Renormalization group and critical phenomena
International Nuclear Information System (INIS)
Ji Qing
2004-01-01
The basic clue and the main steps of renormalization group method used for the description of critical phenomena is introduced. It is pointed out that this method really reflects the most important physical features of critical phenomena, i.e. self-similarity, and set up a practical solving method from it. This way of setting up a theory according to the features of the physical system is really a good lesson for today's physicists. (author)
Strings, fields and critical phenomena
International Nuclear Information System (INIS)
Ambjoern, J.
1987-07-01
The connection between field theory and critical phenomena is reviewed. Emphasis is put on the use of Monte Carlo methods in the study of non-perturbative aspects of field theory. String theory is then described as a statistical theory of random surfaces and the critical behaviour is analyzed both by analytical and numerical methods. (orig.)
Critical Phenomena in Gravitational Collapse
Directory of Open Access Journals (Sweden)
Gundlach Carsten
1999-01-01
Full Text Available As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term 'critical phenomena'. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. This review gives an introduction to the phenomena, tries to summarize the essential features of what is happening, and then presents extensions and applications of this basic scenario. Critical phenomena are of interest particularly for creating surprising structure from simple equations, and for the light they throw on cosmic censorship and the generic dynamics of general relativity.
Plasma boundary phenomena in tokamaks
International Nuclear Information System (INIS)
Stangeby, P.C.
1989-06-01
The focus of this review is on processes occurring at the edge, and on the connection between boundary plasma - the scrape-off layer (SOL) and the radiating layer - and central plasma processes. Techniques used for edge diagnosis are reviewed and basic experimental information (n e and T e ) is summarized. Simple models of the SOL are summarized, and the most important effects of the boundary plasma - the influence on the fuel particles, impurities, and energy - on tokamak operation dealt with. Methods of manipulating and controlling edge conditions in tokamaks and the experimental data base for the edge during auxiliary heating of tokamaks are reviewed. Fluctuations and asymmetries at the edge are also covered. (9 tabs., 134 figs., 879 refs.)
Phase transitions and critical phenomena
Domb, Cyril
2001-01-01
The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in
Phase transitions and critical phenomena
Domb, Cyril
2000-01-01
The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m
Critical Phenomena in Gravitational Collapse
Directory of Open Access Journals (Sweden)
Martín-García José M.
2007-12-01
Full Text Available As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term “critical phenomena”. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. Critical phenomena give a natural route from smooth initial data to arbitrarily large curvatures visible from infinity, and are therefore likely to be relevant for cosmic censorship, quantum gravity, astrophysics, and our general understanding of the dynamics of general relativity.
Two-dimensional critical phenomena
International Nuclear Information System (INIS)
Saleur, H.
1987-09-01
Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr
Characterizing critical phenomena via the Purcell effect
Silva Neto, M. B.; Szilard, D.; Rosa, F. S. S.; Farina, C.; Pinheiro, F. A.
2017-12-01
We investigate the role of phase transitions into the spontaneous-emission rate of a single quantum emitter embedded in a critical medium. Using a Landau-Ginzburg approach, we find that in the broken symmetry phase, the emission rate is reduced, or even suppressed, due to the photon mass generated by the Higgs mechanism. Remarkably, its sensitivity to the critical exponents of the phase transition allows for an optical determination of universality classes. When applied to the cases of superconductivity and superfluidity, we show that the Purcell effect also provides valuable information on spectroscopic and thermodynamic quantities, such as the size of the superconducting gap and the discontinuity in the specific heat at the transition. By unveiling that a deeper connection between the Purcell effect and phase transitions exists, we demonstrate that the former is an efficient optical probe of distinct critical phenomena and their associated observables.
Phantom black holes and critical phenomena
Energy Technology Data Exchange (ETDEWEB)
Azreg-Aïnou, Mustapha [Engineering Faculty, Başkent University, Bağlıca Campus, Ankara (Turkey); Marques, Glauber T. [Universidade Federal Rural da Amazônia ICIBE-LASIC, Av. Presidente Tancredo Neves 2501, CEP 66077-901—Belém/PA (Brazil); Rodrigues, Manuel E., E-mail: azreg@baskent.edu.tr, E-mail: gtadaiesky@hotmail.com, E-mail: esialg@gmail.com [Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará, Campus Universitário de Abaetetuba, CEP 68440-000, Abaetetuba, Pará (Brazil)
2014-07-01
We consider the two classes cosh and sinh of normal and phantom black holes of Einstein-Maxwell-dilaton theory. The thermodynamics of these holes is characterized by heat capacities that may have both signs depending on the parameters of the theory. Leaving aside the normal Reissner-Nordström black hole, it is shown that only some phantom black holes of both classes exhibit critical phenomena. The two classes share a nonextremality, but special, critical point where the transition is continuous and the heat capacity, at constant charge, changes sign with an infinite discontinuity. This point yields a classification scheme for critical points. It is concluded that the two unstable and stable phases coexist on one side of the criticality state and disappear on the other side, that is, there is no configuration where only one phase exists. The sinh class has an extremality critical point where the entropy diverges. The transition from extremality to nonextremality with the charge held constant is accompanied by a loss of mass and an increase in the temperature. A special case of this transition is when the hole is isolated (microcanonical ensemble), it will evolve by emission of energy, which results in a decrease of its mass, to the final state of minimum mass and vanishing heat capacity. The Ehrenfest scheme of classification is inaccurate in this case but the generalized one due to Hilfer leads to conclude that the transition is of order less than unity. Fluctuations near criticality are also investigated.
Ricci flows, wormholes and critical phenomena
Energy Technology Data Exchange (ETDEWEB)
Husain, Viqar; Seahra, Sanjeev S [Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada)
2008-11-21
We study the evolution of wormhole geometries under the Ricci flow using numerical methods. Depending on values of initial data parameters, wormhole throats either pinch off or evolve to a monotonically growing state. The transition between these two behaviors exhibits a form of critical phenomena reminiscent of that observed in gravitational collapse. Similar results are obtained for initial data that describe space bubbles attached to asymptotically flat regions. Our numerical methods are applicable to 'matter-coupled' Ricci flows derived from conformal invariance in string theory. (fast track communication)
Quantum field theory and critical phenomena
Zinn-Justin, Jean
1996-01-01
Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...
Surfactant-based critical phenomena in microgravity
Kaler, Eric W.; Paulaitis, Michael E.
1994-01-01
The objective of this research project is to characterize by experiment and theoretically both the kinetics of phase separation and the metastable structures produced during phase separation in a microgravity environment. The particular systems we are currently studying are mixtures of water, nonionic surfactants, and compressible supercritical fluids at temperatures and pressures where the coexisting liquid phases have equal densities (isopycnic phases). In this report, we describe experiments to locate equilibrium isopycnic phases and to determine the 'local' phase behavior and critical phenomena at nearby conditions of temperature, pressure, and composition. In addition, we report the results of preliminary small angle neutron scattering (SANS) experiments to characterize microstructures that exist in these mixtures at different fluid densities.
Black hole critical phenomena without black holes
Indian Academy of Sciences (India)
Black holes; numerical relativity; nonlinear sigma. Abstract. Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. ... Theoretical and Computational Studies Group, Southampton College, Long Island University, Southampton, NY 11968, USA ...
Black hole critical phenomena without black holes
Indian Academy of Sciences (India)
as a star or dispersing altogether. Were we engineers with advanced technology, we might attempt to find that critical amount of energy necessary to form a black hole. However, despite some fears to the contrary, such technology does not exist, so instead we investigate this critical regime numerically. The first step is to pick ...
Introduction to the critical and multicritical phenomena
International Nuclear Information System (INIS)
Salinas, S.R.A.
1982-09-01
The behavior of matter in the neighborhood of simple critical points is treated. The concepts of critical exponents and universality is introduced and the classical theories of the critical behavior and the phenomenological scaling theories of the thermodynamic functions and the critical correlations are described. Finally, a description of the theory of the renormalization group, which gives the microscopic bases of the scaling laws is ended . Four types of multicritical points which have already been detected in solid crystals tricritical, bicritical, tetracritical, and Lifshitz points are studied. Landa's theory and the formulation of the scaling laws in the neighborhood of these points is described. Also, the main features of some theoretical models which produce multicritical points-the Ising metamagnet and BEG model, which exhibit tricritical points, and the ANNNI model, which exhibits a Lifshitz point are described. The renormalization group approach in the Fourier space to the Ising metamagnet, and the new techniques of partial differential aproximants to analyze the scaling behavior in the neighborhood of the multicritical points are presented. (Author) [pt
Introduction to critical and multicritical phenomena
International Nuclear Information System (INIS)
Salinas, S.R.A.
1984-01-01
The behavior of matter in the neighborhood of simple critical points is treated. The concepts of critical exponents and universality are introduced, and the classical theories of the critical behavior and the phenomenological scaling theories of the thermodynamic functions and the critical correlations are described. Finally the first part is ended with a discription of the theory of the renormalization group, which gives the microscopic bases of the scaling laws. In the second part of these notes four types of multicritical points which have already been detected in solid crystals; tricritical, bicritical, tetracritical, and Lifshitz points are studied. Landau's theory and the formulation of the scaling laws in the neighborhood of these points is described. The main features of some theoretical models which produce multicritical points - the Ising metamagnet and the BEG model which exhibit tricritical points, and the ANNNI model, which exhibits a Lifshitz point are also described. The renormalization group approach in the Fourier space to the Ising metamagnet, and the new techniques of partial differential approximants to analyze the scaling behavior in the neighborhood of the multicritical points is presented. (Author) [pt
Quantum critical phenomena and conformal invariance
International Nuclear Information System (INIS)
Zhe Chang.
1995-05-01
We show that the Abelian bosonization of continuum limit of the 1D Hubbard model corresponds to the 2D explicitly conformal invariant Gaussian model at weak coupling limit. A universality argument is used to extend the equivalence to an entire segment of the critical line of the strongly correlated electron system. An integral equation satisfied by the mapping function between critical lines of the 1D Hubbard model and 2D Gaussian model is obtained and then solved in some limiting cases. By making use of the fact that the free Hubbard system reduces to four fermions and each of them is related to a c = 1/2 conformal field theory, we present exactly the partition function of the Hubbard model on a finite 1D lattice. (author). 16 refs
Critical phenomena in ferromagnetic spin systems on lattices
International Nuclear Information System (INIS)
Zinn-Justin, J.
1974-01-01
A perturbation expansion of the partition function, for a spin system on a lattice, is used in order to justify the renormalization group equations satisfied by the correlation functions in the critical domain of a second-order phase transition. These renormalization group equations correspond to a field theoretical formulation of Wilson's theory of critical phenomena [fr
A theoretical study on critical phenomena of magnetic soft modes
Energy Technology Data Exchange (ETDEWEB)
Zeng, Xiaoyan [Department of Mathematics, Shanghai University, 99 Shangda Road, 200444 Shanghai (China); Yang, Guohong [Department of Physics, Shanghai University, 99 Shangda Road, 200444 Shanghai (China); Shanghai Key Lab for Astrophysics, 100 Guilin Road, 200234 Shanghai (China); Yan, Ming, E-mail: myan@shu.edu.cn [Department of Physics, Shanghai University, 99 Shangda Road, 200444 Shanghai (China)
2017-02-01
Below a threshold magnetic field, domain structures in ferromagnetic samples may start to nucleate from the initially saturated state via either continuous or discontinuous phase transitions. Such processes are usually accompanied by the occurrence of soft spin-wave modes at the critical point. In this paper, we present a theoretical study on the critical phenomena of uniform soft modes in a macrospin model and spatially non-uniform ones in ferromagnetic thin films. The critical exponents of the mode frequency and its polarization are derived. The value is found to be equal to one half, which is directly related to the breaking of a reflection-symmetry in the phase transition. At the critical point, the soft mode becomes linearly polarized, which provides an additional measurable effect of the critical phenomena.
Critical phenomena in magnetic vortex formation probed by noise spectroscopy
International Nuclear Information System (INIS)
Saitoh, E.; Harii, K.; Miyajima, H.; Yamaoka, T.
2004-01-01
Transition between a vortex magnetic state and a uniform magnetic state in a Ni 81 Fe 19 mesoscopic ring has been investigated in terms of resistive-noise spectroscopy. The observed low-frequency noise exhibits critical enhancement around the magnetization saturation. This noise enhancement can be argued from the viewpoint of the critical phenomena due to the chiral-symmetry breakdown of mesoscopic magnetic-structure, which can present a typical mechanism of symmetry transition of magnetic structure in mesoscopic ferromagnets
The theory of critical phenomena in two-dimensional systems
International Nuclear Information System (INIS)
Olvera de la C, M.
1981-01-01
An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)
Semiology of subtle motor phenomena in critically ill patients.
Florea, Bogdan; Beniczky, Simona Alexandra; Demény, Helga; Beniczky, Sándor
2017-05-01
to investigate the semiology of subtle motor phenomena in critically ill patients, with- versus without nonconvulsive status epilepticus (NCSE). 60 consecutive comatose patients, in whom subtle motor phenomena were observed in the intensive care unit (ICU), were analysed prospectively. The semiology of the subtle phenomena was described from video-recordings, blinded to all other data. For each patient, the type, location and occurrence-pattern/duration were described. EEGs recorded in the ICU were classified using the Salzburg criteria for NCSE. only 23% (14/60) of the patients had NCSE confirmed by EEG. None of the semiological features could distinguish between patients with NCSE and those without. In both groups, the following phenomena were most common: discrete myoclonic muscle twitching and discrete tonic muscle activation. Besides these, automatisms and eye deviation were observed in both groups. subtle motor phenomena in critically ill patients can raise the suspicion of NCSE. Nevertheless, EEG is needed to confirm the diagnosis, since none of the semiological features are specific. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Random walks, critical phenomena, and triviality in quantum field theory
International Nuclear Information System (INIS)
Fernandez, R.; Froehlich, J.; Sokal, A.D.
1992-01-01
The subject of this book is equilibrium statistical mechanics - in particular the theory of critical phenomena - and quantum field theory. A general review of the theory of critical phenomena in spin systems, field theories, and random-walk and random-surface models is presented. Among the more technical topics treated in this book, the central theme is the use of random-walk representations as a tool to derive correlation inequalities. The consequences of these inequalities for critical-exponent theory and the triviality question in quantum field theory are expounded in detail. The book contains some previously unpublished results. It addresses both the researcher and the graduate student in modern statistical mechanics and quantum field theory. (orig.)
SUPERCOMPUTER SIMULATION OF CRITICAL PHENOMENA IN COMPLEX SOCIAL SYSTEMS
Directory of Open Access Journals (Sweden)
Petrus M.A. Sloot
2014-09-01
Full Text Available The paper describes a problem of computer simulation of critical phenomena in complex social systems on a petascale computing systems in frames of complex networks approach. The three-layer system of nested models of complex networks is proposed including aggregated analytical model to identify critical phenomena, detailed model of individualized network dynamics and model to adjust a topological structure of a complex network. The scalable parallel algorithm covering all layers of complex networks simulation is proposed. Performance of the algorithm is studied on different supercomputing systems. The issues of software and information infrastructure of complex networks simulation are discussed including organization of distributed calculations, crawling the data in social networks and results visualization. The applications of developed methods and technologies are considered including simulation of criminal networks disruption, fast rumors spreading in social networks, evolution of financial networks and epidemics spreading.
Critical exponents and scaling relations for self-organized critical phenomena
Tang, Chao; Bak, Per
1988-01-01
Critical indices beta, gamma delta, nv, etc. are defined and calculated for self-organized critical phenomena. Scaling relations are derived and checked numerically. The order-parameter exponent beta describes the spontaneous current and the relaxation to the criticl point. The power spectrum has 'l/f' behavior with the exponent phi = nv x z, where z is the dynamical critical exponent.
Enthalpy - entropy compensation effect in grain boundary phenomena
Czech Academy of Sciences Publication Activity Database
Lejček, Pavel
2005-01-01
Roč. 96, č. 10 (2005), s. 1129-1133 ISSN 0044-3093 R&D Projects: GA MPO(CZ) FF-P2/053 Institutional research plan: CEZ:AV0Z10100520 Keywords : compensation effect * enthalpy * entropy * thermodynamics * grain boundary Subject RIV: BJ - Thermodynamics Impact factor: 0.842, year: 2005
Critical phenomena in quasi-two-dimensional vibrated granular systems.
Guzmán, Marcelo; Soto, Rodrigo
2018-01-01
The critical phenomena associated to the liquid-to-solid transition of quasi-two-dimensional vibrated granular systems is studied using molecular dynamics simulations of the inelastic hard sphere model. The critical properties are associated to the fourfold bond-orientational order parameter χ_{4}, which measures the level of square crystallization of the system. Previous experimental results have shown that the transition of χ_{4}, when varying the vibration amplitude, can be either discontinuous or continuous, for two different values of the height of the box. Exploring the amplitude-height phase space, a transition line is found, which can be either discontinuous or continuous, merging at a tricritical point and the continuous branch ends in an upper critical point. In the continuous transition branch, the critical properties are studied. The exponent associated to the amplitude of the order parameter is β=1/2, for various system sizes, in complete agreement with the experimental results. However, the fluctuations of χ_{4} do not show any critical behavior, probably due to crossover effects by the close presence of the tricritical point. Finally, in quasi-one-dimensional systems, the transition is only discontinuous, limited by one critical point, indicating that two is the lower dimension for having a tricritical point.
Critical length scales for flow phenomena in liquid metal batteries
Kelley, Douglas; Weier, Tom
2017-11-01
Liquid metal batteries, a new technology for grid-scale energy storage, are composed of three liquid layers and therefore subject to a wide variety of fluid dynamical phenomena, both beneficial and detrimental. Some, like thermal convection and electrovortex flow, drive finite flow regardless of the size, current density, and temperature of the battery. Others, like the Tayler instability and the metal pad instability, occur only in certain parameter regimes - almost always dependent on length scale. I will discuss critical length scales, considering implications for battery design in light of fundamental fluid dynamics. This work was supported by the National Science Foundation under Award Number CBET-1552182.
Recent developments in the theory of critical phenomena
International Nuclear Information System (INIS)
Schroer, B.
1974-01-01
The work of Kadanoff, Wilson and Wegner, in the language of Euclidian field theory, is revised. In addition to Wilson's renormalization group method, which is based on the idea of eliminating short range fluctuations, the renormalization method of quantum field theory is discussed, which, in the present context, is called reparametrization (in order to avoid confusion). A reparametrization which is of particular interest in the theory of critical phenomena is the one which leads to scaling equations. New scaling equations which remain free of infrared divergences in two and three dimensions, are derived. The method allows a rather compact and unified discussion of Kadanoff's scaling laws and the related concept of global scaling fields, as well as the scale invariant correlation functions [pt
Universality classes and critical phenomena in confined liquid systems
Directory of Open Access Journals (Sweden)
A.V. Chalyi
2013-06-01
Full Text Available It is well known that the similar universal behavior of infinite-size (bulk systems of different nature requires the same basic conditions: space dimensionality; number components of order parameter; the type (short- or long-range of the intermolecular interaction; symmetry of the fluctuation part of thermodynamical potential. Basic conditions of similar universal behavior of confined systems needs the same supplementary conditions such as the number of monolayers for a system confinement; low crossover dimensionality, i.e., geometric form of restricted volume; boundary conditions on limiting surfaces; physical properties under consideration. This review paper is aimed at studying all these conditions of similar universal behavior for diffusion processes in confined liquid systems. Special attention was paid to the effects of spatial dispersion and low crossover dimensionality. This allowed us to receive receiving correct nonzero expressions for the diffusion coefficient at the critical point and to take into account the specific geometric form of the confined liquid volume. The problem of 3D⇔2D dimensional crossover was analyzed. To receive a smooth crossover for critical exponents, the Kawasaki-like approach from the theory of mode coupling in critical dynamics was proposed. This ensured a good agreement between data of computer experiment and theoretical calculations of the size dependence of the critical temperature Tc(H of water in slitlike pores. The width of the quasi-elastic scattering peak of slow neutrons near the structural phase transition in the aquatic suspensions of plasmatic membranes (mesostructures with the typical thickness up to 10 nm was studied. It was shown that the width of quasi-elastic peak of neutron scattering decreases due to the process of cell proliferation, i.e., with an increase of the membrane size (including the membrane thickness. Thus, neutron studies could serve as an additional diagnostic test for the
Boundary layer phenomena for differential-delay equations with state-dependent time lags, I.
Mallet-Paret, John; Nussbaum, Roger D.
1992-11-01
In this paper we begin a study of the differential-delay equation \\varepsilon x'(t) = - x(t) + f(x(t - r)), r = r(x(t)) . We prove the existence of periodic solutions for 0equations. In a companion paper these results will be used to investigate the limiting profile and corresponding boundary layer phenomena for periodic solutions as ɛ approaches zero.
Seismo-electromagnetic phenomena in the western part of the Eurasia-Nubia plate boundary
Directory of Open Access Journals (Sweden)
H. G. Silva
2011-01-01
Full Text Available This paper presents a work that aims to monitor seismo-electromagnetic phenomena in the Western Part of the Eurasia-Nubia Plate Boundary. This region has a significant tectonic activity combined with relatively low electromagnetic noise levels, rendering high quality seismo-electromagnetic measurements possible. An overview of the seismicity of this region is presented and the research plan is discussed accordingly.
Bulk and boundary critical behavior at Lifshitz points
Indian Academy of Sciences (India)
These advances opened the way towards systematic studies of boundary critical behavior at -axial Lifshitz points. The possible boundary critical behavior depends on whether the surface plane is perpendicular to one of the modulation axes or parallel to all of them. We show that the semi-infinite field theories ...
Two-dimensional fractal geometry, critical phenomena and conformal invariance
International Nuclear Information System (INIS)
Duplantier, B.
1988-01-01
The universal properties of critical geometrical systems in two-dimensions (2D) like the O (n) and Potts models, are described in the framework of Coulomb gas methods and conformal invariance. The conformal spectrum of geometrical critical systems obtained is made of a discrete infinite series of scaling dimensions. Specific applications involve the fractal properties of self-avoiding walks, percolation clusters, and also some non trivial critical exponents or fractal dimensions associated with subsets of the planar Brownian motion. The statistical mechanics of the same critical models on a random 2D lattice (namely in presence of a critically-fluctuating metric, in the so-called 2D quantum gravity) is also addressed, and the above critical geometrical systems are shown to be exactly solvable in this case. The new ''gravitational'' conformal spectrum so derived is found to satisfy the recent Knizhnik, Polyakov and Zamolodchikov quadratic relation which links it to the standard conformal spectrum in the plane
Dynamical critical phenomena in driven-dissipative systems.
Sieberer, L M; Huber, S D; Altman, E; Diehl, S
2013-05-10
We explore the nature of the Bose condensation transition in driven open quantum systems, such as exciton-polariton condensates. Using a functional renormalization group approach formulated in the Keldysh framework, we characterize the dynamical critical behavior that governs decoherence and an effective thermalization of the low frequency dynamics. We identify a critical exponent special to the driven system, showing that it defines a new dynamical universality class. Hence critical points in driven systems lie beyond the standard classification of equilibrium dynamical phase transitions. We show how the new critical exponent can be probed in experiments with driven cold atomic systems and exciton-polariton condensates.
Critical phenomena at perfect and non-perfect surfaces
International Nuclear Information System (INIS)
Pleimling, M
2004-01-01
In the past, perfect surfaces have been shown to yield local critical behaviour that differs from bulk critical behaviour. On the other hand, surface defects, whether they are of natural origin or created artificially, are known to modify local quantities. It is therefore important to clarify whether these defects are relevant or irrelevant for the surface critical behaviour. The purpose of this review is two-fold. In the first part we summarize some of the important results on surface criticality at perfect surfaces. Special attention is thereby paid to new developments such as for example the study of the surface critical behaviour in systems with competing interactions or of surface critical dynamics. In the second part the effect of surface defects (presence of edges, steps, quenched randomness, lines of adatoms, regular geometric patterns) on local critical behaviour in semi-infinite systems and in thin films is discussed in detail. Whereas most of the defects commonly encountered are shown to be irrelevant, some notable exceptions are highlighted. It is shown furthermore that under certain circumstances non-universal local critical behaviour may be observed at surfaces. (topical review)
SANS studies of critical phenomena in ternary mixtures
Bulavyn, L A; Hohryakov, A; Garamus, V; Avdeev, M; Almasy, L
2002-01-01
Critical behaviour of a quasi-binary liquid mixture is investigated by small-angle neutron scattering. Analysis of the changes of the critical parameters, caused by addition of a small amount of electrolyte into the binary mixture 3-methylpyridine-heavy water, shows that the third component does not change the 3D Ising-type behaviour of the system; a crossover towards the mean-field behaviour is not observed. (orig.)
Critical Phenomena of the Disorder Driven Localization-Delocalization Transition
International Nuclear Information System (INIS)
Marc Ruehlaender
2001-01-01
Metal-to-insulator transitions are generally linked to two phenomena: electron-electron correlations and disorder. Although real systems are usually responding to a mixture of both, they can be classified as undergoing a Mott-transition, if the former process dominates, or an Anderson-transition, if the latter dominates. High-T c superconductors, e.g., are a candidate for the first class. Materials in which disorder drives the metal-to-insulator transition include doped semiconductors and amorphous materials. After briefly reviewing the previous research on transport in disordered materials and the disorder-induced metal-to-insulator transition, a summary of the model and the methods used in subsequent chapters is given
Critical Boundary of Cascaded Quadratic Soliton Compression in PPLN
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin
2012-01-01
Cascaded quadratic soliton compression in PPLN is investigated and a general critical soliton number is found as the compression boundary. An optimal-parameter diagram for compression at 1550 nm is presented.......Cascaded quadratic soliton compression in PPLN is investigated and a general critical soliton number is found as the compression boundary. An optimal-parameter diagram for compression at 1550 nm is presented....
Critical crossover phenomena in compatible polymer blends studied with SANS
DEFF Research Database (Denmark)
Schwahn, D.; Janssen, S.; Willner, L.
1995-01-01
Polymer blends show a much larger 3d-Ising regime, e.g. a much larger Ginzburg number Gi than predicted by the Ginzburg criterion. This discrepancy is supposed to be explained by the compressibility or the free volume of the blend. In this paper we present and discuss the Gi number of polymer...... on monomeric microstructure and on pressure. This clearly shows that Gi is not a universal function. The observed strong decrease of Gi with pressure is a clear experimental proof that the critical crossover behaviour in polymer blends is indeed strongly influenced by the compressibility or free volume...... blends, different in chemistry, molecular weight, and microstructure. One sample was also studied at a different pressure. Gi was determined by describing the susceptibility obtained from SANS with the crossover function from Belyakov et al. The essential results are that Gi depends sensitively...
Geometrical critical phenomena on a random surface of arbitrary genus
International Nuclear Information System (INIS)
Duplantier, B.; Kostov, I.K.
1990-01-01
The statistical mechanics of self-avoiding walks (SAW) or of the O(n)-loop model on a two-dimensional random surface are shown to be exactly solvable. The partition functions of SAW and surface configurations (possibly in the presence of vacuum loops) are calculated by planar diagram enumeration techniques. Two critical regimes are found: a dense phase where the infinite walks and loops fill the infinite surface, the non-filled part staying finite, and a dilute phase where the infinite surface singularity on the one hand, and walk and loop singularities on the other, merge together. The configuration critical exponents of self-avoiding networks of any fixed topology G, on a surface with arbitrary genus H, are calculated as universal functions of G and H. For self-avoiding walks, the exponents are built from an infinite set of basic conformal dimensions associated with central charges c = -2 (dense phase) and c = 0 (dilute phase). The conformal spectrum Δ L , L ≥ 1 associated with L-leg star polymers is calculated exactly, for c = -2 and c = 0. This is generalized to the set of L-line 'watermelon' exponents Δ L of the O(n) model on a random surface. The divergences of the partition functions of self-avoiding networks on the random surface, possibly in the presence of vacuum loops, are shown to satisfy a factorization theorem over the vertices of the network. This provides a proof, in the presence of a fluctuating metric, of a result conjectured earlier in the standard plane. From this, the value of the string susceptibility γ str (H,c) is extracted for a random surface of arbitrary genus H, bearing a field theory of central charge c, or equivalently, embedded in d=c dimensions. Lastly, by enumerating spanning trees on a random lattice, we solve the similar problem of hamiltonian walks on the (fluctuating) Manhattan covering lattice. We also obtain new results for dilute trees on a random surface. (orig./HSI)
Gavrichkov, AA; Zakharov, [No Value
Critical phenomena in ethylbenzene oxidation in an acetic acid solution at high cobalt(ill) concentrations (from 0.01 to 0.2 mol L-1) were studied at 60-90 degrees C by the gasometric (O-2 absorption), spectrophotometric (Co-III accumulation), and chemiluminescence (relative concentration of radical
Critical effects of downstream boundary conditions on vortex breakdown
Kandil, Osama; Kandil, Hamdy A.; Liu, C. H.
1992-01-01
The unsteady, compressible, full Navier-Stokes (NS) equations are used to study the critical effects of the downstream boundary conditions on the supersonic vortex breakdown. The present study is applied to two supersonic vortex breakdown cases. In the first case, quasi-axisymmetric supersonic swirling flow is considered in a configured circular duct, and in the second case, quasi-axisymmetric supersonic swirling jet, that is issued from a nozzle into a supersonic jet of lower Mach number, is considered. For the configured duct flow, four different types of downstream boundary conditions are used, and for the swirling jet flow from the nozzle, two types of downstream boundary conditions are used. The solutions are time accurate which are obtained using an implicit, upwind, flux-difference splitting, finite-volume scheme.
Introduction to real-space renormalization-group methods in critical and chaotic phenomena
Hu, Bambi
1982-11-01
The methods of the real-space renormalization group, and their application to critical and chaotic phenomena are reviewed. The article consists of two parts: the first part deals with phase transitions and critical phenomena; the second part, bifurcations and transitions to chaos. We begin with an introduction to the phenomenology of phase transitions and critical phenomena. Seminal concepts such as scaling and universality, and their characterization by critical exponents are discussed. The basic ideas of the renormalization group are then explained. A survey of real-space renormalization-group methods: decimation, Migdal-Kadanoff approximation, cumulant and cluster expansions, is given. The Hamiltonian formulation of classical statistical systems into quantum mechanical systems by the method of the transfer matrix is introduced. Quantum renormalization-group methods of truncation and projection, and their application to the transcribed quantum mechanical Ising model in a transverse field are illustrated. Finally, the quantum cumulant-expansion method as applied to the one-dimensional quantum mechanical XY model is discussed. The second part of the article is devoted to the subject of bifurcations and transitions to chaos. The three most commonly discussed kinds of bifurcations: the pitchfork, tangent and Hopf bifurcations, and the associated routes to chaos: period doubling, intermittency and quasiperiodicity are discussed. Period doubling based on the logistic map is explained in detail. Universality and its expression in terms of functional renormalization-group equations is discussed. The Liapunov characteristic exponent and its analogy to the order parameter are introduced. The effect of external noise and its universal scaling feature are shown. The simplest characterizations of the Hénon strange attractor are intuitively illustrated. The purpose of this article is primarily pedagogical. The similarity between critical and chaotic phenomena is a recurrent
Role of residual layer and large-scale phenomena on the evolution of the boundary layer
Blay, E.; Pino, D.; Vilà-Guerau de Arellano, J.; Boer, van de A.; Coster, de O.; Faloona, I.; Garrouste, O.; Hartogensis, O.K.
2012-01-01
Mixed-layer theory and large-eddy simulations are used to analyze the dynamics of the boundary layer on two intensive operational periods during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign: 1st and 2nd of July 2011, when convective boundary layers (CBLs) were observed.
Directory of Open Access Journals (Sweden)
Тетяна Андріївна Непокупна
2015-03-01
Full Text Available This article analyzes the global transformations and their impact on the main society life; the specifics of modern interpretations of events and phenomena, their destabilizing effects on behavior, health and life of humans; the role of economic sciences in the formation of critical thinking as a means of combating ignorance and propaganda, formation of an objective world view that grounded on knowledge
Critical Phenomena in Higher Curvature Charged AdS Black Holes
Directory of Open Access Journals (Sweden)
Arindam Lala
2013-01-01
Full Text Available In this paper, we have studied the critical phenomena in higher curvature charged AdS black holes. We have considered Lovelock-Born-Infeld-AdS black hole as an example. The thermodynamics of the black hole have been studied which reveals the onset of a higher-order phase transition in the black hole in the canonical ensemble (fixed charge ensemble framework. We have analytically derived the critical exponents associated with these thermodynamic quantities. We find that our results fit well with the thermodynamic scaling laws and consistent with the mean field theory approximation. The suggestive values of the other two critical exponents associated with the correlation function and correlation length on the critical surface have been derived.
Theory of critical phenomena in finite-size systems scaling and quantum effects
Brankov, Jordan G; Tonchev, Nicholai S
2000-01-01
The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals
About Merging Threshold and Critical Flux Concepts into a Single One: The Boundary Flux
Directory of Open Access Journals (Sweden)
Marco Stoller
2014-01-01
Full Text Available In the last decades much effort was put in understanding fouling phenomena on membranes. One successful approach to describe fouling issues on membranes is the critical flux theory. The possibility to measure a maximum value of the permeate flux for a given system without incurring in fouling issues was a breakthrough in membrane process design. However, in many cases critical fluxes were found to be very low, lower than the economic feasibility of the process. The knowledge of the critical flux value must be therefore considered as a good starting point for process design. In the last years, a new concept was introduced, the threshold flux, which defines the maximum permeate flow rate characterized by a low constant fouling rate regime. This concept, more than the critical flux, is a new practical tool for membrane process designers. In this paper a brief review on critical and threshold flux will be reported and analyzed. And since the concepts share many common aspects, merged into a new concept, called the boundary flux, the validation will occur by the analysis of previously collected data by the authors, during the treatment of olive vegetation wastewater by ultrafiltration and nanofiltration membranes.
Costa, Antonio
2016-04-01
Volcanic hazards may have destructive effects on economy, transport, and natural environments at both local and regional scale. Hazardous phenomena include pyroclastic density currents, tephra fall, gas emissions, lava flows, debris flows and avalanches, and lahars. Volcanic hazards assessment is based on available information to characterize potential volcanic sources in the region of interest and to determine whether specific volcanic phenomena might reach a given site. Volcanic hazards assessment is focussed on estimating the distances that volcanic phenomena could travel from potential sources and their intensity at the considered site. Epistemic and aleatory uncertainties strongly affect the resulting hazards assessment. Within the context of critical infrastructures, volcanic eruptions are rare natural events that can create severe hazards. In addition to being rare events, evidence of many past volcanic eruptions is poorly preserved in the geologic record. The models used for describing the impact of volcanic phenomena generally represent a range of model complexities, from simplified physics based conceptual models to highly coupled thermo fluid dynamical approaches. Modelling approaches represent a hierarchy of complexity, which reflects increasing requirements for well characterized data in order to produce a broader range of output information. In selecting models for the hazard analysis related to a specific phenomenon, questions that need to be answered by the models must be carefully considered. Independently of the model, the final hazards assessment strongly depends on input derived from detailed volcanological investigations, such as mapping and stratigraphic correlations. For each phenomenon, an overview of currently available approaches for the evaluation of future hazards will be presented with the aim to provide a foundation for future work in developing an international consensus on volcanic hazards assessment methods.
Natural-time analysis of critical phenomena: The case of seismicity
Varotsos, P. A.; Sarlis, N. V.; Skordas, E. S.; Uyeda, S.; Kamogawa, M.
2010-10-01
We first investigate in natural time the numerical simulations of a simple deterministic self-organized critical system introduced to describe avalanches in stick-slip phenomena. It is one-dimensional and belongs to the same universality class as the train model for earthquakes introduced by Burridge and Knopoff. We show that the variance κ1=langχ2rang-langχrang2 of natural time χ, becomes approximately equal to 0.070 when the system approaches the critical state. Next, we analyze in natural time the small earthquakes subsequent to the low-frequency magnetic-field precursor observed near the epicenter of the Ms7.1 Loma Prieta earthquake in 1989. We find that almost five days before the mainshock, the condition κ1≈0.070 was reached.
2007-06-01
PRE-X EXPERIMENTAL RE-ENTRY LIFTING BODY: DESIGN OF FLIGHT TEST EXPERIMENTS FOR CRITICAL AEROTHERMAL PHENOMENA Paolo Baiocco * * CNES...ACRONYMS ACS Attitude Control System AEDB Aero Dynamic Data Base AoA Angle of Attack ARD Atmospheric Re-entry Demonstrator ATD Aero Termo ...1 Baiocco, P. (2007) Pre-X Experimental Re-entry Lifting Body: Design of Flight Test Experiments for Critical Aerothermal Phenomena. In Flight
An alternative perspective to observe the critical phenomena of dilaton black holes
Energy Technology Data Exchange (ETDEWEB)
Mo, Jie-Xiong [Lingnan Normal University, Institute of Theoretical Physics, Zhanjiang, Guangdong (China)
2017-08-15
The critical phenomena of dilaton black holes are probed from a totally different perspective other than the P-v criticality and the q-U criticality discussed in former literature. We investigate not only the two point correlation function but also the entanglement entropy of dilaton black holes. For both the two point correlation function and the entanglement entropy we consider 4 x 2 x 2 = 16 cases due to different choices of parameters. The van der Waals-like behavior can be clearly witnessed from all the T -δL (T -δS) graphs for q < q{sub c}. Moreover, the effects of dilaton gravity and the spacetime dimensionality on the phase structure of dilaton black holes are disclosed. Furthermore, we discuss the stability of dilaton black holes by applying the analogous specific heat definition and remove the unstable branch by introducing a bar T = T{sub *}. It is shown that the first order phase transition temperature T{sub *} is affected by both α and n. The analogous equal area laws for both the T -δL graph and the T -δS graph are examined numerically. The relative errors for all cases are small enough so that we can safely conclude that the analogous equal area laws hold for T -δL (T -δS) graph of dilaton black holes. (orig.)
Precise Measurements of the Density and Critical Phenomena Near Phase Transitions in Liquid Helium
Yeh, Nai-Chang
1997-01-01
The first-year progress for the project of precise measurements of the density and critical phenomena of helium near phase transitions is summarized below: (1) completion of a cryogenic sample probe for the proposed measurements, and the rehabilitation of a designated laboratory at Caltech for this project; (2) construction and testing of a superconducting niobium cavity; (3) acquisition of one phase-locked-loop system for high-resolution frequency control and read- out; (4) setting up high-resolution thermometry (HRT) for temperature readout and control; (5) developing new approaches for calibrating the coefficient between the resonant frequency shift (delta f) and the helium density (rho), as well as for measuring the effect of gravity on T(sub lambda) to a much better precision; (6) programming of the interface control of all instruments for automatic data acquisition; and (7) improving data analyses and fitting procedures.
Anomalous transport phenomena in CeCoIn{sub 5} close to quantum critical point
Energy Technology Data Exchange (ETDEWEB)
Onari, S. [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan)]. E-mail: onari@fcs.coe.nagoya-u.ac.jp; Kontani, H. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Tanaka, Y. [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan)
2007-03-15
Various transport coefficients show striking deviations from conventional Fermi-liquid behaviors in many electron systems which are close to antiferromagnetic (AF) quantum critical points (QCP). For example, Hall coefficients and Nernst coefficients in three-dimensional heavy fermion CeCoIn{sub 5} and CeCu{sub 6-x}Au{sub x} increase remarkably at low temperatures. These temperature dependences are too strong to explain in terms of the relaxation time approximation. To elucidate the origin of these anomalous transport phenomena in three-dimensional systems, we study the role of current vertex corrections (CVC) based on the fluctuation exchange (FLEX) approximation. We find that the Hall coefficient and the Nernst coefficient strongly increase due to the CVC in the vicinity of the AF QCP, even in three-dimensional systems.
Capozza, R.; Vanossi, A.; Benassi, A.; Tosatti, E.
2015-02-01
Electrical charging of parallel plates confining a model ionic liquid down to nanoscale distances yields a variety of charge-induced changes in the structural features of the confined film. That includes even-odd switching of the structural layering and charging-induced solidification and melting, with important changes of local ordering between and within layers, and of squeezout behavior. By means of molecular dynamics simulations, we explore this variety of phenomena in the simplest charged Lennard-Jones coarse-grained model including or excluding the effect a neutral tail giving an anisotropic shape to one of the model ions. Using these models and open conditions permitting the flow of ions in and out of the interplate gap, we simulate the liquid squeezout to obtain the distance dependent structure and forces between the plates during their adiabatic approach under load. Simulations at fixed applied force illustrate an effective electrical pumping of the ionic liquid, from a thick nearly solid film that withstands the interplate pressure for high plate charge to complete squeezout following melting near zero charge. Effective enthalpy curves obtained by integration of interplate forces versus distance show the local minima that correspond to layering and predict the switching between one minimum and another under squeezing and charging.
International Nuclear Information System (INIS)
Uchibori, Akihiro; Ohshima, Hiroyuki
2008-01-01
A numerical analysis method for melting/solidification phenomena has been developed to evaluate a feasibility of several candidate techniques in the nuclear fuel cycle. Our method is based on the eXtended Finite Element Method (X-FEM) which has been used for moving boundary problems. Key technique of the X-FEM is to incorporate signed distance function into finite element interpolation to represent a discontinuous gradient of the temperature at a moving solid-liquid interface. Construction of the finite element equation, the technique of quadrature and the method to solve the equation are reported here. The numerical solutions of the one-dimensional Stefan problem, solidification in a two-dimensional square corner and melting of pure gallium are compared to the exact solutions or to the experimental data. Through these analyses, validity of the newly developed numerical analysis method has been demonstrated. (author)
Critical phenomena of regular black holes in anti-de Sitter space-time
Energy Technology Data Exchange (ETDEWEB)
Fan, Zhong-Ying [Peking University, Center for High Energy Physics, Beijing (China)
2017-04-15
In General Relativity, addressing coupling to a non-linear electromagnetic field, together with a negative cosmological constant, we obtain the general static spherical symmetric black hole solution with magnetic charges, which is asymptotic to anti-de Sitter (AdS) space-times. In particular, for a degenerate case the solution becomes a Hayward-AdS black hole, which is regular everywhere in the full space-time. The existence of such a regular black hole solution preserves the weak energy condition, while the strong energy condition is violated. We then derive the first law and the Smarr formula of the black hole solution. We further discuss its thermodynamic properties and study the critical phenomena in the extended phase space where the cosmological constant is treated as a thermodynamic variable as well as the parameter associated with the non-linear electrodynamics. We obtain many interesting results such as: the Maxwell equal area law in the P-V (or S-T) diagram is violated and consequently the critical point (T{sub *},P{sub *}) of the first order small-large black hole transition does not coincide with the inflection point (T{sub c},P{sub c}) of the isotherms; the Clapeyron equation describing the coexistence curve of the Van der Waals (vdW) fluid is no longer valid; the heat capacity at constant pressure is finite at the critical point; the various exponents near the critical point are also different from those of the vdW fluid. (orig.)
Franz, S.
2004-10-01
Since the discovery of the renormalization group theory in statistical physics, the realm of applications of the concepts of scale invariance and criticality has pervaded several fields of natural and social sciences. This is the leitmotiv of Didier Sornette's book, who in Critical Phenomena in Natural Sciences reviews three decades of developments and applications of the concepts of criticality, scale invariance and power law behaviour from statistical physics, to earthquake prediction, ruptures, plate tectonics, modelling biological and economic systems and so on. This strongly interdisciplinary book addresses students and researchers in disciplines where concepts of criticality and scale invariance are appropriate: mainly geology from which most of the examples are taken, but also engineering, biology, medicine, economics, etc. A good preparation in quantitative science is assumed but the presentation of statistical physics principles, tools and models is self-contained, so that little background in this field is needed. The book is written in a simple informal style encouraging intuitive comprehension rather than stressing formal derivations. Together with the discussion of the main conceptual results of the discipline, great effort is devoted to providing applied scientists with the tools of data analysis and modelling necessary to analyse, understand, make predictions and simulate systems undergoing complex collective behaviour. The book starts from a purely descriptive approach, explaining basic probabilistic and geometrical tools to characterize power law behaviour and scale invariant sets. Probability theory is introduced by a detailed discussion of interpretative issues warning the reader on the use and misuse of probabilistic concepts when the emphasis is on prediction of low probability rare---and often catastrophic---events. Then, concepts that have proved useful in risk evaluation, extreme value statistics, large limit theorems for sums of independent
International Nuclear Information System (INIS)
Franz, S
2004-01-01
Since the discovery of the renormalization group theory in statistical physics, the realm of applications of the concepts of scale invariance and criticality has pervaded several fields of natural and social sciences. This is the leitmotiv of Didier Sornette's book, who in Critical Phenomena in Natural Sciences reviews three decades of developments and applications of the concepts of criticality, scale invariance and power law behaviour from statistical physics, to earthquake prediction, ruptures, plate tectonics, modelling biological and economic systems and so on. This strongly interdisciplinary book addresses students and researchers in disciplines where concepts of criticality and scale invariance are appropriate: mainly geology from which most of the examples are taken, but also engineering, biology, medicine, economics, etc. A good preparation in quantitative science is assumed but the presentation of statistical physics principles, tools and models is self-contained, so that little background in this field is needed. The book is written in a simple informal style encouraging intuitive comprehension rather than stressing formal derivations. Together with the discussion of the main conceptual results of the discipline, great effort is devoted to providing applied scientists with the tools of data analysis and modelling necessary to analyse, understand, make predictions and simulate systems undergoing complex collective behaviour. The book starts from a purely descriptive approach, explaining basic probabilistic and geometrical tools to characterize power law behaviour and scale invariant sets. Probability theory is introduced by a detailed discussion of interpretative issues warning the reader on the use and misuse of probabilistic concepts when the emphasis is on prediction of low probability rare - and often catastrophic - events. Then, concepts that have proved useful in risk evaluation, extreme value statistics, large limit theorems for sums of independent
Bulk and boundary critical behavior at Lifshitz points
Indian Academy of Sciences (India)
expansions [59], and computer simulations [60]; and many of these theoretical predictions have been checked by careful experiments. By contrast, the application of modern field-theoretic RG approaches to the study of critical behavior at LP is a fairly recent development [41,43,46,51]. The two-loop RG analysis of critical ...
Nocturnal Boundary-Layer Phenomena Observed at a Complex Site During the Perdigão Experiment
Bell, T.; Klein, P. M.; Smith, E.; Gebauer, J.; Turner, D. D.
2017-12-01
The Perdigão Field Experiment set out to study atmospheric flows in complex terrain and to collect a high-quality dataset for the validation of meso- and micro-scale models. An Intensive Observation Period (IOP) was conducted from May 1, 2017 through June 15, 2017 where a multitude of instruments were deployed in and around two nearly parallel ridges. The Collaborative Lower Atmospheric Mobile Profiling System (CLAMPS) was deployed and operated in the valley between the ridges. The CLAMPS facility, which was developed as a joint effort between the School of Meteorology at OU and NOAA's National Severe Storms Laboratory (NSSL), takes advantage of a microwave radiometer (MWR), an atmospheric emitted radiance interferometer (AERI), and a scanning doppler Lidar to profile the boundary layer with a high temporal and spatial resolution. Optimized Lidar scanning strategies and joint retrievals for the MWR and ARI data provide detailed information about the wind, turbulence and thermodynamic structure from the surface up to 1000 m AGL on most nights; sometimes the max height is even higher. Over the course of the IOP, CLAMPS observed many different phenomena. During some nights, when stronger background prevailed and was directed perpendicular to the valley, waves were observed at the ridges and in the valley. At the same time, radiational cooling led to drainage flows in the valley, particularly during nights when the mesoscale forcing was weak. At first, CLAMPS profile observations and data collected with radiosondes released at a near-by site are compared to assess the data quality. The radiosonde observations are also being used to document and classify the upper-level flow during the IOP. Additionally, CLAMPS data from a few selected nights will be presented and analyzed in terms of turbulence and its impact on mixing inside and above the valley. June 1-2 represents a good base-state case. Winds at ridge height were generally less than 5ms-1 after 0Z and valley flows
Energy Technology Data Exchange (ETDEWEB)
Mishchenko, Yuriy [North Carolina State Univ., Raleigh, NC (United States)
2004-12-01
MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati
Sornette, Didier
2006-01-01
Concepts, methods and techniques of statistical physics in the study of correlated, as well as uncorrelated, phenomena are being applied ever increasingly in the natural sciences, biology and economics in an attempt to understand and model the large variability and risks of phenomena. This is the first textbook written by a well-known expert that provides a modern up-to-date introduction for workers outside statistical physics. The emphasis of the book is on a clear understanding of concepts and methods, while it also provides the tools that can be of immediate use in applications. Although this book evolved out of a course for graduate students, it will be of great interest to researchers and engineers, as well as to post-docs in geophysics and meteorology.
Mill and Mental Phenomena: Critical Contributions to a Science of Cognition
Directory of Open Access Journals (Sweden)
Steven L. Bistricky
2013-04-01
Full Text Available Attempts to define cognition preceded John Stuart Mill’s life and continue to this day. John Stuart Mill envisioned a science of mental phenomena informed by associationism, empirical introspection, and neurophysiology, and he advanced specific ideas that still influence modern conceptions of cognition. The present article briefly reviews Mill’s personal history and the times in which he lived, and it traces the evolution of ideas that have run through him to contemporary cognitive concepts. The article also highlights contemporary problems in defining cognition and supports specific criteria regarding what constitutes cognition.
Mill and mental phenomena: critical contributions to a science of cognition.
Bistricky, Steven L
2013-06-01
Attempts to define cognition preceded John Stuart Mill's life and continue to this day. John Stuart Mill envisioned a science of mental phenomena informed by associationism, empirical introspection, and neurophysiology, and he advanced specific ideas that still influence modern conceptions of cognition. The present article briefly reviews Mill's personal history and the times in which he lived, and it traces the evolution of ideas that have run through him to contemporary cognitive concepts. The article also highlights contemporary problems in defining cognition and supports specific criteria regarding what constitutes cognition.
Critical current of a high Tc Josephson grain boundary junction in high magnetic field
Däumling, M.; Sarnelli, E.; Chaudhari, P.; Gupta, A.; Lacey, J.
1992-09-01
The critical current (Ic) of YBa2Cu3O7-δ grain boundary Josephson junctions was measured up to magnetic fields of 5 T. Magnetic field history dependent Ic values were observed even after correction for self-field effects stemming from hysteretic shielding currents in the grain adjacent to the boundary. A novel feature observed is an anomalous increase in Ic in high magnetic fields of several Telsa.
Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system
Maliborski, Maciej; Rinne, Oliver
2018-02-01
We study critical behavior in gravitational collapse of a general spherically symmetric Yang-Mills field coupled to the Einstein equations. Unlike the magnetic ansatz used in previous numerical work, the general Yang-Mills connection has two degrees of freedom in spherical symmetry. This fact changes the phenomenology of critical collapse dramatically. The magnetic sector features both type I and type II critical collapse, with universal critical solutions. In contrast, in the general system type I disappears and the critical behavior at the threshold between dispersal and black hole formation is always type II. We obtain values of the mass scaling and echoing exponents close to those observed in the magnetic sector, however we find some indications that the critical solution differs from the purely magnetic discretely self-similar attractor and exact self-similarity and universality might be lost. The additional "type III" critical phenomenon in the magnetic sector, where black holes form on both sides of the threshold but the Yang-Mills potential is in different vacuum states and there is a mass gap, also disappears in the general system. We support our dynamical numerical simulations with calculations in linear perturbation theory; for instance, we compute quasi-normal modes of the unstable attractor (the Bartnik-McKinnon soliton) in type I collapse in the magnetic sector.
DEFF Research Database (Denmark)
Pinto Coelho Muniz Vinhal, Andre; Yan, Wei; Kontogeorgis, Georgios
2017-01-01
of the Cubic-Plus-Association (CPA) equation of state (EoS). We obtained new parameters for methanol and alkanes from n-hexane to n-decane. The comparison with the original parameters showed that this procedure is important for associating compounds, since for inert species the equation reduces to the Soave......Precise description of the critical points with association equations of state requires rescaling of the parameters to match experimental critical temperature and pressure of pure components. In this work we developed a method to include critical data restrictions in the parametrization procedure...
DEFF Research Database (Denmark)
Milovanov, A.V.; Juul Rasmussen, J.
2005-01-01
Equations built on fractional derivatives prove to be a powerful tool in the description of complex systems when the effects of singularity, fractal supports, and long-range dependence play a role. In this Letter, we advocate an application of the fractional derivative formalism to a fairly general...... class of critical phenomena when the organization of the system near the phase transition point is influenced by a competing nonlocal ordering. Fractional modifications of the free energy functional at criticality and of the widely known Ginzburg-Landau equation central to the classical Landau theory...... of second-type phase transitions are discussed in some detail. An implication of the fractional Ginzburg-Landau equation is a renormalization of the transition temperature owing to the nonlocality present. (c) 2005 Elsevier B.V. All rights reserved....
Maximum-entropy approach to critical phenomena in ground states of finite systems
Arrachea, L.; Canosa, N.; Plastino, A.; Portesi, M.; Rossignoli, R.
1992-05-01
A scheme for detecting signatures of phase transitions associated with pure quantum states, from the knowledge of a limited set of expectation values, is introduced. An accurate prediction of critical regions in ground states of systems with a finite number of particles is obtained.
Exact solutions and critical chaos in dilaton gravity with a boundary
Energy Technology Data Exchange (ETDEWEB)
Fitkevich, Maxim [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary Prospect 7a, Moscow 117312 (Russian Federation); Moscow Institute of Physics and Technology,Institutskii per. 9, Dolgoprudny 141700, Moscow Region (Russian Federation); Levkov, Dmitry [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary Prospect 7a, Moscow 117312 (Russian Federation); Zenkevich, Yegor [Dipartimento di Fisica, Università di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); INFN, sezione di Milano-Bicocca,I-20126 Milano (Italy); National Research Nuclear University MEPhI,Moscow 115409 (Russian Federation)
2017-04-19
We consider (1+1)-dimensional dilaton gravity with a reflecting dynamical boundary. The boundary cuts off the region of strong coupling and makes our model causally similar to the spherically-symmetric sector of multidimensional gravity. We demonstrate that this model is exactly solvable at the classical level and possesses an on-shell SL(2, ℝ) symmetry. After introducing general classical solution of the model, we study a large subset of soliton solutions. The latter describe reflection of matter waves off the boundary at low energies and formation of black holes at energies above critical. They can be related to the eigenstates of the auxiliary integrable system, the Gaudin spin chain. We argue that despite being exactly solvable, the model in the critical regime, i.e. at the verge of black hole formation, displays dynamical instabilities specific to chaotic systems. We believe that this model will be useful for studying black holes and gravitational scattering.
Boundary conditions in Ginsburg Landau theory and critical temperature of high-T superconductors
Lykov, A. N.
2008-06-01
New mixed boundary conditions to the Ginsburg-Landau equations are found to limit the critical temperature ( T) of high- T superconductors. Moreover, the value of the pseudogap in these superconductors can be explained by using the method. As a result, the macroscopic approach is proposed to increase T of cuprate superconductors.
Boundary conditions in Ginsburg-Landau theory and critical temperature of high-Tc superconductors
International Nuclear Information System (INIS)
Lykov, A.N.
2008-01-01
New mixed boundary conditions to the Ginsburg-Landau equations are found to limit the critical temperature (T c ) of high-T c superconductors. Moreover, the value of the pseudogap in these superconductors can be explained by using the method. As a result, the macroscopic approach is proposed to increase T c of cuprate superconductors
Critical phenomena in Ising-type thin films by Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63, 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2016-04-01
The magnetic properties of ferrimagnetic spin-2 and 3/2 Ising-typed thin films are studied by Monte Carlo simulation. The critical temperature is obtained for different values of thickness of the thin film and for different exchange interactions. The total magnetization has been determined for different values of exchange interactions in surface and in bulk and different temperatures. The magnetic hysteresis cycle is obtained for different values of exchange interactions ferro and antiferromagnetic in the surface and in the bulk and for different values of temperatures for a fixed size of the film thickness. The coercive field increase with increasing the film thickness. - Highlights: • The magnetic properties of thin films are studied by Monte Carlo simulation. • The critical temperature is obtained for different values of thickness of thin film. • The magnetic hysteresis cycle is obtained in the surface and in the bulk. • The coercive field increase with increasing the thin film thickness.
Studies of critical phenomena in molecular magnets by μSR spectroscopy
International Nuclear Information System (INIS)
Wasiutynski, T; Balanda, M; Czapla, M; Pelka, R; Zielinski, P M; Pratt, F L; Korzeniak, T; Podgajny, R; Pinkowicz, D; Sieklucka, B
2011-01-01
The rapidly developing field of molecular magnetism supplies a multitude of novel compounds of unprecedented properties and structure. Molecular magnets predominantly belong to the class of compounds involving well localized magnetic moments. This feature together with the fact that the nature and symmetry of magnetic interactions is encrypted in the critical behaviour makes them a perfect testing ground of the existing theoretical spin models. It is demonstrated that the experimental technique of the μSR spectroscopy is perfectly suited to study magnetic fluctuations and spin dynamics in the neighbourhood of a phase transition. This unique method can even dispense with the complementary measurements of the AC susceptibility or heat capacity to supply a complete set of the static and dynamic critical exponents. It can thus be used to pinpoint the universality class of the material of interest.
Critical phenomena in Ising-type thin films by Monte Carlo study
International Nuclear Information System (INIS)
Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.
2016-01-01
The magnetic properties of ferrimagnetic spin-2 and 3/2 Ising-typed thin films are studied by Monte Carlo simulation. The critical temperature is obtained for different values of thickness of the thin film and for different exchange interactions. The total magnetization has been determined for different values of exchange interactions in surface and in bulk and different temperatures. The magnetic hysteresis cycle is obtained for different values of exchange interactions ferro and antiferromagnetic in the surface and in the bulk and for different values of temperatures for a fixed size of the film thickness. The coercive field increase with increasing the film thickness. - Highlights: • The magnetic properties of thin films are studied by Monte Carlo simulation. • The critical temperature is obtained for different values of thickness of thin film. • The magnetic hysteresis cycle is obtained in the surface and in the bulk. • The coercive field increase with increasing the thin film thickness.
Boiling Visualization and Critical Heat Flux Phenomena In Narrow Rectangular Gap
Energy Technology Data Exchange (ETDEWEB)
J. J. Kim; Y. H. Kim; S. J. Kim; S. W. Noh; K. Y. Suh; J. Rempe; F. B. Cheung; S. B. Kim
2004-12-01
An experimental study was performed to investifate the pool boling critical hear flux (CHF) on one-dimensional inclined rectangular channels with narrow gaps by changing the orientation of a copper test heater assembly. In a pool of saturated water at atmospheric pressure, the test parameters include the gap sizes of 1,2,5, and 10 mm, andthe surface orientation angles from the downward facing position (180 degrees) to the vertical position (90 degress) respectively.
International Nuclear Information System (INIS)
Ikeda, Hironobu; Suzuki, Masatsugu; Hutchings, M.T.
1979-01-01
We have studied the critical behavior of the two-dimensional site-random antiferromagnet Rb 2 Co sub(c)Mg sub(1-c)F 4 using neutron elastic and quasi-elastic scattering techniques. The variation with temperature of the intensity of the magnetic Bragg reflections shows a considerable rounding of the transition. Assuming a Gaussian distribution of transition temperature, we have determined the average Neel temperature and the degree of distribution of Neel temperature σ, and the critical exponent β in a series of compounds with c = 1.0, 0.98, 0.97, 0.95, 0.89 and 0.82. The experimental data have been analysed to give the inverse correlation length and the susceptibility in the compounds with c = 1.0, 0.97 and 0.89 using the determined values of and σ. The resulting values of the critical exponents β, ν, γ and eta are found to coincide with the exact theoretical values for the two-dimensional Ising model within the experimental errors, and are independent of the concentration of nonmagnetic impurities. (author)
The theory of critical phenomena an introduction to the renormalization group
Binney, J J; Fisher, A J; Newman, M E J
1993-01-01
The successful calculation of critical exponents for continuous phase transitions is one of the main achievements of theoretical physics over the last quarter-century. This was achieved through the use of scaling and field-theoretic techniques which have since become standard equipment in many areas of physics, especially quantum field theory. This book provides a thorough introduction to these techniques. Continuous phase transitions are introduced, then the necessary statistical mechanics is summarized, followed by standard models, some exact solutions and techniques for numerical simulation
Directory of Open Access Journals (Sweden)
M.B. Gorobeyko
2014-09-01
Full Text Available Using Cox regression we have analyzed dependence of the probability of amputation and death in patients with critical lower limb ischemia in diabetic foot syndrome on the initial value of the partial pressure of oxygen (ТсРО2. It is found that the conventional boundary of critical ischemia relatively risk of high amputations can be considered ТсРО2 14 mmHg. At this pressure the risk of amputation is statistically higher. Risk of low amputations in patients increases with ТсРО2 less than 20 mmHg. The mortality among patients is statistically higher with ТсРО2 less than 20 mmHg. Mortality in groups, in which this parameter is less, is hardly differ. It is advisable to revise the boundary of critical ischemia to ТсРО2 value of 20 mmHg.
Laser ablation of metal into liquid: near critical point phenomena and hydrodynamic instability
Inogamov, Nail; Zhakhovsky, Vasily; Khokhlov, Viktor
2017-06-01
Laser ablation of metal in contact with liquid differs much from ablation into vacuum. In spite of importance of this kind of laser-matter interaction (e.g., for nanoparticles production), the involved processes are still poorly understood. We show that to produce nanoparticles the laser absorbed energy should overcome the ablation threshold into vacuum by a few times. Thus the required temperatures in the heat-affected zone increase above a critical temperature. The flow of the substances, including propagation of a strong shock in liquid and a rarefaction wave inside the metal target, is analyzed. We demonstrate that the contact between metal and liquid, both being in their supercritical states, is hydrodynamically unstable. The instability is of the Rayleigh-Taylor type. Dynamics of the instability is important for separation of melt droplets which are frozen up to solid nanoparticles later.
Seismic precursory patterns before a cliff collapse and critical point phenomena
Amitrano, D.; Grasso, J.-R.; Senfaute, G.
2005-01-01
We analyse the statistical pattern of seismicity before a 1-2 103 m3 chalk cliff collapse on the Normandie ocean shore, Western France. We show that a power law acceleration of seismicity rate and energy in both 40 Hz-1.5 kHz and 2 Hz-10kHz frequency range, is defined on 3 orders of magnitude, within 2 hours from the collapse time. Simultaneously, the average size of the seismic events increases toward the time to failure. These in situ results are derived from the only station located within one rupture length distance from the rock fall rupture plane. They mimic the "critical point" like behavior recovered from physical and numerical experiments before brittle failures and tertiary creep failures. Our analysis of this first seismic monitoring data of a cliff collapse suggests that the thermodynamic phase transition models for failure may apply for cliff collapse. Copyright 2005 by the American Geophysical Union.
Multi-scaling in the critical phenomena in the quenched disordered systems
Wu, X. T.
2018-04-01
The Landau-Ginzburg-Wilson Hamiltonian with random temperature for the phase transition in disordered systems from the Griffiths phase to ordered phase is reexamined. From the saddle point solutions, especially the excited state solutions, it is shown that the system self-organizes into blocks coupled with their neighbors like superspins, which are emergent variables. Taking the fluctuation around these saddle point solutions into account, we get an effective Hamiltonian, including the emergent superspins of the blocks, the fluctuation around the saddle point solutions, and their couplings. Applying Stratonovich-Hubbard transformation to the part of superspins, we get a Landau-Ginzburg-Wilson Hamiltonian for the blocks. From the saddle point equations for the blocks, we can get the second generation blocks, of which sizes are much larger than the first generation blocks. Repeating this procedure again and again, we get many generations of blocks to describe the asymptotic behavior. If a field is applied, the effective field on the superspins is multiplied greatly and proportional to the block size. For a very small field, the effective field on the higher generation superspins can be so strong to cause the superspins polarized radically. This can explain the extra large critical isotherm exponent discovered in the experiments. The phase space of reduced temperature vs. field is divided into many layers , in which different generation blocks dominate the critical behavior. The sizes of the different generation emergent blocks are new relevant length scales. This can explain a lot of puzzles in the experiments and the Monte Carlo simulation.
Critical phenomena and phase sequence in a classical bilayer Wigner crystal at zero temperature
Šamaj, Ladislav; Trizac, Emmanuel
2012-05-01
We study the ground-state properties of a system of identical classical Coulombic point particles, evenly distributed between two equivalently charged parallel plates at distance d; the system as a whole is electroneutral. It was previously shown that upon increasing d from 0 to ∞, five different structures of the bilayer Wigner crystal become energetically favored, starting from a hexagonal lattice (phase I, d=0) and ending at a staggered hexagonal lattice (phase V, d→∞). In this paper, we derive series representations of the ground-state energy for all five bilayer structures. The derivation is based on a sequence of transformations for lattice sums of Coulomb two-particle potentials plus the neutralizing background, having their origin in the general theory of Jacobi theta functions. The series proposed in this manuscript provide convenient starting points for both analytical and numerical progress. Its convergence properties are indeed excellent: truncation at the fourth term determines in general the energy correctly up to 17 decimal digits. The accurate series representations are used to improve the specification of transition points between the phases and to solve a controversy in previous studies. In particular, it is shown both analytically and numerically that the hexagonal phase I is stable only at d=0, and not in a finite interval of small distances between the plates as was anticipated before. The expansions of the structure energies around second-order transition points can be done analytically, which enables us to show that the critical behavior is of the Ginzburg-Landau type, with a mean-field critical index β=1/2 for the growth of the order parameters.
A Boundary Element-Response Matrix method for criticality diffusion problems in xyz geometry
International Nuclear Information System (INIS)
Cossa, G.; Giusti, V.; Montagnini, B.
2010-01-01
The Boundary Element-Response Matrix (BERM) method shown in the paper aims to represent an alternative to the Finite Element method in order to solve 3D multigroup diffusion (criticality) problems in xyz geometry. The theory extends the previous work on the diffusion equations in two dimensions and new techniques for the evaluation of the integrals involved in the boundary integral equations, as well as new procedures for solving the resulting linear system, have greatly enhanced the performances of the method. Results show that BERM can achieve an excellent accuracy, still keeping a good computational efficiency.
Critical dense polymers with Robin boundary conditions, half-integer Kac labels and Z4 fermions
Directory of Open Access Journals (Sweden)
Paul A. Pearce
2014-12-01
Full Text Available For general Temperley–Lieb loop models, including the logarithmic minimal models LM(p,p′ with p,p′ coprime integers, we construct an infinite family of Robin boundary conditions on the strip as linear combinations of Neumann and Dirichlet boundary conditions. These boundary conditions are Yang–Baxter integrable and allow loop segments to terminate on the boundary. Algebraically, the Robin boundary conditions are described by the one-boundary Temperley–Lieb algebra. Solvable critical dense polymers is the first member LM(1,2 of the family of logarithmic minimal models and has loop fugacity β=0 and central charge c=−2. Specialising to LM(1,2 with our Robin boundary conditions, we solve the model exactly on strips of arbitrary finite size N and extract the finite-size conformal corrections using an Euler–Maclaurin formula. The key to the solution is an inversion identity satisfied by the commuting double row transfer matrices. This inversion identity is established directly in the Temperley–Lieb algebra. We classify the eigenvalues of the double row transfer matrices using the physical combinatorics of the patterns of zeros in the complex spectral parameter plane and obtain finitised characters related to spaces of coinvariants of Z4 fermions. In the continuum scaling limit, the Robin boundary conditions are associated with irreducible Virasoro Verma modules with conformal weights Δr,s−12=132(L2−4 where L=2s−1−4r, r∈Z, s∈N. These conformal weights populate a Kac table with half-integer Kac labels. Fusion of the corresponding modules with the generators of the Kac fusion algebra is examined and general fusion rules are proposed.
Critical phenomena and exchange interactions of an amorphous ferromagnet: gadolinium--gold
International Nuclear Information System (INIS)
Poon, S.J.; Durand, J.
1976-07-01
Magnetization was measured between 4 and 290 0 K in fields up to 70 kOe on liquid-quenched Gd 80 Au 20 amorphous alloys. The Curie temperature and critical exponents β, γ and delta are found to be 149.45 0 K, 0.439, 1.294 and 3.948 respectively. These values are compared with the Heisenberg and molecular field values. The data are fitted to an equation of state previously derived for second order phase transition in fluid systems. The results illustrate clearly a second order phase transition in the amorphous state. A discussion in terms of the Heisenberg model is presented. The effective magnetic moment in the paramagnetic state has a value of 9.37 μ/sub B/ per gadolinium atom. The saturation moment extrapolated to 0 0 K is 7.0 μ/sub B/ per gadolinium atom. The low temperature saturation magnetization observes the T/sup 3 / 2 / law from 0.13 T/sub c/ to 0.80 T/sub c/. The effective exchange integrals J/sub n/ determined from the Rushbrooke--Wood formula and spin-wave theory are found to be 2.28 and 1.34 0 K respectively. The differences in J/sub n/ and that between the effective moment and saturation moment are attributed to the nearest-neighbor antiferromagnetic couplings below T/sub c/. Possible effects of structural disorder on the magnetic properties of Gd in the amorphous state are discussed
Xia, Wenjun; Mita, Yoshio; Shibata, Tadashi
2016-05-01
Aiming at efficient data condensation and improving accuracy, this paper presents a hardware-friendly template reduction (TR) method for the nearest neighbor (NN) classifiers by introducing the concept of critical boundary vectors. A hardware system is also implemented to demonstrate the feasibility of using an field-programmable gate array (FPGA) to accelerate the proposed method. Initially, k -means centers are used as substitutes for the entire template set. Then, to enhance the classification performance, critical boundary vectors are selected by a novel learning algorithm, which is completed within a single iteration. Moreover, to remove noisy boundary vectors that can mislead the classification in a generalized manner, a global categorization scheme has been explored and applied to the algorithm. The global characterization automatically categorizes each classification problem and rapidly selects the boundary vectors according to the nature of the problem. Finally, only critical boundary vectors and k -means centers are used as the new template set for classification. Experimental results for 24 data sets show that the proposed algorithm can effectively reduce the number of template vectors for classification with a high learning speed. At the same time, it improves the accuracy by an average of 2.17% compared with the traditional NN classifiers and also shows greater accuracy than seven other TR methods. We have shown the feasibility of using a proof-of-concept FPGA system of 256 64-D vectors to accelerate the proposed method on hardware. At a 50-MHz clock frequency, the proposed system achieves a 3.86 times higher learning speed than on a 3.4-GHz PC, while consuming only 1% of the power of that used by the PC.
Energy Technology Data Exchange (ETDEWEB)
Elezovic-Hadzic, S.; Knezevic, M.; Milosevic, S. [Univ. of Belgrade, Serbia (Yugoslavia)] [and others
1996-06-01
We study the problem of polymer adsorption in a good solvent when the container of the polymer-solvent system is taken to be a member of the Sierpinski gasket (SG) family of fractals. Members of the SG family are enumerated by an integer b (2 {le} b {le} {infinity}), and it is assumed that one side of each SG fractal is an impenetrable adsorbing boundary. We calculate the critical exponents {gamma}{sub 1}, {gamma}{sub 11}, and {gamma}{sub s}, which, within the self-avoiding walk model (SAW) of the polymer chain, are associated with the numbers of all possible SAWs with one, both, and no ends anchored to the adsorbing impenetrable boundary, respectively. By applying the exact renormalization group (RG) method for 2 {le} b {le} 8 and the Monte Carlo renormalization group (MCRG) method for a sequence of fractals with 2 {le} b {le} 80, we obtain specific values for these exponents. The obtained results show that all three critical exponents {gamma}{sub 1}, {gamma}{sub 11}, and {gamma}{sub s}, in both the bulk phase and crossover region are monotonically increasing functions with b. We discuss their mutual relations, their relations with other critical exponents pertinent to SAWs on the SG fractals, and their possible asymptotic behavior in the limit b {yields} {infinity}, when the fractal dimension of the SG fractals approaches the Euclidean value 2.
Cellular Neural Network Method for Critical Slab with Albedo Boundary Condition
International Nuclear Information System (INIS)
Pirouzmanda, A.; Hadada, K.; Suh, K. Y.
2010-01-01
The neutron transport problems have been studied theoretically and numerically for years. A number of researchers have studied the criticality problems of one-speed neutrons in homogeneous slabs and spheres using various methods. The Chebyshev polynomial approximation method (T N method) has lately been developed and improved for the neutron transport equation in slab geometry. The one-speed time-dependent neutron transport equation using the Cellular Neural Network (CNN) for the vacuum boundary condition has previously been solved. In this paper, we demonstrate the capacity of CNN in calculating the critical slab thickness for different boundary conditions and its variation with moments N. The architecture of the CNN has already been dealt with thoroughly. Essentially, the CNN is used to model a first-order system of the partial differential equations (PDEs). The original equations in the T N approximation are also a set of PDEs. The CNN approach lends itself to analog VLSI implementation. In this study, the CNN model is implemented using the HSpice software package
Critical phenomena in La0.6Pr0.1Sr0.3MnO3 perovskite manganese oxide
Cherif, R.; Hlil, E. K.; Ellouze, M.; Elhalouani, F.; Obbade, S.
2015-09-01
We report a study of the critical phenomena of perovskite-manganite compound La0.6Pr0.1Sr0.3MnO3 around the Curie temperature. Experimental results based on magnetic measurements using Banerjee criterion reveals that the sample exhibits a second-order paramagnetic-ferromagnetic transition. The critical behavior analysis and the Kouvel-Fisher method suggests that the critical phenomena around the critical point can be correctly described by the 3D-Heisenberg model. Critical exponents were estimated and found β=0.354±0.009 and γ=1.264±0.035 at TC=325.5±0.443 K. The critical exponent δ is determined separately from the isothermal magnetization at TC and evaluated to δ=4.934±0.0004. These critical exponents obey the Widom scaling relation δ=1+γ/β. Based on the critical exponents, the magnetization-field-temperature (M-H-T) data around TC collapses into two curves obeying the single scaling equation M (H , ε) =| ε | β f ± (H /| ε | β + γ) where ε=(T-TC)/TC is the reduced temperature.
Thin-film superconducting rings in the critical state: the mixed boundary value approach
Brambilla, Roberto; Grilli, Francesco
2015-02-01
In this paper, we describe the critical state of a thin superconducting ring (and of a perfectly conducting ring as a limiting case) as a mixed boundary value problem. The disc is characterized by a three-part boundary division of the positive real axis, so this work is an extension of the procedure used in a previous work of ours for describing superconducting discs and strips, which are characterized by a two-part boundary division of the real axis. Here, we present the mathematical tools to solve this kind of problems—the Erdélyi-Kober operators—in a frame that can be immediately used. Contrary to the two-part problems considered in our previous work, three-part problems do not generally have analytical solutions and the numerical work takes on a significant heaviness. Nevertheless, this work is remunerated by three clear advantages: firstly, all the cases are afforded in the same way, without the necessity of any brilliant invention or ability; secondly, in the case of superconducting rings, the penetration of the magnetic field in the internal/external rims is a result of the method itself and does not have to be imposed, as it is commonly done with other methods presented in the literature; thirdly, the method can be extended to investigate even more complex cases (four-part problems). In this paper, we consider the cases of rings in uniform field and with transport current, with or without flux trapping in the hole and the case without net current, corresponding to a cut ring (washer), as used in some SQUID applications.
Directory of Open Access Journals (Sweden)
Jessica Dorsey
2013-04-01
Full Text Available This Research Paper is a detailed report from the two-day symposium entitled The Boundaries of the Battlefield: A Critical Look at the Legal Paradigms and Rules in Countering Terrorism, which was convened in The Hague in January 2013. The conference covered a range of issues that are relevant in debates about using force in counter-terrorism operations against non-state actors. Specifically, this Paper elaborates on a number of key questions raised during the conference; these relate to the temporal and geographical limitations of armed conflict, the interplay between international humanitarian law and international human rights law, as well as the use of drones, the law enforcement approach to counter-terrorism and the possible need for a new framework for countering terrorism. The authors, Jessica Dorsey and Dr. Christophe Paulussen, supplement participants’ debates with detailed background information and theoretical discussions.
Czech Academy of Sciences Publication Activity Database
Nold, A.; Malijevský, Alexandr; Kalliadasis, S.
2011-01-01
Roč. 197, č. 1 (2011), s. 185-191 ISSN 1951-6355 R&D Projects: GA AV ČR IAA400720710 Grant - others:EPSRC(GB) EP/E046029; FP7 ITN(XE) 214919; ERC (XE) 247301 Institutional research plan: CEZ:AV0Z40720504 Keywords : wetting phenomena * curved substrates * theory Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.562, year: 2011
International Nuclear Information System (INIS)
Li, Zhaohui; Gong, Changming; Qu, Xiang; Liu, Fenghua; Sun, Jingzhen; Wang, Kang; Li, Yufeng
2015-01-01
The influence of the mass of methanol injected per cycle, ambient temperature, injection and ignition timing, preheating methods, and supplying additional liquefied petroleum gas (LPG) injection into the intake manifold on the critical firing and misfiring boundary of an electronically injection controlled spark ignition (SI) methanol engine during cold start were investigated experimentally based on a single cycle fuel injection with cycle-by-cycle control strategy. The critical firing and misfiring boundary was restricted by all parameters. For ambient temperatures below 16 °C, methanol engines must use auxiliary start-aids during cold start. Optimal control of the methanol injection and ignition timing can realize ideal next cycle firing combustion after injection. Resistance wire and glow plug preheating can provide critical firing down to ambient temperatures of 5 °C and 0 °C, respectively. Using an additional LPG injection into the intake manifold can provide critical firing down to an ambient temperature of −13 °C during cold start. As the ambient temperature decreases, the optimal angle difference between methanol injection timing and LPG injection timing for critical firing of a methanol engine increases rapidly during cold start. - Highlights: • A single cycle fuel injection and cycle-by-cycle control strategy are used to study. • In-cylinder pressure and instantaneous speed were used to determine firing boundary. • For the ambient temperatures below 16 °C, an auxiliary start-aids must be used. • A preheating and additional LPG were used to expand critical firing boundary. • Additional LPG can result in critical firing down to ambient temperature of −13 °C
Cooper, R. F.; McCarthy, C.
2012-12-01
Combined compressional creep and (Young's-modulus) attenuation experiments on polycrystalline ice-I (200 ≤ T[K] ≤ 260; 3 ≤ d[μm] ≤ 500; σmean = 1MPa and Δσ = 0.16MPa applied in a frequency range 10-4 ≤ ν[Hz] ≤ 10-1) demonstrate the attenuation behavior associated with the seismic attenuation band and the "high-temperature background," i.e., a power-law response Q-1 ∝ ν-m with m ~ 0.33. This response has, in general, been associated with grain boundary sliding rate-limited by atomic diffusion [e.g., 1-3], a mechanism that is very sensitive to grain size. In our experiments, however, with a grain size variation ~102, the attenuation response is independent of grain size, to first order. Scrutiny of the physics suggests that the attenuation is effected primarily by diffusive relaxation of subgrain boundaries [4, 5], the size of which, in materials deforming by a dislocation mechanism (as is the ice in our experiments), is set by the deviatoric stress [6, 7]. Applying the diffusion-effected physics to the subgrain size matches the universal scaling [e.g., 3] for materials that are linear-viscoelastic. Our ice specimens, however, demonstrate modest non-linearity, resulting in greater attenuation than that associated with the diffusion process [cf. 8] and yet retain the power-law form for attenuation, including the same slope m. The result is consistent with "self-organized critical" behavior in dislocation emission [9, 10] and the physics overall can be understood via models of self-similar scaling of crystalline (effective) viscosity [e.g., 11]. The potential application to seismic studies is profound: for example, if the upper mantle of Earth is convecting via a dislocation-creep or dislocation-accommodated grain-boundary-sliding mechanism, then the attenuation response is related not to the grain size, but rather to the subgrain structure associated with the creep of the rock. Thus, seismic attenuation measurements may well be useful for
International Nuclear Information System (INIS)
Schuetz, Gunter M
2003-01-01
Recent work on stochastic interacting particle systems with two particle species (or single-species systems with kinematic constraints) has demonstrated the existence of spontaneous symmetry breaking, long-range order and phase coexistence in nonequilibrium steady states, even if translational invariance is not broken by defects or open boundaries. If both particle species are conserved, the temporal behaviour is largely unexplored, but first results of current work on the transition from the microscopic to the macroscopic scale yield exact coupled nonlinear hydrodynamic equations and indicate the emergence of novel types of shock waves which are collective excitations stabilized by the flow of microscopic fluctuations. We review the basic stationary and dynamic properties of these systems, highlighting the role of conservation laws and kinetic constraints for the hydrodynamic behaviour, the microscopic origin of domain wall (shock) stability and the coarsening dynamics of domains during phase separation. (topical review)
Yang, Shengfeng; Zhou, Naixie; Zheng, Hui; Ong, Shyue Ping; Luo, Jian
2018-02-01
First-order interfacial phaselike transformations that break the mirror symmetry of the symmetric ∑5 (210 ) tilt grain boundary (GB) are discovered by combining a modified genetic algorithm with hybrid Monte Carlo and molecular dynamics simulations. Density functional theory calculations confirm this prediction. This first-order coupled structural and adsorption transformation, which produces two variants of asymmetric bilayers, vanishes at an interfacial critical point. A GB complexion (phase) diagram is constructed via semigrand canonical ensemble atomistic simulations for the first time.
Energy Technology Data Exchange (ETDEWEB)
Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Wu, Qiao [Oregon State Univ., Corvallis, OR (United States)
2015-04-30
This report is a preliminary document presenting an overview of the Critical Heat Flux (CHF) phenomenon, the High Pressure Critical Heat Flux facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass flux ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically heated rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embedded in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass fluxes of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.
Shah, D. B.
1984-01-01
Describes a course designed to achieve a balance between exposing students to (1) advanced topics in transport phenomena, pointing out similarities and differences between three transfer processes and (2) common methods of solving differential equations. (JN)
International Nuclear Information System (INIS)
Kitazawa, Masakiyo; Kunihiro, Teiji; Koide, Tomoi; Nemoto, Yukio
2005-01-01
We investigate the fluctuations of the diquark-pair field and their effects on observables above the critical temperature T c in two-flavor color superconductivity (CSC) at moderate density using a Nambu-Jona-Lasinio-type effective model of QCD. Because of the strong-coupling nature of the dynamics, the fluctuations of the pair field develop a collective mode, which has a prominent strength even well above T c . We show that the collective mode is actually the soft mode of CSC. We examine the effects of the pair fluctuations on the specific heat and the quark spectrum for T above but close to T c . We find that the specific heat exhibits singular behavior because of the pair fluctuations, in accordance with the general theory of second-order phase transitions. The quarks display a typical non-Fermi liquid behavior, owing to the coupling with the soft mode, leading to a pseudo-gap in the density of states of the quarks in the vicinity of the critical point. Some experimental implications of the precursory phenomena are also discussed. (author)
Directory of Open Access Journals (Sweden)
N. F. Blagoveshchenskaya
2009-01-01
Full Text Available Multi-instrument observational data from an experiment on 13 October 2006 at the EISCAT/HEATING facility at Tromsø, Norway are analysed. The experiment was carried out in the evening hours when the electron density in the F-region dropped, and the HF pump frequency f_{H} was near and then above the critical frequency of the F2 layer. The distinctive feature of this experiment is that the pump frequency was just below the third electron gyro harmonic frequency, while both the HF pump beam and UHF radar beam were directed towards the magnetic zenith (MZ. The HF pump-induced phenomena were diagnosed with several instruments: the bi-static HF radio scatter on the London-Tromsø-St. Petersburg path, the CUTLASS radar in Hankasalmi (Finland, the European Incoherent Scatter (EISCAT UHF radar at Tromsø and the Tromsø ionosonde (dynasonde. The results show thermal electron excitation of the HF-induced striations seen simultaneously from HF bi-static scatter and CUTLASS radar observations, accompanied by increases of electron temperature when the heater frequency was near and then above the critical frequency of the F2 layer by up to 0.4 MHz. An increase of the electron density up to 25% accompanied by strong HF-induced electron heating was observed, only when the heater frequency was near the critical frequency and just below the third electron gyro harmonic frequency. It is concluded that the combined effect of upper hybrid resonance and gyro resonance at the same altitude gives rise to strong electron heating, the excitation of striations, HF ray trapping and extension of HF waves to altitudes where they can excite Langmuir turbulence and fluxes of electrons accelerated to energies that produce ionization.
Directory of Open Access Journals (Sweden)
N. F. Blagoveshchenskaya
2009-01-01
Full Text Available Multi-instrument observational data from an experiment on 13 October 2006 at the EISCAT/HEATING facility at Tromsø, Norway are analysed. The experiment was carried out in the evening hours when the electron density in the F-region dropped, and the HF pump frequency fH was near and then above the critical frequency of the F2 layer. The distinctive feature of this experiment is that the pump frequency was just below the third electron gyro harmonic frequency, while both the HF pump beam and UHF radar beam were directed towards the magnetic zenith (MZ. The HF pump-induced phenomena were diagnosed with several instruments: the bi-static HF radio scatter on the London-Tromsø-St. Petersburg path, the CUTLASS radar in Hankasalmi (Finland, the European Incoherent Scatter (EISCAT UHF radar at Tromsø and the Tromsø ionosonde (dynasonde. The results show thermal electron excitation of the HF-induced striations seen simultaneously from HF bi-static scatter and CUTLASS radar observations, accompanied by increases of electron temperature when the heater frequency was near and then above the critical frequency of the F2 layer by up to 0.4 MHz. An increase of the electron density up to 25% accompanied by strong HF-induced electron heating was observed, only when the heater frequency was near the critical frequency and just below the third electron gyro harmonic frequency. It is concluded that the combined effect of upper hybrid resonance and gyro resonance at the same altitude gives rise to strong electron heating, the excitation of striations, HF ray trapping and extension of HF waves to altitudes where they can excite Langmuir turbulence and fluxes of electrons accelerated to energies that produce ionization.
Pfaff, R. F.
2009-01-01
On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.
Blurring Boundaries: Drama as a Critical Multimodal Literacy for Examining 17th-Century Witch Hunts
Schroeter, Sara; Wager, Amanda C.
2017-01-01
This article illustrates how critical multimodal literacy practices engage secondary students to further explore differences and similarities between past and present instances of discrimination within a process drama, where students and teachers explore a topic through unscripted role-play. Data from a classroom-based ethnography are drawn on to…
Cockburn-Wootten, Cheryl; Cockburn, Tom
2011-01-01
This article describes how a collaborative class strategy and an introductory activity were used to develop students' thinking about business and management communication. The article focuses on teachers who want to integrate critical perspectives about business communication into their classes. A course ethos, learning groups, and an introductory…
Multiple Solutions for a Nonlinear Fractional Boundary Value Problem via Critical Point Theory
Directory of Open Access Journals (Sweden)
Yang Wang
2017-01-01
Full Text Available This paper is concerned with the existence of multiple solutions for the following nonlinear fractional boundary value problem: DT-αaxD0+αux=fx,ux, x∈0,T, u0=uT=0, where α∈1/2,1, ax∈L∞0,T with a0=ess infx∈0,Tax>0, DT-α and D0+α stand for the left and right Riemann-Liouville fractional derivatives of order α, respectively, and f:0,T×R→R is continuous. The existence of infinitely many nontrivial high or small energy solutions is obtained by using variant fountain theorems.
Towne, Dudley H
1988-01-01
This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.
Cooky, Cheryl; Dworkin, Shari L
2013-01-01
On August 19, 2009, Caster Semenya, South African track star, won a gold medal in the women's 800-meter event. According to media reports, on the same day, the International Association of Athletics Federations (IAAF) ordered Semenya to undergo gender verification testing. This article critically assesses the main concepts and claims that undergird international sport organizations' policies regarding "gender verification" or "sex testing." We examine the ways in which these policies operate through several highly contested assumptions, including that (a) sex exists as a binary; (b) sport is a level playing field for competitors; and (c) some intersex athletes have an unfair advantage over women who are not intersex and, as such, they should be banned from competition to ensure that sport is a level playing field. To conclude, we make three recommendations that are consistent with the attainment of sex and gender justice in sport, which include acknowledging that myriad physical advantages are accepted in sport, recognizing that sport as a level playing field is a myth, and eliminating sex testing in sport.
Transport phenomena II essentials
REA, The Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena II covers forced convention, temperature distribution, free convection, diffusitivity and the mechanism of mass transfer, convective mass transfer, concentration
Transport Phenomena and Materials Processing
Kou, Sindo
1996-10-01
An extremely useful guide to the theory and applications of transport phenomena in materials processing This book defines the unique role that transport phenomena play in materials processing and offers a graphic, comprehensive treatment unlike any other book on the subject. The two parts of the text are, in fact, two useful books. Part I is a very readable introduction to fluid flow, heat transfer, and mass transfer for materials engineers and anyone not yet thoroughly familiar with the subject. It includes governing equations and boundary conditions particularly useful for studying materials processing. For mechanical and chemical engineers, and anyone already familiar with transport phenomena, Part II covers the many specific applications to materials processing, including a brief description of various materials processing technologies. Readable and unencumbered by mathematical manipulations (most of which are allocated to the appendixes), this book is also a useful text for upper-level undergraduate and graduate-level courses in materials, mechanical, and chemical engineering. It includes hundreds of photographs of materials processing in action, single and composite figures of computer simulation, handy charts for problem solving, and more. Transport Phenomena and Materials Processing: * Describes eight key materials processing technologies, including crystal growth, casting, welding, powder and fiber processing, bulk and surface heat treating, and semiconductor device fabrication * Covers the latest advances in the field, including recent results of computer simulation and flow visualization * Presents special boundary conditions for transport phenomena in materials processing * Includes charts that summarize commonly encountered boundary conditions and step-by-step procedures for problem solving * Offers a unique derivation of governing equations that leads to both overall and differential balance equations * Provides a list of publicly available computer
Heat Transfer Phenomena of Supercritical Fluids
Energy Technology Data Exchange (ETDEWEB)
Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)
2008-07-01
In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)
Heat Transfer Phenomena of Supercritical Fluids
International Nuclear Information System (INIS)
Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas
2008-01-01
In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)
Transport phenomena I essentials
REA, The Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena I includes viscosity, flow of Newtonian fluids, velocity distribution in laminar flow, velocity distributions with more than one independent variable, thermal con
Large momentum transfer phenomena
International Nuclear Information System (INIS)
Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.
1978-01-01
The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)
Directory of Open Access Journals (Sweden)
Mabrouk Briki
2016-05-01
Full Text Available In this paper, a fourth-order boundary value problem on the half-line is considered and existence of solutions is proved using a minimization principle and the mountain pass theorem.
Directory of Open Access Journals (Sweden)
A. Mokhtari
2016-01-01
Full Text Available In this paper we obtain existence results of \\(k\\ distinct pairs nontrivial solutions for an impulsive boundary value problem of \\(p(t\\-Kirchhoff type under certain conditions on the parameter \\(\\lambda\\.
Czech Academy of Sciences Publication Activity Database
Lejček, Pavel; Šob, Mojmír; Paidar, Václav
2017-01-01
Roč. 87, Jun (2017), s. 83-139 ISSN 0079-6425 R&D Projects: GA ČR GBP108/12/G043; GA ČR(CZ) GA16-24711S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68378271 ; RVO:68081723 Keywords : solute segregation * interfacial embrittlement * grain boundary * free surface * computer modeling * measurements of local composition Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 31.140, year: 2016
Analysis of induction phenomena in thermonuclear experiments
International Nuclear Information System (INIS)
Deeds, W.E.; Dodd, C.V.
1976-01-01
Many of the problems involving transients induced by changing currents in the large coils of thermonuclear machines are identical to those arising in nondestructive testing by eddy currents. There are three chief methods used for calculating such induction phenomena: analytical boundary-value solutions, relaxation or iteration techniques, and model experiments. Some of the results obtained by each of these methods are described below
Grain Boundary Segregation in Metals
Lejcek, Pavel
2010-01-01
Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.
Black hole critical phenomena without black holes
Indian Academy of Sciences (India)
denotes the partial derivatives of . The construction of a numerical method with which ... which configurations form black holes and which disperse (the only two options in this model). The problem in picturing such a space is that it is infinite ..... 4.1 The future: Less symmetry. The work described above all assumes spherical ...
Science at the interface : grain boundaries in nanocrystalline metals.
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, Mark Andrew; Follstaedt, David Martin; Knapp, James Arthur; Brewer, Luke N.; Holm, Elizabeth Ann; Foiles, Stephen Martin; Hattar, Khalid M.; Clark, Blythe B.; Olmsted, David L.; Medlin, Douglas L.
2009-09-01
Interfaces are a critical determinant of the full range of materials properties, especially at the nanoscale. Computational and experimental methods developed a comprehensive understanding of nanograin evolution based on a fundamental understanding of internal interfaces in nanocrystalline nickel. It has recently been shown that nanocrystals with a bi-modal grain-size distribution possess a unique combination of high-strength, ductility and wear-resistance. We performed a combined experimental and theoretical investigation of the structure and motion of internal interfaces in nanograined metal and the resulting grain evolution. The properties of grain boundaries are computed for an unprecedented range of boundaries. The presence of roughening transitions in grain boundaries is explored and related to dramatic changes in boundary mobility. Experimental observations show that abnormal grain growth in nanograined materials is unlike conventional scale material in both the level of defects and the formation of unfavored phases. Molecular dynamics simulations address the origins of some of these phenomena.
Ultrashort Laser Pulse Phenomena
Diels, Jean-Claude
2006-01-01
Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic
Nonlinear surface electromagnetic phenomena
Ponath, H-E
1991-01-01
In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are
Science and Paranormal Phenomena
Energy Technology Data Exchange (ETDEWEB)
Noyes, H. Pierre
1999-06-03
In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ''historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ''paranormal phenomena'' might-but need not- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be defined as contradicting physics.
Interfacial transport phenomena
Slattery, John C; Oh, Eun-Suok
2007-01-01
Revised and updated extensively from the previous editionDiscusses transport phenomena at common lines or three-phase lines of contactProvides a comprehensive summary about the extensions of continuum mechanics to the nanoscale.
International Nuclear Information System (INIS)
Jokiniemi, J.; Kilpi, K.; Lindholm, I.; Maekynen, J.; Pekkarinen, E.; Sairanen, R.; Silde, A.
1995-02-01
Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)
Integration phenomena Paralympic cyclists
Diepoldová, Tereza
2017-01-01
Title: Integration phenomena Paralympic cyclists. Objectives of work: Try to find integration phenomena in relation to sport training and its impact on selected cyclists with disabilities. Methods: Case report structured interview, data collection method - the method of interrogation. Results: Based on case studies developed a structured interview, we found differences in the integration, which we have divided into phases - before obtaining disability, acclimatization, sports integration. Fur...
Modelling of Transport Phenomena
K., Itoh; S.-I., Itoh; A., Fukuyama
1993-01-01
In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the apomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confineme...
Fundamentals of Fire Phenomena
DEFF Research Database (Denmark)
Quintiere, James
analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...... as a visiting professor at BYG.DTU financed by the Larsen and Nielsen Foundation, and is entered to the research database by Kristian Hertz responsible for the visiting professorship....
Energy Technology Data Exchange (ETDEWEB)
Bourg, I.C.; Sposito, G.
2011-05-01
Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).
Rheological phenomena in focus
Boger, DV
1993-01-01
More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be
Bioelectrochemistry II membrane phenomena
Blank, M
1987-01-01
This book contains the lectures of the second course devoted to bioelectro chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special ized study of biological phenomena, for which the investigation using the dual approach, physico-che...
Fundamentals of wave phenomena
Hirose, Akira
2010-01-01
This textbook provides a unified treatment of waves that either occur naturally or can be excited and propagated in various media. This includes both longitudinal and transverse waves. The book covers both mechanical and electrical waves, which are normally covered separately due to their differences in physical phenomena.
International Nuclear Information System (INIS)
Ott, L.J.; Rij, W.I. van.
1991-01-01
Experiment-specific models have been employed since 1986 by Oak Ridge National Laboratory (ORNL) severe accident analysis programs for the purpose of boiling water reactor experimental planning and optimum interpretation of experimental results. The large integral tests performed to date, which start from an initial undamaged core state, have involved significantly different-from-prototypic boundary and experimental conditions because of either normal facility limitations or specific experimental constraints. These experiments (ACRR: DF-4, NRU: FLHT-6, and CORA) were designed to obtain specific phenomenological information such as the degradation and interaction of prototypic components and the effects on melt progression of control-blade materials and channel boxes. Applications of ORNL models specific to the KfK CORA-16 and CORA-17 experiments are discussed and significant findings from the experimental analyses such as the following are presented: applicability of available Zircaloy oxidation kinetics correlations; influence of cladding strain on Zircaloy oxidation; influence of spacer grids on the structural heatup; and the impact of treating the gaseous coolant as a gray interacting medium. The experiment-specific models supplement and support the systems-level accident analysis codes. They allow the analyst to accurately quantify the observed experimental phenomena and to compensate for the effect of known uncertainties. They provide a basis for the efficient development of new models for phenomena that are currently not modeled (such as material interactions). They can provide validated phenomenological models (from the results of the experiments) as candidates for incorporation in the systems-level ''whole-core'' codes
International Nuclear Information System (INIS)
Hategan, Cornel
2002-01-01
Theory of Threshold Phenomena in Quantum Scattering is developed in terms of Reduced Scattering Matrix. Relationships of different types of threshold anomalies both to nuclear reaction mechanisms and to nuclear reaction models are established. Magnitude of threshold effect is related to spectroscopic factor of zero-energy neutron state. The Theory of Threshold Phenomena, based on Reduced Scattering Matrix, does establish relationships between different types of threshold effects and nuclear reaction mechanisms: the cusp and non-resonant potential scattering, s-wave threshold anomaly and compound nucleus resonant scattering, p-wave anomaly and quasi-resonant scattering. A threshold anomaly related to resonant or quasi resonant scattering is enhanced provided the neutron threshold state has large spectroscopic amplitude. The Theory contains, as limit cases, Cusp Theories and also results of different nuclear reactions models as Charge Exchange, Weak Coupling, Bohr and Hauser-Feshbach models. (author)
Transport phenomena in nanofluidics
Schoch, Reto Bruno; Han, J.; Renaud, Philippe
2008-01-01
Transport of fluid in and around nanometer-sized objects with at least one characteristic dimension below 100 nm renders possible phenomena that are not accessible at bigger length scales. This research field is termed nanofluidics and received its name only recently, but the roots in science and technology are broad. Nanofluidics has experienced a big growth during the last few years, confirmed by significant scientific and practical achievements. This review focuses on physical proper...
Transport phenomena in porous media
Ingham, Derek B
1998-01-01
Research into thermal convection in porous media has substantially increased during recent years due to its numerous practical applications. These problems have attracted the attention of industrialists, engineers and scientists from many very diversified disciplines, such as applied mathematics, chemical, civil, environmental, mechanical and nuclear engineering, geothermal physics and food science. Thus, there is a wealth of information now available on convective processes in porous media and it is therefore appropriate and timely to undertake a new critical evaluation of this contemporary information. Transport Phenomena in Porous Media contains 17 chapters and represents the collective work of 27 of the world's leading experts, from 12 countries, in heat transfer in porous media. The recent intensive research in this area has substantially raised the expectations for numerous new practical applications and this makes the book a most timely addition to the existing literature. It includes recent major deve...
Evolutionary phenomena in galaxies
International Nuclear Information System (INIS)
Beckman, J.E.; Pagel, B.E.J.
1989-01-01
This book reviews the subject of evolutionary phenomena in galaxies, bringing together contributions by experts on all the relevant physics and astrophysics necessary to understand galaxies and how they work. The book is based on the proceedings of a conference held in July 1988 in Puerto de la Cruz, Tenerife which was timed to coincide with the first year of operation of the 4.2 m William Herschel Telescope. The broad topics covered include formation of galaxies and their ages, stellar dynamics, galactic scale gas and its role in star formation and the production and distribution of the chemical elements within galaxies. (author)
Lawrance, R
1972-01-01
Solid State Phenomena explores the fundamentals of the structure and their influence on the properties of solids. This book is composed of five chapters that focus on the electrical and thermal conductivities of crystalline solids. Chapter 1 describes the nature of solids, particularly metals and crystalline materials. This chapter also presents a model to evaluate crystal structure, the forces between atom pairs, and the mechanism of plastic and elastic deformation. Chapter 2 demonstrates random vibrations of atoms in a solid using a one-dimensional array, while Chapter 3 examines the resista
Crystallography and Magnetic Phenomena
Directory of Open Access Journals (Sweden)
Vojtěch Kopský
2015-02-01
Full Text Available This essay describes the development of groups used for the specification of symmetries from ordinary and magnetic point groups to Fedorov and magnetic space groups, as well as other varieties of groups useful in the study of symmetric objects. In particular, we consider the problem of some incorrectness in Vol. A of the International Tables for Crystallography. Some results of tensor calculus are presented in connection with magnetoelectric phenomena, where we demonstrate the use of Ascher’s trinities and Opechowski’s magic relations and their connection. Specific tensor decomposition calculations on the grounds of Clebsch Gordan products are illustrated.
Townsend, Alan R.; Porder, Stephen
2011-03-01
the one for oceans. Encouragingly, while they argue that we've already crossed one key boundary in the P cycle, they also suggest it's not a Rubicon moment. The inefficiencies in P use that motivate these boundary debates are also clear targets for improvement, and some world regions may be on a trajectory towards greater P use efficiency (Vitousek et al 2009). This is a critical step for society, because even absent concerns over freshwater eutrophication or marine anoxic events, accelerating rates of P mining and inefficiencies in agricultural P use would still pose very real threats. There is legitimate debate over when readily accessible P reserves may run out (Cordell et al 2009, Van Kauenbergh 2010), but nobody argues with their finite nature. Sooner or later, we will be forced to keep P out of our waterways, if only because we will have to keep it on our farms. Without such a shift, we may face severe P constraints to food security within just a few human generations. As current P reserves decline, rising economic values of low concentration P stores may catalyze their harvest, but without considerable policy interventions, that price hike would exacerbate already strong global inequities in the distribution and use of chemical fertilizers (Sanchez and Swaminathan 2005). The harvest of low concentration P reserves would also create substantial collateral damage to the surrounding environment. Furthermore, even without exhaustion of high-concentration P reserves, their location in only a few countries creates geopolitical risks from the demand for an increasingly valuable resource (Cordell et al 2009). Policies aimed at lowering P inputs to aquatic environments will not only reduce the eutrophication risks explored by Carpenter and Bennett, they will increase P retention in agricultural landscapes and slow the decline of finite P reserves. Shifts in human diets can also make a profound difference in the amount of P (and N) required to meet caloric needs. Society
Direct channel problems and phenomena
International Nuclear Information System (INIS)
Cutkosky, R.E.
1975-01-01
Direct channel problems and phenomena are considered covering the need for precision hadron spectroscopy, the data base for precision hadron spectroscopy, some relations between direct-channel and cross-channel effects, and spin rotation phenomena
DEFF Research Database (Denmark)
Gorm Hansen, Birgitte
2011-01-01
Whether celebratory or critical, STS research on science-industry relations has focused on the blurring of boundaries and hybridization of codes and practices. However, the vocabulary of boundary and hybrid tends to reify science and industry as separate in the attempt to map their relation...... as the negotiation of a preexisting science-industry boundary. Rather, viability is obtained through a strategy of "circumventing" the science-industry food chain and "sequestering" biotech components within the research center. Symbiosis allows academic scientists to do biology while at the same time demonstrating...
Geochemical modelling: what phenomena are missing
International Nuclear Information System (INIS)
Jacquier, P.
1989-12-01
In the framework of safety assessment of radioactive waste disposal, retention phenomena are usually taken into account by the Kd concept. It is well recognized that this concept is not enough for safety assessment models, because of the several and strong assumptions which are involved in this kind of representation. One way to have a better representation of the retention phenomena, is to substitute for this Kd concept an explicit description of geochemical phenomena and then couple transport codes with geochemical codes in a fully or a two-step procedure. We use currently such codes, but the scope of this paper is to display the limits today of the geochemical modelling in connection with sites analysis for deep disposal. In this paper, we intend to give an overview of phenomena which are missing in the geochemical models, or which are not completely introduced in the models. We can distinguish, on one hand phenomena for which modelling concepts exist such as adsorption/desorption and, on the other hand, phenomena for which modelling concepts do not exist for the moment such as colloids, and complexation by polyelectrolyte solutions (organics). Moreover we have to take care of very low concentrations of radionuclides, which can be expected from the leaching processes in the repository. Under those conditions, some reactions may not occur. After a critical review of the involved phenomena, we intend to stress the main directions of the wishful evolution of the geochemical modelling. This evolution should improve substantially the quality of the above-mentioned site assessments
Transport phenomena in strongly correlated Fermi liquids
Energy Technology Data Exchange (ETDEWEB)
Kontani, Hiroshi [Nagoya Univ., Aichi (Japan). Dept. of Physics
2013-03-01
Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, {tau}, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.
Crystallization phenomena in slags
Orrling, Carl Folke
2000-09-01
The crystallization of the mold slag affects both the heat transfer and the lubrication between the mold and the strand in continuous casting of steel. In order for mold slag design to become an engineering science rather than an empirical exercise, a fundamental understanding of the melting and solidification behavior of a slag must be developed. Thus it is necessary to be able to quantify the phenomena that occur under the thermal conditions that are found in the mold of a continuous caster. The double hot thermocouple technique (DHTT) and the Confocal Laser Scanning Microscope used in this study are two novel techniques for investigating melting and solidification phenomena of transparent slags. Results from these techniques are useful in defining the phenomena that occur when the slag film infiltrates between the mold and the shell of the casting. TTT diagrams were obtained for various slags and indicated that the onset of crystallization is a function of cooling rate and slag chemistry. Crystal morphology was found to be dependent upon the experimental temperature and four different morphologies were classified based upon the degree of melt undercooling. Continuous cooling experiments were carried out to develop CCT diagrams and it was found that the amount and appearance of the crystalline fraction greatly depends on the cooling conditions. The DHTT can also be used to mimic the cooling profile encountered by the slag in the mold of a continuous caster. In this differential cooling mode (DCT), it was found that the details of the cooling rate determine the actual response of the slag to a thermal gradient and small changes can lead to significantly different results. Crystal growth rates were measured and found to be in the range between 0.11 mum/s to 11.73 mum/s depending on temperature and slag chemistry. Alumina particles were found to be effective innoculants in oxide melts reducing the incubation time for the onset of crystallization and also extending
Workshop on Interface Phenomena
Kreuzer, Hans
1987-01-01
This book contains the proceedings of the first Workshop on Interface Phenomena, organized jointly by the surface science groups at Dalhousie University and the University of Maine. It was our intention to concentrate on just three topics related to the kinetics of interface reactions which, in our opinion, were frequently obscured unnecessarily in the literature and whose fundamental nature warranted an extensive discussion to help clarify the issues, very much in the spirit of the Discussions of the Faraday Society. Each session (day) saw two principal speakers expounding the different views; the session chairmen were asked to summarize the ensuing discussions. To understand the complexity of interface reactions, paradigms must be formulated to provide a framework for the interpretation of experimen tal data and for the construction of theoretical models. Phenomenological approaches have been based on a small number of rate equations for the concentrations or mole numbers of the various species involved i...
PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena
Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo
2010-10-01
research. We hope that this collection of papers will provide a good overview for anyone interested in recent developments in the field of integrability and nonlinear phenomena. [1] Integrable models in nonlinear optics and soliton solutions Degasperis A [2] Hamiltonian PDEs: deformations, integrability, solutions Dubrovin B [3] Smooth and peaked solitons of the CH equation Holm D D and Ivanov R I [4] KP solitons in shallow water Kodama Y [5] Two extensions of 1D Toda hierarchy Takasaki K [6] On the Lax representation of the 2-component KP and 2D Toda hierarchies Guido Carlet and Manuel Manas [7] The q-deformed mKP hierarchy with self-consistent sources, Wronskian solutions and solitons Lin R L, Peng H and Manas M [8] Hodograph solutions of the dispersionless coupled KdV hierarchies, critical points and the Euler-Poisson-Darboux equation Konopelchenko B, Martinez Alonso L and E Medina [9] Non-Hamiltonian generalizations of the dispersionless 2DTL hierarchy Bogdanov L V [10] Squared eigenfunctions and the perturbation theory for the nondegenerate N x N operator: a general outline Kaup D J and Van Gorder R A [11] The noncommutative AKNS system: projection to matrix systems, countable superposition and soliton-like solutions Schiebold C [12] On the soliton solutions of the two-dimensional Toda lattice Biondini G and Wang D [13] Differential algebra of the Painleve property Benes G N and Previato E [14] Klein's curve Braden H W and Northover T P [15] Quantum monodromy and pattern formation Zhilinskii B [16] A symptotics for a special solution to the second member of the Painleve I hierarchy Claeys T [17] Darboux transformation for a two-component derivative nonlinear Schroedinger equation Ling L and Liu Q P [18] Backlund transformations as exact integrable time discretizations for the trigonometric Gaudin model Ragnisco O and Zullo F [19] Exceptional orthogonal polynomials and the Darboux transformation Gomez-Ullate D, Kamran N and Milson R [20] The hydrodynamic Chaplygin
Transport phenomena in strongly correlated Fermi liquids
Kontani, Hiroshi
2013-01-01
In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...
Nuclear fuel deformation phenomena
International Nuclear Information System (INIS)
Van Brutzel, L.; Dingreville, R.; Bartel, T.J.
2015-01-01
Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)
International Nuclear Information System (INIS)
Ramadan, A.E.K.
2004-01-01
Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry
Immune phenomena in echinoderms.
Gliński, Z; Jarosz, J
2000-01-01
Advances in biochemistry and molecular biology have made it possible to identify a number of mechanisms active in the immune phenomena of echinoderms. It is obvious that echinoderms have the ability to distinguish between different foreign objects (pathologically changed tissues, microorganisms, parasites, grafts) and to express variable effector mechanisms which are elicited specifically and repeatably after a variety of non-self challenges. The molecular and biochemical basis for the expression of these variable defense mechanisms and the specific signals which elicit one type of effector mechanism are not, however, yet well known. The high capacity of coelomocytes to phagocytose, entrap and encapsulate invading microorganisms is a valid immune cell-mediated mechanism of echinoderms. The entrapped bacteria, discharged cellular materials and disintegrating granular cells are compacted and provoke the cellular encapsulation reaction. Moreover, humoral-based reactions form an integral part of the echinoderm defense system against microbial invaders. Factors such as lysozyme, perforins (hemolysins) vitellogenin and lectins are normal constituents of hemolymph, while cytokines are synthesized by echinoderms in response to infection.
Relationships, not boundaries.
Combs, Gene; Freedman, Jill
2002-01-01
The authors find it more useful to pay attention to relationships than to boundaries. By focusing attention on bounded, individual psychological issues, the metaphor of boundaries can distract helping professionals from thinking about inequities of power. It oversimplifies a complex issue, inviting us to ignore discourses around gender, race, class, culture, and the like that support injustice, abuse, and exploitation. Making boundaries a central metaphor for ethical practice can keep us from critically examining the effects of distance, withdrawal, and non-participation. The authors describe how it is possible to examine the practical, moral, and ethical effects of our participation in relationships by focusing on just relationships rather than on boundaries. They give illustrations and clinical examples of relationally-focused ethical practices that derive from a narrative approach to therapy.
Haters Phenomena in Social Media
Pradipta, Angga; Lailiyah, S.Sos, M.I.Kom, Nuriyatul
2016-01-01
Social media is internet-basic media, functioned as interaction media room based on multimedia technology. And social media created some effects. One of the negative effects of social media is haters phenomena. Haters are a person who easily said dirty words, harass, and humiliate to others. This phenomena causes anxiety—especially in Indonesia, even the Government issued public policy and letter of regulation about this phenomena, through Paragraph 27 verse (3) IT Constitution, Paragraph 45 ...
Transport phenomena in environmental engineering
Sander, Aleksandra; Kardum, Jasna Prlić; Matijašić, Gordana; Žižek, Krunoslav
2018-01-01
A term transport phenomena arises as a second paradigm at the end of 1950s with high awareness that there was a strong need to improve the scoping of chemical engineering science. At that point, engineers became highly aware that it is extremely important to take step forward from pure empirical description and the concept of unit operations only to understand the specific process using phenomenological equations that rely on three elementary physical processes: momentum, energy and mass transport. This conceptual evolution of chemical engineering was first presented with a well-known book of R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot, Transport Phenomena, published in 1960 [1]. What transport phenomena are included in environmental engineering? It is hard to divide those phenomena through different engineering disciplines. The core is the same but the focus changes. Intention of the authors here is to present the transport phenomena that are omnipresent in treatment of various process streams. The focus in this chapter is made on the transport phenomena that permanently occur in mechanical macroprocesses of sedimentation and filtration for separation in solid-liquid particulate systems and on the phenomena of the flow through a fixed and a fluidized bed of particles that are immanent in separation processes in packed columns and in environmental catalysis. The fundamental phenomena for each thermal and equilibrium separation process technology are presented as well. Understanding and mathematical description of underlying transport phenomena result in scoping the separation processes in a way that ChEs should act worldwide.
DEFF Research Database (Denmark)
Aarhus, Rikke; Ballegaard, Stinne Aaløkke
2010-01-01
to maintain the order of the home when managing disease and adopting new healthcare technology. In our analysis we relate this boundary work to two continuums of visibility-invisibility and integration-segmentation in disease management. We explore five factors that affect the boundary work: objects......To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work......, activities, places, character of disease, and collaboration. Furthermore, the processes are explored of how boundary objects move between social worlds pushing and shaping boundaries. From this we discuss design implications for future healthcare technologies for the home....
DEFF Research Database (Denmark)
Zølner, Mette
The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors...... in the period of post-acquisition when their organization is being integrated into the acquiring MNC. The paper contributes to the literature on boundary spanning in three ways: First, by illustrating that boundary spanning is performed by numerous organizational actors in a variety of positions in MNCs......, inclusively by locals in subsidiaries. Second, by showing that boundary spanning is ‘situated’ in the sense that its result depends on the kind of knowledge to be transmitted and the attitude of the receivers. A third contribution is methodological. The study illustrates that combining bottom-up grounded...
Boundary dynamics in dilaton gravity
International Nuclear Information System (INIS)
Das, S.R.; Mukherji, S.
1994-06-01
We study the dynamics of the boundary in two dimensional dilaton gravity coupled to N massless scalars. We rederive the boundary conditions of [1] and [3] in a way which makes the requirement of reparametrization invariance and the role of conformal anomaly explicit. We then study the semiclassical behaviour of the boundary in the N=24 theory in the presence of an incoming matter wave with a constant energy flux spread over a finite interval. There is a critical value of the matter energy density below which the boundary is stable and all the matter is reflected back. For energy densities greater than this critical value there is a similar behaviour for small values of the total energy thrown in. However, when the total energy exceeds another critical value the boundary exhibits a runaway behaviour and the spacetime develops in singularities and horizons. (author). 10 refs, 3 figs
Terminology of allergic phenomena.
Ring, Johannes
2014-01-01
Over the last 2,000 years a variety of terms have been used for the description of phenomena possibly related to allergy. Many have been forgotten, while some of them have remained. In Greco-Roman literature the term 'idiosyncrasy' was used to describe an individual characterization of a health condition, possibly comparable to 'constitution'. The same term was also used to describe individual reaction patterns, and the term 'antipathy' was used in a similar sense. 'Hypersensitivity' originated from the German word 'Überempfindlichkeit' and was first used in a medical sense by Emil von Behring when he described untoward reactions to his antitoxin containing serum therapy. 'Anaphylaxis' was coined by Richet and Portier to describe the new phenomenon of a life-threatening general pathogenic reaction after repeated injection of antigen. In 1906, Clemens von Pirquet introduced the term 'allergy' in order to bring more clarity to the confusing debate regarding protective and harmful immunity. In order to characterize the familial occurrence of hypersensitivity reactions such as asthma, hay fever and others, the American allergists A.F. Coca and R.A. Cooke introduced the term 'atopy'. Contrary to anaphylaxis, which was experimentally induced, this type of 'hypersensitiveness' occurred spontaneously. The nature of the pathogenic factor was called the 'atopic reagin' and was found to be transferable with serum by Prausnitz and Küstner. After the detection of immunoglobulin (Ig) E as the carrier of this type of hypersensitivity, the term 'atopy' gained a new sense, since IgE is a characteristic - yet not exclusive - parameter of the so-called atopic diseases. Clinically similar diseases such as asthma, rhinoconjunctivitis or eczema can be found in the absence of IgE, and are then called 'intrinsic' variants of the same disease. © 2014 S. Karger AG, Basel.
Simulations of Biomechanical Phenomena
Gonzalez, Jose Cruz
Recent studies have published breakthroughs in the application of finite element (FEA) studies in the design and analysis of advanced orthodontics. However, FEA has not captured bone remodeling responses to advanced orthodontics. The results of these simulations report unrealistic displacement around the nasal bridge, which impeded correlation with clinical data. Bone remodeling has been previously documented in FEA and has shown bone response to mechanical stimulus in femur bone models. However, the relationship between mechanical stimulus and bone remodeling has not been reported in orthodontic studies due to the complexity of the skull. In the current study, strain energy is used as the mechanical stimulus to control remodeling, from which density and modulus evolve. Due to the localization of forces in orthodontics, current remodeling algorithms have limited application. In turn, we developed an algorithm that dynamically collects, sorts, and bins stresses in all elements for regional remodeling based on the proximity of the element to the load. The results demonstrate that bone response to orthodontic appliances is different than that of an FEA without bone remodeling, due to load path changes based upon evolution of the bone properties. It was also found that density and moduli proximal to the load application site exhibit faster remodeling than those located remotely. Modeling another biomechanical phenomena, a 3D simulation was created to simulate recent experimental results that discovered a difference in impact mitigation properties of dense-polymer/foam bilayer structure based on the orientation of the dense-polymer with respect to the impact site. The impact energy transmitted varied in time of arrival and amplitude depending on the orientation of the structure (thin layer up or down). By creating a 3D explicit dynamic FEA simulation, it is expected to reduce costly experiments and time consumed in set up, and offer opportunities for optimization for
Teaching Optical Phenomena with Tracker
Rodrigues, M.; Carvalho, P. Simeão
2014-01-01
Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a…
Interfacial Transport Phenomena (Second edition)
Slattery, J.C.; Sagis, L.M.C.; Oh, E.S.
2007-01-01
Gives a presentation of transport phenomena or continuum mechanics focused on momentum, energy, and mass transfer at interfaces. This work includes a discussion of transport phenomena at common lines or three-phase lines of contact, and a theory for the extension of continuum mechanics to the
DEFF Research Database (Denmark)
Zølner, Mette
The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors in...... approach with pattern matching is a way to shed light on the tacit local knowledge that organizational actors cannot articulate and that an exclusively inductive research is not likely to unveil....
International Nuclear Information System (INIS)
Stirling, W.G.; Perry, S.C.
1996-01-01
We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO 3 is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs
Energy Technology Data Exchange (ETDEWEB)
Stirling, W.G. [Liverpool Univ., Dep. of Physics, Liverpool (United Kingdom); Perry, S.C. [Keele Univ. (United Kingdom). Dept. of Physics
1996-12-31
We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO{sub 3} is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs.
Light-induced phenomena in one-component gas: The transport phenomena
Chermyaninov, I. V.; Chernyak, V. G.
2016-09-01
The article presents the theory of transport processes in a one-component gas located in the capillary under the action of resonant laser radiation and the temperature and pressure gradients. The expressions for the kinetic coefficients determining heat and mass transport in the gas are obtained on the basis of the modified Boltzmann equations for the excited and unexcited particles. The Onsager reciprocal relations for cross kinetic coefficients are proven for all Knudsen numbers and for any law interaction of gas particles with each other and boundary surface. Light-induced phenomena associated with the possible non-equilibrium stationary states of system are analyzed.
Advanced diffusion processes and phenomena
Öchsner, Andreas; Belova, Irina
2014-01-01
This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the
Micro transport phenomena during boiling
Energy Technology Data Exchange (ETDEWEB)
Peng, Xiaofeng [Tsinghua Univ., Beijing (China). Inst. of Thermal Engineering and Science
2010-07-01
''Micro Transport Phenomena During Boiling'' reviews the new achievements and contributions in recent investigations at microscale. The content mainly includes (i) fundamentals for conducting investigations of micro boiling, (ii) microscale boiling and transport phenomena, (iii) boiling characteristics at microscale, (iv) some important applications of micro boiling transport phenomena. This book is intended for researchers and engineers in the field of micro energy systems, electronic cooling, and thermal management in various compact devices/systems at high heat removal and/or heat dissipation. (orig.)
Critical point fluctuations in supported lipid membranes.
Connell, Simon D; Heath, George; Olmsted, Peter D; Kisil, Anastasia
2013-01-01
In this paper, we demonstrate that it is possible to observe many aspects of critical phenomena in supported lipid bilayers using atomic force microscopy (AFM) with the aid of stable and precise temperature control. The regions of criticality were determined by accurately measuring and calculating phase diagrams for the 2 phase L(d)-L(o) region, and tracking how it moves with temperature, then increasing the sampling density around the estimated critical regions. Compositional fluctuations were observed above the critical temperature (T(c)) and characterised using a spatial correlation function. From this analysis, the phase transition was found to be most closely described by the 2D Ising model, showing it is a critical transition. Below T(c) roughening of the domain boundaries occurred due to the reduction in line tension close to the critical point. Smaller scale density fluctuations were also detected just below T(c). At T(c), we believe we have observed fluctuations on length scales greater than 10 microm. The region of critically fluctuating 10-100 nm nanodomains has been found to extend a considerable distance above T(c) to temperatures within the biological range, and seem to be an ideal candidate for the actual structure of lipid rafts in cell membranes. Although evidence for this idea has recently emerged, this is the first direct evidence for nanoscale domains in the critical region.
DEFF Research Database (Denmark)
Gorm Hansen, Birgitte
2012-01-01
as the negotiation of a preexisting science-industry boundary. Rather, viability is obtained through a strategy of circumventing the science-industry food chain and sequestering biotech components within the research center. Symbiosis allows academic scientists to do biology while at the same time demonstrating......Whether celebratory or critical, STS research on science-industry relations has focused on the blurring of boundaries and hybridization of codes and practices. However, the vocabulary of boundary and hybrid tends to reify science and industry as separate in the attempt to map their relation....... Drawing on interviews with the head of a research center in plant biology, this article argues that biology and biotech are symbionts. In order to be viable and productive, symbiosis needs to be carefully managed and given room for divergence within mutual dependence. This process does not take place...
Micro transport phenomena during boiling
Peng, Xiaofeng
2011-01-01
"Micro Transport Phenomena During Boiling" reviews the new achievements and contributions in recent investigations at microscale. It presents some original research results and discusses topics at the frontier of thermal and fluid sciences.
DEFF Research Database (Denmark)
Neergaard, Ulla; Nielsen, Ruth
2010-01-01
of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects......; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... and distributive justice at national level....
Directory of Open Access Journals (Sweden)
Vasilache, Andreas
2014-05-01
Full Text Available In order to challenge the widespread identification of political inter-, trans-, and supranationalization with the disappearance of boundaries, the following heuristic reflections will concentrate on a few selected phe-nomena and changes of boundaries under conditions of increasing and intensified cross-border politics. While concentrating on boundaries that are constitutive with regard to state theory, the focus lies on par-ticular modes of appearance of these boundaries in times of intensified inter-, trans-, and supranational relations. In doing so, boundaries will be understood as social and political phenomena, while at the same time taking their epistemic significance into account. It should be considered if we are really dealing with the dissolving of traditional boundaries in cross-border politics or rather with the volatility of boundaries, i.e. with flexible boundary lines, whereas the boundary’s political and epistemic quality and function are not necessarily modified or weakened.
Containment severe accident thermohydraulic phenomena
International Nuclear Information System (INIS)
Frid, W.
1991-08-01
This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)
Collective Phenomena in Kidney Autoregulation
DEFF Research Database (Denmark)
Mosekilde, Erik; Sosnovtseva, Olga; Holstein-Rathlou, N.-H.
2004-01-01
By controling the excretion of water and salts, the kidneys play all important role ill regulating the blood pressure and maintaining a proper environment for the cells of the body. This control depends to a large extent oil mechanisms that are associated with the individual functional unit...... for the observed synchronization phenomena, and discuss the possible physiological significance of these phenomena. We are particularly interested ill synchronization effects that call occur among neighboring nephrons that individually display irregular (or chaotic) dynamics in their pressure and flow regulation....
Whistlers and related ionospheric phenomena
Helliwell, Robert A
2006-01-01
The investigation of whistlers and related phenomena is a key element in studies of very-low-frequency propagation, satellite communication, the outer ionosphere, and solar-terrestrial relationships. This comprehensive text presents a history of the study of the phenomena and includes all the elements necessary for the calculation of the characteristics of whistlers and whistler-mode signals.An introduction and brief history are followed by a summary of the theory of whistlers and a detailed explanation of the calculation of their characteristics. Succeeding chapters offer a complete atlas of
International Nuclear Information System (INIS)
Scharenberg, R.P.; Hirsch, A.S.; Tincknell, M.L.
1992-01-01
An experiment to search for the production of quark endash gluon plasma in proton endash antiproton interactions is described with emphasis on 1992 results. Next, a search for critical phenomena using the EOS Time Projection Chamber is similarly described, including the results of 1992 test runs, nucleus endash nucleus collision simulations, and the extraction of critical indices from small percolation lattices. Analysis of results from experiments to detect the possible production of anomalous photons in the central rapidity region with transverse momentum between 5 and 50 MeV/c are discussed. Initial work on an experiment to study the high-density, high-temperature state of matter formed in collisions of heavy nuclei at relativistic energies, planned to begin in fall 1997, is related. Finally, work on a research and development project to investigate silicon avalanche diodes as time-of-flight detectors for nuclear and particle physics applications is reviewed. The principle is to detect the ionization of charged particles directly in the Si; feasibility has been demonstrated
Transport phenomena in particulate systems
Freire, José Teixeira; Ferreira, Maria do Carmo
2012-01-01
This volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.
Frustration and quantum criticality.
Vojta, Matthias
2018-03-15
This review article is devoted to the interplay between frustrated magnetism and quantum critical phenomena, covering both theoretical concepts and ideas as well as recent experimental developments in correlated-electron materials. The first part deals with local-moment magnetism in Mott insulators and the second part with frustration in metallic systems. In both cases, frustration can either induce exotic phases accompanied by exotic quantum critical points or lead to conventional ordering with unconventional crossover phenomena. In addition, the competition of multiple phases inherent to frustrated systems can lead to multi-criticality. © 2018 IOP Publishing Ltd.
DEFF Research Database (Denmark)
Jørgensen, Kristian Møller; Petersen, Michael Nebeling
2018-01-01
Hook-up apps such as Grindr and Scruff have become important sites for the negotiation of sex between men, in that they shape the ways intimacy cultures are practised and become visible (Mowlabocus, 2010; Race, 2014; Duguay et al., 2016). While such apps enable different intimacy cultures......, they also come paired with anxieties. In the epigraph the interview participant James1 expresses concerns about the how the hook-up app Scruff might restructure the boundaries of privacy and make him vulnerable to exposure. Such technological ambivalence is central to domestication theory, which focuses...
DEFF Research Database (Denmark)
. As a fundamental human experience, liminality transmits cultural practices, codes, rituals, and meanings in-between aggregate structures and uncertain outcomes. As a methodological tool it is well placed to overcome disciplinary boundaries, which often direct attention to specific structures or sectors of society....... Its capacity to provide explanatory accounts of seemingly unstructured situations provides an opportunity to link experience-based and culture-oriented approaches not only to contemporary problems but also to undertake comparisons across historical periods. From a perspective of liminality...
Equation of Motion for a Grain Boundary
Zhang, Luchan; Han, Jian; Xiang, Yang; Srolovitz, David J.
2017-12-01
Grain boundary (GB) migration controls many forms of microstructural evolution in polycrystalline materials. Recent theory, simulations, and experiments demonstrate that GB migration is controlled by the motion of discrete line defects or disconnections. We present a continuum equation of motion for grain boundary derived from the underlying discrete disconnection mechanism. We also present an equation of motion for the junctions where multiple grain boundaries meet—as is always the case in a polycrystal. The resulting equation of motion naturally exhibits junction drag—a widely observed phenomena in junction dynamics in solids and liquids.
Slow slip phenomena in Cascadia from 2007 and beyond: a review
Gomberg, Joan; ,
2010-01-01
Recent technological advances combined with more detailed analyses of seismologic and geodetic observations have fundamentally changed our understanding of the ways in which tectonic stresses arising from plate motions are accommodated by slip on faults. The traditional view that relative plate motions are accommodated by a simple cycle of stress accumulation and release on “locked” plate-boundary faults has been revolutionized by the serendipitous discovery and recognition of the significance of slow-slip phenomena, mostly in the deeper reaches of subduction zones. The Cascadia subduction zone, located in the Pacific Northwest of the conterminous United States and adjacent Canada, is an archetype of exploration and learning about slow-slip phenomena. These phenomena are manifest as geodetically observed aseismic transient deformations accompanied by a previously unrecognized class of seismic signals. Although secondary failure processes may be involved in generating the seismic signals, the primary origins of both aseismic and seismic phenomena appear to be episodic fault slip, probably facilitated by fluids, on a plate interface that is critically stressed or weakened. In Cascadia, this transient slip evolves more slowly and over more prolonged durations relative to the slip in earthquakes, and it occurs between the 30- and 40-km-depth contours of the plate interface where information was previously elusive. Although there is some underlying organization that relaxes nearly all the accrued plate-motion stresses along the entirety of Cascadia, we now infer that slow slip evolves in complex patterns indicative of propagating stress fronts. Our new understanding provides key constraints not only on the region where the slow slip originates, but also on the probable characteristics of future megathrust earthquakes in Cascadia. Herein, we review the most significant scientific issues and progress related to understanding slow-slip phenomena in Cascadia and
Anomalous critical and supercritical phenomena in explosive percolation
D'Souza, Raissa M.; Nagler, Jan
2015-07-01
The emergence of large-scale connectivity on an underlying network or lattice, the so-called percolation transition, has a profound impact on the system’s macroscopic behaviours. There is thus great interest in controlling the location of the percolation transition to either enhance or delay its onset and, more generally, in understanding the consequences of such control interventions. Here we review explosive percolation, the sudden emergence of large-scale connectivity that results from repeated, small interventions designed to delay the percolation transition. These transitions exhibit drastic, unanticipated and exciting consequences that make explosive percolation an emerging paradigm for modelling real-world systems ranging from social networks to nanotubes.
Mechanical critical phenomena and the elastic response of fiber networks
Mackintosh, Fred
The mechanics of cells and tissues are largely governed by scaffolds of filamentous proteins that make up the cytoskeleton, as well as extracellular matrices. Evidence is emerging that such networks can exhibit rich mechanical phase behavior. A classic example of a mechanical phase transition was identified by Maxwell for macroscopic engineering structures: networks of struts or springs exhibit a continuous, second-order phase transition at the isostatic point, where the number of constraints imposed by connectivity just equals the number of mechanical degrees of freedom. We present recent theoretical predictions and experimental evidence for mechanical phase transitions in in both synthetic and biopolymer networks. We show, in particular, excellent quantitative agreement between the mechanics of collagen matrices and the predictions of a strain-controlled phase transition in sub-isostatic networks.
Ship-induced solitons as a manifestation of critical phenomena
Zakharov, Stanyslav; Kryukov, Alexey
2008-01-01
A ship, moving with small acceleration in a reservoir of uniform depth, can be subjected to a sudden hydrodynamical impact similar to collision with an underwater rock, and on water surface unusual solitary wave will start running. The factors responsible for formation of solitons induced by a moving ship are analyzed. Emphasis is given to a phenomenon observed by John Scott Russell more 170 years ago when a sudden stop of a boat preceded the occurrence of exotic water dome. In dramatic chang...
Critical phenomena in binary and ternary polymer blends
Czech Academy of Sciences Publication Activity Database
Štěpánek, Petr; Morkved, T. L.; Krishnan, K.; Lodge, T. P.; Bates, F. S.
2002-01-01
Roč. 314, 1-4 (2002), s. 411-418 ISSN 0378-4371 R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : polymer blends * polymer dynamics * block copolymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.369, year: 2002
Transport phenomena in multiphase flows
Mauri, Roberto
2015-01-01
This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy. It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory...
Solar Neutrons and Related Phenomena
Dorman, Lev
2010-01-01
This book presents the first comprehensive compilation and review of the extensive body of experimental and theoretical material on solar neutrons and related phenomena published in the scientific literature over the last sixty years. Phenomena related to solar neutrons are more specifically: the decay products of solar neutrons solar gamma rays generated in processes like nuclear reactions between solar energetic charged particles and matter of the solar atmosphere, as well as by the capture of solar neutrons by hydrogen atoms in the solar atmosphere the propagation of solar neutrons, solar gamma rays and other secondary particles through the solar photosphere, chromosphere and corona, as well as through interplanetary space and through the Earth's atmosphere. Models and simulations of particle acceleration, interactions, and propagation processes show that observations of solar neutrons and gamma rays in space and in the Earth's atmosphere yield essential and unique information on the source function of ene...
Mathematical Modeling of Diverse Phenomena
Howard, J. C.
1979-01-01
Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.
Gravitational anomaly and transport phenomena
Landsteiner, Karl
2011-01-01
Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficie...
Multiscale Modeling of Mesoscale and Interfacial Phenomena
Petsev, Nikolai Dimitrov
we provide a novel and general framework for multiscale modeling of systems featuring one or more dissolved species. This makes it possible to retain molecular detail for parts of the problem that require it while using a simple, continuum description for parts where high detail is unnecessary, reducing the number of degrees of freedom (i.e. number of particles) dramatically. This opens the possibility for modeling ion transport in biological processes and biomolecule assembly in ionic solution, as well as electrokinetic phenomena at interfaces such as corrosion. The number of particles in the system is further reduced through an integrated boundary approach, which we apply to colloidal suspensions. In this thesis, we describe this general framework for multiscale modeling single- and multicomponent systems, provide several simple equilibrium and non-equilibrium case studies, and discuss future applications.
Magnetoacoustic Phenomena in Saturated Porous Media
Perepechko, Y.
2007-12-01
This work deals with dynamic interaction between electromagnetic and hydrodynamic types of motions in a porous medium, saturated with electrolyte. The system of equations is a coupling of equations of the two-velocity continuous filtration theory and Maxwell equations in quasi-stationary approximation. The method of separation by the physical processes is used for numerical solution, and the hyperbolic system is approximated by the explicit expanded Godunov scheme, and the parabolic system is approximated by the inexplicit Crank-Nicolson scheme. Generation of the magnetic field was modeled in the process of 2D electrolyte filtration in a porous medium, which is considered to be conducing because of a double electric layer. An entrainment in the external magnetic field over the electrolyte flow into a porous medium is observed, and the location of magnetic field maximum relative to the inlet boundary is determined by the ratio of kinematic viscosity to magnetic viscosity. A rise of this ratio provides more intensive drag of a filtered liquid and increasing magnetic field, reached in a porous medium. Downward the flow the field decreases because of magnetic field diffusion. The problem with simultaneous excitation of acoustic and electromagnetic perturbations at the boundary of saturated porous medium was also considered, and this allows us to obtain additional knowledge about accompanying effects and phenomena, what is the main scientific and practical goal of geophysics and oil survey. This research was supported by the Russian Foundation for Basic Research grant 06-05-65110, by the President's grants NSh-1573.2003.5, and by the Russian Ministry Science and Education grant RNP.2.1.1.702.
Ludu, Andrei
2016-01-01
The central theme of this book is the extent to which the structure of the free dynamical boundaries of a system controls the evolution of the system as a whole. Applying three orthogonal types of thinking - mathematical, constructivist and morphological, it illustrates these concepts using applications to selected problems from the social and life sciences, as well as economics. In a broader context, it introduces and reviews some modern mathematical approaches to the science of complex systems. Standard modeling approaches (based on non-linear differential equations, dynamic systems, graph theory, cellular automata, stochastic processes, or information theory) are suitable for studying local problems. However they cannot simultaneously take into account all the different facets and phenomena of a complex system, and new approaches are required to solve the challenging problem of correlations between phenomena at different levels and hierarchies, their self-organization and memory-evolutive aspects, the grow...
Thermal phenomenae in nuclear fuel rods
International Nuclear Information System (INIS)
Baigorria, Carlos.
1983-12-01
Thermal phenomenae occurring in a nuclear fuel rod under irradiation are studied. The most important parameters of either steady or transient thermal states are determined. The validity of applying the Fourier's approximation equations to these problems is also studied. A computer program TRANS is developed in order to study the transient cases. This program solves a system of coupled, non-linear partial differential equations, of parabolic type, in cylindrical coordinates with various boundary conditions. The benchmarking of the TRANS program is done by comparing its predictions with the analytical solution of some simplified transient cases. Complex transient cases such as those corresponding to characteristic reactor accidents are studied, in particular for typical pressurized heavy water reactor (PHWR) fuel rods, such as those of Atucha I. The Stefan problem emerging in the case of melting of the fuel element is solved. Qualitative differences between the classical Stefan problem, without inner sources, and that one, which includes sources are discussed. The MSA program, for solving the Stefan problem with inner sources is presented; and furthermore, it serves to predict thermal evolution, when the fuel element melts. Finally a model for fuel phase change under irradiation is developed. The model is based on the dimensional invariants of the percolation theory when applied to the connectivity of liquid spires nucleated around each fission fragment track. Suggestions for future research into the subject are also presented. (autor) [es
Nonlinear Dynamic Phenomena in Mechanics
Warminski, Jerzy; Cartmell, Matthew P
2012-01-01
Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear
Violent phenomena in the Universe
Narlikar, Jayant V
2007-01-01
The serenity of a clear night sky belies the evidence-gathered by balloons, rockets, satellites, and telescopes-that the universe contains centers of furious activity that pour out vast amounts of energy, some in regular cycles and some in gigantic bursts. This reader-friendly book, acclaimed by Nature as ""excellent and uncompromising,"" traces the development of modern astrophysics and its explanations of these startling celestial fireworks.This lively narrative ranges from the gravitational theories of Newton and Einstein to recent exciting discoveries of such violent phenomena as supernova
Gravitational anomaly and transport phenomena.
Landsteiner, Karl; Megías, Eugenio; Pena-Benitez, Francisco
2011-07-08
Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.
Phenomena and Diosignes of Aratous
Avgoloupis, S. I.
2013-01-01
Aratous (305-240B.C.) was a singular intellectual, writer and poet which engage himself to compose a very interesting astronomical poet, using the "Dactylous sixstage' style, the formal style of the ancient Greek Epic poetry. This astronomic poem of Aratous "Phenomena and Diosignes" became very favorite reading during the Alexandrine, the Romman and the Byzandin eras as well and had received many praises from significant poets and particularly from Hipparchous and from Theonas from Alexandria, an astronomer of 4rth century A.C.(in Greeks)
Quantum theory of collective phenomena
Sewell, G L
2014-01-01
""An excellent and competent introduction to the field … [and] … a source of information for the expert."" - Physics Today""This a book of major importance…. I trust that this book will be used as a basis for the teaching of a balanced, modern and rigorous course on statistical mechanics in all universities."" - Bulletin of the London Mathematical Society""This is one of the best introductions to the subject, and it is strongly recommended to anyone interested in collective phenomena."" - Physics Bulletin ""The book may be recommended for students as a well-balanced introduction to this rich s
Transport phenomena in nanoporous materials.
Kärger, Jörg
2015-01-12
Diffusion, that is, the irregular movement of atoms and molecules, is a universal phenomenon of mass transfer occurring in all states of matter. It is of equal importance for fundamental research and technological applications. The present review deals with the challenges of the reliable observation of these phenomena in nanoporous materials. Starting with a survey of the different variants of diffusion measurement, it highlights the potentials of "microscopic" techniques, notably the pulsed field gradient (PFG) technique of NMR and the techniques of microimaging by interference microscopy (IFM) and IR microscopy (IRM). Considering ensembles of guest molecules, these techniques are able to directly record mass transfer phenomena over distances of typically micrometers. Their concerted application has given rise to the clarification of long-standing discrepancies, notably between microscopic equilibrium and macroscopic non-equilibrium measurements, and to a wealth of new information about molecular transport under confinement, hitherto often inaccessible and sometimes even unimaginable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rotary kilns - transport phenomena and transport processes
Energy Technology Data Exchange (ETDEWEB)
Boateng, A.
2008-01-15
Rotary kilns and rotating industrial drying ovens are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This book treats all engineering aspects of rotary kilns, including thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns. Chapter 1: The Rotary Kiln Evolution and Phenomenon Chapter 2: Basic Description of Rotary Kiln Operation Chapter 3: Freeboard Aerodynamic Phenomena Chapter 4: Granular Flows in Rotary Kilns Chapter 5: Mixing and Segregation Chapter 6: Combustion and Flame - includes section on types of fuels used in rotary kilns, coal types, ranking and analysis, petroleum coke combustion, scrap tire combustion, pulverized fuel (coal/coke) firing in kilns, pulverized fuel delivery and firing systems. Chapter 7: Freeboard Heat Transfer Chapter 8: Heat Transfer Processes in the Rotary Kiln Bed Chapter 9: Mass and Energy Balance Chapter 10: Rotary Kiln Minerals Process Applications.
Natural phenomena hazards, Hanford Site, Washington
International Nuclear Information System (INIS)
Conrads, T.J.
1998-01-01
This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity
Self-organization phenomena in plasma physics
International Nuclear Information System (INIS)
Sanduloviciu, M.; Popescu, S.
2001-01-01
The self-assembling in nature and laboratory of structures in systems away from thermodynamic equilibrium is one of the problems that mostly fascinates the scientists working in all branches of science. In this context a substantial progress has been obtained by investigating the appearance of spatial and spatiotemporal patterns in plasma. These experiments revealed the presence of a scenario of self-organization able to suggest an answer to the central problem of the 'Science of Complexity', why matter transits spontaneously from a disordered into an ordered state? Based on this scenario of self-organization we present arguments proving the possibility to explain the challenging problems of nonequilibrium physics in general. These problems refer to: (i) genuine origin of phase transitions observed in gaseous conductors and semiconductors; (ii) the elucidation of the role played by self-organization in the simulation of oscillations; (iii) the physical basis of anomalous transport of matter and energy with special reference to the possibilities of improving the economical performance of fusion devices; (iv) the possibility to use self-confined gaseous space charged configurations as an alternative to the magnetically confined plasma used at present in fusion devices. In other branches of sciences, as for instance in Biology, the self-organization scenario reveals a new insight into a mechanism able to explain the appearance of the simplest possible space charge configuration able to evolve, under suitable conditions, into prebiotic structures. Referring to phenomena observed in nature, the same self-organization scenario suggests plausible answers to the appearance of ball lightening but also to the origin of the flickering phenomena observed in the light emission of the Sun and stars. For theory the described self-organization scenario offers a new physical basis for many problems of nonlinear science not solved yet and also a new model for the so-called 'self
MHD phenomena at ASDEX Upgrade
International Nuclear Information System (INIS)
Guenter, S.; Gude, A.; Maraschek, M.; Pinches, S.D.; Sesnic, S.; Wolf, R.C.; Yu, Q.; Zohm, M.
2001-01-01
The onset of neoclassical tearing modes leads to the most serious β limit at ASDEX Upgrade. The β p value for the onset of neoclassical tearing modes is found to be proportional to the ion gyro-radius for collisionless plasmas as proposed by the ion polarisation current model. Larger collisionalities have a stabilizing effect. Sawtooth crashes or fishbones can trigger the mode, and in a few cases it appears spontaneously. Fishbones are shown to be able to cause magnetic reconnection. The fractional energy loss due to a (3,2) mode saturates for large pressures at around 25 %. In discharges with large impurity accumulation unusual MHD phenomena such as cascades of high-n tearing modes and modes driven by positive pressure gradients have been found. (author)
MHD phenomena at ASDEX Upgrade
International Nuclear Information System (INIS)
Guenter, S.; Gude, A.; Maraschek, M.; Pinches, S.D.; Sesnic, S.; Wolf, R.C.; Yu, Q.; Zohm, H.
1999-01-01
The onset of neoclassical tearing modes leads to the most serious β limit at ASDEX Upgrade. The β p value for the onset of neoclassical tearing modes is found to be proportional to the ion gyro-radius for collisionless plasmas as proposed by the ion polarisation current model. Larger collisionalities have a stabilizing effect. Sawtooth crashes or fishbones can trigger the mode, and in a few cases it appears spontaneously. Fishbones are shown to be able to cause magnetic reconnection. The fractional energy loss due to a (3,2) mode saturates for large pressures at around 25%. In discharges with large impurity accumulation unusual MHD phenomena such as cascades of high-n tearing modes and modes driven by positive pressure gradients have been found. (author)
Emergent Phenomena at Oxide Interfaces
Energy Technology Data Exchange (ETDEWEB)
Hwang, H.Y.
2012-02-16
Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the
International Nuclear Information System (INIS)
Hinchliffe, I.
1996-12-01
The Standard Model of particle physics has been very successful in describing experimental data with great precision. With the exception of some neutrino anomalies, there is no data that is in disagreement with it. Nevertheless, the model is regarded as incomplete and unsatisfactory. There is no explanation of the pattern of quark and lepton masses and, possibly more important, no understanding of the scale of electroweak interactions. Electroweak symmetry breaking is implemented in the Standard Model from the presence of a scalar electroweak doublet, the Higgs field, that acquires a vacuum expectation value of order 250 GeV and leaves as a remnant one physical state, the electrically neutral Higgs boson whose mass is not predicted. In this talk, the author compares the techniques used at, and capabilities of, various facilities in searching for new phenomena. The author emphasizes the cases where information from more than one facility may be needed to fully explore the physics
Introduction to symmetry-breaking phenomena in physics
CERN. Geneva. Audiovisual Unit
2001-01-01
The notion of broken symmetries started slowly to emerge in the 19th century. The early studies of Pasteur on the parity asymmetry of life, the studies of Curie on piezoelectricity and on the symmetries of effects versus the symmetry of causes ( which clearly excluded spontaneous symmetry breaking), are important historical landmarks. However the possibility of spontaneous symmetry breaking within the usual principles of statistical mechanics, waited for the work of Peierls and Onsager. The whole theory of phase transitions and critical phenomena, as well as the construction of field theoretic models as long distance limit of yet unknown physics, relies nowadays on the concept of criticality associated to spontaneous symmetry breaking. The phenomena of Goldstone bosons, of Meissner-Higgs effects, are central to the theory of condensed matter as well as to particle physics. In cosmology as well, the various inflationary scenarios begin similarly with this same concept. The three lectures will provide a simple ...
Remote sensing of natural phenomena
Directory of Open Access Journals (Sweden)
Miodrag D. Regodić
2014-06-01
Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in
Geometric aspects of ordering phenomena
Cugliandolo, Leticia F.
2017-01-01
A macroscopic system prepared in a disordered phase and quenched across a second-order phase transition into an ordered phase undergoes a coarsening process whereby it orders locally in one of the equilibrium states. The study of the evolution of the morphology of the ordered structures in two dimensions has recently unveiled two interesting and generic features. On the one hand, the dynamics first approach a critical percolating state via the growth of a new lengthscale and satisfying scaling properties with respect to it. The time needed to reach the critical percolating state diverges with the system size, though more weakly than the equilibration time. On the other hand, once the critical percolating structures established, the geometrical and statistical properties at larger scales than the one established by the usual dynamic growing length remain the ones of critical percolation. These observations are common to different microscopic dynamics (single spin flip, local and non-local spin exchange, voter) in pure or weakly disordered systems. We discuss these results and we refer to the relevant publications for details. xml:lang="fr"
EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology
Loss, Daniel
2009-10-01
Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation
Poorly studied phenomena in geoelectrics
Directory of Open Access Journals (Sweden)
В. С. Могилатов
2016-12-01
Full Text Available Undoubtedly, modern geoelectric technologies emerge in the result of the development of traditional approaches and techniques. However of more interest is the appearance of completely new technologies based on new effects and new models of interaction of geological medium and electromagnetic field. The author does not commit to indicate principally new directions, but only wants to discuss some poorly known facts from the theory and practice of geoelectrics. The outcome of this study could be considered attracting the attention of experts to non-traditional signals in geoelectrics. The reviewed phenomena of interest, not fully implemented in practice in the author’s opinion, are field split into two polarizations: transverse electric (the ТЕ-field and transverse magnetic (the ТМ-field, then some poorly known properties of ТМ-field, the role of bias currents, the anisotropy of horizontal resistances, the role of geomagnetic field in geoelectric sounding, the unique resolution of CSEM (Controlled Source Electro-Magnetic techniques at sea.
Understanding empathy and related phenomena.
Shamasundar, C
1999-01-01
Over a period of time, the author arrived at a few tentative postulates concerning empathy and related processes based on some of his experiences and observations. The central theme of these postulates is, firstly, that interpersonal interaction is an interaction of the personal-space fields. Secondly, empathy, therapeutic benefit, and the professional stress are all related to the same process of interpersonal interaction. This interaction takes place as an enmeshment of personal spaces of the interacting individuals, and involves transfer of a wide range of information in the affective, cognitive, and other areas. This is because the personal spaces have fieldlike qualities analogous to what Kurt Lewin described. Thus, such phenomena as empathy, therapeutic benefit, professional stress are all consequences of the same process. It is possible to substantiate these postulates by diverse evidences in the published literature. The natural consequences of such an interpersonal interaction are empathic understanding, transfer of mood states (like hope, distress or expectancy), affective states (like anxiety, sadness, anger or hostility), ideas, images and even attitudes and values, etc. This phenomenon of transfer can explain such processes as therapeutic benefit in individual and group settings, professional stress, shared delusions, and even experimenter bias. Whether one becomes aware of such transferred information or not depends upon the intent and sensitivity of the participants.
Conductance phenomena in microcrystalline cellulose
Nilsson, M.
2006-02-01
We have investigated the conduction phenomena in compacted tablets of cellulose with varying relative humidity (RH) with techniques such as Low Frequency Dielectric Spectroscopy (LFDS) and Transient Current (TC) at room temperature. Two exponential decaying regions in the transient current measurements indicate two ionic species contributing to the conduction mechanism. A high power-law exponent of 9 for the conductance with moisture content has been found. The mobility initially decreases with RH up to monolayer coverage, and further water vapor increases the mobility, indicating a blocking of available positions for the charge carrier ions. When the amount of water molecules present in the tablet increases one order of magnitude, the number of charge carriers increases 5-6 orders of magnitude, suggesting a transition from a power-law increase to a linear effective medium theory for the conduction. The charge carrier dependence on RH suggests that a percolating network of water molecules adsorbed to 6-OH units on the cellulose chain span through the sample. The conductivity mechanisms in cellulose are still not clear.
Mixed Fluid Conditions: Capillary Phenomena
Santamarina, Carlos
2017-07-06
Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.
Gonçalves de Azevedo, Filipa; Griffiths, John F; Cardoso, Silvana S S
2014-11-14
Thermal explosions are often influenced by the complex interaction between transport and reaction phenomena. In particular, reactant consumption can promote safer, non-explosive operation conditions of combustion systems. However, in liquids or gases, the presence of forced convection can affect the behaviour of a system, instigating oscillations in the temperature, reactant concentration and velocity fields. This work describes the effect of reactant consumption on a simple, one-step, exothermic reaction occurring in a spherical reactor with both forced and natural convection, by means of numerical simulations. Regime diagrams characterised by ratios of timescales for each transport and reaction phenomena are presented and the explosion boundary is represented for several forced convection and reaction consumption intensities. Special attention is given to the oscillatory behaviour observed for moderate forced convection and oscillatory regions are represented on the regime diagrams. Parametric conditions for this new oscillatory regime are identified by extending the criticality condition developed by Frank-Kamenetskii for the effect of reactant consumption in diffusive systems to include the effects of both natural and forced convection.
Distributed Tuning of Boundary Resources
DEFF Research Database (Denmark)
Eaton, Ben; Elaluf-Calderwood, Silvia; Sørensen, Carsten
2015-01-01
The digital age has seen the rise of service systems involving highly distributed, heterogeneous, and resource-integrating actors whose relationships are governed by shared institutional logics, standards, and digital technology. The cocreation of service within these service systems takes place...... in the context of a paradoxical tension between the logic of generative and democratic innovations and the logic of infrastructural control. Boundary resources play a critical role in managing the tension as a firm that owns the infrastructure can secure its control over the service system while independent...... firms can participate in the service system. In this study, we explore the evolution of boundary resources. Drawing on Pickering’s (1993) and Barrett et al.’s (2012) conceptualizations of tuning, the paper seeks to forward our understanding of how heterogeneous actors engage in the tuning of boundary...
Physics of magnetospheric boundary layers
Cairns, Iver H.
1995-01-01
This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.
Novel Phenomena in Modern Studies of Magnetism
Makhfudz, Imam
In this PhD Dissertation, we present investigation of contemporary problems in magnetism. We focus on two important themes that have been active research topics in condensed matter community: 1. Topological defects in magnet and their dynamics 2. Exotic states and critical phenomena in frustrated spin systems. In the first topic, we consider the dynamics of topological defect known as Skyrmion in thin film ferromagnet. We first discuss the nontrivial dynamics exhibited by a Skyrmion bubble confined in thin film disk as observed by numerical simulation. We propose a phenomenological theory that can reproduce the peculiar dynamics of the Skyrmion bubble. We show that, unlike previously studied topological defects, a Skyrmion bubble possesses inertia. We derive a theoretical description of the dynamics using standard theory of ferromagnet. We discover the presence of two counter propagating chiral edge modes. Most importantly, we derive the mass (inertia) from the theory and express it in terms of microscopic parameters. In the second topic, a quantum phase transition in U(1) quantum spin liquid phase of 3-d pyrochlore quantum spin ice is investigated. Starting from microscopic spin model, we map the spin to slave-boson, derive continuum theory, and finally arrive at a U(1) gauge theory which takes the form of scalar quantum electrodynamics (QED). The effective free energy for quantum spin liquid (QSL) to antiferromagnetic (AFM) phase transition mimics the one for Bardeen-Cooper-Schrieffer (BCS) superconductors classical transition under magnetic field. We show that, provided Ginzburg criterion is satisfied, the gauge field fluctuations drive the originally continuous QSL to AFM phase transition at mean field level into discontinuous one. We predict the location of quantum critical point which agrees well with gauge mean field theory result. We calculate the size of phase transition and find that it is a weakly first order.
Observation of Celestial Phenomena in Ancient China
Sun, Xiaochun
Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.
[Paraneoplastic phenomena in patients with a thymoma].
Strijbos, Ellen; Pomp, Jacqueline; Gilhuis, H Jacobus
2013-01-01
A thymoma arises from the epithelial cells of the thymus. Local tumour growth may cause symptoms like coughing, dyspnoea or chest pain. Paraneoplastic phenomena can also occur in patients with a thymoma; myasthenia gravis is a well-known example. Other neurological, dermatological, cardiological and haematological disorders are not always recognised as being paraneoplastic phenomena. There is no clear relationship between tumour activity and the clinical course of paraneoplastic phenomena. The three cases in this article illustrate how the clinical presentation of these phenomena can vary.
Rigid supersymmetry with boundaries
Energy Technology Data Exchange (ETDEWEB)
Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics
2008-01-15
We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)
Rigid supersymmetry with boundaries
International Nuclear Information System (INIS)
Belyaev, D.V.; Van Nieuwenhuizen, P.
2008-01-01
We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)
A Connection between Transport Phenomena and Thermodynamics
Swaney, Ross; Bird, R. Byron
2017-01-01
Although students take courses in transport phenomena and thermodynamics, they probably do not ask whether these two subjects are related. Here we give an answer to that question. Specifically we give relationships between the equations of change for total energy, internal energy, and entropy of transport phenomena and key equations of equilibrium…
Nonlinear dynamical phenomena in liquid crystals
International Nuclear Information System (INIS)
Wang, X.Y.; Sun, Z.M.
1988-09-01
Because of the existence of the orientational order and anisotropy in liquid crystals, strong nonlinear phenomena and singular behaviors, such as solitary wave, transient periodic structure, chaos, fractal and viscous fingering, can be excited by a very small disturbance. These phenomena and behaviors are in connection with physics, biology and mathematics. 12 refs, 6 figs
Electrical breakdown phenomena of dielectric elastomers
DEFF Research Database (Denmark)
Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard
2017-01-01
years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...
Noise induced phenomena in combustion
Liu, Hongliang
Quantitative models of combustion usually consist of systems of deterministic differential equations. However, there are reasons to suspect that noise may have a significant influence. In this thesis, our primary objective is to study the effect of noise on measurable quantities in the combustion process. Our first study involves combustion in a homogeneous gas. With a one step reaction model, we analytically estimate the requirements under which noise is important to create significant differences. Our simulation shows that a bi-modality phenomenon appears when appropriate parameters are applied, which agrees with our analytical result. Our second study involves steady planar flames. We use a relatively complete chemical model of the H2/air reaction system, which contains all eight reactive species (H2, O2, H, O, OH, H2O, HO2, H2O2) and N2. Our mathematical model for this system is a reacting flow model. We derive noise terms related to transport processes by a method advocated by Landau & Lifshitz, and we also derive noise terms related to chemical reactions. We develop a code to simulate this system. The numerical implementation relies on a good Riemann solver, suitable initial and boundary conditions, and so on. We also implement a code on a continuation method, which not only can be used to study approximate properties of laminar flames under deterministic governing equations, but also eliminates the difficulty of providing a suitable initial condition for governing equations with noise. With numerical experiments, we find the difference of flame speed exist when the noise is turned on or off although it is small when compared with the influence of other parameters, for example, the equivalence ratio. It will be a starting point for further studies to include noise in combustion.
Exploration by radioactive fibrinogen of intrarenal coagulation phenomena. Preliminary results
International Nuclear Information System (INIS)
Simon, Jacques.
1974-01-01
The participation of fibrin deposits in kidney pathology was studied by the use of a radioactive tracer involved in the coagulation phenomenon: iodine 131-labelled fibrinogen. The isotopic exploration consists of a fibrinogen kinetics study combined with external counting over the kidney regions. The different stages of the procedure are described: separation, purification and labelling of fibrinogen; characteristics of the radioactive fibrinogen used; practical details of the examination itself; data analysis method. A chapter devoted to verifications and discussions of the procedure is followed by a report on the exploration of intrarenal coagulation phenomena in 30 kidney disease patients. In conclusion, the study of fibrinogen kinetics is considered as the most suitable method to detect local or slight intravascular coagulation phenomena. The sensitivity of the isotopic exploration is very satisfactory. The main criticism directed against this method is that the exploration is general and therefore blind [fr
On the fluctuation spectra of seismo-electromagnetic phenomena
Directory of Open Access Journals (Sweden)
M. Hayakawa
2011-02-01
Full Text Available In order to increase the credibility on the presence of electromagnetic phenomena associated with an earthquake, we have suggested the importance of the modulation (or fluctuation seen in the time-series data of any seismogenic effects. This paper reviews the fluctuation spectra of seismogenic phenomena in order to indicate the modulation mechanisms in the lithosphere, atmosphere and ionosphere/magnetosphere. Especially, the effect of Earth's tides in the lithosphere and the modulation in the atmosphere (acoustic and atmospheric gravity waves are discussed and this kind of fluctuation spectra would further provide essential information on the generation mechanisms of different seismogenic effects. Furthermore, the important role of the slope of fluctuation spectra is suggested in order to investigate the self-organized criticality before the lithospheric rupture and its associated effects in different regions such as the ionosphere.
International Nuclear Information System (INIS)
Pavlenko, V.N.
1983-01-01
The mechanism of echo phenomenon in different plasma media: laboratory and cosmic plasma, metals and semiconductors is analyzed to get a more comprehensive idea on collective processes in a plasma and for practical applications in radiophysics and plasma diagnostics. The echo phenomenon permitted to confirm a reversible nature of the Landau damping, to prove the fact that the information on perturbation is conserved in a plasma (as non-damping oscillations of the distribution function) even after disappearing of the macroscopic field. The dependence of the diffusion coefficient on the velocity is measured, microturbulences in a plasma are investigated. New ways of the plasma wave conversion are suggested, as well as ''lightning'' of super-critical plasma layers and regions of plasma non-transparency. Prospective advantages of using echo for studying the mechanisms of charged particle interaction with the surface bounding a plasma are revealed
Hilgen, F.J.; Langereis, C.G.
1994-01-01
In our reply to the comment of Benson and Hodell, we refrain from repeating the extensive discussion about the suitability and historical vindication of potential Miocene/ Pliocene (M/P) boundary definitions. The various arguments have been dealt with both in our paper [l] as well as in Benson
Outer Magnetospheric Boundaries Cluster Results
Paschmann, Goetz; Schwartz, S J
2006-01-01
When the stream of plasma emitted from the Sun (the solar wind) encounters Earth's magnetic field, it slows down and flows around it, leaving behind a cavity, the magnetosphere. The magnetopause is the surface that separates the solar wind on the outside from the Earth's magnetic field on the inside. Because the solar wind moves at supersonic speed, a bow shock must form ahead of the magnetopause that acts to slow the solar wind to subsonic speeds. Magnetopause, bow shock and their environs are rich in exciting processes in collisionless plasmas, such as shock formation, magnetic reconnection, particle acceleration and wave-particle interactions. They are interesting in their own right, as part of Earth's environment, but also because they are prototypes of similar structures and phenomena that are ubiquitous in the universe, having the unique advantage that they are accessible to in situ measurements. The boundaries of the magnetosphere have been the target of direct in-situ measurements since the beginning ...
Magnetic phenomena in holographic superconductivity with Lifshitz scaling
Directory of Open Access Journals (Sweden)
Aldo Dector
2015-09-01
Full Text Available We investigate the effects of Lifshitz dynamical critical exponent z on a family of minimal D=4+1 holographic superconducting models, with a particular focus on magnetic phenomena. We see that it is possible to have a consistent Ginzburg–Landau approach to holographic superconductivity in a Lifshitz background. By following this phenomenological approach we are able to compute a wide array of physical quantities. We also calculate the Ginzburg–Landau parameter for different condensates, and conclude that in systems with higher dynamical critical exponent, vortex formation is more strongly unfavored energetically and exhibits a stronger Type I behavior. Finally, following the perturbative approach proposed by Maeda, Natsuume and Okamura, we calculate the critical magnetic field of our models for different values of z.
Advantageous grain boundaries in iron pnictide superconductors.
Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo
2011-08-02
High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries-the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here we report that high critical temperature iron pnictide superconductors have advantages over cuprates with respect to these grain boundary issues. The transport properties through well-defined bicrystal grain boundary junctions with various misorientation angles (θ(GB)) were systematically investigated for cobalt-doped BaFe(2)As(2) (BaFe(2)As(2):Co) epitaxial films fabricated on bicrystal substrates. The critical current density through bicrystal grain boundary (J(c)(BGB)) remained high (>1 MA cm(-2)) and nearly constant up to a critical angle θ(c) of ∼9°, which is substantially larger than the θ(c) of ∼5° for YBa(2)Cu(3)O(7-δ). Even at θ(GB)>θ(c), the decay of J(c)(BGB) was much slower than that of YBa(2)Cu(3)O(7-δ).
Diffusion mechanisms in grain boundaries in solids
International Nuclear Information System (INIS)
Peterson, N.L.
1982-01-01
A critical review is given of our current knowledge of grain-boundary diffusion in solids. A pipe mechanism of diffusion based on the well-established dislocation model seems most appropriate for small-angle boundaries. Open channels, which have atomic configurations somewhat like dislocation cores, probably play a major role in large-angle grain-boundary diffusion. Dissociated dislocations and stacking faults are not efficient paths for grain-boundary diffusion. The diffusion and computer modeling experiments are consistent with a vacancy mechanism of diffusion by a rather well-localized vacancy. The effective width of a boundary for grain-boundary diffusion is about two atomic planes. These general features of grain-boundary diffusion, deduced primarily from experiments on metals, are thought to be equally applicable for pure ceramic solids. The ionic character of many ceramic oxides may cause some differences in grain-boundary structure from that observed in metals, resulting in changes in grain-boundary diffusion behavior. 72 references, 5 figures
Allegheny County Municipal Boundaries
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...
Department of Housing and Urban Development — The HUD GIS Boundary Files are intended to supplement boundary files available from the U.S. Census Bureau. The files are for community planners interested in...
State Agency Administrative Boundaries
Kansas Data Access and Support Center — This database comprises 28 State agency boundaries and point of contact. The Kansas Geological Survey collected legal descriptions of the boundaries for various...
Political State Boundary (National)
Department of Transportation — State boundaries with political limit - boundaries extending into the ocean (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an...
Nonlinear Photonics and Novel Optical Phenomena
Morandotti, Roberto
2012-01-01
Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.
Computational transport phenomena for engineering analyses
Farmer, Richard C; Cheng, Gary C; Chen, Yen-Sen
2009-01-01
Computational Transport PhenomenaOverviewTransport PhenomenaAnalyzing Transport PhenomenaA Computational Tool: The CTP CodeVerification, Validation, and GeneralizationSummaryNomenclatureReferencesThe Equations of ChangeIntroductionDerivation of The Continuity EquationDerivation of The Species Continuity EquationDerivation of The Equation Of MotionDerivation of The General Energy EquationNon-Newtonian FluidsGeneral Property BalanceAnalytical and Approximate Solutions for the Equations of ChangeSummaryNomenclatureReferencesPhysical PropertiesOverviewReal-Fluid ThermodynamicsChemical Equilibrium
Transient phenomena in electrical power systems
Venikov, V A; Higinbotham, W
1964-01-01
Electronics and Instrumentation, Volume 24: Transient Phenomena in Electrical Power Systems presents the methods for calculating the stability and the transient behavior of systems with forced excitation control. This book provides information pertinent to the analysis of transient phenomena in electro-mechanical systems.Organized into five chapters, this volume begins with an overview of the principal requirements in an excitation system. This text then explains the electromagnetic and electro-mechanical phenomena, taking into account the mutual action between the components of the system. Ot
Sixteenth International Conference on Ultrafast Phenomena
Corkum, Paul; Nelson, Keith A; Riedle, Eberhard; Schoenlein, Robert W; Ultrafast Phenomena XVI
2009-01-01
Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.
Environmentalists without Boundaries
African Journals Online (AJOL)
GREGORY
2009-03-16
Mar 16, 2009 ... Environmentalists without Boundaries. Setting Boundaries is a popular strategy in child development programs. But as children mature into young adults, it dawns on many that certain boundaries must be crossed to explore rich opportunities outside the safe closet of their teachers or parents' watchful eyes.
Ionospheric phenomena before strong earthquakes
Directory of Open Access Journals (Sweden)
A. S. Silina
2001-01-01
Full Text Available A statistical analysis of several ionospheric parameters before earthquakes with magnitude M > 5.5 located less than 500 km from an ionospheric vertical sounding station is performed. Ionospheric effects preceding "deep" (depth h > 33 km and "crust" (h 33 km earthquakes were analysed separately. Data of nighttime measurements of the critical frequencies foF2 and foEs, the frequency fbEs and Es-spread at the middle latitude station Dushanbe were used. The frequencies foF2 and fbEs are proportional to the square root of the ionization density at heights of 300 km and 100 km, respectively. It is shown that two days before the earthquakes the values of foF2 averaged over the morning hours (00:00 LT–06:00 LT and of fbEs averaged over the nighttime hours (18:00 LT–06:00 LT decrease; the effect is stronger for the "deep" earthquakes. Analysing the coefficient of semitransparency which characterizes the degree of small-scale turbulence, it was shown that this value increases 1–4 days before "crust" earthquakes, and it does not change before "deep" earthquakes. Studying Es-spread which manifests itself as diffuse Es track on ionograms and characterizes the degree of large-scale turbulence, it was found that the number of Es-spread observations increases 1–3 days before the earthquakes; for "deep" earthquakes the effect is more intensive. Thus it may be concluded that different mechanisms of energy transfer from the region of earthquake preparation to the ionosphere occur for "deep" and "crust" events.
Critical Behavior at the L-L Phase Transition of Lysozyme Protein Solutions
Gorti, Sridhar; Forsythe, Elizabeth; Laxson, Nicole; Pusey, Marc
2003-01-01
Recent efforts suggest the possibility that crystallization, and liquid-liquid (L-L) phase transitions and critical phenomena are characteristics universal to all macromolecular solutions. Of particular interest to protein crystallographers are the predictions of a critical slowing of crystal growth and subsequent formation of nascent crystals at the L-L phase boundary. Herein, the effects of the L-L phase transition on both crystal growth rates and microcrystal formation are experimentally determined. In general, it was determined that critical slowing down of protein crystal growth rates occurred, as predicted. The L-L phase transition, however, had a net negative influence in the formation of nascent protein crystals. Although crystal nucleation was not induced by the L-L phase transition, it is considered that the phase behavior of macromolecular solutions can be universally defined.
High Temperature Phenomena in Shock Waves
2012-01-01
The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...
Conditioning and breakdown phenomena in accelerator tubes
International Nuclear Information System (INIS)
Skorka, S.J.
1979-01-01
Important breakdown mechanisms in accelerator tubes are reviewed, and discharge phenomena in NEC tubes are deduced from the surface appearance of the electrodes and insulators of a used tube. Microphotos of these surfaces are shown
Periglacial phenomena affecting nuclear waste disposal
Directory of Open Access Journals (Sweden)
Niini, H.
1997-12-01
Full Text Available Slow future changes in astronomic phenomena seem to make it likely that Finland nll suffer several cold periods during the next 100,000 years. The paper analyses the characteristics of the periglacial factors that are most likely to influence the long-term safety of high-level radioactive waste disposed of in bedrock. These factors and their influences have been divided into two categories, natural and human. It is concluded that the basically natural phenomena are theoretically better understood than the complicated phenomena caused by man. It is therefore important in future research into periglacial phenomena, as well as of the disposal problem, to emphasize not only the proper applications of the results of natural sciences, but especially the effects and control of mankind's own present and future activities.
Evidence on Dropout Phenomena at Universities
DEFF Research Database (Denmark)
Larsen, Malene Rode; Sommersel, Hanna Bjørnøy; Larsen, Michael Søgaard
This publication is an excerpt from the full technical report ‘Dropout Phenomena at Universities: What is Dropout? Why does Dropout Occur? What Can be Done by the Universities to Prevent or Reduce it? A systematic review’, which was completed in April 2013. The purpose of this excerpt is to prese...... the knowledge we have on dropout phenomena at European universities in a short, precise and comprehensible form to allow readers to orient themselves on the subject in a more readable manner....
Transport phenomena an introduction to advanced topics
Glasgow, Larry A
2010-01-01
Enables readers to apply transport phenomena principles to solve advanced problems in all areas of engineering and science This book helps readers elevate their understanding of, and their ability to apply, transport phenomena by introducing a broad range of advanced topics as well as analytical and numerical solution techniques. Readers gain the ability to solve complex problems generally not addressed in undergraduate-level courses, including nonlinear, multidimensional transport, and transient molecular and convective transport scenarios. Avoiding rote memorization, the author em
Second DOE natural phenomena hazards mitigation conference
International Nuclear Information System (INIS)
1989-01-01
This conference has been organized into ten presentation sessions which include an overview of the DOE Natural Phenomena Guidelines, Seismic Analysis, Seismic Design, Modifying Existing Facilities, DOE Orders, Codes, and Standards (2 sessions), Seismic Hazard (2 sessions), and Probabilistic Risk Assessment (2 sessions). Two poster sessions were also included in the program to provide a different forum for communication of ideas. Over the past fourteen years, Lawrence Livermore National Laboratory, Nuclear Systems Safety Program, has been working with the US Department of Energy, Office of Safety Appraisals and their predecessors in the area of natural phenomena hazards. During this time we have developed seismic, extreme wind/tornado, and flood hazard models for DOE sites in the United States. Guidelines for designing and evaluating DOE facilities for natural phenomena have been developed and are in interim use throughout the DOE community. A series of state-of-the practice manuals have also been developed to aid the designers. All of this material is listed in the Natural Phenomena Hazards Bibliography included in these proceedings. This conference provides a mechanism to disseminate current information on natural phenomena hazards and their mitigation. It provides an opportunity to bring together members of the DOE community to discuss current projects, to share information, and to hear practicing members of the structural engineering community discuss their experiences from past natural phenomena, future trends, and any changes to building codes. Each paper or poster presented is included in these proceedings. We have also included material related to the luncheon and dinner talks
DEFF Research Database (Denmark)
Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina
2003-01-01
This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries...... between competencies within the organisation; and boundaries between various physical locations of work, in particular between what is done in the office and what is done on site. Maintaining and changing boundaries are the processes through which a particular community sustains its identity and practice...... on the one hand, and where it is confronted with the identity and practices on the other.The organisation being studied employs a multitude of IT systems that support and maintain these boundaries in a particular manner that are in many ways inappropriate to the current needs of the organisation...
Subvacuum effects in quantum critical theories from a holographic approach
Yeh, Chen-Pin; Lee, Da-Shin
2016-06-01
The subvacuum phenomena, induced by the squeezed vacuum of the strongly coupled quantum critical fields with a dynamical scaling z , are explored by a probe particle. The holographic description corresponds to a string moving in (4 +1 )-dimensional Lifshitz geometry with gravitational wave perturbations. The dynamics of the particle can be realized from the motion of the endpoint of the string at the boundary. We then examine the particle's velocity dispersion, influenced by the squeezed vacuum states of strongly coupled quantum critical fields. With appropriate choices of squeezing parameters, the velocity dispersion is found to be smaller than the value caused by the normal vacuum fluctuations of the fields. This leads to the subvacuum effect. We find that the large coupling constant of the quantum fields tends to counteract the effect in the reduction of velocity dispersion, though this phenomenon is in principle observable. The effect of the squeezed vacuum on the decoherence dynamics of a quantum particle is also investigated. Coherence loss can be shown to be less severe in certain squeezed vacuums than in normal vacuum. This recovery of coherence is understood as recoherence, another manifestation of the subvacuum phenomena. We make some estimates of the degree of recoherence and find that, contrary to the velocity dispersion case, the recoherence effect is enhanced by the large coupling constant. Finally we compare the findings in our earlier works when the particle is influenced by a weakly coupled relativistic field with the dynamical scaling z =1 .
Modelling transport phenomena in a multi-physics context
Marra, Francesco
2015-01-01
Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.
Modelling transport phenomena in a multi-physics context
Energy Technology Data Exchange (ETDEWEB)
Marra, Francesco [Dipartimento di Ingegneria Chimica e Alimentare - Università degli studi di Salerno Via Ponte Don Melillo - 84084 Fisciano SA (Italy)
2015-01-22
Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.
Modelling transport phenomena in a multi-physics context
International Nuclear Information System (INIS)
Marra, Francesco
2015-01-01
Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating
Flexibility of Event Boundaries in Autobiographical Memory
Hohman, Timothy J.; Peynircioğlu, Zehra F.; Beason-Held, Lori L.
2014-01-01
Events have clear and consistent boundaries that are defined during perception in a manner that influences memory performance. The natural process of event segmentation shapes event definitions during perception, and appears to play a critical role in defining distinct episodic memories at encoding. However, the role of retrieval processes in modifying event definitions is not clear. We explored how such processes changed event boundary definitions at recall. In Experiment 1 we showed that distance from encoding is related to boundary flexibility. Participants were more likely to move self-reported event boundaries to include information reported beyond those boundaries when recalling more distant events compared to more recent events. In Experiment 2, we showed that age also influenced boundary flexibility. Older Age adults were more likely to move event boundaries than College Age adults, and the relationship between distance from encoding and boundary flexibility seen in Experiment 1 was present only in College Age and Middle Age adults. These results suggest that factors at retrieval have a direct impact on event definitions in memory and that, although episodic memories may be initially defined at encoding, these definitions are not necessarily maintained in long-term memory. PMID:22989194
DEFF Research Database (Denmark)
Kjellberg, Caspar Mølholt; Meredith, David
2014-01-01
such as Sibelius or Finale. It was hypothesized that it would be possible to develop a Sibelius plug-in, written in Manuscript 6, that would improve the critical editing work flow, but it was found that the capabilities of this scripting language were insufficient. Instead, a 3-part system was designed and built......, consisting of a Sibelius plug-in, a cross-platform application, called CriticalEd, and a REST-based solution, which handles data storage/retrieval. A prototype has been tested at the Danish Centre for Music Publication, and the results suggest that the system could greatly improve the efficiency......The best text method is commonly applied among music scholars engaged in producing critical editions. In this method, a comment list is compiled, consisting of variant readings and editorial emendations. This list is maintained by inserting the comments into a document as the changes are made...
The critical ionization velocity - a bibliography
International Nuclear Information System (INIS)
Axnaes, I.; Brenning, N.; Raadu, M.A.
1982-12-01
A list of all relevant contributions, known to the authors, concerning the critical ionization velocity phenomena is presented. The contributions are classified and described in a few sentences. (Authors)
[Spiritual phenomena occurring in everybody and health].
Krsiak, M
2008-01-01
The past several years have seen an explosion of research in the area of spirituality and health. However, confusion and incomprehension of the conception of spirituality (e.g. confounding spirituality with various conventional views on religiousness) hampers better understanding in this area. The present paper proposes definition of spiritual phenomena in man based on natural epistemological and instrumental criteria (whether a certain phenomenon can be objectively known and evoked): spiritual phenomena in man are those, which cannot be objectively known nor evoked, but which act (e.g., love, idea). Spiritual phenomena can be really known only in the self ("in spirit"). Objectively known can be only manifestations of spiritual phenomena. Some attributes of love (e.g. its personal uniqueness) or ideas (e.g., sense of own life) whose satisfaction appears to be important for health are briefly outlined. A review of some frequently cited recent papers investigating the role of spirituality in health and discussion of frequent pitfalls in this area is given. Spirituality is a universal human phenomenon. All human beings, secular or religious, encounter with spiritual phenomena. Although the present conception of spirituality distances from some conventional views on religiousness, it is not atheistic. On the contrary, it accommodates the basic religious concept "God is love". Conceptual clarification is essential for further progress in the study of impact of spirituality on health.
Inertial confinement fusion reactor cavity phenomena
International Nuclear Information System (INIS)
Bohachevsky, I.O.; Hafer, J.F.; Devaney, J.J.; Pendergrass, J.H.
1978-01-01
Cavity phenomena in Inertial Confinement Fusion (ICF) are created by the interaction of energy released by the fuel pellet microexplosion with the medium inside the reactor cavity. The ambient state of the medium in ICF reactor cavities is restricted primarily by its effects on laser beam propagation and on the fuel pellet trajectory. Therefore, a relatively wide choice of ambient conditions can be exploited to gain first-wall protection and advantages in energy extraction. Depending on the choice of ambient cavity conditions and on fuel pellet design, a variety of physical phenomena may develop and dominate the ICF reactor cavity design. Because of the cavity phenomena, the forms of energy released by the fuel-pellet microexplosion are modified before reaching the first wall, thus giving rise to different cavity design problems. The types of cavity phenomena encountered in the conceptual design of ICF reactors are examined, the approaches available for their modeling and analysis are discussed, and some results are presented. Most phenomena are sufficiently well understood to permit valid engineering assessments of the proposed ICF reactor concepts
Present state of the controversy about the grain boundary relaxation
International Nuclear Information System (INIS)
Povolo, F.; Molinas, B.J.
1990-04-01
An analysis of the internal friction produced by grain boundary relaxation in metals, alloys and ceramics is presented. The different interpretations given in the literature to relaxation phenomena occurring at temperatures above about half the melting point which include the influence of grain boundaries and their interaction with solutes and precipitates are discussed in detail. A complete set of the experimental data disposable in this field since 1972 until today is reviewed. Finally, some recent experiments are discussed and new ones are suggested. They might solve the actual controversy about the real origin of the relaxation phenomena observed. If this is the case, a considerable amount of information already published can be taken into account with a good degree of confidence. This information contributes to the description of the structure and behaviour of grain boundaries, both being important topics for materials science. (author). 119 refs, 21 figs, 1 tab
A Bayesian explanation of the "Uncanny Valley" effect and related psychological phenomena
Moore, Roger K.
2012-11-01
There are a number of psychological phenomena in which dramatic emotional responses are evoked by seemingly innocuous perceptual stimuli. A well known example is the `uncanny valley' effect whereby a near human-looking artifact can trigger feelings of eeriness and repulsion. Although such phenomena are reasonably well documented, there is no quantitative explanation for the findings and no mathematical model that is capable of predicting such behavior. Here I show (using a Bayesian model of categorical perception) that differential perceptual distortion arising from stimuli containing conflicting cues can give rise to a perceptual tension at category boundaries that could account for these phenomena. The model is not only the first quantitative explanation of the uncanny valley effect, but it may also provide a mathematical explanation for a range of social situations in which conflicting cues give rise to negative, fearful or even violent reactions.
Critical behavior of non-ideal systems
Ivanov, Dmitry Yu
2008-01-01
Dmitry Yu. Ivanov is a professor at the Baltic State Technical University (St. Petersburg, Russia). His research focuses on thermodynamics, critical phenomena and phase transitions, theoretical and experimental investigations of multiple light scattering and correlation spectroscopy in application to Material Science and critical phenomena. His research activities included projects at the Nuclear Research Center in Dubna and Krichevsky Laboratory (Russia) and at the CNRS laboratories and Universities of Paris and Nice (France). He has authored about 70 scientific publications.
Characterizations of boundary pluripolar hulls
Djire, I.K.; Wiegerinck, J.
2016-01-01
We present some basic properties of the so-called boundary relative extremal function and discuss boundary pluripolar sets and boundary pluripolar hulls. We show that for B-regular domains the boundary pluripolar hull is always trivial on the boundary of the domain and present a “boundary version”
Computational Modelling of a Tangentially Fired Boiler With Deposit Formation Phenomena
Modliński Norbert J.
2014-01-01
Any complete CFD model of pulverised coal-fired boiler needs to consider ash deposition phenomena. Wall boundary conditions (temperature and emissivity) should be temporally corrected to account for the effects of deposit growth on the combustion conditions. At present voluminous publications concerning ash related problems are available. The current paper presents development of an engineering tool integrating deposit formation models with the CFD code. It was then applied to two tangentiall...
Boundary-layer effects in droplet splashing
Riboux, Guillaume; Gordillo, Jose Manuel
2017-11-01
A drop falling onto a solid substrate will disintegrate into smaller parts when its impact velocity exceeds the so called critical velocity for splashing. Under these circumstances, the very thin liquid sheet ejected tangentially to the solid after the drop touches the substrate, lifts off as a consequence of the aerodynamic forces exerted on it and finally breaks into smaller droplets, violently ejected radially outwards, provoking the splash. Here, the tangential deceleration experienced by the fluid entering the thin liquid sheet is investigated making use of boundary layer theory. The velocity component tangent to the solid, computed using potential flow theory provides the far field boundary condition as well as the pressure gradient for the boundary layer equations. The structure of the flow permits to find a self similar solution of the boundary layer equations. This solution is then used to calculate the boundary layer thickness at the root of the lamella as well as the shear stress at the wall. The splash model presented in, which is slightly modified to account for the results obtained from the boundary layer analysis, provides a very good agreement between the measurements and the predicted values of the critical velocity for the splash.
The making of extraordinary psychological phenomena.
Lamont, Peter
2012-01-01
This article considers the extraordinary phenomena that have been central to unorthodox areas of psychological knowledge. It shows how even the agreed facts relating to mesmerism, spiritualism, psychical research, and parapsychology have been framed as evidence both for and against the reality of the phenomena. It argues that these disputes can be seen as a means through which beliefs have been formulated and maintained in the face of potentially challenging evidence. It also shows how these disputes appealed to different forms of expertise, and that both sides appealed to belief in various ways as part of the ongoing dispute about both the facts and expertise. Finally, it shows how, when a formal Psychology of paranormal belief emerged in the twentieth century, it took two different forms, each reflecting one side of the ongoing dispute about the reality of the phenomena. © 2012 Wiley Periodicals, Inc.
Current-driven phenomena in nanoelectronics
Seideman, Tamar
2010-01-01
Consisting of ten chapters written by some of the world's leaders in the field, this book combines experimental, theoretical and numerical studies of current-driven phenomena in the nanoscale. The topics covered range from single-molecule, site-specific nanochemistry induced by a scanning tunneling microscope, through inelastic tunneling spectroscopy and current-induced heating, to current-triggered molecular machines. The various chapters focus on experimental and numerical method development, the description of specific systems, and new ideas and novel phenomena.
Dissipative phenomena in condensed matter some applications
Dattagupta, Sushanta
2004-01-01
From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.
Arcing phenomena in fusion devices workshop
Energy Technology Data Exchange (ETDEWEB)
Clausing, R.E.
1979-01-01
The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included.
Third DOE natural phenomena hazards mitigation conference
International Nuclear Information System (INIS)
1991-01-01
This conference on Natural Phenomena Hazards Mitigation has been organized into 15 presentation, panel, and poster sessions. The sessions included an overview of activities at DOE Headquarters; natural phenomena hazards tasks underway for DOE; two sessions on codes, standards, orders, criteria, and guidelines; two sessions on seismic hazards; equipment qualification; wind; PRA and margin assessments; modifications, retrofit, and restart; underground structures with a panel discussion; seismic analysis; seismic evaluation and design; and a poster session. Individual projects are processed separately for the data bases
Arcing phenomena in fusion devices workshop
International Nuclear Information System (INIS)
Clausing, R.E.
1979-01-01
The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included
Synchronization Phenomena in Coupled Colpitts Circuits
Directory of Open Access Journals (Sweden)
Ch. K. Volos
2014-11-01
Full Text Available In this work, the case of coupling (bidirectional and unidirectional between two identical nonlinear chaotic circuits via a linear resistor, is studied. The produced dynamical systems have different structure, in regard to other similar works, due to the choice of coupling nodes. As a circuit, a modification of the most well-known nonlinear circuit that can operate in a wide range of radiofrequencies, the Colpitts oscillator, is chosen. The simulation and the experimental results show a variety of dynamical phenomena, such as periodic, quasi-periodic and chaotic behaviors, as well as anti-phase and complete synchronization phenomena, depending on the value of the coupling coefficient.
19th International Conference on Ultrafast Phenomena
Cundiff, Steven; Vivie-Riedle, Regina; Kuwata-Gonokami, Makoto; DiMauro, Louis
2015-01-01
This book presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond, and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh-speed communications. This book summarizes the results presented at the 19th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.
Boundary entropy of one-dimensional quantum systems at low temperature
International Nuclear Information System (INIS)
Friedan, Daniel; Konechny, Anatoly
2004-01-01
The boundary β function generates the renormalization group acting on the universality classes of one-dimensional quantum systems with boundary which are critical in the bulk but not critical at the boundary. We prove a gradient formula for the boundary β function, expressing it as the gradient of the boundary entropy s at fixed nonzero temperature. The gradient formula implies that s decreases under renormalization, except at critical points (where it stays constant). At a critical point, the number exp(s) is the 'ground-state degeneracy', g, of Affleck and Ludwig, so we have proved their long-standing conjecture that g decreases under renormalization, from critical point to critical point. The gradient formula also implies that s decreases with temperature, except at critical points, where it is independent of temperature. It remains open whether the boundary entropy is always bounded below
Boundary shear stress along rigid trapezoidal bends
Christopher I. Thornton; Kyung-Seop Sin; Paul Sclafani; Steven R. Abt
2012-01-01
The migration of alluvial channels through the geologic landform is an outcome of the natural erosive processes. Mankind continually attempts to stabilize channel meandering processes, both vertically and horizontally, to reduce sediment discharge, provide boundary definition, and enable economic development along the river's edge. A critical component in the...
Mayor, T S; Couto, S; Psikuta, A; Rossi, R M
2015-12-01
The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s(-1)) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 10(2)-3 × 10(5)). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow
Mayor, T. S.; Couto, S.; Psikuta, A.; Rossi, R. M.
2015-12-01
The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s-1) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 102-3 × 105). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow patterns and
Steeneveld, G.J.
2012-01-01
Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The
Development of boundary layers
International Nuclear Information System (INIS)
Herbst, R.
1980-01-01
Boundary layers develop along the blade surfaces on both the pressure and the suction side in a non-stationary flow field. This is due to the fact that there is a strongly fluctuating flow on the downstream blade row, especially as a result of the wakes of the upstream blade row. The author investigates the formation of boundary layers under non-stationary flow conditions and tries to establish a model describing the non-stationary boundary layer. For this purpose, plate boundary layers are measured, at constant flow rates but different interferent frequency and variable pressure gradients. By introducing the sample technique, measurements of the non-stationary boundary layer become possible, and the flow rate fluctuation can be divided in its components, i.e. stochastic turbulence and periodical fluctuation. (GL) [de
Modelling of flow phenomena during DC casting
Zuidema, J.
2005-01-01
Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an
Novel experimentally observed phenomena in soft matter
Indian Academy of Sciences (India)
The resulting flow is non-Newtonian and is characterized by features such as shear rate-dependent viscosities and nonzero normal stresses. This article begins with an introduction to some unusual flow properties displayed by soft matter. Experiments that report a spectrum of novel phenomena exhibited by these materials, ...
Fourier Series The Mathematics of Periodic Phenomena
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 10. Fourier Series The Mathematics of Periodic Phenomena. S Thangavelu ... Author Affiliations. S Thangavelu1. Department of Mathematics and Statistics, University of New Mexico, Humanities Building 419, Albuquerque, NM 87131-1141, USA ...
Simple classical approach to spin resonance phenomena
DEFF Research Database (Denmark)
Gordon, R A
1977-01-01
A simple classical method of describing spin resonance in terms of the average power absorbed by a spin system is discussed. The method has several advantages over more conventional treatments, and a number of important spin resonance phenomena, not normally considered at the introductory level...
DOE natural phenomena hazards mitigation conference: proceedings
International Nuclear Information System (INIS)
1985-10-01
The conference includes sessions which present an overview of DOE programs, available codes, standards and criteria, examples of designs and upgrades from the DOE complex, lessons learned from past natural phenomena, ground motion, seismic evaluation of equipment, and applications of probabilistic risk assessment techniques to DOE facilities. Separate abstracts have been prepared for individual papers
Geophysical phenomena classification by artificial neural networks
Gough, M. P.; Bruckner, J. R.
1995-01-01
Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.
Quantum phenomena in magnetic nano clusters
Indian Academy of Sciences (India)
While semiconductor structures have provided paradigms of nanosystems from the stand point of electronic phenomena, the synthesis of high nuclearity transition metal complexes have provided examples of nano magnets. The range and diversity of the properties exhibited by these systems rivals its electronic counterparts ...
Hyperchaotic phenomena in dynamic decision making
DEFF Research Database (Denmark)
Thomsen, Jesper Skovhus; Mosekilde, Erik; Sterman, John David
1992-01-01
of this article is to show how the decision making behavior of real people in simulated corporate environments can lead to chaotic, hyperchaotic and higher-order hyperchaotic phenomena. Characteristics features of these complicated forms of behavior are analyzed with particular emphasis on an interesting form...
Transport phenomena in materials processing---1990
International Nuclear Information System (INIS)
Bishop, B.J.; Lior, N.; Lavine, A.; Flik, M.; Karwe, M.V.; Bergman, T.L.; Beckermann, C.; Charmchi, M.
1990-01-01
The papers contained in this volume represent a wide range of current research interests in processes such as food and polymer processing, casting, welding, machining, laser cutting, and superconductor processing. This volume includes papers presented in four sessions: Heat Transfer in Materials Processing; Thermal Phenomena in Superconductor Processing; Heat Transfer in Food and Polymer Processing; Heat Transfer in CAsting and Welding
Quantum phenomena in magnetic nano clusters
Indian Academy of Sciences (India)
Unknown
Abstract. One of the fascinating fields of study in magnetism in recent years has been the study of quantum phenomena in nanosystems. While semiconductor structures .... or discrete steps provided the sweep rate of the magnetic field is not too low 10. ... to the Landau–Zener two-level treatment within the spin-10 manifold.
Imaging unsteady three-dimensional transport phenomena
Indian Academy of Sciences (India)
2014-01-05
Jan 5, 2014 ... physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of measurements by extracting unsteady three-dimensional data in applications related to transport phenomena. Keywords. Optical measurement; fluid flow and transport; refractive index ...
From Critical Theory to Critical Hermeneutics
Directory of Open Access Journals (Sweden)
Øjvind Larsen
2014-06-01
Full Text Available From their beginning in the 1930s, critical theory and the Frankfurt school had their focus on a critique of disturbed social relations in western society dominated by totalitarian political regimes like Stalinism, Fascism, Nazism, and by capitalism as an oppressive and destructive economic system and culture. Now, 80 years later, this has all become history and thus it is time to leave the concept of critical theory behind us, and instead bring the concept of critique to a broader theoretical framework like hermeneutics. This allows the possibility of retaining the theoretical intentions of the old Frankfurt school and at the same time there will be no boundaries by specific dominant theoretical perspectives. In this paper, such a framework for a critical hermeneutics is discussed on the basis of Weber’s, Gadamer’s, and Habermas’ theories on hermeneutics within the social sciences.
Inverse boundary design of a radiative smelting furnace with ablative phase change phenomena
International Nuclear Information System (INIS)
Farzan, H.; Hosseini Sarvari, S.M.; Mansouri, S.H.
2016-01-01
Highlights: • The ablation phenomenon in a reverberatory smelting furnace is simulated numerically. • The results are verified by comparing with exact analytic solution. • Inverse design problem is solved to construct the desired melting rate. • The conjugate gradient method is used to solve the inverse phase change problem. - Abstract: An inverse analysis is employed to control the time rate of heaters in a 2-D smelting furnace to provide the specified radiative heat flux across the design surface to establish a desired melting rate. The design surface in the smelting furnace is the melting surface of the metal concentrate bank, and the melting process is considered to occur as an ablation phenomenon. The net radiation method is used to determine the radiation exchange between the elements of the furnace surfaces and the melting surface. The conjugate gradient method is employed to minimize the objective function, which is the sum of square residuals between the estimated and the desired heat fluxes over the design surface. It is shown that the proposed inverse technique is reliable and accurate for predicting the heater power distribution.
Boundary layer phenomena for differential-delay equations with state-dependent time lags: III
Mallet-Paret, John; Nussbaum, Roger D.
We consider a class of singularly perturbed delay-differential equations of the form ɛ ẋ(t)=f(x(t),x(t-r)), where r= r( x( t)) is a state-dependent delay. We study the asymptotic shape, as ɛ→0, of slowly oscillating periodic solutions. In particular, we show that the limiting shape of such solutions can be explicitly described by the solution of a pair of so-called max-plus equations. We are able thereby to characterize both the regular parts of the solution graph and the internal transition layers arising from the singular perturbation structure.
Critical heat flux (CHF) phenomenon on a downward facing curved surface
Energy Technology Data Exchange (ETDEWEB)
Cheung, F.B.; Haddad, K.H.; Liu, Y.C. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical Engineering
1997-06-01
This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.
Critical heat flux (CHF) phenomenon on a downward facing curved surface
International Nuclear Information System (INIS)
Cheung, F.B.; Haddad, K.H.; Liu, Y.C.
1997-06-01
This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs
Grain boundary strength as point defect sink strength
International Nuclear Information System (INIS)
Volobuev, A.V.; Gann, V.V.
1987-01-01
Sink strength of spherical grain boundary as an absolutely absorbing surface and as finite thickness wall consisting of the edge dislocations are considered. The values of the grain boundary sink strength are shown to be critically dependent on the point defect recombination degree
Modelling of melting and solidification transport phenomena during hypothetical NPP severe accidents
International Nuclear Information System (INIS)
Sarler, B.
1992-01-01
A physical and mathematical framework to deal with the transport phenomena occuring during melting and solidification of the hypothetical NPP severe accidents is presented. It concentrates on the transient temperature, velocity, and species concentration distributions during such events. The framework is based on the Mixture Continuum Formulation of the components and phases, cast in the boundary-domain integral shape structured by the fundamental solution of the Laplace equation. The formulation could cope with various solid-liquid sub-systems through the inclusion of the specific closure relations. The deduced system of boundary-domain integral equations for conservation of mass, energy, momentum, and species could be solved by the boundary element discrete approximative method. (author) [sl
Anomalous transport phenomena in Fermi liquids with strong magnetic fluctuations
Energy Technology Data Exchange (ETDEWEB)
Kontani, Hiroshi [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)
2008-02-15
In this paper, we present recent developments in the theory of transport phenomena based on the Fermi liquid theory. In conventional metals, various transport coefficients are scaled according to the quasiparticles relaxation time, {tau}, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems. The most famous example would be high-T{sub c} superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. This issue has been one of the most significant unresolved problems in HTSCs for a long time. Similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). The main goal of this study is to demonstrate whether the anomalous transport phenomena in HTSC is evidence of a non-Fermi liquid ground state, or just RTA violation in strongly correlated Fermi liquids. Another goal is to establish a unified theory of anomalous transport phenomena in metals with strong magnetic fluctuations. For these purposes, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. In a Fermi liquid, an excited quasiparticle induces other excited quasiparticles by collision, and current due to these excitations is called a current vertex correction (CVC). Landau noticed the existence of CVC first, which is indispensable for calculating transport coefficients in accord with the conservation laws. Here, we develop a transport theory involving resistivity and the Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the CVC. In nearly AF Fermi liquids, we find that the strong backward scattering due to AF fluctuations induces the CVC with prominent momentum dependence. This feature of the CVC can account for the significant enhancement in the Hall coefficient
Anomalous transport phenomena in Fermi liquids with strong magnetic fluctuations
International Nuclear Information System (INIS)
Kontani, Hiroshi
2008-01-01
In this paper, we present recent developments in the theory of transport phenomena based on the Fermi liquid theory. In conventional metals, various transport coefficients are scaled according to the quasiparticles relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems. The most famous example would be high-T c superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. This issue has been one of the most significant unresolved problems in HTSCs for a long time. Similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). The main goal of this study is to demonstrate whether the anomalous transport phenomena in HTSC is evidence of a non-Fermi liquid ground state, or just RTA violation in strongly correlated Fermi liquids. Another goal is to establish a unified theory of anomalous transport phenomena in metals with strong magnetic fluctuations. For these purposes, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. In a Fermi liquid, an excited quasiparticle induces other excited quasiparticles by collision, and current due to these excitations is called a current vertex correction (CVC). Landau noticed the existence of CVC first, which is indispensable for calculating transport coefficients in accord with the conservation laws. Here, we develop a transport theory involving resistivity and the Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the CVC. In nearly AF Fermi liquids, we find that the strong backward scattering due to AF fluctuations induces the CVC with prominent momentum dependence. This feature of the CVC can account for the significant enhancement in the Hall coefficient, magnetoresistance
Existence results for anisotropic discrete boundary value problems
Directory of Open Access Journals (Sweden)
Avci Avci
2016-06-01
Full Text Available In this article, we prove the existence of nontrivial weak solutions for a class of discrete boundary value problems. The main tools used here are the variational principle and critical point theory.
Administrative Area Boundaries 2 (State Boundaries), Region 9, 2010, NAVTEQ
U.S. Environmental Protection Agency — NAVTEQ Administrative Area Boundaries 2 (State Boundaries) for Region 9. There are five Administrative Area Boundaries layers (1, 2, 3, 4, 5). These layers contain...
Administrative Area Boundaries 4 (City Boundaries), Region 9, 2010, NAVTEQ
U.S. Environmental Protection Agency — NAVTEQ Administrative Area Boundaries 4 (City Boundaries) for Region 9. There are five Administrative Area Boundaries layers (1, 2, 3, 4, 5). These layers contain...
Critical/non-critical system methodology report
International Nuclear Information System (INIS)
1989-01-01
The method used to determine how the waste Isolation Pilot Plant (WIPP) facilities/systems were classified as critical or non-critical to the receipt of CH waste is described within this report. All WIPP critical facilities/systems are listed in the Operational Readiness Review Dictionary. Using the Final Safety Analysis Report (FSAR) as a guide to define the boundaries of the facilities/systems, a direct correlation of the ORR Dictionary to the FSAR can be obtained. The critical facilities/systems are those which are directly related to or have a critical support role in the receipt of CH waste. The facility/systems must meet one of the following requirements to be considered critical: (a) confinement or measure of the release of radioactive materials; (b) continued receipt and/or storage of transuranic waste (TRU) without an interruption greater than one month according to the shipping plan schedule; (c) the environmental and occupational safety of personnel meets the established site programs; and (d) the physical security of the WIPP facilities
Are Earthquakes a Critical Phenomenon?
Ramos, O.
2014-12-01
Earthquakes, granular avalanches, superconducting vortices, solar flares, and even stock markets are known to evolve through power-law distributed events. During decades, the formalism of equilibrium phase transition has coined these phenomena as critical, which implies that they are also unpredictable. This work revises these ideas and uses earthquakes as the paradigm to demonstrate that slowly driven systems evolving through uncorrelated and power-law distributed avalanches (UPLA) are not necessarily critical systems, and therefore not necessarily unpredictable. By linking the correlation length to the pdf of the distribution, and comparing it with the one obtained at a critical point, a condition of criticality is introduced. Simulations in the classical Olami-Feder-Christensen (OFC) earthquake model confirm the findings, showing that earthquakes are not a critical phenomenon. However, one single catastrophic earthquake may show critical properties and, paradoxically, the emergence of this temporal critical behaviour may eventually carry precursory signs of catastrophic events.
PREFACE: Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013)
Konopelchenko, B. G.; Landolfi, G.; Martina, L.; Vitolo, R.
2014-03-01
Modern theory of nonlinear integrable equations is nowdays an important and effective tool of study for numerous nonlinear phenomena in various branches of physics from hydrodynamics and optics to quantum filed theory and gravity. It includes the study of nonlinear partial differential and discrete equations, regular and singular behaviour of their solutions, Hamitonian and bi- Hamitonian structures, their symmetries, associated deformations of algebraic and geometrical structures with applications to various models in physics and mathematics. The PMNP 2013 conference focused on recent advances and developments in Continuous and discrete, classical and quantum integrable systems Hamiltonian, critical and geometric structures of nonlinear integrable equations Integrable systems in quantum field theory and matrix models Models of nonlinear phenomena in physics Applications of nonlinear integrable systems in physics The Scientific Committee of the conference was formed by Francesco Calogero (University of Rome `La Sapienza', Italy) Boris A Dubrovin (SISSA, Italy) Yuji Kodama (Ohio State University, USA) Franco Magri (University of Milan `Bicocca', Italy) Vladimir E Zakharov (University of Arizona, USA, and Landau Institute for Theoretical Physics, Russia) The Organizing Committee: Boris G Konopelchenko, Giulio Landolfi, Luigi Martina, Department of Mathematics and Physics `E De Giorgi' and the Istituto Nazionale di Fisica Nucleare, and Raffaele Vitolo, Department of Mathematics and Physics `E De Giorgi'. A list of sponsors, speakers, talks, participants and the conference photograph are given in the PDF. Conference photograph
Heat Transfer Phenomena in Concentrating Solar Power Systems.
Energy Technology Data Exchange (ETDEWEB)
Armijo, Kenneth Miguel; Shinde, Subhash L.
2016-11-01
Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxide (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .
Towards an understanding of flows in avalanche transport phenomena
Jin, Suying; Ramadan, Nikolas; van Compernolle, Bart; Poulos, Matt J.; Morales, George J.
2017-10-01
Recent heat transport experiments conducted in the Large Plasma Device (LAPD) at UCLA, studying avalanche phenomena at steep cross-magnetic field pressure gradients, suggest that flows play a critical role in the evolution of transport phenomena, motivating further characterization. A ring shaped electron beam source injects sub-ionization energy electrons along the strong background magnetic field within a larger quiescent plasma, creating a hollow, high pressure filament. Two distinct regimes are observed as the density decays; the first characterized by multiple small avalanches producing sudden relaxations of the pressure profile which then recovers under continued heating, and the second signaled by a permanent collapse of the density profile after a global avalanche event, then dominated by drift-Alfven waves. The source is modified from previous experiments to gain active control of the flows by controlling the bias between the emitting ring and surrounding carbon masks. The results of flow measurements obtained using a Mach probe and Langmuir/emissive probe are here presented and compared. An analytical model for the behavior of the electron beam source is also in development. Sponsored by NSF Grant 1619505 and by DOE/NSF at BaPSF.
Diffusive phenomena and pseudoelasticity in Cu-Al-Be single crystals
Energy Technology Data Exchange (ETDEWEB)
Sade, M., E-mail: sade@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Pelegrina, J.L., E-mail: jlp201@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Yawny, A., E-mail: yawny@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Lovey, F.C., E-mail: lovey@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina)
2015-02-15
Highlights: • Diffusive phenomena occurring under load were analyzed in Cu-Al-Be single crystals. • Stabilization of stress induced martensite was detected in a range of temperatures. • Ageing the austenite under load shifts the austenite/martensite stability field. • A free energy model is proposed considering interchanges between Cu and Be atoms. • Different kinetics for the recovery of the austenite are rationalized. - Abstract: Cu-Al-Be single crystals show pseudoelasticity and the shape memory effect in a well-defined composition range. The β{sub 3}-18R martensitic transition is the origin of these phenomena. The transformation temperatures and the critical stresses to induce the martensitic transition are affected by diffusive phenomena taking place both in the parent phase and in martensite. Pseudoelastic cycles were used to obtain quantitative data concerning the effect of diffusive phenomena like stabilization of martensite, ordering of the parent phase under load and recovery of this phase on the critical stresses to transform. Information was then obtained on changes in the relative phase stability. A model is presented to explain those changes taking place in the parent phase aged under load and in the martensitic 18R structure. Experimental data on the kinetics of diffusive phenomena is also presented and analyzed.
Basic transport phenomena in materials engineering
Iguchi, Manabu
2014-01-01
This book presents the basic theory and experimental techniques of transport phenomena in materials processing operations. Such fundamental knowledge is highly useful for researchers and engineers in the field to improve the efficiency of conventional processes or develop novel technology. Divided into four parts, the book comprises 11 chapters describing the principles of momentum transfer, heat transfer, and mass transfer in single phase and multiphase systems. Each chapter includes examples with solutions and exercises to facilitate students’ learning. Diagnostic problems are also provided at the end of each part to assess students’ comprehension of the material. The book is aimed primarily at students in materials science and engineering. However, it can also serve as a useful reference text in chemical engineering as well as an introductory transport phenomena text in mechanical engineering. In addition, researchers and engineers engaged in materials processing operations will find the material use...
Coherence Phenomena in Coupled Optical Resonators
Smith, D. D.; Chang, H.
2004-01-01
We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.
Singh, Bhim S.
1999-01-01
This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.
Allegheny County Parcel Boundaries
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains parcel boundaries attributed with county block and lot number. Use the Property Information Extractor for more control downloading a filtered...
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the Allegheny County boundary. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...
Boundary representation modelling techniques
2006-01-01
Provides the most complete presentation of boundary representation solid modelling yet publishedOffers basic reference information for software developers, application developers and users Includes a historical perspective as well as giving a background for modern research.
Earth Data Analysis Center, University of New Mexico — The dataset represents the boundaries of all public school districts in the state of New Mexico. The source for the data layer is the New Mexico Public Education...
U.S. Environmental Protection Agency — This dataset consists of site boundaries from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times and...
Minnesota Department of Natural Resources — This theme shows the USFS national forest boundaries in the state. This data was acquired from the GIS coordinators at both the Chippewa National Forest and the...
Kansas Data Access and Support Center — This data set is a digital hydrologic unit boundary that is at the 4-digit, 6-digit, 8-digit, and 11-digit level. The data set was developed by delineating the...
U.S. Department of Health & Human Services — This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities...
State Park Statutory Boundaries
Minnesota Department of Natural Resources — Legislative statutory boundaries for sixty six state parks, six state recreation areas, and eight state waysides. These data are derived principally from DNR's...
An introduction to the neutron transport phenomena
International Nuclear Information System (INIS)
Kulikowska, T.
2001-01-01
The main goal of the present lecture is to is to give a short description of neutron transport phenomena limited to those definitions that are necessary to understand the approach to practical solution of the problem given in the second lecture on reactor lattice transport calculations. The discussion of the neutron cross sections has been skipped as other lecturers have treated this subject in detail. (author)
A LCIA Model Considering Pollution Transfer Phenomena
Yu, Xi; Sekhari, Aicha; Nongaillard, Antoine; Bouras, Abdelaziz; Yu, Suiran; Yang, Qingyan
2013-01-01
Part 7: PLM and Influence of/from Social Networks; International audience; Due to market pressure and government regulations, environmental consciousness in manufacturing is becoming increasingly important. Currently, the global environmental impact (EI) of a product is a crucial criterion to judge its environmental performance. Many models were proposed in the last three decades to evaluate the global EI of products, but none of them considers the pollution transfer phenomena (PTP) of produc...
Natural phenomena hazards site characterization criteria
Energy Technology Data Exchange (ETDEWEB)
1994-03-01
The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.
Workshop on Nonlinear Phenomena in Complex Systems
1989-01-01
This book contains a thorough treatment of neural networks, cellular-automata and synergetics, in an attempt to provide three different approaches to nonlinear phenomena in complex systems. These topics are of major interest to physicists active in the fields of statistical mechanics and dynamical systems. They have been developed with a high degree of sophistication and include the refinements necessary to work with the complexity of real systems as well as the more recent research developments in these areas.
Occult Phenomena in Sherlock Holmes the Movie
NAMAZCARRA, CHRIESHER
2014-01-01
Keywords: Occult phenomena, Sherlock Holmes, movie. Lately, it is not difficult for people to find occult practices. There are many television programs and movie which air mystical programme aggressively to raise the rating and attract the viewers. A movie that raise occultism theme is Sherlock Holmes, the Movie. This movie tells about the struggle of detective Sherlock Holmes to fight the black magic power of Lord Blackwood.To carry out the study, the theories of Occultism such as the secrec...
Attophysics of Thermal Phenomena in Carbon Nanotubes
Kozlowski, Miroslaw; Marciak-Kozlowska, Janina
2005-01-01
In this paper heat transport in carbon nanotubes is investigated. When the dimension of the structure is of the order of the de Broglie wave length transport phenomena must be analysed by quantum mechanics. In this paper we derived the Dirac type thermal equation .The solution of the equation for the temperature fields for electrons can either be damped or can oscillate depending on the dynamics of the scattering. Key words: Carbon nanotubes, ultrashort laser pulses, Dirac thermal equation, t...
Guilt phenomena in medicine, psychology, and psychiatry
Germanavičius, Arūnas
2014-01-01
This article gives an overview of various aspects of guilt arising in psychiatry as an interdisciplinary field, where different conceptions of medical ethics and of psychology lead to different practices. The analysis of modern psychiatric phenomena of guilt using a historical approach is based on the concept of guilt expounded by one of the world’s greatest philosophers, Karl Theodor Jaspers, who has made a huge impact on the formation of psychiatric research. The author presents an original...
Chakraborty, Avik; Krishnan, Chethan
2012-01-01
We study the basin of attraction of static extremal black holes, in the concrete setting of the STU model. By finding a connection to a decoupled Toda-like system and solving it exactly, we find a simple way to characterize the attraction basin via competing behaviors of certain parameters. The boundaries of attraction arise in the various limits where these parameters degenerate to zero. We find that these boundaries are generalizations of the recently introduced (extremal) subtracted geomet...
2014-05-01
complexion transitions occur often in doped titanates, such as BaTiO3 and SrTiO3, and have been utilized to tailor microstructural develop- ment [275,276...Cantwell et al. / Acta Materialia 62 (2014) 1–48 Despite decades of research, efforts to identify grain boundary complexion transitions in pure metals via...evidence suggesting grain boundary complexion transitions in pure metals has existed for decades. For example, researchers have reported anomalies and
An overview of photocatalysis phenomena applied to NOx abatement.
Ângelo, Joana; Andrade, Luísa; Madeira, Luís M; Mendes, Adélio
2013-11-15
This review provides a short introduction to photocatalysis technology in terms of the present environmental remediation paradigm and, in particular, NOx photoabatement. The fundamentals of photoelectrochemical devices and the photocatalysis phenomena are reviewed, highlighting the main reaction mechanisms. The critical historical developments on heterogeneous photocatalysis are briefly discussed, giving particular emphasis to the pioneer works in this field. The third part of this work focus mainly on NOx removal technology considering topics such as: TiO2 photochemistry; effect of the operating conditions on the photocatalysis process; Langmuir-Hinshelwood modeling; TiO2 photocatalytic immobilization approaches; and their applications. The last section of the paper presents the main conclusions and perspectives on the opportunities related to this technology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Proceedings of the physical phenomena at high magnetic fields - II
Energy Technology Data Exchange (ETDEWEB)
Fisk, Z.; Gor`kov, L.; Meltzer, D.; Schrieffer, R. [eds.
1996-12-31
Physical Phenomena at High Magnetic Fields-II was the second conference sponsored by the National High Magnetic Field Laboratory in Tallahassee, FL. The success of the first conference encouraged the Laboratory to once again bring together experts in scientific research areas where high magnetic fields play an important role, to critically assess the current status of research in these areas, and discuss promising new directions in science, as well as applications which are at the forefront of these fields. For the Laboratory, this conference has some additional significance. The Laboratory had just completed its construction stage and full scale scientific efforts were already underway. The Laboratory especially benefited from the invited lectures, original presentations, and open discussions of the conference participants. The Laboratory intends to continue this tradition and host the conference every three years. Separate papers from this proceedings were indexed to the energy database.
Filament Discharge Phenomena in Fingerprint Acquisition by Dielectric Barrier Discharge
International Nuclear Information System (INIS)
Weng Ming; Xu Weijun; Liu Qiang
2007-01-01
In this paper, the dielectric barrier discharge fingerprint acquisition technique is introduced. The filament discharge phenomena were observed in the process of fingerprint acquisition. The filament discharge reduced the quality of fingerprint images. Obviously, it was necessary to eliminate streamer discharges in order to get good fingerprint images. The streamer discharge was considered to be the cause of the filament discharge in the experiment. The relationship between the critical electric field and the discharge gap was calculated with the Raether's model of streamer discharge. The calculated results and our experiment proved that it would be difficult for the streamer discharge to occur when the discharge gap was narrow. With a narrow discharge gap, the discharge was homogeneous, and the fingerprint images were clear and large in area. The images obtained in the experiment are very suitable for fingerprint identification as they contain more information
New student laboratory work about pulsational phenomena in astronomy
Nuritdinov, Salakhutdin N.
The pulsation phenomenon is inherent to the most of the object types and it plays a great role at certain stages of the evolution of the Universe objects. That's why students must study this phenomenon in the framework of laboratory hours. Often the study of these phenomena is reduced to an analysis of some differential equations with variable coefficients. A class of these equations is connected with the stability problem of the self-gravitating system oscillations ( S.Nuritdinov, Sov. Astron., 1985, 29, 293) . In order to carry out this laboratory work every student is bound to compose a computer program using the periodical solution stability method and the parameter resonance theory. It will find critical amplitude of the pulsation and some dependences between physical parameters.
Bion and Tustin: the autistic phenomena.
Korbivcher, Celia Fix
2013-08-01
This article examines the implications of the proposal of autistic transformations within the general context of Bion's theory of Transformations. The aim is to confirm the coherence of this proposal of autistic transformations within the overall structure of Bion's theory of Transformations. She examines the relation between emotional links and their negatives, particularly -K. She questions in which of the dimensions of the mind the autistic phenomena are located, the relation between autistic phenomena and beta elements, and where to place them in the Grid. The author tries to form metapsychological support for the incorporation of the autistic area in Bion's theory of Transformations. She argues that, despite the incongruence and imprecision of this incorporation, such autistic phenomena cannot be excluded from the complexus of the human mind and should therefore be accounted for in Bion's transformations. She discusses the idea that the theory of transformations includes the field of the neurosis and psychosis and deals with emotions, whereas the autistic area is dominated by sensations. The author asks how to add the autistic area to Bion's theory. Clinical material of a child for whom the non-psychotic part of the personality predominates and who presents autistic nuclei provides material for the discussion. Copyright © 2013 Institute of Psychoanalysis.
Quantum Chess: Making Quantum Phenomena Accessible
Cantwell, Christopher
Quantum phenomena have remained largely inaccessible to the general public. There tends to be a scare factor associated with the word ``Quantum''. This is in large part due to the alien nature of phenomena such as superposition and entanglement. However, Quantum Computing is a very active area of research and one day we will have games that run on those quantum computers. Quantum phenomena such as superposition and entanglement will seem as normal as gravity. Is it possible to create such games today? Can we make games that are built on top of a realistic quantum simulation and introduce players of any background to quantum concepts in a fun and mentally stimulating way? One of the difficulties with any quantum simulation run on a classical computer is that the Hilbert space grows exponentially, making simulations of an appreciable size physically impossible due largely to memory restrictions. Here we will discuss the conception and development of Quantum Chess, and how to overcome some of the difficulties faced. We can then ask the question, ``What's next?'' What are some of the difficulties Quantum Chess still faces, and what is the future of quantum games?
An interpretation of passive containment cooling phenomena
Energy Technology Data Exchange (ETDEWEB)
Chung, Bum-Jin [Ministry of Science & Technology, Kyunggi-Do (Korea, Democratic People`s Republic of); Kang, Chang-Sun, [Seoul National Univ. (Korea, Democratic People`s Republic of)
1995-09-01
A simplified interpretation model for the cooling capability of the Westinghouse type PCCS is proposed in this paper. The PCCS domain was phenomenologically divided into 3 regions; water entrance effect region, asymptotic region, and air entrance effect region. The phenomena in the asymptotic region is focused in this paper. Due to the very large height to thickness ratio of the water film, the length of the asymptotic region is estimated to be over 90% of the whole domain. Using the analogy between heat and mass transfer phenomena in a turbulent situation, a new dependent variable combining temperature and vapor mass fraction was defined. The similarity between the PCCS phenomena, which contains the sensible and latent heat transfer, and the buoyant air flow on a vertical heated plate is derived. The modified buoyant coefficient and thermal conductivity were defined. Using these newly defined variable and coefficients, the modified correlation for the interfacial heat fluxes and the ratios of latent heat transfer to sensible heat transfer is established. To verify the accuracy of the correlation, the results of this study were compared with the results of other numerical analyses performed for the same configuration and they are well within the range of 15% difference.
Thermal transport phenomena in nanoparticle suspensions
International Nuclear Information System (INIS)
Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro
2016-01-01
Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications. (topical review)
Thermal transport phenomena in nanoparticle suspensions
Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro
2016-12-01
Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications.
Energy Technology Data Exchange (ETDEWEB)
Gilliss, S.R.; Ravishankar, N.; Farrer, J.K.; Carter, C.B.
2003-08-01
TiO{sub 2} is a vital material in several technologies including, photocatalysis, gas sensing, biomaterials and optical coatings. Among the several crystal structures of this oxide, rutile has the highest density and microhardness, the highest index of refraction and the highest temperature stability. The processing of dense polycrystalline materials often includes the addition of a liquid-forming phase at higher temperatures. This technique is known as liquid-phase sintering and has been studied extensively. Rutile boundaries containing an amorphous phase have been used to study boundary migration and grain-boundary grooving. Visible-light (VLM), scanning electron (SEM) and transmission electron microscopy (TEM) in addition to electron-backscatter diffraction (EBSD) and a focused-ion beam (FIB) tool were used to characterize boundary migration in rutile. EBSD analysis was carried out on a Philips XL30 FEG SEM equipped with a DigiView 1612 high-resolution, high-speed CCD camera. A 2.5 cm sample-to-camera distance was used and {approx}70{sup o} sample tilt. A Philips CM30 operated at 300 kV was used for TEM characterization and an FEI DB235 was used for FIB work. Pulsed-laser deposition (PLD) has been used to deposit thin films ({approx}100 nm thick) of silica glass on single-crystals of rutile. The film/substrate assembly is then fabricated into bicrystals of known boundary-plane orientation by hot pressing. Bicrystals were fabricated with boundary planes of nominal surface orientation of (001) and (110). After diffusion bonding a surface perpendicular to the interface is cut and polished. Bicrystals are then heat treated in air at 1650 C for varying lengths of time. Figure 1 is a VLM image of a rutile bicrystal which as been heat treated for 4 hours. During this heat treatment migration of the boundary initiates at parallel grooves contained in the crystal on the right-hand side. EBSD analysis shows that this parallel set of grooves is due to the presence of 3{sup
Sensitivity of the Boundary Plasma to the Plasma-Material Interface
International Nuclear Information System (INIS)
Canik, John M.; Tang, X.-Z.
2017-01-01
While the sensitivity of the scrape-off layer and divertor plasma to the highly uncertain cross-field transport assumptions is widely recognized, the plasma is also sensitive to the details of the plasma-material interface (PMI) models used as part of comprehensive predictive simulations. Here in this paper, these PMI sensitivities are studied by varying the relevant sub-models within the SOLPS plasma transport code. Two aspects are explored: the sheath model used as a boundary condition in SOLPS, and fast particle reflection rates for ions impinging on a material surface. Both of these have been the study of recent high-fidelity simulation efforts aimed at improving the understanding and prediction of these phenomena. It is found that in both cases quantitative changes to the plasma solution result from modification of the PMI model, with a larger impact in the case of the reflection coefficient variation. Finally, this indicates the necessity to better quantify the uncertainties within the PMI models themselves, and perform thorough sensitivity analysis to propagate these throughout the boundary model; this is especially important for validation against experiment, where the error in the simulation is a critical and less-studied piece of the code-experiment comparison.
Two-fluid modeling of thermal-hydraulic phenomena for best-estimate LWR safety analysis
International Nuclear Information System (INIS)
Yadigaroglu, G.; Andreani, M.
1989-01-01
Two-fluid formulation of the conservation equations has allowed modelling of the two-phase flow and heat transfer phenomena and situations involving strong departures in thermal and velocity equilibrium between the phases. The paper reviews the state of the art in modelling critical flows, and certain phase separation phenomena, as well as post-dryout heat transfer situations. Although the two-fluid models and the codes have the potential for correctly modelling such situations, this potential has not always been fully used in practice. (orig.)
The causal boundary of wave-type spacetimes
International Nuclear Information System (INIS)
Flores, J.L.; Sanchez, M.
2008-01-01
A complete and systematic approach to compute the causal boundary of wave-type spacetimes is carried out. The case of a 1-dimensional boundary is specially analyzed and its critical appearance in pp-wave type spacetimes is emphasized. In particular, the corresponding results obtained in the framework of the AdS/CFT correspondence for holography on the boundary, are reinterpreted and very widely generalized. Technically, a recent new definition of causal boundary is used and stressed. Moreover, a set of mathematical tools is introduced (analytical functional approach, Sturm-Liouville theory, Fermat-type arrival time, Busemann-type functions)
Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report
Energy Technology Data Exchange (ETDEWEB)
Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory
2015-11-01
The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.
Critical Directions In African Autobiography | Hunsu | Marang ...
African Journals Online (AJOL)
... and race among others have continued to draw the attention of critics in reading this tradition of autobiography. The impact of feminist criticism and its discursive strategies in redefining autobiographical boundaries and practise in African literature are also discussed. Keywords: autobiography, Africa, criticism, tradition ...
Thermal-Fluid Transport Phenomena between Twin Rotating Parallel Disks
Directory of Open Access Journals (Sweden)
Shuichi Torii
2008-01-01
Full Text Available This paper investigates thermal-fluid transport phenomena in laminar flow between twin rotating parallel disks from whose center a circular jet is impinged on the heated horizontal bottom disk surface. Emphasis is placed on the effects of the Reynolds number, rotation speed, and disk spacing on both the formations of velocity and thermal fields and the heat transfer rate along the heated wall surface. The governing equations are discretized by means of a finite-difference technique and are numerically solved to determine the distributions of velocity vector and fluid temperature under the appropriate boundary conditions. It is found from the study that (i the recirculation zone which appears on the bottom disk moves along the outward direction with an increase in the Reynolds number, (ii when the Reynolds number is increased, heat transfer performance is intensified over the whole disk surface and the minimum value of the heat transfer rate moves in the downstream direction, and (iii the heat transfer rate is induced due to the disk rotation, whose effect becomes larger due to the upper disk rotation.
Transport Phenomena of Water in Molecular Fluidic Channels
Vo, Truong Quoc; Kim, Bohung
2016-09-01
In molecular-level fluidic transport, where the discrete characteristics of a molecular system are not negligible (in contrast to a continuum description), the response of the molecular water system might still be similar to the continuum description if the time and ensemble averages satisfy the ergodic hypothesis and the scale of the average is enough to recover the classical thermodynamic properties. However, even in such cases, the continuum description breaks down on the material interfaces. In short, molecular-level liquid flows exhibit substantially different physics from classical fluid transport theories because of (i) the interface/surface force field, (ii) thermal/velocity slip, (iii) the discreteness of fluid molecules at the interface and (iv) local viscosity. Therefore, in this study, we present the result of our investigations using molecular dynamics (MD) simulations with continuum-based energy equations and check the validity and limitations of the continuum hypothesis. Our study shows that when the continuum description is subjected to the proper treatment of the interface effects via modified boundary conditions, the so-called continuum-based modified-analytical solutions, they can adequately predict nanoscale fluid transport phenomena. The findings in this work have broad effects in overcoming current limitations in modeling/predicting the fluid behaviors of molecular fluidic devices.
Numerical modeling transport phenomena in proton exchange membrane fuel cells
Suh, DongMyung
To study the coupled phenomena occurring in proton exchange membrane fuel cells, a two-phase, one-dimensional, non-isothermal model is developed in the chapter 1. The model includes water phase change, proton transport in the membrane and electro-osmotic effect. The thinnest, but most complex layer in the membrane electrode assembly, catalyst layer, is considered an interfacial boundary between the gas diffusion layer and the membrane. Mass and heat transfer and electro-chemical reaction through the catalyst layer are formulated into equations, which are applied to boundary conditions for the gas diffusion layer and the membrane. Detail accounts of the boundary equations and the numerical solving procedure used in this work are given. The polarization curve is calculated at different oxygen pressures and compared with the experimental results. When the operating condition is changed along the polarization curve, the change of physicochemical variables in the membrane electrode assembly is studied. In particular, the over-potential diagram presents the usage of the electrochemical energy at each layer of the membrane electrode assembly. Humidity in supplying gases is one of the most important factors to consider for improving the performance of PEMFE. Both high and low humidity conditions can result in a deteriorating cell performance. The effect of humidity on the cell performance is studied in the chapter 2. First, a numerical model based on computational fluid dynamics is developed. Second, the cell performances are simulated, when the relative humidity is changed from 0% to 100% in the anode and the cathode channel. The simulation results show how humidity in the reactant gases affects the water content distribution in the membrane, the over-potential at the catalyst layers and eventually the cell performance. In particular, the rapid enhancement in the cell performance caused by self-hydrating membrane is captured by the simulation. Fully humidifying either H2
Studies of Novel Quantum Phenomena in Ruthenates
Energy Technology Data Exchange (ETDEWEB)
Mao, Zhiqiang
2011-04-08
Strongly correlated oxides have been the subject of intense study in contemporary condensed matter physics, and perovskite ruthenates (Sr,Ca)n+1RunO3n+1 have become a new focus in this field. One of important characteristics of ruthenates is that both lattice and orbital degrees of freedom are active and are strongly coupled to charge and spin degrees of freedom. Such a complex interplay of multiple degrees of freedom causes the properties of ruthenates to exhibit a gigantic response to external stimuli under certain circumstances. Magnetic field, pressure, and chemical composition all have been demonstrated to be effective in inducing electronic/magnetic phase transitions in ruthenates. Therefore, ruthenates are ideal candidates for searching for novel quantum phenomena through controlling external parameters. The objective of this project is to search for novel quantum phenomena in ruthenate materials using high-quality single crystals grown by the floating-zone technique, and investigate the underlying physics. The following summarizes our accomplishments. We have focused on trilayered Sr4Ru3O10 and bilayered (Ca1-xSrx)3Ru2O7. We have succeeded in growing high-quality single crystals of these materials using the floating-zone technique and performed systematic studies on their electronic and magnetic properties through a variety of measurements, including resistivity, Hall coefficient, angle-resolved magnetoresistivity, Hall probe microscopy, and specific heat. We have also studied microscopic magnetic properties for some of these materials using neutron scattering in collaboration with Los Alamos National Laboratory. We have observed a number of unusual exotic quantum phenomena through these studies, such as an orbital selective metamagnetic transition, bulk spin valve effect, and a heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio. Our work has also revealed underlying physics of these exotic phenomena. Exotic phenomena of correlated
A treatise on interpolar transport phenomena
Energy Technology Data Exchange (ETDEWEB)
Einarsrud, Kristian Etienne
2012-07-01
This thesis contributes to the understanding of mechanisms for mass transport in aluminium electrolysis cells. Fundamental studies are undertaken of flow patterns and mass transport in the interpolar region under various operating conditions. A coupled model predicting the turbulent electrolyte flow, under the influence of both electromagnetism and forces from buoyant gas bubbles, crucial for better prediction of mass transfer mechanisms and voltage oscillations, has been developed from first principles. The model is validated against experiments performed on a lab scale electrolysis cell. Both modelling and experiments are performed within the scope of this thesis. Experiments on lab- and industrial scale cells have been conducted in order to study the behaviour of anodic gas bubbles under various operating conditions. On industrial scale, bubble related signals show typical frequencies in the range 0.5 to 2 Hz, with amplitudes up to 5% around the mean voltage. Results indicate that the bubble related voltage oscillations increase in both frequency and magnitude with increasing anode age, the latter of which due to the diminishing in influence of slots. No significant correlation between anode pairs is identified, suggesting that models treating individual anodes are meaningful also on an industrial scale. Due to challenges related to multiple simultaneous phenomena occurring on industrial scales, a series of lab scale measurements have been performed, in order to obtain quantitative data for model validation. The lab scale experimental cell allowed for different current densities, interpolar distances and inclination angles, thus spanning ranges typically encountered on the industrial scale. Lab scale frequencies are found to be in the range 0.25 to 0.65 Hz, with magnitude of up to 4% around the mean voltage. The magnitude of the oscillations decreases with increasing anode age, due to increased rounding of the initially sharp anode edges. The traditional voltage
International Nuclear Information System (INIS)
Rolandson, S.; Mueller, F.; Loevenhielm, G.
1997-01-01
Since 1988 all reactors in Sweden have mitigating measures, such as filtered vents, implemented. In parallel with the work of implementing these measures, a cooperation effort (RAMA projects) between the Swedish utilities and the Nuclear Power Inspectorate was performed to acquire sufficient knowledge about severe accident research work. The on-going project has the name Accident Phenomena of Risk Importance 3. In this paper, we will give background information about severe accident management in Sweden. In the Accident Phenomena of Risk Importance 3 project we will focus on the work concerning coolability of melted core in lower plenum which is the main focus of the In-vessel Coolability Task Group within the Accident Phenomena of Risk Importance 3 project. The Accident Phenomena of Risk Importance 3 project has joined on international consortium and the in-vessel cooling experiments are performed by Fauske and Associates, Inc. in Burr Ridge, Illinois, United States America, Sweden also intends to do one separate experiment with one instrument penetration we have in Swedish/Finnish BWR's. Other parts of the Accident Phenomena of Risk Importance 3 project, such as support to level 2 studies, the research at Royal Institute of Technology and participation in international programs, such as Cooperative Severe Accident Research Program, Advanced Containment Experiments and PHEBUS will be briefly described in the paper
Local and social facets of planetary boundaries: right to nutrients
International Nuclear Information System (INIS)
Kahiluoto, Helena; Kuisma, Miia; Kuokkanen, Anna; Mikkilä, Mirja; Linnanen, Lassi
2015-01-01
Anthropogenic nutrient flows exceed the planetary boundaries. The boundaries and the current excesses vary spatially. Such variations have both an ecological and a social facet. We explored the spatial variation using a bottom-up approach. The local critical boundaries were determined through the current or accumulated flow of the preceding five years before the planetary boundary criteria were met. Finland and Ethiopia served as cases with contrasting ecology and wealth. The variation in excess depends on historical global inequities in the access to nutrients. Globally, the accumulated use per capita is 2300 kg reactive nitrogen (N r ) and 200 kg phosphorus (P). For Finland, the accumulated use per capita is 3400 kg N r and 690 kg P, whereas for Ethiopia, it is 26 kg N r and 12 kg P. The critical N boundary in Finland is currently exceeded by 40 kg cap −1 a −1 and the accumulated excess is 65 kg cap −1 a −1 , while the global current excess is 24 kg cap −1 a −1 and there is space in Ethiopia to increase even the accumulated flow. The critical P boundary is exceeded in Finland and (although less so) in Ethiopia, but for contrary reasons: (1) the excessive past inflow to the agrifood system in Finland and (2) the excessive outflow from the agrifood system triggered by deficits in inflow and waste management in Ethiopia. The critical boundaries set by Finnish marine systems are lower and those set by freshwaters are higher than the planetary boundaries downscaled per capita. The shift to dominance of internal loading in watercourses represents a tipping point. We conclude that food security within the safe boundaries requires global redistribution of nutrients in residues, soils and sediments and of rights to use nutrients. Bottom-up assessments reveal local dynamics that shed new light on the relevant boundary criteria and on estimates and remedies. (letter)
BWR core melt progression phenomena: Experimental analyses
International Nuclear Information System (INIS)
Ott, L.J.
1992-01-01
In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component
In vessel core melt progression phenomena
International Nuclear Information System (INIS)
Courtaud, M.
1993-01-01
For all light water reactor (LWR) accidents, including the so called severe accidents where core melt down can occur, it is necessary to determine the amount and characteristics of fission products released to the environment. For existing reactors this knowledge is used to evaluate the consequences and eventual emergency plans. But for future reactors safety authorities demand decrease risks and reactors designed in such a way that fission products are retained inside the containment, the last protective barrier. This requires improved understanding and knowledge of all accident sequences. In particular it is necessary to be able to describe the very complex phenomena occurring during in vessel core melt progression because they will determine the thermal and mechanical loads on the primary circuit and the timing of its rupture as well as the fission product source term. On the other hand, in case of vessel failure, knowledge of the physical and chemical state of the core melt will provide the initial conditions for analysis of ex-vessel core melt progression and phenomena threatening the containment. Finally a good understanding of in vessel phenomena will help to improve accident management procedures like Emergency Core Cooling System water injection, blowdown and flooding of the vessel well, with their possible adverse effects. Research and Development work on this subject was initiated a long time ago and is still in progress but now it must be intensified in order to meet the safety requirements of the next generation of reactors. Experiments, limited in scale, analysis of the TMI 2 accident which is a unique source of global information and engineering judgment are used to establish and assess physical models that can be implemented in computer codes for reactor accident analysis
Rod Driven Frequency Entrainment and Resonance Phenomena
Directory of Open Access Journals (Sweden)
Christina Salchow
2016-08-01
Full Text Available A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α of each volunteer in the range from 0.40–2.30*α. 306-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10*α and half of the alpha frequency (0.40–0.55*α. No signs of resonance and frequency entrainment phenomena were revealed around 2.00*α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30*α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex.
Fast Particle Methods for Multiscale Phenomena Simulations
Koumoutsakos, P.; Wray, A.; Shariff, K.; Pohorille, Andrew
2000-01-01
We are developing particle methods oriented at improving computational modeling capabilities of multiscale physical phenomena in : (i) high Reynolds number unsteady vortical flows, (ii) particle laden and interfacial flows, (iii)molecular dynamics studies of nanoscale droplets and studies of the structure, functions, and evolution of the earliest living cell. The unifying computational approach involves particle methods implemented in parallel computer architectures. The inherent adaptivity, robustness and efficiency of particle methods makes them a multidisciplinary computational tool capable of bridging the gap of micro-scale and continuum flow simulations. Using efficient tree data structures, multipole expansion algorithms, and improved particle-grid interpolation, particle methods allow for simulations using millions of computational elements, making possible the resolution of a wide range of length and time scales of these important physical phenomena.The current challenges in these simulations are in : [i] the proper formulation of particle methods in the molecular and continuous level for the discretization of the governing equations [ii] the resolution of the wide range of time and length scales governing the phenomena under investigation. [iii] the minimization of numerical artifacts that may interfere with the physics of the systems under consideration. [iv] the parallelization of processes such as tree traversal and grid-particle interpolations We are conducting simulations using vortex methods, molecular dynamics and smooth particle hydrodynamics, exploiting their unifying concepts such as : the solution of the N-body problem in parallel computers, highly accurate particle-particle and grid-particle interpolations, parallel FFT's and the formulation of processes such as diffusion in the context of particle methods. This approach enables us to transcend among seemingly unrelated areas of research.
Oscillating heat pipe simulation considering dryout phenomena
Senjaya, Raffles; Inoue, Takayoshi
2014-10-01
In heat transport devices such as oscillating heat pipe (OHP), dryout phenomena is very important and avoided in order to give the optimum performance. However, from the previous studies (including our studies), the dryout phenomena in OHP and its mechanism are still unclear. In our studies of OHP (Senjaya and Inoue in Appl Thermal Eng 60:251-255, 2013; Int J Heat Mass Transfer 60:816-824, 2013; Int J Heat Mass Transfer 60:825-835, 2013), we introduced the importance and roles of liquid film in the operating principle of OHP. In our previous simulation, the thickness of liquid film was assumed to be uniform along a vapor plug. Then, dryout never occurred because there was the liquid transfer from the liquid film in the cooling section to that in the heating section. In this research, the liquid film is not treated uniformly but it is meshed similarly with the vapor plugs and liquid slugs. All governing equations are also solved in each control volume of liquid film. The simulation results show that dryout occurs in the simulation without bubble generation and growth. Dryout is started in the middle of vapor plug, because the liquid supply from the left and right liquid slugs cannot reach until the liquid film in the middle of vapor plug, and propagates to the left and right sides of a vapor plug. By inserting the bubble generation and growth phenomena, dryout does not occur because the wall of heating section is always wetted during the bubble growth and the thickness of liquid film is almost constant. The effects of meshing size of liquid film and wall temperature of heating section are also investigated. The results show that the smaller meshing size, the smaller liquid transfer rate and the faster of dryout propagation. In the OHP with higher wall temperature of heating section, dryout and its propagation also occur faster.
Quenching phenomena in natural circulation loop
Energy Technology Data Exchange (ETDEWEB)
Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)
1995-09-01
Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.
Psychic phenomena and early emotional states.
Reiner, Annie
2004-06-01
This paper examines the relationship between severe early trauma and the development of psychic intuition. A case presentation with extensive dream work helps to illustrate this connection by exploring the psychological meaning of one patient's acute receptivity to unconscious communications. The paper includes a historical overview of Freud's attitudes toward occultism, as distinct from later psychoanalytic views, including those of Wilfred Bion. Many of Bion's views have more in common with Jung's perspective than with Freud's, with particular reference made to spiritual and religious differences. Bion clearly states that Freud and psychoanalysts have focused on phenomena, not on noumena, which Bion considers to be the essence of the psychoanalytic point of view.
Simple models of equilibrium and nonequilibrium phenomena
International Nuclear Information System (INIS)
Lebowitz, J.L.
1987-01-01
This volume consists of two chapters of particular interest to researchers in the field of statistical mechanics. The first chapter is based on the premise that the best way to understand the qualitative properties that characterize many-body (i.e. macroscopic) systems is to study 'a number of the more significant model systems which, at least in principle are susceptible of complete analysis'. The second chapter deals exclusively with nonequilibrium phenomena. It reviews the theory of fluctuations in open systems to which they have made important contributions. Simple but interesting model examples are emphasised
Earthquake Prediction: Seismo-Electromagnetic Phenomena
Park, Stephen
Earthquake Prediction: Seismo-Electromagnetic Phenomena is a review of research on electromagnetic emissions (EME) as precursors to earthquakes. The authors state in the introduction that the book is primarily based on their own work, so there is heavy emphasis on the Russian literature. Fewer than 15% of the references are taken from European, Asian, and North American sources. Though the title implies a diverse range of signals, the authors focus mostly on EME in the kHz-MHz range. There is little discussion of signals in the ULFand lower-frequency bands.
Modeling in transport phenomena a conceptual approach
Tosun, Ismail
2007-01-01
Modeling in Transport Phenomena, Second Edition presents and clearly explains with example problems the basic concepts and their applications to fluid flow, heat transfer, mass transfer, chemical reaction engineering and thermodynamics. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations and the physical significance of each term are given in detail, for students to easily understand and follow up the material. There is a strong incentive in science and engineering to
Electrodiffusion phenomena in neuroscience: a neglected companion.
Savtchenko, Leonid P; Poo, Mu Ming; Rusakov, Dmitri A
2017-09-19
The emerging technological revolution in genetically encoded molecular sensors and super-resolution imaging provides neuroscientists with a pass to the real-time nano-world. On this small scale, however, classical principles of electrophysiology do not always apply. This is in large part because the nanoscopic heterogeneities in ionic concentrations and the local electric fields associated with individual ions and their movement can no longer be ignored. Here, we review basic principles of molecular electrodiffusion in the cellular environment of organized brain tissue. We argue that accurate interpretation of physiological observations on the nanoscale requires a better understanding of the underlying electrodiffusion phenomena.
Cooperative phenomena in flows; Poster abstracts
Energy Technology Data Exchange (ETDEWEB)
Loekseth, Trine (ed.)
2011-05-15
The objective of this 'Geilo School' was to bring together researchers with various interests and background including theoretical experimental physicists, material scientists and molecular biologists to identify and discuss areas where synergism between these disciplines may be most fruitfully applied to the study of various aspects of 'Cooperative phenomena in flows'. There were altogether 21 lecturers at the School with about 80 participants from 19 countries. This was the 21. Geilo School held biannually since the first one in I971. Reference to the earlier Geilo Schools 1971-2009 may be found here: http://www.ife.no/departments/physics/projects/geilo (Author)
Nanoscale and microscale phenomena fundamentals and applications
Khandekar, Sameer
2015-01-01
The book is an outcome of research work in the areas of nanotechnology, interfacial science, nano- and micro-fluidics and manufacturing, soft matter, and transport phenomena at nano- and micro-scales. The contributing authors represent prominent research groups from Indian Institute of Technology Bombay, Indian Institute of Technology Kanpur and Indian Institute of Science, Bangalore. The book has 13 chapters and the entire work presented in the chapters is based on research carried out over past three years. The chapters are designed with number of coloured illustrations, figures and tables. The book will be highly beneficial to academicians as well as industrial professionals working in the mentioned areas.
Phenomena and parameters important to burnup credit
International Nuclear Information System (INIS)
Parks, C.V.; Dehart, M.D.; Wagner, J.C.
2001-01-01
Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water- reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given. (author)
Results on large transverse momentum phenomena
Büsser, F W; Blumenfeld, B; Camilleri, L L; Cool, R L; Di Lella, L; Gladding, G; Lederman, Leon Max; Litt, L; Placci, A; Pope, B G; Segler, S L; Smith, A M; Yoh, J K; Zavattini, E
1973-01-01
Preliminary results of an experiment on large transverse momentum phenomena performed at the CERN-ISR at centre-of-mass energies of 52.7 and 44.8 GeV are presented. The topics studied were the inclusive reaction p+p to pi /sup 0/+'anything', where the pi /sup 0/ was emitted around 90 degrees in the centre- of-mass system, ( pi /sup 0/ pi /sup 0/) correlations, and the charged multiplicity associated with large transverse momentum pi /sup 0/'s. In addition, results of a search for electrons and electron pairs are included. (4 refs).
Advances in modelling of condensation phenomena
Energy Technology Data Exchange (ETDEWEB)
Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)
1997-07-01
The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.
Heavenly Bodies and Phenomena in Petroglyphs
Tokhatyan, Karen
2016-12-01
In Armenian culture are amply reflected realities connected with Universe. Their figurative expressions are also petroglyphs in which there are representations of solar signs, swastika, Moon crescend, planets, stars, star groups, constellations, Milky Way, Earth. Among heavenly and atmospheric phenomena are: eclipce, meteor, comet, ligthning, cloud, rain and rainbow. There are many products of scientific thinking: stellar maps, calendars, compasses, astronomical records, Zodiac signs and ideograms. Thousands of the Armenian petroglyphs that were created millennia ago by an indigenous ethnos - Armenians, point to the significant place of celestial bodies and luminaries, especially the Sun, stars, and stellar constellations in our ancestors' cosmological perceptions.
Electrical breakdown phenomena of dielectric elastomers
DEFF Research Database (Denmark)
Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard
years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloro propyl functionalized silicone elastomers prepared in Madsen et al[2] and we investigate the electrical...... breakdown patterns of two similar chloro propyl functionalized silicone elastomers which break down electrically in a rather different way as well as we compare them to a silicone based reference. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) are used to evaluate...... the elastomers after electrical breakdown....
Quenching phenomena in natural circulation loop
International Nuclear Information System (INIS)
Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki
1995-01-01
Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity
Ion transport phenomena in polymeric electrolytes
Energy Technology Data Exchange (ETDEWEB)
Ciosek, M.; Sannier, L.; Siekierski, M.; Wieczorek, W. [Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw (Poland); Golodnitsky, D.; Peled, E. [School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel); Scrosati, B. [Dipartimento di Chimica, Universita di Roma ' ' La Sapienza' ' , P. le A. Moro 4, 00185 Rome (Italy); Glowinkowski, S. [Faculty of Physics, Adam Mickiewicz University, Ulmultowska 86, 61-614 Poznan (Poland)
2007-12-31
The aim of the present work is to generalize an ion transport phenomena observed in composite polymeric electrolytes using the previously developed models as well as design a new approach which would be helpful in describing changes in conductivity and lithium ion transference numbers occurring upon addition of fillers to polymeric electrolytes. The concept is based on the observation of changes in ionic associations in the polymeric electrolytes studied in a wide salt concentration range. The idea is illustrated by the results coming from a variety of electrochemical and structural data obtained for composite electrolytes containing specially designed inorganic and organic fillers. (author)
Generalized Bloch theorem and chiral transport phenomena
Yamamoto, Naoki
2015-10-01
Bloch theorem states the impossibility of persistent electric currents in the ground state of nonrelativistic fermion systems. We extend this theorem to generic systems based on the gauged particle number symmetry and study its consequences on the example of chiral transport phenomena. We show that the chiral magnetic effect can be understood as a generalization of the Bloch theorem to a nonequilibrium steady state, similarly to the integer quantum Hall effect. On the other hand, persistent axial currents are not prohibited by the Bloch theorem and they can be regarded as Pauli paramagnetism of relativistic matter. An application of the generalized Bloch theorem to quantum time crystals is also discussed.
Layered phenomena in the mesopause region
Plane, J. M. C.; Bailey, S. M.; Baumgarten, G.; Rapp, M.
2015-05-01
This special issue of the Journal of Atmospheric and Solar-Terrestrial Physics comprises a collection of papers which were mostly presented at the 11th Layered Phenomena in the Mesopause Region (LPMR) Workshop, held at the University of Leeds between 29th July 2013 and 1st August 2013. The topics covered at the workshop included atmospheric dynamics, mesospheric ice clouds, meteoric metal layers, meteoric smoke particles, and airglow layers. There was also a session on the potential of planned sub-orbital spacecraft for making measurements in the mesosphere and lower thermosphere (MLT).
Current position on severe accident phenomena
International Nuclear Information System (INIS)
Henry, Robert E.
2004-01-01
The phenomena addressed in this lecture are: in-vessel and ex-vessel hydrogen generation; in-vessel and in-containment natural circulation, steam explosions, direct containment heating, core-concrete interaction; debris coolability, containment strength/failure. The following events were modeled: axial and radial power distribution, two-phase level in the core, steam generation in covered section, decay heat generation, convection to gas, cladding oxidation, cold ballooning and rupture, natural circulation between the core and upper plenum, hydrogen generation, core meltdown, reflooding. Differences between PWR and BWR type reactors
Micro- and nanoscale phenomena in tribology
Chung, Yip-Wah
2011-01-01
Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study.After discussing the
Chalcogenides Metastability and Phase Change Phenomena
Kolobov, Alexander V
2012-01-01
A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devices¿optical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.
Trowbridge, John H.; Lentz, Steven J.
2018-01-01
The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.
A free boundary problem on three-dimensional cones
Allen, Mark
2017-12-01
We consider a free boundary problem on cones depending on a parameter c and study when the free boundary is allowed to pass through the vertex of the cone. We show that when the cone is three-dimensional and c is large enough, the free boundary avoids the vertex. We also show that when c is small enough but still positive, the free boundary is allowed to pass through the vertex. This establishes 3 as the critical dimension for which the free boundary may pass through the vertex of a right circular cone. In view of the well-known connection between area-minimizing surfaces and the free boundary problem under consideration, our result is analogous to a result of Morgan that classifies when an area-minimizing surface on a cone passes through the vertex.
Bianchi, Eugenio; Haggard, Hal M.; Rovelli, Carlo
2017-08-01
We show that in Oeckl's boundary formalism the boundary vectors that do not have a tensor form represent, in a precise sense, statistical states. Therefore the formalism incorporates quantum statistical mechanics naturally. We formulate general-covariant quantum statistical mechanics in this language. We illustrate the formalism by showing how it accounts for the Unruh effect. We observe that the distinction between pure and mixed states weakens in the general covariant context, suggesting that local gravitational processes are naturally statistical without a sharp quantal versus probabilistic distinction.
Discussion of heat transfer phenomena in fluids at supercritical pressure with the aid of CFD models
International Nuclear Information System (INIS)
Sharabi, Medhat; Ambrosini, Walter
2009-01-01
The paper discusses heat transfer enhancement and deterioration phenomena observed in experimental data for fluids at supercritical pressure. The results obtained by the application of various CFD turbulence models in the prediction of experimental data for water and carbon dioxide flowing in circular tubes are firstly described. On this basis, the capabilities of the addressed models in predicting the observed phenomena are shortly discussed. Then, the analysis focuses on further results obtained by a low-Reynolds number k - ε model addressing one of the considered experimental apparatuses by changing the operating conditions. In particular, the usual imposed heat flux boundary condition is changed to assigned wall temperature, in order to highlight effects otherwise impossible to point out. The obtained results, supported by considerations drawn from experimental information, allow comparing the trends observed for heat transfer deterioration at supercritical pressure with those typical of the thermal crisis in boiling systems, clarifying old concepts of similarity among them
Thinking Critically about Critical Thinking
Mulnix, Jennifer Wilson
2012-01-01
As a philosophy professor, one of my central goals is to teach students to think critically. However, one difficulty with determining whether critical thinking can be taught, or even measured, is that there is widespread disagreement over what critical thinking actually is. Here, I reflect on several conceptions of critical thinking, subjecting…
WHC natural phenomena hazards mitigation implementation plan
Energy Technology Data Exchange (ETDEWEB)
Conrads, T.J.
1996-09-11
Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.
Modelling of thermohydraulic emergency core cooling phenomena
International Nuclear Information System (INIS)
Yadigaroglu, G.; Andreani, M.; Lewis, M.J.
1990-10-01
The codes used in the early seventies for safety analysis and licensing were based either on the homogeneous model of two-phase flow or on the so-called separate-flow models, which are mixture models accounting, however, for the difference in average velocity between the two phases. In both cases the behavior of the mixture is prescribed a priori as a function of local parameters such as the mass flux and the quality. The modern best-estimate codes used for analyzing LWR LOCA's and transients are often based on a two-fluid or 6-equation formulation of the conservation equations. In this case the conservation equations are written separately for each phase; the mixture is allowed to evolve on its own, governed by the interfacial exchanges of mass, momentum and energy between the phases. It is generally agreed that such relatively sophisticated 6-equation formulations of two-phase flow are necessary for the correct modelling of a number of phenomena and situations arising in LWR accidental situations. They are in particular indispensible for the analysis of stratified or countercurrent flows and of situations in which large departures from thermal and velocity equilibrium exist. This report will be devoted to a discussion of the need for, the capacity and the limitations of the two-phase flow models (with emphasis on the 6-equation formulations) in modelling these two-phase flow and heat transfer phenomena and/or different core cooling situations. 18 figs., 1 tab., 72 refs
Study of catalytic phenomena in radiation chemistry
International Nuclear Information System (INIS)
Dran, J.C.
1965-01-01
Two phenomena have been studied: the action of γ rays from radio-cobalt on the adsorption and catalytic properties of ZnO and NiO in. relationship with the heterogeneous oxidation of CO, and the homogeneous catalysis by OsO 4 of the oxidation of various aqueous phase solutes by the same radiation. The prior irradiation of ZnO and of NiO does not modify their catalytic activity but generally increases the adsorption energy of -the gases CO and O 2 . The influence of the radiations appears to be connected with the presence of traces of water on ZnO and of an excess of oxygen on NiO. Osmium tetroxide which is not degraded by irradiation in acid solution, accelerates the radiolytic oxidation of certain compounds (Te IV , Pt 11 , As 111 ) in the presence of oxygen, as a result of its sensitizing effect on the oxidation by H 2 O 2 . In the case of phosphites on the other hand, OsO 4 has a protecting action under certain conditions of acidity and may suppress entirely the chain reaction which characterizes the oxidation of this solute byγ rays. A general mechanism is proposed for these phenomena. The rate constant for the OsO 4 + HO 2 reaction is calculated to be 5.7 x 10 5 l.mol -1 . sec -1 . (author) [fr
Shock Wave Diffraction Phenomena around Slotted Splitters
Directory of Open Access Journals (Sweden)
Francesca Gnani
2015-01-01
Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.
Augmented Visual Experience of Simulated Solar Phenomena
Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.
2017-12-01
The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.
Laboratory simulation of space plasma phenomena*
Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.
2017-12-01
Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.
Study Of Severe Accident Phenomena In Nuclear Power Plant
International Nuclear Information System (INIS)
Sugiyanto; Antariksawan; Anhar, R.; Arifal
2001-01-01
Several phenomena that occurred in the light water reactor type of nuclear power plant during severe accident were studied. The study was carried out based on the results of severe accident researches in various countries. In general, severe accident phenomena can be classified into in-vessel phenomena, retention in the reactor coolant system, and ex-vessel phenomena. In-vessel retention has been recommended as a severe accident management strategy
Recurrence and interoccurrence behavior of self-organized complex phenomena
Directory of Open Access Journals (Sweden)
S. G. Abaimov
2007-08-01
Full Text Available The sandpile, forest-fire and slider-block models are said to exhibit self-organized criticality. Associated natural phenomena include landslides, wildfires, and earthquakes. In all cases the frequency-size distributions are well approximated by power laws (fractals. Another important aspect of both the models and natural phenomena is the statistics of interval times. These statistics are particularly important for earthquakes. For earthquakes it is important to make a distinction between interoccurrence and recurrence times. Interoccurrence times are the interval times between earthquakes on all faults in a region whereas recurrence times are interval times between earthquakes on a single fault or fault segment. In many, but not all cases, interoccurrence time statistics are exponential (Poissonian and the events occur randomly. However, the distribution of recurrence times are often Weibull to a good approximation. In this paper we study the interval statistics of slip events using a slider-block model. The behavior of this model is sensitive to the stiffness α of the system, α=k_{C}/k_{L} where k_{C} is the spring constant of the connector springs and k_{L} is the spring constant of the loader plate springs. For a soft system (small α there are no system-wide events and interoccurrence time statistics of the larger events are Poissonian. For a stiff system (large α, system-wide events dominate the energy dissipation and the statistics of the recurrence times between these system-wide events satisfy the Weibull distribution to a good approximation. We argue that this applicability of the Weibull distribution is due to the power-law (scale invariant behavior of the hazard function, i.e. the probability that the next event will occur at a time t_{0} after the last event has a power-law dependence on t_{0}. The Weibull distribution is the only distribution that
An urban approach to planetary boundaries.
Hoornweg, Daniel; Hosseini, Mehdi; Kennedy, Christopher; Behdadi, Azin
2016-09-01
The achievement of global sustainable development goals subject to planetary boundaries will mostly be determined by cities as they drive cultures, economies, material use, and waste generation. Locally relevant, applied and quantitative methodologies are critical to capture the complexity of urban infrastructure systems, global inter-connections, and to monitor local and global progress toward sustainability. An urban monitoring (and communications) tool is presented here illustrating that a city-based approach to sustainable development is possible. Following efforts to define and quantify safe planetary boundaries in areas such as climate change, biosphere integrity, and freshwater use, this paper modifies the methodology to propose boundaries from a city's perspective. Socio-economic boundaries, or targets, largely derived from the Sustainable Development Goals are added to bio-physical boundaries. Issues such as data availability, city priorities, and ease of implementation are considered. The framework is trialed for Toronto, Shanghai, Sao Paulo, Mumbai, and Dakar, as well as aggregated for the world's larger cities. The methodology provides an important tool for cities to play a more fulsome and active role in global sustainable development.
Numerical methods for hypersonic boundary layer stability
Malik, M. R.
1990-01-01
Four different schemes for solving compressible boundary layer stability equations are developed and compared, considering both the temporal and spatial stability for a global eigenvalue spectrum and a local eigenvalue search. The discretizations considered encompass: (1) a second-order-staggered finite-difference scheme; (2) a fourth-order accurate, two-point compact scheme; (3) a single-domain Chebychev spectral collocation scheme; and (4) a multidomain spectral collocation scheme. As Mach number increases, the performance of the single-domain collocation scheme deteriorates due to the outward movement of the critical layer; a multidomain spectral method is accordingly designed to furnish superior resolution of the critical layer.
Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....
DEFF Research Database (Denmark)
Li-Ying, Jason
2016-01-01
The extant literature runs short in understanding openness of innovation regarding and the different pathways along which internal and external knowledge resources can be combined. This study proposes a unique typology for outside-in innovations based on two distinct ways of boundary spanning: wh...
Glasby, John S
2013-01-01
The boundaries of space exploration are being pushed back constantly, but the realm of the partially understood and the totally unknown is as great as ever. Among other things this book deals with astronomical instruments and their application, recent discoveries in the solar system, stellar evolution, the exploding starts, the galaxies, quasars, pulsars, the possibilities of extraterrestrial life and relativity.
Minnesota County Boundaries - lines
Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....
International Nuclear Information System (INIS)
Romanelli, F.
2001-01-01
In this paper the contributions presented at the 18 th IAEA Fusion Energy Conference in the field of transport and boundary physics will be summarised with reference to the following distinct issues: H-mode physics, Internal Transport Barrier formation, transport studies, Radiative Improved modes and impurity seeding, divertor and He exhaust, new configurations. (author)
Experimental and analytical study of the sputtering phenomena
International Nuclear Information System (INIS)
Howard, P.A.
1976-03-01
One form of the sputtering phenomena, the heat-transfer process that occurs when an initially hot vertical surface is cooled by a falling liquid film, was examined from a new experimental approach. The sputtering front is the lowest wetted position on the vertical surface and is characterized by a short region of intense nucleate boiling. The sputtering front progresses downward at nearly a constant rate, the surface below the sputtering front being dry and almost adiabatic. This heat-transfer process is of interest in the analysis of some of the performance aspects of emergency core-cooling systems of light-water reactors. An experimental apparatus was constructed to examine the heat-transfer characteristics of a sputtering front. In the present study, a heat source of sufficient intensity was located immediately below the sputtering front, which prevented its downward progress, thus permitting detailed measurements of steady-state surface temperatures throughout a sputtering front. Experimental evidence showed the sputtering front to correspond to a critical heat-flux (CHF) phenomenon. Data were obtained with water flow rates of 350-1600 lb/sub m//hr-ft and subcoolings of 40-140 0 F on a 3 / 8 -in. solid copper rod at 1 atm. A two-dimensional analytical model was developed to describe a stationary sputtering front where the wet-dry interface corresponds to a CHF phenomena and the dry zone is adiabatic. This model is nonlinear because of the temperature dependence of the heat-transfer coefficient in the wetted region and has yielded good agreement with data. A simplified one-dimensional approximation was developed which adequately describes these data. Finally, by means of a coordinate transformation and additional simplifying assumptions, this analysis was extended to analyze moving sputtering fronts, and reasonably good agreement with reported data was shown
Simulation of containment phenomena during the Phebus FPT1 test with the CONTAIN code
International Nuclear Information System (INIS)
Kljenak, I.; Mavko, B.
2002-01-01
Thermal-hydraulic and aerosol phenomena which occurred in the containment vessel of the Phebus integral experimental facility during the first 30000 s of the Phebus FPT1 test were simulated with the CONTAIN thermal-hydraulic computer code. A single-cell input model of the vessel was developed, and boundary and initial conditions that were determined during the experiment were applied. The comparison of experimental and calculated results shows that, although the atmosphere temperature was well simulated, the calculated condensation rate was apparently too high, resulting in a lower pressure of the containment atmosphere. The aerosol deposition process was well simulated.(author)
Computational Modelling of a Tangentially Fired Boiler With Deposit Formation Phenomena
Directory of Open Access Journals (Sweden)
Modliński Norbert J.
2014-09-01
Full Text Available Any complete CFD model of pulverised coal-fired boiler needs to consider ash deposition phenomena. Wall boundary conditions (temperature and emissivity should be temporally corrected to account for the effects of deposit growth on the combustion conditions. At present voluminous publications concerning ash related problems are available. The current paper presents development of an engineering tool integrating deposit formation models with the CFD code. It was then applied to two tangentially-fired boilers. The developed numerical tool was validated by comparing it with boiler evaporator power variation based on the on-line diagnostic system with the results from the full CFD simulation.
Critical care helps people with life-threatening injuries and illnesses. It might treat problems such as complications from surgery, ... attention by a team of specially-trained health care providers. Critical care usually takes place in an ...
International Nuclear Information System (INIS)
Rechard, R.P.; Tierney, M.S.; Sanchez, L.C.; Martell, M.-A.
1996-05-01
This report presents one of 2 approaches (bounding calculations) which were used in a 1994 study to examine the possibility of a criticality in a repository. Bounding probabilities, although rough, point to the difficulty of creating conditions under which a critical mass could be assembled (container corrosion, separation of neutron absorbers from fissile material, collapse or precipitation of fissile material) and how significant the geochemical and hydrologic phenomena are. The study could not conceive of a mechanism consistent with conditions under which an atomic explosion could occur. Should a criticality occur in or near a container in the future, boundary consequence calculations showed that fissions from one critical event ( 20 fissions, if similar to aqueous and metal accidents and experiments) are quite small compared to the amount of fissions represented by the spent fuel itself. If it is assumed that the containers necessary to hold the highly enriched spent fuel went critical once per day for 1 million years, creating an energy release of about 10 20 fissions, the number of fissions equals about 10 28 , which corresponds to only 1% of the fission inventory in a repository containing 70,000 metric tons of heavy metal, the expected size for the proposed repository at Yucca Mountain, Nevada
Autistic phenomena in The Adventures of Pinocchio.
Smith, Adrian
2017-04-01
This paper seeks to demonstrate that the protagonist of Carlo Collodi's The Adventures of Pinocchio illustrates numerous autistic phenomena such as communication difficulties, sensory and perceptual distortions and mindblindness. While Pinocchio is viewed as a literary construct with contraindications of autism, it will be argued that his autistic traits are sufficient to suggest the possibility that Collodi had a partial intuition of the syndrome 60 years before it was identified by Leo Kanner. Approaching Collodi's text in this manner is taken as an opportunity to survey and reflect upon the psychoanalytic literature on autism and to position it in relation to contemporary theories from cognitive neuroscience. © 2017, The Society of Analytical Psychology.
Modeling electrical dispersion phenomena in Earth materials
Directory of Open Access Journals (Sweden)
D. Patella
2008-06-01
Full Text Available It is illustrated that IP phenomena in rocks can be described using conductivity dispersion models deduced as solutions to a 2nd-order linear differential equation describing the motion of a charged particle immersed in an external electrical field. Five dispersion laws are discussed, namely: the non-resonant positive IP model, which leads to the classical Debye-type dispersion law and by extension to the Cole-Cole model, largely used in current practice; the non-resonant negative IP model, which allows negative chargeability values, known in metals at high frequencies, to be explained as an intrinsic physical property of earth materials in specific field cases; the resonant flat, positive or negative IP models, which can explain the presence of peak effects at specific frequencies superimposed on flat, positive or negative dispersion spectra.
Using Spatial Gradients to Model Localization Phenomena
Energy Technology Data Exchange (ETDEWEB)
D.J.Bammann; D.Mosher; D.A.Hughes; N.R.Moody; P.R.Dawson
1999-07-01
We present the final report on a Laboratory-Directed Research and Development project, Using Spatial Gradients to Model Localization Phenomena, performed during the fiscal years 1996 through 1998. The project focused on including spatial gradients in the temporal evolution equations of the state variables that describe hardening in metal plasticity models. The motivation was to investigate the numerical aspects associated with post-bifurcation mesh dependent finite element solutions in problems involving damage or crack propagation as well as problems in which strain Localizations occur. The addition of the spatial gradients introduces a mathematical length scale that eliminates the mesh dependency of the solution. In addition, new experimental techniques were developed to identify the physical mechanism associated with the numerical length scale.
Teaching wave phenomena via biophysical applications
Reich, Daniel; Robbins, Mark; Leheny, Robert; Wonnell, Steven
2014-03-01
Over the past several years we have developed a two-semester second-year physics course sequence for students in the biosciences, tailored in part to the needs of undergraduate biophysics majors. One semester, ``Biological Physics,'' is based on the book of that name by P. Nelson. This talk will focus largely on the other semester, ``Wave Phenomena with Biophysical Applications,'' where we provide a novel introduction to the physics of waves, primarily through the study of experimental probes used in the biosciences that depend on the interaction of electromagnetic radiation with matter. Topic covered include: Fourier analysis, sound and hearing, diffraction - culminating in an analysis of x-ray fiber diffraction and its use in the determination of the structure of DNA - geometrical and physical optics, the physics of modern light microscopy, NMR and MRI. Laboratory exercises tailored to this course will also be described.
Molecular dynamics simulation of laser shock phenomena
Energy Technology Data Exchange (ETDEWEB)
Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).
2001-10-01
Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)
Social phenomena from data analysis to models
Perra, Nicola
2015-01-01
This book focuses on the new possibilities and approaches to social modeling currently being made possible by an unprecedented variety of datasets generated by our interactions with modern technologies. This area has witnessed a veritable explosion of activity over the last few years, yielding many interesting and useful results. Our aim is to provide an overview of the state of the art in this area of research, merging an extremely heterogeneous array of datasets and models. Social Phenomena: From Data Analysis to Models is divided into two parts. Part I deals with modeling social behavior under normal conditions: How we live, travel, collaborate and interact with each other in our daily lives. Part II deals with societal behavior under exceptional conditions: Protests, armed insurgencies, terrorist attacks, and reactions to infectious diseases. This book offers an overview of one of the most fertile emerging fields bringing together practitioners from scientific communities as diverse as social sciences, p...
Discrete computational mechanics for stiff phenomena
Michels, Dominik L.
2016-11-28
Many natural phenomena which occur in the realm of visual computing and computational physics, like the dynamics of cloth, fibers, fluids, and solids as well as collision scenarios are described by stiff Hamiltonian equations of motion, i.e. differential equations whose solution spectra simultaneously contain extremely high and low frequencies. This usually impedes the development of physically accurate and at the same time efficient integration algorithms. We present a straightforward computationally oriented introduction to advanced concepts from classical mechanics. We provide an easy to understand step-by-step introduction from variational principles over the Euler-Lagrange formalism and the Legendre transformation to Hamiltonian mechanics. Based on such solid theoretical foundations, we study the underlying geometric structure of Hamiltonian systems as well as their discrete counterparts in order to develop sophisticated structure preserving integration algorithms to efficiently perform high fidelity simulations.
Astrophysical disks Collective and Stochastic Phenomena
Fridman, Alexei M; Kovalenko, Ilya G
2006-01-01
The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.
Implicit particle simulation of electromagnetic plasma phenomena
International Nuclear Information System (INIS)
Kamimura, T.; Montalvo, E.; Barnes, D.C.; Leboeuf, J.N.; Tajima, T.
1986-11-01
A direct method for the implicit particle simulation of electromagnetic phenomena in magnetized, multi-dimensional plasmas is developed. The method is second-order accurate for ωΔt < 1, with ω a characteristic frequency and time step Δt. Direct time integration of the implicit equations with simplified space differencing allows the consistent inclusion of finite particle size. Decentered time differencing of the Lorentz force permits the efficient simulation of strongly magnetized plasmas. A Fourier-space iterative technique for solving the implicit field corrector equation, based on the separation of plasma responses perpendicular and parallel to the magnetic field and longitudinal and transverse to the wavevector, is described. Wave propagation properties in a uniform plasma are in excellent agreement with theoretical expectations. Applications to collisionless tearing and coalescence instabilities further demonstrate the usefulness of the algorithm. (author)
Novel nuclear phenomena in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1987-08-01
Many of the key issues in understanding quantum chromodynamics involve processes in nuclear targets at intermediate energies. A range of hadronic and nuclear phenomena-exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction were discussed as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Several areas were also reviewed where there has been significant theoretical progress determining the form of hadron and nuclear wave functions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. A possible interpretation was also discussed of the large spin correlation A/sub NN/ in proton-proton scattering, and how relate this effect to an energy and angular dependence of color transparency in nuclei. 76 refs., 24 figs
Density turbulence and disruption phenomena in TEXTOR
International Nuclear Information System (INIS)
Waidmann, G.; Kuang, G.; Jadoul, M.
1992-01-01
Disruptive processes are observed in tokamak plasmas not only at the operating limits (density limit or q-limit) but can be found under a variety of experimental conditions. Large forces are exerted then on vessel components and support structures. The sudden release of stored plasma energy presents a serious erosion problem for the first wall already in the next generation of large tokamak machines. Strong energy losses from the plasma and an influx of impurities are already present in minor plasma disruptions which do not immediately lead to a plasma current termination. The rapid loss of energy confinement was investigated within the framework of a systematic study on plasma disruption phenomena in TEXTOR. (author) 4 refs., 4 figs
Peridynamic Formulation for Coupled Thermoelectric Phenomena
Directory of Open Access Journals (Sweden)
Migbar Assefa
2017-01-01
Full Text Available Modeling of heat and electrical current flow simultaneously in thermoelectric convertor using classical theories do not consider the influence of defects in the material. This is because traditional methods are developed based on partial differential equations (PDEs and lead to infinite fluxes at the discontinuities. The usual way of solving such PDEs is by using numerical technique, like Finite Element Method (FEM. Although FEM is robust and versatile, it is not suitable to model evolving discontinuities. To avoid such shortcomings, we propose the concept of peridynamic theory to derive the balance of energy and charge equations in the coupled thermoelectric phenomena. Therefore, this paper presents the transport of heat and charge in thermoelectric material in the framework of peridynamic (PD theory. To illustrate the reliability of the PD formulation, numerical examples are presented and results are compared with those from literature, analytical solutions, or finite element solutions.
Fast imaging of visible phenomena in TFTR
International Nuclear Information System (INIS)
Maqueda, R.J.; Wurden, G.A.
1999-01-01
A commercial fast framing visible imaging system was used at TFTR to study edge plasma phenomena. This system was typically operated at 1000 frames/s, with exposures as short as 10 μs. These short exposures ar made possible by the image intensification of the camera, which also allows narrow band interference filters to be used. Sequences of over 1600 digital images (239 pixel x 192 pixel x 8 bit) can be captured into temporary memory banks for later slow play-back and/or storage into computer archives. Examples are shown illustrating plasma disruption, flying debris, lithium pellet injection, shallow deposition of lithium by laser outside the plasma (DOLLOP) and edge plasma turbulence. The characteristics of this system make it also very useful to the machine operator, since they provide slow motion video coverage of the interior of the device. (author)
Noise-driven phenomena in hysteretic systems
Dimian, Mihai
2014-01-01
Noise-Driven Phenomena in Hysteretic Systems provides a general approach to nonlinear systems with hysteresis driven by noisy inputs, which leads to a unitary framework for the analysis of various stochastic aspects of hysteresis. This book includes integral, differential and algebraic models that are used to describe scalar and vector hysteretic nonlinearities originating from various areas of science and engineering. The universality of the authors approach is also reflected by the diversity of the models used to portray the input noise, from the classical Gaussian white noise to its impulsive forms, often encountered in economics and biological systems, and pink noise, ubiquitous in multi-stable electronic systems. The book is accompanied by HysterSoft© - a robust simulation environment designed to perform complex hysteresis modeling – that can be used by the reader to reproduce many of the results presented in the book as well as to research both disruptive and constructive effects of noise in hysteret...
Atom optics simulator of lattice transport phenomena
An, Fangzhao; Meier, Eric; Gadway, Bryce
2016-05-01
We report on a novel scheme for studying lattice transport phenomena, based on the controlled momentum-space dynamics of ultracold atomic matter waves. In the effective tight binding models that can be simulated, we demonstrate that this technique allows for a local and time-dependent control over all system parameters, and additionally allows for single-site resolved detection of atomic populations. We demonstrate full control over site-to-site off-diagonal tunneling elements (amplitude and phase) and diagonal site-energies, through the observation of continuous time quantum walks, Bloch oscillations, and negative tunneling. These capabilities open up new prospects in the experimental study of disordered and topological systems.
Transitional Phenomena on Phase Change Materials
Directory of Open Access Journals (Sweden)
Wójcik Tadeusz M.
2014-03-01
Full Text Available One of the most significant problem with technology development is transferring of large heat fluxes, which requires constant heat transfer temperature (in the specified temperature range. This problem concern mainly the nuclear energetics, space technologies, military technologies and most of all electronics containing integrated circuits with very large scale of integrations. Intensive heat transfer and thermal energy storage are possible by the use of phase change materials (PCMs. In the paper there are presented preliminary results of research on the use of liquid-gas (L-G PCMs and solid-solid phase change materials (S-S PCMs. For L-G PCMs the boiling characteristics were determined by increasing and decreasing the heat flux, which for certain sets of structural parameters of the heating surface and the physical properties of the liquid induce a variety of forms of transitional phenomena. Thermal energy storage is much more effective when using PCMs than sensible heat.
Reversion phenomena of Cu-Cr alloys
Nishikawa, S.; Nagata, K.; Kobayashi, S.
1985-01-01
Cu-Cr alloys which were given various aging and reversion treatments were investigated in terms of electrical resistivity and hardness. Transmission electron microscopy was one technique employed. Some results obtained are as follows: the increment of electrical resistivity after the reversion at a constant temperature decreases as the aging temperature rises. In a constant aging condition, the increment of electrical resistivity after the reversion increases, and the time required for a maximum reversion becomes shorter as the reversion temperature rises. The reversion phenomena can be repeated, but its amount decreases rapidly by repetition. At first, the amount of reversion increases with aging time and reaches its maximum, and then tends to decrease again. Hardness changes by the reversion are very small, but the hardness tends to soften slightly. Any changes in transmission electron micrographs by the reversion treatment cannot be detected.
Cheshire cat phenomena and quarks in nuclei
International Nuclear Information System (INIS)
Rho, M.
1986-11-01
The notion of the ''Cheshire Cat'' principle in hadron structure is developed rigorously in (1+1) dimensions and approximately in (3+1) dimensions for up- and down-quark flavor systems. This phenomenon is invoked to address the issue as to whether or not direct quark-gluon signatures can be ''seen'' in low-energy nuclear phenomena. How addition of the third flavor -strangeness- can modify the Cheshire Cat property is discussed. It is proposed that one of the primary objectives of nuclear physics be to probe -and disturb- the ''vacuum'' of the strong interactions (QCD) and that for this purpose the chiral symmetry SU(3)xSU(3) can play a crucial role in normal and extreme conditions. As an illustration, kaon condensation at a density ρ>∼ 3ρ 0 is discussed in terms of a toy model and is related to ''cleansing'' of the quark condensates from the vacuum
Experimental study of the natural circulation phenomena
International Nuclear Information System (INIS)
Sabundjian, Gaiane; Andrade, Delvonei Alves de; Umbehaun, Pedro E.; Torres, Walmir M.; Castro, Alfredo Jose Alvim de; Belchior Junior, Antonio; Rocha, Ricardo Takeshi Vieira da; Damy, Osvaldo Luiz de Almeida; Torres, Eduardo
2006-01-01
The objective of this paper is to study the natural circulation in experimental loops and extend the results to nuclear facilities. New generation of compact nuclear power plants use the natural circulation as cooling and residual heat removal systems in case of accidents or shutdown. Lately the interest in this phenomenon, by scientific community, has increased. The experimental loop, described in this paper, was assembled at Escola Politecnica - USP at the Chemical Engineering Department. It is the goal to generate information to help with the understanding of the one and two phase natural circulation phenomena. Some experiments were performed with different levels of heat power and different flow of the cooling water at the secondary circuit. The data generated from these experiments are going to be used to validate some computational thermal hydraulic codes. Experimental results for one and two phase regimes are presented as well as the proposed model to simulate the flow regimes with the RELAP5 code. (author)
Musical Ontology: Critical, not Metaphysical
Directory of Open Access Journals (Sweden)
Jonathan A. Neufeld
2014-01-01
Full Text Available The ontology of musical works often sets the boundaries within which evaluation of musical works and performances takes place. Questions of ontology are therefore often taken to be prior to and apart from the evaluative questions considered by either performers as they present works to audiences or an audience’s critical reflection on a performance. In this paper I argue that, while the ontology of musical works may well set the boundaries of legitimate evaluation, ontological questions should not be considered as prior to or apart from critical evaluation. Rather, ontological claims are a type of critical evaluation made within musical practices. I argue that philosophers of music might learn from the debate in political philosophy about the difficulty of setting the limits of public reason in a way that remains open to a plurality of legitimate evaluative perspectives. Just as pre-political or metaphysical identification of the boundaries of public reason fail to accommodate the fact of pluralism in contemporary democratic politics, so too does a metaphysical identification of the boundaries of legitimate evaluation of musical works and performances fail to accommodate the fact of pluralism in contemporary musical practices. I apply John Rawls’s formulation of political liberalism, arguing that musical ontology should be critical, not metaphysical.
APRI-6. Accident Phenomena of Risk Importance
International Nuclear Information System (INIS)
Garis, Ninos; Ljung, J
2009-06-01
Since the early 1980s, nuclear power utilities in Sweden and the Swedish Radiation Safety Authority (SSM) collaborate on the research in severe reactor accidents. In the beginning focus was mostly on strengthening protection against environmental impacts after a severe reactor accident, for example by develop systems for the filtered relief of the reactor containment. Since the early 90s, this focus has shifted to the phenomenological issues of risk-dominant significance. During the years 2006-2008, the partnership continued in the research project APRI-6. The aim was to show whether the solutions adopted in the Swedish strategy for incident management provides adequate protection for the environment. This is done by studying important phenomena in the core melt estimating the amount of radioactivity that can be released to the atmosphere in a severe accident. To achieve these objectives the research has included monitoring of international research on severe accidents and evaluation of results and continued support for research of severe accidents at the Royal Inst. of Technology (KTH) and Chalmers University. The follow-up of international research has promoted the exchange of knowledge and experience and has given access to a wealth of information on various phenomena relevant to events in severe accidents. The continued support to KTH has provided increased knowledge about the possibility of cooling the molten core in the reactor tank and the processes associated with coolability in the confinement and about steam explosions. Support for Chalmers has increased knowledge of the accident chemistry, mainly the behavior of iodine and ruthenium in the containment after an accident
Meteorological phenomena in Western classical orchestral music
Williams, P. D.; Aplin, K. L.
2012-12-01
The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765
APRI-6. Accident Phenomena of Risk Importance
Energy Technology Data Exchange (ETDEWEB)
Garis, Ninos; Ljung, J (eds.) (Swedish Radiation Safety Authority, Stockholm (Sweden)); Agrenius, Lennart (ed.) (Agrenius Ingenjoersbyraa AB, Stockholm (Sweden))
2009-06-15
Since the early 1980s, nuclear power utilities in Sweden and the Swedish Radiation Safety Authority (SSM) collaborate on the research in severe reactor accidents. In the beginning focus was mostly on strengthening protection against environmental impacts after a severe reactor accident, for example by develop systems for the filtered relief of the reactor containment. Since the early 90s, this focus has shifted to the phenomenological issues of risk-dominant significance. During the years 2006-2008, the partnership continued in the research project APRI-6. The aim was to show whether the solutions adopted in the Swedish strategy for incident management provides adequate protection for the environment. This is done by studying important phenomena in the core melt estimating the amount of radioactivity that can be released to the atmosphere in a severe accident. To achieve these objectives the research has included monitoring of international research on severe accidents and evaluation of results and continued support for research of severe accidents at the Royal Inst. of Technology (KTH) and Chalmers University. The follow-up of international research has promoted the exchange of knowledge and experience and has given access to a wealth of information on various phenomena relevant to events in severe accidents. The continued support to KTH has provided increased knowledge about the possibility of cooling the molten core in the reactor tank and the processes associated with coolability in the confinement and about steam explosions. Support for Chalmers has increased knowledge of the accident chemistry, mainly the behavior of iodine and ruthenium in the containment after an accident.
Dynamics of SAMs in Boundary Lubrication
Directory of Open Access Journals (Sweden)
J. Manojlović
2013-09-01
Full Text Available Surfactant molecules have some properties responsible for a number ofremarkable phenomena, such as oriented adsorption of surfactants at surfaces and interfaces. The capability to self -assemble into well- defined structures is often seen as being more important than their surface activity. When a surfactant solution is in contact with a solid surface, the surfactant molecules adsorb onto the surface, ideally forming an adsorbed layer of a high order, termed as a self- assembled monolayer (SAM. Many surface properties are influenced bysuch a film, and therefore, SAMs offer the capability to form ordered organic surface coatings, suitable for various applications, such as wetting or corrosion protection. Due to the flexibility in choosing the molecular architecture, organic molecules have many interesting applications, such as biosensors, in Photoelectronics, in controlling water adsorption or boundary lubricant coating. This paper Focuses on cationic surfactants (quaternary ammonium surfactants with some unique properties that are not present in other surfactants.
Physics of a fusion plasma boundary layer
Energy Technology Data Exchange (ETDEWEB)
Jensen, B.K.
1977-03-01
A theoretical and computational study has been made of plasma phenomena occurring when a hot, dense plasma containing a transverse magnetic field is brought into sudden contact with a cold metal wall; thermal and magnetic boundary layers develop. The time evolution of the plasma temperature, pressure, the charged and neutral particle concentration, magnetic and electric field strengths, and the plasma current density in the neighborhood of the solid surface are investigated. The rate of energy transfer from the plasma to the wall is calculated, and the conditions under which wall surface melting occurs are estimated. The physical conditions previously studied experimentally by Feinberg, are calculated, and the predicted rate of energy transfer from the plasma to the wall is found to be in good agreement.
Impact of network topology on self-organized criticality
Hoffmann, Heiko
2018-02-01
The general mechanisms behind self-organized criticality (SOC) are still unknown. Several microscopic and mean-field theory approaches have been suggested, but they do not explain the dependence of the exponents on the underlying network topology of the SOC system. Here, we first report the phenomena that in the Bak-Tang-Wiesenfeld (BTW) model, sites inside an avalanche area largely return to their original state after the passing of an avalanche, forming, effectively, critically arranged clusters of sites. Then, we hypothesize that SOC relies on the formation process of these clusters, and present a model of such formation. For low-dimensional networks, we show theoretically and in simulation that the exponent of the cluster-size distribution is proportional to the ratio of the fractal dimension of the cluster boundary and the dimensionality of the network. For the BTW model, in our simulations, the exponent of the avalanche-area distribution matched approximately our prediction based on this ratio for two-dimensional networks, but deviated for higher dimensions. We hypothesize a transition from cluster formation to the mean-field theory process with increasing dimensionality. This work sheds light onto the mechanisms behind SOC, particularly, the impact of the network topology.
Quasisteady primitive equations with associated upper boundary conditions
International Nuclear Information System (INIS)
Gordon, P.
1979-01-01
This paper presents another approach to the problem of modeling large scale atmospheric flow. The major thrust of the method is to search for quasi-steady-state phenomena. This leads to sets of diagnostic and predictive equations that differ from those presently in use. Another important feature of the analysis is the introduction of a slowly floating upper boundary. In addition to simplifying the question of boundary conditions at the upper boundary, the floating top requires a highly significant change in the set of diagnostic variables. Two possible upper boundary conditions are derived in conjunction with the floating top. The first assumes continuous flow at the upper boundary, while the second assumes a compression-wave type discontinuity. Two specific criteria are formulated for checking the validity of the quasi-steady-state model. One is a scale assumption, between the physical scale and the time scale. The other is the requirement that the solution of the diagnostic equations be the steady-state limit of the original time-dependent equations. Various examples are given in order to attempt to clarify the techniques and philosophy of this approach. In addition, a specific test case is solved numerically with three models: The fixed top quasi-steady-state model, the floating top quasi-steady-state model, and a hydrostatic model. At the same time various upper boundary conditions are tested and compared. The results of the investigation indicate several significant advantages in favor of the floating top quasi-steady-state model
Adaptive Sentence Boundary Disambiguation
Palmer, David D.; Hearst, Marti A.
1994-01-01
Labeling of sentence boundaries is a necessary prerequisite for many natural language processing tasks, including part-of-speech tagging and sentence alignment. End-of-sentence punctuation marks are ambiguous; to disambiguate them most systems use brittle, special-purpose regular expression grammars and exception rules. As an alternative, we have developed an efficient, trainable algorithm that uses a lexicon with part-of-speech probabilities and a feed-forward neural network. After training ...
Schlichting (Deceased), Hermann
2017-01-01
This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
How Critical Is Critical Thinking?
Shaw, Ryan D.
2014-01-01
Recent educational discourse is full of references to the value of critical thinking as a 21st-century skill. In music education, critical thinking has been discussed in relation to problem solving and music listening, and some researchers suggest that training in critical thinking can improve students' responses to music. But what exactly is…
Theatre and social criticism in African literature: socio-cultural ...
African Journals Online (AJOL)
Theatre and social criticism in African literature: socio-cultural consciousness in Alachi's “Dilemma of Oko” ... criticism with the tragedy of an individual victimized by society. Keywords: Social Criticism, Moral degeneration, Convergence of cultures, foreign phenomena, societal norms, Traditional ethics, Traditional institutions ...
Sound absorption in solutions near the consulate critical point
Directory of Open Access Journals (Sweden)
В.С. Сперкач
2005-01-01
Full Text Available The peculiarities of acoustical absorption coefficient in solutions of critical concentration near the critical consulate temperature have been investigated by the acoustic spectroscopy methods. The obtained data confirm conclusions of the dynamic theory of critical phenomena.
Bulk and boundary critical behavior at Lifshitz points
Indian Academy of Sciences (India)
Lifshitz points are multicritical points at which a disordered phase, a homogeneous ordered phase, and a modulated ordered phase meet. Their bulk universality classes are described by natural generalizations of the standard 4 model. Analyzing these models systematically via modern field-theoretic renormalization ...
Bulk and boundary critical behavior at Lifshitz points
Indian Academy of Sciences (India)
Abstract. Lifshitz points are multicritical points at which a disordered phase, a ho- mogeneous ordered phase, and a modulated ordered phase meet. Their bulk universality classes are described by natural generalizations of the standard φ4 model. Analyzing these models systematically via modern field-theoretic ...
Cell boundary fault detection system
Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN
2009-05-05
A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.
Simulation of Magnetic Phenomena at Realistic Interfaces
Grytsyuk, Sergiy
2016-02-04
In modern technology exciting developments are related to the ability to understand and control interfaces. Particularly, magnetic interfaces revealing spindependent electron transport are of great interest for modern spintronic devices, such as random access memories and logic devices. From the technological point of view, spintronic devices based on magnetic interfaces enable manipulation of the magnetism via an electric field. Such ability is a result of the different quantum effects arising from the magnetic interfaces (for example, spin transfer torque or spin-orbit torque) and it can reduce the energy consumption as compared to the traditional semiconductor electronic devices. Despite many appealing characteristics of these materials, fundamental understanding of their microscopic properties and related phenomena needs to be established by thorough investigation. In this work we implement first principles calculations in order to study the structural, electric, and magnetic properties as well as related phenomena of two types of interfaces with large potential in spintronic applications: 1) interfaces between antiferromagnetic 3d-metal-oxides and ferromagnetic 3d-metals and 2) interfaces between non-magnetic 5d(4d)- and ferromagnetic 3d-metals. A major difficulty in studying such interfaces theoretically is the typically large lattice mismatch. By employing supercells with Moir e patterns, we eliminate the artificial strain that leads to doubtful results and are able to describe the dependence of the atomic density at the interfaces on the component materials and their thicknesses. After establishing understanding about the interface structures, we investigate the electronic and magnetic properties. A Moir e supercell with transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces. In addition, we systematically study the magnetic anisotropy and Rashba band
DEFF Research Database (Denmark)
Bordum, Anders
2004-01-01
address in this article. One is the standpoint we find in business strategy, that trust is naïve to show, and control or contracts are presumed better. In the strategy game the idealistic good guys seems to lose (Arrow 1974), (Williamson 1975). The other position is the position taken by systems theory......In this articlei I will argue that trust is a fundamental and critical concept because trust is the direct or transcendental constitutive ground of most social phenomena, as well as applicable as an operational method in critical theory. There are two different but overlapping positions on trust I...
Pathways toward understanding Macroscopic Quantum Phenomena
International Nuclear Information System (INIS)
Hu, B L; Subaşi, Y
2013-01-01
Macroscopic quantum phenomena refer to quantum features in objects of 'large' sizes, systems with many components or degrees of freedom, organized in some ways where they can be identified as macroscopic objects. This emerging field is ushered in by several categories of definitive experiments in superconductivity, electromechanical systems, Bose-Einstein condensates and others. Yet this new field which is rich in open issues at the foundation of quantum and statistical physics remains little explored theoretically (with the important exception of the work of A J Leggett [1], while touched upon or implied by several groups of authors represented in this conference. Our attitude differs in that we believe in the full validity of quantum mechanics stretching from the testable micro to meso scales, with no need for the introduction of new laws of physics.) This talk summarizes our thoughts in attempting a systematic investigation into some key foundational issues of quantum macroscopic phenomena, with the goal of ultimately revealing or building a viable theoretical framework. Three major themes discussed in three intended essays are the large N expansion [2], the correlation hierarchy [3] and quantum entanglement [4]. We give a sketch of the first two themes and then discuss several key issues in the consideration of macro and quantum, namely, a) recognition that there exist many levels of structure in a composite body and only by judicious choice of an appropriate set of collective variables can one give the best description of the dynamics of a specific level of structure. Capturing the quantum features of a macroscopic object is greatly facilitated by the existence and functioning of these collective variables; b) quantum entanglement, an exclusively quantum feature [5], is known to persist to high temperatures [6] and large scales [7] under certain conditions, and may actually decrease with increased connectivity in a quantum network [8]. We use entanglement as a
Directory of Open Access Journals (Sweden)
Pippin Barr
2016-11-01
Full Text Available Games can serve a critical function in many different ways, from serious games about real world subjects to self-reflexive commentaries on the nature of games themselves. In this essay we discuss critical possibilities stemming from the area of critical design, and more specifically Carl DiSalvo’s adversarial design and its concept of reconfiguring the remainder. To illustrate such an approach, we present the design and outcomes of two games, Jostle Bastard and Jostle Parent. We show how the games specifically engage with two previous games, Hotline Miami and Octodad: Dadliest Catch, reconfiguring elements of those games to create interactive critical experiences and extensions of the source material. Through the presentation of specific design concerns and decisions, we provide a grounded illustration of a particular critical function of videogames and hope to highlight this form as another valuable approach in the larger area of videogame criticism.
Boundary effect on liquid invasion in tight gas reservoirs
Directory of Open Access Journals (Sweden)
Li Gao
2015-01-01
Full Text Available Liquid invasion is an important transport phenomenon in many geophysical and environmental applications. A new capillary model considering boundary effect is proposed to reveal its mechanism. The boundary fluid layer not only reduces the effective flow radius, but also changes the viscosity of fluid. Thus the capillary force and viscosity resistance increases, however, the increase of capillary force is faster than that of viscosity resistance, therefore the invasion front arrives at the critical distance earlier.
Micellar phase boundaries under the influence of ethyl alcohol
International Nuclear Information System (INIS)
Bergeron, Denis E.
2016-01-01
The Compton spectrum quenching technique is used to monitor the effect of ethyl alcohol (EtOH) additions on phase boundaries in two systems. In toluenic solutions of the nonionic surfactant, Triton X-100, EtOH shifts the boundary separating the first clear phase from the first turbid phase to higher water:surfactant ratios. In a commonly used scintillant, Ultima Gold AB, the critical micelle concentration is not shifted. The molecular interactions behind the observations and implications for liquid scintillation counting are discussed. - Highlights: • Compton spectrum quenching technique applied to find micellar phase boundaries. • Toluenic Triton X-100 and Ultima Gold AB investigated. • Ethyl alcohol affects phase boundaries in Triton X-100, not in Ultima Gold AB. • Phase boundary observations discussed in terms of relevant molecular interactions.
Highly energetic phenomena in water electrolysis
Postnikov, A. V.; Uvarov, I. V.; Lokhanin, M. V.; Svetovoy, V. B.
2016-01-01
Water electrolysis performed in microsystems with a fast change of voltage polarity produces optically invisible nanobubbles containing H2 and O2 gases. In this form the gases are able to the reverse reaction of water formation. Here we report extreme phenomena observed in a millimeter-sized open system. Under a frequency of driving pulses above 100 kHz the process is accompanied by clicking sounds repeated every 50 ms or so. Fast video reveals that synchronously with the click a bubble is growing between the electrodes which reaches a size of 300 μm in 50 μs. Detailed dynamics of the system is monitored by means of a vibrometer by observing a piece of silicon floating above the electrodes. The energy of a single event is estimated as 0.3 μJ and a significant part of this energy is transformed into mechanical work moving the piece. The observations are explained by the combustion of hydrogen and oxygen mixture in the initial bubble with a diameter of about 40 μm. Unusual combustion mechanism supporting spontaneous ignition at room temperature is responsible for the process. The observed effect demonstrates a principal possibility to build a microscopic internal combustion engine. PMID:27982103
Condensation phenomena in a turbine blade passage
International Nuclear Information System (INIS)
Skillings, S.A.
1989-02-01
The mechanisms associated with the formation and growth of water droplets in the large low-pressure (LP) turbines used for electrical power generation are poorly understood and recent measurements have indicated that an unusually high loss is associated with the initial nucleation of these droplets. In order to gain an insight into the phenomena which arise in the turbine situation, some experiments were performed to investigate the behaviour of condensing steam flows in a blade passage. This study has revealed the fundamental significance of droplet nucleation in modifying the single-phase flow structure and results are presented which show the change in shock wave pattern when inlet superheat and outlet Mach number are varied. The trailing-edge shock wave structure appears considerably more robust towards variation of inlet superheat than purely one-dimensional considerations may suggest and the inadequacies of adopting a one-dimensional theory to analyse multi-dimensional condensing flows are demonstrated. Over a certain range of outlet Mach numbers an oscillating shock wave will establish in the throat region of the blade passage and this has been shown to interact strongly with droplet nucleation, resulting in a considerably increased mean droplet size. The possible implications of these results for turbine performance are also discussed. (author)
Efferent feedback can explain many hearing phenomena
Holmes, W. Harvey; Flax, Matthew R.
2015-12-01
The mixed mode cochlear amplifier (MMCA) model was presented at the last Mechanics of Hearing workshop [4]. The MMCA consists principally of a nonlinear feedback loop formed when an efferent-controlled outer hair cell (OHC) is combined with the cochlear mechanics and the rest of the relevant neurobiology. Essential elements of this model are efferent control of the OHC motility and a delay in the feedback to the OHC. The input to the MMCA is the passive travelling wave. In the MMCA amplification is localized where both the neural and tuned mechanical systems meet in the Organ of Corti (OoC). The simplest model based on this idea is a nonlinear delay line resonator (DLR), which is mathematically described by a nonlinear delay-differential equation (DDE). This model predicts possible Hopf bifurcations and exhibits its most interesting behaviour when operating near a bifurcation. This contribution presents some simulation results using the DLR model. These show that various observed hearing phenomena can be accounted for by this model, at least qualitatively, including compression effects, two-tone suppression and some forms of otoacoustic emissions (OAEs).
Macroscopic quantum systems and gravitational phenomena
International Nuclear Information System (INIS)
Pikovski, I.
2014-01-01
Low-energy quantum systems are studied theoretically in light of possible experiments to test the interplay between quantum theory and general relativity. The research focus in this thesis is on quantum systems which can be controlled with very high precision and which allow for tests of quantum theory at novel scales in terms of mass and size. The pulsed regime of opto-mechanics is explored and it is shown how short optical pulses can be used to prepare and characterize quantum states of a massive mechanical resonator, and how some phenomenological models of quantum gravity can be probed. In addition, quantum interferometry with photons and matter-waves in the presence of gravitational time dilation is considered. It is shown that time dilation causes entanglement between internal states and the center-of-mass position and that it leads to decoherence of all composite quantum systems. The results of the thesis show that the interplay between quantum theory and general relativity affects even low-energy quantum systems and that it offers novel phenomena which can be probed in experiments. (author) [de
Ultrashort Phenomena in Biochemistry and Biological Signaling
Splinter, Robert
2014-11-01
In biological phenomena there are indications that within the long pulse-length of the action potential on millisecond scale, there is additional ultrashort perturbation encoding that provides the brain with detailed information about the origin (location) and physiological characteristics. The objective is to identify the mechanism-of-action providing the potential for encoding in biological signal propagation. The actual molecular processes involved in the initiation of the action potential have been identified to be in the femtosecond and pico-second scale. The depolarization process of the cellular membrane itself, leading to the onset of the actionpotential that is transmitted to the brain, however is in the millisecond timeframe. One example of the femtosecond chemical interaction is the photoresponse of bacteriorhodopsin. No clear indication for the spatial encoding has so far been verified. Further research will be required on a cellular signal analysis level to confirm or deny the spatial and physiological encoding in the signal wave-trains of intercellular communications and sensory stimuli. The pathological encoding process for cardiac depolarization is however very pronounced and validated, however this electro-chemical process is in the millisecond amplitude and frequency modulation spectrum.
Two-Stage Modelling Of Random Phenomena
Barańska, Anna
2015-12-01
The main objective of this publication was to present a two-stage algorithm of modelling random phenomena, based on multidimensional function modelling, on the example of modelling the real estate market for the purpose of real estate valuation and estimation of model parameters of foundations vertical displacements. The first stage of the presented algorithm includes a selection of a suitable form of the function model. In the classical algorithms, based on function modelling, prediction of the dependent variable is its value obtained directly from the model. The better the model reflects a relationship between the independent variables and their effect on the dependent variable, the more reliable is the model value. In this paper, an algorithm has been proposed which comprises adjustment of the value obtained from the model with a random correction determined from the residuals of the model for these cases which, in a separate analysis, were considered to be the most similar to the object for which we want to model the dependent variable. The effect of applying the developed quantitative procedures for calculating the corrections and qualitative methods to assess the similarity on the final outcome of the prediction and its accuracy, was examined by statistical methods, mainly using appropriate parametric tests of significance. The idea of the presented algorithm has been designed so as to approximate the value of the dependent variable of the studied phenomenon to its value in reality and, at the same time, to have it "smoothed out" by a well fitted modelling function.
Attractors, bifurcations, & chaos nonlinear phenomena in economics
Puu, Tönu
2003-01-01
The present book relies on various editions of my earlier book "Nonlinear Economic Dynamics", first published in 1989 in the Springer series "Lecture Notes in Economics and Mathematical Systems", and republished in three more, successively revised and expanded editions, as a Springer monograph, in 1991, 1993, and 1997, and in a Russian translation as "Nelineynaia Economicheskaia Dinamica". The first three editions were focused on applications. The last was differ ent, as it also included some chapters with mathematical background mate rial -ordinary differential equations and iterated maps -so as to make the book self-contained and suitable as a textbook for economics students of dynamical systems. To the same pedagogical purpose, the number of illus trations were expanded. The book published in 2000, with the title "A ttractors, Bifurcations, and Chaos -Nonlinear Phenomena in Economics", was so much changed, that the author felt it reasonable to give it a new title. There were two new math ematics ch...
Condensed matter view of giant resonance phenomena
International Nuclear Information System (INIS)
Zangwill, A.
1987-01-01
The intent of this article is to present a view of giant resonance phenomena (an essentially atomic phenomenon) from the perspective of a condensed matter physicist with an interest in the optical properties of matter. As we shall see, this amounts to a particular prejudice about how one should think about many-body effects in a system of interacting electrons. Some of these effects are special to condensed matter systems and will be dealt with in the second half of this paper. However, it turns out that the authors view of the main ingredient to a giant resonance differs significantly from that normally taken by scientists trained in the traditional methods of atomic physics. Therefore, in the first section the author will take advantage of the fact that his contribution to this volume was composed and delivered to the publishers somewhat after the conclusion of the School (rather than before as requested by the organizers) and try to clearly distinguish the differences of opinion presented by the lecturers from the unalterable experimental facts. 46 references, 9 figures
Interface-Induced Phenomena in Magnetism.
Hellman, Frances; Hoffmann, Axel; Tserkovnyak, Yaroslav; Beach, Geoffrey S D; Fullerton, Eric E; Leighton, Chris; MacDonald, Allan H; Ralph, Daniel C; Arena, Dario A; Dürr, Hermann A; Fischer, Peter; Grollier, Julie; Heremans, Joseph P; Jungwirth, Tomas; Kimel, Alexey V; Koopmans, Bert; Krivorotov, Ilya N; May, Steven J; Petford-Long, Amanda K; Rondinelli, James M; Samarth, Nitin; Schuller, Ivan K; Slavin, Andrei N; Stiles, Mark D; Tchernyshyov, Oleg; Thiaville, André; Zink, Barry L
2017-01-01
This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.
Highly energetic phenomena in water electrolysis
Postnikov, A. V.; Uvarov, I. V.; Lokhanin, M. V.; Svetovoy, V. B.
2016-12-01
Water electrolysis performed in microsystems with a fast change of voltage polarity produces optically invisible nanobubbles containing H2 and O2 gases. In this form the gases are able to the reverse reaction of water formation. Here we report extreme phenomena observed in a millimeter-sized open system. Under a frequency of driving pulses above 100 kHz the process is accompanied by clicking sounds repeated every 50 ms or so. Fast video reveals that synchronously with the click a bubble is growing between the electrodes which reaches a size of 300 μm in 50 μs. Detailed dynamics of the system is monitored by means of a vibrometer by observing a piece of silicon floating above the electrodes. The energy of a single event is estimated as 0.3 μJ and a significant part of this energy is transformed into mechanical work moving the piece. The observations are explained by the combustion of hydrogen and oxygen mixture in the initial bubble with a diameter of about 40 μm. Unusual combustion mechanism supporting spontaneous ignition at room temperature is responsible for the process. The observed effect demonstrates a principal possibility to build a microscopic internal combustion engine.
Co boundary diffusion in zircon-α grains
International Nuclear Information System (INIS)
Corvalan, C; Iribarren, M; Dyment, F
2006-01-01
Diffusion in solid state plays a decisive part in most metallurgical processes and, therefore, determining the values of the diffusion coefficients becomes very important. Diffusion in materials in general and in metals in particular occurs because of defects. These can be classified as specific, lineal, bi- and tri-dimensional, and coefficients may be determined for diffusion volume, grain and interphase boundary diffusion, diffusion dislocation, and surface diffusion. A grain boundary (GB) is defined as the region of transition between two adjacent crystals in a single-phase material, which are in contact and only differ in crystallographic orientation. When the transition zone between two grains occurs between two phases of an alloy, it is called interphase boundary (IB). The GB as well as the IB show migration speeds several orders of magnitude greater than those for the volumes of the adjacent regions. At temperatures where the diffusion volume can be considered practically nil, an appreciable although localized amount of material can be displaced along the 'fast-paths'. This implies that not only the diffusion itself, but also the associated phenomena on the grain and interphase boundaries are accelerating. Among these phenomena are: plastic deformation and corrosion at high temperature, stability of precipitates in a synthesized matrix, surface treatments, solid state transformations in general, etc. The experimental determination of the coefficients of diffusion in grain boundaries (GB) and interphase boundaries (IB) yields information about the speeds of migration in the intergranular regions, where important and localized phenomena occur. The B and C kinetics from the Harrison classification are used in this study, which provide reliable results although with some restrictions. This study presents the results of Co diffusion in the GB of pure Zr-α, in the temperature range [430-633] K, with those for C kinetics being the first in this type of material
Boundaries and Boundary Marks - Substantive Cultural Heritage of Extensive Importance
Waldhaeusl, P.; Koenig, H.; Mansberger, R.
2015-08-01
The Austrian Society for surveying and Geoinformation (ASG) has proposed to submit "Boundaries and Boundary Marks" for the UNESCO World Heritage title. It was time that boundaries, borders and limits of all types as well as ownership rights would find the proper attention in the global public. Landmarks symbolize the real property and the associated rights and obligations, in a figurative sense, the property generally and all legal limits. A democratic state of law is impossible at today's population density without a functioning land administration system with surveying and jurisdiction. As monumental World Heritage representatives of the geodetic artwork "Boundaries and Boundary Marks" are specifically proposed: remaining monuments of the original cadastral geodetic network, the first pan-Austrian surveying headquarters in Vienna, and a specific selection of outstanding boundary monuments. Landmarks are monuments to the boundaries which separate rights and obligations, but also connect the neighbors peacefully after written agreement. "And cursed be he who does not respect the boundaries" you wrote already 3000 years ago. Boundaries and Boundary Marks are a real thing; they all belong to the tangible or material heritage of human history. In this context also the intangible heritage is discussed. This refers to oral tradition and expressions, performing arts; social practices, rituals and festive events; as well as to knowledge and practices handling nature and the universe. "Boundaries and Boundary Marks" do not belong to it, but clearly to the material cultural world heritage. "Boundary and Boundary Marks" is proposed to be listed according to the criteria (ii),(iv),(vi).
RISK WEATHER PHENOMENA IN CLUJ COUNTY IN JUNE 2010
Directory of Open Access Journals (Sweden)
IRINA BLAGA
2011-03-01
Full Text Available Risk weather phenomena in Cluj county in June 2010. June, in the Cluj county area, has been a month of extremes, in both heat and precipitation. The beginning of the month debuted with daily maximum temperatures close to the normal heat period product and then gradually heating the air occurred, the maximum temperatures increasing from day to day, reaching very high values, up 34 °C, by the middle of the month, when the temperature-humidity index (ITU reached and exceeded, in relatively large areas, the critical level of 80. In the second part of June, the target area was characterized by atmospheric instability that fostered the development of strong convective structures, which led to the recording of large amounts of rain from showers and heavy rain, that were associated with floods and strong winds, which turned into storms with hail and lightning. For the second half of the month, a particular case dated 06/21/2010 was analyzed, the day in which the most destructive effects of the floods, seen as phenomenon hazardous weather reported by the Inspectorate for Emergency Situations (ISU in Cluj County: the death of a person in the Morlaca area, 250 homes flooded in the cities of Huedin, Morlaca, Sâncraiu, Săcuieu, Călata, Poeni. There have also been floods in the cities of Turda, Copaceni and Martinesti. Landslides were recorded in Domosu and Horlacea.
SBWR PCCS vent phenomena and suppression pool mixing
Energy Technology Data Exchange (ETDEWEB)
Coddington, P. [Thermal-Hydraulics Lab., Paul Scherrer Institute, Villigen (Switzerland); Andreani, M. [Nuclear Engineering Lab., Swiss Federal Institute of Technology, Zurich (Switzerland)
1995-09-01
The most important phenomena influencing the effectiveness of the pressure suppression capability of the water pool within the Wetwell compartment of the SBWR Containment, during the period of Passive Containment Cooling System (PCCS) venting, have been critically reviewed. In addition, calculations have been carried-out to determine the condensation of the vented steam and the distribution of the energy deposited in the liquid pool. It has been found that a large contribution to the vapour suppression is due to condensation inside the vent pipe. The condensation rate of the steam inside the bubbles, produced at the vent exit, during their rise to the surface, may however be rather low, because of the large size bubbles. This can lead to vapour channelling to the Wetwell gas space. The above comments are likely to be ameliorated if the vent exit is a distributed source or sparger. Due to the large water flow rates within the {open_quotes}bubbly two-phase plume{close_quotes} generated by the gas injection, the water in the pool above the vent exit is likely to be heated nearly isothermally (perfect mixing). The effect of the suppression pool walls would be to enhance the recirculation and, consequently to promote mixing. The large size of the bubbles therein and of the walls on pool mixing are the most severe difficulties in extrapolating the results from scaled experiments to prototypical conditions.
Magnetic damping phenomena in ferromagnetic thin-films and multilayers
Azzawi, S.; Hindmarch, A. T.; Atkinson, D.
2017-11-01
Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.
Transport Phenomena of Solid Particles in Pulsatile Pipe Flow
Directory of Open Access Journals (Sweden)
Hitoshi Fujimoto
2010-01-01
Full Text Available The transportation mechanism of single solid particles in pulsating water flow in a vertical pipe was investigated by means of videography and numerical simulations. The trajectories of alumina particles were observed experimentally by stereo videography. The particle diameter was 3 mm or 5 mm, and the pipe diameter was 18 mm or 22 mm. The frequency of flow pulsation was less than or equal to 6.67 Hz. It was found that the critical minimum water flux at which the particle can be transported upward depended on the pulsating pattern. Two types of numerical simulations were conducted, namely, one-dimensional simulations for tracking the vertical motion of the solid particles and two-dimensional simulations of the pulsating pipe flows in an axisymmetric coordinate system. The computer simulations of axisymmetric pipe flows revealed that the time-averaged radial velocity profile of water in the pulsating flows was very different from that in steady pipe flows. The motion of the particles is discussed in detail for a better understanding of the physics of the transport phenomena.
Hydration Phenomena of Functionalized Carbon Nanotubes (CNT/Cement Composites
Directory of Open Access Journals (Sweden)
Bhuvaneshwari Balasubramaniam
2017-10-01
Full Text Available The exciting features of carbon nanotubes (CNTs, such as high elastic modulus, high thermal and electrical conductivities, robustness, and nanoscopic surface properties make them attractive candidates for the cement industry. They have the potential to significantly enhanceengineering properties. CNTs play an important and critical role as nano-anchors in concrete, which enhance the strength by bridging pores in the composite matrix, thereby ensuring robust mechanical strength. The diameter, dispersion, aspect ratio, and interfacial surface interaction of CNTs affect the physical and mechanical properties of concrete, if due care is not taken. In this paper, the usable amount of CNT is scaled down considerably from 0.5% to 0.025% by weight of the cement and the fluctuation caused by these phenomena is assessed. It is observed that the properties and exact quantities of incorporated CNTs influence the hydration and consistency of the composites. In order to address these issues, the surface functionalization of CNTs and rheological studies of the composites are performed. The hydration products and functional groups are carefully optimized and characterized by using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, and a Zeta potential analyzer. For Mixes 6 and 7, the compressive and tensile strength of CNTs incorporated in mortar specimens caused77% and 48% increases in split tensile strength, respectively, and 17% and 35% increases in compressive strength, respectively, after 28 days of curing and compared withthe control Mix.
The myth of interconnected plastids and related phenomena.
Schattat, Martin H; Barton, Kiah A; Mathur, Jaideep
2015-01-01
Studies spread over nearly two and a half centuries have identified the primary plastid in autotrophic algae and plants as a pleomorphic, multifunctional organelle comprising of a double-membrane envelope enclosing an organization of internal membranes submerged in a watery stroma. All plastid units have been observed extending and retracting thin stroma-filled tubules named stromules sporadically. Observations on living plant cells often convey the impression that stromules connect two or more independent plastids with each other. When photo-bleaching techniques were used to suggest that macromolecules such as the green fluorescent protein could flow between already interconnected plastids, for many people this impression changed to conviction. However, it was noticed only recently that the concept of protein flow between plastids rests solely on the words "interconnected plastids" for which details have never been provided. We have critically reviewed botanical literature dating back to the 1880s for understanding this term and the phenomena that have become associated with it. We find that while meticulously detailed ontogenic studies spanning nearly 150 years have established the plastid as a singular unit organelle, there is no experimental support for the idea that interconnected plastids exist under normal conditions of growth and development. In this review, while we consider several possibilities that might allow a single elongated plastid to be misinterpreted as two or more interconnected plastids, our final conclusion is that the concept of direct protein flow between plastids is based on an unfounded assumption.
Anisotropy across Superplume Boundaries
Cottaar, S.; Romanowicz, B. A.
2011-12-01
Sdiff data sets are presented for paths that run parallel to the African and the Pacific superplume boundaries. Objective clustering of waveforms illustrates sharp changes across these boundaries. The African plume shows a sharp offset in travel times in the SHdiff phase, while a more gradual offset towards slower arrivals is seen in the case of the Pacific superplume. Additionally, Pdiff phases display no offset around the African plume and a weak one around the Pacific plume. Here we focus mainly on another striking feature observed in both cases: outside of the superplume the Sdiff particle motion is strongly elliptical, but becomes linear within the superplume (first noticed by To et al. 2005 in the African superplume case). For the African plume we argue that these observations of delayed SV at large distances (~120 degrees) are indicative of the occurrence of azimuthal anisotropy. The SV arrivals have similar polarity as SH, opposite from what their radiation pattern predicts. Azimuthal anisotropy causes SH energy to be converted to SV (Maupin, 1994), explaining the travel time, polarity and amplitude. Forward modeling through different isotropic and anisotropic models supports this statement, although there are trade-offs between direction and magnitude of azimuthal anisotropy. The strong elliptical particle motions are also observed outside the Pacific plume, but at shorter distances (95-105 degrees). Elliptical motions can occur in the absence of anisotropy when strong velocity deviations or layering occurs close to the CMB, which, based on velocity profiles with depth in global tomographic models would be more likely within the superplume rather than on the fast side. The elliptical particle motions here can be modelled with a simple transverse isotropic model with VSH>VSV, but azimuthal anisotropy cannot be ruled out. The complexities within the Pacific superplume, including strong amplitude drop and existence of a post-cursor, are likely caused by an
Critical submergence for isolated and dual rectangular intakes
Indian Academy of Sciences (India)
This study examined critical submergence for isolated and dual rectangular intakes. It is shown that the critical submergence for an isolated intake can be predicted by disregarding whole boundary blockages on the complete imaginary critical sink surface that is the combination of imaginary complete critical cylindrical and ...
Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey
2012-01-01
Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.
DEFF Research Database (Denmark)
Rosenbaum, Ralph K.; Olsen, Stig Irving
2017-01-01
Manipulation and mistakes in LCA studies are as old as the tool itself, and so is its critical review. Besides preventing misuse and unsupported claims, critical review may also help identifying mistakes and more justifiable assumptions as well as generally improve the quality of a study. It thus...
Rosette, Arturo
2009-01-01
This study focuses on the development and practices of Critical Muralists--community-educator-artist-leader-activists--and situates these specifically in relation to the Mexican mural tradition of los Tres Grandes and in relation to the history of public art more generally. The study examines how Critical Muralists address artistic and…
Quantifying the Visual Impact of Classification Boundaries in Choropleth Maps.
Zhang, Yifan; Maciejewski, Ross
2017-01-01
One critical visual task when using choropleth maps is to identify spatial clusters in the data. If spatial units have the same color and are in the same neighborhood, this region can be visually identified as a spatial cluster. However, the choice of classification method used to create the choropleth map determines the visual output. The critical map elements in the classification scheme are those that lie near the classification boundary as those elements could potentially belong to different classes with a slight adjustment of the classification boundary. Thus, these elements have the most potential to impact the visual features (i.e., spatial clusters) that occur in the choropleth map. We present a methodology to enable analysts and designers to identify spatial regions where the visual appearance may be the result of spurious data artifacts. The proposed methodology automatically detects the critical boundary cases that can impact the overall visual presentation of the choropleth map using a classification metric of cluster stability. The map elements that belong to a critical boundary case are then automatically assessed to quantify the visual impact of classification edge effects. Our results demonstrate the impact of boundary elements on the resulting visualization and suggest that special attention should be given to these elements during map design.
Ordering phenomena in FeCo-films and Fe/Cr-multilayers: an X-ray and neutron scattering study
Energy Technology Data Exchange (ETDEWEB)
Nickel, B.
2001-07-01
The following topics are covered: critical phenomena in thin films, critical adsorption, finite size scaling, FeCo Ising model, kinematical scattering theory for thin films, FeCo thin films, growth and characterisation of single crystal FeCo thin films, X-ray study of ordering in FeCo films, antiferromagnetic coupling in Fe/Cr multilayers, neutron scattering on Fe/Cr multilayers (WL)
Transport phenomena within the porous cathode for a proton exchange membrane fuel cell
Liu, Juanfang; Oshima, Nobuyuki; Kurihara, Eru; Saha, Litan Kumar
A two-phase, one-dimensional steady model is developed to analyze the coupled phenomena of cathode flooding and mass-transport limiting for the porous cathode electrode of a proton exchange membrane fuel cell. In the model, the catalyst layer is treated not as an interface between the membrane and gas diffusion layer, but as a separate computational domain with finite thickness and pseudo-homogenous structure. Furthermore, the liquid water transport across the porous electrode is driven by the capillary force based on Darcy's law. And the gas transport is driven by the concentration gradient based on Fick's law. Additionally, through Tafel kinetics, the transport processes of gas and liquid water are coupled. From the numerical results, it is found that although the catalyst layer is thin, it is very crucial to better understand and more correctly predict the concurrent phenomena inside the electrode, particularly, the flooding phenomena. More importantly, the saturation jump at the interface of the gas diffusion layer and catalyst layers is captured, when the continuity of the capillary pressure is imposed on the interface. Elsewise, the results show further that the flooding phenomenon in the CL is much more serious than that in the GDL, which has a significant influence on the mass transport of the reactants. Moreover, the saturation level inside the cathode is determined, to a great extent, by the surface overpotential, the absolute permeability of the porous electrode, and the boundary value of saturation at the gas diffusion layer-gas channel interface. In order to prevent effectively flooding, it should remove firstly the liquid water accumulating inside the CL and keep the boundary value of liquid saturation as low as possible.
Transport phenomena within the porous cathode for a proton exchange membrane fuel cell
Energy Technology Data Exchange (ETDEWEB)
Liu, Juanfang; Oshima, Nobuyuki; Kurihara, Eru; Saha, Litan Kumar [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)
2010-10-01
A two-phase, one-dimensional steady model is developed to analyze the coupled phenomena of cathode flooding and mass-transport limiting for the porous cathode electrode of a proton exchange membrane fuel cell. In the model, the catalyst layer is treated not as an interface between the membrane and gas diffusion layer, but as a separate computational domain with finite thickness and pseudo-homogenous structure. Furthermore, the liquid water transport across the porous electrode is driven by the capillary force based on Darcy's law. And the gas transport is driven by the concentration gradient based on Fick's law. Additionally, through Tafel kinetics, the transport processes of gas and liquid water are coupled. From the numerical results, it is found that although the catalyst layer is thin, it is very crucial to better understand and more correctly predict the concurrent phenomena inside the electrode, particularly, the flooding phenomena. More importantly, the saturation jump at the interface of the gas diffusion layer and catalyst layers is captured, when the continuity of the capillary pressure is imposed on the interface. Elsewise, the results show further that the flooding phenomenon in the CL is much more serious than that in the GDL, which has a significant influence on the mass transport of the reactants. Moreover, the saturation level inside the cathode is determined, to a great extent, by the surface overpotential, the absolute permeability of the porous electrode, and the boundary value of saturation at the gas diffusion layer-gas channel interface. In order to prevent effectively flooding, it should remove firstly the liquid water accumulating inside the CL and keep the boundary value of liquid saturation as low as possible. (author)
Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems
Khaetskii, A.
Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.
DEFF Research Database (Denmark)
Backi, Christoph Josef; Bendtsen, Jan Dimon; Leth, John
2015-01-01
In this work the stability properties of a partial differential equation (PDE) with state-dependent parameters and asymmetric boundary conditions are investigated. The PDE describes the temperature distribution inside foodstuff, but can also hold for other applications and phenomena. We show...
Free-boundary stability of straight stellarators
International Nuclear Information System (INIS)
Barnes, D.C.; Cary, J.R.
1984-02-01
The sharp-boundary model is used to investigate the stability of straight stellarators to free-boundary, long-wavelength modes. To correctly analyze the heliac configuration, previous theory is generalized to the case of arbitrary helical aspect ratio (ratio of plasma radius to periodicity lengths). A simple low-β criterion involving the vacuum field and the normalized axial current is derived and used to investigate a large variety of configurations. The predictions of this low-β theory are verified by numerical minimization of deltaW at arbitrary β. The heliac configuration is found to be remarkably stable, with a critical β of over 15% determined by the lack of equilibrium rather than the onset of instability. In addition, other previously studied systems are found to be stabilized by net axial plasma current
Statistical trend analysis methods for temporal phenomena
International Nuclear Information System (INIS)
Lehtinen, E.; Pulkkinen, U.; Poern, K.
1997-04-01
We consider point events occurring in a random way in time. In many applications the pattern of occurrence is of intrinsic interest as indicating a trend or some other systematic feature in the rate of occurrence. The purpose of this report is to survey briefly different statistical trend analysis methods and illustrate their applicability to temporal phenomena in particular. The trend testing of point events is usually seen as the testing of the hypotheses concerning the intensity of the occurrence of events. When the intensity function is parametrized, the testing of trend is a typical parametric testing problem. In industrial applications the operational experience generally does not suggest any specified model and method in advance. Therefore, and particularly, if the Poisson process assumption is very questionable, it is desirable to apply tests that are valid for a wide variety of possible processes. The alternative approach for trend testing is to use some non-parametric procedure. In this report we have presented four non-parametric tests: The Cox-Stuart test, the Wilcoxon signed ranks test, the Mann test, and the exponential ordered scores test. In addition to the classical parametric and non-parametric approaches we have also considered the Bayesian trend analysis. First we discuss a Bayesian model, which is based on a power law intensity model. The Bayesian statistical inferences are based on the analysis of the posterior distribution of the trend parameters, and the probability of trend is immediately seen from these distributions. We applied some of the methods discussed in an example case. It should be noted, that this report is a feasibility study rather than a scientific evaluation of statistical methods, and the examples can only be seen as demonstrations of the methods
DEFF Research Database (Denmark)
Winthereik, Brit Ross
2008-01-01
Purpose – The paper seeks to examine how an online maternity record involving pregnant women worked as a means to create shared maternity care. Design/methodology/approach – Ethnographic techniques have been used. The paper adopts a theoretical/methodological framework based on science and techno......Purpose – The paper seeks to examine how an online maternity record involving pregnant women worked as a means to create shared maternity care. Design/methodology/approach – Ethnographic techniques have been used. The paper adopts a theoretical/methodological framework based on science...... and technology studies. Findings – The paper shows how a version of “the responsible patient” emerges from the project which is different from the version envisioned by the project organisation. The emerging one is concerned with the boundary between primary and secondary sector care, and not with the boundary...... of responsibilities entailed in shared care projects. Rather than seeking to connect all actors in an unbounded space, shared care might instead suggest a space for patients and professionals to experiment with new roles and responsibilities. Practical implications – When designing coordination tools for health care...
Bianchi, Filippo; Thielmann, Marcel; de Arcangelis, Lucilla; Herrmann, Hans Jürgen
2018-01-01
Particle detachment bursts during the flow of suspensions through porous media are a phenomenon that can severely affect the efficiency of deep bed filters. Despite the relevance in several industrial fields, little is known about the statistical properties and the temporal organization of these events. We present experiments of suspensions of deionized water carrying quartz particles pushed with a peristaltic pump through a filter of glass beads measuring simultaneously the pressure drop, flux, and suspension solid fraction. We find that the burst size distribution scales consistently with a power law, suggesting that we are in the presence of a novel experimental realization of a self-organized critical system. Temporal correlations are present in the time series, like in other phenomena such as earthquakes or neuronal activity bursts, and also an analog to Omori's law can be shown. The understanding of burst statistics could provide novel insights in different fields, e.g., in the filter and petroleum industries.
Ostrikov, O. M.; Shmatok, E. V.
2015-01-01
Features of the shape of a macroscopic interplanar crack have been studied, and phenomena accompanying destruction in a monocrystalline ferromagnetic Ni2MnGa alloy with shape memory have been analyzed. It has been established that the initiation of destruction in Ni2MnGa is actively influenced by the processes of slip and interaction of twin boundaries in twin planes which are at small angles to each other, and also by the formation of Rose channels. On the source side of the surface at which the crack has nucleated, it is tooth-shaped. On this surface, there are signs of rotation of the crystal lattice from twins with boundaries parallel and perpendicular to the crack's edges. The opening of the crack in its boundary regions leads to partial untwining.
An analytical study of slug impact phenomena
International Nuclear Information System (INIS)
Smith, B.L.
1983-01-01
This article aims to develop at a fundamental level, understanding of the impact process and assess the relevance and magnitude of fluid-structure interaction effects. Reference is made for four 1/30th scale experiments, set up to verify the ideas developed in this work, and to provide quality data for code validation purposes. The impact of a one-dimensional liquid slug on a solid slab is investigated using a simplified form of the Rankine-Hugoniot shock equations derived under the joint assumptions of slight compressibility and small Mach number; both assumptions are well justified for the applications in mind. In the first instance the roof slab is considered to be freely supported and of finite thickness. A detailed picture of the shock and expansion wave propagations is built up from the basic equations including the effects of wave reflections at boundaries and wave-wave interactions. Particular attention is paid to the impulse transfer mechanism from the slug as this controls the roof slab acceleration. Bulk fluid cavitation effects are noted. Roof flexural response is then taken into account, together with the effects the holddown constraints. It is seen that even very minor structural responses can result in significant mitigation of the impulse loading. Guidelines for the application of the work to HCDA analysis in pool reactor geometries is presented. (orig./GL)
SELF-ORGANIZED CRITICALITY AND CELLULAR AUTOMATA
Energy Technology Data Exchange (ETDEWEB)
CREUTZ,M.
2007-01-01
Cellular automata provide a fascinating class of dynamical systems based on very simple rules of evolution yet capable of displaying highly complex behavior. These include simplified models for many phenomena seen in nature. Among other things, they provide insight into self-organized criticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range of length and the scales. This article begins with an overview of self-organized criticality. This is followed by a discussion of a few examples of simple cellular automaton systems, some of which may exhibit critical behavior. Finally, some of the fascinating exact mathematical properties of the Bak-Tang-Wiesenfeld sand-pile model [1] are discussed.
Collaboration in Healthcare Through Boundary Work and Boundary Objects
DEFF Research Database (Denmark)
Meier, Ninna
2015-01-01
. In highly specialized, knowledge-intensive organizations such as healthcare organizations, organizational, professional, and disciplinary boundaries mark the formal structure and division of work. Collaboration and coordination across these boundaries are essential to minimizing gaps in patient care......, but also may be challenging to achieve in practice. By drawing on data from an ethnographic study of two hospital wards, this article investigates practices of cross-disciplinary and professional collaboration and adds to our knowledge of how this kind of boundary work is produced in context. Moreover......, it adds to existing boundary literature by exploring the fast-paced, situational, micro-interactions in which boundaries are drawn, maintained, and dissolved. These mundane, brief exchanges are essential to the practice of collaboration through boundary work. I consider the implications of these findings...
A model of anelastic relaxation associated with polygonization boundary
International Nuclear Information System (INIS)
Yan, S.C.
1990-01-01
A model of anelastic relaxation associated with polygonization boundary is proposed in order to explain internal friction peaks and other experimental phenomena observed recently. The model, which is referred to as vacancy-thermal jog model, shows that under conditions of high temperature and low applied stress with lower frequencies of vibration, thermal jog pairs are generated on dislocation segments of the boundaries. These jogs are in saturation with vacancies in the vicinity of them, and the vacancy current due to the concentration gradient of vacancy drifts among the boundaries. As a result, a diffusional creep is produced and a part of energy is dissipated. For vacancy drift, it is required that the thermal jogs emit (absorb) vacancies, which brings climbing bow of segments into operation, and another part of energy is dissipated so that there are two parts of energy dissipated in the strain process connected with polygonization boundary. Based on this point of view, the mathematical expressions of internal friction and modulus defect associated with polygonization boundary were subsequently derived and found to be in satisfactory agreement with experiments. (author). 13 refs, 6 figs
Complex Electric-Field Induced Phenomena in Ferroelectric/Antiferroelectric Nanowires
Herchig, Ryan Christopher
Perovskite ferroelectrics and antiferroelectrics have attracted a lot of attention owing to their potential for device applications including THz sensors, solid state cooling, ultra high density computer memory, and electromechanical actuators to name a few. The discovery of ferroelectricity at the nanoscale provides not only new and exciting possibilities for device miniaturization, but also a way to study the fundamental physics of nanoscale phenomena in these materials. Ferroelectric nanowires show a rich variety of physical characteristics which are advantageous to the design of nanoscale ferroelectric devices such as exotic dipole patterns, a strong dependence of the polarization and phonon frequencies on the electrical and mechanical boundary conditions, as well as a dependence of the transition temperatures on the diameter of the nanowire. Antiferroelectricity also exists at the nanoscale and, due to the proximity in energy of the ferroelectric and antiferroelectric phases, a phase transition from the ferroelectric to the antiferroelectric phase can be facilitated through the application of the appropriate mechanical and electrical boundary conditions. While much progress has been made over the past several decades to understand the nature of ferroelectricity/antiferroelectricity in nanowires, many questions remain unanswered. In particular, little is known about how the truncated dimensions affect the soft mode frequency dynamics or how various electrical and mechanical boundary conditions might change the nature of the phase transitions in these ferroelectric nanowires. Could nanowires offer a distinct advantage for solid state cooling applications? Few studies have been done to elucidate the fundamental physics of antiferroelectric nanowires. How the polarization in ferroelectric nanowires responds to a THz electric field remains relatively underexplored as well. In this work, the aim is to to develop and use computational tools that allow first
International Nuclear Information System (INIS)
Sethna, J.P.; Krumhansl, J.A.
1994-01-01
We have identified tweed precursors to martensitic phase transformations as a spin glass phase due to composition variations, and used simulations and exact replica theory predictions to predict diffraction peaks and model phase diagrams, and provide real space data for comparison to transmission electron micrograph images. We have used symmetry principles to derive the crack growth laws for mixed-mode brittle fracture, explaining the results for two-dimensional fracture and deriving the growth laws in three dimensions. We have used recent advances in dynamical critical phenomena to study hysteresis in disordered systems, explaining the return-point-memory effect, predicting distributions for Barkhausen noise, and elucidating the transition from athermal to burst behavior in martensites. From a nonlinear lattice-dynamical model of a first-order transition using simulations, finite-size scaling, and transfer matrix methods, it is shown that heterophase transformation precursors cannot occur in a pure homogeneous system, thus emphasizing the role of disorder in real materials. Full integration of nonlinear Landau-Ginzburg continuum theory with experimental neutron-scattering data and first-principles calculations has been carried out to compute semi-quantitative values of the energy and thickness of twin boundaries in InTl and FePd martensites
Energy Technology Data Exchange (ETDEWEB)
Sethna, J.P.; Krumhansl, J.A.
1994-08-01
We have identified tweed precursors to martensitic phase transformations as a spin glass phase due to composition variations, and used simulations and exact replica theory predictions to predict diffraction peaks and model phase diagrams, and provide real space data for comparison to transmission electron micrograph images. We have used symmetry principles to derive the crack growth laws for mixed-mode brittle fracture, explaining the results for two-dimensional fracture and deriving the growth laws in three dimensions. We have used recent advances in dynamical critical phenomena to study hysteresis in disordered systems, explaining the return-point-memory effect, predicting distributions for Barkhausen noise, and elucidating the transition from athermal to burst behavior in martensites. From a nonlinear lattice-dynamical model of a first-order transition using simulations, finite-size scaling, and transfer matrix methods, it is shown that heterophase transformation precursors cannot occur in a pure homogeneous system, thus emphasizing the role of disorder in real materials. Full integration of nonlinear Landau-Ginzburg continuum theory with experimental neutron-scattering data and first-principles calculations has been carried out to compute semi-quantitative values of the energy and thickness of twin boundaries in InTl and FePd martensites.
Saving the Phenomena in Medieval Astronomy
Seeskin, K.
2011-06-01
Aristotle's theory of motion is based on two principles: (1) all motion to either from the midpoint of the Earth, toward it, or around it, and (2) circular motion must proceed around an immovable point. On this view, the heavenly bodies are individual points of light carried around by a series of concentric spheres rotating at a constant pace around the midpoint of the Earth. But even in Aristotle's day, it was known that this theory had a great deal of difficulty accounting for planetary motion. Ptolemy's alternative was to introduce epicycles and eccentric orbits, thus denying Aristotle's view of natural motion. There was no doubt that Ptolemy's predictions were far better than Aristotle's. But for the medievals, Aristotle's theory made better intuitive sense. Moreover, Ptolemy's theory raised the question of how one sphere could pass through another. What to do? The solution of Moses Maimonides (1138-1204) was to say that it is not the job of the astronomer to tell us how things actually are but merely to propose a series of hypotheses that allow us to explain the relevant data. This view had obvious theological implications. If astronomy could explain planetary motion in an acceptable way, there was reason to believe that the order or structure of the heavens is what it is by necessity. This suggests that God did not exercise any degree of choice in making it that way. But if astronomy cannot explain planetary motion, the most reasonable explanation is that we are dealing with contingent phenomena rather than necessary ones. If there is contingency, there is reason to think God did exercise a degree of choice in making the heavens the way they are. A God who exercises choice is much closer to the God of Scripture. Although Galileo changed all of this, and paved the way for a vastly different view of astronomy, the answer to one set of questions raises a whole different set. In short, the heavenly motion still poses ultimate questions about God, existence, and
African Journals Online (AJOL)
both formal and informal) in culture and social theory. CRITICAL ARTS aims to challenge and ... Book Review: Brian McNair, An Introduction to Political Communication (3rd edition), London: Routledge, 2003, ISBN 0415307082, 272pp. Phil Joffe ...
Directory of Open Access Journals (Sweden)
Simon, Jane
2010-01-01
Full Text Available This essay considers how written language frames visual objects. Drawing on Michel Foucault’s response to Raymond Roussel’s obsessive description, the essay proposes a model of criticism where description might press up against its objects. This critical closeness is then mapped across the conceptual art practice and art criticism of Ian Burn. Burn attends to the differences between seeing and reading, and considers the conditions which frame how we look at images, including how we look at, and through words. The essay goes on to consider Meaghan Morris’s writing on Lynn Silverman’s photographs. Both Morris and Burn offer an alternative to a parasitic model of criticism and enact a patient way of looking across and through visual landscapes.
In search of high density collective phenomena in nuclear collision
International Nuclear Information System (INIS)
Gyulassy, M.
1979-06-01
The progress made toward uncovering signatures of collective phenomena is reviewed. Elements of the basic reaction mechanism leading to a complex background are first discussed. Possible hints of collective phenomena in proton and pion single and double inclusive spectra as well as π - multiplicity data are then described. 6 figures, 2 tables
Ether and interpretation of some physical phenomena and concepts
International Nuclear Information System (INIS)
Rzayev, S.G.
2008-01-01
On the basis of the concept of existence of an ether representation about time, space, matters and physical field are profound and also the essence of such phenomena, as corpuscular - wave dualism, change of time, scale and mass at movement body's is opened. The opportunity of transition from probability-statistical interpretation of the quantum phenomena to Laplace's determinism is shown
DEFF Research Database (Denmark)
Nørgaard, Nina
2004-01-01
to explore in the study and teaching of foreign languages. Not only may linguistics and literature be employed to shed light on each other, the insights gained may furthermore prove useful in a broader context in our foreign language studies. The article begins with a brief introduction to literary...... linguistics in general and to Hallidayan linguistics in particular. The theoretical framework thus laid out, it is exemplified how Halliday's theory of language may be employed in the analysis of literature. The article concludes by considering the possible status of literary linguistics in a broader......To many people, challenging the boundaries between the traditional disciplines in foreign language studies means doing cultural studies. The aim of this article is to pull in a different direction by suggesting how the interface between linguistics and literature may be another fertile field...
Negotiating Cluster Boundaries
DEFF Research Database (Denmark)
Giacomin, Valeria
2017-01-01
Palm oil was introduced to Malay(si)a as an alternative to natural rubber, inheriting its cluster organizational structure. In the late 1960s, Malaysia became the world’s largest palm oil exporter. Based on archival material from British colonial institutions and agency houses, this paper focuses...... on the governance dynamics that drove institutional change within this cluster during decolonization. The analysis presents three main findings: (i) cluster boundaries are defined by continuous tug-of-war style negotiations between public and private actors; (ii) this interaction produces institutional change...... within the cluster, in the form of cumulative ‘institutional rounds’ – the correction or disruption of existing institutions or the creation of new ones; and (iii) this process leads to a broader inclusion of local actors in the original cluster configuration. The paper challenges the prevalent argument...
Entanglement spectrum and boundary theories with projected entangled-pair states
Energy Technology Data Exchange (ETDEWEB)
Cirac, Ignacio [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Poilblanc, Didier [Laboratoire de Physique Theorique, C.N.R.S. and Universite de Toulouse, Toulouse (France); Schuch, Norbert [California Institute of Technology, Pasadena, CA (United States); Verstraete, Frank [Vienna Univ. (Austria)
2012-07-01
In many physical scenarios, close relations between the bulk properties of quantum systems and theories associated to their boundaries have been observed. In this work, we provide an exact duality mapping between the bulk of a quantum spin system and its boundary using Projected Entangled Pair States (PEPS). This duality associates to every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds to the excitation spectrum of the boundary Hamiltonian. We study various models and find that a gapped bulk phase with local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered states yield non-local Hamiltonians. As our duality also associates a boundary operator to any operator in the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their boundary.
Reflection Phenomena in Underground Pumped Storage Reservoirs
Directory of Open Access Journals (Sweden)
Elena Pummer
2018-04-01
Full Text Available Energy storage through hydropower leads to free surface water waves in the connected reservoirs. The reason for this is the movement of water between reservoirs at different elevations, which is necessary for electrical energy storage. Currently, the expansion of renewable energies requires the development of fast and flexible energy storage systems, of which classical pumped storage plants are the only technically proven and cost-effective technology and are the most used. Instead of classical pumped storage plants, where reservoirs are located on the surface, underground pumped storage plants with subsurface reservoirs could be an alternative. They are independent of topography and have a low surface area requirement. This can be a great advantage for energy storage expansion in case of environmental issues, residents’ concerns and an unusable terrain surface. However, the reservoirs of underground pumped storage plants differ in design from classical ones for stability and space reasons. The hydraulic design is essential to ensure their satisfactory hydraulic performance. The paper presents a hybrid model study, which is defined here as a combination of physical and numerical modelling to use the advantages and to compensate for the disadvantages of the respective methods. It shows the analysis of waves in ventilated underground reservoir systems with a great length to height ratio, considering new operational aspects from energy supply systems with a great percentage of renewable energies. The multifaceted and narrow design of the reservoirs leads to complex free surface flows; for example, undular and breaking bores arise. The results show excessive wave heights through wave reflections, caused by the impermeable reservoir boundaries. Hence, their knowledge is essential for a successful operational and constructive design of the reservoirs.
Conference on Boundary and Interior Layers : Computational and Asymptotic Methods
Stynes, Martin; Zhang, Zhimin
2017-01-01
This volume collects papers associated with lectures that were presented at the BAIL 2016 conference, which was held from 14 to 19 August 2016 at Beijing Computational Science Research Center and Tsinghua University in Beijing, China. It showcases the variety and quality of current research into numerical and asymptotic methods for theoretical and practical problems whose solutions involve layer phenomena. The BAIL (Boundary And Interior Layers) conferences, held usually in even-numbered years, bring together mathematicians and engineers/physicists whose research involves layer phenomena, with the aim of promoting interaction between these often-separate disciplines. These layers appear as solutions of singularly perturbed differential equations of various types, and are common in physical problems, most notably in fluid dynamics. This book is of interest for current researchers from mathematics, engineering and physics whose work involves the accurate app roximation of solutions of singularly perturbed diffe...