsistencies. Here, we present an approach taking into full account all the second-order statistics, which allows us to respect the conservation of total mechanical energy. The analysis culminates in an analytic solution of the profiles of all mean quantities and all second-order correlations, removing the unphysical predictions of previous theories. We propose that the approach taken here is sufficient to describe the lower parts of the atmospheric boundary layer, as long as the Richardson number does not exceed an order of unity. For much higher Richardson numbers, the physics may change qualitatively, requiring careful consideration of the potential Kelvin-Helmoholtz waves and their interaction with the vortical turbulence.

  17. Effects of air pollution on thermal structure and dispersion in an urban planetary boundary layer

    Science.gov (United States)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    The short-term effects of urbanization and air pollution on the transport processes in the urban planetary boundary layer (PBL) are studied. The investigation makes use of an unsteady two-dimensional transport model which has been developed by Viskanta et al., (1976). The model predicts pollutant concentrations and temperature in the PBL. The potential effects of urbanization and air pollution on the thermal structure in the urban PBL are considered, taking into account the results of numerical simulations modeling the St. Louis, Missouri metropolitan area.

  18. Study on turbulent characteristics and transition behavior of combined-convection boundary layer

    International Nuclear Information System (INIS)

    Hattori, Yasuo

    2001-01-01

    The stabilizing mechanism of the turbulent combined-convection boundary layer along an isothermally-heated flat plate in air aided by a weak freestream are investigated experimentally and theoretically. The turbulent statistics of the combined-convection boundary layer measured with hot- and cold wires at different Grashof numbers indicates that with an increase in the freestream velocity, a similar change in the turbulent quantities appears independently of local Grashof number. Then based on the such experimental results, it is verified that the laminarization of the boundary layer due to an increase in freestream velocity arises at Grx / Rex 6 . Then, through the experiments with a particle image velocimetry (PIV), the spatio-temporal structure of the turbulent combined-convection boundary layer is investigated. For instantaneous velocity vectors obtained with PIV, large-scale fluid motions, which play a predominant role in the generation of turbulence, are frequently observed in the outer layer, while quasi-coherent structures do not exist in the near-wall region. Thus, it is revealed that increasing freestream restricts large-scale fluid motions in the outer layer, and consequently the generation of turbulence is suppressed and the boundary layer becomes laminar. (author)

  19. Frequency Response of Near-Wall Coherent Structures to Localized Periodic Blowing and Suction in Turbulent Boundary Layer

    International Nuclear Information System (INIS)

    Jian-Hua, Liu; Nan, Jiang

    2008-01-01

    We experimentally investigate the frequency response of near-wall coherent structures to localized periodic blowing and suction through a spanwise slot in a turbulent boundary layer by changing the frequency of periodic disturbance at similar velocities of free stream. The effects of blowing and suction disturbance on energy redistribution, turbulent intensity u' rms + , over y + and waveforms of phase-averaged velocity during sweeping process are respectively discussed under three frequencies of periodic blowing and suction in near-wall region of turbulent boundary layer, compared with those in a standard turbulent boundary layer. The most effective disturbance frequency is figured out in this system. (fundamental areas of phenomenology (including applications))

  20. A parametric study of adverse pressure gradient turbulent boundary layers

    International Nuclear Information System (INIS)

    Monty, J.P.; Harun, Z.; Marusic, I.

    2011-01-01

    There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure gradients and this is confounded by the large parameter space that may affect these flows. While there have been many valuable investigations conducted within this parameter space, there are still insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gradient parameter, β, the Reynolds number and the acceleration parameter, K. The statistics analyzed are limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there appears to be no measurable logarithmic region in these cases. It is also found that the large-scale motions scaling with outer variables are energised by the pressure gradient. These increasingly strong large-scale motions are found to be the dominant contributor to the increase in turbulence intensity (scaled with friction velocity) with increasing pressure gradient across the boundary layer.

  1. Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Stefano Serafin

    2018-03-01

    Full Text Available The exchange of heat, momentum, and mass in the atmosphere over mountainous terrain is controlled by synoptic-scale dynamics, thermally driven mesoscale circulations, and turbulence. This article reviews the key challenges relevant to the understanding of exchange processes in the mountain boundary layer and outlines possible research priorities for the future. The review describes the limitations of the experimental study of turbulent exchange over complex terrain, the impact of slope and valley breezes on the structure of the convective boundary layer, and the role of intermittent mixing and wave–turbulence interaction in the stable boundary layer. The interplay between exchange processes at different spatial scales is discussed in depth, emphasizing the role of elevated and ground-based stable layers in controlling multi-scale interactions in the atmosphere over and near mountains. Implications of the current understanding of exchange processes over mountains towards the improvement of numerical weather prediction and climate models are discussed, considering in particular the representation of surface boundary conditions, the parameterization of sub-grid-scale exchange, and the development of stochastic perturbation schemes.

  2. Improved boundary layer height measurement using a fuzzy logic method: Diurnal and seasonal variabilities of the convective boundary layer over a tropical station

    Science.gov (United States)

    Allabakash, S.; Yasodha, P.; Bianco, L.; Venkatramana Reddy, S.; Srinivasulu, P.; Lim, S.

    2017-09-01

    This paper presents the efficacy of a "tuned" fuzzy logic method at determining the height of the boundary layer using the measurements from a 1280 MHz lower atmospheric radar wind profiler located in Gadanki (13.5°N, 79°E, 375 mean sea level), India, and discusses the diurnal and seasonal variations of the measured convective boundary layer over this tropical station. The original fuzzy logic (FL) method estimates the height of the atmospheric boundary layer combining the information from the range-corrected signal-to-noise ratio, the Doppler spectral width of the vertical velocity, and the vertical velocity itself, measured by the radar, through a series of thresholds and rules, which did not prove to be optimal for our radar system and geographical location. For this reason the algorithm was tuned to perform better on our data set. Atmospheric boundary layer heights obtained by this tuned FL method, the original FL method, and by a "standard method" (that only uses the information from the range-corrected signal-to-noise ratio) are compared with those obtained from potential temperature profiles measured by collocated Global Positioning System Radio Sonde during years 2011 and 2013. The comparison shows that the tuned FL method is more accurate than the other methods. Maximum convective boundary layer heights are observed between 14:00 and 15:00 local time (LT = UTC + 5:30) for clear-sky days. These daily maxima are found to be lower during winter and postmonsoon seasons and higher during premonsoon and monsoon seasons, due to net surface radiation and convective processes over this region being more intense during premonsoon and monsoon seasons and less intense in winter and postmonsoon seasons.

  3. The height of the atmospheric boundary layer during unstable conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E.

    2005-11-01

    over land, especially extensive data sets from the Lower Fraser Valley in Vancouver, Canada were useful. The performance of the model over water was examined on measurements of marine boundary layer developments over Christiansoe in the Baltic Sea. The model is found to perform relative well for both small and large distance downwind from the shoreline. The validation covers a scale of 100 km. In some practical applications meteorological data are taken as the output from operational Numerical Weather Prediction models. The mixing height is not a part of the model output but has to be determined from the available data. This aspect is dealt with in chapter 4. Methods that are used to determine the mixing height from the available data are examined and improvements suggested. Numerical Weather Prediction models have a rather coarse resolution. The issue of grid resolution and its effect on the estimated mixing height is discussed. It is found that the mixing height in the coastal zone is not resolved. In chapter 5 a new method for determining the regional fluxes of momentum and sensible heat over chessboard type patchy landscapes is presented. It is based on inversion of the model for the growth of the mixed-layer in combination with a parameterized form of the blending height concept. An example from sub-arctic Lapland illustrates that the forest dominates both the aggregated (area averaged) momentum and heat fluxes, but in quite different ways. Chapter 6 provides a description of present problems and gives an outlook for future research in the field. (au)

  4. The effect of the Asian Monsoon to the atmospheric boundary layer over the Tibetan Plateau

    Science.gov (United States)

    Li, Maoshan; Su, Zhongbo; Chen, Xuelong; Zheng, Donghai; Sun, Fanglin; Ma, Yaoming; Hu, Zeyong

    2016-04-01

    needed temporal and spatial coupling and means for validation of mesoscale model simulations (Zhong et al., 2009, 2011). When these time series are integrated into energy balance analyses methods (Su, 2002, 2005) with reanalysis data, plateau scale diurnal radiative and turbulence fluxes can be generated (Oku et al., 2005; Su et al., 2010) for the study of the boundary layer atmospheric structures at plateau scale. As such regional land-atmosphere feedbacks and atmospheric boundary layer structures can be studied. The quantification of the multi-scale atmospheric boundary layer and land surface processes over the heterogeneous underlying surface of the Tibetan Plateau is a challenging problem that remains unsettled despite many years of efforts. Using field observation, truth investigation, land surface process parameterization and meso-scale simulation, the dynamical and thermal uniform function of the atmospheric boundary layer and its effect to the atmospheric boundary layer will be analyzed in this research. Results The different characteristics of the Boundary layer with Asia monsoon season exchange over TP The height of atmospheric boundary layer was higher before monsoon season than it in summer. It was around 3-4 km above the ground in spring, while it was 1-2 km during monsoon season. It due to sensible heat flux was stronger in spring than it in summer. Using wavelet analysis method, we decomposed the wind include horizontal and vertical velocity from radiosounding observational data. The reason of high boundary layer height was disclosed. Compared to the observation, the output of model was underestimation during spring, while it was reasonable in summer monsoon. The effect of the Asian Monsoon to the precipitation on the TP Numerical simulation of climate on the TP was implemented for the whole year of 2008 using WRF-Noah model. The output of the WRF model is compared to TRMM data set for precipitation and ERA-interim land product for soil moisture. Modeled

  5. Coherent structures in wave boundary layers. Part 1. Oscillatory motion

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen

    2010-01-01

    This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i......) Vortex tubes, essentially two-dimensional vortices close to the bed extending across the width of the boundary-layer flow, caused by an inflectional-point shear layer instability. The imprint of these vortices in the bed shear stress is a series of small, insignificant kinks and dips. (ii) Turbulent...... spots, isolated arrowhead-shaped areas close to the bed in an otherwise laminar boundary layer where the flow ‘bursts’ with violent oscillations. The emergence of the turbulent spots marks the onset of turbulence. Turbulent spots cause single or multiple violent spikes in the bed shear stress signal...

  6. The inland boundary layer at low latitudes

    Science.gov (United States)

    Garratt, J. R.

    1985-08-01

    Observations from the Koorin boundary-layer experiment in Australia (latitude 16 °S) were analysed in a study of the nocturnal jet development. For geostrophic winds in the range 10 20 m s-1, ageostrophic wind magnitudes of 5 10m s-1 were common above the surface layer near sunset, with cross-isobar flow angles of about 40 °. The jet that then developed by midnight was probably the result of these large ageostrophic winds, strong surface cooling and favourable baroclinity and sloping terrain. The analysis is supported by numerical model calculations with special emphasis on the role of long-wave radiative cooling on turbulent decay. Decay is rapid in the presence of radiation, although there is little influence on stress divergence levels. Evidence of sea-breeze influences on the jet evolution, and on features of deeply penetrating sea breezes in general, will be presented and discussed in part 2 of this study (submitted to Boundary-Layer Meteorol.).

  7. The turning of the wind in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... winds underpredict the turning of the wind and the boundary-layer winds in general....

  8. The control effect in a detached laminar boundary layer of an array of normal synthetic jets

    Science.gov (United States)

    Valenzuela Calva, Fernando; Avila Rodriguez, Ruben

    2016-11-01

    In this work, 3D numerical simulations of an array of three normal circular synthetic jets embedded in an attached laminar boundary layer that separates under the influence of an inclined flap are performed for flow separation control. At the beginning of the present study, three cases are used to validate the numerical simulation with data obtained from experiments. The experimental data is chosen based on the cases which presented higher repeatability and reliability. Simulations showed reasonable agreement when compared with experiments. The simulations are undertaken at three synthetic jet operating conditions, i.e. Case A: L = 2, VR = 0.32; Case B: L = 4, VR = 0.64 and Case C: L = 6, VR = 0.96. The vortical structures produced for each synthetic jet operating condition are hairpin vortices for Case A and tilted vortices for Case B and C, respectively. By examining the spatial wall shear stress variations, the effect on the boundary layer prior to separation of the middle synthetic jet is evaluated. For effective flow control, produced at a relatively low the finding from this study suggests that hairpin vortical structures are more desirable structures. Universidad Nacional Autonoma de Mexico.

  9. Effects of boundary layer refraction and fuselage scattering on fuselage surface noise from advanced turboprop propellers

    Science.gov (United States)

    Mcaninch, G. L.; Rawls, J. W., Jr.

    1984-01-01

    An acoustic disturbance's propagation through a boundary layer is discussed with a view to the analysis of the acoustic field generated by a propfan rotor incident to the fuselage of an aircraft. Applying the parallel flow assumption, the resulting partial differential equations are reduced to an ordinary acoustic pressure differential equation by means of the Fourier transform. The methods used for the solution of this equation include those of Frobenius and of analytic continuation; both yield exact solutions in series form. Two models of the aircraft fuselage-boundary layer system are considered, in the first of which the fuselage is replaced by a flat plate and the acoustic field is assumed to be two-dimensional, while in the second the fuselage is a cylinder in a fully three-dimensional acoustic field. It is shown that the boundary layer correction improves theory-data comparisons over simple application of a pressure-doubling rule at the fuselage.

  10. Acoustic-sounder investigation of the effects of boundary-layer decoupling on long-distance polutant transport

    International Nuclear Information System (INIS)

    Miller, E.L.

    1976-01-01

    The formation of the nocturnal surface temperature inversion results in a decrease in vertical momentum transfer which, in turn, is accompanied by an associated reduction in the transfer of pollutants from the atmosphere to surface sinks, thus decoupling the surface layer from the layer above the inversion. The diurnal oscillation in the surface temperature profiles may therefore have a significant effect upon the transport of atmospheric pollutants over long distances. Flights of a large manned balloon with a diverse array of chemical and meteorological instrumentation aboard, known as Project de Vinci, provided a unique opportunity to combine acoustic-sounder observations of qualitative temperature structure in the atmospheric boundary layer with the chemical measurements necessary to gain increased understanding of this decoupling process and its consequences for pollutant transport. The data collected on ozone on the balloon and the grounds are reported

  11. Drag reduction mechanism by microbubble injection within a channel boundary layer

    International Nuclear Information System (INIS)

    Ling Zhen; Hassan, Y.

    2005-01-01

    In this study, the drag reduction due to microbubble injection in the boundary layer of a fully developed turbulent channel flow was investigated. Particle Image Velocimetry (PIV) techniques were taken. The effects of the presence of microbubbles in the boundary layer were assessed. A drag reduction of 38.4% was obtained with void fraction of 4.9%. The algorithms of wavelet auto-correlation maps were applied to the PIV velocity field measurement. Modifications in the wavelet auto-correlation maps due to the presence of microbubbles were studied and compared in three-dimensions. By using 3-D plotting routines and the wavelet auto-correlation maps, it can be deduced from this study that the microbubble injection within the boundary layer increases the turbulent energy of the streamwise velocity components of the large scale (large eddy size, low frequency) range and decreases the energy of the small scale (small eddy size, high frequency) range. The wavelet auto-correlation maps of the normal velocities indicate that the microbubble presence decrease the turbulent energy of normal velocity components for both the large scale (large eddy size, low frequency) and the small scale (small eddy size, high frequency) ranges. (authors)

  12. The Boundary Layer Flows of a Rivlin-Ericksen Fluid

    Science.gov (United States)

    Sadeghy, K.; Khabazi, N.; Taghavi, S. M.

    The present work deals with the two-dimensional incompressible, laminar, steady-state boundary layer equations. First, we determine a family of velocity distributions outside the boundary layer such that these problems may have similarity solutions. We study the Falkner-Skan flow of a viscoelastic fluid governed by second order model, as the Reynolds number Re→ ∞. We obtain an ordinary forth order differential equation to obtain the stream function, velocity profile and the stress. The stream function is then governed by a generalized Falkner-Skan equation. In comparison with Newtonian Falkner-Skan equation that has two coefficients this new one has four coefficients that two of them represent elastic properties of the fluid. The effects of the elastic parameter on the velocity filed have been discussed. As it is shown in the figure there is a good agreement between numerical results and previous special cases confirm the validity of the presented algorithm.

  13. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    Science.gov (United States)

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  14. Fuselage Boundary Layer Ingestion Propulsion Applied to a Thin Haul Commuter Aircraft for Optimal Efficiency

    Science.gov (United States)

    Mikic, Gregor Veble; Stoll, Alex; Bevirt, JoeBen; Grah, Rok; Moore, Mark D.

    2016-01-01

    Theoretical and numerical aspects of aerodynamic efficiency of propulsion systems are studied. Focus is on types of propulsion that closely couples to the aerodynamics of the complete vehicle. We discuss the effects of local flow fields, which are affected both by conservative flow acceleration as well as total pressure losses, on the efficiency of boundary layer immersed propulsion devices. We introduce the concept of a boundary layer retardation turbine that helps reduce skin friction over the fuselage. We numerically investigate efficiency gains offered by boundary layer and wake interacting devices. We discuss the results in terms of a total energy consumption framework and show that efficiency gains offered depend on all the elements of the propulsion system.

  15. Boundary Layer Fluid Flow in a Channel with Heat Source, Soret ...

    African Journals Online (AJOL)

    The boundary layer fluid flow in a channel with heat source, soret effects and slip condition was studied. The governing equations were solved using perturbation technique. The effects of different parameters such Prandtl number Pr , Hartmann number M, Schmidt number Sc, suction parameter ƒÜ , soret number Sr and the ...

  16. An ultra-high frequency boundary layer Doppler/interferometric profiler

    International Nuclear Information System (INIS)

    Van Baelen, J.S.

    1994-01-01

    The planetary boundary layer (PBL) is that portion of the earth's atmosphere that is directly influenced by the earth's surface. The PBL can be vigorously turbulent and range in depth from a few hundred meters to a few kilometers. Solar energy is primarily absorbed at the earth's surface and transmitted to the free atmosphere through boundary-layer processes. An accurate portrayal of these transfers within the PBL is crucial to understand and predict many atmospheric processes from pollutant dispersion to numerical weather prediction and numerical simulations of climate change. This paper describes and discusses wind profiling techniques, focusing on the newly developed radio acoustic sounding system (RASS), and reviews past efforts to measure flux within the PBL. A new UHF wind profiling radar, the UHF Doppler/Interferometric Boundary Layer Radar, for accurately measuring both mean and flux quantities, as well as wind divergence and acoustic wave propagation, is outlined

  17. A global boundary-layer height climatology

    Energy Technology Data Exchange (ETDEWEB)

    Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)

    1997-10-01

    In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)

  18. Representing the atmospheric boundary layer in climate models of intermediate compexity

    NARCIS (Netherlands)

    Ronda, R.J.; Haarsma, R.J.; Holtslag, A.A.M.

    2003-01-01

    In this study the role of atmospheric boundary layer schemes in climate models is investigated. Including a boundary layer scheme in an Earth system model of intermediate complexity (EMIC) produces only minor differences in the estimated global distribution of sensible and latent heat fluxes over

  19. A simulation study of the vortex structure in the low-latitude boundary layer

    International Nuclear Information System (INIS)

    Wei, C.Q.; Lee, L.C.; La Belle-Hamer, A.L.

    1990-01-01

    Satellite observations indicate that the plasma density and the flow velocity are highly variable in the low-latitude boundary layer. The thickness of the boundary layer is also highly variable and appears to increase with increasing longitudinal distance from the subsolar point. In this paper plasma dynamics in the low-latitude boundary layer region is studied on the basis of a two-dimensional incompressible bydrodynamic numerical model. In the simulation, plasma is driven into the boundary layer region by imposing a diffusion flux along the magnetopause. The vortex motions associated with the Kelvin-Helmholtz instability are observed in the simulation. The resulting vortex structures in the plasma density and the flow velocity may coalesce as they are convected tailward, causing them to grow in size. The boundary layer thickness increases with increasing longitudinal distance from the subsolar point in accord with satellite observations. The plasma density and the flow velocity are positively correlated. A mixing region is formed where magnetosheath plasma and magnetospheric plasma mix due to the vortex motions. In the later stage of development, a density plateau is formed in the central part of the boundary layer. Many features of the satellite observations of the boundary layer can be explained using the numerical model. The simulation results also predict that the vortices generated in the postnoon (prenoon) boundary layer lead to the presence of localized upward (downward) field-aligned currents in both the northern and the southern polar ionospheres. The upward field-aligned currents in turn may lead to the formation of dayside auroral patches observed in the postnoon region

  20. Interaction of discrete and continuous boundary layer modes to cause transition

    International Nuclear Information System (INIS)

    Durbin, Paul A.; Zaki, Tamer A.; Liu Yang

    2009-01-01

    The interaction of discrete and continuous Orr-Sommerfeld modes in a boundary layer is studied by computer simulation. The discrete mode is an unstable Tollmien-Schlichting wave. The continuous modes generate jet-like disturbances inside the boundary layer. Either mode alone does not cause transition to turbulence; however, the interaction between them does. The continuous mode jets distort the discrete modes, producing Λ shaped vortices. Breakdown to turbulence is subsequent. The lateral spacing of the Λ's is sometimes the same as the wavelength of the continuous mode, sometimes it differs, depending on the ratio of wavelength to boundary layer thickness.

  1. Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow

    NARCIS (Netherlands)

    van der A, D.A.; O' Donoghue, T.; Davies, A.G; Ribberink, Jan S.

    2011-01-01

    Experiments have been conducted in a large oscillatory flow tunnel to investigate the effects of acceleration skewness on oscillatory boundary layer flow over fixed beds. As well as enabling experimental investigation of the effects of acceleration skewness, the new experiments add substantially to

  2. BOUNDARY LAYER AND AMPLIFIED GRID EFFECTS ON AERODYNAMIC PERFORMANCES OF S809 AIRFOIL FOR HORIZONTAL AXIS WIND TURBINE (HAWT

    Directory of Open Access Journals (Sweden)

    YOUNES EL KHCHINE

    2017-11-01

    Full Text Available The design of rotor blades has a great effect on the aerodynamics performances of horizontal axis wind turbine and its efficiency. This work presents the effects of mesh refinement and boundary layer on aerodynamic performances of wind turbine S809 rotor. Furthermore, the simulation of fluid flow is taken for S809 airfoil wind turbine blade using ANSYS/FLUENT software. The problem is solved by the conservation of mass and momentum equations for unsteady and incompressible flow using advanced SST k-ω turbulence model, in order to predict the effects of mesh refinement and boundary layer on aerodynamics performances. Lift and drag coefficients are the most important parameters in studying the wind turbine performance, these coefficients are calculated for four meshes refinement and different angles of attacks with Reynolds number is 106. The study is applied to S809 airfoil which has 21% thickness, specially designed by NREL for horizontal axis wind turbines.

  3. Radiative instabilities of atmospheric jets and boundary layers

    International Nuclear Information System (INIS)

    Candelier, J.

    2010-01-01

    Complex flows occur in the atmosphere and they can be source of internal gravity waves. We focus here on the sources associated with radiative and shear (or Kelvin-Helmholtz) instabilities. Stability studies of shear layers in a stably stratified fluid concern mainly cases where shear and stratification are aligned along the same direction. In these cases, Miles (1961) and Howard (1961) found a necessary condition for stability based on the Richardson number: Ri ≥ 1/4. In this thesis, we show that this condition is not necessary when shear and stratification are not aligned: we demonstrate that a two-dimensional planar Bickley jet can be unstable for all Richardson numbers. Although the most unstable mode remains 2D, we show there exists an infinite family of 3D unstable modes exhibiting a radiative structure. A WKBJ theory is found to provide the main characteristics of these modes. We also study an inviscid and stratified boundary layer over an inclined wall with non-Boussinesq and compressible effects. We show that this flow is unstable as soon as the wall is not horizontal for all Froude numbers and that strongly stratified 3D perturbations behave exactly like compressible 2D perturbations. Applications of the results to the jet stream and the atmospheric boundary layer are proposed. (author) [fr

  4. Boundary-layer theory. 9. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Schlichting, Hermann [Technische Univ. Braunschweig (Germany). Inst. fuer Stroemungsmechanik; Gersten, Klaus [Bochum Univ. (Germany). Lehrstuhl fuer Thermodynamik und Stroemungsmechanik

    2017-03-01

    This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

  5. The effect of wall temperature distribution on streaks in compressible turbulent boundary layer

    Science.gov (United States)

    Zhang, Zhao; Tao, Yang; Xiong, Neng; Qian, Fengxue

    2018-05-01

    The thermal boundary condition at wall is very important for the compressible flow due to the coupling of the energy equation, and a lot of research works about it were carried out in past decades. In most of these works, the wall was assumed as adiabatic or uniform isothermal surface; the flow over a thermal wall with some special temperature distribution was seldom studied. Lagha studied the effect of uniform isothermal wall on the streaks, and pointed out that higher the wall temperature is, the longer the streak (POF, 2011, 23, 015106). So, we designed streamwise stripes of wall temperature distribution on the compressible turbulent boundary layer at Mach 3.0 to learn the effect on the streaks by means of direct numerical simulation in this paper. The mean wall temperature is equal to the adiabatic case approximately, and the width of the temperature stripes is in the same order as the width of the streaks. The streak patterns in near-wall region with different temperature stripes are shown in the paper. Moreover, we find that there is a reduction of friction velocity with the wall temperature stripes when compared with the adiabatic case.

  6. The double layers in the plasma sheet boundary layer during magnetic reconnection

    Science.gov (United States)

    Guo, J.; Yu, B.

    2014-11-01

    We studied the evolutions of double layers which appear after the magnetic reconnection through two-dimensional electromagnetic particle-in-cell simulation. The simulation results show that the double layers are formed in the plasma sheet boundary layer after magnetic reconnection. At first, the double layers which have unipolar structures are formed. And then the double layers turn into bipolar structures, which will couple with another new weak bipolar structure. Thus a new double layer or tripolar structure comes into being. The double layers found in our work are about several ten Debye lengths, which accords with the observation results. It is suggested that the electron beam formed during the magnetic reconnection is responsible for the production of the double layers.

  7. Two-wavelength Lidar inversion algorithm for determining planetary boundary layer height

    Science.gov (United States)

    Liu, Boming; Ma, Yingying; Gong, Wei; Jian, Yang; Ming, Zhang

    2018-02-01

    This study proposes a two-wavelength Lidar inversion algorithm to determine the boundary layer height (BLH) based on the particles clustering. Color ratio and depolarization ratio are used to analyze the particle distribution, based on which the proposed algorithm can overcome the effects of complex aerosol layers to calculate the BLH. The algorithm is used to determine the top of the boundary layer under different mixing state. Experimental results demonstrate that the proposed algorithm can determine the top of the boundary layer even in a complex case. Moreover, it can better deal with the weak convection conditions. Finally, experimental data from June 2015 to December 2015 were used to verify the reliability of the proposed algorithm. The correlation between the results of the proposed algorithm and the manual method is R2 = 0.89 with a RMSE of 131 m and mean bias of 49 m; the correlation between the results of the ideal profile fitting method and the manual method is R2 = 0.64 with a RMSE of 270 m and a mean bias of 165 m; and the correlation between the results of the wavelet covariance transform method and manual method is R2 = 0.76, with a RMSE of 196 m and mean bias of 23 m. These findings indicate that the proposed algorithm has better reliability and stability than traditional algorithms.

  8. New Theories on Boundary Layer Transition and Turbulence Formation

    Directory of Open Access Journals (Sweden)

    Chaoqun Liu

    2012-01-01

    Full Text Available This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.

  9. Modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Emran, Mohammad; Shishkina, Olga

    2016-11-01

    We report modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection (RBC), which incorporates the effect of turbulent fluctuations. The study is based on the thermal boundary layer equation from Shishkina et al., and new Direct Numerical Simulations (DNS) of RBC in a cylindrical cell of the aspect ratio 1, for the Prandtl number variation of several orders of magnitude. Our modeled temperature profiles are found to agree with the DNS much better than those obtained with the classical Prandtl-Blasius or Falkner-Skan approaches. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh405/4 - Heisenberg fellowship and SFB963, Project A06.

  10. Bottom boundary layer forced by finite amplitude long and short surface waves motions

    Science.gov (United States)

    Elsafty, H.; Lynett, P.

    2018-04-01

    A multiple-scale perturbation approach is implemented to solve the Navier-Stokes equations while including bottom boundary layer effects under a single wave and under two interacting waves. In this approach, fluid velocities and the pressure field are decomposed into two components: a potential component and a rotational component. In this study, the two components are exist throughout the entire water column and each is scaled with appropriate length and time scales. A one-way coupling between the two components is implemented. The potential component is assumed to be known analytically or numerically a prior, and the rotational component is forced by the potential component. Through order of magnitude analysis, it is found that the leading-order coupling between the two components occurs through the vertical convective acceleration. It is shown that this coupling plays an important role in the bottom boundary layer behavior. Its effect on the results is discussed for different wave-forcing conditions: purely harmonic forcing and impurely harmonic forcing. The approach is then applied to derive the governing equations for the bottom boundary layer developed under two interacting wave motions. Both motions-the shorter and the longer wave-are decomposed into two components, potential and rotational, as it is done in the single wave. Test cases are presented wherein two different wave forcings are simulated: (1) two periodic oscillatory motions and (2) short waves interacting with a solitary wave. The analysis of the two periodic motions indicates that nonlinear effects in the rotational solution may be significant even though nonlinear effects are negligible in the potential forcing. The local differences in the rotational velocity due to the nonlinear vertical convection coupling term are found to be on the order of 30% of the maximum boundary layer velocity for the cases simulated in this paper. This difference is expected to increase with the increase in wave

  11. Boundary-Layer & health

    Science.gov (United States)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  12. Assessment of boundary layer profiling formulas using tower, sodar and balloon data

    Energy Technology Data Exchange (ETDEWEB)

    Paine, R.J. [ENSR Consulting and Engineering, Inc., Acton, MA (United States); Kendall, S.B. [Phelps Dodge Corp., Phoenix, AZ (United States)

    1994-12-31

    The accuracy of an air quality dispersion model is largely dependent upon the availability of representative meteorological data for the simulation of plume rise, transport, and dispersion. In many cases where tall stacks and/or buoyant plumes are involved, the available meteorological measurements do not extend to plume height. Air quality models contend with these situations by either assuming no change of meteorological variables with elevation or by applying a profiling relationship based upon theoretical or empirical relationships. The latter treatment is employed in recently-developed models such as CTDMPLUS, and HPDM, and OML. In the well-mixed convective boundary layer, meteorological variables such as wind direction, wind speed, and turbulence do not vary substantially above the surface layer (about 0.1 z{sub i}, the mixed-layer height). Above the surface layer, behavior on an hourly average basis is fairly well parameterized by boundary-layer formulations. However, models are sensitive to the height of the convective boundary layer, z{sub i}, which affects the magnitude of the convective velocity scale, w., and is important for simulating plume trapping and plume penetration into the stable layer aloft. In the stable boundary layer, plumes are often released at heights above the stable boundary layer, the height of which is often hard to define. Models are sensitive to the manner in which wind direction, wind speed, temperature and turbulence are profiled with height in stable conditions.

  13. Transitional and turbulent flat-plate boundary layers with heat transfer

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz

    2010-11-01

    We report on our direct numerical simulation of two incompressible, nominally zero-pressure-gradient flat-plate boundary layers from momentum thickness Reynolds number 80 to 1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number=1. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cfdeviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Turbulent Prandtl number t peaks at the wall. Preponderance of hairpin vortices is observed in both the transitional and turbulent regions of the boundary layers. In particular, the internal structure of merged turbulent spots is hairpin forest; the internal structure of infant turbulent spots is hairpin packet. Numerous hairpin vortices are readily detected in both the near-wall and outer regions of the boundary layers up to momentum thickness Reynolds number 1950. This suggests that the hairpin vortices in the turbulent region are not simply the aged hairpin forests convected from the upstream transitional region. Temperature iso-surfaces in the companion thermal boundary layers are found to be a useful tracer in identifying hairpin vortex structures.

  14. Boundary layer for non-newtonian fluids on curved surfaces

    International Nuclear Information System (INIS)

    Stenger, N.

    1981-04-01

    By using the basic equation of fluid motion (conservation of mass and momentum) the boundary layer parameters for a Non-Newtonian, incompressible and laminar fluid flow, has been evaluated. As a test, the flat plate boundary layer is first analized and afterwards, a case with pressure gradient, allowing separation, is studied. In the case of curved surfaces, the problem is first developed in general and afterwards particularized to a circular cylinder. Finally suction and slip in the flow interface are examined. The power law model is used to represent the stress strain relationship in Non-Newtonian flow. By varying the fluid exponent one can then, have an idea of how the Non-Newtonian behavior of the flow influences the parameters of the boundary layer. Two equations, in an appropriate coordinate system have been obtained after an order of magnitude analysis of the terms in the equations of motion is performed. (Author) [pt

  15. Coupling of magnetopause-boundary layer to the polar ionosphere

    International Nuclear Information System (INIS)

    Wei, C.Q.; Lee, L.C.

    1993-01-01

    The authors develop a model which seeks to explain ultraviolet auroral images from the Viking satellite which show periodic bright regions which resemble open-quotes beadsclose quotes or open-quotes pearlsclose quotes aligned along the postnoon auroral oval. ULF geomagnetic pulsations observed in the cusp region are also addressed by this model. The model addresses plasma dynamics in the low-latitude boundary layer and interactions with the polar ionosphere by means of field-aligned current. The Kelvin-Helmholtz instability can develop in the presence of driven plasma flow, which can lead to the formation and growth of plasma vortices in the boundary layer. The finite conductivity of the earth ionosphere causes these vortices to decay. However regions of enhanced field-aligned power density in the postnoon auroral oval can be associated with field-aligned current filaments and boundary layer vortices. These structures may explain the observed bright spots. The authors also discuss the frequency spectrum and the polarization state of the pulsations

  16. Acoustic explorations of the upper ocean boundary layer

    Science.gov (United States)

    Vagle, Svein

    2005-04-01

    The upper ocean boundary layer is an important but difficult to probe part of the ocean. A better understanding of small scale processes at the air-sea interface, including the vertical transfer of gases, heat, mass and momentum, are crucial to improving our understanding of the coupling between atmosphere and ocean. Also, this part of the ocean contains a significant part of the total biomass at all trophic levels and is therefore of great interest to researchers in a range of different fields. Innovative measurement plays a critical role in developing our understanding of the processes involved in the boundary layer, and the availability of low-cost, compact, digital signal processors and sonar technology in self-contained and cabled configurations has led to a number of exciting developments. This talk summarizes some recent explorations of this dynamic boundary layer using both active and passive acoustics. The resonant behavior of upper ocean bubbles combined with single and multi-frequency broad band active and passive devices are now giving us invaluable information on air-sea gas transfer, estimation of biological production, marine mammal behavior, wind speed and precipitation, surface and internal waves, turbulence, and acoustic communication in the surf zone.

  17. A theory for natural convection turbulent boundary layers next to heated vertical surfaces

    International Nuclear Information System (INIS)

    George, W.K. Jr.; Capp, S.P.

    1979-01-01

    The turbulent natural convection boundary layer next to a heated vertical surface is analyzed by classical scaling arguments. It is shown that the fully developed turbulent boundary layer must be treated in two parts: and outer region consisting of most of the boundary layer in which viscous and conduction terms are negligible and an inner region in which the mean convection terms are negligible. The inner layer is identified as a constant heat flux layer. A similarity analysis yields universal profiles for velocity and temperature in the outer and constant heat flux layers. An asymptotic matching of these profiles in an intermediate layer (the buoyant sublayer) yields analytical expressions for the buoyant sublayer profiles. Asymptotic heat transfer and friction laws are obtained for the fully developed boundary layers. Finally, conductive and thermo-viscous sublayers characterized by a linear variation of velocity and temperature are shown to exist at the wall. All predictions are seen to be in excellent agreement with the abundant experimental data. (author)

  18. Flow Visualization in Supersonic Turbulent Boundary Layers.

    Science.gov (United States)

    Smith, Michael Wayne

    This thesis is a collection of novel flow visualizations of two different flat-plate, zero pressure gradient, supersonic, turbulent boundary layers (M = 2.8, Re _theta ~ 82,000, and M = 2.5, Re_ theta ~ 25,000, respectively). The physics of supersonic shear flows has recently drawn increasing attention with the renewed interest in flight at super and hypersonic speeds. This work was driven by the belief that the study of organized, Reynolds -stress producing turbulence structures will lead to improved techniques for the modelling and control of high-speed boundary layers. Although flow-visualization is often thought of as a tool for providing qualitative information about complex flow fields, in this thesis an emphasis is placed on deriving quantitative results from image data whenever possible. Three visualization techniques were applied--'selective cut-off' schlieren, droplet seeding, and Rayleigh scattering. Two experiments employed 'selective cut-off' schlieren. In the first, high-speed movies (40,000 fps) were made of strong density gradient fronts leaning downstream at between 30^circ and 60^ circ and travelling at about 0.9U _infty. In the second experiment, the same fronts were detected with hot-wires and imaged in real time, thus allowing the examination of the density gradient fronts and their associated single-point mass -flux signals. Two experiments employed droplet seeding. In both experiments, the boundary layer was seeded by injecting a stream of acetone through a single point in the wall. The acetone is atomized by the high shear at the wall into a 'fog' of tiny (~3.5mu m) droplets. In the first droplet experiment, the fog was illuminated with copper-vapor laser sheets of various orientations. The copper vapor laser pulses 'froze' the fog motion, revealing a variety of organized turbulence structures, some with characteristic downstream inclinations, others with large-scale roll-up on the scale of delta. In the second droplet experiment, high

  19. Vortex Formation During Unsteady Boundary-Layer Separation

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    Unsteady laminar boundary-layer separation is invariably accompanied by the formation of vortices. The aim of the present work is to study the vortex formation mechanism(s). An adverse pressure gradient causing a separation can be decomposed into a spatial component ( spatial variation of the velocity external to the boundary layer ) and a temporal component ( temporal variation of the external velocity ). Experiments were conducted in a piston driven 2-D water channel, where the spatial component could be be contolled by geometry and the temporal component by the piston motion. We present results for three divergent channel geometries. The piston motion consists of three phases: constant acceleration from start, contant velocity, and constant deceleration to stop. Depending on the geometry and piston motion we observe different types of unsteady separation and vortex formation.

  20. On the Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers

    DEFF Research Database (Denmark)

    Baklanov, Alexander A.; Grisogono, Branko; Bornstein, Robert

    2011-01-01

    The gap between our modern understanding of planetary boundary layer physics and its decades-old representations in current operational atmospheric models is widening, which has stimulated this review of the current state of the art and an analysis of the immediate needs in boundary layer theory......, measurements, and modeling....

  1. Boundary-layer height detection with a ceilometer at a coastal site in western Denmark

    DEFF Research Database (Denmark)

    Hannesdóttir, Ásta; Hansen, Aksel Walle

    in atmospheric transport- and dispersion models. A new method of filtering clouds from the ceilometer data is presented. This allows for the inclusion of more than half of the data in the subsequent analysis, as the presence of clouds would otherwise complicate the boundary-layer height estimations. The boundary....... The boundary-layer height estimates are then used to analyse the daily evolution of the boundary layer and to perform monthly and annual frequency distributions of the boundary-layer height. For westerly winds bi-modal distributions are often found, which may be separated by different criteria, while...

  2. Boundary layer development on turbine airfoil suction surfaces

    Science.gov (United States)

    Sharma, O. P.; Wells, R. A.; Schlinker, R. H.; Bailey, D. A.

    1981-01-01

    The results of a study supported by NASA under the Energy Efficient Engine Program, conducted to investigate the development of boundary layers under the influence of velocity distributions that simulate the suction sides of two state-of-the-art turbine airfoils, are presented. One velocity distribution represented a forward loaded airfoil ('squared-off' design), while the other represented an aft loaded airfoil ('aft loaded' design). These velocity distributions were simulated in a low-speed, high-aspect-ratio wind tunnel specifically designed for boundary layer investigations. It is intended that the detailed data presented in this paper be used to develop improved turbulence model suitable for application to turbine airfoil design.

  3. Time-resolved PIV measurements of the atmospheric boundary layer over wind-driven surface waves

    Science.gov (United States)

    Markfort, Corey; Stegmeir, Matt

    2017-11-01

    Complex interactions at the air-water interface result in two-way coupling between wind-driven surface waves and the atmospheric boundary layer (ABL). Turbulence generated at the surface plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the ABL promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the ABL by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We employ time-resolved PIV to measure the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  4. Current Challenges in Understanding and Forecasting Stable Boundary Layers over Land and Ice

    Directory of Open Access Journals (Sweden)

    Gert-Jan eSteeneveld

    2014-10-01

    Full Text Available Understanding and prediction of the stable atmospheric boundary layer is challenging. Many physical processes come into play in the stable boundary layer, i.e. turbulence, radiation, land surface coupling and heterogeneity, orographic turbulent and gravity wave drag. The development of robust stable boundary-layer parameterizations for weather and climate models is difficult because of the multiplicity of processes and their complex interactions. As a result, these models suffer from biases in key variables, such as the 2-m temperature, boundary-layer depth and wind speed. This short paper briefly summarizes the state-of-the-art of stable boundary layer research, and highlights physical processes that received only limited attention so far, in particular orographically-induced gravity wave drag, longwave radiation divergence, and the land-atmosphere coupling over a snow-covered surface. Finally, a conceptual framework with relevant processes and particularly their interactions is proposed.

  5. Interaction of a Mach 2.25 turbulent boundary layer with a fluttering panel using direct numerical simulation

    Science.gov (United States)

    Bodony, Daniel; Ostoich, Christopher; Geubelle, Philippe

    2013-11-01

    The interaction between a thin metallic panel and a Mach 2.25 turbulent boundary layer is investigated using a direct numerical simulation approach for coupled fluid-structure problems. The solid solution uses a finite-strain, finite-deformation formulation, while the direct numerical simulation of the boundary layer uses a finite-difference compressible Navier-Stokes solver. The initially laminar boundary layer contains low amplitude unstable eigenmodes that grow in time and excite traveling bending waves in the panel. As the boundary layer transitions to a fully turbulent state, with Reθ ~ 1200 , the panel's bending waves coalesce into a standing wave pattern exhibiting flutter with a final amplitude approximately 20 times the panel thickness. The corresponding panel deflection is roughly 25 wall units and reaches across the sonic line in the boundary layer profile. Once it reaches a limit cycle state, the panel/boundary layer system is examined in detail where it is found that turbulence statistics, especially the main Reynolds stress - , appear to be modified by the presence of the compliant panel, the effect of which is forgotten within one integral length downstream of the panel. Supported by the U.S. Air Force Research Laboratory Air Vehicles Directorate under contract number FA8650-06-2-3620.

  6. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

    Science.gov (United States)

    Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E. R.; Reuder, J.; Vilà-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; Augustin, P.; Gioli, B.; Lenschow, D. H.; Faloona, I.; Yagüe, C.; Alexander, D. C.; Angevine, W. M.; Bargain, E.; Barrié, J.; Bazile, E.; Bezombes, Y.; Blay-Carreras, E.; van de Boer, A.; Boichard, J. L.; Bourdon, A.; Butet, A.; Campistron, B.; de Coster, O.; Cuxart, J.; Dabas, A.; Darbieu, C.; Deboudt, K.; Delbarre, H.; Derrien, S.; Flament, P.; Fourmentin, M.; Garai, A.; Gibert, F.; Graf, A.; Groebner, J.; Guichard, F.; Jiménez, M. A.; Jonassen, M.; van den Kroonenberg, A.; Magliulo, V.; Martin, S.; Martinez, D.; Mastrorillo, L.; Moene, A. F.; Molinos, F.; Moulin, E.; Pietersen, H. P.; Piguet, B.; Pique, E.; Román-Cascón, C.; Rufin-Soler, C.; Saïd, F.; Sastre-Marugán, M.; Seity, Y.; Steeneveld, G. J.; Toscano, P.; Traullé, O.; Tzanos, D.; Wacker, S.; Wildmann, N.; Zaldei, A.

    2014-10-01

    Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the

  7. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.

    2014-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...... development was examined. Three VG geometries were investigated: rectangular, triangular and cambered. The various VG geometries tested are seen to produce different impacts on the boundary layer flow. Helical symmetry of the generated vortices is confirmed for all investigated VG geometries in this high...... Reynolds number boundary layer. From the parameters resulting from this analysis, it is observed at the most upstream measurement position that the rectangular and triangular VGs produce vortices of similar size, strength and velocity induction whilst the cambered VGs produce smaller and weaker vortices...

  8. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.

    2012-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...... development was examined. Three VG geometries were investigated: rectangular, triangular and cambered. The various VG geometries tested are seen to produce different impacts on the boundary layer flow. Helical symmetry of the generated vortices is confirmed for all investigated VG geometries in this high...... Reynolds number boundary layer. From the parameters resulting from this analysis, it is observed at the most upstream measurement position that the rectangular and triangular VGs produce vortices of similar size, strength and velocity induction whilst the cambered VGs produce smaller and weaker vortices...

  9. On boundary layer modelling using the ASTEC code

    International Nuclear Information System (INIS)

    Smith, B.L.

    1991-07-01

    The modelling of fluid boundary layers adjacent to non-slip, heated surface using the ASTEC code is described. The pricipal boundary layer characteristics are derived using simple dimensional arguments and these are developed into criteria for optimum placement of the computational mesh to achieve realistic simulation. In particular, the need for externally-imposed drag and heat transfer correlations as a function of the local mesh concentration is discussed in the context of both laminar and turbulent flow conditions. Special emphasis is placed in the latter case on the (k-ε) turbulence model, which is standard in the code. As far as possible, the analyses are pursued from first principles, so that no comprehensive knowledge of the history of the subject is required for the general ASTEC user to derive practical advice from the document. Some attention is paid to the use of heat transfer correlations for internal solid/fluid surfaces, whose treatment is not straightforward in ASTEC. It is shown that three formulations are possible to effect the heat transfer, called Explicit, Jacobian and Implicit. The particular advantages and disadvantages of each are discussed with regard to numerical stability and computational efficiency. (author) 18 figs., 1 tab., 39 refs

  10. Analytic Approximate Solutions to the Boundary Layer Flow Equation over a Stretching Wall with Partial Slip at the Boundary.

    Science.gov (United States)

    Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan

    2016-01-01

    Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.

  11. Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows

    Science.gov (United States)

    Raayai-Ardakani, Shabnam; McKinley, Gareth H.

    2017-09-01

    Inspired by the design of the ribbed structure of shark skin, passive drag reduction methods using stream-wise riblet surfaces have previously been developed and tested over a wide range of flow conditions. Such textures aligned in the flow direction have been shown to be able to reduce skin friction drag by 4%-8%. Here, we explore the effects of periodic sinusoidal riblet surfaces aligned in the flow direction (also known as a "wrinkled" texture) on the evolution of a laminar boundary layer flow. Using numerical analysis with the open source Computational Fluid Dynamics solver OpenFOAM, boundary layer flow over sinusoidal wrinkled plates with a range of wavelength to plate length ratios ( λ / L ), aspect ratios ( 2 A / λ ), and inlet velocities are examined. It is shown that in the laminar boundary layer regime, the riblets are able to retard the viscous flow inside the grooves creating a cushion of stagnant fluid that the high-speed fluid above can partially slide over, thus reducing the shear stress inside the grooves and the total integrated viscous drag force on the plate. Additionally, we explore how the boundary layer thickness, local average shear stress distribution, and total drag force on the wrinkled plate vary with the aspect ratio of the riblets as well as the length of the plate. We show that riblets with an aspect ratio of close to unity lead to the highest reduction in the total drag, and that because of the interplay between the local stress distribution on the plate and stream-wise evolution of the boundary layer the plate has to exceed a critical length to give a net decrease in the total drag force.

  12. Experiments on a smooth wall hypersonic boundary layer at Mach 6

    Science.gov (United States)

    Neeb, Dominik; Saile, Dominik; Gülhan, Ali

    2018-04-01

    The turbulent boundary layer along the surface of high-speed vehicles drives shear stress and heat flux. Although essential to the vehicle design, the understanding of compressible turbulent boundary layers at high Mach numbers is limited due to the lack of available data. This is particularly true if the surface is rough, which is typically the case for all technical surfaces. To validate a methodological approach, as initial step, smooth wall experiments were performed. A hypersonic turbulent boundary layer at Ma = 6 (Ma_e=5.4) along a 7{}° sharp cone model at low Reynolds numbers Re_{θ } ≈ 3000 was characterized. The mean velocities in the boundary layer were acquired by means of Pitot pressure and particle image velocimetry (PIV) measurements. Furthermore, the PIV data were used to extract turbulent intensities along the profile. The mean velocities in the boundary layer agree with numerical data, independent of the measurement technique. Based on the profile data, three different approaches to extract the skin friction velocity were applied and show favorable comparison to literature and numerical data. The extracted values were used for inner and outer scaling of the van Driest transformed velocity profiles which are in good agreement to incompressible theoretical data. Morkovin scaled turbulent intensities show ambiguous results compared to literature data which may be influenced by inflow turbulence level, particle lag and other measurement uncertainties.

  13. Self-sustained Flow-acoustic Interactions in Airfoil Transitional Boundary Layers

    Science.gov (United States)

    2015-07-09

    AFRL-AFOSR-VA-TR-2015-0235 Self-sustained flow-acoustic interactions in airfoil transitional boundary layers Vladimir Golubev EMBRY-RIDDLE...From - To)      01-04-2012 to 31-03-2015 4.  TITLE AND SUBTITLE Self-sustained flow-acoustic interactions in airfoil transitional boundary layers 5a...complementary experimental and numerical studies of flow-acoustic resonant interactions in transitional airfoils and their impact on airfoil surface

  14. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    Science.gov (United States)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  15. Boundary layer turbulence in transitional and developed states

    Science.gov (United States)

    Park, George Ilhwan; Wallace, James M.; Wu, Xiaohua; Moin, Parviz

    2012-03-01

    Using the recent direct numerical simulations by Wu and Moin ["Transitional and turbulent boundary layer with heat transfer," Phys. Fluids 22, 85 (2010)] of a flat-plate boundary layer with a passively heated wall, statistical properties of the turbulence in transition at Reθ ≈ 300, from individual turbulent spots, and at Reθ ≈ 500, where the spots merge (distributions of the mean velocity, Reynolds stresses, kinetic energy production, and dissipation rates, enstrophy and its components) have been compared to these statistical properties for the developed boundary layer turbulence at Reθ = 1840. When the distributions in the transitional regions are conditionally averaged so as to exclude locations and times when the flow is not turbulent, they closely resemble the distributions in the developed turbulent state at the higher Reynolds number, especially in the buffer layer. Skin friction coefficients, determined in this conditional manner at the two Reynolds numbers in the transitional flow are, of course, much larger than when their values are obtained by including both turbulent and non-turbulent information there, and the conditional averaged values are consistent with the 1/7th power law approximation. An octant analysis based on the combinations of signs of the velocity and temperature fluctuations, u, v, and θ shows that the momentum and heat fluxes are predominantly of the mean gradient type in both the transitional and developed regions. The fluxes appear to be closely associated with vortices that transport momentum and heat toward and away from the wall in both regions of the flow. The results suggest that there may be little fundamental difference between the nonlinear processes involved in the formation of turbulent spots that appear in transition and those that sustain the turbulence when it is developed. They also support the view that the transport processes and the vortical structures that drive them in developed and transitional boundary

  16. Heat conduction boundary layers of condensed clumps in cooling flows

    International Nuclear Information System (INIS)

    Boehringer, H.; Fabian, A.C.

    1989-01-01

    The structure of heat conduction boundary layers of gaseous condensations embedded in the hot intergalactic gas in clusters of galaxies is investigated by means of steady, one-dimensional, hydrodynamic models. It is assumed that heat conduction is effective only on scales much smaller than the total region of the cooling flow. Models are calculated for an arbitrary scaling factor, accounting for the reduction in heat conduction efficiency compared to the classical Spitzer case. The results imply a lower limit to the size spectrum of the condensations. The enhancement of cooling in the ambient medium due to heat conduction losses is calculated for a range of clump parameters. The luminosity of several observable emission lines, the extreme ultraviolet (EUV) and soft X-ray emission spectrum, and the column density of some important ions are determined for the model boundary layers and compared with observations. (author)

  17. Stereoscopic PIV measurement of boundary layer affected by DBD actuator

    Directory of Open Access Journals (Sweden)

    Procházka Pavel

    2016-01-01

    Full Text Available The effect of ionic wind generated by plasma actuator on developed boundary layer inside a narrow channel was investigated recently. Since the main investigated plane was parallel to the channel axis, the description of flow field was not evaluated credibly. This paper is dealing with cross-section planes downstream the actuator measured via 3D time-resolved PIV. The actuator position is in spanwise or in streamwise orientation so that ionic wind is blown in the same direction as the main flow or in opposite direction or perpendicularly. The interaction between boundary layer and ionic wind is evaluated for three different velocities of main flow and several parameters of plasma actuation (steady and unsteady regime, frequency etc.. Statistical properties of the flow are shown as well as dynamical behaviour of arising longitudinal vortices are discussed via phase-locked measurement and decomposition method.

  18. The Effect of Aerosol on Gravity Wave Characteristics above the Boundary Layer over a Tropical Location

    Science.gov (United States)

    Rakshit, G.; Jana, S.; Maitra, A.

    2017-12-01

    The perturbations of temperature profile over a location give an estimate of the potential energy of gravity waves propagating through the atmosphere. Disturbances in the lower atmosphere due to tropical deep convection, orographic effects and various atmospheric disturbances generates of gravity waves. The present study investigates the gravity wave energy estimated from fluctuations in temperature profiles over the tropical location Kolkata (22°34' N, 88°22' E). Gravity waves are most intense during the pre-monsoon period (March-June) at the present location, the potential energy having high values above the boundary layer (2-4 km) as observed from radiosonde profiles. An increase in temperature perturbation, due to high ambient temperature in the presence of heat absorbing aerosols, causes an enhancement in potential energy. As the present study location is an urban metropolitan city experiencing high level of pollution, pollutant aerosols can go much above the normal boundary layer during daytime due to convection causing an extended boundary layer. The Aerosol Index (AAI) obtained from Global Ozone Monitoring Experiment-2 (GOME-2) on MetOp-A platform at 340 nm and 380 nm confirms the presence of absorbing aerosol particles over the present location. The Hysplit back trajectory analysis shows that the aerosol particles at those heights are of local origin and are responsible for depleting liquid water content due to cloud burning. The aerosol extinction coefficient obtained from CALIPSO data exhibits an increasing trend during 2006-2016 accompanied by a similar pattern of gravity wave energy. Thus the absorbing aerosols have a significant role in increasing the potential energy of gravity wave at an urban location in the tropical region.

  19. Interactive boundary-layer calculations of a transonic wing flow

    Science.gov (United States)

    Kaups, Kalle; Cebeci, Tuncer; Mehta, Unmeel

    1989-01-01

    Results obtained from iterative solutions of inviscid and boundary-layer equations are presented and compared with experimental values. The calculated results were obtained with an Euler code and a transonic potential code in order to furnish solutions for the inviscid flow; they were interacted with solutions of two-dimensional boundary-layer equations having a strip-theory approximation. Euler code results are found to be in better agreement with the experimental data than with the full potential code, especially in the presence of shock waves, (with the sole exception of the near-tip region).

  20. An Innovative Flow-Measuring Device: Thermocouple Boundary Layer Rake

    Science.gov (United States)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Wrbanek, John D.; Blaha, Charles A.

    2001-01-01

    An innovative flow-measuring device, a thermocouple boundary layer rake, was developed. The sensor detects the flow by using a thin-film thermocouple (TC) array to measure the temperature difference across a heater strip. The heater and TC arrays are microfabricated on a constant-thickness quartz strut with low heat conductivity. The device can measure the velocity profile well into the boundary layer, about 65 gm from the surface, which is almost four times closer to the surface than has been possible with the previously used total pressure tube.

  1. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  2. Budget of Turbulent Kinetic Energy in a Shock Wave Boundary-Layer Interaction

    Science.gov (United States)

    Vyas, Manan A.; Waindim, Mbu; Gaitonde, Datta V.

    2016-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Quantities present in the exact equation of the turbulent kinetic energy transport were accumulated and used to calculate terms like production, dissipation, molecular diffusion, and turbulent transport. The present results for a turbulent boundary layer were validated by comparison with direct numerical simulation data. It was found that a longer development domain was necessary for the boundary layer to reach an equilibrium state and a finer mesh resolution would improve the predictions. In spite of these findings, trends of the present budget match closely with that of the direct numerical simulation. Budgets for the SBLI region are presented at key axial stations. These budgets showed interesting dynamics as the incoming boundary layer transforms and the terms of the turbulent kinetic energy budget change behavior within the interaction region.

  3. Numerical Simulations of Hypersonic Boundary Layer Transition

    Science.gov (United States)

    Bartkowicz, Matthew David

    Numerical schemes for supersonic flows tend to use large amounts of artificial viscosity for stability. This tends to damp out the small scale structures in the flow. Recently some low-dissipation methods have been proposed which selectively eliminate the artificial viscosity in regions which do not require it. This work builds upon the low-dissipation method of Subbareddy and Candler which uses the flux vector splitting method of Steger and Warming but identifies the dissipation portion to eliminate it. Computing accurate fluxes typically relies on large grid stencils or coupled linear systems that become computationally expensive to solve. Unstructured grids allow for CFD solutions to be obtained on complex geometries, unfortunately, it then becomes difficult to create a large stencil or the coupled linear system. Accurate solutions require grids that quickly become too large to be feasible. In this thesis a method is proposed to obtain more accurate solutions using relatively local data, making it suitable for unstructured grids composed of hexahedral elements. Fluxes are reconstructed using local gradients to extend the range of data used. The method is then validated on several test problems. Simulations of boundary layer transition are then performed. An elliptic cone at Mach 8 is simulated based on an experiment at the Princeton Gasdynamics Laboratory. A simulated acoustic noise boundary condition is imposed to model the noisy conditions of the wind tunnel and the transitioning boundary layer observed. A computation of an isolated roughness element is done based on an experiment in Purdue's Mach 6 quiet wind tunnel. The mechanism for transition is identified as an instability in the upstream separation region and a comparison is made to experimental data. In the CFD a fully turbulent boundary layer is observed downstream.

  4. Hair receptor sensitivity to changes in laminar boundary layer shape

    International Nuclear Information System (INIS)

    Dickinson, B T

    2010-01-01

    Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.

  5. Shooting method for solution of boundary-layer flows with massive blowing

    Science.gov (United States)

    Liu, T.-M.; Nachtsheim, P. R.

    1973-01-01

    A modified, bidirectional shooting method is presented for solving boundary-layer equations under conditions of massive blowing. Unlike the conventional shooting method, which is unstable when the blowing rate increases, the proposed method avoids the unstable direction and is capable of solving complex boundary-layer problems involving mass and energy balance on the surface.

  6. The surface roughness and planetary boundary layer

    Science.gov (United States)

    Telford, James W.

    1980-03-01

    Applications of the entrainment process to layers at the boundary, which meet the self similarity requirements of the logarithmic profile, have been studied. By accepting that turbulence has dominating scales related in scale length to the height above the surface, a layer structure is postulated wherein exchange is rapid enough to keep the layers internally uniform. The diffusion rate is then controlled by entrainment between layers. It has been shown that theoretical relationships derived on the basis of using a single layer of this type give quantitatively correct factors relating the turbulence, wind and shear stress for very rough surface conditions. For less rough surfaces, the surface boundary layer can be divided into several layers interacting by entrainment across each interface. This analysis leads to the following quantitatively correct formula compared to published measurements. 1 24_2004_Article_BF00877766_TeX2GIFE1.gif {σ _w }/{u^* } = ( {2/{9Aa}} )^{{1/4}} ( {1 - 3^{{1/2}{ a/k{d_n }/z{σ _w }/{u^* }z/L} )^{{1/4}} = 1.28(1 - 0.945({{σ _w }/{u^* }}}) {{z/L}})^{{1/4 where u^* = ( {{tau/ρ}}^{{1/2}}, σ w is the standard deviation of the vertical velocity, z is the height and L is the Obukhov scale lenght. The constants a, A, k and d n are the entrainment constant, the turbulence decay constant, Von Karman's constant, and the layer depth derived from the theory. Of these, a and A, are universal constants and not empirically determined for the boundary layer. Thus the turbulence needed for the plume model of convection, which resides above these layers and reaches to the inversion, is determined by the shear stress and the heat flux in the surface layers. This model applies to convection in cool air over a warm sea. The whole field is now determined except for the temperature of the air relative to the water, and the wind, which need a further parameter describing sea surface roughness. As a first stop to describing a surface where roughness elements

  7. A high-latitude, low-latitude boundary layer model of the convection current system

    International Nuclear Information System (INIS)

    Siscoe, G.L.; Lotko, W.; Sonnerup, B.U.O.

    1991-01-01

    Observations suggest that both the high- and low-latitude boundary layers contribute to magnetospheric convection, and that their contributions are linked. In the interpretation pursued here, the high-latitude boundary layer (HBL) generates the voltage while the low-latitude boundary layer (LBL) generates the current for the part of the convection electric circuit that closes through the ionosphere. This paper gives a model that joins the high- and low-latitude boundary layers consistently with the ionospheric Ohm's law. It describes an electric circuit linking both boundary layers, the region 1 Birkeland currents, and the ionospheric Pedersen closure currents. The model works by using the convection electric field that the ionosphere receives from the HBL to determine two boundary conditions to the equations that govern viscous LBL-ionosphere coupling. The result provides the needed self-consistent coupling between the two boundary layers and fully specifies the solution for the viscous LBL-ionosphere coupling equations. The solution shows that in providing the current required by the ionospheric Ohm's law, the LBL needs only a tenth of the voltage that spans the HBL. The solution also gives the latitude profiles of the ionospheric electric field, parallel currents, and parallel potential. It predicts that the plasma in the inner part of the LBL moves sunward instead of antisunward and that, as the transpolar potential decreases below about 40 kV, reverse polarity (region 0) currents appear at the poleward border of the region 1 currents. A possible problem with the model is its prediction of a thin boundary layer (∼1000 km), whereas thicknesses inferred from satellite data tend to be greater

  8. Productivity of a coral reef using boundary layer and enclosure methods

    Science.gov (United States)

    McGillis, W.R.; Langdon, C.; Loose, B.; Yates, K.K.; Corredor, Jorge

    2011-01-01

    The metabolism of Cayo Enrique Reef, Puerto Rico, was studied using in situ methods during March 2009. Benthic O2 fluxes were used to calculate net community production using both the boundary layer gradient and enclosure techniques. The boundary layer O2 gradient and the drag coefficients were used to calculate productivity ranging from -12.3 to 13.7 mmol O2 m-2 h-1. Productivity measurements from the enclosure method ranged from -11.0 to 12.9 mmol O2 m-2 h-1. During the study, the mean hourly difference between the methods was 0.65 mmol O2 m-2 h-1 (r2 = 0.92), resulting in well-reconciled estimates of net community production between the boundary layer (-33.1 mmol m-2 d-1) and enclosure (-46.3 mmol m-2 d-1) techniques. The results of these independent approaches corroborate quantified rates of metabolism at Cayo Enrique Reef. Close agreement between methods demonstrates that boundary layer measurements can provide near real-time assessments of coral reef health.

  9. Observations of the atmospheric boundary layer height over Abu Dhabi, United Arab Emirates: Investigating boundary layer climatology in arid regions

    Science.gov (United States)

    Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa

    2014-05-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.

  10. The lobe to plasma sheet boundary layer transition: Theory and observations

    International Nuclear Information System (INIS)

    Schriver, D.; Ashour-Abdalla, M.; Treumann, R.; Nakamura, M.; Kistler, L.M.

    1990-01-01

    The lobe and the plasma sheet boundary layer in the Earth's magnetotail are regions of different plasma conditions and share a common interface. The transition from the lobe to the plasma sheet boundary layer is examined here using AMPTE/IRM data. When the satellite crossed from the lobe to the plasma sheet boundary layer, intense narrow banded wave bursts at 1 kHz were observed an d then broadband electrostatic noise (BEN) immediately followed. Simultaneous with the onset of BEN, high energy earthward streaming proton beams at > 40 keV (> 2,700 km/s) were detected. These results are used as input into a numerical simulation to study ion beam instabilities in the PSBL

  11. CFD Analysis of a Centrifugal Fan for Performance Enhancement using Converging Boundary Layer Suction Slots

    OpenAIRE

    K. Vasudeva Karanth; N. Yagnesh Sharma

    2009-01-01

    Generally flow behavior in centrifugal fan is observed to be in a state of instability with flow separation zones on suction surface as well as near the front shroud. Overall performance of the diffusion process in a centrifugal fan could be enhanced by judiciously introducing the boundary layer suction slots. With easy accessibility of CFD as an analytical tool, an extensive numerical whole field analysis of the effect of boundary layer suction slots in discrete regions ...

  12. Effects of flow and colony morphology on the thermal boundary layer of corals

    DEFF Research Database (Denmark)

    Jimenez, Isabel M; Kühl, Michael; Larkum, Anthony W D

    2011-01-01

    The thermal microenvironment of corals and the thermal effects of changing flow and radiation are critical to understanding heat-induced coral bleaching, a stress response resulting from the destruction of the symbiosis between corals and their photosynthetic microalgae. Temperature microsensor...... measurements at the surface of illuminated stony corals with uneven surface topography (Leptastrea purpurea and Platygyra sinensis) revealed millimetre-scale variations in surface temperature and thermal boundary layer (TBL) that may help understand the patchy nature of coral bleaching within single colonies....... The effect of water flow on the thermal microenvironment was investigated in hemispherical and branching corals (Porites lobata and Stylophora pistillata, respectively) in a flow chamber experiment. For both coral types, the thickness of the TBL decreased exponentially from 2.5 mm at quasi-stagnant flow (0...

  13. Transition Delay in Hypersonic Boundary Layers via Optimal Perturbations

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.

  14. The structure of a separating turbulent boundary layer. IV - Effects of periodic free-stream unsteadiness

    Science.gov (United States)

    Simpson, R. L.; Shivaprasad, B. G.; Chew, Y.-T.

    1983-01-01

    Measurements were obtained of the sinusoidal unsteadiness of the free stream velocity during the separation of the turbulent boundary layer. Data were gathered by single wire and cross-wire, anemometry upstream of flow detachment, by laser Doppler velocimetry to detect the movement of the flow in small increments, and by a laser anemometer in the detached zone to measure turbulence and velocities. The study was restricted to a sinusoidal instability frequency of 0.61 and a ratio of oscillation amplitude to mean velocity of 0.3. Large amplitude and phase variations were found after the detachment, with unsteady effects producing hysteresis in the relationships between flow parameters. The detached shear layer decreased in thickness with increasing free-stream velocity and increases in the Reynolds shear stress. Deceleration of the free stream velocity caused thickening in the shear layer and upstream movement of the flow reversal location. The results are useful for studies of compressor blade and helicopter rotors in transition.

  15. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    International Nuclear Information System (INIS)

    Herrmann-Priesnitz, Benjamín; Torres, Diego A.; Calderón-Muñoz, Williams R.; Salas, Eduardo A.; Vargas-Uscategui, Alejandro; Duarte-Mermoud, Manuel A.

    2016-01-01

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of the boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U_o. Results show that boundary layers merge for Re > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U_o. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.

  16. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Calderón-Muñoz, Williams R. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Energy Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Salas, Eduardo A. [CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Vargas-Uscategui, Alejandro [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Duarte-Mermoud, Manuel A. [Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Department of Electrical Engineering, Universidad de Chile, Av. Tupper 2007, Santiago (Chile)

    2016-03-15

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of the boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.

  17. The structure of turbulent jets, vortices and boundary layer: laboratory and field observations

    International Nuclear Information System (INIS)

    Sekula, E.; Redondo, J.M.

    2008-01-01

    The main aim of this work is research, understand and describe key aspects of the turbulent jets and effects connected with them such as boundary layer interactions on the effect of a 2D geometry. Work is based principally on experiments but there are also some comparisons between experimental and field results. A series of experiments have been performed consisting in detailed turbulent measurements of the 3 velocity components to understand the processes of interaction that lead to mixing and mass transport between boundaries and free shear layers. The turbulent wall jet configuration occurs often in environmental and industrial processes, but here we apply the laboratory experiments as a tool to understand jet/boundary interactions in the environment. We compare the structure of SAR (Synthetic Aperture Radar) images of coastal jets and vortices and experimental jets (plumes) images searching for the relationship between these two kinds of jets at very different Reynolds numbers taking advantage of the self-similarity of the processes. In order to investigate the structure of ocean surface detected jets (SAR) and vortices near the coast, we compare wall and boundary effects on the structure of turbulent jets (3D and 2D) which are non-homogeneous, developing multifractal and spectral techniques useful for environmental monitoring in space.

  18. Laminar boundary layer response to rotation of a finite diameter surface patch

    International Nuclear Information System (INIS)

    Klewicki, J.C.; Hill, R.B.

    2003-01-01

    The responses of the flat plate laminar boundary layer to perturbations generated by rotating a finite patch of the bounding surface are explored experimentally. The size of the surface patch was of the same order as the boundary layer thickness. The displacement thickness Reynolds number range of the boundary layers explored was 72-527. The rotation rates of the surface patch ranged from 2.14 to 62.8 s-1. Qualitative flow visualizations and quantitative molecular tagging velocimetry measurements revealed that rotation of a finite surface patch generates an asymmetric loop-like vortex. Significant features of this vortex include that, (i) the sign of the vorticity in the vortex head is opposite that of the boundary layer vorticity regardless of the sign of the input rotation, (ii) one leg of the vortex exhibits motion akin to solid body rotation while the other leg is best characterized as a spanwise shear layer, (iii) the vortex leg exhibiting near solid body rotation lifts more rapidly from the surface than the leg more like a shear layer, and (iv) the vortex leg exhibiting near solid body rotation always occurs on the side of the surface patch experiencing downstream motion. These asymmetries switch sides depending on the sign of the input rotation. The present results are interpreted and discussed relative to analytical solutions for infinite geometries. By way of analogy, plausible connections are drawn between the present results and the influences of wall normal vortices in turbulent boundary layer flows

  19. Transitional and turbulent boundary layer with heat transfer

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz

    2010-08-01

    We report on our direct numerical simulation of an incompressible, nominally zero-pressure-gradient flat-plate boundary layer from momentum thickness Reynolds number 80-1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number Pr=1. Skin-friction coefficient and other boundary layer parameters follow the Blasius solutions prior to the onset of turbulent spots. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cf deviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Mean velocity and Reynolds stresses agree with experimental data over an extended turbulent region downstream of transition. Normalized rms wall-pressure fluctuation increases gradually with the streamwise growth of the turbulent boundary layer. Wall shear stress fluctuation, τw,rms'+, on the other hand, remains constant at approximately 0.44 over the range, 800spots are tightly packed with numerous hairpin vortices. With the advection and merging of turbulent spots, these young isolated hairpin forests develop into the downstream turbulent region. Isosurfaces of temperature up to Reθ=1900 are found to display well-resolved signatures of hairpin vortices, which indicates the persistence of the hairpin forests.

  20. Fast Fermi acceleration in the plasma sheet boundary layer

    International Nuclear Information System (INIS)

    Wu, C.S.; Lui, A.T.Y.

    1989-01-01

    A longstanding question in the field of magnetospheric physics is the source of the energetic particles which are commonly observed along the plasma sheet boundary layer (PSBL). Several models have been suggested for the acceleration of these particles. We suggest a means by which the fast Fermi acceleration mechanism [Wu, 1984] can accelerate electrons at the plasma sheet and perhaps account for some of the observations. We propose the following: A localized hydromagnetic disturbance propagating through the tail lobe region impinges upon the PSBL deforming it and displacing it in towards the central plasma sheet. The boundary layer can then act like a moving magnetic mirror. If the disturbance is propagating nearly perpendicular to the layer then its velocity projected parallel to the layer (and the magnetic field) can be very large resulting in significant acceleration of reflected particles. copyright American Geophysical Union 1989

  1. Estimates of the height of the boundary layer using SODAR and rawinsoundings in Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, G [Instituto de Aeronautica e Espaco (IAE/CTA), Sao Jose dos Campos, 12228-904 (Brazil); Santos, L A R dos [Instituto Nacional de Meteorologia (INMET), BrasIlia, 70680-900 (Brazil)], E-mail: gfisch@iae.cta.br, E-mail: landre@inmet.gov.br

    2008-05-01

    During the LBA campaign in Amazonia 2002, simultaneous measurements were made of the boundary layer using different instruments (rawinsoundings and SODAR). The profiles of potential temperature and humidity were used to estimates the height of the boundary layer using 3 different techniques. The SODAR's measurements did not capture the shallow morning boundary layer observed at the profiles.

  2. Unsteady magnetohydrodynamic thermal and diffusion boundary layer from a horizontal circular cylinder

    Directory of Open Access Journals (Sweden)

    Boričić Aleksandar Z.

    2016-01-01

    Full Text Available The unsteady 2-D dynamic, thermal, and diffusion magnetohydrodynamic laminar boundary layer flow over a horizontal cylinder of incompressible and electrical conductivity fluid, in mixed convection in the presence of heat source or sink and chemical reactions. The present magnetic field is homogenous and perpendicular to the body surface. It is assumed that induction of outer magnetic field is a function of longitudinal co-ordinate outer electric field is neglected and magnetic Reynolds number is significantly lower than one, i. e. considered the problem is in approximation without induction. Fluid electrical conductivity is constant. Free stream velocity, temperature, and concentration on the body are functions of longitudinal co-ordinate. The developed governing boundary layer equations and associated boundary conditions are made dimensionless using a suitable similarity transformation and similarity parameters. System of non-dimensionless equations is solved using the implicit finite difference three-diagonal and iteration method. Numerical results are obtained and presented for different Prandtl, Eckart, and Schmidt numbers, and values: magnetic parameter, temperature, and diffusion parameters, buoyancy temperature parameters, thermal parameter, and chemical reaction parameter. Variation of velocity profiles, temperature and diffusion distributions, and many integral and differential characteristics, boundary layer, are evaluated numerically for different values of the magnetic field. Transient effects of velocity, temperature and diffusion are analyzed. A part of obtained results is given in the form of figures and corresponding conclusions.

  3. Dissociation–recombination models in hypersonic boundary layer O2/O flows

    International Nuclear Information System (INIS)

    Armenise, I.; Esposito, F.

    2012-01-01

    Graphical abstract: In hypersonic boundary layers, in which the temperature strongly decreases from the edge to the body surface, the coupling of transport phenomena and chemical kinetics causes a strong vibrational non-equilibrium, as demonstrated by the vibrational distributions and the pseudo-first-order dissociation constants. In this work a pure O2/O mixture has been investigated to evaluate the role of new multiquanta atom-molecule collision rate coefficients, calculated by means of a quasiclassical trajectory (QCT) method. Highlights: ► We evaluate the vibrational non-equilibrium in oxygen hypersonic boundary layer flows. ► We adopt a state-to-state vibrational kinetics model. ► We use updated quasicassical trajectory atom–molecule collision rate coefficients. ► Multiquanta transitions and direct dissociation–recombination are important. ► We calculate the heat flux through the boundary layer. - Abstract: A recent complete set of oxygen atom–molecule collision rate coefficients, calculated by means of a quasiclassical trajectory (QCT) method, has been used to evaluate the vibrational non-equilibrium in hypersonic boundary layer flows. The importance of multiquanta transitions has been demonstrated. Moreover a new ‘direct dissociation–recombination’ (DDR) model has been adopted and the corresponding results differ from the ones obtained with the ladder-climbing (LC) model, characterized by the extrapolation of bound-to-bound transitions to the continuum. The heat flux through the boundary layer and at the surface has been calculated too.

  4. A helical magnetic limiter for boundary layer control in large tokamaks

    International Nuclear Information System (INIS)

    Feneberg, W.; Wolf, G.H.

    1981-01-01

    In a tokamak configuration, superposition of the magnetic field of resonant helical windings which surround the toroidal plasma current outside the first wall destroys the magnetic surfaces in the boundary layer (ergodization). A transport model is analysed, where convective flow of the plasma from the boundary layer to the first wall permits elevated particle densities in the boundary layer and leads to very high particle and energy transport. The convective flow is driven by the pressure gradient along the field lines which intersect the toroidal wall at an oblique small angle epsilon. The required thickness Δ of the boundary layer is around 10 15 n -1 .cm -2 . As a result, the plasma temperature there can be reduced towards the threshold of critical plasma-wall-interaction processes, the plasma core can be shielded against impurities from the wall and, at the same time, a very short life-time of all particles in the boundary layer can be achieved (use of pumpholes and/or scrape-off-limiters for removing ash). Thus, this model also improves the concepts of edge radiation cooling. An estimate is given of the parameters of INTOR using only a weak helical perturbation field which conserves the magnetic surfaces in the plasma core: one can reach wall temperatures Tsub(w) between 20 and 30 eV in the presence of wall densities nsub(w) approaching 10 14 cm -3 . (author)

  5. Delay in convection in nocturnal boundary layer due to aerosol-induced cooling

    Science.gov (United States)

    Singh, Dhiraj Kumar; Ponnulakshmi, V. K.; Subramanian, G.; Sreenivas, K. R.

    2012-11-01

    Heat transfer processes in the nocturnal boundary layer (NBL) influence the surface energy budget, and play an important role in many micro-meteorological processes including the formation of inversion layers, radiation fog, and in the control of air-quality near the ground. Under calm clear-sky conditions, radiation dominates over other transport processes, and as a result, the air layers just above ground cool the fastest after sunset. This leads to an anomalous post-sunset temperature profile characterized by a minimum a few decimeters above ground (Lifted temperature minimum). We have designed a laboratory experimental setup to simulate LTM, involving an enclosed layer of ambient air, and wherein the boundary condition for radiation is decoupled from those for conduction and convection. The results from experiments involving both ambient and filtered air indicate that the high cooling rates observed are due to the presence of aerosols. Calculated Rayleigh number of LTM-type profiles is of the order 105-107 in the field and of order 103-105 in the laboratory. In the LTM region, there is convective motion when the Rayleigh number is greater than 104 rather than the critical Rayleigh number (Rac = 1709). The diameter of convection rolls is a function of height of minimum of LTM-type profiles. The results obtained should help in the parameterization of transport process in the nocturnal boundary layer, and highlight the need to accounting the effects of aerosols and ground emissivity in climate models.

  6. Skin friction drag reduction on a flat plate turbulent boundary layer using synthetic jets

    Science.gov (United States)

    Belanger, Randy; Boom, Pieter D.; Hanson, Ronald E.; Lavoie, Philippe; Zingg, David W.

    2017-11-01

    In these studies, we investigate the effect of mild synthetic jet actuation on a flat plate turbulent boundary layer with the goal of interacting with the large scales in the log region of the boundary layer and manipulating the overall skin friction. Results will be presented from both large eddy simulations (LES) and wind tunnel experiments. In the experiments, a large parameter space of synthetic jet frequency and amplitude was studied with hot film sensors at select locations behind a pair of synthetic jets to identify the parameters that produce the greatest changes in the skin friction. The LES simulations were performed for a selected set of parameters and provide a more complete evaluation of the interaction between the boundary layer and synthetic jets. Five boundary layer thicknesses downstream, the skin friction between the actuators is generally found to increase, while regions of reduced skin friction persist downstream of the actuators. This pattern is reversed for forcing at low frequency. Overall, the spanwise-averaged skin friction is increased by the forcing, except when forcing at high frequency and low amplitude, for which a net skin friction reduction persists downstream. The physical interpretation of these results will be discussed. The financial support of Airbus is gratefully acknowledged.

  7. Transition due to streamwise streaks in a supersonic flat plate boundary layer

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-12-01

    Transition induced by stationary streaks undergoing transient growth in a supersonic flat plate boundary layer flow is studied using numerical computations. While the possibility of strong transient growth of small-amplitude stationary perturbations in supersonic boundary layer flows has been demonstrated in previous works, its relation to laminar-turbulent transition cannot be established within the framework of linear disturbances. Therefore, this paper investigates the nonlinear evolution of initially linear optimal disturbances that evolve into finite amplitude streaks in the downstream region, and then studies the modal instability of those streaks as a likely cause for the onset of bypass transition. The nonmodal evolution of linearly optimal stationary perturbations in a supersonic, Mach 3 flat plate boundary layer is computed via the nonlinear plane-marching parabolized stability equations (PSE) for stationary perturbations, or equivalently, the perturbation form of parabolized Navier-Stokes equations. To assess the effect of the nonlinear finite-amplitude streaks on transition, the linear form of plane-marching PSE is used to investigate the instability of the boundary layer flow modified by the spanwise periodic streaks. The onset of transition is estimated using an N -factor criterion based on modal amplification of the secondary instabilities of the streaks. In the absence of transient growth disturbances, first mode instabilities in a Mach 3, zero pressure gradient boundary layer reach N =10 at Rex≈107 . However, secondary instability modes of the stationary streaks undergoing transient growth are able to achieve the same N -factor at Rex<2 ×106 when the initial streak amplitude is sufficiently large. In contrast to the streak instabilities in incompressible flows, subharmonic instability modes with twice the fundamental spanwise wavelength of the streaks are found to have higher amplification ratios than the streak instabilities at fundamental

  8. Vertical transport of water in the Martian boundary layer

    Science.gov (United States)

    Zent, Aaron P.; Haberle, R. M.; Houben, Howard C.

    1993-01-01

    We are continuing our examination of the transport of H2O through the martian boundary layer, and we have written a one-dimensional numerical model of the exchange of H2O between the atmosphere and subsurface of Mars through the planetary boundary layer (PBL). Our goal is to explore the mechanisms of H2O exchange, and to elucidate the role played by the regolith in the local H2O budget. The atmospheric model includes effects of Coriolis, pressure gradient, and frictional forces for momentum, as well as radiation, sensible heat flux, and advection for heat. The model differs from Flasar and Goody by use of appropriate Viking-based physical constants and inclusion of the radiative effects of atmospheric dust. We specify the pressure gradient force or compute it from a simple slope model. The subsurface model accounts for conduction of heat and diffusion of H2O through a porous adsorbing medium in response to diurnal forcing. The model is initialized with depth-independent H2O concentrations (2 kg M(exp -3)) in the regolith, and a dry atmosphere. The model terminates when the atmospheric H2O column abundance stabilizes at 0.1 percent per sol.

  9. Towards grid-converged wall-modeled LES of atmospheric boundary layer flows

    Science.gov (United States)

    Yellapantula, Shashank; Vijayakumar, Ganesh; Henry de Frahan, Marc; Churchfield, Matthew; Sprague, Michael

    2017-11-01

    Accurate characterization of incoming atmospheric boundary layer (ABL) turbulence is a critical factor in improving accuracy and predictive nature of simulation of wind farm flows. Modern commercial wind turbines operate in the log layer of the ABL that are typically simulated using wall-modeled large-eddy simulation (WMLES). One of the long-standing issues associated with wall modeling for LES and hybrid RANS-LES for atmospheric boundary layers is the over-prediction of the mean-velocity gradient, commonly referred to as log-layer mismatch. Kawai and Larsson in 2012, identified under-resolution of the near-wall region and the incorrect information received by the wall model as potential causes for the log-layer mismatch in WMLES of smooth-wall boundary-layer flows. To solve the log layer mismatch issue, they proposed linking the wall model to the LES solution at a physical of height of ym, instead of the first grid point. In this study, we extend their wall modeling approach to LES of the rough-wall ABL to investigate issues of log-layer mismatch and grid convergence. This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  10. The Effects of Land Surface Heating And Roughness Elements on the Structure and Scaling Laws of Atmospheric Boundary Layer Turbulence

    Science.gov (United States)

    Ghannam, Khaled

    The atmospheric boundary-layer is the lowest 500-2000 m of the Earth's atmosphere where much of human life and ecosystem services reside. This layer responds to land surface (e.g. buoyancy and roughness elements) and slowly evolving free tropospheric (e.g. temperature and humidity lapse rates) conditions that arguably mediate and modulate biosphere-atmosphere interactions. Such response often results in spatially- and temporally-rich turbulence scales that continue to be the subject of inquiry given their significance to a plethora of applications in environmental sciences and engineering. The work here addresses key aspects of boundary layer turbulence with a focus on the role of roughness elements (vegetation canopies) and buoyancy (surface heating) in modifying the well-studied picture of shear-dominated wall-bounded turbulence. A combination of laboratory channel experiments, field experiments, and numerical simulations are used to explore three distinct aspects of boundary layer turbulence. These are: • The concept of ergodicity in turbulence statistics within canopies: It has been long-recognized that homogeneous and stationary turbulence is ergodic, but less is known about the effects of inhomogeneity introduced by the presence of canopies on the turbulence statistics. A high resolution (temporal and spatial) flume experiment is used here to test the convergence of the time statistics of turbulent scalar concentrations to their ensemble (spatio-temporal) counterpart. The findings indicate that within-canopy scalar statistics have a tendency to be ergodic, mostly in shallow layers (close to canopy top) where the sweeping flow events appear to randomize the statistics. Deeper layers within the canopy are dominated by low-dimensional (quasi-deterministic) von Karman vortices that tend to break ergodicity. • Scaling laws of turbulent velocity spectra and structure functions in near-surface atmospheric turbulence: the existence of a logarithmic scaling in the

  11. Robust controller with adaptation within the boundary layer: application to nuclear underwater inspection robot

    International Nuclear Information System (INIS)

    Park, Gee Yong; Yoon, Ji Sup; Hong, Dong Hee; Jeong, Jae Hoo

    2002-01-01

    In this paper, the robust control scheme with the improved control performance within the boundary layer is proposed. In the control scheme, the robust controller based on the traditional variable structure control method is modified to have the adaptation within the boundary layer. From this controller, the width of the boundary layer where the robust control input is smoothened out can be given by an appropriate value. But the improve control performance within the boundary layer can be achieved without the so-called control chattering because the role of adaptive control is to compensate for the uncovered portions of the robust control occurred from the continuous approximation within the boundary layer. Simulation tests for circular navigation of an underwater wall-ranging robot developed for inspection of wall surfaces in the research reactor, TRIGA MARK III, confirm the performance improvement

  12. The acoustic field of a point source in a uniform boundary layer over an impedance plane

    Science.gov (United States)

    Zorumski, W. E.; Willshire, W. L., Jr.

    1986-01-01

    The acoustic field of a point source in a boundary layer above an impedance plane is investigated anatytically using Obukhov quasi-potential functions, extending the normal-mode theory of Chunchuzov (1984) to account for the effects of finite ground-plane impedance and source height. The solution is found to be asymptotic to the surface-wave term studies by Wenzel (1974) in the limit of vanishing wind speed, suggesting that normal-mode theory can be used to model the effects of an atmospheric boundary layer on infrasonic sound radiation. Model predictions are derived for noise-generation data obtained by Willshire (1985) at the Medicine Bow wind-turbine facility. Long-range downwind propagation is found to behave as a cylindrical wave, with attention proportional to the wind speed, the boundary-layer displacement thickness, the real part of the ground admittance, and the square of the frequency.

  13. Compressible stability of growing boundary layers using parabolized stability equations

    Science.gov (United States)

    Chang, Chau-Lyan; Malik, Mujeeb R.; Erlebacher, Gordon; Hussaini, M. Y.

    1991-01-01

    The parabolized stability equation (PSE) approach is employed to study linear and nonlinear compressible stability with an eye to providing a capability for boundary-layer transition prediction in both 'quiet' and 'disturbed' environments. The governing compressible stability equations are solved by a rational parabolizing approximation in the streamwise direction. Nonparallel flow effects are studied for both the first- and second-mode disturbances. For oblique waves of the first-mode type, the departure from the parallel results is more pronounced as compared to that for the two-dimensional waves. Results for the Mach 4.5 case show that flow nonparallelism has more influence on the first mode than on the second. The disturbance growth rate is shown to be a strong function of the wall-normal distance due to either flow nonparallelism or nonlinear interactions. The subharmonic and fundamental types of breakdown are found to be similar to the ones in incompressible boundary layers.

  14. Direct simulation of flat-plate boundary layer with mild free-stream turbulence

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz

    2014-11-01

    Spatially evolving direct numerical simulation of the flat-plate boundary layer has been performed. The momentum thickness Reynolds number develops from 80 to 3000 with a free-stream turbulence intensity decaying from 3 percent to 0.8 percent. Predicted skin-friction is in agreement with the Blasius solution prior to breakdown, follows the well-known T3A bypass transition data during transition, and agrees with the Erm and Joubert Melbourne wind-tunnel data after the completion of transition. We introduce the concept of bypass transition in the narrow sense. Streaks, although present, do not appear to be dynamically important during the present bypass transition as they occur downstream of infant turbulent spots. For the turbulent boundary layer, viscous scaling collapses the rate of dissipation profiles in the logarithmic region at different Reynolds numbers. The ratio of Taylor microscale and the Kolmogorov length scale is nearly constant over a large portion of the outer layer. The ratio of large-eddy characteristic length and the boundary layer thickness scales very well with Reynolds number. The turbulent boundary layer is also statistically analyzed using frequency spectra, conditional-sampling, and two-point correlations. Near momentum thickness Reynolds number of 2900, three layers of coherent vortices are observed: the upper and lower layers are distinct hairpin forests of large and small sizes respectively; the middle layer consists of mostly fragmented hairpin elements.

  15. Diffusive boundary layers and photosynthesis of the epilithic algal community of coral reefs

    DEFF Research Database (Denmark)

    Larkum, Anthony W.D.; Koch, Eva-Maria W.; Kühl, Michael

    2003-01-01

    The effects of mass transfer resistance due to the presence of a diffusive boundary layer on the photosynthesis of the epilithic algal community (EAC) of a coral reef were studied. Photosynthesis and respiration of the EAC of dead coral surfaces were investigated for samples from two locations......: the Gulf of Aqaba, Eilat (Israel), and One Tree Reef on the Great Barrier Reef (Australia). Microsensors were used to measure O2 and pH at the EAC surface and above. Oxygen profiles in the light and dark indicated a diffusive boundary layer (DBL) thickness of 180–590 µm under moderate flow (~0.08 m s-1...

  16. On the Lagrangian description of unsteady boundary-layer separation. I - General theory

    Science.gov (United States)

    Van Dommelen, Leon L.; Cowley, Stephen J.

    1990-01-01

    Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.

  17. UAV-borne coherent doppler lidar for marine atmospheric boundary layer observations

    Science.gov (United States)

    Wu, Songhua; Wang, Qichao; Liu, Bingyi; Liu, Jintao; Zhang, Kailin; Song, Xiaoquan

    2018-04-01

    A compact UAV-borne Coherent Doppler Lidar (UCDL) has been developed at the Ocean University of China for the observation of wind profile and boundary layer structure in Marine Atmospheric Boundary Layer (MABL). The design, specifications and motion-correction methodology of the UCDL are presented. Preliminary results of the first flight campaign in Hailing Island in December 2016 is discussed.

  18. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  19. On the role of acoustic feedback in boundary-layer instability.

    Science.gov (United States)

    Wu, Xuesong

    2014-07-28

    In this paper, the classical triple-deck formalism is employed to investigate two instability problems in which an acoustic feedback loop plays an essential role. The first concerns a subsonic boundary layer over a flat plate on which two well-separated roughness elements are present. A spatially amplifying Tollmien-Schlichting (T-S) wave between the roughness elements is scattered by the downstream roughness to emit a sound wave that propagates upstream and impinges on the upstream roughness to regenerate the T-S wave, thereby forming a closed feedback loop in the streamwise direction. Numerical calculations suggest that, at high Reynolds numbers and for moderate roughness heights, the long-range acoustic coupling may lead to absolute instability, which is characterized by self-sustained oscillations at discrete frequencies. The dominant peak frequency may jump from one value to another as the Reynolds number, or the distance between the roughness elements, is varied gradually. The second problem concerns the supersonic 'twin boundary layers' that develop along two well-separated parallel flat plates. The two boundary layers are in mutual interaction through the impinging and reflected acoustic waves. It is found that the interaction leads to a new instability that is absent in the unconfined boundary layer. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Experimental Investigation of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions

    Science.gov (United States)

    Hultgren, Lennart S.; Volino, Ralph J.

    2002-01-01

    -stream turbulence level do not have a significant effect on the location of boundary-layer separation unless they are high enough to induce transition upstream of separation. The location and extent of the transition zone, in contrast, depend strongly on Re and TI. The beginning of reattachment closely follows the onset of transition. Under low free-stream turbulence conditions the boundary layer is laminar at separation and then begins to exhibit fluctuations in a finite frequency band in the shear layer over the separation bubble. These fluctuations are due to instability waves. The fluctuations grow in magnitude, higher harmonics are generated, and finally lead to a breakdown to turbulence. Transition begins in the shear layer, but quickly spreads to the near wall region and causes the boundary layer to reattach. The transition is rapid and the resulting turbulence contains a full range of high and low frequencies. Under high free-stream turbulence conditions, slowly growing low-frequency fluctuations are induced in the pretransitional boundary layer by the free-stream. The separation bubbles are considerably thinner than in the low TI cases, resulting in thinner boundary layers at the end of the test wall. At Re=50,000 and 100,000, the pre-transitional boundary layer separates at about the same location as in the low TI cases. Transition occurs through a bypass mode, begins upstream of the corresponding low-TI location, and proceeds in a manner similar to that of an attached boundary layer. Under high TI at Re=200,000 and 300,000, transition begins before separation. The boundary layer may separate, but if it does the separation bubble is very short and does not significantly affect the downstream development of the boundary layer. A comparison is made to previous work in a simulated cascade.

  1. Experimental study of boundary-layer transition on an airfoil induced by periodically passing wake

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, W.P. [Center for Turbulence and Flow Control Research Institute of Advanced Machinery and Design, Seoul National University (Korea); Park, T.C.; Kang, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University (Korea)

    2002-02-01

    Hot-wire measurements are performed in boundary-layer flows developing on a NACA 0012 airfoil over which wakes pass periodically. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The time- and phase-averaged mean streamwise velocities and turbulence fluctuations are measured to investigate the phenomena of wake-induced transition. Especially, the phase-averaged wall shear stresses are evaluated using a computational Preston tube method. The passing wakes significantly change the pressure distribution on the airfoil, which has influence on the transition process of the boundary layer. The orientation of the passing wake alters the pressure distribution in a different manner. Due to the passing wake, the turbulent patches are generated inside the laminar boundary layer on the airfoil, and the boundary layer becomes temporarily transitional. The patches propagate downstream at a speed smaller than the free-stream velocity and merge together further downstream. Relatively high values of phase-averaged turbulence fluctuations in the outer part of the boundary layer indicate the possibility that breakdown occurs in the outer layer away from the wall. It is confirmed that the phase-averaged mean velocity profile has two dips in the outer region of the transitional boundary layer for each passing cycle. (orig.)

  2. Advances and challenges in periodic forcing of the turbulent boundary layer on a body of revolution

    Science.gov (United States)

    Kornilov, V. I.; Boiko, A. V.

    2018-04-01

    The effectiveness of local forcing by periodic blowing/suction through a thin transverse slot to alter the properties of an incompressible turbulent boundary layer is considered. In the first part of the review the effectiveness of the forcing through a single slot is discussed. Analysis of approaches for experimental modeling of the forcing, including those on flat plate, is given. Some ambiguities in simulating such flows are reviewed. The main factors affecting the structure of the forced flow are analyzed. In the second part the effectiveness of the forcing on a body of revolution by periodic blowing/suction through a series of transverse annular slots is discussed. The focus is the structure, properties, and main regularities of the forced flows in a wide range of variable conditions and basic parameters such as the Reynolds number, the dimensionless amplitude of the forced signal, and the frequency of the forced signal. The effect of the forcing on skin-friction in the turbulent boundary layer is clearly revealed. A phase synchronism of blowing/suction using an independent control of the forcing through the slots provides an additional skin friction reduction at distances up to 5-6 boundary layer displacement thicknesses upstream of an annular slot. The local skin friction reduction under the effect of periodic blowing/suction is stipulated by a dominating influence of an unsteady coherent vortex formed in the boundary layer, the vortex propagating downstream promoting a shift of low-velocity fluid further from the wall, a formation of a retarded region at the wall, and hence, a thickening of the viscous sublayer.

  3. Body surface adaptations to boundary-layer dynamics

    NARCIS (Netherlands)

    Videler, J.J.

    1995-01-01

    Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins,

  4. Impurity production and transport in the boundary layer of tokamaks

    International Nuclear Information System (INIS)

    McCracken, G.M.

    1987-01-01

    The processes by which impurities are produced and enter the discharge are discussed. Emphasis is placed on sputtering at the limiter and an analytical global model is described which incorporates the self-stabilizing effects whch control the edge temperature. Predictions of the scaling of edge temperature and of total radiated power are compared with experimental data from JET and other tokamaks operating with limiters. Under many conditions the scaling of the edge conditions and of the radiated power is accurately predicted. Impurity transport in the boundary and the question of how to control the boundary layer is then discussed. The example of the Impurity Control Limiter on DITE is described. (author)

  5. Effect of Surface Roughness on Polymer Drag Reduction with a High-Reynolds-Number Turbulent Boundary Layer

    Science.gov (United States)

    Elbing, Brian; Dowling, David; Solomon, Michael; Bian, Sherry; Ceccio, Steven

    2007-11-01

    A recent experiment at the U.S. Navy's Large Cavitation Channel (LCC) investigated the effect of wall roughness on wall-injection polymer drag reduction (PDR) within a high-Reynolds-number (10^7 to 2x10^8 based on downstream distance) turbulent boundary layer (TBL). Testing was performed in two parts: 1) PDR experiment on a 12.9 m long, 3.05 m wide hydro-dynamically smooth flat plate and 2) PDR experiment on the same model with the entire surface roughened. The roughness was produced by blowing glass beads into epoxy paint that was applied to the entire model. The roughened model had an average roughness height ranging between 307 and 1154 μm. Drag reduction was determined using six, stream-wise located integrated skin-friction balances. In addition to skin-friction measurements, sampling was performed at three stream-wise located ports. The sampling ports were used to determine the amount of degradation, if any, caused by the turbulent flow on the polymer. Both the skin-friction measurements and sampling analysis indicates that wall roughness in a turbulent boundary layer significantly increases degradation of the polymer solution.

  6. Analysis of Boundary Layer Meteorological Data Collected at the White Sands Missile Range

    National Research Council Canada - National Science Library

    O'Brien, Sean; Tofsted, David; Yarbrough, Jimmy; Elliott, D. S; Quintis, David

    2007-01-01

    ... Sands Missile Range (WSMR). Our primary motivation for collecting these measurements is to refine the accuracy of outer and inner scale effects models for optical, thermal, and absolute humidity turbulence for the desert boundary layer...

  7. Entropy Generation in Steady Laminar Boundary Layers with Pressure Gradients

    Directory of Open Access Journals (Sweden)

    Donald M. McEligot

    2014-07-01

    Full Text Available In an earlier paper in Entropy [1] we hypothesized that the entropy generation rate is the driving force for boundary layer transition from laminar to turbulent flow. Subsequently, with our colleagues we have examined the prediction of entropy generation during such transitions [2,3]. We found that reasonable predictions for engineering purposes could be obtained for flows with negligible streamwise pressure gradients by adapting the linear combination model of Emmons [4]. A question then arises—will the Emmons approach be useful for boundary layer transition with significant streamwise pressure gradients as by Nolan and Zaki [5]. In our implementation the intermittency is calculated by comparison to skin friction correlations for laminar and turbulent boundary layers and is then applied with comparable correlations for the energy dissipation coefficient (i.e., non-dimensional integral entropy generation rate. In the case of negligible pressure gradients the Blasius theory provides the necessary laminar correlations.

  8. Thermocouple Rakes for Measuring Boundary Layer Flows Extremely Close to Surface

    Science.gov (United States)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.

    2001-01-01

    Of vital interest to aerodynamic researchers is precise knowledge of the flow velocity profile next to the surface. This information is needed for turbulence model development and the calculation of viscous shear force. Though many instruments can determine the flow velocity profile near the surface, none of them can make measurements closer than approximately 0.01 in. from the surface. The thermocouple boundary-layer rake can measure much closer to the surface than conventional instruments can, such as a total pressure boundary layer rake, hot wire, or hot film. By embedding the sensors (thermocouples) in the region where the velocity is equivalent to the velocity ahead of a constant thickness strut, the boundary-layer flow profile can be obtained. The present device fabricated at the NASA Glenn Research Center microsystem clean room has a heater made of platinum and thermocouples made of platinum and gold. Equal numbers of thermocouples are placed both upstream and downstream of the heater, so that the voltage generated by each pair at the same distance from the surface is indicative of the difference in temperature between the upstream and downstream thermocouple locations. This voltage differential is a function of the flow velocity, and like the conventional total pressure rake, it can provide the velocity profile. In order to measure flow extremely close to the surface, the strut is made of fused quartz with extremely low heat conductivity. A large size thermocouple boundary layer rake is shown in the following photo. The latest medium size sensors already provide smooth velocity profiles well into the boundary layer, as close as 0.0025 in. from the surface. This is about 4 times closer to the surface than the previously used total pressure rakes. This device also has the advantage of providing the flow profile of separated flow and also it is possible to measure simultaneous turbulence levels within the boundary layer.

  9. Numerical investigation of hypersonic flat-plate boundary layer transition mechanism induced by different roughness shapes

    Science.gov (United States)

    Zhou, Yunlong; Zhao, Yunfei; Xu, Dan; Chai, Zhenxia; Liu, Wei

    2016-10-01

    The roughness-induced laminar-turbulent boundary layer transition is significant for high-speed aerospace applications. The transition mechanism is closely related to the roughness shape. In this paper, high-order numerical method is used to investigate the effect of roughness shape on the flat-plate laminar-to-turbulent boundary layer transition. Computations are performed in both the supersonic and hypersonic regimes (free-stream Mach number from 3.37 up to 6.63) for the square, cylinder, diamond and hemisphere roughness elements. It is observed that the square and diamond roughness elements are more effective in inducing transition compared with the cylinder and hemisphere ones. The square roughness element has the longest separated region in which strong unsteadiness exists and the absolute instability is formed, thus resulting in the earliest transition. The diamond roughness element has a maximum width of the separated region leading to the widest turbulent wake region far downstream. Furthermore, transition location moves backward as the Mach number increases, which indicates that the compressibility significantly suppresses the roughness-induced boundary layer transition.

  10. Effect of plate permeability on nonlinear stability of the asymptotic suction boundary layer.

    Science.gov (United States)

    Wedin, Håkan; Cherubini, Stefania; Bottaro, Alessandro

    2015-07-01

    The nonlinear stability of the asymptotic suction boundary layer is studied numerically, searching for finite-amplitude solutions that bifurcate from the laminar flow state. By changing the boundary conditions for disturbances at the plate from the classical no-slip condition to more physically sound ones, the stability characteristics of the flow may change radically, both for the linearized as well as the nonlinear problem. The wall boundary condition takes into account the permeability K̂ of the plate; for very low permeability, it is acceptable to impose the classical boundary condition (K̂=0). This leads to a Reynolds number of approximately Re(c)=54400 for the onset of linearly unstable waves, and close to Re(g)=3200 for the emergence of nonlinear solutions [F. A. Milinazzo and P. G. Saffman, J. Fluid Mech. 160, 281 (1985); J. H. M. Fransson, Ph.D. thesis, Royal Institute of Technology, KTH, Sweden, 2003]. However, for larger values of the plate's permeability, the lower limit for the existence of linear and nonlinear solutions shifts to significantly lower Reynolds numbers. For the largest permeability studied here, the limit values of the Reynolds numbers reduce down to Re(c)=796 and Re(g)=294. For all cases studied, the solutions bifurcate subcritically toward lower Re, and this leads to the conjecture that they may be involved in the very first stages of a transition scenario similar to the classical route of the Blasius boundary layer initiated by Tollmien-Schlichting (TS) waves. The stability of these nonlinear solutions is also investigated, showing a low-frequency main unstable mode whose growth rate decreases with increasing permeability and with the Reynolds number, following a power law Re(-ρ), where the value of ρ depends on the permeability coefficient K̂. The nonlinear dynamics of the flow in the vicinity of the computed finite-amplitude solutions is finally investigated by direct numerical simulations, providing a viable scenario for

  11. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis.

    Science.gov (United States)

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  12. Effects of Sweep Angle on the Boundary-Layer Stability Characteristics of an Untapered Wing at Low Speeds

    Science.gov (United States)

    Boltz, Frederick W.; Kenyon, George C.; Allen, Clyde Q.

    1960-01-01

    An investigation was conducted in the Ames 12-Foot Low-Turbulence Pressure Tunnel to determine the effects of sweep on the boundary-layer stability characteristics of an untapered variable-sweep wing having an NACA 64(2)A015 section normal to the leading edge. Pressure distribution and transition were measured on the wing at low speeds at sweep angles of 0, 10, 20, 30, 40, and 50 deg. and at angles of attack from -3 to 3 deg. The investigation also included flow-visualization studies on the surface at sweep angles from 0 to 50 deg. and total pressure surveys in the boundary layer at a sweep angle of 30 deg. for angles of attack from -12 to 0 deg. It was found that sweep caused premature transition on the wing under certain conditions. This effect resulted from the formation of vortices in the boundary layer when a critical combination of sweep angle, pressure gradient, and stream Reynolds number was attained. A useful parameter in indicating the combined effect of these flow variables on vortex formation and on beginning transition is the crossflow Reynolds number. The critical values of crossflow Reynolds number for vortex formation found in this investigation range from about 135 to 190 and are in good agreement with those reported in previous investigations. The values of crossflow Reynolds number for beginning transitions were found to be between 190 and 260. For each condition (i.e., development of vortices and initiation of transition at a given location) the lower values in the specified ranges were obtained with a light coating of flow-visualization material on the surface. A method is presented for the rapid computation of crossflow Reynolds number on any swept surface for which the pressure distribution is known. From calculations based on this method, it was found that the maximum values of crossflow Reynolds number are attained under conditions of a strong pressure gradient and at a sweep angle of about 50 deg. Due to the primary dependence on pressure

  13. The different influence of the residual layer on the development of the summer convective boundary layer in two deserts in northwest China

    Science.gov (United States)

    Lin, Zhao; Bo, Han; Shihua, Lv; Lijuan, Wen; Xianhong, Meng; Zhaoguo, Li

    2018-02-01

    The development of the atmospheric boundary layer is closely connected with the exchange of momentum, heat, and mass near the Earth's surface, especially for a convective boundary layer (CBL). Besides being modulated by the buoyancy flux near the Earth's surface, some studies point out that a neutrally stratified residual layer is also crucial for the appearance of a deep CBL. To verify the importance of the residual layer, the CBLs over two deserts in northwest China (Badan Jaran and Taklimakan) were investigated. The summer CBL mean depth over the Taklimakan Desert is shallower than that over the Badan Jaran Desert, even when the sensible heat flux of the former is stronger. Meanwhile, the climatological mean residual layer in the Badan Jaran Desert is much deeper and neutrally stratified in summer. Moreover, we found a significant and negative correlation between the lapse rate of the residual layer and the CBL depth over the Badan Jaran Desert. The different lapse rates of the residual layer in the two regions are partly connected with the advection heating from large-scale atmospheric circulation. The advection heating tends to reduce the temperature difference in the 700 to 500-hPa layer over the Badan Jaran Desert, and it increases the stability in the same atmospheric layer over the Taklimakan Desert. The advection due to climatological mean atmospheric circulation is more effective at modulating the lapse rate of the residual layer than from varied circulation. Also, the interannual variation of planetary boundary layer (PBL) height over two deserts was found to covary with the wave train.

  14. Provenance of the K/T boundary layers

    International Nuclear Information System (INIS)

    Hildebrand, A.R.; Boynton, W.V.

    1988-01-01

    An array of chemical, physical and isotopic evidence indicates that an impact into oceanic crust terminated the Cretaceous Period. Approximately 1500 cu km of debris, dispersed by the impact fireball, fell out globally in marine and nonmarine environments producing a 2 to 4 mm thick layer (fireball layer). In North American locales, the fireball layer overlies a 15 to 25 mm thick layer of similar but distinct composition. This 15 to 25 mm layer (ejecta layer) may represent approximately 1000 cu km of lower energy ejecta from a nearby impact site. Isotopic and chemical evidence supports a mantle provenance for the bulk of the layers. The extraordinary REE pattern of the boundary clays was modelled as a mixture of oceanic crust, mantle, and approximately 10 percent continental material. The results are presented. If the siderophiles of the ejecta layer were derived solely from the mantle, a test may be available to see if the siderophile element anomaly of the fireball layer had an extraterrestrial origin. Radiogenic Os-187 is depleted in the mantle relative to an undifferentiated chondritic source. Os-187/Os-186 ratios of 1.049 and 1.108 were calculated for the ejecta and fireball layers, respectively

  15. Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate

    OpenAIRE

    Guo, Yan; Nguyen, Toan T.

    2014-01-01

    This paper concerns the validity of the Prandtl boundary layer theory in the inviscid limit for steady incompressible Navier-Stokes flows. The stationary flows, with small viscosity, are considered on $[0,L]\\times \\mathbb{R}_{+}$, assuming a no-slip boundary condition over a moving plate at $y=0$. We establish the validity of the Prandtl boundary layer expansion and its error estimates.

  16. Experimental demonstration of the Rayleigh acoustic viscous boundary layer theory.

    Science.gov (United States)

    Castrejón-Pita, J R; Castrejón-Pita, A A; Huelsz, G; Tovar, R

    2006-03-01

    Amplitude and phase velocity measurements on the laminar oscillatory viscous boundary layer produced by acoustic waves are presented. The measurements were carried out in acoustic standing waves in air with frequencies of 68.5 and 114.5 Hz using laser Doppler anemometry and particle image velocimetry. The results obtained by these two techniques are in good agreement with the predictions made by the Rayleigh viscous boundary layer theory and confirm the existence of a local maximum of the velocity amplitude and its expected location.

  17. Magnetic trapping of energetic particles on open dayside boundary layer flux tubes

    International Nuclear Information System (INIS)

    Cowley, S.W.H.; Lewis, Z.V.

    1990-01-01

    Both simple as well as detailed empirical magnetic models of the Earth's dayside magnetosphere suggest that field lines near the magnetopause boundary in the noon quadrant (∼ 09:00 to ∼ 15:00 M.L.T.) possess an unusual property due to the compressive effect of the impinging solar wind flow, namely that the equatorial region represents a local maximum in the magnetic field strength, and not a minimum as elsewhere in the magnetosphere. In this region the field lines can therefore support two distinct particle populations, those which bounce across the equator between mirror points on either side, and those which are trapped about the off-equatorial field strength minima and are confined to one side of the equator. When these field lines become magnetically open due to the occurrence of magnetic reconnection at the equatorial magnetopause, the former particles will rapidly escape into the magnetosheath by field-aligned flow, while the latter population may be sustained within the boundary layer over many bounce periods, as the flux tubes contract and move tailward. Consequently, trapped distributions of energetic particles may commonly occur on open field lines in the dayside boundary layer in the noon quadrant, particularly at high latitudes. The existence of such particles is thus not an infallible indicator of the presence of closed magnetic field lines in this region. At earlier and later local times, however, the boundary layer field lines revert to possessing a minimum in the field strength at the equator. (author)

  18. Trajectory of a synthetic jet issuing into a high Reynolds number turbulent boundary layer

    Science.gov (United States)

    Berk, Tim; Baidya, Rio; de Silva, Charitha; Marusic, Ivan; Hutchins, Nicholas; Ganapathisubramani, Bharathram

    2017-11-01

    Synthetic jets are zero-net-mass-flux actuators that can be used in a range of flow control applications. For several pulsed/synthetic jet in cross-flow applications the variation of the jet trajectory in the mean flow with jet and boundary layer parameters is important. This trajectory will provide an indication of the penetration depth of the pulsed/synthetic jet into a boundary layer. Trajectories of a synthetic jet in a turbulent boundary layer are measured for a range of actuation parameters in both low- and high Reynolds numbers (up to Reτ = 13000). The important parameters influencing the trajectory are determined from these measurements. The Reynolds number of the boundary layer is shown to only have a small effect on the trajectory. In fact, the critical parameters are found to be the Strouhal number of the jet based on jet dimensions as well as the velocity ratio of the jet (defined as a ratio between peak jet velocity and the freestream velocity). An expression for the trajectory of the synthetic (or pulsed) jet is derived from the data, which (in the limit) is consistent with known expressions for the trajectory of a steady jet in a cross-flow. T.B. and B.G. are grateful to the support from the ERC (Grant Agreement No. 277472) and the EPSRC (Grant ref. no. EP/L006383/1).

  19. Proceedings of the 17th and 18th NAL Workshops on Investigation and Control of Boundary-Layer Transition

    OpenAIRE

    National Aerospace Laboratory; 航空宇宙技術研究所

    1996-01-01

    The following topics were discussed: vortex shedding, laminar boundary layer measurement, vortex ring, turbulent flow measurement, high Reynolds number turbulence, pulsed flow, boundary layer instability, Ekman boundary layer, sound receptivity, Tollmien-Schlichting wave in supersonic boundary layer, flow field instability, turbulent flow pattern, vorticity distribution in shear flow, turbulence wedge, streamwise vortex mixing, thermal convection, oblique wave generation in boundary layer, in...

  20. Derivation of Zagarola-Smits scaling in zero-pressure-gradient turbulent boundary layers

    Science.gov (United States)

    Wei, Tie; Maciel, Yvan

    2018-01-01

    This Rapid Communication derives the Zagarola-Smits scaling directly from the governing equations for zero-pressure-gradient turbulent boundary layers (ZPG TBLs). It has long been observed that the scaling of the mean streamwise velocity in turbulent boundary layer flows differs in the near surface region and in the outer layer. In the inner region of small-velocity-defect boundary layers, it is generally accepted that the proper velocity scale is the friction velocity, uτ, and the proper length scale is the viscous length scale, ν /uτ . In the outer region, the most generally used length scale is the boundary layer thickness, δ . However, there is no consensus on velocity scales in the outer layer. Zagarola and Smits [ASME Paper No. FEDSM98-4950 (1998)] proposed a velocity scale, U ZS=(δ1/δ ) U∞ , where δ1 is the displacement thickness and U∞ is the freestream velocity. However, there are some concerns about Zagarola-Smits scaling due to the lack of a theoretical base. In this paper, the Zagarola-Smits scaling is derived directly from a combination of integral, similarity, and order-of-magnitude analysis of the mean continuity equation. The analysis also reveals that V∞, the mean wall-normal velocity at the edge of the boundary layer, is a proper scale for the mean wall-normal velocity V . Extending the analysis to the streamwise mean momentum equation, we find that the Reynolds shear stress in ZPG TBLs scales as U∞V∞ in the outer region. This paper also provides a detailed analysis of the mass and mean momentum balance in the outer region of ZPG TBLs.

  1. Investigation of the atmospheric boundary layer dynamics during the ESCOMPTE campaign

    Science.gov (United States)

    Saïd, F.; Brut, A.; Campistron, B.; Cousin, F.

    2007-03-01

    This paper presents some results about the behavior of the atmospheric boundary layer observed during the ESCOMPTE experiment. This campaign, which took place in south-eastern France during summer 2001, was aimed at improving our understanding of pollution episodes in relation to the dynamics of the lower troposphere. Using a large data set, as well as a simulation from the mesoscale non-hydrostatic model Meso-NH, we describe and analyze the atmospheric boundary layer (ABL) development during two specific meteorological conditions of the second Intensive Observation Period (IOP). The first situation (IOP2a, from 22 June to 23 June) corresponds to moderate, dry and cold northerly winds (end of Mistral event), coupled with a sea-breeze in the lower layer, whereas sea-breeze events with weak southerly winds occurred during the second part of the period (IOP2b, from 24 June to 26 June). In this study, we first focus on the validation of the model outputs with a thorough comparison of the Meso-NH simulations with fields measurements on three days of the IOP: 22 June, 23 June and 25 June. We also investigate the structure of the boundary layer on IOP2a when the Mistral is superimposed on a sea breeze. Then, we describe the spatial and diurnal variability of the ABL depths over the ESCOMPTE domain during the whole IOP. This step is essential if one wants to know the depth of the layer where the pollutants can be diluted or accumulated. Eventually, this study intends to describe the ABL variability in relation to local or mesoscale dynamics and/or induced topographic effects, in order to explain pollution transport processes in the low troposphere.

  2. Investigation of the atmospheric boundary layer dynamics during the ESCOMPTE campaign

    Directory of Open Access Journals (Sweden)

    F. Saïd

    2007-03-01

    Full Text Available This paper presents some results about the behavior of the atmospheric boundary layer observed during the ESCOMPTE experiment. This campaign, which took place in south-eastern France during summer 2001, was aimed at improving our understanding of pollution episodes in relation to the dynamics of the lower troposphere. Using a large data set, as well as a simulation from the mesoscale non-hydrostatic model Meso-NH, we describe and analyze the atmospheric boundary layer (ABL development during two specific meteorological conditions of the second Intensive Observation Period (IOP. The first situation (IOP2a, from 22 June to 23 June corresponds to moderate, dry and cold northerly winds (end of Mistral event, coupled with a sea-breeze in the lower layer, whereas sea-breeze events with weak southerly winds occurred during the second part of the period (IOP2b, from 24 June to 26 June.

    In this study, we first focus on the validation of the model outputs with a thorough comparison of the Meso-NH simulations with fields measurements on three days of the IOP: 22 June, 23 June and 25 June. We also investigate the structure of the boundary layer on IOP2a when the Mistral is superimposed on a sea breeze. Then, we describe the spatial and diurnal variability of the ABL depths over the ESCOMPTE domain during the whole IOP. This step is essential if one wants to know the depth of the layer where the pollutants can be diluted or accumulated. Eventually, this study intends to describe the ABL variability in relation to local or mesoscale dynamics and/or induced topographic effects, in order to explain pollution transport processes in the low troposphere.

  3. Investigation of the atmospheric boundary layer dynamics during the ESCOMPTE campaign

    Energy Technology Data Exchange (ETDEWEB)

    Said, F.; Campistron, B. [Centre de Recherches Atmospheriques, UMR CNRS 5560, Campistrous (France); Brut, A. [Centre d' Etudes Spatiales de la BIOsphere UMR 5126, Toulouse (France); Cousin, F. [Lab. d' Aerologie, UMR CNRS 5560, Toulouse (France)

    2007-07-01

    This paper presents some results about the behavior of the atmospheric boundary layer observed during the ESCOMPTE experiment. This campaign, which took place in south-eastern France during summer 2001, was aimed at improving our understanding of pollution episodes in relation to the dynamics of the lower troposphere. Using a large data set, as well as a simulation from the mesoscale non-hydrostatic model Meso-NH, we describe and analyze the atmosphere boundary layer (ABL) development during two specific meteorological conditions of the second Intensive Observation Period (IOP). The first situation (IOP2a, from 22 June to 23 June) corresponds to moderate, dry and cold northerly winds (end of Mistral event), coupled with a sea-breeze in the lower layer, whereas sea-breeze events with weak southerly winds occurred during the second part of the period (IOP2b, from 24 June to 26 June). In this study, we first focus on the validation of the model outputs with a thorough comparison of the Meso-NH simulations with fields measurements on three days of the IOP: 22 June, 23 June and 25 June. We also investigate the structure of the boundary layer on IOP2a when the Mistral is superimposed on a sea breeze. Then, we describe the spatial and diurnal variability of the ABL depths over the ESCOMPTE domain during the whole IOP. This step is essential if one wants to know the depth of the layer where the pollutants can be diluted or accumulated. Eventually, this study intends to describe the ABL variability in relation to local or mesoscale dynamics and/or induced topographic effects, in order to explain pollution transport processes in the low troposphere. (orig.)

  4. Investigation of the atmospheric boundary layer dynamics during the ESCOMPTE campaign

    Directory of Open Access Journals (Sweden)

    F. Saïd

    2007-03-01

    Full Text Available This paper presents some results about the behavior of the atmospheric boundary layer observed during the ESCOMPTE experiment. This campaign, which took place in south-eastern France during summer 2001, was aimed at improving our understanding of pollution episodes in relation to the dynamics of the lower troposphere. Using a large data set, as well as a simulation from the mesoscale non-hydrostatic model Meso-NH, we describe and analyze the atmospheric boundary layer (ABL development during two specific meteorological conditions of the second Intensive Observation Period (IOP. The first situation (IOP2a, from 22 June to 23 June corresponds to moderate, dry and cold northerly winds (end of Mistral event, coupled with a sea-breeze in the lower layer, whereas sea-breeze events with weak southerly winds occurred during the second part of the period (IOP2b, from 24 June to 26 June. In this study, we first focus on the validation of the model outputs with a thorough comparison of the Meso-NH simulations with fields measurements on three days of the IOP: 22 June, 23 June and 25 June. We also investigate the structure of the boundary layer on IOP2a when the Mistral is superimposed on a sea breeze. Then, we describe the spatial and diurnal variability of the ABL depths over the ESCOMPTE domain during the whole IOP. This step is essential if one wants to know the depth of the layer where the pollutants can be diluted or accumulated. Eventually, this study intends to describe the ABL variability in relation to local or mesoscale dynamics and/or induced topographic effects, in order to explain pollution transport processes in the low troposphere.

  5. Numerical Investigation of Wall Cooling and Suction Effects on Supersonic Flat-Plate Boundary Layer Transition Using Large Eddy Simulation

    Directory of Open Access Journals (Sweden)

    Suozhu Wang

    2015-02-01

    Full Text Available Reducing friction resistance and aerodynamic heating has important engineering significance to improve the performances of super/hypersonic aircraft, so the purpose of transition control and turbulent drag reduction becomes one of the cutting edges in turbulence research. In order to investigate the influences of wall cooling and suction on the transition process and fully developed turbulence, the large eddy simulation of spatially evolving supersonic boundary layer transition over a flat-plate with freestream Mach number 4.5 at different wall temperature and suction intensity is performed in the present work. It is found that the wall cooling and suction are capable of changing the mean velocity profile within the boundary layer and improving the stability of the flow field, thus delaying the onset of the spatial transition process. The transition control will become more effective as the wall temperature decreases, while there is an optimal wall suction intensity under the given conditions. Moreover, the development of large-scale coherent structures can be suppressed effectively via wall cooling, but wall suction has no influence.

  6. Instability waves and transition in adverse-pressure-gradient boundary layers

    Science.gov (United States)

    Bose, Rikhi; Zaki, Tamer A.; Durbin, Paul A.

    2018-05-01

    Transition to turbulence in incompressible adverse-pressure-gradient (APG) boundary layers is investigated by direct numerical simulations. Purely two-dimensional instability waves develop on the inflectional base velocity profile. When the boundary layer is perturbed by isotropic turbulence from the free stream, streamwise elongated streaks form and may interact with the instability waves. Subsequent mechanisms that trigger transition depend on the intensity of the free-stream disturbances. All evidence from the present simulations suggest that the growth rate of instability waves is sufficiently high to couple with the streaks. Under very low levels of free-stream turbulence (˜0.1 % ), transition onset is highly sensitive to the inlet disturbance spectrum and is accelerated if the spectrum contains frequency-wave-number combinations that are commensurate with the instability waves. Transition onset and completion in this regime is characterized by formation and breakdown of Λ vortices, but they are more sporadic than in natural transition. Beneath free-stream turbulence with higher intensity (1-2 % ), bypass transition mechanisms are dominant, but instability waves are still the most dominant disturbances in wall-normal and spanwise perturbation spectra. Most of the breakdowns were by disturbances with critical layers close to the wall, corresponding to inner modes. On the other hand, the propensity of an outer mode to occur increases with the free-stream turbulence level. Higher intensity free-stream disturbances induce strong streaks that favorably distort the boundary layer and suppress the growth of instability waves. But the upward displacement of high amplitude streaks brings them to the outer edge of the boundary layer and exposes them to ambient turbulence. Consequently, high-amplitude streaks exhibit an outer-mode secondary instability.

  7. Numerical study of magnetohydrodynamics (MHD boundary layer slip flow of a Maxwell nanofluid over an exponentially stretching surface with convective boundary condition

    Directory of Open Access Journals (Sweden)

    P.BalaAnki Reddy

    2017-12-01

    Full Text Available This paper focuses on a theoretical analysis of a steady two-dimensional magnetohydrodynamic boundary layer flow of a Maxwell fluid over an exponentially stretching surface in the presence of velocity slip and convective boundary condition. This model is used for a nanofluid, which incorporates the effects of Brownian motion and thermophoresis. The resulting non-linear partial differential equations of the governing flow field are converted into a system of coupled non-linear ordinary differential equations by using suitable similarity transformations, and the resultant equations are then solved numerically by using Runge-Kutta fourth order method along with shooting technique. A parametric study is conducted to illustrate the behavior of the velocity, temperature and concentration. The influence of significant parameters on velocity, temperature, concentration, skin friction coefficient and Nusselt number has been studied and numerical results are presented graphically and in tabular form. The reported numerical results are compared with previously published works on various special cases and are found to be an in excellent agreement. It is found that momentum boundary layer thickness decreases with the increase of magnetic parameter. It can also be found that the thermal boundary layer thickness increases with Brownian motion and thermophoresis parameters.

  8. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    Science.gov (United States)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  9. Marine boundary layer and turbulent fluxes over the Baltic Sea: Measurements and modelling

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.

    2002-01-01

    Two weeks of measurements of the boundary-layer height over a small island (Christianso) in the Baltic Sea are discussed. The meteorological conditions are characterised by positive heat flux over the sea. The boundary-layer height was simulated with two models, a simple applied high-resolution (2...... km x 2 km) model, and the operational numerical weather prediction model HIRLAM (grid resolution of 22.5 km x 22.5 km). For southwesterly winds it was found that a relatively large island (Bornholm) lying 20-km upwind of the measuring site influences the boundary-layer height. In this situation...... the high-resolution simple applied model reproduces the characteristics of the boundary-layer height over the measuring site. Richardson-number based methods using data from simulations with the HIRLAM model fail, most likely because the island and the water fetch to the measuring site are about the size...

  10. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere.

    Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  11. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  12. Temperature and species measurement in a quenching boundary layer on a flat-flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Fuyuto, Takayuki; Fujikawa, Taketoshi; Akihama, Kazuhiro [Toyota Central Research and Development Labs., Inc., Nagakute, Aichi (Japan); Kronemayer, Helmut [University of Duisburg-Essen, IVG, Institute for Combustion and Gasdynamics, Duisburg (Germany); BASF SE, Ludwigshafen (Germany); Lewerich, Burkhard; Dreier, Thomas; Schulz, Christof [University of Duisburg-Essen, IVG, Institute for Combustion and Gasdynamics, Duisburg (Germany); Bruebach, Jan [Technical University Darmstadt, EKT, Institute for Energy and Powerplant Technology, Darmstadt (Germany)

    2010-10-15

    A detailed understanding of transport phenomena and reactions in near-wall boundary layers of combustion chambers is essential for further reducing pollutant emissions and improving thermal efficiencies of internal combustion engines. In a model experiment, the potential of laser-induced fluorescence (LIF) was investigated for measurements inside the boundary layer connected to flame-wall interaction at atmospheric pressure. Temperature and species distributions were measured in the quenching boundary layer formed close to a cooled metal surface located parallel to the flow of a premixed methane/air flat flame. Multi-line NO-LIF thermometry provided gas-phase temperature distributions. In addition, flame species OH, CH{sub 2}O and CO were monitored by single-photon (OH, CH{sub 2}O) and two-photon (CO) excitation LIF, respectively. The temperature dependence of the OH-LIF signal intensities was corrected for using the measured gas-phase temperature distributions. The spatial line-pair resolution of the imaging system was 22 {mu}m determined by imaging microscopic line pairs printed on a resolution target. The experimental results show the expected flame quenching behavior in the boundary layer and they reveal the potential and limitations of the applied diagnostics techniques. Limitations in spatial resolution are attributed to refraction of fluorescence radiation propagating through steep temperature gradients in the boundary layer. For the present experimental arrangements, the applied diagnostics techniques are applicable as close to the wall as 200 {mu}m with measurement precision then exceeding the 15-25% limit for species detection, with estimates of double this value for the case of H{sub 2}CO due to the unknown effect of the Boltzmann fraction corrections not included in the data evaluation process. Temperature measurements are believed to be accurate within 50 K in the near-wall zone, which amounts to roughly 10% at the lower temperatures encountered in

  13. Boundary layer theory approach to the concentration layer adjacent to the ceiling wall of a hydrogen leakage: Axisymmetric impinging and far regions

    Energy Technology Data Exchange (ETDEWEB)

    El-Amin, M.F.; Kanayama, H. [Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-02-15

    As hydrogen leaks into a partially open space with a ceiling wall, a boundary layer of hydrogen can be constructed under that wall due to the impingement on the wall and the buoyancy force. The resulting boundary layer can be divided into two regions, namely the stagnation-point region and the far region. When the geometry of the source of the hydrogen leak is circular, such as a pinhole or an o-ring, the behavior of leakage flow will be axisymmetric due to the resulting radial jet. In contrast, when the geometry of the source of the hydrogen leak is planar, such as a crack, the behavior of leakage flow will be planar due to the resulting planar jet. Previously, we studied the planar case in the context of both the stagnation-point flow region [El-Amin MF, Kanayama H. Boundary layer theory approach to the concentration layer adjacent to a ceiling wall at impinging region of a hydrogen leakage. Int J Hydrogen Energy 2008; 33(21): 6393-00] and the far region [El-Amin MF, Inoue M, Kanayama H. Boundary layer theory approach to the concentration layer adjacent to a ceiling wall of a hydrogen leakage: far region. Int J Hydrogen Energy 2008; 33(24):7642-7]. This paper is concerned with both the stagnation-point flow region and the far region of the axisymmetric concentration boundary layer adjacent to a ceiling wall. Flow in the stagnation-point region is treated as Hiemenz flow, while it is treated as Blasius flow in the far region. The current results are compared with the planar cases [El-Amin MF, Kanayama H. Boundary layer theory approach to the concentration layer adjacent to a ceiling wall at impinging region of a hydrogen leakage. Int J Hydrogen Energy 2008; 33(21): 6393-00; El-Amin MF, Inoue M, Kanayama H. Boundary layer theory approach to the concentration layer adjacent to a ceiling wall of a hydrogen leakage: far region. Int J Hydrogen Energy 2008; 33(24):7642-7] for both stagnation-point flow and far regions. Both momentum and concentration boundary layer

  14. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K. [Pacific Northwest National Laboratory, Richland, Washington; Newsom, Rob K. [Pacific Northwest National Laboratory, Richland, Washington; Turner, David D. [Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

    2017-09-01

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. The normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.

  15. Examination of uniform momentum zones in hypersonic turbulent boundary layers

    Science.gov (United States)

    Williams, Owen; Helm, Clara; Martin, Pino

    2017-11-01

    The presence of uniform momentum zones (UMZs) separated by regions of high shear is now well-established in incompressible flows, with the mean number of such zones increasing in a log-linear fashion with Reynolds number. While known to be present in supersonic and hypersonic boundary layers, the properties of these UMZs and the appropriate Reynolds number for comparison with incompressible results have not previously been investigated. A large, previously published DNS database of hypersonic boundary layers is used in this investigation, with Mach numbers up to 12 and wall temperatures from cold to adiabatic, resulting in a wide range of outer layer Reynolds numbers. UMZs are examined using a range of parameters in both conventional inner and semi-local scalings, and Reynolds number trends examined.

  16. Modelling of surface fluxes and Urban Boundary Layer over an old mediterannean city core

    Science.gov (United States)

    Lemonsu, A.; Masson, V.; Grimmond, Cs. B.

    2003-04-01

    In the frameworks of the UBL(Urban Boundary Layer)-ESCOMPTE campaign, the Town Energy Balance (TEB) model was run in off-line mode for Marseille. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the campaign. Parameterization improvements allow to better represent the energy exchanges between the air inside the canyon and the atmosphere above the roof level. Then, high resolution Méso-NH simulations are done to study the 3-D structure and the evolution of the Urban Boundary Layer (UBL) over Marseille. Will will give a special attention to the impact of the seabord effects (sea-breeze circulation) on the UBL.

  17. Efficient modelling of aerodynamic flows in the boundary layer for high performance computing

    CSIR Research Space (South Africa)

    Smith, L

    2011-01-01

    Full Text Available A unique technique to couple boundary-layer solutions with an inviscid solver is introduced. The boundary-layer solution is obtained using the two-integral method to solve displacement thickness with Newton’s method, at a fraction of the cost of a...

  18. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    Science.gov (United States)

    Yungster, Shaye

    1991-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  19. Review: the atmospheric boundary layer

    Science.gov (United States)

    Garratt, J. R.

    1994-10-01

    An overview is given of the atmospheric boundary layer (ABL) over both continental and ocean surfaces, mainly from observational and modelling perspectives. Much is known about ABL structure over homogeneous land surfaces, but relatively little so far as the following are concerned, (i) the cloud-topped ABL (over the sea predominantly); (ii) the strongly nonhomogeneous and nonstationary ABL; (iii) the ABL over complex terrain. These three categories present exciting challenges so far as improved understanding of ABL behaviour and improved representation of the ABL in numerical models of the atmosphere are concerned.

  20. On the Lagrangian description of unsteady boundary layer separation. Part 1: General theory

    Science.gov (United States)

    Vandommelen, Leon L.; Cowley, Stephen J.

    1989-01-01

    Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.

  1. Surface influence upon vertical profiles in the nocturnal boundary layer

    Science.gov (United States)

    Garratt, J. R.

    1983-05-01

    Near-surface wind profiles in the nocturnal boundary layer, depth h, above relatively flat, tree-covered terrain are described in the context of the analysis of Garratt (1980) for the unstable atmospheric boundary layer. The observations at two sites imply a surface-based transition layer, of depth z *, within which the observed non-dimensional profiles Φ M 0 are a modified form of the inertial sub-layer relation Φ _M ( {{z L}} = ( {{{1 + 5_Z } L}} ) according to Φ _M^{{0}} ˜eq ( {{{1 + 5z} L}} )exp [ { - 0.7( {{{1 - z} z}_ * } )] , where z is height above the zero-plane displacement and L is the Monin-Obukhov length. At both sites the depth z * is significantly smaller than the appropriate neutral value ( z * N ) found from the previous analysis, as might be expected in the presence of a buoyant sink for turbulent kinetic energy.

  2. Examples of the Re-number effect on the transitional flat plate boundary layers

    Czech Academy of Sciences Publication Activity Database

    Antoš, Pavel; Jonáš, Pavel; Procházka, Pavel P.; Uruba, Václav

    2014-01-01

    Roč. 14, č. 1 (2014), s. 605-606 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /85./. Erlangen, 10.03.2014-14.03.2014] R&D Projects: GA ČR GAP101/12/1271 Institutional support: RVO:61388998 Keywords : transition * flat plate * boundary layer Subject RIV: BK - Fluid Dynamics http://dx.doi.org/10.1002/pamm.201410290

  3. Magnetohydrodynamic boundary layer flow past a porous substrate with Beavers-Joseph boundary condition

    International Nuclear Information System (INIS)

    Jat, R.N.; Chaudhary, Santosh

    2009-01-01

    The flow of an electrically conducting fluid past a porous substrate attached to the flat plate with Beavers-Joseph boundary condition under the influence of a uniform transverse magnetic field has been studied. Taking suitable similar variables, the momentum equation is transformed to ordinary differential equation and solved by standard techniques. The energy equation is solved by considering two boundary layers, one in the porous substrate and the other above the porous substrate. The velocity and temperature distributions along with Nusselt number are discussed numerically and presented through graphs. (author)

  4. Stochastic Theory of Turbulence Mixing by Finite Eddies in the Turbulent Boundary Layer

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    Turbulence mixing is treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic hypothesis. The theory simplifies for mixing by exchange (strong-eddies) and is then applied to the boundary layer (involving scaling). This maps boundary layer turbulence onto

  5. Investigation of the atmospheric boundary layer dynamics during the ESCOMPTE campaign

    OpenAIRE

    F. Saïd; A. Brut; B. Campistron; F. Cousin

    2007-01-01

    International audience; This paper presents some results about the behavior of the atmospheric boundary layer observed during the ESCOMPTE experiment. This campaign, which took place in south-eastern France during summer 2001, was aimed at improving our understanding of pollution episodes in relation to the dynamics of the lower troposphere. Using a large data set, as well as a simulation from the mesoscale non-hydrostatic model Meso-NH, we describe and analyze the atmospheric boundary layer ...

  6. Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Wook; Kim, Tae Ho; Kim, Heuy Dong [Andong Nat’l Univ., Andong (Korea, Republic of)

    2017-07-15

    The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

  7. Convective growth of broadband turbulence in the plasma sheet boundary layer

    International Nuclear Information System (INIS)

    Dusenbery, P.B.

    1987-01-01

    Convective growth of slow and fast beam acoustic waves in the plasma sheet boundary layer (PSBL) is investigated. It has been shown previously that a could ion population must be present in order to excite beam acoustic waves in the PSBL. However, growth rates are significantly enhanced when warm plasma sheet boundary layer ions are present. Net wave growth along a ray path is determined by convective growth. This quantity is calculated for particle distribution models consistent with the PSBL where the intensity of broadband turbulence is observed to peak. Total number density dependence on beam acoustic convective growth is evaluated, and it is found that even for low density conditions of ∼0.01 cm -3 , a measurable level of broadband turbulence is expected. Relative drift effects between cold and warm ion populations are also considered. In particular, it is found that slow mode convective growth can be enhanced when slowly streaming cold ions are present, compared to fast ion streams

  8. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining the isotopic end members of these processes and combining them with in-situ water vapor measurements. These in-situ datasets are still rare and cover a limited geographical expanse, so expanding the available data can improve our ability to define isotopic end members and knowledge about atmospheric humidity dynamics. Using data collected from an intensive field campaign across a semi-arid grassland site in eastern Australia, we combine multiple methods including in-situ stable isotope observations to study humidity dynamics associated with the growth and decay of the atmospheric boundary layer and the stable nocturnal boundary layer. The deuterium-excess (D-excess) in water vapor is traditionally thought to reflect the sea surface temperature and relative humidity at the point of evaporation over the oceans. However, a number of recent studies suggest that land-atmosphere interactions are also important in setting the D-excess of water vapor. These studies have shown a highly robust diurnal cycle for the D-excess over a range of sites that could be exploited to better understand variations in atmospheric humidity associated with boundary layer dynamics. In this study we use surface radon concentrations as a tracer of surface layer dynamics and combine these with the D-excess observations. The radon concentrations showed an overall trend that was inversely proportional to the D-excess, with early morning entrainment of air from the residual layer of the previous day both diluting the radon concentration and increasing the D-excess, followed by accumulation of radon at the surface and a decrease in the D-excess as the stable nocturnal layer developed in the late afternoon and early evening. The stable nocturnal boundary layer

  9. Acoustic Radiation from High-Speed Turbulent Boundary Layers in a Tunnel-Like Environment

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2015-01-01

    Direct numerical simulation of acoustic radiation from a turbulent boundary layer in a cylindrical domain will be conducted under the flow conditions corresponding to those at the nozzle exit of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) operated under noisy-flow conditions with a total pressure p(sub t) of 225 kPa and a total temperature of T(sub t) equal to 430 K. Simulations of acoustic radiation from a turbulent boundary layer over a flat surface are used as a reference configuration to illustrate the effects of the cylindrical enclosure. A detailed analysis of acoustic freestream disturbances in the cylindrical domain will be reported in the final paper along with a discussion pertaining to the significance of the flat-plate acoustic simulations and guidelines concerning the modeling of the effects of an axisymmetric tunnel wall on the noise field.

  10. Atmospheric stability in CFD &NDASH; Representation of the diurnal cycle in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey

    2012-01-01

    For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics (CFD) models that focus primarily on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer (ABL), for exam......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics (CFD) models that focus primarily on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer (ABL......), for example the Coriolis force, buoyancy forces and heat transport, are mostly ignored in state-of-the-art CFD models. In order to decrease the uncertainty of wind resource assessment, especially in complex terrain, the effect of thermal stratification on the ABL should be included in such models. The present...

  11. Boundary layer attenuation in turbulent sodium flows

    International Nuclear Information System (INIS)

    Tenchine, D.

    1994-01-01

    Temperature fluctuations are produced in the sodium coolant of Liquid Metal Reactors when flows at different temperatures are mixing. That occurs in various areas of the reactor plant, in the primary and the secondary circuits. This paper deals with secondary circuit pipings, specifically the Superphenix steam generator outlet. The possibility of thermal striping in this area is studied because of the mixing of a main 'hot' flow surrounded by a smaller 'cold' flow in the vertical pipe located below the steam generator. This work was developed in the frame of a collaboration between CEA, EDF and FRAMATOME. The purpose of our study is to measure temperature fluctuations in the fluid and on the structures, on a sodium reduced scale model of the outlet region of the steam generator. We want to evidence the boundary layer attenuation by comparing wall and fluid measurements. From these experimental data, we shall propose a methodology to predict the boundary layer attenuation and the temperature fluctuations at the surface of the structure, for pipe flow configurations

  12. On the correlation of heat transfer in turbulent boundary layers subjected to free-stream turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M.J.; Hollingsworth, D.K.

    1999-07-01

    The turbulent flow of a fluid bounded by a heated surface is a wonderfully complex yet derisively mundane phenomenon. Despite its commonness in natural and man-made environments, the authors struggle to accurately predict its behavior in many simple situations. A complexity encountered in a number of flows is the presence of free-stream turbulence. A turbulent free-stream typically yields increased surface friction and heat transfer. Turbulent boundary layers with turbulent free-streams are encountered in gas-turbine engines, rocket nozzles, electronic-cooling passages, geophysical flows, and numerous other dynamic systems. Here, turbulent boundary layers were subjected to grid-generated free-stream turbulence to study the effects of length scale and intensity on heat transfer. The research focused on correlating heat transfer without the use of conventional boundary-layer Reynolds numbers. The boundary-layers studied ranged from 400 to 2,700 in momentum-thickness Reynolds number and from 450 to 1,900 in enthalpy-thickness Reynolds number. Free-stream turbulence intensities varied from 0.1 to 8.0%. The turbulent-to-viscous length-scale ratios presented are the smallest found in the heat-transfer literature; the ratios spanned from 100 to 1000. The turbulent-to-thermal ratios (using enthalpy thickness as the thermal scale) are also the smallest reported; the ratios ranged from 3.2 to 12.3. A length-scale dependence was identified in a Stanton number based on a near-wall streamwise velocity fluctuation. A new near-wall Stanton number was introduced; this parameter was regarded as a constant in a two-region boundary-layer model. The new model correlated heat-transfer to within 7%.

  13. A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2013-01-01

    Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.

  14. Inefficient Angular Momentum Transport in Accretion Disk Boundary Layers: Angular Momentum Belt in the Boundary Layer

    Science.gov (United States)

    Belyaev, Mikhail A.; Quataert, Eliot

    2018-04-01

    We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.

  15. Wall-pressure fluctuations beneath a spatially evolving turbulent boundary layer

    Science.gov (United States)

    Mahesh, Krishnan; Kumar, Praveen

    2016-11-01

    Wall-pressure fluctuations beneath a turbulent boundary layer are important in applications dealing with structural deformation and acoustics. Simulations are performed for flat plate and axisymmetric, spatially evolving zero-pressure-gradient turbulent boundary layers at inflow Reynolds number of 1400 and 2200 based on momentum thickness. The simulations generate their own inflow using the recycle-rescale method. The results for mean velocity and second-order statistics show excellent agreement with the data available in literature. The spectral characteristics of wall-pressure fluctuations and their relation to flow structure will be discussed. This work is supported by ONR.

  16. The thermodynamic evolution of the hurricane boundary layer during eyewall replacement cycles

    Science.gov (United States)

    Williams, Gabriel J.

    2017-12-01

    Eyewall replacement cycles (ERCs) are frequently observed during the lifecycle of mature tropical cyclones. Although the kinematic structure and intensity changes during an ERC have been well-documented, comparatively little research has been done to examine the evolution of the tropical cyclone boundary layer (TCBL) during an ERC. This study will examine how the inner core thermal structure of the TCBL is affected by the presence of multiple concentric eyewalls using a high-resolution moist, hydrostatic, multilayer diagnostic boundary layer model. Within the concentric eyewalls above the cloud base, latent heat release and vertical advection (due to the eyewall updrafts) dominate the heat and moisture budgets, whereas vertical advection (due to subsidence) and vertical diffusion dominate the heat and moisture budgets for the moat region. Furthermore, it is shown that the development of a moat region within the TCBL depends sensitively on the moat width in the overlying atmosphere and the relative strength of the gradient wind field in the overlying atmosphere. These results further indicate that the TCBL contributes to outer eyewall formation through a positive feedback process between the vorticity in the nascent outer eyewall, boundary layer convergence, and boundary layer moist convection.

  17. Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers

    Science.gov (United States)

    Balakumar, P.; King, Rudolph A.; Chou, Amanda; Owens, Lewis R.; Kegerise, Michael A.

    2016-01-01

    Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the Navier-Stokes equations for Mach 3.5 flow over a sharp flat plate and a 7-deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results for the flat plate show that instability modes are generated at all the incident angles ranging from zero to highly oblique. However, the receptivity coefficient decreases by about 20 times when the incident angle increases from zero to a highly oblique angle of 68 degrees. The results for the cone show that no instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wavenumber and they are about 1.5 times for large azimuthal wavenumbers.

  18. Large-eddy simulation of passive shock-wave/boundary-layer interaction control

    International Nuclear Information System (INIS)

    Pasquariello, Vito; Grilli, Muzio; Hickel, Stefan; Adams, Nikolaus A.

    2014-01-01

    Highlights: • The present study investigates a passive flow-control technique for shock-wave/boundary-layer interaction. • The control configuration consists of local suction and injection through a pressure feedback duct. • Implicit LES have been conducted for three different suction locations. • Suction reduces the size of the separation zone. • Turbulence amplification and reflected shock dynamics can be significantly reduced. - Abstract: We investigate a passive flow-control technique for the interaction of an oblique shock generated by an 8.8° wedge with a turbulent boundary-layer at a free-stream Mach number of Ma ∞ =2.3 and a Reynolds number based on the incoming boundary-layer thickness of Re δ 0 =60.5×10 3 by means of large-eddy simulation (LES). The compressible Navier–Stokes equations in conservative form are solved using the adaptive local deconvolution method (ALDM) for physically consistent subgrid scale modeling. Emphasis is placed on the correct description of turbulent inflow boundary conditions, which do not artificially force low-frequency periodic motion of the reflected shock. The control configuration combines suction inside the separation zone and blowing upstream of the interaction region by a pressure feedback through a duct embedded in the wall. We vary the suction location within the recirculation zone while the injection position is kept constant. Suction reduces the size of the separation zone with strongest effect when applied in the rear part of the separation bubble. The analysis of wall-pressure spectra reveals that all control configurations shift the high-energy low-frequency range to higher frequencies, while the energy level is significantly reduced only if suction acts in the rear part of the separated zone. In that case also turbulence production within the interaction region is significantly reduced as a consequence of mitigated reflected shock dynamics and near-wall flow acceleration

  19. On the nature of the plasma sheet boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Hones, E.W. Jr. (Mission Research Corp., Los Alamos, NM (USA) Los Alamos National Lab., NM (USA))

    1990-01-01

    The regions of the plasma sheet adjacent to the north and south lobes of the magnetotail have been described by many experimenters as locations of beams of energetic ions and fast-moving plasma directed primarily earthward and tailward along magnetic field lines. Measurements taken as satellites passed through one or the other of these boundary layers have frequently revealed near-earth mirroring of ions and a vertical segregation of velocities of both earthward-moving and mirroring ions with the fastest ions being found nearest the lobe-plasma sheet interface. These are features expected for particles from a distant tail source {bar E} {times} {bar B} drifting in a dawn-to-dusk electric field and are consistent with the source being a magnetic reconnection region. The plasma sheet boundary layers are thus understood as separatrix layers, bounded at their lobeward surfaces by the separatrices from the distant neutral line. This paper will review the observations that support this interpretation. 10 refs., 7 figs.

  20. Interaction of a Boundary Layer with a Turbulent Wake

    Science.gov (United States)

    Piomelli, Ugo

    2004-01-01

    The objective of this grant was to study the transition mechanisms on a flat-plate boundary layer interacting with the wake of a bluff body. This is a simplified configuration presented and designed to exemplify the phenomena that occur in multi-element airfoils, in which the wake of an upstream element impinges on a downstream one. Some experimental data is available for this configuration at various Reynolds numbers. The first task carried out was the implementation and validation of the immersed-boundary method. This was achieved by performing calculations of the flow over a cylinder at low and moderate Reynolds numbers. The low-Reynolds number results are discussed, which is enclosed as Appendix A. The high-Reynolds number results are presented in a paper in preparation for the Journal of Fluid Mechanics. We performed calculations of the wake-boundary-layer interaction at two Reynolds numbers, Re approximately equal to 385 and 1155. The first case is discussed and a comparison of the two calculations is reported. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. This is shown: long streaky structures appear in the boundary layer in correspondence of the three-dimensionalities in the rollers. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established. A third simulation was subsequently carried out at a higher Reynolds number, Re=3900. This calculation gave results similar to those of the Re=l155 case. Turbulence was established at fairly low

  1. Observations of the atmospheric electric field during two case studies of boundary layer processes

    International Nuclear Information System (INIS)

    Piper, I M; Bennett, A J

    2012-01-01

    We present measurements of potential gradient (PG) with associated meteorological variables and cloud profiles for two examples of convective boundary layer processes. Aerosol acts as a tracer layer to show lofting of the convective boundary layer; the rising aerosol layer results in a decrease in PG. In foggy conditions, the PG is seen to increase during the fog and then reduce as the fog lifts, as expected. (letter)

  2. Acoustic detection of momentum transfer during the abrupt transition from a laminar to a turbulent atmospheric boundary layer1

    International Nuclear Information System (INIS)

    Schubert, J.F.

    1977-01-01

    Acoustic sounder measurements of a vertical profile of the abrupt transition from a laminar to a turbulent atmospheric boundary layer were compared with meteorological measurements made at 10 and 137 m on an instrumented tower. Sounder data show that conditions necessary for the onset of the momentum burst phenomenon exist sometime during a clear afternoon when heat flux changes sign and the planetary surface cools. Under these conditions, the lowest part of the atmospheric boundary layer becomes stable. Prior to this situation, the entire boundary layer is in turbulent motion from surface heating. The boundary layer is then an effective barrier for all fluxes, and as the maximum flux Richardson number is reached at some height close to but above the surface, turbulence is dampened and a laminar layer forms. The profile of this layer is recorded by the sounder. Surface temperature drops, a strong wind shear develops, and the Richardson number decreases below its critical value (Ri/sub cr/<0.25). Subsequently, the laminar layer is eroded by turbulence from above, and with a burst of momentum and heat, it eventually reaches the ground

  3. Atmospheric boundary layer evening transitions over West Texas

    Science.gov (United States)

    A systemic analysis of the atmospheric boundary layer behavior during some evening transitions over West Texas was done using the data from an extensive array of instruments which included small and large aperture scintillometers, net radiometers, and meteorological stations. The analysis also comp...

  4. Analysis of Windward Side Hypersonic Boundary Layer Transition on Blunted Cones at Angle of Attack

    Science.gov (United States)

    2017-01-09

    correlated with PSE/LST N-Factors. 15. SUBJECT TERMS boundary layer transition, hypersonic, ground test 16. SECURITY CLASSIFICATION OF: 17. LIMITATION ...Maccoll) solution e condition at boundary layer edge w condition at wall, viscous ∞ condition in freestream Conventions LST Linear Stability Theory PSE...STATES AIR FORCE AFRL-RQ-WP-TP-2017-0169 ANALYSIS OF WINDWARD SIDE HYPERSONIC BOUNDARY LAYER TRANSITION ON BLUNTED CONES AT ANGLE OF ATTACK Roger

  5. a Lattice Boltzmann Study of the 2d Boundary Layer Created by AN Oscillating Plate

    Science.gov (United States)

    Cappietti, L.; Chopard, B.

    We study the applicability of the Lattice Boltzmann Method (LBM) to simulate the 2D laminar boundary layer induced by an oscillating flat plate. We also investigate the transition to the disturbed laminar regime that occurs with a rough oscillating plate. The simulations were performed in two cases: first with a fluid otherwise at rest and second in presence of superimposed current. The generation of coherent vortex structures and their evolution are commented. The accuracy of the method was checked by comparisons with the exact analytical solution of the Navier-Stokes equations for the so-called Stokes' Second Problem. The comparisons show that LBM reproduces this time varying flow with first order accuracy. In the case of the wavy-plate, the results show that a mechanism of vortex-jet formations, low speed-streak and shear instability sustain a systems of stationary vortices outside the boundary layer. The vortex-jet takes place at the end of the decelerating phase whereas the boundary layer turns out to be laminar when the plate accelerates. In the presence of the superimposed current, the vortex-jet mechanism is still effective but the vortices outside the boundary layer are only present during part of the oscillating period. During the remaining part, the flow turns out to be laminar although a wave perturbation in the velocity field is present.

  6. MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing

    International Nuclear Information System (INIS)

    Bhattacharyya, Krishnendu; Layek, G. C.

    2011-01-01

    An analysis is carried out to study a steady magnetohydrodynamic (MHD) boundary layer flow of an electrically conducting incompressible power-law non-Newtonian fluid through a divergent channel. The channel walls are porous and subjected to either suction or blowing of equal magnitude of the same kind of fluid on both walls. The fluid is permeated by a magnetic field produced by electric current along the line of intersection of the channel walls. The governing partial differential equation is transformed into a self-similar nonlinear ordinary differential equation using similarity transformations. The possibility of boundary layer flow in a divergent channel is analyzed with the power-law fluid model. The analysis reveals that the boundary layer flow (without separation) is possible for the case of the dilatant fluid model subjected to suitable suction velocity applied through its porous walls, even in the absence of a magnetic field. Further, it is found that the boundary layer flow is possible even in the presence of blowing for a suitable value of the magnetic parameter. It is found that the velocity increases with increasing values of the power-law index for the case of dilatant fluid. The effects of suction/blowing and magnetic field on the velocity are shown graphically and discussed physically. (fundamental areas of phenomenology(including applications))

  7. Radiation effect on boundary layer flow of an Eyring–Powell fluid over an exponentially shrinking sheet

    Directory of Open Access Journals (Sweden)

    Asmat Ara

    2014-12-01

    Full Text Available The aim of this paper was to examine the steady boundary layer flow of an Eyring–Powell model fluid due to an exponentially shrinking sheet. In addition, the heat transfer process in the presence of thermal radiation is considered. Using usual similarity transformations the governing equations have been transformed into non-linear ordinary differential equations. Homotopy analysis method (HAM is employed for the series solutions. The convergence of the obtained series solutions is carefully analyzed. Numerical values of the temperature gradient are presented and discussed. It is observed that velocity increases with an increase in mass suction S. In addition, for the temperature profiles opposite behavior is observed for increment in suction. Moreover, the thermal boundary layer thickness decreases due to increase in Prandtl number Pr and thermal radiation R.

  8. Wall-attached structures of streamwise velocity fluctuations in turbulent boundary layer

    Science.gov (United States)

    Hwang, Jinyul; Sung, Hyung Jin

    2017-11-01

    The wall-attached structures of streamwise velocity fluctuations (u) are explored using direct numerical simulation data of turbulent boundary layer at Reτ = 1000 . We identify the structures of u, which are extended close to the wall. Their height (ly) ranges from the near-wall region to the edge of turbulent boundary layer. They are geometrically self-similar in a sense that the length and width of the structures are proportional to the distance from the wall. The population density of the attached structures shows that the tall attached structures (290 wall. The wall-attached structures of u identified in the present work are a proper candidate for Townsend's attached eddy hypothesis and these structures exist in the low Reynolds number turbulent boundary layer. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP) and supported by the Supercomputing Center (KISTI).

  9. Transitional boundary layer in low-Prandtl-number convection at high Rayleigh number

    Science.gov (United States)

    Schumacher, Joerg; Bandaru, Vinodh; Pandey, Ambrish; Scheel, Janet

    2016-11-01

    The boundary layer structure of the velocity and temperature fields in turbulent Rayleigh-Bénard flows in closed cylindrical cells of unit aspect ratio is revisited from a transitional and turbulent viscous boundary layer perspective. When the Rayleigh number is large enough the boundary layer dynamics at the bottom and top plates can be separated into an impact region of downwelling plumes, an ejection region of upwelling plumes and an interior region (away from side walls) that is dominated by a shear flow of varying orientation. This interior plate region is compared here to classical wall-bounded shear flows. The working fluid is liquid mercury or liquid gallium at a Prandtl number of Pr = 0 . 021 for a range of Rayleigh numbers of 3 ×105 Deutsche Forschungsgemeinschaft.

  10. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

    International Nuclear Information System (INIS)

    Marxen, Olaf; Magin, Thierry E.; Shaqfeh, Eric S.G.; Iaccarino, Gianluca

    2013-01-01

    A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as well as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium

  11. Experiments on aerosol-induced cooling in the nocturnal boundary layer

    Science.gov (United States)

    Sreenivas, K.; Singh, D. K.; Vk, P.; Mukund, V.; Subramanian, G.

    2012-12-01

    In the nocturnal boundary layer (NBL), under calm & clear-sky conditions, radiation is the principal mode of heat transfer & it determines the temperature distribution close to the ground. Radiative processes thus influence the surface energy budget, & play a decisive role in many micro-meteorological processes including the formation of radiation-fog & inversion layer. Here, we report hyper-cooling of air layers close to the ground that has a radiative origin. Resulting vertical temperature distribution has an anomalous profile with an elevated minimum few decimetres above the ground (known as Lifted Temperature Minimum; LTM). Even though the first observation of this type of profile dates back to 1930s, its origin has not been explained till recently. We report field experiments to elucidate effects of emissivity and other physical properties of the ground on the LTM profile. Field observations clearly indicate that LTM-profiles are observed as a rule in the lowest meter of the NBL. We also demonstrate that the air-layer near the ground, rather than the ground itself, leads the post sunset cooling. This fact changes the very nature of the sensible heat-flux boundary condition. A laboratory experimental setup has been developed that can reproduce LTM. Lab-experiments demonstrate that the high cooling rates observed in the field experiments arise from the presence of aerosols & the intensity of cooling is proportional to aerosol concentration (Fig-1). We have also captured penetrative convection cells in the field experiments (Fig-2). Results presented here thus help in parameterizing transport processes in the NBL.

  12. Analytic prediction of unconfined boundary layer flashback limits in premixed hydrogen-air flames

    Science.gov (United States)

    Hoferichter, Vera; Hirsch, Christoph; Sattelmayer, Thomas

    2017-05-01

    Flame flashback is a major challenge in premixed combustion. Hence, the prediction of the minimum flow velocity to prevent boundary layer flashback is of high technical interest. This paper presents an analytic approach to predicting boundary layer flashback limits for channel and tube burners. The model reflects the experimentally observed flashback mechanism and consists of a local and global analysis. Based on the local analysis, the flow velocity at flashback initiation is obtained depending on flame angle and local turbulent burning velocity. The local turbulent burning velocity is calculated in accordance with a predictive model for boundary layer flashback limits of duct-confined flames presented by the authors in an earlier publication. This ensures consistency of both models. The flame angle of the stable flame near flashback conditions can be obtained by various methods. In this study, an approach based on global mass conservation is applied and is validated using Mie-scattering images from a channel burner test rig at ambient conditions. The predicted flashback limits are compared to experimental results and to literature data from preheated tube burner experiments. Finally, a method for including the effect of burner exit temperature is demonstrated and used to explain the discrepancies in flashback limits obtained from different burner configurations reported in the literature.

  13. Forced Response Analysis of a Fan with Boundary Layer Inlet Distortion

    Science.gov (United States)

    Bakhle, Milind A.; Reddy, T. S. R.; Coroneos, Rula M.

    2014-01-01

    Boundary layer ingesting propulsion systems have the potential to significantly reduce fuel burn for future generations of commercial aircraft, but these systems must be designed to overcome the challenge of high dynamic stresses in fan blades due to forced response. High dynamic stresses can lead to high cycle fatigue failures. High-fidelity computational analysis of the fan aeromechanics is integral to an ongoing effort to design a boundary layer ingesting inlet and fan for a wind-tunnel test. An unsteady flow solution from a Reynoldsaveraged Navier Stokes analysis of a coupled inlet-fan system is used to calculate blade unsteady loading and assess forced response of the fan to distorted inflow. Conducted prior to the mechanical design of a fan, the initial forced response analyses performed in this study provide an early look at the levels of dynamic stresses that are likely to be encountered. For the boundary layer ingesting inlet, the distortion contains strong engine order excitations that act simultaneously. The combined effect of these harmonics was considered in the calculation of the forced response stresses. Together, static and dynamic stresses can provide the information necessary to evaluate whether the blades are likely to fail due to high cycle fatigue. Based on the analyses done, the overspeed condition is likely to result in the smallest stress margin in terms of the mean and alternating stresses. Additional work is ongoing to expand the analyses to off-design conditions, on-resonance conditions, and to include more detailed modeling of the blade structure.

  14. Fluid Mechanics and Heat Transfer in Transitional Boundary Layers

    Science.gov (United States)

    Wang, Ting

    2007-01-01

    Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.

  15. The Impact of Wet Soil and Canopy Temperatures on Daytime Boundary-Layer Growth.

    Science.gov (United States)

    Segal, M.; Garratt, J. R.; Kallos, G.; Pielke, R. A.

    1989-12-01

    The impact of very wet soil and canopy temperatures on the surface sensible heat flux, and on related daytime boundary-layer properties is evaluated. For very wet soils, two winter situations are considered, related to significant changes in soil surface temperature: (1) due to weather perturbations at a given location, and (2) due to the climatological north-south temperature gradient. Analyses and scaling of the various boundary-layer properties, and soil surface fluxes affecting the sensible beat flux, have been made; related evaluations show that changes in the sensible heat flux at a given location by a factor of 2 to 3 due to temperature changes related to weather perturbations is not uncommon. These changes result in significant alterations in the boundary-layer depth; in the atmospheric boundary-layer warming; and in the break-up time of the nocturnal surface temperature inversion. Investigation of the impact of the winter latitudinal temperature gradient on the above characteristics indicated that the relative increase in very wet soil sensible heat flux, due to the climatological reduction in the surface temperature in northern latitudes, moderates to some extent its reduction due to the corresponding decrease in solar radiation. Numerical model simulations confirmed these analytical evaluations.In addition, the impact of synoptic temperature perturbations during the transition seasons (fall and spring) on canopy sensible heal fluxes, and the related boundary-layer characteristics mentioned above, was evaluated. Analogous features to those found for very wet soil surfaces occurred also for the canopy situations. Likewise, evaluations were also carried out to explore the impact of high midlatitude foreste areas on the boundary-layer characteristics during the winter as compared to those during the summer. Similar impacts were found in both seasons, regardless of the substantial difference in the daily total solar radiation.

  16. Numerical Investigation of a Heated, Sheared Planetary Boundary Layer

    Science.gov (United States)

    Liou, Yu-Chieng

    1996-01-01

    A planetary boundary layer (PBL) developed on 11 July, 1987 during the First International Satellites Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) is investigated numerically by a two dimensional and a three dimensional large eddy simulation (LES) model. Most of the simulated mean and statistical properties are utilized to compare or verify against the observational results extracted from single Doppler lidar scans conducted by Gal-Chen et al. (1992) on the same day. Through the methods of field measurements and numerical simulations, it is found that this PBL, in contrast to the well-known convective boundary layer (CBL), is driven by not only buoyancy but also wind shear. Large eddies produced by the surface heating, as well as internal gravity waves excited by the convection, are both present in the boundary layer. The most unique feature is that in the stable layer, the momentum flux ({overlinerm u^' w^'}), transported by the gravity waves, is counter-gradient. The occurrence of this phenomenon is interpreted by Gal-Chen et al. (1992) using the theory of critical layer singularity, and is confirmed by the numerical simulations in this study. Qualitative agreements are achieved between the model-generated and lidar-derived results. However, quantitative comparisons are less satisfactory. The most serious discrepancy is that in the stable layer the magnitudes of the observed momentum flux ({overlinerm u^ ' w^'}) and vertical velocity variance ({overlinerm w^'^2}) are much larger than their simulated counterparts. Nevertheless, through the technique of numerical simulation, evidence is collected to show inconsistencies among the observations. Thus, the lidar measurements of {overline rm u^' w^'} and {overlinerm w^ '^2} seem to be doubtful. A Four Dimensional Data Assimilation (FDDA) experiment is performed in order to connect the evolution of the model integration with the observations. The results indicate that the dynamical relaxation

  17. A review and analysis of boundary layer transition data for turbine application

    Science.gov (United States)

    Gaugler, R. E.

    1985-01-01

    A number of data sets from the open literature that include heat transfer data in apparently transitional boundary layers, with particular application to the turbine environment, were reviewed and analyzed to extract transition information. The data were analyzed by using a version of the STAN5 two-dimensional boundary layer code. The transition starting and ending points were determined by adjusting parameters in STAN5 until the calculations matched the data. The results are presented as a table of the deduced transition location and length as functions of the test parameters. The data sets reviewed cover a wide range of flow conditions, from low-speed, flat-plate tests to full-scale turbine airfoils operating at simulated turbine engine conditions. The results indicate that free-stream turbulence and pressure gradient have strong, and opposite, effects on the location of the start of transition and on the length of the transition zone.

  18. Transport of gaseous pollutants by convective boundary layer around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra

    2015-01-01

    This study investigates the ability of the human convective boundary layer to transport pollution in a quiescent indoor environment. The impact of the source location in the vicinity of a human body is examined in relation to pollution distribution in the breathing zone and the thickness...... of the pollution boundary layer. The study, in addition, evaluates the effects of the room air temperature, table positioning, and seated body inclination. The human body is represented by a thermal manikin that has a body shape, size, and surface temperature that resemble those of a real person. The results show...... at the upper back or behind the chair. The results also indicate that a decrease in personal exposure to pollutants released from or around the human body increases the extent to which the pollution spreads to the surroundings. Reducing the room air temperature or backward body inclination intensifies...

  19. Analysis of diabatic flow modification in the internal boundary layer

    DEFF Research Database (Denmark)

    Floors, Rogier; Gryning, Sven-Erik; Pena Diaz, Alfredo

    2011-01-01

    Measurements at two meteorological masts in Denmark, Horns Rev in the sea and Høvsøre near the coastline on land, are used to analyze the behaviour of the flow after a smooth-to-rough change in surface conditions. The study shows that the wind profile within the internal boundary layer is control......Measurements at two meteorological masts in Denmark, Horns Rev in the sea and Høvsøre near the coastline on land, are used to analyze the behaviour of the flow after a smooth-to-rough change in surface conditions. The study shows that the wind profile within the internal boundary layer...

  20. Conference on Boundary and Interior Layers : Computational and Asymptotic Methods

    CERN Document Server

    2015-01-01

    This volume offers contributions reflecting a selection of the lectures presented at the international conference BAIL 2014, which was held from 15th to 19th September 2014 at the Charles University in Prague, Czech Republic. These are devoted to the theoretical and/or numerical analysis of problems involving boundary and interior layers and methods for solving these problems numerically. The authors are both mathematicians (pure and applied) and engineers, and bring together a large number of interesting ideas. The wide variety of topics treated in the contributions provides an excellent overview of current research into the theory and numerical solution of problems involving boundary and interior layers.  .

  1. On the parametrization of the planetary boundary layer of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, D. [Bulgarian Academy of Sciences, Geophysical Inst., Sofia (Bulgaria); Syrakov, D.; Kolarova, M. [Bulgarian Academy of Sciences, National Inst. of Meteorology and Hydrology, Sofia (United Kingdom)

    1997-10-01

    The investigation of the dynamic processes in the planetary boundary layer presents a definite theoretical challenge and plays a growing role for the solution of a number of practical tasks. The improvement of large-scale atmospheric weather forecast depends, to a certain degree, on the proper inclusion of the planetary boundary layer dynamics in the numerical models. The modeling of the transport and the diffusion of air pollutants is connected with estimation of the different processes in the Planetary Boundary Layer (PBL) and needs also a proper PBL parametrization. For the solution of these practical tasks the following PBL models;(i) a baroclinic PBL model with its barotropic version, and (ii) a convective PBL model were developed. Both models are one dimensional and are based on the similarity theory and the resistance lows extended for the whole PBL. Two different PBL parametrizations under stable and under convective conditions are proposed, on the basis of which the turbulent surface heat and momentum fluxes are estimated using generalized similarity theory. By the proposed parametrizations the internal parameters are calculated from the synoptic scale parameters as geostrophyc wind, potential temperature and humidity given at two levels (ground level and at 850 hPa) and from them - the PBL profiles. The models consists of two layers: a surface layer (SL) with a variable height and a second (Ekman layer) over it with a constant with height turbulent exchange coefficient. (au) 14 refs.

  2. Chemical boundary layers in CVD II. Reversible reactions

    NARCIS (Netherlands)

    Croon, de M.H.J.M.; Giling, L.J.

    1990-01-01

    In addition to irreversible reactions, which were treated in part I, reversible reactions in the gas phase have beenstudied using the concept of the chemical boundary layer. The analysis is given for the situations in which either the forwardor the back reaction is dominant. Two conceptual models

  3. LES of the adverse-pressure gradient turbulent boundary layer

    International Nuclear Information System (INIS)

    Inoue, M.; Pullin, D.I.; Harun, Z.; Marusic, I.

    2013-01-01

    Highlights: • The adverse-pressure gradient turbulent boundary layer at high Re is studied. • Wall-model LES works well for nonequilibrium turbulent boundary layer. • Relationship of skin-friction to Re and Clauser pressure parameter is explored. • Self-similarity is observed in the velocity statistics over a wide range of Re. -- Abstract: We describe large-eddy simulations (LES) of the flat-plate turbulent boundary layer in the presence of an adverse pressure gradient. The stretched-vortex subgrid-scale model is used in the domain of the flow coupled to a wall model that explicitly accounts for the presence of a finite pressure gradient. The LES are designed to match recent experiments conducted at the University of Melbourne wind tunnel where a plate section with zero pressure gradient is followed by section with constant adverse pressure gradient. First, LES are described at Reynolds numbers based on the local free-stream velocity and the local momentum thickness in the range 6560–13,900 chosen to match the experimental conditions. This is followed by a discussion of further LES at Reynolds numbers at approximately 10 times and 100 times these values, which are well out of range of present day direct numerical simulation and wall-resolved LES. For the lower Reynolds number runs, mean velocity profiles, one-point turbulent statistics of the velocity fluctuations, skin friction and the Clauser and acceleration parameters along the streamwise, adverse pressure-gradient domain are compared to the experimental measurements. For the full range of LES, the relationship of the skin-friction coefficient, in the form of the ratio of the local free-stream velocity to the local friction velocity, to both Reynolds number and the Clauser parameter is explored. At large Reynolds numbers, a region of collapse is found that is well described by a simple log-like empirical relationship over two orders of magnitude. This is expected to be useful for constant adverse

  4. DNS of transcritical turbulent boundary layers at supercritical pressures under abrupt variations in thermodynamic properties

    Science.gov (United States)

    Kawai, Soshi

    2014-11-01

    In this talk, we first propose a numerical strategy that is robust and high-order accurate for enabling to simulate transcritical flows at supercritical pressures under abrupt variations in thermodynamic properties due to the real fluid effects. The method is based on introducing artificial density diffusion in a physically-consistent manner in order to capture the steep variation of thermodynamic properties in transcritical conditions robustly, while solving a pressure evolution equation to achieve pressure equilibrium at the transcritical interfaces. We then discuss the direct numerical simulation (DNS) of transcritical heated turbulent boundary layers on a zero-pressure-gradient flat plate at supercritical pressures. To the best of my knowledge, the present DNS is the first DNS of zero-pressure-gradient flat-plate transcritical turbulent boundary layer. The turbulent kinetic budget indicates that the compressibility effects (especially, pressure-dilatation correlation) are not negligible at the transcritical conditions even if the flow is subsonic. The unique and interesting interactions between the real fluid effects and wall turbulence, and their turbulence statistics, which have never been seen in the ideal-fluid turbulent boundary layers, are also discussed. This work was supported in part by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Young Scientists (A) KAKENHI 26709066 and the JAXA International Top Young Fellowship Program.

  5. Four-parametric two-layer algebraic model of transition boundary layer at a planar plate

    International Nuclear Information System (INIS)

    Labusov, A.N.; Lapin, Yu.V.

    1996-01-01

    Consideration is given to four-parametric two-layer algebraic model of transition boundary layer on a plane plate, based on generalization of one-parametric algebraic Prandtl-Loitsjansky-Klauzer-3 model. The algebraic model uses Prandtl formulas for mixing path with Loitsjansky damping multiplier in the internal region and the relation for turbulent viscosity, based on universal scales of external region and named the Klauzer-3 formula. 12 refs., 10 figs

  6. Generalized wall function and its application to compressible turbulent boundary layer over a flat plate

    Science.gov (United States)

    Liu, J.; Wu, S. P.

    2017-04-01

    Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.

  7. Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98) : a report

    NARCIS (Netherlands)

    Cuxart, J.; Yague, C.; Morales, G.; Terradelles, E.; Orbe, J.; Calvo, J.; Vilu-Guerau, de J.; Soler, M.R.; Infante, C.; Buenestado, P.; Espinalt, A.; Jorgensem, H.E.

    2000-01-01

    This paper describes the Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98), which took place over the northern Spanish plateau comprising relatively flat grassland, in September 1998. The main objectives of the campaign were to study the properties of the mid-latitude stable boundary

  8. Uncertainties in the CO2 buget associated to boundary layer dynamics and CO2-advection

    NARCIS (Netherlands)

    Kaikkonen, J.P.; Pino, D.; Vilà-Guerau de Arellano, J.

    2012-01-01

    The relationship between boundary layer dynamics and carbon dioxide (CO2) budget in the convective boundary layer (CBL) is investigated by using mixed-layer theory. We derive a new set of analytical relations to quantify the uncertainties on the estimation of the bulk CO2 mixing ratio and the

  9. Aeromechanics Analysis of a Boundary Layer Ingesting Fan

    Science.gov (United States)

    Bakhle, Milind A.; Reddy, T. S. R.; Herrick, Gregory P.; Shabbir, Aamir; Florea, Razvan V.

    2013-01-01

    Boundary layer ingesting propulsion systems have the potential to significantly reduce fuel burn but these systems must overcome the challe nges related to aeromechanics-fan flutter stability and forced response dynamic stresses. High-fidelity computational analysis of the fan a eromechanics is integral to the ongoing effort to design a boundary layer ingesting inlet and fan for fabrication and wind-tunnel test. A t hree-dimensional, time-accurate, Reynolds-averaged Navier Stokes computational fluid dynamics code is used to study aerothermodynamic and a eromechanical behavior of the fan in response to both clean and distorted inflows. The computational aeromechanics analyses performed in th is study show an intermediate design iteration of the fan to be flutter-free at the design conditions analyzed with both clean and distorte d in-flows. Dynamic stresses from forced response have been calculated for the design rotational speed. Additional work is ongoing to expan d the analyses to off-design conditions, and for on-resonance conditions.

  10. Phase-relationships between scales in the perturbed turbulent boundary layer

    Science.gov (United States)

    Jacobi, I.; McKeon, B. J.

    2017-12-01

    The phase-relationship between large-scale motions and small-scale fluctuations in a non-equilibrium turbulent boundary layer was investigated. A zero-pressure-gradient flat plate turbulent boundary layer was perturbed by a short array of two-dimensional roughness elements, both statically, and under dynamic actuation. Within the compound, dynamic perturbation, the forcing generated a synthetic very-large-scale motion (VLSM) within the flow. The flow was decomposed by phase-locking the flow measurements to the roughness forcing, and the phase-relationship between the synthetic VLSM and remaining fluctuating scales was explored by correlation techniques. The general relationship between large- and small-scale motions in the perturbed flow, without phase-locking, was also examined. The synthetic large scale cohered with smaller scales in the flow via a phase-relationship that is similar to that of natural large scales in an unperturbed flow, but with a much stronger organizing effect. Cospectral techniques were employed to describe the physical implications of the perturbation on the relative orientation of large- and small-scale structures in the flow. The correlation and cospectral techniques provide tools for designing more efficient control strategies that can indirectly control small-scale motions via the large scales.

  11. Free surface simulation of a two-layer fluid by boundary element method

    Directory of Open Access Journals (Sweden)

    Weoncheol Koo

    2010-09-01

    Full Text Available A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based Numerical Wave Tank (NWT. The developed NWT is based on the boundary element method and a leap-frog time integration scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared.

  12. Prediction of wall shear stresses in transitional boundary layers using near-wall mean velocity profiles

    International Nuclear Information System (INIS)

    Jeon, Woo Pyung; Shin, Sung Ho; Kang, Shin Hyoung

    2000-01-01

    The local wall shear stress in transitional boundary layer was estimated from the near-wall mean velocity data using the principle of Computational Preston tube Method(CPM). The previous DNS and experimental databases of transitional boundary layers were used to demonstrate the accuracy of the method and to provide the applicable range of wall unit y + . The skin friction coefficients predicted by the CPM agreed well with those from previous studies. To reexamine the applicability of the CPM, near-wall hot-wire measurements were conducted in developing transitional boundary layers on a flat plate with different freestream turbulence intensities. The intermittency profiles across the transitional boundary layers were reasonably obtained from the conditional sampling technique. An empirical correlation between the representative intermittency near the wall and the free parameter K 1 of the extended wall function of CPM has been newly proposed using the present and other experimental data. The CPM has been verified as a useful tool to measure the wall shear stress in transitional boundary layer with reasonable accuracy

  13. Relaxation of an unsteady turbulent boundary layer on a flat plate in an expansion tube

    Science.gov (United States)

    Gurta, R. N.; Trimpi, R. L.

    1974-01-01

    An analysis is presented for the relaxation of a turbulent boundary layer on a semi-infinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion-tube flows. The flow-governing equations have been transformed into the Crocco variables, and a time-similar solution is presented in terms of the dimensionless distance-time variable alpha and the dimensionless velocity variable beta. An eddy-viscosity model, similar to that of time-steady boundary layers, is applied to the inner and outer regions of the boundary layer. A turbulent Prandtl number equal to the molecular Prandtl number is used to relate the turbulent heat flux to the eddy viscosity. The numerical results, obtained by using the Gauss-Seidel line-relaxation method, indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin friction than a laminar boundary layer. The results also give a fairly good estimate of the local skin friction and heat transfer for near steady-flow conditions.

  14. Experimental study of boundary layer transition on an airfoil induced by periodically passing wake (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, T.C. [Seoul National University Graduate School, Seoul (Korea); Jeon, W.P.; Kang, S.H. [Seoul National University, Seoul (Korea)

    2001-06-01

    Hot-wire measurements are performed in boundary layers developing on a NACA0012 airfoil over which wakes pass periodically. The Reynolds number based on chord length of the airfoil is 2X10{sup 5} and the wakes are generated by circular cylinders rotating clockwise and counterclockwise around the airfoil. This paper and its companion Part II describe the phenomena of wake-induced transition of the boundary layers on the airfoil using measured data; phase- and time-averaged streamwise mean velocities, turbulent fluctuations, integral parameters and wall skin frictions. This paper describes the background and facility together with results of time-averaged quantities. Due to the passing wake with mean velocity defects and high turbulence intensities, the laminar boundary layer is periodically disturbed at the upstream station and becomes steady-state transitional boundary layer at the downstream station. The velocity defect in the passing wake changes the local pressure at the leading of the airfoil, significantly affects the time-mean pressure distribution on the airfoil and eventually, has influence on the transition process of the boundary layer. (author). 22 refs., 9 figs.

  15. Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid

    International Nuclear Information System (INIS)

    Alkasasbeh, Hamzeh Taha; Sarif, Norhafizah Md; Salleh, Mohd Zuki; Tahar, Razman Mat; Nazar, Roslinda; Pop, Ioan

    2015-01-01

    In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N R , the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed

  16. Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid

    Energy Technology Data Exchange (ETDEWEB)

    Alkasasbeh, Hamzeh Taha, E-mail: zukikuj@yahoo.com; Sarif, Norhafizah Md, E-mail: zukikuj@yahoo.com; Salleh, Mohd Zuki, E-mail: zukikuj@yahoo.com [Futures and Trends Research Group, Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang (Malaysia); Tahar, Razman Mat [Faculty of Technology, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang (Malaysia); Nazar, Roslinda [School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Pop, Ioan [Department of Mathematics, Babeş-Bolyai University, R-400084 Cluj-Napoca (Romania)

    2015-02-03

    In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N{sub R}, the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed.

  17. Development of a Boundary Layer Property Interpolation Tool in Support of Orbiter Return To Flight

    Science.gov (United States)

    Greene, Francis A.; Hamilton, H. Harris

    2006-01-01

    A new tool was developed to predict the boundary layer quantities required by several physics-based predictive/analytic methods that assess damaged Orbiter tile. This new tool, the Boundary Layer Property Prediction (BLPROP) tool, supplies boundary layer values used in correlations that determine boundary layer transition onset and surface heating-rate augmentation/attenuation factors inside tile gouges (i.e. cavities). BLPROP interpolates through a database of computed solutions and provides boundary layer and wall data (delta, theta, Re(sub theta)/M(sub e), Re(sub theta)/M(sub e), Re(sub theta), P(sub w), and q(sub w)) based on user input surface location and free stream conditions. Surface locations are limited to the Orbiter s windward surface. Constructed using predictions from an inviscid w/boundary-layer method and benchmark viscous CFD, the computed database covers the hypersonic continuum flight regime based on two reference flight trajectories. First-order one-dimensional Lagrange interpolation accounts for Mach number and angle-of-attack variations, whereas non-dimensional normalization accounts for differences between the reference and input Reynolds number. Employing the same computational methods used to construct the database, solutions at other trajectory points taken from previous STS flights were computed: these results validate the BLPROP algorithm. Percentage differences between interpolated and computed values are presented and are used to establish the level of uncertainty of the new tool.

  18. Global instabilities and transient growth in Blasius boundary-layer ...

    Indian Academy of Sciences (India)

    boundary-layer flow warrants attention. .... double prime indicates a dummy variable, while R and S respectively denote integration in the ..... (labelled) but it also features an unstable structural mode labelled S that ..... theory and experiment.

  19. A Source-Term Based Boundary Layer Bleed/Effusion Model for Passive Shock Control

    Science.gov (United States)

    Baurle, Robert A.; Norris, Andrew T.

    2011-01-01

    A modeling framework for boundary layer effusion has been developed based on the use of source (or sink) terms instead of the usual practice of specifying bleed directly as a boundary condition. This framework allows the surface boundary condition (i.e. isothermal wall, adiabatic wall, slip wall, etc.) to remain unaltered in the presence of bleed. This approach also lends itself to easily permit the addition of empirical models for second order effects that are not easily accounted for by simply defining effective transpiration values. Two effusion models formulated for supersonic flows have been implemented into this framework; the Doerffer/Bohning law and the Slater formulation. These models were applied to unit problems that contain key aspects of the flow physics applicable to bleed systems designed for hypersonic air-breathing propulsion systems. The ability of each model to predict bulk bleed properties was assessed, as well as the response of the boundary layer as it passes through and downstream of a porous bleed system. The model assessment was performed with and without the presence of shock waves. Three-dimensional CFD simulations that included the geometric details of the porous plate bleed systems were also carried out to supplement the experimental data, and provide additional insights into the bleed flow physics. Overall, both bleed formulations fared well for the tests performed in this study. However, the sample of test problems considered in this effort was not large enough to permit a comprehensive validation of the models.

  20. An Experimental Study of Roughness-Induced Instabilities in a Supersonic Boundary Layer

    Science.gov (United States)

    Kegerise, Michael A.; King, Rudolph A.; Choudhari, Meelan; Li, Fei; Norris, Andrew

    2014-01-01

    Progress on an experimental study of laminar-to-turbulent transition induced by an isolated roughness element in a supersonic laminar boundary layer is reported in this paper. Here, the primary focus is on the effects of roughness planform shape on the instability and transition characteristics. Four different roughness planform shapes were considered (a diamond, a circle, a right triangle, and a 45 degree fence) and the height and width of each one was held fixed so that a consistent frontal area was presented to the oncoming boundary layer. The nominal roughness Reynolds number was 462 and the ratio of the roughness height to the boundary layer thickness was 0.48. Detailed flow- field surveys in the wake of each geometry were performed via hot-wire anemometry. High- and low-speed streaks were observed in the wake of each roughness geometry, and the modified mean flow associated with these streak structures was found to support a single dominant convective instability mode. For the symmetric planform shapes - the diamond and circular planforms - the instability characteristics (mode shapes, growth rates, and frequencies) were found to be similar. For the asymmetric planform shapes - the right-triangle and 45 degree fence planforms - the mode shapes were asymmetrically distributed about the roughness-wake centerline. The instability growth rates for the asymmetric planforms were lower than those for the symmetric planforms and therefore, transition onset was delayed relative to the symmetric planforms.

  1. Atmospheric Boundary Layer Dynamics Near Ross Island and Over West Antarctica.

    Science.gov (United States)

    Liu, Zhong

    The atmospheric boundary layer dynamics near Ross Island and over West Antarctica has been investigated. The study consists of two parts. The first part involved the use of data from ground-based remote sensing equipment (sodar and RASS), radiosondes, pilot balloons, automatic weather stations, and NOAA AVHRR satellite imagery. The second part involved the use of a high resolution boundary layer model coupled with a three-dimensional primitive equation mesoscale model to simulate the observed atmospheric boundary layer winds and temperatures. Turbulence parameters were simulated with an E-epsilon turbulence model driven by observed winds and temperatures. The observational analysis, for the first time, revealed that the airflow passing through the Ross Island area is supplied mainly by enhanced katabatic drainage from Byrd Glacier and secondarily drainage from Mulock and Skelton glaciers. The observed diurnal variation of the blocking effect near Ross Island is dominated by the changes in the upstream katabatic airflow. The synthesized analysis over West Antarctica found that the Siple Coast katabatic wind confluence zone consists of two superimposed katabatic airflows: a relatively warm and more buoyant katabatic flow from West Antarctica overlies a colder and less buoyant katabatic airflow from East Antarctica. The force balance analysis revealed that, inside the West Antarctic katabatic wind zone, the pressure gradient force associated with the blocked airflow against the Transantarctic Mountains dominates; inside the East Antarctic katabatic wind zone, the downslope buoyancy force due to the cold air overlying the sloping terrain is dominant. The analysis also shows that these forces are in geostrophic balance with the Coriolis force. An E-epsilon turbulence closure model is used to simulate the diurnal variation of sodar backscatter. The results show that the model is capable of qualitatively capturing the main features of the observed sodar backscatter. To

  2. Temporal direct numerical simulation of transitional natural-convection boundary layer under conditions of considerable external turbulence effects

    International Nuclear Information System (INIS)

    Abramov, Alexey G; Smirnov, Evgueni M; Goryachev, Valery D

    2014-01-01

    Results of direct numerical simulations for time-developing air natural-convection boundary layer are presented. Computations have been performed assuming periodicity conditions in both the directions parallel to the vertical isothermal hot plate. The contribution is mainly focused on understanding of laminar–turbulent transition peculiarities in the case of perturbation action of external turbulence that is modeled by isotropic disturbances initially introduced into the computational domain. Special attention is paid to identification and analysis of evolving three-dimensional vortices that clearly manifest themselves through the whole stages of laminar–turbulent transition in the boundary layer. A comparison of computed profiles of mean velocity, mean temperature and fluctuation characteristics for turbulent regimes of convection with experimental data is performed as well. (paper)

  3. DNS, LES and RANS of turbulent heat transfer in boundary layer with suddenly changing wall thermal conditions

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Yamada, Shohei; Tanaka, Masahiro; Houra, Tomoya; Nagano, Yasutaka

    2013-01-01

    Highlights: • We study the turbulent boundary layer with heat transfer by DNS. • Turbulent boundary layers with suddenly changing wall thermal conditions are observed. • The detailed turbulent statistics and structures in turbulent thermal boundary layer are discussed. • Turbulence models in LES and RANS are evaluated using DNS results. • LES and RANS are almost in good agreement with DNS results. -- Abstract: The objectives of this study are to investigate a thermal field in a turbulent boundary layer with suddenly changing wall thermal conditions by means of direct numerical simulation (DNS), and to evaluate predictions of a turbulence model in such a thermal field, in which DNS of spatially developing boundary layers with heat transfer can be conducted using the generation of turbulent inflow data as a method. In this study, two types of wall thermal condition are investigated using DNS and predicted by large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equation simulation (RANS). In the first case, the velocity boundary layer only develops in the entrance of simulation, and the flat plate is heated from the halfway point, i.e., the adiabatic wall condition is adopted in the entrance, and the entrance region of thermal field in turbulence is simulated. Then, the thermal boundary layer develops along a constant temperature wall followed by adiabatic wall. In the second case, velocity and thermal boundary layers simultaneously develop, and the wall thermal condition is changed from a constant temperature to an adiabatic wall in the downstream region. DNS results clearly show the statistics and structure of turbulent heat transfer in a constant temperature wall followed by an adiabatic wall. In the first case, the entrance region of thermal field in turbulence can be also observed. Thus, both the development and the entrance regions in thermal fields can be explored, and the effects upstream of the thermal field on the adiabatic region are

  4. Relation between the Atmospheric Boundary Layer and Impact Factors under Severe Surface Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Yinhuan Ao

    2017-01-01

    Full Text Available This paper reported a comprehensive analysis on the diurnal variation of the Atmospheric Boundary Layer (ABL in summer of Badain Jaran Desert and discussed deeply the effect of surface thermal to ABL, including the Difference in Surface-Air Temperature (DSAT, net radiation, and sensible heat, based on limited GPS radiosonde and surface observation data during two intense observation periods of experiments. The results showed that (1 affected by topography of the Tibetan Plateau, the climate provided favorable external conditions for the development of Convective Boundary Layer (CBL, (2 deep CBL showed a diurnal variation of three- to five-layer structure in clear days and five-layer ABL structure often occurred about sunset or sunrise, (3 the diurnal variation of DSAT influenced thickness of ABL through changes of turbulent heat flux, (4 integral value of sensible heat which rapidly converted by surface net radiation had a significant influence on the growth of CBL throughout daytime. The cumulative effect of thick RML dominated the role after CBL got through SBL in the development stage, especially in late summer, and (5 the development of CBL was promoted and accelerated by the variation of wind field and distribution of warm advection in high and low altitude.

  5. Influence of boundary-layer dynamics on pollen dispersion and viability

    Science.gov (United States)

    Arritt, Raymond W.; Viner, Brian J.; Westgate, Mark E.

    2013-04-01

    Adoption of genetically modified (GM) crops has raised concerns that GM traits can accidentally cross into conventional crops or wild relatives through the transport of wind-borne pollen. In order to evaluate this risk it is necessary to account both for dispersion of the pollen grains and environmental influences on pollen viability. The Lagrangian approach is suited to this problem because it allows tracking the environmental temperature and moisture that pollen grains experience as they travel. Taking advantage of this capability we have combined a high-resolution version of the WRF meteorological model with a Lagrangian particle dispersion model to predict maize pollen dispersion and viability. WRF is used to obtain fields of wind, turbulence kinetic energy, temperature, and humidity which are then used as input to the Lagrangian dispersion model. The dispersion model in turn predicts transport of a statistical sample of a pollen cloud from source plants to receptors. We also use the three-dimensional temperature and moisture fields from WRF to diagnose changes in moisture content of the pollen grains and consequent loss of viability. Results show that turbulent motions in the convective boundary layer counteract the large terminal velocity of maize pollen grains and lift them to heights of several hundred meters, so that they can be transported long distances before settling to the ground. We also found that pollen lifted into the upper part of the boundary layer remains more viable than has been inferred using surface observations of temperature and humidity. This is attributed to the thermal and moisture structure that typifies the daytime atmospheric boundary layer, producing an environment of low vapor pressure deficit in the upper boundary layer which helps maintain pollen viability.

  6. Quantized vortex pair production in 4He films as a boundary-layer problem

    International Nuclear Information System (INIS)

    McCauley, J.L. Jr.

    1979-01-01

    The author shows that the idea of a boundary layer for discrete vortices arises naturally from the equation of motion for the probability distribution of an interacting vortex pair. In contrast with classical hydrodynamics, this boundary layer is of statistical origin, and the method leads to a scaling law for the exact dissociation rate of a bound vortex pair. (Auth.)

  7. Görtler instability of the axisymmetric boundary layer along a cone

    Science.gov (United States)

    ITOH, Nobutake

    2014-10-01

    Exact partial differential equations are derived to describe Görtler instability, caused by a weakly concave wall, of axisymmetric boundary layers with similar velocity profiles that are decomposed into a sequence of ordinary differential systems on the assumption that the solution can be expanded into inverse powers of local Reynolds number. The leading terms of the series solution are determined by solving a non-parallel version of Görtler’s eigenvalue problem and lead to a neutral stability curve and finite values of critical Görtler number and wave number for stationary and longitudinal vortices. Higher-order terms of the series solution indicate Reynolds-number dependence of Görtler instability and a limited validity of Görtler’s approximation based on the leading terms only. The present formulation is simply applicable to two-dimensional boundary layers of similar profiles, and critical Görtler number and wave number of the Blasius boundary layer on a flat plate are given by G2c = 1.23 and β2c = 0.288, respectively, if the momentum thickness is chosen as the reference length.

  8. Small particle transport across turbulent nonisothermal boundary layers

    Science.gov (United States)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  9. Modeling mode interactions in boundary layer flows via the Parabolized Floquet Equations

    OpenAIRE

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanović, Mihailo R.

    2017-01-01

    In this paper, we develop a linear model to study interactions between different modes in slowly-growing boundary layer flows. Our method consists of two steps. First, we augment the Blasius boundary layer profile with a disturbance field resulting from the linear Parabolized Stability Equations (PSE) to obtain the modified base flow; and, second, we combine Floquet analysis with the linear PSE to capture the spatial evolution of flow fluctuations. This procedure yields the Parabolized Floque...

  10. Boundary layers and the vanishing viscosity limit for incompressible 2D flow

    OpenAIRE

    Filho, Milton C. Lopes

    2007-01-01

    This manuscript is a survey on results related to boundary layers and the vanishing viscosity limit for incompressible flow. It is the lecture notes for a 10 hour minicourse given at the Morningside Center, Academia Sinica, Beijing, PRC from 11/28 to 12/07, 2007. The main topics covered are: a derivation of Prandtl's boundary layer equation; an outline of the rigorous theory of Prandtl's equation, without proofs; Kato's criterion for the vanishing viscosity limit; the vanishing viscosity limi...

  11. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    Science.gov (United States)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  12. Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers

    Science.gov (United States)

    Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus

    2015-11-01

    Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.

  13. High-frequency instabilities of stationary crossflow vortices in a hypersonic boundary layer

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan; Paredes, Pedro; Duan, Lian

    2016-09-01

    Hypersonic boundary layer flows over a circular cone at moderate incidence angle can support strong crossflow instability in between the windward and leeward rays on the plane of symmetry. Due to more efficient excitation of stationary crossflow vortices by surface roughness, such boundary layer flows may transition to turbulence via rapid amplification of the high-frequency secondary instabilities of finite-amplitude stationary crossflow vortices. The amplification characteristics of these secondary instabilities are investigated for crossflow vortices generated by an azimuthally periodic array of roughness elements over a 7° half-angle circular cone in a Mach 6 free stream. The analysis is based on both quasiparallel stability theory in the form of a partial-differential-equation-based eigenvalue analysis and plane marching parabolized stability equations that account for the effects of the nonparallel basic state on the growth of secondary disturbances. Depending on the local amplitude of the stationary crossflow mode, the most unstable high-frequency disturbances either originate from the second (i.e., Mack) mode instabilities of the unperturbed boundary layer or correspond to genuine secondary instabilities that reduce to stable disturbances at sufficiently small amplitudes of the stationary crossflow vortex. The predicted frequencies of the dominant secondary disturbances of either type are similar to those measured during wind tunnel experiments at Purdue University and the Technical University of Braunschweig, Germany. Including transverse surface curvature within the quasiparallel predictions does not alter the topology of the unstable modes; however, the resulting changes in both mode shape and disturbance growth rate are rather significant and curvature can be either stabilizing or destabilizing depending on the disturbance frequency and mode type. Nonparallel effects are shown to be strongly destabilizing for secondary instabilities originating from

  14. Experimental study of boundary layer transition on an airfoil induced by periodically passing wake (II)

    Energy Technology Data Exchange (ETDEWEB)

    Park, T.C. [Seoul National University Graduate School, Seoul (Korea); Jeon, W.P.; Kang, S.H. [Seoul National University, Seoul (Korea)

    2001-06-01

    This paper describes the phenomena of wake-induced transition of the boundary layers on a NACA0012 airfoil using measured phase-averaged data. Especially, the phase-averaged wall shear stresses are reasonably evaluated using the principle of Computational Preston Tube Method. Due to the passing wake, the turbulent patch is generated in the laminar boundary layer on the airfoil and the boundary layer becomes temporarily transitional. The patches propagate downstream with less speed than free-stream velocity and merge with each other at further downstream station, and the boundary layer becomes more transitional. The generation of turbulent patch at the leading edge of the airfoil mainly depends on velocity defects and turbulent intensity profiles of passing wakes. However, the growth and merging of turbulent patches depend on local streamwise pressure gradients as well as characteristics of turbulent patches. In this transition process, the present experimental data show very similar features to the previous numerical and experimental studies. It is confirmed that the two phase-averaged mean velocity dips appear in the outer region of transitional boundary layer for each passing cycle. Relatively high values of the phase-averaged turbulent fluctuations in the outer region indicate the possibility that breakdown occurs in the outer layer not near the wall. (author). 21 refs., 12 figs.

  15. Optimally growing boundary layer disturbances in a convergent nozzle preceded by a circular pipe

    Science.gov (United States)

    Uzun, Ali; Davis, Timothy B.; Alvi, Farrukh S.; Hussaini, M. Yousuff

    2017-06-01

    We report the findings from a theoretical analysis of optimally growing disturbances in an initially turbulent boundary layer. The motivation behind this study originates from the desire to generate organized structures in an initially turbulent boundary layer via excitation by disturbances that are tailored to be preferentially amplified. Such optimally growing disturbances are of interest for implementation in an active flow control strategy that is investigated for effective jet noise control. Details of the optimal perturbation theory implemented in this study are discussed. The relevant stability equations are derived using both the standard decomposition and the triple decomposition. The chosen test case geometry contains a convergent nozzle, which generates a Mach 0.9 round jet, preceded by a circular pipe. Optimally growing disturbances are introduced at various stations within the circular pipe section to facilitate disturbance energy amplification upstream of the favorable pressure gradient zone within the convergent nozzle, which has a stabilizing effect on disturbance growth. Effects of temporal frequency, disturbance input and output plane locations as well as separation distance between output and input planes are investigated. The results indicate that optimally growing disturbances appear in the form of longitudinal counter-rotating vortex pairs, whose size can be on the order of several times the input plane mean boundary layer thickness. The azimuthal wavenumber, which represents the number of counter-rotating vortex pairs, is found to generally decrease with increasing separation distance. Compared to the standard decomposition, the triple decomposition analysis generally predicts relatively lower azimuthal wavenumbers and significantly reduced energy amplification ratios for the optimal disturbances.

  16. Rough-wall turbulent boundary layers with constant skin friction

    KAUST Repository

    Sridhar, A.; Pullin, D. I.; Cheng, W.

    2017-01-01

    A semi-empirical model is presented that describes the development of a fully developed turbulent boundary layer in the presence of surface roughness with length scale ks that varies with streamwise distance x . Interest is centred on flows

  17. Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances

    Science.gov (United States)

    Balakumar, P.

    2013-01-01

    Boundary-layer receptivity and stability of Mach 6 flows over smooth and rough seven-degree half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances is considered. The effects of three-dimensional isolated roughness on the receptivity and stability are also simulated. The results for the smooth cone show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast acoustic waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. Distributed roughness elements located near the nose region decreased the receptivity of the second mode generated by the slow acoustic wave by a small amount. Roughness elements distributed across the continuous spectrum increased the receptivity of the second mode generated by the slow and fast acoustic waves and the vorticity wave. The largest increase occurred for the vorticity wave. Roughness elements distributed across the synchronization point did not change the receptivity of the second modes generated by the acoustic waves. The receptivity of the second mode generated by the vorticity wave increased in this case, but the increase is lower than that occurred with the roughness elements located across the continuous spectrum. The simulations with an isolated roughness element showed that the second mode waves generated by the acoustic disturbances are not influenced by the small roughness element. Due to the interaction, a three-dimensional wave is generated. However, the amplitude is orders of magnitude smaller than the two-dimensional wave.

  18. The origin and structure of streak-like instabilities in laminar boundary layer flames

    Science.gov (United States)

    Gollner, Michael; Miller, Colin; Tang, Wei; Finney, Mark

    2017-11-01

    Streamwise streaks are consistently observed in wildland fires, at the base of pool fires, and in other heated flows within a boundary layer. This study examines both the origin of these structures and their role in influencing some of the macroscopic properties of the flow. Streaks were reproduced and characterized via experiments on stationary heated strips and liquid and gas-fueled burners in laminar boundary layer flows, providing a framework to develop theory based on both observed and measured physical phenomena. The incoming boundary layer was established as the controlling mechanism in forming streaks, which are generated by pre-existing coherent structures, while the amplification of streaks was determined to be compatible with quadratic growth of Rayleigh-Taylor Instabilities, providing credence to the idea that the downstream growth of streaks is strongly tied to buoyancy. These local instabilities were also found to affect macroscopic properties of the flow, including heat transfer to the surface, indicating that a two-dimensional assumption may fail to adequately describe heat and mass transfer during flame spread and other reacting boundary layer flows. This work was supported by NSF (CBET-1554026) and the USDA-FS (13-CS-11221637-124).

  19. Thermocapillary Bubble Migration: Thermal Boundary Layers for Large Marangoni Numbers

    Science.gov (United States)

    Balasubramaniam, R.; Subramanian, R. S.

    1996-01-01

    The migration of an isolated gas bubble in an immiscible liquid possessing a temperature gradient is analyzed in the absence of gravity. The driving force for the bubble motion is the shear stress at the interface which is a consequence of the temperature dependence of the surface tension. The analysis is performed under conditions for which the Marangoni number is large, i.e. energy is transferred predominantly by convection. Velocity fields in the limit of both small and large Reynolds numbers are used. The thermal problem is treated by standard boundary layer theory. The outer temperature field is obtained in the vicinity of the bubble. A similarity solution is obtained for the inner temperature field. For both small and large Reynolds numbers, the asymptotic values of the scaled migration velocity of the bubble in the limit of large Marangoni numbers are calculated. The results show that the migration velocity has the same scaling for both low and large Reynolds numbers, but with a different coefficient. Higher order thermal boundary layers are analyzed for the large Reynolds number flow field and the higher order corrections to the migration velocity are obtained. Results are also presented for the momentum boundary layer and the thermal wake behind the bubble, for large Reynolds number conditions.

  20. Boundary layer structure and scavenging effect during a typical winter haze-fog episode in a core city of BTH region, China

    Science.gov (United States)

    Han, Suqin; Liu, Jingle; Hao, Tianyi; Zhang, Yufen; Li, Peiyan; Yang, Jianbo; Wang, Qinliang; Cai, Ziying; Yao, Qing; Zhang, Min; Wang, Xiujun

    2018-04-01

    The vertical distribution of PM2.5 and meteorological parameters from ground to upper levels were observed simultaneously using meteorological tower, tethered balloons and aerosol laser radar in Dec of 2016 in the urban area of Tianjin and its southern district, Jinghai. The influence of the vertical structure of boundary layer on a typical haze-fog episode was analyzed. There existed long distance transport of PM in the high layers before the haze formed in Tianjin and the downward airflows brought the PM from the high layer to the ground. In the early stages of this episode, periodic temperature inversions occurred, leading to conspicuous diurnal variations in the vertical profile of the PM2.5. In the middle and late stages of this episode, strong inversion and thick humidity layer were sustained below 400 m, and there were no big daily changes in the vertical profiles of the PM2.5. During the rapid formation period of the fog, the inversion layer was damaged and turbulence was strengthened. During the stationary phase of the fog process, wind and turbulence in the boundary layer became weak again. Rime was the main weather-related, wet cleaning mechanism that lowered pollutants concentration during this fog episode. High concentrations of water soluble ions in the rime samples and the concentrations of those ions in ambient PM2.5 appeared significant decrease during the rime period, which illustrated the scavenging effect of rime.