Modelling classroom conditions with different boundary conditions
DEFF Research Database (Denmark)
Marbjerg, Gerd Høy; Jeong, Cheol-Ho; Brunskog, Jonas;
2014-01-01
both specular and diffuse reflections with complex-valued acoustical descriptions of the surfaces. In this paper the PARISM model is used to simulate a rectangular room with most of the absorption located in the ceiling. This room configuration is typical for classroom conditions. The simulations......A model that combines image source modelling and acoustical radiosity with complex boundary condition, thus including phase shifts on reflection has been developed. The model is called PARISM (Phased Acoustical Radiosity and Image Source Model). It has been developed in order to be able to model...... are done using different boundary conditions in order to investigate the influence of phase shifts in reflections, the angle dependence of the reflection coefficient and the scattering coefficient. The focus of the simulations is to investigate the influence of the boundary condition on room acoustic...
Logarithmic Minimal Models with Robin Boundary Conditions
Bourgine, Jean-Emile; Tartaglia, Elena
2016-01-01
We consider general logarithmic minimal models ${\\cal LM}(p,p')$, with $p,p'$ coprime, on a strip of $N$ columns with the $(r,s)$ Robin boundary conditions introduced by Pearce, Rasmussen and Tipunin. The associated conformal boundary conditions are labelled by the Kac labels $r\\in{\\Bbb Z}$ and $s\\in{\\Bbb N}$. The Robin vacuum boundary condition, labelled by $(r,s\\!-\\!\\frac{1}{2})=(0,\\mbox{$\\textstyle \\frac{1}{2}$})$, is given as a linear combination of Neumann and Dirichlet boundary conditions. The general $(r,s)$ Robin boundary conditions are constructed, using fusion, by acting on the Robin vacuum boundary with an $(r,s)$-type seam consisting of an $r$-type seam of width $w$ columns and an $s$-type seam of width $d=s-1$ columns. The $r$-type seam admits an arbitrary boundary field which we fix to the special value $\\xi=-\\tfrac{\\lambda}{2}$ where $\\lambda=\\frac{(p'-p)\\pi}{2p'}$ is the crossing parameter. The $s$-type boundary introduces $d$ defects into the bulk. We consider the associated quantum Hamiltoni...
Multireflection boundary conditions for lattice Boltzmann models.
Ginzburg, Irina; d'Humières, Dominique
2003-12-01
We present a general framework for several previously introduced boundary conditions for lattice Boltzmann models, such as the bounce-back rule and the linear and quadratic interpolations. The objectives are twofold: first to give theoretical tools to study the existing link-type boundary conditions and their corresponding accuracy; second to design boundary conditions for general flows which are third-order kinetic accurate. Using these new boundary conditions, Couette and Poiseuille flows are exact solutions of the lattice Boltzmann models for a Reynolds number Re=0 (Stokes limit) for arbitrary inclination with the lattice directions. Numerical comparisons are given for Stokes flows in periodic arrays of spheres and cylinders, linear periodic array of cylinders between moving plates, and for Navier-Stokes flows in periodic arrays of cylinders for Re<200. These results show a significant improvement of the overall accuracy when using the linear interpolations instead of the bounce-back reflection (up to an order of magnitude on the hydrodynamics fields). Further improvement is achieved with the new multireflection boundary conditions, reaching a level of accuracy close to the quasianalytical reference solutions, even for rather modest grid resolutions and few points in the narrowest channels. More important, the pressure and velocity fields in the vicinity of the obstacles are much smoother with multireflection than with the other boundary conditions. Finally the good stability of these schemes is highlighted by some simulations of moving obstacles: a cylinder between flat walls and a sphere in a cylinder.
Optimal Boundary Conditions for ORCA-2 Model
Kazantsev, Eugene
2012-01-01
A 4D-Var data assimilation technique is applied to a ORCA-2 configuration of the NEMO in order to identify the optimal parametrization of the boundary conditions on the lateral boundaries as well as on the bottom and on the surface of the ocean. The influence of the boundary conditions on the solution is analyzed as in the assimilation window and beyond the window. It is shown that optimal conditions for vertical operators allows to get stronger and finer jet streams (Gulf Stream, Kuroshio) in the solution. Analyzing the reasons of the jets reinforcement, we see that the major impact of the data assimilation is made on the parametrization of the bottom boundary conditions for lateral velocities u and v. Automatic generation of the tangent and adjoint codes is also discussed. Tapenade software is shown to be able to produce the adjoint code that can be used after a memory usage optimization.
Poynting Flux-Conserving Boundary Conditions for Global MHD Models
Xi, S.; Lotko, W.; Zhang, B.; Brambles, O.; Lyon, J.; Merkin, V. G.; Wiltberger, M. J.
2014-12-01
Poynting Flux-conserving boundary conditions that conserve low-frequency, magnetic field-aligned, electromagnetic energy flux across the low-altitude (or inner) boundary in global magnetospheric magnetohydrodynamics (MHD) models is presented. This method involves the mapping of both the potential from the ionosphere and the perpendicular magnetic field from the inner magnetosphere to the ghost cells of the computational domain. The single fluid Lyon-Fedder-Mobarry (LFM) model is used to verify this method. The comparisons of simulations using the standard hardwall boundary conditions of the LFM model and the flux-conserving boundary conditions show that the method reported here improves the transparency of the boundary for the flow of low-frequency (essentially DC) electromagnetic energy flux along field lines. As a consequence, the field-aligned DC Poynting flux just above the boundary is very nearly equal to the ionospheric Joule heating, as it should be if electromagnetic energy is conserved.
Variational Data Assimilation for Optimizing Boundary Conditions in Ocean Models
Kazantsev, Christine; Tolstykh, Mikhail
2016-01-01
The review describes the development of ideas Gury Ivanovich Marchuk in the field of variational data assimilation for ocean models applied in particular in coupled models for long-range weather forecasts. Particular attention is paid to the optimization of boundary conditions on rigid boundaries. As idealized and realistic model configurations are considered. It is shown that the optimization allows us to determine the most sensitive model operators and bring the model solution closer to the assimilated data.
Climate model boundary conditions for four Cretaceous time slices
Directory of Open Access Journals (Sweden)
J. O. Sewall
2007-06-01
Full Text Available General circulation models (GCMs are useful tools for investigating the characteristics and dynamics of past climates. Understanding of past climates contributes significantly to our overall understanding of Earth's climate system. One of the most time consuming, and often daunting, tasks facing the paleoclimate modeler, particularly those without a geological background, is the production of surface boundary conditions for past time periods. These boundary conditions consist of, at a minimum, continental configurations derived from plate tectonic modeling, topography, bathymetry, and a vegetation distribution. Typically, each researcher develops a unique set of boundary conditions for use in their simulations. Thus, unlike simulations of modern climate, basic assumptions in paleo surface boundary conditions can vary from researcher to researcher. This makes comparisons between results from multiple researchers difficult and, thus, hinders the integration of studies across the broader community. Unless special changes to surface conditions are warranted, researcher dependent boundary conditions are not the most efficient way to proceed in paleoclimate investigations. Here we present surface boundary conditions (land-sea distribution, paleotopography, paleobathymetry, and paleovegetation distribution for four Cretaceous time slices (120 Ma, 110 Ma, 90 Ma, and 70 Ma. These boundary conditions are modified from base datasets to be appropriate for incorporation into numerical studies of Earth's climate and are available in NetCDF format upon request from the lead author. The land-sea distribution, bathymetry, and topography are based on the 1°×1° (latitude x longitude paleo Digital Elevation Models (paleoDEMs of Christopher Scotese. Those paleoDEMs were adjusted using the paleogeographical reconstructions of Ronald Blakey (Northern Arizona University and published literature and were then modified for use in GCMs. The paleovegetation
Climate model boundary conditions for four Cretaceous time slices
Directory of Open Access Journals (Sweden)
J. O. Sewall
2007-11-01
Full Text Available General circulation models (GCMs are useful tools for investigating the characteristics and dynamics of past climates. Understanding of past climates contributes significantly to our overall understanding of Earth's climate system. One of the most time consuming, and often daunting, tasks facing the paleoclimate modeler, particularly those without a geological background, is the production of surface boundary conditions for past time periods. These boundary conditions consist of, at a minimum, continental configurations derived from plate tectonic modeling, topography, bathymetry, and a vegetation distribution. Typically, each researcher develops a unique set of boundary conditions for use in their simulations. Thus, unlike simulations of modern climate, basic assumptions in paleo surface boundary conditions can vary from researcher to researcher. This makes comparisons between results from multiple researchers difficult and, thus, hinders the integration of studies across the broader community. Unless special changes to surface conditions are warranted, researcher dependent boundary conditions are not the most efficient way to proceed in paleoclimate investigations. Here we present surface boundary conditions (land-sea distribution, paleotopography, paleobathymetry, and paleovegetation distribution for four Cretaceous time slices (120 Ma, 110 Ma, 90 Ma, and 70 Ma. These boundary conditions are modified from base datasets to be appropriate for incorporation into numerical studies of Earth's climate and are available in NetCDF format upon request from the lead author. The land-sea distribution, bathymetry, and topography are based on the 1°×1° (latitude × longitude paleo Digital Elevation Models (paleoDEMs of Christopher Scotese. Those paleoDEMs were adjusted using the paleogeographical reconstructions of Ronald Blakey (Northern Arizona University and published literature and were then modified for use in GCMs. The paleovegetation
Boundary states and finite size effects in sine-Gordon model with Neumann boundary condition
Bajnok, Z; Takács, G
2001-01-01
The sine-Gordon model with Neumann boundary condition is investigated. Using the bootstrap principle the spectrum of boundary bound states is established. Somewhat surprisingly it is found that Coleman-Thun diagrams and bound state creation may coexist. A framework to describe finite size effects in boundary integrable theories is developed and used together with the truncated conformal space approach to confirm the bound states and reflection factors derived by bootstrap.
Modeling magnetized star-planet interactions: boundary conditions effects
Strugarek, Antoine; Matt, Sean P; Reville, Victor
2013-01-01
We model the magnetized interaction between a star and a close-in planet (SPMIs), using global, magnetohydrodynamic numerical simulations. In this proceedings, we study the effects of the numerical boundary conditions at the stellar surface, where the stellar wind is driven, and in the planetary interior. We show that is it possible to design boundary conditions that are adequate to obtain physically realistic, steady-state solutions for cases with both magnetized and unmagnetized planets. This encourages further development of numerical studies, in order to better constrain and understand SPMIs, as well as their effects on the star-planet rotational evolution.
Poroelastic modeling of seismic boundary conditions across a fracture.
Nakagawa, Seiji; Schoenberg, Michael A
2007-08-01
Permeability of a fracture can affect how the fracture interacts with seismic waves. To examine this effect, a simple mathematical model that describes the poroelastic nature of wave-fracture interaction is useful. In this paper, a set of boundary conditions is presented which relate wave-induced particle velocity (or displacement) and stress including fluid pressure across a compliant, fluid-bearing fracture. These conditions are derived by modeling a fracture as a thin porous layer with increased compliance and finite permeability. Assuming a small layer thickness, the boundary conditions can be derived by integrating the governing equations of poroelastic wave propagation. A finite jump in the stress and velocity across a fracture is expressed as a function of the stress and velocity at the boundaries. Further simplification for a thin fracture yields a set of characteristic parameters that control the seismic response of single fractures with a wide range of mechanical and hydraulic properties. These boundary conditions have potential applications in simplifying numerical models such as finite-difference and finite-element methods to compute seismic wave scattering off nonplanar (e.g., curved and intersecting) fractures.
The XXZ model with anti-periodic twisted boundary conditions
Niekamp, Sönke; Frahm, Holger
2009-01-01
We derive functional equations for the eigenvalues of the XXZ model subject to anti-diagonal twisted boundary conditions by means of fusion of transfer matrices and by Sklyanin's method of separation of variables. Our findings coincide with those obtained using Baxter's method and are compared to the recent solution of Galleas. As an application we study the finite size scaling of the ground state energy of the model in the critical regime.
The XXZ model with anti-periodic twisted boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Niekamp, Soenke; Wirth, Tobias; Frahm, Holger [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstrasse 2, 30167 Hannover (Germany)
2009-05-15
We derive functional equations for the eigenvalues of the XXZ model subject to anti-diagonal twisted boundary conditions by means of fusion of transfer matrices and by Sklyanin's method of separation of variables. Our findings coincide with those obtained using Baxter's method and are compared to the recent solution of Galleas. As an application we study the finite size scaling of the ground-state energy of the model in the critical regime.
Slarti: A boundary condition editor for a coupled climate model
Mickelson, S. A.; Jacob, R. L.; Pierrehumbert, R.
2006-12-01
One of the largest barriers to making climate models more flexible is the difficulty in creating new boundary conditions, especially for "deep time" paleoclimate cases where continents are in different positions. Climate models consist of several mutually-interacting component models and the boundary conditions must be consistent between them. We have developed a program called Slarti which uses a Graphical User Interface and a set of consistency rules to aid researchers in creating new, consistent, boundary condition files for the Fast Ocean Atmosphere Model (FOAM). Users can start from existing mask, topography, or bathymetry data or can build a "world" entirely from scratch (e.g. a single island continent). Once a case has been started, users can modify mask, vegetation, bathymetry, topography, and river flow fields by drawing new data through a "paint" interface. Users activate a synchronization button which goes through the fields to eliminate inconsistencies. When the changes are complete and save is selected, Slarti creates all the necessary files for an initial run of FOAM. The data is edited at the highest resolution (the ocean-land surface in FOAM) and then interpolated to the atmosphere resolution. Slarti was implemented in Java to maintain portability across platforms. We also relied heavily on Java Swing components to create the interface. This allowed us to create an object-oriented interface that could be used on many different systems. Since Slarti allows users to visualize their changes, they are able to see areas that may cause problems when the model is ran. Some examples would be lakes from the river flow field and narrow trenches within the bathymetry. Through different checks and options available through its interface, Slarti makes the process of creating new boundary conditions for FOAM easier and faster while reducing the chance for user errors.
The spectrum of boundary states in sine-Gordon model with integrable boundary conditions
Bajnok, Z; Takács, G; Tóth, G
2002-01-01
The bound state spectrum and the associated reflection factors are determined for the sine-Gordon model with arbitrary integrable boundary condition by closing the bootstrap. Comparing the symmetries of the bound state spectrum with that of the Lagrangian it is shown how one can "derive" the relationship between the UV and IR parameters conjectured earlier.
Complex Wall Boundary Conditions for Modeling Combustion in Catalytic Channels
Zhu, Huayang; Jackson, Gregory
2000-11-01
Monolith catalytic reactors for exothermic oxidation are being used in automobile exhaust clean-up and ultra-low emissions combustion systems. The reactors present a unique coupling between mass, heat, and momentum transport in a channel flow configuration. The use of porous catalytic coatings along the channel wall presents a complex boundary condition when modeled with the two-dimensional channel flow. This current work presents a 2-D transient model for predicting the performance of catalytic combustion systems for methane oxidation on Pd catalysts. The model solves the 2-D compressible transport equations for momentum, species, and energy, which are solved with a porous washcoat model for the wall boundary conditions. A time-splitting algorithm is used to separate the stiff chemical reactions from the convective/diffusive equations for the channel flow. A detailed surface chemistry mechanism is incorporated for the catalytic wall model and is used to predict transient ignition and steady-state conversion of CH4-air flows in the catalytic reactor.
On the trigonometric Felderhof model with domain wall boundary conditions
Caradoc, A; Wheeler, M; Zuparic, M; 10.1088/1742-5468/2007/03/P03010
2008-01-01
We consider the trigonometric Felderhof model, of free fermions in an external field, on a finite lattice with domain wall boundary conditions. The vertex weights are functions of rapidities and external fields. We obtain a determinant expression for the partition function in the special case where the dependence on the rapidities is eliminated, but for general external field variables. This determinant can be evaluated in product form. In the homogeneous limit, it is proportional to a 2-Toda tau function. Next, we use the algebraic Bethe ansatz factorized basis to obtain a product expression for the partition function in the general case with dependence on all variables.
Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic
Baatsen, Michiel; van Hinsbergen, Douwe J. J.; von der Heydt, Anna S.; Dijkstra, Henk A.; Sluijs, Appy; Abels, Hemmo A.; Bijl, Peter K.
2016-08-01
Studies on the palaeoclimate and palaeoceanography using numerical model simulations may be considerably dependent on the implemented geographical reconstruction. Because building the palaeogeographic datasets for these models is often a time-consuming and elaborate exercise, palaeoclimate models frequently use reconstructions in which the latest state-of-the-art plate tectonic reconstructions, palaeotopography and -bathymetry, or vegetation have not yet been incorporated. In this paper, we therefore provide a new method to efficiently generate a global geographical reconstruction for the middle-late Eocene. The generalised procedure is also reusable to create reconstructions for other time slices within the Cenozoic, suitable for palaeoclimate modelling. We use a plate-tectonic model to make global masks containing the distribution of land, continental shelves, shallow basins and deep ocean. The use of depth-age relationships for oceanic crust together with adjusted present-day topography gives a first estimate of the global geography at a chosen time frame. This estimate subsequently needs manual editing of areas where existing geological data indicate that the altimetry has changed significantly over time. Certain generic changes (e.g. lowering mountain ranges) can be made relatively easily by defining a set of masks while other features may require a more specific treatment. Since the discussion regarding many of these regions is still ongoing, it is crucial to make it easy for changes to be incorporated without having to redo the entire procedure. In this manner, a complete reconstruction can be made that suffices as a boundary condition for numerical models with a limited effort. This facilitates the interaction between experts in geology and palaeoclimate modelling, keeping reconstructions up to date and improving the consistency between different studies. Moreover, it facilitates model inter-comparison studies and sensitivity tests regarding certain
Boundary conditions control for a Shallow-Water model
Kazantsev, Eugene
2012-01-01
A variational data assimilation technique was used to estimate optimal discretization of interpolation operators and derivatives in the nodes adjacent to the rigid boundary. Assimilation of artificially generated observational data in the shallow-water model in a square box and assimilation of real observations in the model of the Black sea are discussed. It is shown in both experiments that controlling the discretization of operators near a rigid boundary can bring the model solution closer to observations as in the assimilation window and beyond the window. This type of control allows also to improve climatic variability of the model.
DYNAMIC SURFACE BOUNDARY-CONDITIONS - A SIMPLE BOUNDARY MODEL FOR MOLECULAR-DYNAMICS SIMULATIONS
JUFFER, AH; BERENDSEN, HJC
1993-01-01
A simple model for the treatment of boundaries in molecular dynamics simulations is presented. The method involves the positioning of boundary atoms on a surface that surrounds a system of interest. The boundary atoms interact with the inner region and represent the effect of atoms outside the surfa
CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions
DEFF Research Database (Denmark)
Koblitz, Tilman
to the atmospheric boundary-layer, are mostly ignored so far. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include atmospheric stability and the Coriolis effect. Within the present work a RANS model framework is developed and implemented......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important...
`Gas cushion' model and hydrodynamic boundary conditions for superhydrophobic textures
Nizkaya, Tatiana V; Vinogradova, Olga I
2014-01-01
Superhydrophobic Cassie textures with trapped gas bubbles reduce drag, by generating large effective slip, which is important for a variety of applications that involve a manipulation of liquids at the small scale. Here we discuss how the dissipation in the gas phase of textures modifies their friction properties and effective slip. We propose an operator method, which allows us the mapping of the flow in the gas subphase to a local slip boundary condition at the liquid/gas interface. The determined uniquely local slip length depends on the viscosity contrast and underlying topography, and can be immediately used to evaluate an effective slip of the texture. Beside Cassie surfaces our approach is valid for Wenzel textures, where a liquid follows the surface relief, as well as for rough surfaces impregnated by a low-viscosity `lubricant'. These results provide a framework for the rational design of textured surfaces for numerous applications.
Nested Bethe Ansatz for Spin Ladder Model with Open Boundary Conditions
Institute of Scientific and Technical Information of China (English)
WU Jun-Fang; ZHANG Chun-Min; YUE Rui-Hong; LI Run-Ling
2005-01-01
The nested Bethe ansatz (BA) method is applied to find the eigenvalues and the eigenvectors of the transfer matrix for spin-ladder model with open boundary conditions. Based on the reflection equation, we find the general diagonal solution, which determines the generalboundary interaction in the Hamiltonian. We introduce the spin-ladder model with open boundary conditions. By finding the solution K± of the reflection equation which determines the nontrivial boundary terms in the Hamiltonian, we diagonalize the transfer matrix of the spin-ladder model with open boundary conditions in the framework of nested BA.
Johnson, Anthony N; Hromadka, T V
2015-01-01
The Laplace equation that results from specifying either the normal or tangential force equilibrium equation in terms of the warping functions or its conjugate can be modeled as a complex variable boundary element method or CVBEM mixed boundary problem. The CVBEM is a well-known numerical technique that can provide solutions to potential value problems in two or more dimensions by the use of an approximation function that is derived from the Cauchy Integral in complex analysis. This paper highlights three customizations to the technique.•A least squares approach to modeling the complex-valued approximation function will be compared and analyzed to determine if modeling error on the boundary can be reduced without the need to find and evaluated additional linearly independent complex functions.•The nodal point locations will be moved outside the problem domain.•Contour and streamline plots representing the warping function and its complementary conjugate are generated simultaneously from the complex-valued approximating function.
Poynting flux-conserving low-altitude boundary conditions for global magnetospheric models
Xi, S.; Lotko, W.; Zhang, B.; Brambles, O. J.; Lyon, J. G.; Merkin, V. G.; Wiltberger, M.
2015-01-01
A method for specifying low-altitude or inner boundary conditions that conserve low-frequency, magnetic field-aligned, electromagnetic energy flux across the boundary in global magnetospheric magnetohydrodynamics (MHD) models is presented. The single-fluid Lyon-Fedder-Mobarry (LFM) model is used to verify this method, with comparisons between simulations using LFM's standard hardwall boundary conditions and the new flux-conserving boundary conditions. Identical idealized upstream solar wind and interplanetary magnetic field conditions and the same constant ionospheric conductance are used in both runs. The results show that, compared to LFM's standard hardwall boundary conditions, the flux-conserving method improves the transparency of the boundary for the flow of low-frequency (essentially DC) electromagnetic energy flux along field lines. As a consequence, the hemispheric integrated field-aligned DC Poynting flux just above the boundary is close to the hemispheric total Joule heating of the ionosphere, as it should be if electromagnetic energy is conserved. The MHD velocity and perpendicular currents are well-behaved near the inner boundary for the flux conserving boundary conditions.
Structure and vibrational spectra of a model of a-Si:H with periodic boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Winer, K.; Wooten, F.
1983-08-01
A ball-and -stick model of a-Si:H with periodic boundary conditions has been constructed. A computer replica of the structure has been relaxed and the density, radial distribution function and vibrational spectra calculated.
Open boundary conditions for the Diffuse Interface Model in 1-D
Desmarais, J. L.; Kuerten, J. G. M.
2014-04-01
New techniques are developed for solving multi-phase flows in unbounded domains using the Diffuse Interface Model in 1-D. They extend two open boundary conditions originally designed for the Navier-Stokes equations. The non-dimensional formulation of the DIM generalizes the approach to any fluid. The equations support a steady state whose analytical approximation close to the critical point depends only on temperature. This feature enables the use of detectors at the boundaries switching between conventional boundary conditions in bulk phases and a multi-phase strategy in interfacial regions. Moreover, the latter takes advantage of the steady state approximation to minimize the interface-boundary interactions. The techniques are applied to fluids experiencing a phase transition and where the interface between the phases travels through one of the boundaries. When the interface crossing the boundary is fully developed, the technique greatly improves results relative to cases where conventional boundary conditions can be used. Limitations appear when the interface crossing the boundary is not a stable equilibrium between the two phases: the terms responsible for creating the true balance between the phases perturb the interior solution. Both boundary conditions present good numerical stability properties: the error remains bounded when the initial conditions or the far field values are perturbed. For the PML, the influence of its main parameters on the global error is investigated to make a compromise between computational costs and maximum error. The approach can be extended to multiple spatial dimensions.
Numerical simulation of Neumann boundary condition in the thermal lattice Boltzmann model
Chen, Q.; Zhang, X. B.; Zhang, J. F.
2014-03-01
In this paper, a bilinear interpolation finite-difference scheme is proposed to handle the Neumann boundary condition with nonequilibrium extrapolation method in the thermal lattice Boltzmann model. The temperature value at the boundary point is obtained by the finite-difference approximation, and then used to determine the wall temperature via an extrapolation. Our method can deal with the boundaries with complex geometries, motions and gradient boundary conditions. Several simulations are performed to examine the capacity of this proposed boundary method. The numerical results agree well with the analytical solutions. When compared with a representative boundary method, an improved performance is observed. The results also show that the proposed scheme together with nonequilibrium extrapolation method has second-order accuracy.
Boundary condition handling approaches for the model reduction of a vehicle frame
Xie, Qingxi; Zhang, Nong; Zhang, Bangji; Ji, Jinchen
2016-06-01
In order to apply model reduction technique to improve the computational efficiency for the large-scale FEM model of a vehicle, this paper presents the handling approaches for three widely-used boundary conditions, namely fixed boundary condition (FBC), prescribed motion (PSM) and coupling (COUP), respectively. It is found that iterated improved reduction system (IIRS) reduction method tends to generate better reduction approximation. Guyan method is not sensitive to the sequence of reduction and constraint under FBC, and can thus provide flexibility in handling different boundary conditions for the same system. As for PSM, 'constraint first' is recommended no matter which reduction method is used, and then separate reduction models can be coupled to form a new model with relative small dofs. By selecting appropriate master dofs for model reduction, the coupled model based on reduced models could produce same results as the original full one.
Climate model boundary conditions for four Cretaceous time slices
Sewall, J.O.; Wal, R.S.W. van de; Zwan, C.J. van der; Oosterhout, C. van; Dijkstra, H.A.; Scotese, C.R.
2007-01-01
General circulation models (GCMs) are useful tools for investigating the characteristics and dynamics of past climates. Understanding of past climates contributes significantly to our overall understanding of Earth’s climate system. One of the most time consuming, and often daunting, tasks facing th
Poisson-Nernst-Planck model with Chang-Jaffe, diffusion, and ohmic boundary conditions
Lelidis, I.; Macdonald, J. Ross; Barbero, G.
2016-01-01
Using the linear Poisson-Nernst-Planck impedance-response continuum model, we investigate the possible equivalences of three different types of boundary conditions previously proposed to model the electrode behavior of an electrolytic cell in the shape of a slab. We show analytically that the boundary conditions proposed long ago by Chang-Jaffe are fully equivalent to the ohmic boundary conditions only if the positive and negative ions have the same mobility, or when only ions of a single polarity are mobile. In the case where the ions have different and non-zero mobilities, we fit exact impedance spectra created for ohmic boundary conditions by using the Chang-Jaffe Poisson-Nernst-Planck response model, one that is dominated by diffusion effects. These fits yield conditions for essentially exact or approximate numerical correspondence for the complex impedance between the two models even in the unequal mobility case. Finally, diffusion type boundary conditions are shown to be fully equivalent to the ohmic one. Some limiting cases of the model parameters are investigated.
An analysis of boundary condition effects on the thermomechanical modeling of the FSW process
Guedoiri, A.; Moufki, A.; Favier, V.; Zahrouni, H.
2011-01-01
The aim of the present work is to study the influence of thermal boundary conditions on the simulation of friction stir welding process "FSW". Generally, dimensions of the workpieces to be welded are very large and a very small zone surrounding the welding tool is modeled for the thermomechanical study of the process. This area, named box, should be small enough to reduce the computation time and large enough to minimize effects of boundary conditions. It is well known that during welding, the mixing zone is closed arround the tool; it is easily identified by analyzing the velocity field which is complex in contact interface with the tool and which tends rapidly to the tool traverse speed far from the tool. In the thermal analysis, the boundary conditions are not obvious since they depend on the welding parameters, on the workpiece dimensions and on its vicinity. We propose in this study a numerical strategy for determining the thermal boundary conditions on the box.
Basu, S.; Holtslag, A.A.M.; Wiel, van de B.J.H.; Moene, A.F.; Steeneveld, G.J.
2008-01-01
In single column and large-eddy simulation studies of the atmospheric boundary layer, surface sensible heat flux is often used as a boundary condition. In this paper, we delineate the fundamental shortcomings of such a boundary condition in the context of stable boundary layer modelling and simulati
Algebraic Bethe Ansatz Solution to CN Vertex Model with Open Boundary Conditions
Institute of Scientific and Technical Information of China (English)
LI Guang-Liang; SHI Kang-Jie; YUE Rui-Hong
2005-01-01
We present three diagonal reflecting matrices for the CN vertex model with open boundary conditions and exactly solve the model by using the algebraic Bethe ansatz. The eigenvector is constructed and the eigenvalue and the associated Bethe equations are achieved. All the unwanted terms are cancelled out by three kinds of identities.
Directory of Open Access Journals (Sweden)
Tairone Paiva Leão
2011-02-01
Full Text Available An accurate estimation of hydraulic fluxes in the vadose zone is essential for the prediction of water, nutrient and contaminant transport in natural systems. The objective of this study was to simulate the effect of variation of boundary conditions on the estimation of hydraulic properties (i.e. water content, effective unsaturated hydraulic conductivity and hydraulic flux in a one-dimensional unsaturated flow model domain. Unsaturated one-dimensional vertical water flow was simulated in a pure phase clay loam profile and in clay loam interlayered with silt loam distributed according to the third iteration of the Cantor Bar fractal object Simulations were performed using the numerical model Hydrus 1D. The upper and lower pressure heads were varied around average values of -55 cm for the near-saturation range. This resulted in combinations for the upper and lower constant head boundary conditions, respectively, of -50 and -60 cm, -40 and -70 cm, -30 and -80 cm, -20 and -90 cm, and -10 and -100 cm. For the drier range the average head between the upper and lower boundary conditions was set to -550 cm, resulting in the combinations -500 and -600 cm, -400 and -700 cm, -300 and -800 cm, -200 and -900 cm, and -100 and -1,000 cm, for upper and lower boundary conditions, respectively. There was an increase in water contents, fluxes and hydraulic conductivities with the increase in head difference between boundary conditions. Variation in boundary conditions in the pure phase and interlayered one-dimensional profiles caused significant deviations in fluxes, water contents and hydraulic conductivities compared to the simplest case (a head difference between the upper and lower constant head boundaries of 10 cm in the wetter range and 100 cm in the drier range.
Modeling Charge-Sign Asymmetric Solvation Free Energies With Nonlinear Boundary Conditions
Bardhan, Jaydeep P
2014-01-01
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory but replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley "bracelet" and "rod" test problems [J. Phys. Chem. B, v. 112:2408, 2008]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry.
Energy Technology Data Exchange (ETDEWEB)
Follin, S. [Golder Grundteknik, Uppsala (Sweden)
1999-06-01
The SR 97 project presents a performance assessment (PA) of the overall safety of a hypothetical deep repository at three sites in Sweden arbitrarily named Aberg, Beberg and Ceberg. One component of this PA assesses the uncertainties in the hydrogeological modelling. This study focuses on uncertainties in boundary settings (size of model domain and boundary conditions) in the regional and site-scale hydrogeological modelling of the three sites used to simulating the possible transport of radionuclides from the emplacement waste packages through the host rock to the accessible environment. Model uncertainties associated with, for instance, parameter heterogeneity and structural interpretations are addressed in other studies. This study concludes that the regional modelling of the SR 97 project addresses uncertainties in the choice of boundary conditions and size of model domain differently at each site, although the overall handling is acceptable and in accordance with common modelling practice. For example, the treatment of uncertainties with regard to the ongoing post-glacial flushing of the Baltic Shield is creditably addressed although not exhaustive from a modelling point of view. A significant contribution of the performed modelling is the study of nested numerical models, i.e., the numerical interplay between regional and site-scale numerical models. In the site-scale modelling great efforts are made to address problems associated with (i) the telescopic mesh refinement (TMR) technique with regard to the stochastic continuum approach, and (ii) the transfer of boundary conditions between variable-density flow systems and flow systems that are constrained to treat uniform density flow. This study concludes that the efforts made to handle these problems are acceptable with regards to the objectives of the SR 97 project.
Boundary condition may change chaos
Energy Technology Data Exchange (ETDEWEB)
Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., RIAM, Kasuga, Fukuoka (Japan); Kawai, Yoshinobu [Kyushu Univ., Interdisciplinary Graduate School of Engineering Sciences, Kasuga, Fukuoka (Japan)
2001-07-01
Role of boundary condition for the appearance of chaos is examined. Imposition of the boundary condition is interpreted as the reduction of the system size L. For a demonstration, Rayleigh-Benard instability is considered and the shell model analysis is applied. It is shown that the reduction of L reduces the number of positive Lyapunov exponent of the system, hence opens the route from the turbulence, to the chaos and to the limit cycle/fixed point. (author)
Boundary Conditions of Weyl Semimetals
Hashimoto, Koji; Wu, Xi
2016-01-01
We find that generic boundary conditions of Weyl semimetal is dictated by only a single real parameter, in the continuum limit. We determine how the energy dispersions (the Fermi arcs) and the wave functions of edge states depend on this parameter. Lattice models are found to be consistent with our generic observation. Furthermore, the enhanced parameter space of the boundary condition is shown to support a novel topological number.
Hobrecht, Hendrik
2016-01-01
We present a systematic method to calculate the scaling functions for the critical Casimir force and the according potential of the two-dimensional Ising model with various boundary conditions. Therefore we start with the dimer representation of the corresponding partition function $Z$ on an $L\\times M$ square lattice, wrapped around a torus with aspect ratio $\\rho=L/M$. By assuming periodic boundary conditions and translational invariance in at least one direction, we systematically reduce the problem to a $2\\times2$ transfer matrix representation. For the torus we first reproduce the results by Kaufman and then give a detailed calculation of the scaling functions. Afterwards we present the calculation for the cylinder with open boundary conditions. All scaling functions are given in form of combinations of infinite products and integrals. Our results reproduce the known scaling functions in the limit of thin films $\\rho\\to 0$. Additionally, for the cylinder at criticality our result confirms the predictions...
Meierbachtol, Toby W.; Harper, Joel T.; Johnson, Jesse V.; Humphrey, Neil F.; Brinkerhoff, Douglas J.
2015-03-01
The surface and basal boundary conditions exert an important control on the thermodynamic state of the Greenland Ice Sheet, but their representation in numerical ice sheet models is poorly constrained due to the lack of observations. Here we investigate a land-terminating sector of western Greenland and (1) quantify differences between new observations and commonly used boundary condition data sets and (2) demonstrate the impact of improved boundary conditions on simulated thermodynamics in a higher-order numerical flow model. We constrain near-surface temperature with measurements from two 20 m boreholes in the ablation zone and 10 m firn temperature from the percolation zone. We constrain basal heat flux using in situ measurement in a deep bedrock hole at the study area margin and other existing assessments. To assess boundary condition influences on simulated thermal-mechanical processes, we compare model output to multiple full-thickness temperature profiles collected in the ablation zone. Our observation-constrained basal heat flux is 30 mW m-2 less than commonly used representations. In contrast, measured near-surface temperatures are warmer than common surface temperature data sets by up to 15°C. Application of lower basal heat flux increases a model cold bias compared to the measured temperature profiles and causes frozen basal conditions across the ablation zone. Temperate basal conditions are reestablished by our warmer surface boundary. Warmer surface ice and firn can introduce several times more energy to the modeled ice mass than what is lost at the bed from reduced basal heat flux, indicating that the thermomechanical state of the ice sheet is highly sensitive to near-surface effects.
The femur as a musculo-skeletal construct: a free boundary condition modelling approach.
Phillips, A T M
2009-07-01
Previous finite element studies of the femur have made simplifications to varying extents with regard to the boundary conditions used during analysis. Fixed boundary conditions are generally applied to the distal femur when examining the proximal behaviour at the hip joint, while the same can be said for the proximal femur when examining the distal behaviour at the knee joint. While fixed boundary condition analyses have been validated against in vitro experiments it remains a matter of debate as to whether the numerical and experimental models are indicative of the in vivo situation. This study presents a finite element model in which the femur is treated as a complete musculo-skeletal construct, spanning between the hip and knee joints. Linear and non-linear implementations of a free boundary condition modelling approach are applied to the bone through the explicit inclusion of muscles and ligaments spanning both the hip joint and the knee joint. A non-linear force regulated, muscle strain based activation strategy was found to result in lower observed principal strains in the cortex of the femur, compared to a linear activation strategy. The non-linear implementation of the model in particular, was found to produce hip and knee joint reaction forces consistent with in vivo data from instrumented implants.
The implementation of an improved NPML absorbing boundary condition in elastic wave modeling
Institute of Scientific and Technical Information of China (English)
Qin Zhen; Lu Minghui; Zheng Xiaodong; Yao Yao; Zhang Cai; Song Jianyong
2009-01-01
In elastic wave forward modeling, absorbing boundary conditions (ABC) are used to mitigate undesired reflections from the model truncation boundaries. The perfectly matched layer (PML) has proved to be the best available ABC. However, the traditional splitting PML (SPML) ABC has some serious disadvantages: for example, global SPML ABCs require much more computing memory, although the implementation is easy. The implementation of local SPML ABCs also has some difficulties, since edges and comers must be considered. The traditional non-splitting perfectly matched layer (NPML) ABC has complex computation because of the convolution. In this paper, based on non-splitting perfectly matched layer (NPML) ABCs combined with the complex frequency-shifted stretching function (CFS), we introduce a novel numerical implementation method for PML absorbing boundary conditions with simple calculation equations, small memory requirement, and easy programming.
Velichko, A.; Wilcox, P. D.
2012-05-01
An efficient technique for predicting the complete scattering behavior for an arbitrarily-shaped scatterer is presented. The spatial size of the modeling domain around the scatterer is as small as possible to minimize computational expense and a minimum number of models are executed. This model uses non-reflecting boundary conditions on the surface surrounding the scatterer which are non-local in space. Example results for 2D and 3D scattering in isotropic material and guided wave scattering are presented.
A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics
Ryan, Emily M.; Tartakovsky, Alexandre M.; Amon, Cristina
2010-12-01
We present a novel smoothed particle hydrodynamics (SPH) method for diffusion equations subject to Neumann and Robin boundary conditions. The Neumann and Robin boundary conditions are common to many physical problems (such as heat/mass transfer), and can prove challenging to implement in numerical methods when the boundary geometry is complex. The new method presented here is based on the approximation of the sharp boundary with a diffuse interface and allows an efficient implementation of the Neumann and Robin boundary conditions in the SPH method. The paper discusses the details of the method and the criteria for the width of the diffuse interface. The method is used to simulate diffusion and reactions in a domain bounded by two concentric circles and reactive flow between two parallel plates and its accuracy is demonstrated through comparison with analytical and finite difference solutions. To further illustrate the capabilities of the model, a reactive flow in a porous medium was simulated and good convergence properties of the model are demonstrated.
DEFF Research Database (Denmark)
Escolano-Carrasco, José; Jacobsen, Finn; López, J.J.
2008-01-01
The finite-difference time-domain (FDTD) method provides a simple and accurate way of solving initial boundary value problems. However, most acoustic problems involve frequency dependent boundary conditions, and it is not easy to include such boundary conditions in an FDTD model. Although solutions...
Slip-flow boundary condition for straight walls in the lattice Boltzmann model.
Szalmás, Lajos
2006-06-01
A slip-flow boundary condition has been developed in the lattice Boltzmann model combining an interpolation method and a simple slip boundary condition for straight walls placed at arbitrary distance from the last fluid node. An analytical expression has been derived to connect the model parameters with the slip velocity for Couette and Poiseuille flows in the nearly continuum limit. The proposed interpolation method ensures that the slip velocity is independent of the wall position in first order of the Knudsen number. Computer simulations have been carried out to validate the model. The Couette and Poiseuille flows agree with the analytical results to machine order. Numerical simulation of a moving square demonstrates the accuracy of the model for walls moving in both the tangential and normal directions.
Normal transmitting boundary conditions
Institute of Scientific and Technical Information of China (English)
廖振鹏
1996-01-01
The multi-transmitting formula (MTF) governed by a single artificial speed is analytically developed into a generalized MTF governed by a few artificial speeds to improve its capacity in simultaneous simulation of several one-way waves propagating at different speeds.The generalized MTF is then discretized and further generalized using the space extrapolation to improve its accuracies in numerical simulation of transient waves at large angles of incidence.The above two successive generalizitions of MTF based on the notion of normal transmission lead to a compact formula of local non-reflecting boundary condition.The formula not only provides a general representation of the major schemes of existing local boundary conditions but can be used to generate new schemes,which combine advantages of different schemes.
Laganà, K; Dubini, G; Migliavacca, F; Pietrabissa, R; Pennati, G; Veneziani, A; Quarteroni, A
2002-01-01
This work was motivated by the problems of analysing detailed 3D models of vascular districts with complex anatomy. It suggests an approach to prescribing realistic boundary conditions to use in order to obtain information on local as well as global haemodynamics. A method was developed which simultaneously solves Navier-Stokes equations for local information and a non-linear system of ordinary differential equations for global information. This is based on the principle that an anatomically detailed 3D model of a cardiovascular district can be achieved by using the finite element method. In turn the finite element method requires a specific boundary condition set. The approach outlined in this work is to include the system of ordinary differential equations in the boundary condition set. Such a multiscale approach was first applied to two controls: (i) a 3D model of a straight tube in a simple hydraulic network and (ii) a 3D model of a straight coronary vessel in a lumped-parameter model of the cardiovascular system. The results obtained are very close to the solutions available for the pipe geometry. This paper also presents preliminary results from the application of the methodology to a particular haemodynamic problem: namely the fluid dynamics of a systemic-to-pulmonary shunt in paediatric cardiac surgery.
Mehanee, Salah; Zhdanov, Michael
2004-12-01
Numerical modeling of the quasi-static electromagnetic (EM) field in the frequency domain in a three-dimensional (3-D) inhomogeneous medium is a very challenging problem in computational physics. We present a new approach to the finite difference (FD) solution of this problem. The FD discretization of the EM field equation is based on the balance method. To compute the boundary values of the anomalous electric field we solve for, we suggest using the fast and accurate quasi-analytical (QA) approximation, which is a special form of the extended Born approximation. We call this new condition a quasi-analytical boundary condition (QA BC). This approach helps to reduce the size of the modeling domain without losing the accuracy of calculation. As a result, a larger number of grid cells can be used to describe the anomalous conductivity distribution within the modeling domain. The developed numerical technique allows application of a very fine discretization to the area with anomalous conductivity only because there is no need to move the boundaries too far from the inhomogeneous region, as required by the traditional Dirichlet or Neumann conditions for anomalous field with boundary values equal to zero. Therefore this approach increases the efficiency of FD modeling of the EM field in a medium with complex structure. We apply the QA BC and the traditional FD (with large grid and zero BC) methods to complicated models with high resistivity contrast. The numerical modeling demonstrates that the QA BC results in 5 times matrix size reduction and 2-3 times decrease in computational time.
Steady states in a structured epidemic model with Wentzell boundary condition
Calsina, Angel
2011-01-01
We introduce a nonlinear structured population model with diffusion in the state space. Individuals are structured with respect to a continuous variable which represents a pathogen load. The class of uninfected individuals constitutes a special compartment that carries mass, hence the model is equipped with generalized Wentzell (or dynamic) boundary conditions. Our model is intended to describe the spread of infection of a vertically transmitted disease, for example Wolbachia in a mosquito population. Therefore the (infinite dimensional) nonlinearity arises in the recruitment term. First we establish global existence of solutions and the Principle of Linearised Stability for our model. Then, in our main result, we formulate simple conditions, which guarantee the existence of non-trivial steady states of the model. Our method utilizes an operator theoretic framework combined with a fixed point approach. Finally, in the last section we establish a sufficient condition for the local asymptotic stability of the p...
Energy Technology Data Exchange (ETDEWEB)
Sahmani, S.; Ansari, R. [University of Guilan, Rasht (Iran, Islamic Republic of)
2011-09-15
Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis.
Energy Technology Data Exchange (ETDEWEB)
Rosnitskiy, P., E-mail: pavrosni@yandex.ru; Yuldashev, P., E-mail: petr@acs366.phys.msu.ru; Khokhlova, V., E-mail: vera@acs366.phys.msu.ru [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation)
2015-10-28
An equivalent source model was proposed as a boundary condition to the nonlinear parabolic Khokhlov-Zabolotskaya (KZ) equation to simulate high intensity focused ultrasound (HIFU) fields generated by medical ultrasound transducers with the shape of a spherical shell. The boundary condition was set in the initial plane; the aperture, the focal distance, and the initial pressure of the source were chosen based on the best match of the axial pressure amplitude and phase distributions in the Rayleigh integral analytic solution for a spherical transducer and the linear parabolic approximation solution for the equivalent source. Analytic expressions for the equivalent source parameters were derived. It was shown that the proposed approach allowed us to transfer the boundary condition from the spherical surface to the plane and to achieve a very good match between the linear field solutions of the parabolic and full diffraction models even for highly focused sources with F-number less than unity. The proposed method can be further used to expand the capabilities of the KZ nonlinear parabolic equation for efficient modeling of HIFU fields generated by strongly focused sources.
Reyes, Jonathan; Shadwick, B. A.
2016-10-01
Modeling the evolution of a short, intense laser pulse propagating through an underdense plasma is of particular interest in the physics of laser-plasma interactions. Numerical models are typically created by first discretizing the equations of motion and then imposing boundary conditions. Using the variational principle of Chen and Sudan, we spatially discretize the Lagrangian density to obtain discrete equations of motion and a discrete energy conservation law which is exactly satisfied regardless of the spatial grid resolution. Modifying the derived equations of motion (e.g., enforcing boundary conditions) generally ruins energy conservation. However, time-dependent terms can be added to the Lagrangian which force the equations of motion to have the desired boundary conditions. Although some foresight is needed to choose these time-dependent terms, this approach provides a mechanism for energy to exit the closed system while allowing the conservation law to account for the loss. An appropriate time discretization scheme is selected based on stability analysis and resolution requirements. We present results using this variational approach in a co-moving coordinate system and compare such results to those using traditional second-order methods. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY- 1104683.
Reyes, J. Paxon; Shadwick, B. A.
2015-11-01
Describing a cold-Maxwell fluid system with a spatially-discrete, unbounded Lagrangian is problematic for numerical modeling since boundary conditions must be applied after the variational step. Accurate solutions may still be attained, but do not technically satisfy the derived energy conservation law. The size of the numerical domain, the order accuracy of the discrete approximations used, and the type of boundary conditions applied influence the behavior of the artificially-bounded system. To encode the desired boundary conditions of the equations of motion, we include time-dependent terms into the discrete Lagrangian. Although some foresight is needed to choose these time-dependent terms, this approach provides a mechanism for energy to exit the closed system while allowing the conservation law to account for the energy loss. Results of a spatially-discrete, time-dependent Lagrangian system (with approximations of second-order accuracy in space and fourth order in time) will be presented. The fields and total energy will be compared with models of the same accuracy using a time-independent variational approach as well as a non-variational approach. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY- 1104683.
Reweighting twisted boundary conditions
Bussone, Andrea; Hansen, Martin; Pica, Claudio
2015-01-01
Imposing twisted boundary conditions on the fermionic fields is a procedure extensively used when evaluating, for example, form factors on the lattice. Twisting is usually performed for one flavour and only in the valence, and this causes a breaking of unitarity. In this work we explore the possibility of restoring unitarity through the reweighting method. We first study some properties of the approach at tree level and then we stochastically evaluate ratios of fermionic determinants for different boundary conditions in order to include them in the gauge averages, avoiding in this way the expensive generation of new configurations for each choice of the twisting angle, $\\theta$. As expected the effect of reweighting is negligible in the case of large volumes but it is important when the volumes are small and the twisting angles are large. In particular we find a measurable effect for the plaquette and the pion correlation function in the case of $\\theta=\\pi/2$ in a volume $16\\times 8^3$, and we observe a syst...
DEFF Research Database (Denmark)
Steskens, Paul Wilhelmus Maria Hermanus; Rode, Carsten; Janssen, Hans
2008-01-01
Current models to predict heat, air and moisture (HAM) conditions in building components assume uniform boundary conditions, both for the temperature and relative humidity of the air in an indoor space as well as for the surface transfer coefficients. Such models cannot accurately predict the HAM...... conditions in the component and on the surface of the component with non-uniform air temperature or relative humidity distributions in an indoor space. Moreover, the heat and moisture surface transfer coefficients strongly depend on the local air velocity, local temperature, water-material interactions...... and water content at the material surface and surface texture of the material. The objective of the present paper is to analyze the influence of the non-uniform local air velocity near the surface of a building component on the HAM conditions in the component. A case study and sensitivity study have been...
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede
2017-01-01
Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal distribution under long-term studies. Meanwhile the boundary conditions for the thermal analysis are modeled and included, which can be adapted to different real field applications of power electronic converters. Finally, the accuracy of the proposed thermal model is verified by FEM simulations...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three...
Moalafhi, Ditiro B.; Evans, Jason P.; Sharma, Ashish
2016-11-01
Regional climate modelling studies often begin by downscaling a reanalysis dataset in order to simulate the observed climate, allowing the investigation of regional climate processes and quantification of the errors associated with the regional model. To date choice of reanalysis to perform such downscaling has been made based either on convenience or on performance of the reanalyses within the regional domain for relevant variables such as near-surface air temperature and precipitation. However, the only information passed from the reanalysis to the regional model are the atmospheric temperature, moisture and winds at the location of the boundaries of the regional domain. Here we present a methodology to evaluate reanalyses derived lateral boundary conditions for an example domain over southern Africa using satellite data. This study focusses on atmospheric temperature and moisture which are easily available. Five commonly used global reanalyses (NCEP1, NCEP2, ERA-I, 20CRv2, and MERRA) are evaluated against the Atmospheric Infrared Sounder satellite temperature and relative humidity over boundaries of two domains centred on southern Africa for the years 2003-2012 inclusive. The study reveals that MERRA is the most suitable for climate mean with NCEP1 the next most suitable. For climate variability, ERA-I is the best followed by MERRA. Overall, MERRA is preferred for generating lateral boundary conditions for this domain, followed by ERA-I. While a "better" LBC specification is not the sole precursor to an improved downscaling outcome, any reduction in uncertainty associated with the specification of LBCs is a step in the right direction.
Haywood, A.M.; Dowsett, H.J.; Robinson, M.M.; Stoll, D.K.; Dolan, A.M.; Lunt, D.J.; Otto-Bliesner, B.; Chandler, M.A.
2011-01-01
The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere-only climate models. The second (Experiment 2) utilises fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.
Haywood, A. M.; Dowsett, H. J.; Robinson, M. M.; Stoll, D. K.; Dolan, A. M.; Lunt, D. J.; Otto-Bliesner, B.; Chandler, M. A.
2011-01-01
The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere only climate models. The second (Experiment 2) utilizes fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.
The scaling window of the 5D Ising model with free boundary conditions
Lundow, P. H.; Markström, K.
2016-10-01
The five-dimensional Ising model with free boundary conditions has recently received a renewed interest in a debate concerning the finite-size scaling of the susceptibility near the critical temperature. We provide evidence in favour of the conventional scaling picture, where the susceptibility scales as L2 inside a critical scaling window of width 1 /L2. Our results are based on Monte Carlo data gathered on system sizes up to L = 79 (ca. three billion spins) for a wide range of temperatures near the critical point. We analyse the magnetisation distribution, the susceptibility and also the scaling and distribution of the size of the Fortuin-Kasteleyn cluster containing the origin. The probability of this cluster reaching the boundary determines the correlation length, and its behaviour agrees with the mean field critical exponent δ = 3, that the scaling window has width 1 /L2.
Topological expansion and boundary conditions
Eynard, Bertrand
2008-01-01
In this article, we compute the topological expansion of all possible mixed-traces in a hermitian two matrix model. In other words we give a recipe to compute the number of discrete surfaces of given genus, carrying an Ising model, and with all possible given boundary conditions. The method is recursive, and amounts to recursively cutting surfaces along interfaces. The result is best represented in a diagrammatic way, and is thus rather simple to use.
Habermann, M.; Maxwell, D. A.; Truffer, M.
2012-04-01
A crucial assumption in all ice sheet models concerns the nature and parametrization of the basal boundary condition. Direct observations on large spatial scales are not possible, but inverse methods can be used to determine the distribution of basal properties from surface measurements. We developed open-source iterative inverse algorithms and applied them to PISM, a hybrid ice sheet model that solves a combination of the Shallow Ice and Shallow Shelf Approximations. In a regional-scale model of Jakobshavn Isbræ, the fastest flowing ice stream of Greenland, we invert for basal stickiness over the entire drainage basin. The sensitivity of the reconstructed basal stickiness to the following modeling choices is evaluated: temperature distribution within the ice, definition of the misfit functional, tolerance for the stopping criterion and initial estimates of basal stickiness. The effects and the management of missing data are analyzed. In 2002 the floating tongue of Jakobshavn Isbræ disintegrated catastrophically, leading to increased speeds and rapid thinning of the inland ice. Detailed velocity maps from before and after this breakup allow us to compare retrieved basal parameters and to track the continuing evolution of the basal boundary condition.
Energy Technology Data Exchange (ETDEWEB)
Marcella, Marc Pace [Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Cambridge, MA (United States); Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Eltahir, Elfatih A.B. [Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)
2012-01-15
The importance of specifying realistic lateral boundary conditions in the regional modeling of mineral aerosols has not been examined previously. This study examines the impact of assigning values for mineral aerosol (dust) concentrations at the lateral boundaries of Regional Climate Model version 3 (RegCM3) and its aerosol model over Southwest Asia. Currently, the dust emission module of RegCM3 operates over the interior of the domain, allowing dust to be transported to the boundaries, but neglecting any dust emitted at these points or from outside the domain. To account for possible dust occurring at, or entering from the boundaries, mixing ratios of dust concentrations from a larger domain RegCM3 simulation are specified at the boundaries of a smaller domain over Southwest Asia. The lateral boundary conditions are monthly averaged concentration values ({mu}g of dust per kg of dry air) resolved in the vertical for all four dust bin sizes within RegCM3's aerosol model. RegCM3 simulations with the aerosol/dust model including lateral boundary conditions for dust are performed for a five year period and compared to model simulations without prescribed dust concentrations at the boundaries. Results indicate that specifying boundary conditions has a significant impact on dust loading across the entire domain over Southwest Asia. More specifically, a nearly 30% increase in aerosol optical depth occurs during the summer months from specifying realistic dust boundary conditions, bringing model results closer to observations such as MISR. In addition, smaller dust particles at the boundaries have a more important impact than large particles in affecting the dust loading within the interior of this domain. Moreover, increases in aerosol optical depth and dust concentrations within the interior domain are not entirely caused by inflow from the boundaries; results indicate that an increase in the gradient of concentration at the boundaries causes an increase of
Modeling of microdevices for SAW-based acoustophoresis - A study of boundary conditions
DEFF Research Database (Denmark)
Skov, Nils Refstrup; Bruus, Henrik
2016-01-01
We present a finite-element method modeling of acoustophoretic devices consisting of a single, long, straight, water-filled microchannel surrounded by an elastic wall of either borosilicate glass (pyrex) or the elastomer polydimethylsiloxane (PDMS) and placed on top of a piezoelectric transducer...... that actuates the device by surface acoustic waves (SAW). We compare the resulting acoustic fields in these full solid-fluid models with those obtained in reduced fluid models comprising of only a water domain with simplified, approximate boundary conditions representing the surrounding solids. The reduced...... models are found to only approximate the acoustically hard pyrex systems to a limited degree for large wall thicknesses and but not very well for acoustically soft PDMS systems shorter than the PDMS damping length of 3 mm....
Modeling of microdevices for SAW-based acoustophoresis --- a study of boundary conditions
Skov, Nils Refstrup
2016-01-01
We present a finite-element method modeling of acoustophoretic devices consisting of a single, long, straight, water-filled microchannel surrounded by an elastic wall of either borosilicate glass (pyrex) or the elastomer polydimethylsiloxane (PDMS) and placed on top of a piezoelectric transducer that actuates the device by surface acoustic waves (SAW). We compare the resulting acoustic fields in these full solid-fluid models with those obtained in reduced fluid models comprising of only a water domain with simplified, approximate boundary conditions representing the surrounding solids. The reduced models are found to only approximate the acoustically hard pyrex systems to a limited degree for large wall thicknesses and not at all for the acoustically soft PDMS systems.
Modeling of Microdevices for SAW-Based Acoustophoresis — A Study of Boundary Conditions
Directory of Open Access Journals (Sweden)
Nils Refstrup Skov
2016-10-01
Full Text Available We present a ﬁnite-element method modeling of acoustophoretic devices consisting of a single, long, straight, water-ﬁlled microchannel surrounded by an elastic wall of either borosilicate glass (pyrex or the elastomer polydimethylsiloxane (PDMS and placed on top of a piezoelectric transducer that actuates the device by surface acoustic waves (SAW. We compare the resulting acoustic ﬁelds in these full solid-ﬂuid models with those obtained in reduced ﬂuid models comprising of only a water domain with simpliﬁed, approximate boundary conditions representing the surrounding solids. The reduced models are found to only approximate the acoustically hard pyrex systems to a limited degree for large wall thicknesses and but not very well for acoustically soft PDMS systems shorter than the PDMS damping length of 3 mm.
Planck scale boundary conditions in the standard model with singlet scalar dark matter
Haba, Naoyuki; Takahashi, Ryo
2013-01-01
We investigate Planck scale boundary conditions on the Higgs sector of the standard model with a gauge singlet scalar dark matter. We will find that vanishing self-coupling and Veltman condition at the Planck scale are realized with the 126 GeV Higgs mass and top pole mass, 171.8 GeV $\\lesssim M_t\\lesssim$ 173.5 GeV, where a correct abundance of scalar dark matter is obtained with mass of 300 GeV $\\lesssim m_S \\lesssim$ 1 TeV. It means that the Higgs potential is flat at the Planck scale, and this situation can not be realized in the standard model with the top pole mass.
Planck scale boundary conditions in the standard model with singlet scalar dark matter
Energy Technology Data Exchange (ETDEWEB)
Haba, Naoyuki [Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504 (Japan); Kaneta, Kunio [Kavli IPMU (WPI), The University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Takahashi, Ryo [Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504 (Japan)
2014-04-04
We investigate Planck scale boundary conditions on the Higgs sector of the standard model with a gauge singlet scalar dark matter. We will find that vanishing self-coupling and Veltman condition at the Planck scale are realized with the 126 GeV Higgs mass and top pole mass, 172 GeV≲M{sub t}≲173.5 GeV, where a correct abundance of scalar dark matter is obtained with mass of 300 GeV≲m{sub S}≲1 TeV. It means that the Higgs potential is flat at the Planck scale, and this situation can not be realized in the standard model with the top pole mass.
Evaluation of lateral boundary conditions in a regional chemical transport model
Directory of Open Access Journals (Sweden)
E. Andersson
2015-07-01
Full Text Available Hemispheric transport of air pollutants can have a significant impact on regional air quality, as well as on the effect of air pollutants on regional climate. An accurate representation of hemispheric transport in regional chemical transport models (CTMs depends on the specification of the lateral boundary conditions (LBCs. This study investigates the use of new LBCs of two moderately long-lived trace gases, CO and O3, for the European model domain. The LBCs are generated by use of the global EMEP MSC-W model; they are evaluated at the lateral boundaries by comparison with satellite observations of the Terra/MOPITT sensor (CO and the Aura/OMI sensor (O3 for use with European domain calculations with the Swedish Multi-scale Atmospheric Transport and CHemistry (MATCH model. The LBCs from the global EMEP model lie well within the satellite uncertainties for both CO and O3. The biases increase below 700 hPa for both species, although it should be noted that satellite data below this height are more influenced by a priori data and hence less reliable than at e.g. 500 hPa. CO is, on average, underestimated by the global model, while O3 tends to be overestimated during winter, and underestimated during summer. Next, the validated LBCs are applied in a dynamical and climatological setup, respectively, to the MATCH model, set up over the European domain. The MATCH results obtained with climatological and dynamic LBCs are then validated against independent satellite retrievals from the Aqua/AIRS sensor at 500 hPa, and against in situ ground observations from the Global Atmospheric Watch (GAW network. The application of the EMEP LBCs in the regional MATCH model greatly impacted the model results. The direct impact on ground-level concentrations strongly depends on the distance from the inflow boundary. The improvements of dynamic over climatological LBCs become most apparent when using AOT40 as a metric. Also, when focusing at ground observations taken
GLIMMER Antarctic Ice Sheet Model,an experimental research of moving boundary condition
Institute of Scientific and Technical Information of China (English)
Tang Xueyuan; Sun Bo; Zhang Zhanhai; Li Yuansheng; Yang Qinghua
2008-01-01
A 3 D coupled ice sheet model,GLIMMER model is introduced,and an idealized ice sheet experiment under the EISMINT 1 criterion of moving boundary condition is presented.The results of the experiment reveal that for a steady state ice sheet profile the characteristic curves describe the process of evolution which are accordant with theoretical estimates.By solving the coupled thermodynamics equations of ice sheet,one may find the characteristic curves which derived from the conservation of the mass,energy and momentum to the ice flow profile.At the same time,an agreement,approximate to the GLIMMER case and the confirmed theoretical results,is found.Present study is explorihg work to introduceand discuss the handicaps of EISMINT criterion and GLIMMER,and prospect a few directions of the GLIMMER model.
Probability of boundary conditions in quantum cosmology
Suenobu, Hiroshi; Nambu, Yasusada
2017-02-01
One of the main interest in quantum cosmology is to determine boundary conditions for the wave function of the universe which can predict observational data of our universe. For this purpose, we solve the Wheeler-DeWitt equation for a closed universe with a scalar field numerically and evaluate probabilities for boundary conditions of the wave function of the universe. To impose boundary conditions of the wave function, we use exact solutions of the Wheeler-DeWitt equation with a constant scalar field potential. These exact solutions include wave functions with well known boundary condition proposals, the no-boundary proposal and the tunneling proposal. We specify the exact solutions by introducing two real parameters to discriminate boundary conditions, and obtain the probability for these parameters under the requirement of sufficient e-foldings of the inflation. The probability distribution of boundary conditions prefers the tunneling boundary condition to the no-boundary boundary condition. Furthermore, for large values of a model parameter related to the inflaton mass and the cosmological constant, the probability of boundary conditions selects an unique boundary condition different from the tunneling type.
Metz, P. D.
A FORTRAN computer program called GROCS (GRound Coupled Systems) has been developed to study 3-dimensional underground heat flow. Features include the use of up to 30 finite elements or blocks of Earth which interact via finite difference heat flow equations and a subprogram which sets realistic time and depth dependent boundary conditions. No explicit consideration of mositure movement or freezing is given. GROCS has been used to model the thermal behavior of buried solar heat storage tanks (with and without insulation) and serpentine pipe fields for solar heat pump space conditioning systems. The program is available independently or in a form compatible with specially written TRNSYS component TYPE subroutines. The approach taken in the design of GROCS, the mathematics contained and the program architecture, are described. Then, the operation of the stand-alone version is explained. Finally, the validity of GROCS is discussed.
Directory of Open Access Journals (Sweden)
Bashir Ahmad
2013-02-01
Full Text Available In this article, we discuss the existence of solutions for a boundary-value problem of integro-differential equations of fractional order with nonlocal fractional boundary conditions by means of some standard tools of fixed point theory. Our problem describes a more general form of fractional stochastic dynamic model for financial asset. An illustrative example is also presented.
Simulating thermal boundary conditions of spin-lattice models with weighted averages
Wang, Wenlong
2016-07-01
Thermal boundary conditions have played an increasingly important role in revealing the nature of short-range spin glasses and is likely to be relevant also for other disordered systems. Diffusion method initializing each replica with a random boundary condition at the infinite temperature using population annealing has been used in recent large-scale simulations. However, the efficiency of this method can be greatly suppressed because of temperature chaos. For example, most samples have some boundary conditions that are completely eliminated from the population in the process of annealing at low temperatures. In this work, I study a weighted average method to solve this problem by simulating each boundary conditions separately and collect data using weighted averages. The efficiency of the two methods is studied using both population annealing and parallel tempering, showing that the weighted average method is more efficient and accurate.
Directory of Open Access Journals (Sweden)
Andrea N. Ceretani
2015-01-01
Full Text Available A semi-infinite material under a solidification process with the Solomon-Wilson-Alexiades mushy zone model with a heat flux condition at the fixed boundary is considered. The associated free boundary problem is overspecified through a convective boundary condition with the aim of the simultaneous determination of the temperature, the two free boundaries of the mushy zone and one thermal coefficient among the latent heat by unit mass, the thermal conductivity, the mass density, the specific heat, and the two coefficients that characterize the mushy zone, when the unknown thermal coefficient is supposed to be constant. Bulk temperature and coefficients which characterize the heat flux and the heat transfer at the boundary are assumed to be determined experimentally. Explicit formulae for the unknowns are given for the resulting six phase-change problems, besides necessary and sufficient conditions on data in order to obtain them. In addition, relationship between the phase-change process solved in this paper and an analogous process overspecified by a temperature boundary condition is presented, and this second problem is solved by considering a large heat transfer coefficient at the boundary in the problem with the convective boundary condition. Formulae for the unknown thermal coefficients corresponding to both problems are summarized in two tables.
Wittwer, David Christian
The finite difference time domain (FDTD) method has become a main stream analysis tool for engineers solving complex electromagnetic wave interaction problems. Its first principles approach affords it a wide range of applications from radar cross section (RCS) predictions of electrically large structures to molecular scale analysis of complex materials. This wide area of application may be attributed to the coupling of auxiliary differential equations with Maxwell's equations to describe the physical properties of a given problem. Previous extensions have included sub-cell models for describing lumped circuit elements within a single Yee cell, transformation of near-field information to the far-field for the analysis of antenna problems, dispersive material models and mesh truncation techniques. A review of these extensions is presented. What has not been previously developed is the ability to truncate lossy dielectric materials at the boundary of the simulation domain. Such outer boundary conditions (OBCs) are required in simulations dealing with ground penetrating radar, integrated circuits and many microwave devices such as stripline and microstrip structures. We have developed such an OBC by surrounding the exterior of the simulation domain with a lossy dispersive material based on a two time-derivative Lorentz model (L2TDLM). We present the development of the material as an absorber and ultimately as a full 3D OBC. Examples of microstrip, structures are presented to re-enforce the importance of modeling losses in dielectric structures. Finally, validation of the FDTD simulator and demonstration of the L2TDLM OBC's effectiveness is achieved by comparison with measured results from these microwave devices.
Raghupathy, Arun; Ghia, Karman; Ghia, Urmila
2008-11-01
Compact Thermal Models (CTM) to represent IC packages has been traditionally developed using the DELPHI-based (DEvelopment of Libraries of PHysical models for an Integrated design) methodology. The drawbacks of this method are presented, and an alternative method is proposed. A reduced-order model that provides the complete thermal information accurately with less computational resources can be effectively used in system level simulations. Proper Orthogonal Decomposition (POD), a statistical method, can be used to reduce the order of the degree of freedom or variables of the computations for such a problem. POD along with the Galerkin projection allows us to create reduced-order models that reproduce the characteristics of the system with a considerable reduction in computational resources while maintaining a high level of accuracy. The goal of this work is to show that this method can be applied to obtain a boundary condition independent reduced-order thermal model for complex components. The methodology is applied to the 1D transient heat equation.
Use of Sensor Imagery Data for Surface Boundary Conditions in Regional Climate Modeling
Choi, Hyun Il
2011-01-01
Mesoscale climate and hydrology modeling studies have increased in sophistication and are being run at increasingly higher resolutions. Data resolution sufficiently finer than that of the computational model is required not only to support sophisticated linkages and process interactions at small scales but to assess their cumulative impact at larger scales. The global distributions at fine spatial and temporal scales can be described by means of various senor imagery data collected through remote sensing techniques, sensor image and photo programs, scanning and digitizing skills for existing maps, etc. The availability of global sensor imagery maps facilitates assimilation in land surface models to account for terrestrial dynamics. This study focuses on the use of global imagery data for development and construction of surface boundary conditions (SBCs) specifically designed for mesoscale regional climate model (RCM) applications. The several SBCs are currently presented in a RCM domain for the continent of Asia at 30-km spacing by using sensor imagery data. Geographic Information System (GIS) software application tools are mainly used to convert data information from various raw data onto RCM-specific grids. The raw data sources and processing procedures are elaborated in detail, by which the SBCs can be readily constructed for any specific RCM domain anywhere in the world. PMID:22163982
The integral form of APS boundary conditions in the Bag Model
Abrikosov, A A; Wipf, Andreas
2006-01-01
We propose an integral form of Atiah-Patodi-Singer spectral boundary conditions (SBC) and find explicitly the integral projector onto SBC for the 3-dimensional spherical cavity. After discussion of a simple example we argue that the relation between the projector and fermion propagator is universal and stays valid independently of the bag form and space dimension.
Meierbachtol, T. W.; Harper, J. T.; Johnson, J. V.; Humphrey, N. F.; Brinkerhoff, D. J.
2013-12-01
The utility of ice sheet models as prognostic tools relies on an accurate assessment of initial conditions. Ice sheet models reaching an initial state using assimilation techniques are inherently sensitive to the description of processes governing behavior at the ice-air and ice-bed boundaries. Propagation of uncertainty in these boundary condition effects exerts a strong control on the ice sheet thermal profile, which in turn impacts the basal thermal regime and partitioning of surface velocity into deformational and sliding components. With this in mind, correct implementation of boundary conditions when simulating ice flow is critical. Here, using the higher order numerical ice sheet model VarGlaS, we investigate the sensitivity of model output to field-based adjustments in surface and basal boundary conditions, using full thickness thermal profiles in the ice sheet ablation zone as a metric for comparison. Our measured temperature profiles provide a unique constraint by permitting evaluation of the integrated effect of necessary model assumptions and boundary conditions over long spatial scales greater than 100 km. We implement the study over a three-dimensional catchment of the Greenland ice sheet extending from the land terminating outlet glacier Isunnguata Sermia, east to the ice sheet divide. An initial reference case is generated from the surface and basal boundary fields of the SeaRise dataset. We then drive surface boundary changes using near-surface temperature measurements spanning 2 years in the ablation zone, and by scaling measurements of firn warming in western Greenland in the accumulation zone. Basal heat flux corrections follow direct measurement in a bedrock borehole adjacent to the study domain. Results show the downstream impact of substantial warming in the accumulation zone is limited by the ice sheet flow field, resulting in small changes to model temperatures in the vicinity of measured profiles.
Directory of Open Access Journals (Sweden)
F. Tornabene
2016-01-01
Full Text Available The cylindrical bending condition for structural models is very common in the literature because it allows an incisive and simple verification of the proposed plate and shell models. In the present paper, 2D numerical approaches (the Generalized Differential Quadrature (GDQ and the finite element (FE methods are compared with an exact 3D shell solution in the case of free vibrations of functionally graded material (FGM plates and shells. The first 18 vibration modes carried out through the 3D exact model are compared with the frequencies obtained via the 2D numerical models. All the 18 frequencies obtained via the 3D exact model are computed when the structures have simply supported boundary conditions for all the edges. If the same boundary conditions are used in the 2D numerical models, some modes are missed. Some of these missed modes can be obtained modifying the boundary conditions imposing free edges through the direction perpendicular to the direction of cylindrical bending. However, some modes cannot be calculated via the 2D numerical models even when the boundary conditions are modified because the cylindrical bending requirements cannot be imposed for numerical solutions in the curvilinear edges by definition. These features are investigated in the present paper for different geometries (plates, cylinders, and cylindrical shells, types of FGM law, lamination sequences, and thickness ratios.
Rosnitskiy, P. B.; Yuldashev, P. V.; Vysokanov, B. A.; Khokhlova, V. A.
2016-03-01
An equivalent source model is developed for setting boundary conditions on the parabolic diffraction equation in order to simulate ultrasound fields radiated by strongly focused medical transducers. The equivalent source is defined in a plane; corresponding boundary conditions for pressure amplitude, aperture, and focal distance are chosen so that the axial solution to the parabolic model in the focal region of the beam matches the solution to the full diffraction model (Rayleigh integral) for a spherically curved uniformly vibrating source. It is shown that the proposed approach to transferring the boundary condition from a spherical surface to a plane makes it possible to match the solutions over an interval of several diffraction maxima around the focus even for focused sources with F-numbers less than unity. This method can be used to accurately simulate nonlinear effects in the fields of strongly focused therapeutic transducers using the parabolic Khokhlov-Zabolotskaya equation.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat flux Q to air / sea temperature difference △T by a relaxation coefficient k. The model was initiated from the National Centers for Environmental Prediction (NCEP) atmospheric observations for 1 December 1977, and from the National Ocean Data Center (NODC) global climatological mean December temperature and salinity fields at 1° ×1° resolution. The time step is 7.5 minutes. We integrated the model for 450 days and obtained a complete model-generated global data set of daily mean downward net surface flux Q, surface air temperature TA,and sea surface temperature To. Then, we calculated the cross-correlation coefficients (CCC) between Q and △T. The ensemble mean CCC fields show (a) no correlation between Q and △T in the equatorial regions, and (b) evident correlation (CCC≥ 0.7) between Q and △T in the middle and high latitudes.Additionally, we did the variance analysis and found that when k= 120 W m-2K-1, the two standard deviations, σrq and σk△T, are quite close in the middle and high latitudes. These results agree quite well with a previous research (Chu et al., 1998) on analyzing the NCEP re-analyzed surface data, except that a smaller value of k (80 W m-2K-1) was found in the previous study.
A FINITE ELEMENT MODEL OF IN VIVO MOUSE TIBIAL COMPRESSION LOADING: INFLUENCE OF BOUNDARY CONDITIONS
Directory of Open Access Journals (Sweden)
Hajar Razi
2014-12-01
Full Text Available Though bone is known to adapt to its mechanical challenges, the relationship between the local mechanical stimuli and the adaptive tissue response seems so far unclear. A major challenge appears to be a proper characterization of the local mechanical stimuli of the bones (e.g. strains. The finite element modeling is a powerful tool to characterize these mechanical stimuli not only on the bone surface but across the tissue. However, generating a predictive finite element model of biological tissue strains (e.g., physiological-like loading encounters aspects that are inevitably unclear or vague and thus might significantly influence the predicted findings. We aimed at investigating the influence of variations in bone alignment, joint contact surfaces and displacement constraints on the predicted strains in an in vivo mouse tibial compression experiment. We found that the general strain state within the mouse tibia under compressive loading was not affected by these uncertain factors. However, strain magnitudes at various tibial regions were highly influenced by specific modeling assumptions. The displacement constraints to control the joint contact sites appeared to be the most influential factor on the predicted strains in the mouse tibia. Strains could vary up to 150% by modifying the displacement constraints. To a lesser degree, bone misalignment (from 0 to 20° also resulted in a change of strain (+300 µε = 40%. The definition of joint contact surfaces could lead to up to 6% variation. Our findings demonstrate the relevance of the specific boundary conditions in the in vivo mouse tibia loading experiment for the prediction of local mechanical strain values using finite element modeling.
Directory of Open Access Journals (Sweden)
Rui Li
2013-01-01
Full Text Available We study the existence and uniqueness of the positive solution for the fractional differential system involving the Riemann-Stieltjes integral boundary conditions , , , , , and , where , , and and are the standard Riemann-Liouville derivatives, and are functions of bounded variation, and and denote the Riemann-Stieltjes integral. Our results are based on a generalized fixed point theorem for weakly contractive mappings in partially ordered sets.
González-Ruiz, A
1994-01-01
We consider integrable open-boundary conditions for the supersymmetric t-J model commuting with the number operator $n$ and $S^{z}$. We find four families, each one depending on two arbitrary parameters. The associated eigenvalue problem is solved by generalizing the Nested Algebraic Bethe Ansatz of the quantum group invariant case (which is obtained as a special limit). For the quantum group invariant case the Bethe ansatz states are shown to be highest weights of $spl_{q}(2,1)$. We also discuss the relation between Sklyanin's method of constructing open boundary conditions and the one for the quantum group invariant case based on Markov traces.
Pekker, Leonid; Murphy, Anthony B.
2016-09-01
In this paper, we propose a new set of boundary conditions at ablative hot walls with thermionic electron emission for two-temperature thermal arc models in which the temperature of electrons can deviate from the temperature of heavy particles,~{{T}\\text{e}}\
Numerical model simulations of boundary-layer dynamics during winter conditions
DEFF Research Database (Denmark)
Melas, D.; Persson, T.; Bruin, H. de;
2001-01-01
A mesoscale numerical model, incorporating a land-surface scheme based on Deardorffs' approach, is used to study the diurnal variation of the boundary layer structure and surface fluxes during four consecutive days with air temperatures well below zero, snow covered ground and changing synoptic...... forcing. Model results are evaluated against in-situ measurements performed during the WINTEX field campaign held in Sodankyla, Northern Finland in March 1997. The results show that the land-surface parameterization employed in the mesoscale model is not able to reproduce the magnitude of the daytime...
Higgsless Deconstruction Without Boundary Condition
He, H J
2004-01-01
Deconstruction is a powerful means to explore the rich dynamics of gauge theories in four and higher dimensions. We demonstrate that gauge symmetry breaking in a compactified higher dimensional theory can be formulated via deconstructed 4D moose theory with {\\it spontaneous symmetry breaking} and {\\it without boundary condition.} The proper higher-D boundary conditions are automatically induced in the continuum limit rather than being imposed. We identify and analyze the moose theories which exhibit {\\it delayed unitarity violation} (effective unitarity) as a {\\it collective effect} of many gauge groups, without resorting to any known 5D geometry. Relevant phenomenological constraints are also addressed.
Incoherent boundary conditions and metastates
Enter, Aernout C.D. van; Netočný, Karel; Schaap, Hendrikjan G.
2006-01-01
In this contribution we discuss the role which incoherent boundary conditions can play in the study of phase transitions. This is a question of particular relevance for the analysis of disordered systems, and in particular of spin glasses. For the moment our mathematical results only apply to ferrom
Baatsen, Michiel; van Hinsbergen, Douwe; von der Heydt, Anna; Dijkstra, Henk; Sluijs, Appy; Abels, Hemmo; Bijl, Peter
2016-04-01
Studies on deep-time palaeoclimate using numerical model simulations are often considerably dependent on the implemented geographical boundary conditions. Because building the required palaeogeographic datasets for these models is often a time-consuming and elaborate exercise, such model studies frequently use reconstructions in which the latest insights have not yet been incorporated. We here provide a new method to efficiently generate global topography and bathymetry reconstructions that are suitable for palaeoclimate modelling. The workflow facilitates the interaction between experts in geology and paleoclimate modelling, while keeping the boundary conditions up to date and improving the consistency between different studies. Using a plate-tectonic model, global masks are created that contain the distribution of land, continental shelves, shallow basins and the deep ocean. We then combine depth-age relationships for oceanic crust with adjusted present-day topography into a first estimate of the global geography at a chosen time frame. This estimate subsequently needs manual editing of areas where the available geological data indicates significant altimetry changes over time. Since the discussion regarding many of these regions of interest is still ongoing, we have made the incorporation of changes as easy as possible. As a result, complete reconstructions can be made with limited effort and are provided as a boundary condition for numerical models. Results will be presented of simulations with both POP and CESM, covering both a late Eocene (38Ma) and an early Oligocene (30Ma) reconstruction. Changing boundary conditions are used to assess the impact of geography changes during the Eocene-Oligocene transition. Both the geographical reconstructions and validation of the results using proxies are being done in close collaboration with the Department of Geosciences at Utrecht University.
Bajnok, Z; Takács, G
2002-01-01
We review our recent results on the on-shell description of sine-Gordon model with integrable boundary conditions. We determined the spectrum of boundary states together with their reflection factors by closing the boundary bootstrap and checked these results against WKB quantization and numerical finite volume spectra obtained from the truncated conformal space approach. The relation between a boundary resonance state and the semiclassical instability of a static classical solution is analyzed in detail.
Semi-implicit Image Denoising Algorithm for Different Boundary Conditions
Directory of Open Access Journals (Sweden)
Yuying Shi
2013-04-01
Full Text Available In this paper, the Crank-Nicolson semi-implicit difference scheme in matrix form is applied to discrete the Rudin-Osher-Fatemi model. We also consider different boundary conditions: Dirichlet boundary conditions, periodic boundary conditions, Neumann boundary conditions, antireflective boundary conditions and mean boundary conditions. By comparing the experimental results of Crank-Nicolson semi-implicit scheme and explicit scheme with the proposed boundary conditions, we can get that the semi-implicit scheme can overcome the instability and the number of iterations of the shortcomings that the explicit discrete scheme has, and its recovery effects are better than the explicit discrete scheme. In addition, the antireflective boundary conditions and Neumann boundary conditions can better maintain the continuity of the boundary in image denoising.
Institute of Scientific and Technical Information of China (English)
Ning WANG; Kui-hua WANG; Wen-bing WU
2013-01-01
In this paper,a model named fictitious soil pile was introduced to solve the boundary coupled problem at the pile tip.In the model,the soil column between pile tip and bedrock was treated as a fictitious pile,which has the same properties as the local soil.The tip of the fictitious soil pile was assumed to rest on a rigid rock and no tip movement was allowed.In combination with the plane strain theory,the analytical solutions of vertical vibration response of piles in a frequency domain and the corresponding semi-analytical solutions in a time domain were obtained using the Laplace transforms and inverse Fourier transforms.A parametric study of pile response at the pile tip and head showed that the thickness and layering of the stratum between pile tip and bedrock have a significant influence on the complex impedances.Finally,two applications of the analytical model were presented.One is to identify the defects of the pile shaft,in which the proposed model was proved to be accurate to identify the location as well as the length of pile defects.Another application of the model is to identify the sediment thickness under the pile tip.The results showed that the sediment can lead to the decrease of the pile stiffness and increase of the damping,especially when the pile is under a low frequency load.
Directory of Open Access Journals (Sweden)
T. Tharammal
2012-04-01
Full Text Available A series of experiments was conducted using a water isotope tracers-enabled atmospheric general circulation model (Community Atmosphere Model version 3.0, CAM3.0-Iso, by changing the individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea-surface temperature each at a time to Last Glacial Maximum (LGM values. In addition, a combined simulation with all the boundary conditions being set to LGM values was carried out. A pre-industrial (PI simulation with boundary conditions taken according to the PMIP2 (Paleoclimate Modelling Intercomparison Project protocol was performed as the control experiment. The experiments were designed in order to analyze the temporal and spatial variations of the oxygen isotopic composition of precipitation (δ^{18}O_{precip} in response to individual climate factors. The change in topography (due to the change in land-ice cover played a significant role in reducing the surface temperature and δ^{18}O_{precip} over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and δ^{18}O_{precip} further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3. Large reductions in δ^{18}O_{precip} over the LGM ice sheets were highly correlated with the temperature decrease over them. The SST and ice sheet topography changes were found to be responsible for most of the changes in the climate and hence the δ^{18}O_{precip} distribution among the simulations.
Directory of Open Access Journals (Sweden)
Leon van der Linden
2015-01-01
Full Text Available Downscaled climate scenarios can be used to inform management decisions on investment in infrastructure or alternative water sources within water supply systems. Appropriate models of the system components, such as catchments, rivers, lakes and reservoirs, are required. The climatic sensitivity of the coupled hydrodynamic water quality model ELCOM-CAEDYM was investigated, by incrementally altering boundary conditions, to determine its suitability for evaluating climate change impacts. A series of simulations were run with altered boundary condition inputs for the reservoir. Air and inflowing water temperature (TEMP, wind speed (WIND and reservoir inflow and outflow volumes (FLOW were altered to investigate the sensitivity of these key drivers over relevant domains. The simulated water quality variables responded in broadly plausible ways to the altered boundary conditions; sensitivity of the simulated cyanobacteria population to increases in temperature was similar to published values. However the negative response of total chlorophyll-a suggested by the model was not supported by an empirical analysis of climatic sensitivity. This study demonstrated that ELCOM-CAEDYM is sensitive to climate drivers and may be suitable for use in climate impact studies. It is recommended that the influence of structural and parameter derived uncertainty on the results be evaluated. Important factors in determining phytoplankton growth were identified and the importance of inflowing water quality was emphasized.
Wenzel, Sandro; Janke, Wolfhard; Läuchli, Andreas M.
2010-06-01
We study the directional-ordering transition in the two-dimensional classical and quantum compass models on the square lattice by means of Monte Carlo simulations. An improved algorithm is presented which builds on the Wolff cluster algorithm in one-dimensional subspaces of the configuration space. This improvement allows us to study classical systems up to L=512 . Based on this algorithm, we give evidence for the presence of strongly anomalous scaling for periodic boundary conditions which is much worse than anticipated before. We propose and study alternative boundary conditions for the compass model which do not make use of extended configuration spaces and show that they completely remove the problem with finite-size scaling. In the last part, we apply these boundary conditions to the quantum problem and present a considerably improved estimate for the critical temperature which should be of interest for future studies on the compass model. Our investigation identifies a strong one-dimensional magnetic ordering tendency with a large correlation length as the cause of the unusual scaling and moreover allows for a precise quantification of the anomalous length scale involved.
Directory of Open Access Journals (Sweden)
Anzhou Cao
2013-01-01
Full Text Available Based on the theory of inverse problem, the optimization of open boundary conditions (OBCs in a 3D internal tidal model is investigated with the adjoint method. Fourier coefficients of M2 internal tide on four open boundaries, which are regarded as OBCs, are inverted simultaneously. During the optimization, the steepest descent method is used to minimize cost function. The reasonability and feasibility of the model are tested by twin experiments (TEs. In TE1, OBCs on four open boundaries are successfully inverted by using independent point (IP strategy, suggesting that IP strategy is useful in parameter estimation. Results of TE2 indicate that the model is effective even by assimilating inaccurate “observations.” Based on conclusions of TEs, the M2 internal tide around Hawaii is simulated by assimilating T/P data in practical experiment. The simulated cochart shows good agreement with that obtained from the Oregon State University tidal model and T/P observations. Careful inspection shows that the major difference between simulated results and OSU model results is short-scale fluctuations superposed on coamplitude lines, which can be treated as the surface manifestation modulated by the internal tide. The computed surface manifestation along T/P tracks is comparable to the estimation in previous work.
Indian Academy of Sciences (India)
Rajeev Ranjan Kumar; D V Ramana; R N Singh
2012-10-01
Near-subsurface temperatures have signatures of climate change. Thermal models of subsurface have been constructed by prescribing time dependent Dirichlet type boundary condition wherein the temperature at the soil surface is prescribed and depth distribution of temperature is obtained. In this formulation it is not possible to include the relationship between air temperatures and the temperature of soil surface. However, if one uses a Robin type boundary condition, a transfer coefficient relates the air and soil surface temperatures which helps to determine both the temperature at the surface and at depth given near surface air temperatures. This coefficient is a function of meteorological conditions and is readily available. We have developed such a thermal model of near subsurface region which includes both heat conduction and advection due to groundwater flows and have presented numerical results for changes in the temperature–depth profiles for different values of transfer coefficient and groundwater flux. There are significant changes in temperature and depth profiles due to changes in the transfer coefficient and groundwater flux. The analytical model will find applications in the interpretation of the borehole geothermal data to extract both climate and groundwater flow signals.
Matte, Dominic; Laprise, René; Thériault, Julie M.; Lucas-Picher, Philippe
2016-09-01
In regional climate modelling, it is well known that domains should be neither too large to avoid a large departure from the driving data, nor too small to provide a sufficient distance from the lateral inflow boundary to allow the full development of the small-scale (SS) features permitted by the finer resolution. Although most practitioners of dynamical downscaling are well aware that the jump of resolution between the lateral boundary condition (LBC) driving data and the nested regional climate model affects the simulated climate, this issue has not been fully investigated. In principle, as the jump of resolution becomes larger, the region of interest in the limited-area domain should be located further away from the lateral inflow boundary to allow the full development of the SS features. A careless choice of domain might result in a suboptimal use of the full finer resolution potential to develop fine-scale features. To address this issue, regional climate model (RCM) simulations using various resolution driving data are compared following the perfect-prognostic Big-Brother protocol. Several experiments were carried out to evaluate the width of the spin-up region (i.e. the distance between the lateral inflow boundary and the domain of interest required for the full development of SS transient eddies) as a function of the RCM and LBC resolutions, as well as the resolution jump. The spin-up distance turns out to be a function of the LBC resolution only, independent of the RCM resolution. When varying the RCM resolution for a given resolution jump, it is found that the spin-up distance corresponds to a fixed number of RCM grid points that is a function of resolution jump only. These findings can serve a useful purpose to guide the choice of domain and RCM configuration for an optimal development of the small scales allowed by the increased resolution of the nested model.
Quantum "violation" of Dirichlet boundary condition
Park, I. Y.
2017-02-01
Dirichlet boundary conditions have been widely used in general relativity. They seem at odds with the holographic property of gravity simply because a boundary configuration can be varying and dynamic instead of dying out as required by the conditions. In this work we report what should be a tension between the Dirichlet boundary conditions and quantum gravitational effects, and show that a quantum-corrected black hole solution of the 1PI action no longer obeys, in the naive manner one may expect, the Dirichlet boundary conditions imposed at the classical level. We attribute the 'violation' of the Dirichlet boundary conditions to a certain mechanism of the information storage on the boundary.
Quantum violation of Dirichlet boundary condition
Park, I Y
2016-01-01
Dirichlet boundary conditions have been widely used in general relativity. They seem at odds with the holographic property of gravity simply because a boundary configuration can be varying and dynamic instead of dying out as required by the conditions. In this work we report what should be a clash between the Dirichlet boundary conditions and quantum gravitational effects, and show that a quantum corrected solution of the 1PI action no longer obeys the Dirichlet boundary conditions imposed at the classical level. We attribute the violation of the Dirichlet boundary conditions to a certain mechanism of the information storage on the boundary.
Saidi, Hiba; Erath, Byron D.
2015-11-01
The vocal folds play a major role in human communication by initiating voiced sound production. During voiced speech, the vocal folds are set into sustained vibrations. Synthetic self-oscillating vocal fold models are regularly employed to gain insight into flow-structure interactions governing the phonation process. Commonly, a fixed boundary condition is applied to the lateral, anterior, and posterior sides of the synthetic vocal fold models. However, physiological observations reveal the presence of adipose tissue on the lateral surface between the thyroid cartilage and the vocal folds. The goal of this study is to investigate the influence of including this substrate layer of adipose tissue on the dynamics of phonation. For a more realistic representation of the human vocal folds, synthetic multi-layer vocal fold models have been fabricated and tested while including a soft lateral layer representative of adipose tissue. Phonation parameters have been collected and are compared to those of the standard vocal fold models. Results show that vocal fold kinematics are affected by adding the adipose tissue layer as a new boundary condition.
Institute of Scientific and Technical Information of China (English)
罗孟波; 陈庆虎; 焦正宽
2002-01-01
We investigate the influence of the boundary condition on the short-time dynamic behaviour of the Ising-like phase transition in square-lattice fully frustrated (FF) XY models with periodic and fluctuating twist boundary conditions. The transition temperature Tc and the dynamic and static critical exponents z, 2β/v and v are estimated for both cases using short-time dynamic scaling analysis. The results show that both models have the same critical exponents, indicating that the boundary condition has nearly no effect on the short-time dynamic behaviour of the FFXY model.
Moon, Ji Young; Suh, Dae Chul; Lee, Yong Sang; Kim, Young Woo; Lee, Joon Sang
2014-02-01
Despite recent development of computational fluid dynamics (CFD) research, analysis of computational fluid dynamics of cerebral vessels has several limitations. Although blood is a non-Newtonian fluid, velocity and pressure fields were computed under the assumptions of incompressible, laminar, steady-state flows and Newtonian fluid dynamics. The pulsatile nature of blood flow is not properly applied in inlet and outlet boundaries. Therefore, we present these technical limitations and discuss the possible solution by comparing the theoretical and computational studies.
Directory of Open Access Journals (Sweden)
Haibo Chen
2013-01-01
Full Text Available Based on an internal tidal model, the practical performances of the limited-memory BFGS (L-BFGS method and two gradient descent (GD methods (the normal one with Wolfe’s line search and the simplified one are investigated computationally through a series of ideal experiments in which the open boundary conditions (OBCs are inverted by assimilating the interior observations with the adjoint method. In the case that the observations closer to the unknown boundary are included for assimilation, the L-BFGS method performs the best. As compared with the simplified GD method, the normal one really uses less iteration to reach a satisfactory solution, but its advantage over the simplified one is much smaller than expected. In the case that only the observations that are further from the unknown boundary are assimilated, the simplified GD method performs the best instead, whereas the performances of the other two methods are not satisfactory. The advanced L-BFGS algorithm and Wolfe’s line search still need to be improved when applied to the practical cases. The simplified GD method, which is controllable and easy to implement, should be regarded seriously as a choice, especially when the classical advanced optimization techniques fail or perform poorly.
Absorbing Boundary Conditions for Hyperbolic Systems
Institute of Scientific and Technical Information of China (English)
Matthias Ehrhardt
2010-01-01
This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions. We prove the strict well-posedness of the resulting initial boundary value problem in 1D. Afterwards we establish the GKS-stability of the corresponding Lax-Wendroff-type finite difference scheme. Hereby, we have to extend the classical proofs, since the (discretized) absorbing boundary conditions do not fit the standard form of boundary conditions for hyperbolic systems.
Directory of Open Access Journals (Sweden)
B. I. Kopytko
2011-12-01
Full Text Available By means of the methods of classic potential theory the multiplicative operator family is constructed that describes an in homogeneous diffusion process on a half-line with general boundary condition of Feller-Wentzel.
Institute of Scientific and Technical Information of China (English)
Miyi Li; Tao Fang
2015-01-01
A rigorous approach is proposed to model the mean ion activity coefficient for strong electrolyte systems using the Poisson–Boltzmann equation. An effective screening radius similar to the Debye decay length is introduced to define the local composition and new boundary conditions for the central ion. The crystallographic ion size is also considered in the activity coefficient expressions derived and non-electrostatic contributions are neglected. The model is presented for aqueous strong electrolytes and compared with the classical Debye–Hückel (DH) limiting law for dilute solutions. The radial distribution function is compared with the DH and Monte Carlo studies. The mean ion activity coefficients are calculated for 1:1 aqueous solutions containing strong electrolytes composed of alkali halides. The individual ion activity coefficients and mean ion activity coefficients in mixed sol-vents are predicted with the new equations.
Shepelev, Igor A.; Slepnev, Andrei V.; Vadivasova, Tatiana E.
2016-09-01
The model of a one-dimensional active medium, which cells are the FitzHugh-Nagumo oscillators, is studied for periodical boundary conditions. The medium possesses three different regimes in dependence on the parameter values. The regimes correspond to the self-sustained oscillations, excitable dynamics or bistability of the medium cells. Periodic boundary conditions provide the existence of traveling wave modes in all mentioned cases without any deterministic or stochastic excitation. The spatial waveforms and the character of oscillations in time can be similar in the different cases, but the properties of wave modes depend considerably on the medium regime. So, the dispersion characteristics and the synchronization phenomena are essentially different for bistable and excitable media on the one hand, and for the self-sustained oscillatory medium on the other hand. The local and distributed periodic influence on the medium are studied. The phenomenon of the traveling wave frequency locking is observed for all three regimes of the active medium. The comparison of synchronization effects in self-oscillatory, excitable and bistable regimes of the active medium is carried out.
Pawaskar, Sainath Shrikant; Fisher, John; Jin, Zhongmin
2010-03-01
Contact detection in cartilage contact mechanics is an important feature of any analytical or computational modeling investigation when the biphasic nature of cartilage and the corresponding tribology are taken into account. The fluid flow boundary conditions will change based on whether the surface is in contact or not, which will affect the interstitial fluid pressurization. This in turn will increase or decrease the load sustained by the fluid phase, with a direct effect on friction, wear, and lubrication. In laboratory experiments or clinical hemiarthroplasty, when a rigid indenter or metallic prosthesis is used to apply load to the cartilage, there will not be any fluid flow normal to the surface in the contact region due to the impermeable nature of the indenter/prosthesis. In the natural joint, on the other hand, where two cartilage surfaces interact, flow will depend on the pressure difference across the interface. Furthermore, in both these cases, the fluid would flow freely in non-contacting regions. However, it should be pointed out that the contact area is generally unknown in advance in both cases and can only be determined as part of the solution. In the present finite element study, a general and robust algorithm was proposed to decide nodes in contact on the cartilage surface and, accordingly, impose the fluid flow boundary conditions. The algorithm was first tested for a rigid indenter against cartilage model. The algorithm worked well for two-dimensional four-noded and eight-noded axisymmetric element models as well as three-dimensional models. It was then extended to include two cartilages in contact. The results were in excellent agreement with the previous studies reported in the literature.
Compact difference approximation with consistent boundary condition
Institute of Scientific and Technical Information of China (English)
FU Dexun; MA Yanwen; LI Xinliang; LIU Mingyu
2003-01-01
For simulating multi-scale complex flow fields it should be noted that all the physical quantities we are interested in must be simulated well. With limitation of the computer resources it is preferred to use high order accurate difference schemes. Because of their high accuracy and small stencil of grid points computational fluid dynamics (CFD) workers pay more attention to compact schemes recently. For simulating the complex flow fields the treatment of boundary conditions at the far field boundary points and near far field boundary points is very important. According to authors' experience and published results some aspects of boundary condition treatment for far field boundary are presented, and the emphasis is on treatment of boundary conditions for the upwind compact schemes. The consistent treatment of boundary conditions at the near boundary points is also discussed. At the end of the paper are given some numerical examples. The computed results with presented method are satisfactory.
Boundary conditions of methamphetamine craving.
Lopez, Richard B; Onyemekwu, Chukwudi; Hart, Carl L; Ochsner, Kevin N; Kober, Hedy
2015-12-01
Methamphetamine use has increased significantly and become a global health concern. Craving is known to predict methamphetamine use and relapse following abstinence. Some have suggested that cravings are automatic, generalized, and uncontrollable, but experimental work addressing these claims is lacking. In 2 exploratory studies, we tested the boundary conditions of methamphetamine craving by asking: (a) is craving specific to users' preferred route of administration?, and (b) can craving be regulated by cognitive strategies? Two groups of methamphetamine users were recruited. In Study 1, participants were grouped by their preferred route of administration (intranasal vs. smoking), and rated their craving in response to photographs and movies depicting methamphetamine use (via the intranasal vs. smoking route). In Study 2, methamphetamine smokers implemented cognitive regulation strategies while viewing photographs depicting methamphetamine smoking. Strategies involved either focusing on the positive aspects of smoking methamphetamine or the negative consequences of doing so-the latter strategy based on treatment protocols for addiction. In Study 1, we found a significant interaction between group and route of administration, such that participants who preferred to smoke methamphetamine reported significantly stronger craving for smoking stimuli, whereas those who preferred the intranasal route reported stronger craving for intranasal stimuli. In Study 2, participants reported significantly lower craving when focusing on the negative consequences associated with methamphetamine use. Taken together, these findings suggest that strength of craving for methamphetamine is moderated by users' route of administration and can be reduced by cognitive strategies. This has important theoretical, methodological, and clinical implications.
General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede
2016-01-01
Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated the...... the cooling system and power losses are modeled in the 3D thermal model, which can be adapted to different real field applications of power electronic converters. The accuracy of the proposed thermal model is verified by experimental results.......Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated...
Physically-consistent wall boundary conditions for the k-ω turbulence model
DEFF Research Database (Denmark)
Fuhrman, David R.; Dixen, Martin; Jacobsen, Niels Gjøl
2010-01-01
A model solving Reynolds-averaged Navier–Stokes equations, coupled with k-v turbulence closure, is used to simulate steady channel flow on both hydraulically smooth and rough beds. Novel experimental data are used as model validation, with k measured directly from all three components of the fluc......A model solving Reynolds-averaged Navier–Stokes equations, coupled with k-v turbulence closure, is used to simulate steady channel flow on both hydraulically smooth and rough beds. Novel experimental data are used as model validation, with k measured directly from all three components...
STOCHASTIC ANALYSIS OF GROUNDWATER FLOW SUBJECT TO RANDOM BOUNDARY CONDITIONS
Institute of Scientific and Technical Information of China (English)
SHI Liang-sheng; YANG Jin-zhong; CAI Shu-ying; LIN Lin
2008-01-01
A stochastic model was developed to simulate the flow in heterogeneous media subject to random boundary conditions.Approximate partial differential equations were derived based on the Karhunen-Loeve (KL) expansion and perturbation expansion. The effect of random boundary conditions on the two-dimensional flow was examined. It is shown that the proposed stochastic model is efficient to include the random boundary conditions. The random boundaries lead to the increase of head variance and velocity variance. The influence of the random boundary conditions on head uncertainty is exerted over the whole simulated region, while the randomness of the boundary conditions leads to the increase of the velocity variance in the vicinity of boundaries.
Restructuring surface tessellation with irregular boundary conditions
Directory of Open Access Journals (Sweden)
Tsung-Hsien Wang
2014-12-01
Full Text Available In this paper, the surface tessellation problem is explored, in particular, the task of meshing a surface with the added consideration of incorporating constructible building components. When a surface is tessellated into discrete counterparts, certain unexpected conditions usually occur at the boundary of the surface, in particular, when the surface is being trimmed. For example, irregularly shaped panels form at the trimmed edges. To reduce the number of irregular panels that may form during the tessellation process, this paper presents an algorithmic approach to restructuring the surface tessellation by investigating irregular boundary conditions. The objective of this approach is to provide an alternative way for freeform surface manifestation from a well-structured discrete model of the given surface.
Impact of uncertainties in atmospheric boundary conditions on ocean model solutions
Chaudhuri, Ayan H.; Ponte, Rui M.; Forget, Gael
2016-04-01
We quantify differences in ocean model simulations derived solely from atmospheric uncertainties and investigate how they relate to overall model errors as inferred from comparisons with data. For this purpose, we use a global configuration of the MITgcm to simulate 4 ocean solutions for 2000-2009 using 4 reanalysis products (JRA-25, MERRA, CFSR and ERA-Interim) as atmospheric forcing. The simulations are compared against observations and against each other for selected variables (temperature, sea-level, sea-ice, streamfunctions, meridional heat and freshwater transports). Forcing-induced differences are comparable in magnitude to model-observation misfits for most near-surface variables in the tropics and sub-tropics, but typically smaller at higher latitudes and polar regions. Forcing-derived differences are expectedly largest near the surface and mostly limited to the upper 1000 m but can also be seen as deep as 4000 m, especially in regions of deep water formation. Errors are not necessarily local in nature and can be advected to different basins. Results indicate that while forcing adjustments might suffice in optimization procedures of near-surface fields and at low-to-mid latitudes, other control parameters are likely needed elsewhere. Forcing-induced differences can be dominated by large spatial scales and specific time scales (e.g. annual), and thus appropriate error covariances in space and time need to be considered in optimization methodologies.
Optimal boundary conditions at the staircase-shaped coastlines
Kazantsev, Eugene
2014-01-01
A 4D-Var data assimilation technique is applied to the rectangular-box configuration of the NEMO in order to identify the optimal parametrization of boundary conditions at lateral boundaries. The case of the staircase-shaped coastlines is studied by rotating the model grid around the center of the box. It is shown that, in some cases, the formulation of the boundary conditions at the exact boundary leads to appearance of exponentially growing modes while optimal boundary conditions allow to correct the errors induced by the staircase-like appriximation of the coastline.
Performance of Numerical Boundary Condition based on Active Wave Absorption
DEFF Research Database (Denmark)
Troch, Peter; De Rouck, Julien; Frigaard, Peter
2001-01-01
The performance of a new active wave generating-absorbing boundary condition for a numerical model based on the Volume Of Fluid (VOF) method for tracking free surfaces is presented.......The performance of a new active wave generating-absorbing boundary condition for a numerical model based on the Volume Of Fluid (VOF) method for tracking free surfaces is presented....
Directory of Open Access Journals (Sweden)
T. Wahl
2011-11-01
Full Text Available This paper describes a methodology to stochastically simulate a large number of storm surge scenarios (here: 10 million. The applied model is very cheap in computation time and will contribute to improve the overall results from integrated risk analyses in coastal areas. Initially, the observed storm surge events from the tide gauges of Cuxhaven (located in the Elbe estuary and Hörnum (located in the southeast of Sylt Island are parameterised by taking into account 25 parameters (19 sea level parameters and 6 time parameters. Throughout the paper, the total water levels are considered. The astronomical tides are semidiurnal in the investigation area with a tidal range >2 m. The second step of the stochastic simulation consists in fitting parametric distribution functions to the data sets resulting from the parameterisation. The distribution functions are then used to run Monte-Carlo-Simulations. Based on the simulation results, a large number of storm surge scenarios are reconstructed. Parameter interdependencies are considered and different filter functions are applied to avoid inconsistencies. Storm surge scenarios, which are of interest for risk analyses, can easily be extracted from the results.
Boundary conditions for viscous vortex methods
Energy Technology Data Exchange (ETDEWEB)
Koumoutsakos, P.; Leonard, A.; Pepin, F. (California Institute of Technology, Pasadena, CA (United States))
1994-07-01
This paper presents a Neumann-type vorticity boundary condition for the vorticity formulation of the Navier-Stokes equations. The vorticity creation process at the boundary, due to the no-slip condition, is expressed in terms of a vorticity flux. The scheme is incorporated then into a Lagrangian vortex blob method that uses a particle strength exchange algorithm for viscous diffusion. The no-slip condition is not enforced by the generation of new vortices at the boundary but instead by modifying the strength of the vortices in the vicinity of the boundary. 19 refs., 5 figs.
Absorption boundary conditions for geomertical acoustics
DEFF Research Database (Denmark)
Jeong, Cheol-Ho
2012-01-01
Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, the absorption coefficients or surface impedances of the boundary surfaces can be used, but no guideline has been developed...... solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. It is concluded that the impedance and random incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials....
Mulena, Gabriela C.; Allende, David G.; Puliafito, Salvador E.; Lakkis, Susan G.; Cremades, Pablo G.; Ulke, Ana G.
2016-07-01
The performance of the combination of the FALL3D ash dispersion model with the Weather Research and Forecast (WRF) meteorological model in the southern cone of South America under two initial and boundary conditions was evaluated. ERA-Interim and NCEP-GFS datasets were used as dynamic conditions by WRF to simulate meteorological fields for FALL3D. As a study case, we used the eruption of the Puyehue-Cordón Caulle Volcanic Complex occurred in Chile in June 2011. The simulated meteorological results were compared with the horizontal wind direction, meridional and zonal wind components, air and dew point temperatures of 7 radio sounding stations using a set of error indicators. In addition, the ash mass load simulated by FALL3D for a day of maximum dispersion of volcanic ash was evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) data, on which the Prata algorithm was applied. As well as this, the WRF-dominant physical processes with both dynamic conditions were analyzed for that same date. Meteorological results indicated that the simulation performed with WRF and NCEP-GFS shows the lowest errors at levels between 925 and 300 hPa. Ash dispersion simulated with FALL3D and WRF in both dynamic conditions shows a different perfomance, which from the synoptic and dynamic viewpoint can be explained for the result of wind intensity and geopotential height. Moreover, WRF intiliazed with NCEP-GFS and FALL3D has a higher degree of concordance with the MODIS image. Based on the analysis and results, it was concluded that for the southern cone of South America, 1) it was not trivial for the simulation of volcanic ash dispersion to use one dynamic condition or another in WRF; 2) in that sense, meteorological variables that influenced the differences in volcanic ash dispersion were horizontal wind intensity and direction and geopotential heights; 3) the system generated from the combination of the WRF model initialized with NCEP-GFS and the FALL3D dispersion
Open Boundary Conditions for Dissipative MHD
Energy Technology Data Exchange (ETDEWEB)
Meier, E T
2011-11-10
In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.
Tudor, M.
2015-08-01
Three-hourly temporal resolution of lateral boundary data for limited area models (LAMs) can be too infrequent to resolve rapidly moving storms. This problem is expected to be worse with increasing horizontal resolution. In order to detect intensive disturbances in surface pressure moving rapidly through the model domain, a filtered surface pressure field (MCUF) is computed operationally in the ARPEGE global model of Météo France. The field is distributed in the coupling files along with conventional meteorological fields used for lateral boundary conditions (LBCs) for the operational forecast using limited area model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) in the Meteorological and Hydrological Service of Croatia (DHMZ). Here an analysis is performed of the MCUF field for the LACE coupling domain for the period from 23 January 2006, when it became available, until 15 November 2014. The MCUF field is a good indicator of rapidly moving pressure disturbances (RMPDs). Its spatial and temporal distribution can be associated with the usual cyclone tracks and areas known to be supporting cyclogenesis. An alternative set of coupling files from the IFS operational run in the European Centre for Medium-Range Weather Forecasts (ECMWF) is also available operationally in DHMZ with 3-hourly temporal resolution, but the MCUF field is not available. Here, several methods are tested that detect RMPDs in surface pressure a posteriori from the IFS model fields provided in the coupling files. MCUF is computed by running ALADIN on the coupling files from IFS. The error function is computed using one-time-step integration of ALADIN on the coupling files without initialization, initialized with digital filter initialization (DFI) or scale-selective DFI (SSDFI). Finally, the amplitude of changes in the mean sea level pressure is computed from the fields in the coupling files. The results are compared to the MCUF field of ARPEGE and the results of same
Tang, Youhua; Carmichael, Gregory R.; Thongboonchoo, Narisara; Chai, Tianfeng; Horowitz, Larry W.; Pierce, Robert B.; Al-Saadi, Jassim A.; Pfister, Gabriele; Vukovich, Jeffrey M.; Avery, Melody A.; Sachse, Glen W.; Ryerson, Thomas B.; Holloway, John S.; Atlas, Elliot L.; Flocke, Frank M.; Weber, Rodney J.; Huey, L. Gregory; Dibb, Jack E.; Streets, David G.; Brune, William H.
2007-05-01
The sensitivity of regional air quality model to various lateral and top boundary conditions is studied at 2 scales: a 60 km domain covering the whole USA and a 12 km domain over northeastern USA. Three global models (MOZART-NCAR, MOZART-GFDL and RAQMS) are used to drive the STEM-2K3 regional model with time-varied lateral and top boundary conditions (BCs). The regional simulations with different global BCs are examined using ICARTT aircraft measurements performed in the summer of 2004, and the simulations are shown to be sensitive to the boundary conditions from the global models, especially for relatively long-lived species, like CO and O3. Differences in the mean CO concentrations from three different global-model boundary conditions are as large as 40 ppbv, and the effects of the BCs on CO are shown to be important throughout the troposphere, even near surface. Top boundary conditions show strong effect on O3 predictions above 4 km. Over certain model grids, the model's sensitivity to BCs is found to depend not only on the distance from the domain's top and lateral boundaries, downwind/upwind situation, but also on regional emissions and species properties. The near-surface prediction over polluted area is usually not as sensitive to the variation of BCs, but to the magnitude of their background concentrations. We also test the sensitivity of model to temporal and spatial variations of the BCs by comparing the simulations with time-varied BCs to the corresponding simulations with time-mean and profile BCs. Removing the time variation of BCs leads to a significant bias on the variation prediction and sometime causes the bias in predicted mean values. The effect of model resolution on the BC sensitivity is also studied.
Rasmussen, Jorgen
2011-01-01
We construct new Yang-Baxter integrable boundary conditions in the lattice approach to the logarithmic minimal model WLM(1,p) giving rise to reducible yet indecomposable representations of rank 1 in the continuum scaling limit. We interpret these W-extended Kac representations as finitely-generated W-extended Feigin-Fuchs modules over the triplet W-algebra W(p). The W-extended fusion rules of these representations are inferred from the recently conjectured Virasoro fusion rules of the Kac representations in the underlying logarithmic minimal model LM(1,p). We also introduce the modules contragredient to the W-extended Kac modules and work out the correspondingly-extended fusion algebra. Our results are in accordance with the Kazhdan-Lusztig dual of tensor products of modules over the restricted quantum universal enveloping algebra $\\bar{U}_q(sl_2)$ at $q=e^{\\pi i/p}$. Finally, polynomial fusion rings isomorphic with the various fusion algebras are determined, and the corresponding Grothendieck ring of charact...
Boundary conditions: The path integral approach
Energy Technology Data Exchange (ETDEWEB)
Asorey, M [Departamento de Fisica Teorica, Universidad de Zaragoza 50009 Zaragoza (Spain); Clemente-Gallardo, J [BIFI, Universidad de Zaragoza, 50009 Zaragoza (Spain); Munoz-Castaneda, J M [Departamento de Fisica Teorica, Universidad de Zaragoza 50009 Zaragoza (Spain)
2007-11-15
The path integral approach to quantum mechanics requires a substantial generalisation to describe the dynamics of systems confined to bounded domains. Nonlocal boundary conditions can be introduced in Feynman's approach by means of boundary amplitude distributions and complex phases to describe the quantum dynamics in terms of the classical trajectories. The different prescriptions involve only trajectories reaching the boundary and correspond to different choices of boundary conditions of selfadjoint extensions of the Hamiltonian. One dimensional particle dynamics is analysed in detail.
Probability of Boundary Conditions in Quantum Cosmology
Suenobu, Hiroshi
2016-01-01
One of the main interest in quantum cosmology is to determine which type of boundary conditions for the wave function of the universe can predict observational data of our universe. For this purpose, we solve the Wheeler-DeWitt equation numerically and evaluate probabilities for an observable representing evolution of the classical universe, especially, the number of e-foldings of the inflation. To express boundary conditions of the wave function, we use exact solutions of the Wheeler-DeWitt equation with constant scalar field potential. These exact solutions include wave functions with well known boundary condition proposals, the no-boundary proposal and the tunneling proposal. We specify them introducing two real parameters which discriminate boundary conditions and estimate values of these parameters resulting in observationally preferable predictions. We obtain the probability for these parameters under the requirement of the sufficient e-foldings of the inflation.
Parameter identification of stochastic diffusion systems with unknown boundary conditions
Aihara, Shin Ichi; Bagchi, Arunabha
2013-01-01
This paper treats the filtering and parameter identification for the stochastic diffusion systems with unknown boundary conditions. The physical situation of the unknown boundary conditions can be found in many industrial problems,i.g., the salt concentration model of the river Rhine is a typical ex
Trautz, Andrew; Smits, Kathleen; Cihan, Abdullah; Illangasekare, Tissa
2013-04-01
non-isothermal solution that accounts for non-equilibrium liquid/gas phase change with gas phase vapor diffusion. Several numerical simulations were performed for different theoretical formulations of phase change, allowing for evaporation/condensation processes to be investigated. The numerical formulations/code, was validated using date generated through a series of experiments conducted in the test cell under varying boundary conditions. Results from numerical simulations were compared with experimental data. Initial comparisons of various formulations demonstrate the importance of properly including evaporation and condensation behavior in modeling efforts to estimate evaporation. Detailed comparisons are still underway. This knowledge is applicable to many current hydrologic and environmental problems to include climate modeling and the simulation of contaminant transport and volatilization in the shallow subsurface.
Numerical implementation of isolated horizon boundary conditions
Jaramillo, J L; Limousin, F
2006-01-01
We study the numerical implementation of a set of boundary conditions derived from the isolated horizon formalism, and which characterize a black hole whose horizon is in quasi-equilibrium. More precisely, we enforce these geometrical prescriptions as inner boundary conditions on an excised sphere, in the numerical resolution of the Conformal Thin Sandwich equations. As main results, we firstly establish the consistency of including in the set of boundary conditions a "constant surface gravity" prescription, interpretable as a lapse boundary condition, and secondly we assess how the prescriptions presented recently by Dain et al. for guaranteeing the well-posedness of the Conformal Transverse Traceless equations with quasi-equilibrium horizon conditions extend to the Conformal Thin Sandwich elliptic system. As a consequence of the latter analysis, we discuss the freedom of prescribing the expansion associated with the ingoing null normal at the horizon.
Lu, Jia; Zhou, Huaichun
2016-09-01
To deal with the staircase approximation problem in the standard finite-difference time-domain (FDTD) simulation, the two-dimensional boundary condition equations (BCE) method is proposed in this paper. In the BCE method, the standard FDTD algorithm can be used as usual, and the curved surface is treated by adding the boundary condition equations. Thus, while maintaining the simplicity and computational efficiency of the standard FDTD algorithm, the BCE method can solve the staircase approximation problem. The BCE method is validated by analyzing near field and far field scattering properties of the PEC and dielectric cylinders. The results show that the BCE method can maintain a second-order accuracy by eliminating the staircase approximation errors. Moreover, the results of the BCE method show good accuracy for cylinder scattering cases with different permittivities. Project supported by the National Natural Science Foundation of China (Grant No. 51025622).
He, S.; Vukovich, F. M.; Ching, J.; Gilliland, A.
2002-05-01
Models-3/CMAQ system is designed to provide a comprehensive and flexible modeling tool for states and other government agencies, and for scientific studies. The current setting of initial concentrations and boundary condition (ICBC) of air species for CMAQ system represents clean ambient condition in the eastern-half of the US, and as such. The ozone ICBC differed from observational values, significantly at upper troposphere. Because of the stratosphere-troposphere exchange, the upper troposphere may contain high concentrations of ozone (hundreds of ppbv). However the current ICBC artificially set ozone level as 70ppbv in upper troposphere throughout model domain. The large difference of standard ozone ICBC from realistic situation becomes considerable uncertainty source of CMAQ system. The purpose of this research is to improve ICBC setting for Models-3/CMAQ modeling system, and to assess the influence of introducing stratospheric ozone into troposphere on regional and urban air quality and on the tropospheric ozone budget. The approach taken is to perform a series of sensitivity studies on ICBC with CMAQ. The simulation covers the entire US with 108km grid resolution from July 2 to 12 of 1988. The domain divide in 34 layers vertically up to 40mbar. In addition to the base case with standard ICBC, ozone initial concentration and boundary condition are generated based on ozone climatology (Logan, 1999), which was derived from surface, satellite, and ozonesonde data across the globe. This new ICBC enables CMAQ model to study ozone cross-tropopause flux transporting to lower troposphere, and to analyze the impact of intercontinental ozone transport. The tropospheric ozone residue (TOR) data is used to compare with modeling tropospheric ozone budget for evaluation of CMAQ performance. Since ozone climatology was based on observation, the derived ozone ICBC are in better agreement with the ``real'' atmosphere than standard ICBC. CMAQ simulations with ozone climatology
Canonical group quantization and boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Jung, Florian
2012-07-16
In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.
Student difficulties with Boundary Conditions in electrodynamics
Ryan, Qing X; Wilcox, Bethany R
2015-01-01
Boundary conditions (BCs) are considered as an important topic that advanced physics under- graduates are expected to understand and apply. We report findings from an investigation of student difficulties using boundary conditions (BCs) in electrodynamics. Our data sources include student responses to traditional exam questions, conceptual survey questions, and think-aloud interviews. The analysis was guided by an analytical framework that characterizes how students activate, con- struct, execute, and reflect on boundary conditions. Common student difficulties include: activating boundary conditions in appropriate contexts; constructing a complex expression for the E&M waves; mathematically simplifying complex exponentials and checking if the reflection and transmission co- efficient are physical. We also present potential pedagogical implications based on our observations.
Twisted Boundary Conditions in Lattice Simulations
Sachrajda, Christopher T C
2004-01-01
By imposing twisted boundary conditions on quark fields it is possible to access components of momenta other than integer multiples of 2pi/L on a lattice with spatial volume L^3. We use Chiral Perturbation Theory to study finite-volume effects with twisted boundary conditions for quantities without final-state interactions, such as meson masses, decay constants and semileptonic form factors, and confirm that they remain exponentially small with the volume. We show that this is also the case for "partially twisted" boundary conditions, in which (some of) the valence quarks satisfy twisted boundary conditions but the sea quarks satisfy periodic boundary conditions. This observation implies that it is not necessary to generate new gluon configurations for every choice of the twist angle, making the method much more practicable. For K->pipi decays we show that the breaking of isospin symmetry by the twisted boundary conditions implies that the amplitudes cannot be determined in general (on this point we disagree ...
Reconstruction of boundary conditions from internal conditions using viability theory
Hofleitner, Aude
2012-06-01
This article presents a method for reconstructing downstream boundary conditions to a HamiltonJacobi partial differential equation for which initial and upstream boundary conditions are prescribed as piecewise affine functions and an internal condition is prescribed as an affine function. Based on viability theory, we reconstruct the downstream boundary condition such that the solution of the Hamilton-Jacobi equation with the prescribed initial and upstream conditions and reconstructed downstream boundary condition satisfies the internal value condition. This work has important applications for estimation in flow networks with unknown capacity reductions. It is applied to urban traffic, to reconstruct signal timings and temporary capacity reductions at intersections, using Lagrangian sensing such as GPS devices onboard vehicles.
Future Boundary Conditions in De Sitter Space
Anninos, Dionysios; Strominger, Andrew
2011-01-01
We consider asymptotically future de Sitter spacetimes endowed with an eternal observatory. In the conventional descriptions, the conformal metric at the future boundary I^+ is deformed by the flux of gravitational radiation. We however impose an unconventional future "Dirichlet" boundary condition requiring that the conformal metric is flat everywhere except at the conformal point where the observatory arrives at I^+. This boundary condition violates conventional causality, but we argue the causality violations cannot be detected by any experiment in the observatory. We show that the bulk-to-bulk two-point functions obeying this future boundary condition are not realizable as operator correlation functions in any de Sitter invariant vacuum, but they do agree with those obtained by double analytic continuation from anti-de Sitter space.
Conformal Boundary Conditions and what they teach us
Petkova, V B
2001-01-01
The question of boundary conditions in conformal field theories is discussed, in the light of recent progress. Two kinds of boundary conditions are examined, along open boundaries of the system, or along closed curves or ``seams''. Solving consistency conditions known as Cardy equation is shown to amount to the algebraic problem of finding integer valued representations of (one or two copies of) the fusion algebra. Graphs encode these boundary conditions in a natural way, but are also relevant in several aspects of physics ``in the bulk''. Quantum algebras attached to these graphs contain information on structure constants of the operator algebra, on the Boltzmann weights of the corresponding integrable lattice models etc. Thus the study of boundary conditions in Conformal Field Theory offers a new perspective on several old physical problems and offers an explicit realisation of recent mathematical concepts.
Boundary conditions for the gravitational field
Winicour, Jeffrey
2012-06-01
A review of the treatment of boundaries in general relativity is presented with the emphasis on application to the formulations of Einstein's equations used in numerical relativity. At present, it is known how to treat boundaries in the harmonic formulation of Einstein's equations and a tetrad formulation of the Einstein-Bianchi system. However, a universal approach valid for other formulations is not in hand. In particular, there is no satisfactory boundary theory for the 3+1 formulations which have been highly successful in binary black hole simulation. I discuss the underlying problems that make the initial-boundary-value problem much more complicated than the Cauchy problem. I review the progress that has been made and the important open questions that remain. Science is a differential equation. Religion is a boundary condition. (Alan Turing, quoted in J D Barrow, ‘Theories of Everything’)
Energy Technology Data Exchange (ETDEWEB)
Caron, Louis-Philippe [MISU, Stockholm University, Stockholm (Sweden); Universite du Quebec a Montreal, CRCMD Network, Montreal, QC (Canada); Jones, Colin G. [Swedish Meterological and Hydrological Institute, Rossby Center, Norrkoeping (Sweden)
2012-07-15
Using a suite of lateral boundary conditions, we investigate the impact of domain size and boundary conditions on the Atlantic tropical cyclone and african easterly Wave activity simulated by a regional climate model. Irrespective of boundary conditions, simulations closest to observed climatology are obtained using a domain covering both the entire tropical Atlantic and northern African region. There is a clear degradation when the high-resolution model domain is diminished to cover only part of the African continent or only the tropical Atlantic. This is found to be the result of biases in the boundary data, which for the smaller domains, have a large impact on TC activity. In this series of simulations, the large-scale Atlantic atmospheric environment appears to be the primary control on simulated TC activity. Weaker wave activity is usually accompanied by a shift in cyclogenesis location, from the MDR to the subtropics. All ERA40-driven integrations manage to capture the observed interannual variability and to reproduce most of the upward trend in tropical cyclone activity observed during that period. When driven by low-resolution global climate model (GCM) integrations, the regional climate model captures interannual variability (albeit with lower correlation coefficients) only if tropical cyclones form in sufficient numbers in the main development region. However, all GCM-driven integrations fail to capture the upward trend in Atlantic tropical cyclone activity. In most integrations, variations in Atlantic tropical cyclone activity appear uncorrelated with variations in African easterly wave activity. (orig.)
HYCOM Initial and Boundary Conditions for Coupled COAMPS/NCOM
2016-06-07
conditions (BCs and ICs) into globally- relocatable coupled COAMPS/NCOM, (2) quantitatively evaluate HYCOM sources of ICs and BCs against other...HYCOM Initial and Boundary Conditions for Coupled COAMPS/NCOM Julie Pullen Naval Research Laboratory 7 Grace Hopper Ave. Stop 2 Monterey, CA...long-term goal of this effort is to evaluate HYbrid Coordinate Ocean Model (HYCOM) initial and boundary conditions supplied to the air-ocean coupled
Transmitting boundary and radiation conditions at infinity
Institute of Scientific and Technical Information of China (English)
廖振鹏
2001-01-01
Relationship between the radiation conditions at infinity and the transmitting boundary for numerical simulation of the near-field wave motion has been studied in this paper. The conclusion is that the transmitting boundary is approximately equivalent to the radiation conditions at infinity for a large class of infinite media. And the errors of the approximation are of the same order of magnitude as those of the finite elements or finite differences in numerical simulation of wave motion. This result provides a sound theoretical basis for the transmitting boundary used in the numerical simulation of the near-field wave motion and gives a complete explanation for the major experiences accumulated in applications of the transmitting boundary to the numerical simulation.
Liu, Zhiqiang; Gan, Jianping
2016-08-01
In limited-area ocean models, open boundary conditions (OBCs) often create dynamic inconsistencies and perform poorly in resolving tidal or subtidal flow when both forces exist. Orlanski-type radiation OBCs are reasonably efficient at treating the subtidally forced flow, and Flather-type OBCs are commonly adapted for the tidally forced flow. However, neither of them performs well when tidal and subtidal forces simultaneously drive the flows. We have developed a novel OBC that integrates the active OBC in Gan and Allen (2005) and a Flather-type OBC. This new OBC accommodates the concurrent Tidal and Subtidal (TST) forcing, and the respective tidal or subtidal forcing, at the open boundary of a limited-area model. This new TST-OBC treats the tidal component with a Flather-type OBC, and it separates subtidal barotropic and baroclinic components into local (forced) and global (unforced) components. Then an unforced Orlanski-type OBC can be applied to the global part. We applied the TST-OBC to all model variables to reduce dynamic inconsistence. Using the Regional Ocean Modeling System, we applied the TST-OBC to the shallow East China Sea shelf where strong tidal and subtidal forces over complex topography govern the circulation. Our numerical experiments and analyses suggest that the TST-OBC was robust for both concurrent tidal-subtidal forcing and solely tidal or subtidal forcing at the open boundary. It reduced spurious energy reflection, and, overall, it performed better than an Orlanski-type or Flather-type OBC in reproducing realistic tidal and subtidal shelf circulation.
Directory of Open Access Journals (Sweden)
M. Giudici
2003-01-01
Full Text Available To assess whether the hydrometric level of an artificial lake in a quarry near Milan (Italy could be assigned as a Dirichlet boundary condition for the phreatic aquifer in a fine scale groundwater flow model, hydrological measurements of piezometric head and rainfall rate time series have been analysed by spectral and statistical methods. The piezometric head close to the quarry lake proved to be well correlated with seasonal variations in the rainfall. Furthermore, geoelectrical tomography detected no semi-permeable layer between the phreatic aquifer and the lake, so the contact between surface and ground water is good. Finally, a time-varying prescribed head condition can be applied for ground water flow modelling. Keywords: ground water flow, boundary conditions, surface and ground water interactions, geoelectrical tomography, statistical analysis.
Anchored boundary conditions for locally isostatic networks
Theran, Louis; Nixon, Anthony; Ross, Elissa; Sadjadi, Mahdi; Servatius, Brigitte; Thorpe, M. F.
2015-11-01
Finite pieces of locally isostatic networks have a large number of floppy modes because of missing constraints at the surface. Here we show that by imposing suitable boundary conditions at the surface the network can be rendered effectively isostatic. We refer to these as anchored boundary conditions. An important example is formed by a two-dimensional network of corner sharing triangles, which is the focus of this paper. Another way of rendering such networks isostatic is by adding an external wire along which all unpinned vertices can slide (sliding boundary conditions). This approach also allows for the incorporation of boundaries associated with internal holes and complex sample geometries, which are illustrated with examples. The recent synthesis of bilayers of vitreous silica has provided impetus for this work. Experimental results from the imaging of finite pieces at the atomic level need such boundary conditions, if the observed structure is to be computer refined so that the interior atoms have the perception of being in an infinite isostatic environment.
Constructing parametric triangular patches with boundary conditions
Institute of Scientific and Technical Information of China (English)
Hui Liu; Jun Ma; Fuhua Cheng
2008-01-01
The problem of constructing a parametric triangular patch to smoothly connect three surface patches is studied. Usually, these surface patches are defined on different parameter spaces. Therefore, it is necessary to define interpolation conditions, with values from the given surface patches, on the boundary of the triangular patch that can ensure smooth transition between different parameter spaces. In this paper we present a new method to define boundary conditions. Boundary conditions defined by the new method have the same parameter space if the three given surface patches can be converted into the same form through affine transformation. Consequently, any of the classic methods for constructing functional triangular patches can be used directly to construct a parametric triangular patch to connect given surface patches with G continuity. The resulting parametric triangular patch preserves precision of the applied classic method.
Energy Technology Data Exchange (ETDEWEB)
Solman, Silvina A. [CONICET-UBA, Centro de Investigaciones del Mar y la Atmosfera (CIMA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Ciencias de la Atmosfera y los Oceanos. Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Pessacg, Natalia L. [CONICET-UBA, Centro de Investigaciones del Mar y la Atmosfera (CIMA), Buenos Aires (Argentina)
2012-01-15
In this study the capability of the MM5 model in simulating the main mode of intraseasonal variability during the warm season over South America is evaluated through a series of sensitivity experiments. Several 3-month simulations nested into ERA40 reanalysis were carried out using different cumulus schemes and planetary boundary layer schemes in an attempt to define the optimal combination of physical parameterizations for simulating alternating wet and dry conditions over La Plata Basin (LPB) and the South Atlantic Convergence Zone regions, respectively. The results were compared with different observational datasets and model evaluation was performed taking into account the spatial distribution of monthly precipitation and daily statistics of precipitation over the target regions. Though every experiment was able to capture the contrasting behavior of the precipitation during the simulated period, precipitation was largely underestimated particularly over the LPB region, mainly due to a misrepresentation in the moisture flux convergence. Experiments using grid nudging of the winds above the planetary boundary layer showed a better performance compared with those in which no constrains were imposed to the regional circulation within the model domain. Overall, no single experiment was found to perform the best over the entire domain and during the two contrasting months. The experiment that outperforms depends on the area of interest, being the simulation using the Grell (Kain-Fritsch) cumulus scheme in combination with the MRF planetary boundary layer scheme more adequate for subtropical (tropical) latitudes. The ensemble of the sensitivity experiments showed a better performance compared with any individual experiment. (orig.)
ADHMN boundary conditions from removing monopoles
Chen, X; Chen, Xingang; Weinberg, Erick J.
2003-01-01
Boundary conditions play an important role in the ADHMN construction of BPS monopole solutions. In this paper we show how different types of boundary conditions can be related to each other by removing monopoles to spatial infinity. In particular, we use this method to show how the jumping data naturally emerge. The results can be interpreted in the D-brane picture and provide a better understanding of the derivation of the ADHMN construction from D-branes. We comment briefly on the cases with non-Abelian unbroken symmetry and massless monopoles.
Cassiani, Massimo; Stohl, Andreas; Brioude, Jerome
2015-03-01
A correction for the vertical gradient of air density has been incorporated into a skewed probability density function formulation for turbulence in the convective boundary layer. The related drift term for Lagrangian stochastic dispersion modelling has been derived based on the well-mixed condition. Furthermore, the formulation has been extended to include unsteady turbulence statistics and the related additional component of the drift term obtained. These formulations are an extension of the drift formulation reported by Luhar et al. (Atmos Environ 30:1407-1418, 1996) following the well-mixed condition proposed by Thomson (J Fluid Mech 180:529-556, 1987). Comprehensive tests were carried out to validate the formulations including consistency between forward and backward simulations and preservation of a well-mixed state with unsteady conditions. The stationary state CBL drift term with density correction was incorporated into the FLEXPART and FLEXPART-WRF Lagrangian models, and included the use of an ad hoc transition function that modulates the third moment of the vertical velocity based on stability parameters. Due to the current implementation of the FLEXPART models, only a steady-state horizontally homogeneous drift term could be included. To avoid numerical instability, in the presence of non-stationary and horizontally inhomogeneous conditions, a re-initialization procedure for particle velocity was used. The criteria for re-initialization and resulting errors were assessed for the case of non-stationary conditions by comparing a reference numerical solution in simplified unsteady conditions, obtained using the non-stationary drift term, and a solution based on the steady drift with re-initialization. Two examples of "real-world" numerical simulations were performed under different convective conditions to demonstrate the effect of the vertical gradient in density on the particle dispersion in the CBL.
Mixed boundary conditions for piezoelectric plates
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
For plate bending and stretching problems in piezoelectric materials,the reciprocal theorem and the general solution of piezoelasticity are applied in a novel way to obtain the appropriate mixed boundary conditions accurate to all order.A decay analysis technique is used to establish necessary conditions that the prescribed data on the edge of the plate must satisfy in order that it should generate a decaying state within the plate.For the case of axisymmetric bending and stretching of a circular plate,these decaying state conditions are obtained explicitly for the first time when the mixed conditions are imposed on the plate edge.They are then used for the correct formulation of boundary conditions for the interior solution.
A review of time domain impedance boundary conditions
Richter, Christoph
2012-01-01
International audience; Over the last 15 years, time domain impedance boundary conditions have been investigated by various authors. In a review, a general framework of time domain impedance boundary conditions is presented and then filled with a set of outstanding mathematical and numerical methods from literature. All of the authors struggled with an instability with grazing flow. Mainly this is linked to the Ingard or Myers model of the sound propagation through a sheared flow. This is rev...
A non-slip boundary condition for lattice Boltzmann simulations
Inamuro, T; Ogino, F; Inamuro, Takaji; Yoshino, Masato; Ogino, Fumimaru
1995-01-01
A non-slip boundary condition at a wall for the lattice Boltzmann method is presented. In the present method unknown distribution functions at the wall are assumed to be an equilibrium distribution function with a counter slip velocity which is determined so that fluid velocity at the wall is equal to the wall velocity. Poiseuille flow and Couette flow are calculated with the nine-velocity model to demonstrate the accuracy of the present boundary condition.
Boundary correlators in supergroup WZNW models
Energy Technology Data Exchange (ETDEWEB)
Creutzig, T.; Schomerus, V.
2008-04-15
We investigate correlation functions for maximally symmetric boundary conditions in the WZNW model on GL(11). Special attention is payed to volume filling branes. Generalizing earlier ideas for the bulk sector, we set up a Kac-Wakimotolike formalism for the boundary model. This first order formalism is then used to calculate bulk-boundary 2-point functions and the boundary 3-point functions of the model. The note ends with a few comments on correlation functions of atypical fields, point-like branes and generalizations to other supergroups. (orig.)
Rivera, María J; Molina, Juan A López; Trujillo, Macarena; Berjano, Enrique J
2009-07-01
Previous studies on computer modeling of RF ablation with cooled electrodes modeled the internal cooling circuit by setting surface temperature at the coolant temperature (i.e., Dirichlet condition, DC). Our objective was to compare the temperature profiles computed from different thermal boundary conditions at the electrode-tissue interface. We built an analytical one-dimensional model based on a spherical electrode. Four cases were considered: A) DC with uniform initial condition, B) DC with pre-cooling period, C) Boundary condition based on Newton's cooling law (NC) with uniform initial condition, and D) NC with a pre-cooling period. The results showed that for a long time (120 s), the profiles obtained with (Cases B and D) and without (Cases A and C) considering pre-cooling are very similar. However, for shorter times ( 30 s), Cases A and C overestimated the temperature at points away from the electrode-tissue interface. In the NC cases, this overestimation was more evident for higher values of the convective heat transfer coefficient (h). Finally, with NC, when h was increased the temperature profiles became more similar to those with DC. The results suggest that theoretical modeling of RF ablation with cooled electrodes should consider: 1) the modeling of a pre-cooling period, especially if one is interested in the thermal profiles registered at the beginning of RF application; and 2) NC rather than DC, especially for low flow in the internal circuit.
An h-principle with boundary condition
DEFF Research Database (Denmark)
Dotto, Emanuele
2010-01-01
We prove an h-principle with boundary condition for a certain class of topological spaces valued sheaves. The techniques used in the proof come from the study of the homotopy type of the cobordism categories, and they are of simplicial and categorical nature. Applying the main result of this paper...
Boundary Conditions at Infinity for Physical Theories
Trautman, Andrzej
2016-01-01
The Sommerfeld boundary conditions, imposed on hyperbolic differential equations to obtain solutions in the form of outgoing waves, are formulated here so as to make explicit the role of an appropriate null vector field. When applied to the scalar and Maxwell equations, they lead to the asymptotic form of the energy-momentum tensor representing radiation as a null, perfect dust.
Boundary Value Problems With Integral Conditions
Karandzhulov, L. I.; Sirakova, N. D.
2011-12-01
The weakly perturbed nonlinear boundary value problems (BVP) for almost linear systems of ordinary differential equations (ODE) are considered. We assume that the nonlinear part contain an additional function, which defines the perturbation as singular. Then the Poincare method is not applicable. The problem of existence, uniqueness and construction of a solution of the posed BVP with integral condition is studied.
Abstract wave equations with acoustic boundary conditions
Mugnolo, Delio
2010-01-01
We define an abstract setting to treat wave equations equipped with time-dependent acoustic boundary conditions on bounded domains of ${\\bf R}^n$. We prove a well-posedness result and develop a spectral theory which also allows to prove a conjecture proposed in (Gal-Goldstein-Goldstein, J. Evol. Equations 3 (2004), 623-636). Concrete problems are also discussed.
Radiation (absorbing) boundary conditions for electromagnetic fields
Bevensee, R. M.; Pennock, S. T.
1987-01-01
An important problem in finite difference or finite element computation of the electromagnetic field obeying the space-time Maxwell equations with self-consistent sources is that of truncating the outer numerical boundaries properly to avoid spurious numerical reflection. Methods for extrapolating properly the fields just beyond a numerical boundary in free space have been treated by a number of workers. This report avoids plane wave assumptions and derives boundary conditions more directly related to the source distribution within the region. The Panofsky-Phillips' relations, which enable one to extrapolate conveniently the vector field components parallel and perpendicular to a radial from the coordinate origin chosen near the center of the charge-current distribution are used to describe the space-time fields.
Boundary scattering in the phi^4 model
Dorey, Patrick; Mercer, James; Romanczukiewicz, Tomasz; Shnir, Yasha
2015-01-01
We study boundary scattering in the phi^4 model on a half-line with a one-parameter family of Neumann-type boundary conditions. A rich variety of phenomena is observed, which extends previously-studied behaviour on the full line to include regimes of near-elastic scattering, the restoration of a missing scattering window, and the creation of a kink or oscillon through the collision-induced decay of a metastable boundary state.
Javili, A.; Saeb, S.; Steinmann, P.
2016-10-01
In the past decades computational homogenization has proven to be a powerful strategy to compute the overall response of continua. Central to computational homogenization is the Hill-Mandel condition. The Hill-Mandel condition is fulfilled via imposing displacement boundary conditions (DBC), periodic boundary conditions (PBC) or traction boundary conditions (TBC) collectively referred to as canonical boundary conditions. While DBC and PBC are widely implemented, TBC remains poorly understood, with a few exceptions. The main issue with TBC is the singularity of the stiffness matrix due to rigid body motions. The objective of this manuscript is to propose a generic strategy to implement TBC in the context of computational homogenization at finite strains. To eliminate rigid body motions, we introduce the concept of semi-Dirichlet boundary conditions. Semi-Dirichlet boundary conditions are non-homogeneous Dirichlet-type constraints that simultaneously satisfy the Neumann-type conditions. A key feature of the proposed methodology is its applicability for both strain-driven as well as stress-driven homogenization. The performance of the proposed scheme is demonstrated via a series of numerical examples.
cassiani, massimo; stohl, andreas; brioude, jerome
2014-05-01
The vertical gradient of air density has been included in a skewed probability density function formulation for turbulence in the convective boundary layer and the related drift term for Lagrangian stochastic particle modelling has been obtained based on the well-mixed condition. The formulation has been extended to include unsteady turbulence statistics. Tests were carried out to validate the model including consistency between forward and backward simulations and preservation of well-mixed state with unsteady conditions. The stationary state CBL drift term with density correction was incorporated in the FLEXPART/FLEXPART-WRF Lagrangian models. Currently only the steady state horizontally homogeneous drift term were included. To avoid numerical instability, using the steady homogenous drift in the presence of non-stationary and horizontally non-homogeneous conditions, a re-initialization procedure for particle velocity was used. The criteria for re-initialization and resulting errors were assessed.
Im, Ulas; Hansen, Kaj M.; Geels, Camilla; Christensen, Jesper H.; Brandt, Jørgen; Hogrefe, Christian; Galmarini, Stefano
2016-04-01
AQMEII (Air Quality Model Evaluation International Initiative) promotes research on regional air quality model evaluation across the European and North American atmospheric modelling communities, providing the ideal platform for advancing the evaluation of air quality models at the regional scale. In frame of the AQMEII3 model evaluation exercise, thirteen regional chemistry and transport models have simulated the air pollutant levels over Europe and/or North America for the year 2010, along with various sensitivity simulations of reductions in anthropogenic emissions and boundary conditions. All participating groups have performed sensitivity simulation with 20% reductions in global (GLO) anthropogenic emissions. In addition, various groups simulated sensitivity scenarios of 20% reductions in anthropogenic emissions in different HTAP-defined regions such as North America (NAM), Europe (EUR) and East Asia (EAS). The boundary conditions for the base case and the perturbation scenarios were derived from the MOZART-IFS global chemical model. The present study will evaluate the impact of these emission perturbations on regional surface ozone and PM2.5 levels as well as over individual surface measurement stations over both continents and vertical profiles over the radiosonde stations from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and the Aerosol Robotic Network (AERONET) stations for ozone and for PM2.5, respectively.
Boundary conditions in conformal and integrable theories
Petkova, V B
2000-01-01
The study of boundary conditions in rational conformal field theories is not only physically important. It also reveals a lot on the structure of the theory ``in the bulk''. The same graphs classify both the torus and the cylinder partition functions and provide data on their hidden ``quantum symmetry''. The Ocneanu triangular cells -- the 3j-symbols of these symmetries, admit various interpretations and make a link between different problems.
Faribault, Alexandre; Tschirhart, Hugo; Muller, Nicolas
2016-05-01
In this work we present a determinant expression for the domain-wall boundary condition partition function of rational (XXX) Richardson-Gaudin models which, in addition to N-1 spins \\frac{1}{2}, contains one arbitrarily large spin S. The proposed determinant representation is written in terms of a set of variables which, from previous work, are known to define eigenstates of the quantum integrable models belonging to this class as solutions to quadratic Bethe equations. Such a determinant can be useful numerically since systems of quadratic equations are much simpler to solve than the usual highly nonlinear Bethe equations. It can therefore offer significant gains in stability and computation speed.
On the wave equation with semilinear porous acoustic boundary conditions
Graber, Philip Jameson
2012-05-01
The goal of this work is to study a model of the wave equation with semilinear porous acoustic boundary conditions with nonlinear boundary/interior sources and a nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. The main difficulty in proving the local existence result is that the Neumann boundary conditions experience loss of regularity due to boundary sources. Using an approximation method involving truncated sources and adapting the ideas in Lasiecka and Tataru (1993) [28], we show that the existence of solutions can still be obtained. Second, we prove that under some restrictions on the source terms, then the local solution can be extended to be global in time. In addition, it has been shown that the decay rates of the solution are given implicitly as solutions to a first order ODE and depends on the behavior of the damping terms. In several situations, the obtained ODE can be easily solved and the decay rates can be given explicitly. Third, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution ceases to exists and blows up in finite time. Moreover, in either the absence of the interior source or the boundary source, then we prove that the solution is unbounded and grows as an exponential function. © 2012 Elsevier Inc.
Energy Technology Data Exchange (ETDEWEB)
Khalsa, Siri Sahib; Ho, Clifford Kuofei
2010-04-01
A rigorous computational fluid dynamics (CFD) approach to calculating temperature distributions, radiative and convective losses, and flow fields in a cavity receiver irradiated by a heliostat field is typically limited to the receiver domain alone for computational reasons. A CFD simulation cannot realistically yield a precise solution that includes the details within the vast domain of an entire heliostat field in addition to the detailed processes and features within a cavity receiver. Instead, the incoming field irradiance can be represented as a boundary condition on the receiver domain. This paper describes a program, the Solar Patch Calculator, written in Microsoft Excel VBA to characterize multiple beams emanating from a 'solar patch' located at the aperture of a cavity receiver, in order to represent the incoming irradiance from any field of heliostats as a boundary condition on the receiver domain. This program accounts for cosine losses; receiver location; heliostat reflectivity, areas and locations; field location; time of day and day of year. This paper also describes the implementation of the boundary conditions calculated by this program into a Discrete Ordinates radiation model using Ansys{reg_sign} FLUENT (www.fluent.com), and compares the results to experimental data and to results generated by the code DELSOL.
Energy Technology Data Exchange (ETDEWEB)
Khalsa, Siri Sahib S. (Sandia Staffing Alliance); Ho, Clifford Kuofei
2010-05-01
A rigorous computational fluid dynamics (CFD) approach to calculating temperature distributions, radiative and convective losses, and flow fields in a cavity receiver irradiated by a heliostat field is typically limited to the receiver domain alone for computational reasons. A CFD simulation cannot realistically yield a precise solution that includes the details within the vast domain of an entire heliostat field in addition to the detailed processes and features within a cavity receiver. Instead, the incoming field irradiance can be represented as a boundary condition on the receiver domain. This paper describes a program, the Solar Patch Calculator, written in Microsoft Excel VBA to characterize multiple beams emanating from a 'solar patch' located at the aperture of a cavity receiver, in order to represent the incoming irradiance from any field of heliostats as a boundary condition on the receiver domain. This program accounts for cosine losses; receiver location; heliostat reflectivity, areas and locations; field location; time of day and day of year. This paper also describes the implementation of the boundary conditions calculated by this program into a Discrete Ordinates radiation model using Ansys{reg_sign} FLUENT (www.fluent.com), and compares the results to experimental data and to results generated by the code DELSOL.
Qiu, Lei; Yuan, Shenfang; Chang, Fu-Kuo; Bao, Qiao; Mei, Hanfei
2014-12-01
Structural health monitoring technology for aerospace structures has gradually turned from fundamental research to practical implementations. However, real aerospace structures work under time-varying conditions that introduce uncertainties to signal features that are extracted from sensor signals, giving rise to difficulty in reliably evaluating the damage. This paper proposes an online updating Gaussian Mixture Model (GMM)-based damage evaluation method to improve damage evaluation reliability under time-varying conditions. In this method, Lamb-wave-signal variation indexes and principle component analysis (PCA) are adopted to obtain the signal features. A baseline GMM is constructed on the signal features acquired under time-varying conditions when the structure is in a healthy state. By adopting the online updating mechanism based on a moving feature sample set and inner probability structural reconstruction, the probability structures of the GMM can be updated over time with new monitoring signal features to track the damage progress online continuously under time-varying conditions. This method can be implemented without any physical model of damage or structure. A real aircraft wing spar, which is an important load-bearing structure of an aircraft, is adopted to validate the proposed method. The validation results show that the method is effective for edge crack growth monitoring of the wing spar bolts holes under the time-varying changes in the tightness degree of the bolts.
Xu, Zhijie; Meakin, Paul
2009-06-21
Dissipative particle dynamics (DPD) is an effective mesoscopic particle model with a lower computational cost than molecular dynamics because of the soft potentials that it employs. However, the soft potential is not strong enough to prevent the DPD particles that are used to represent the fluid from penetrating solid boundaries represented by stationary DPD particles. A phase-field variable, phi(x,t), is used to indicate the phase at point x and time t, with a smooth transition from -1 (phase 1) to +1 (phase 2) across the interface. We describe an efficient implementation of no-slip boundary conditions in DPD models that combines solid-liquid particle-particle interactions with reflection at a sharp boundary located with subgrid scale accuracy using the phase field. This approach can be used for arbitrarily complex flow geometries and other similar particle models (such as smoothed particle hydrodynamics), and the validity of the model is demonstrated by DPD simulations of flow in confined systems with various geometries.
Chen, Lei; Zhang, Meigen; Wang, Yongwei
2016-08-01
The Weather Research and Forecasting (WRF) model, configured with a single-layer urban canopy model, was employed to investigate the influence of urbanization on boundary layer meteorological parameters during a long-lasting heat wave. This study was conducted over Nanjing city, East China, from 26 July to 4 August 2010. The impacts of urban expansion and anthropogenic heat (AH) release were simulated to quantify their effects on 2-m temperature, 2-m water vapor mixing ratio, and 10-m wind speed and heat stress index. Urban sprawl increased the daily 2-m temperature in urbanized areas by around 1.6 °C and decreased the urban diurnal temperature range (DTR) by 1.24 °C. The contribution of AH release to the atmospheric warming was nearly 22 %, but AH had little influence on the DTR. The urban regional mean surface wind speed decreased by about 0.4 m s-1, and this decrease was successfully simulated from the surface to 300 m. The influence of urbanization on 2-m water vapor mixing ratio was significant over highly urbanized areas with a decrease of 1.1-1.8 g kg-1. With increased urbanization ratio, the duration of the inversion layer was about 4 h shorter, and the lower atmospheric layer was less stable. Urban heat island (UHI) intensity was significantly enhanced when synthesizing both urban sprawl and AH release and the daily mean UHI intensity increased by 0.74 °C. Urbanization increased the time under extreme heat stress (about 40 %) and worsened the living environment in urban areas.
An H-Principle With Boundary Condition
Dotto, Emanuele
2010-01-01
We prove an h-principle with boundary condition for a certain class of topological spaces valued sheaves. The techniques used in the proof come from the study of the homotopy type of the cobordism categories, and they are of simplicial and categorical nature. Applying the main result of this paper to a certain sheaf we find another proof of the homotopy equivalence between the classifying space of a cobordism category and a loop space of the Thom space of the complement of the tautological bundle over the Grassmannians.
Kou, Jisheng
2015-03-01
In this paper, we consider multi-component dynamic two-phase interface models, which are formulated by the Cahn-Hilliard system with Peng-Robinson equation of state and various boundary conditions. These models can be derived from the minimum problems of Helmholtz free energy or grand potential in the realistic thermodynamic systems. The resulted Cahn-Hilliard systems with various boundary conditions are fully coupled and strongly nonlinear. A linear transformation is introduced to decouple the relations between different components, and as a result, the models are simplified. From this, we further propose a semi-implicit unconditionally stable time discretization scheme, which allows us to solve the Cahn-Hilliard system by a decoupled way, and thus, our method can significantly reduce the computational cost and memory requirements. The mixed finite element methods are employed for the spatial discretization, and the approximate errors are also analyzed for both space and time. Numerical examples are tested to demonstrate the efficiency of our proposed methods. © 2015 Elsevier B.V.
Mahanama, Sarith P.; Koster, Randal D.; Walker, Gregory K.; Takacs, Lawrence L.; Reichle, Rolf H.; De Lannoy, Gabrielle; Liu, Qing; Zhao, Bin; Suarez, Max J.
2015-01-01
The Earths land surface boundary conditions in the Goddard Earth Observing System version 5 (GEOS-5) modeling system were updated using recent high spatial and temporal resolution global data products. The updates include: (i) construction of a global 10-arcsec land-ocean lakes-ice mask; (ii) incorporation of a 10-arcsec Globcover 2009 land cover dataset; (iii) implementation of Level 12 Pfafstetter hydrologic catchments; (iv) use of hybridized SRTM global topography data; (v) construction of the HWSDv1.21-STATSGO2 merged global 30 arc second soil mineral and carbon data in conjunction with a highly-refined soil classification system; (vi) production of diffuse visible and near-infrared 8-day MODIS albedo climatologies at 30-arcsec from the period 2001-2011; and (vii) production of the GEOLAND2 and MODIS merged 8-day LAI climatology at 30-arcsec for GEOS-5. The global data sets were preprocessed and used to construct global raster data files for the software (mkCatchParam) that computes parameters on catchment-tiles for various atmospheric grids. The updates also include a few bug fixes in mkCatchParam, as well as changes (improvements in algorithms, etc.) to mkCatchParam that allow it to produce tile-space parameters efficiently for high resolution AGCM grids. The update process also includes the construction of data files describing the vegetation type fractions, soil background albedo, nitrogen deposition and mean annual 2m air temperature to be used with the future Catchment CN model and the global stream channel network to be used with the future global runoff routing model. This report provides detailed descriptions of the data production process and data file format of each updated data set.
Vibration Analysis of Annular Sector Plates under Different Boundary Conditions
Directory of Open Access Journals (Sweden)
Dongyan Shi
2014-01-01
Full Text Available An analytical framework is developed for the vibration analysis of annular sector plates with general elastic restraints along each edge of plates. Regardless of boundary conditions, the displacement solution is invariably expressed as a new form of trigonometric expansion with accelerated convergence. The expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. This work allows a capability of modeling annular sector plates under a variety of boundary conditions and changing the boundary conditions as easily as modifying the material properties or dimensions of the plates. Of equal importance, the proposed approach is universally applicable to annular sector plates of any inclusion angles up to 2π. The reliability and accuracy of the current method are adequately validated through numerical examples.
Thermal field theories and shifted boundary conditions
Giusti, Leonardo
2013-01-01
The analytic continuation to an imaginary velocity of the canonical partition function of a thermal system expressed in a moving frame has a natural implementation in the Euclidean path-integral formulation in terms of shifted boundary conditions. The Poincare' invariance underlying a relativistic theory implies a dependence of the free-energy on the compact length L_0 and the shift xi only through the combination beta=L_0(1+xi^2)^(1/2). This in turn implies that the energy and the momentum distributions of the thermal theory are related, a fact which is encoded in a set of Ward identities among the correlators of the energy-momentum tensor. The latter have interesting applications in lattice field theory: they offer novel ways to compute thermodynamic potentials, and a set of identities to renormalize non-perturbatively the energy-momentum tensor. At fixed bare parameters the shifted boundary conditions also provide a simple method to vary the temperature in much smaller steps than with the standard procedur...
Effective Hydrodynamic Boundary Conditions for Corrugated Surfaces
Mongruel, Anne; Asmolov, Evgeny S; Vinogradova, Olga I
2012-01-01
We report measurements of the hydrodynamic drag force acting on a smooth sphere falling down under gravity to a plane decorated with microscopic periodic grooves. Both surfaces are lyophilic, so that a liquid (silicone oil) invades the surface texture being in the Wenzel state. A significant decrease in the hydrodynamic resistance force as compared with that predicted for two smooth surfaces is observed. To quantify the effect of roughness we use the effective no-slip boundary condition, which is applied at the imaginary smooth homogeneous isotropic surface located at an intermediate position between top and bottom of grooves. Such an effective condition fully characterizes the force reduction measured with the real surface, and the location of this effective plane is related to geometric parameters of the texture by a simple analytical formula.
Vihma, T.; Kilpeläinen, T.; Rontu, L.; Anderson, P.S.; Orr, A.; Phillips, T.; Finkele, K.; Rodrigo, I.; Holtslag, A.A.M.; Svensson, G.
2012-01-01
Numerical weather prediction and climate models continue to have large errors for stable boundary layers (SBL). To understand and to improve on this, so far three atmospheric boundary layer model inter-comparison studies have been organised within the Global Energy and Water Cycle Experiment (GEWEX)
Pan, Wenxiao; Bao, Jie; Tartakovsky, Alexandre M.
2014-02-01
A Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force (CBF) method is proposed for solving the Navier-Stokes equations subject to the Robin boundary condition. In the CBF method, the Robin boundary condition is replaced by the homogeneous Neumann boundary condition and a volumetric force term added to the momentum conservation equation. Smoothed particle hydrodynamics (SPH) method is used to solve the resulting Navier-Stokes equations. We present solutions for two- and three-dimensional flows subject to various forms of the Robin boundary condition in domains bounded by flat and curved boundaries. The numerical accuracy and convergence are examined through comparison of the SPH-CBF results with the solutions of finite difference or finite-element method. Considering the no-slip boundary condition as a special case of the slip boundary condition, we demonstrate that the SPH-CBF method accurately describes both the no-slip and slip conditions.
Röbke, B. R.; Schüttrumpf, H.; Vött, A.
2016-08-01
Hydrodynamic numerical models are essential in modern tsunami hazard assessment. They allow the economical simulation of possible tsunami scenarios for areas at risk and provide reliable and detailed insights into local onshore dynamics. This is especially true when simulations are calibrated with field traces of past tsunami inundation events. Following this approach, the current study focuses on palaeotsunami events indicated by sedimentary and geomorphological field traces in the northern Gulf of Kyparissia (NW Greece). Based on three different digital elevation models (DEM) - reflecting the recent and two palaeotopographies - various tsunami wave constellations according to the solitary and N-wave theory are numerically simulated. The main objective is to investigate the effects of both, different palaeotopographies and boundary conditions on the tsunami onshore response in the numerical model. Tsunami landfall related to N-waves is found to be considerably stronger compared to solitary waves. This phenomenon, known as the N-wave effect, is demonstrated for the first time in a specific study area. Inundation dynamics are even stronger affected by the different palaeotopographies, which is due to substantial vertical crust movements in the northern Gulf of Kyparissia considered in the palaeo-DEMs. By applying different waveforms and palaeotopographies, the model achieves close agreement with field observations, altogether revealing a significant tsunami hazard for the Gulf of Kyparissia, which is in contrast to conventional numerical studies of the area. The marked differences between the presented scenarios emphasise the need to consider a wide variety of possible hydrodynamic boundary conditions and probable topographical conditions in order to find scenarios in plausible accordance with palaeotsunami field traces. Once a plausible scenario is found it can be applied to the recent topography in view of a reliable modern hazard assessment.
Trapping Horizons as inner boundary conditions for black hole spacetimes
Jaramillo, J L; Cordero-Carrion, I; Ibáñez, J M
2007-01-01
We present a set of inner boundary conditions for the numerical construction of dynamical black hole space-times, when employing a 3+1 constrained evolution scheme and an excision technique. These inner boundary conditions are heuristically motivated by the dynamical trapping horizon framework and are enforced in an elliptic subsystem of the full Einstein equation. In the stationary limit they reduce to existing isolated horizon boundary conditions. A characteristic analysis completes the discussion of inner boundary conditions for the radiative modes.
Wang, Guiling; Yu, Miao; Xue, Yongkang
2016-12-01
This paper investigates the potential impact of "idealized-but-realistic" land cover degradation on the late twentieth century Sahel drought using a regional climate model (RCM) driven with lateral boundary conditions (LBCs) from three different sources, including one re-analysis data and two global climate models (GCMs). The impact of land cover degradation is quantified based on a large number of control-and-experiment pairs of simulations, where the experiment features a degraded land cover relative to the control. Two different approaches of experimental design are tested: in the 1st approach, the RCM land cover degradation experiment shares the same LBCs as the corresponding RCM control, which can be derived from either reanalysis data or a GCM; with the 2nd approach, the LBCs for the RCM control are derived from a GCM control, and the LBCs for the RCM land cover degradation experiment are derived from a corresponding GCM land cover degradation experiment. When the 1st approach is used, results from the RCM driven with the three different sources of LBCs are generally consistent with each other, indicating robustness of the model response against LBCs; when the 2nd approach is used, the RCM results show strong sensitivity to the source of LBCs and the response in the RCM is dominated by the response of the driving GCMs. The spatiotemporal pattern of the precipitation response to land cover degradation as simulated by RCM using the 1st approach closely resembles that of the observed historical changes, while results from the GCMs and the RCM using the 2nd approach bear less similarity to observations. Compared with the 1st approach, the 2nd approach has the advantage of capturing the impact on large scale circulation, but has the disadvantage of being influenced by the GCMs' internal variability and any potential erroneous response of the driving GCMs to land degradation. The 2nd approach therefore requires a large ensemble to reduce the uncertainties derived
On Hydroelastic Body-Boundary Condition of Floating Structures
DEFF Research Database (Denmark)
Xia, Jinzhu
1996-01-01
A general linear body boundary condition of hydroelastic analysis of arbitrary shaped floating structures generalizes the classic kinematic rigid-body (Timman-Newman) boundary condition for seakeeping problems. The new boundary condition is consistent with the existing theories under certain assu...
On reweighting for twisted boundary conditions
Bussone, Andrea; Hansen, Martin; Pica, Claudio
2016-01-01
We consider the possibility of using reweighting techniques in order to correct for the breaking of unitarity when twisted boundary conditions are imposed on valence fermions in simulations of lattice gauge theories. We start by studying the properties of reweighting factors and their variances at tree-level. That leads us to the introduction of a factorization for the fermionic reweighting determinant. In the numerical, stochastic, implementation of the method, we find that the effect of reweighting is negligible in the case of large volumes but it is sizeable when the volumes are small and the twisting angles are large. More importantly, we find that for un-improved Wilson fermions, and in small volumes, the dependence of the critical quark mass on the twisting angle is quite pronounced and results in large violations of the continuum dispersion relation.
Thermal momentum distribution from shifted boundary conditions
Giusti, Leonardo
2011-01-01
At finite temperature the distribution of the total momentum is an observable characterizing the thermal state of a field theory, and its cumulants are related to thermodynamic potentials. In a relativistic system at zero chemical potential, for instance, the thermal variance of the total momentum is a direct measure of the entropy. We relate the generating function of the cumulants to the ratio of a path integral with properly shifted boundary conditions in the compact direction over the ordinary partition function. In this form it is well suited for Monte-Carlo evaluation, and the cumulants can be extracted straightforwardly. We test the method in the SU(3) Yang--Mills theory, and obtain the entropy density at three different temperatures.
Boundary form factors in the Smirnov--Fateev model with a diagonal boundary $S$ matrix
Lashkevich, Michael
2008-01-01
The boundary conditions with diagonal boundary $S$ matrix and the boundary form factors for the Smirnov--Fateev model on a half line has been considered in the framework of the free field representation. In contrast to the case of the sine-Gordon model, in this case the free field representation is shown to impose severe restrictions on the boundary $S$ matrix, so that a finite number of solutions is only consistent with the free field realization.
Effects of Boundary Conditions on Single-File Pedestrian Flow
Zhang, Jun; Seyfried, Armin
2015-01-01
In this paper we investigate effects of boundary conditions on one dimensional pedestrian flow which involves purely longitudinal interactions. Qualitatively, stop-and-go waves are observed under closed boundary condition and dissolve when the boundary is open. To get more detailed information the fundamental diagrams of the open and closed systems are compared using Voronoi-based measurement method. Higher maximal specific flow is observed from the pedestrian movement at open boundary condition.
A Boundary Condition for Simulation of Flow Over Porous Surfaces
Frink, Neal T.; Bonhaus, Daryl L.; Vatsa, Veer N.; Bauer, Steven X. S.; Tinetti, Ana F.
2001-01-01
A new boundary condition is presented.for simulating the flow over passively porous surfaces. The model builds on the prior work of R.H. Bush to eliminate the need for constructing grid within an underlying plenum, thereby simplifying the numerical modeling of passively porous flow control systems and reducing computation cost. Code experts.for two structured-grid.flow solvers, TLNS3D and CFL3D. and one unstructured solver, USM3Dns, collaborated with an experimental porosity expert to develop the model and implement it into their respective codes. Results presented,for the three codes on a slender forebody with circumferential porosity and a wing with leading-edge porosity demonstrate a good agreement with experimental data and a remarkable ability to predict the aggregate aerodynamic effects of surface porosity with a simple boundary condition.
BPS Monopole in the Space of Boundary Conditions
Ohya, Satoshi
2015-01-01
The space of all possible boundary conditions that respect self-adjointness of Hamiltonian operator is known to be given by the group manifold $U(2)$ in one-dimensional quantum mechanics. In this paper we study non-Abelian Berry's connections in the space of boundary conditions in a simple quantum mechanical system. We consider a system for a free spinless particle on a circle with two point-like interactions described by the $U(2) \\times U(2)$ family of boundary conditions. We show that, for a certain $SU(2) \\subset U(2) \\times U(2)$ subfamily of boundary conditions, all the energy levels become doubly-degenerate thanks to the so-called higher-derivative supersymmetry, and non-Abelian Berry's connection in the ground-state sector is given by the Bogomolny-Prasad-Sommerfield (BPS) monopole of $SU(2)$ Yang-Mills-Higgs theory. We also show that, in the ground-state sector of this quantum mechanical model, matrix elements of position operator give the adjoint Higgs field that satisfies the BPS equation. It is al...
Surface free energy for systems with integrable boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Goehmann, Frank [Fachbereich C-Physik, Bergische Universitaet Wuppertal, 42097 Wuppertal (Germany); Bortz, Michael [Department of Theoretical Physics, Australian National University, Canberra ACT 0200 (Australia); Frahm, Holger [Institut fuer Theoretische Physik, Universitaet Hannover, 30167 Hannover (Germany)
2005-12-16
The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions.
Nonlinear Vibration Analysis of Moving Strip with Inertial Boundary Condition
Directory of Open Access Journals (Sweden)
Chong-yi Gao
2015-01-01
Full Text Available According to the movement mechanism of strip and rollers in tandem mill, the strip between two stands was simplified to axially moving Euler beam and the rollers were simplified to the inertial component on the fixed axis rotation, namely, inertial boundary. Nonlinear vibration mechanical model of Euler beam with inertial boundary conditions was established. The transverse and longitudinal motion equations were derived based on Hamilton’s principle. Kantorovich averaging method was employed to discretize the motion equations and the inertial boundary equations, and the solutions were obtained using the modified iteration method. Depending on numerical calculation, the amplitude-frequency responses of Euler beam were determined. The axial velocity, tension, and rotational inertia have strong influences on the vibration characteristics. The results would provide an important theoretical reference to control and analyze the vertical vibration of moving strip in continuous rolling process.
Energy Technology Data Exchange (ETDEWEB)
Rivera, Fernando F. [Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, C.P. 09340, Mexico, D.F. (Mexico); Cruz-Diaz, Martin R., E-mail: mcruz@tese.edu.m [Division de Quimica y Bioquimica, Tecnologico de Estudios Superiores de Ecatepec, Av. Tecnologico S/N Esq. Av. Hank Gonzalez, Valle de Anahuac, C.P. 55120, Ecatepec, Edo. de Mex (Mexico); Rivero, Eligio P. [Departamento de Ingenieria y Tecnologia, Universidad Nacional Autonoma de Mexico, Facultad de Estudios Superiores Cuautitlan, Av. Primero de Mayo, Cuautitlan Izcalli, C.P. 54740, Edo. de Mex (Mexico); Gonzalez, Ignacio [Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, C.P. 09340, Mexico, D.F. (Mexico)
2010-12-15
The liquid phase mixing flow pattern at low (20 < Re < 120) and intermediate liquid flow rate (120 < Re < 400) was studied by means of residence time distribution (RTD) experimental curve in an up-flow Filter Press electrochemical reactor (FM01-LC) bench scale. For this purpose, a plastic turbulence promoter was used with stainless-steel and platinised titanium structural meshes as electrodes in channel configuration. To visualize and determine the mixing flow pattern in the liquid phase, the stimulus-response technique was employed using dextran blue (D{sub M} = 1.058 x 10{sup -11} m{sup 2} s{sup -1}, 25 {sup o}C, in water) as model tracer. A theoretical analysis and approximation RTD experimental curves with axial dispersion model (ADM) and plug dispersion exchange model (PDE), with 'closed-closed vessel' boundary conditions were used in order to establish a better approximation of the axial dispersion, stagnant zones, channelling and by-pass (preference flow) effects present at low and intermediate Re. RTD curves show that the liquid flow pattern in the FM01-LC deviates considerably from axial dispersion model at low Re, where the FM01-LC exhibits large channelling, stagnant zones, and dead zone. The PDE model represents fairly this deviation from ideal flow (less dead zone).
Bucur, Dorin; Feireisl, Eduard; Nečasová, Šárka
2010-07-01
We consider a family of solutions to the evolutionary Navier-Stokes system supplemented with the complete slip boundary conditions on domains with rough boundaries. We give a complete description of the asymptotic limit by means of Γ-convergence arguments, and identify a general class of boundary conditions.
Measuring the entropy from shifted boundary conditions
Giusti, Leonardo
2013-01-01
We explore a new computational strategy for determining the equation of state of the SU(3) Yang-Mills theory. By imposing shifted boundary conditions, the entropy density is computed from the vacuum expectation value of the off-diagonal components T_{0k} of the energy-momentum tensor. A step-scaling function is introduced to span a wide range in temperature values. We present preliminary numerical results for the entropy density and its step-scaling function obtained at eight temperature values in the range T_c - 15 T_c. At each temperature, discretization effects are removed by simulating the theory at several lattice spacings and by extrapolating the results to the continuum limit. Finite-size effects are always kept below the statistical errors. The absence of ultraviolet power divergences and the remarkably small discretization effects allow for a precise determination of the step-scaling function in the explored temperature range. These findings establish this strategy as a viable solution for an accurat...
Positive solutions for the beam equation under certain boundary conditions
Directory of Open Access Journals (Sweden)
Bo Yang
2005-07-01
Full Text Available We consider a boundary-value problem for the beam equation, in which the boundary conditions mean that the beam is embedded at one end and fastened with a sliding clamp at the other end. Some priori estimates to the positive solutions for the boundary-value problem are obtained. Sufficient conditions for the existence and nonexistence of positive solutions for the boundary-value problem are established.
Reactive Boundary Conditions as Limits of Interaction Potentials for Brownian and Langevin Dynamics
Chapman, S Jonathan; Isaacson, Samuel A
2015-01-01
A popular approach to modeling bimolecular reactions between diffusing molecules is through the use of reactive boundary conditions. One common model is the Smoluchowski partial absorption condition, which uses a Robin boundary condition in the separation coordinate between two possible reactants. This boundary condition can be interpreted as an idealization of a reactive interaction potential model, in which a potential barrier must be surmounted before reactions can occur. In this work we show how the reactive boundary condition arises as the limit of an interaction potential encoding a steep barrier within a shrinking region in the particle separation, where molecules react instantly upon reaching the peak of the barrier. The limiting boundary condition is derived by the method of matched asymptotic expansions, and shown to depend critically on the relative rate of increase of the barrier height as the width of the potential is decreased. Limiting boundary conditions for the same interaction potential in b...
Outer boundary conditions for evolving cool white dwarfs
Rohrmann, R D; García-Berro, E; Córsico, A H; Bertolami, M M Miller
2012-01-01
White dwarf evolution is essentially a gravothermal cooling process, which,for cool white dwarfs, sensitively depends on the treatment of the outer boundary conditions. We provide detailed outer boundary conditions appropriate for computing the evolution of cool white dwarfs employing detailed non-gray model atmospheres for pure H composition. We also explore the impact on the white dwarf cooling times of different assumptions for energy transfer in the atmosphere of cool white dwarfs. Detailed non-gray model atmospheres are computed taken into account non-ideal effects in the gas equation of state and chemical equilibrium, collision-induced absorption from molecules, and the Lyman alpha quasi-molecular opacity. Our results show that the use of detailed outer boundary conditions becomes relevant for effective temperatures lower than 5800 and 6100K for sequences with 0.60 and 0.90 M_sun, respectively. Detailed model atmospheres predict ages that are up to approx 10% shorter at log L/L_sun=-4 when compared with...
Dang, T D T; Mertens, L; Vermeulen, A; Geeraerd, A H; Van Impe, J F; Debevere, J; Devlieghere, F
2010-01-31
The aim of the study was to develop mathematical models describing growth/no growth (G/NG) boundaries of the highly resistant food spoilage yeast-Zygosaccharomyces bailii-in different environmental conditions, taking acidified sauces as the target product. By applying these models, the stability of products with characteristics within the investigated pH, a(w) and acetic acid ranges can be evaluated. Besides, the well-defined no growth regions can be used in the development of guidelines regarding formulation of new shelf-stable foods without using chemical preservatives, which would facilitate the innovation of additive-free products. Experiments were performed at different temperatures and periods (22 degrees C for 45 and 60days, 30 degrees C for 45days) in 150 modified Sabouraud media characterized by high amount of sugars (glucose and fructose, 15% (w/v)), acetic acid (0.0-2.5% (v/v), 6 levels), pH (3.0-5.0, 5 levels) and a(w) (0.93-0.97, 5 levels). These time and temperature combinations were chosen as they are commonly applied for shelf-stable foods. The media were inoculated with ca. 4.5 log CFU/ml and yeast growth was monitored daily using optical density measurements. Every condition was examined in 20 replicates in order to yield accurate growth probabilities. Three separate ordinary logistic regression models were developed for different tested temperatures and incubation time. The total acetic acid concentration was considered as variable for all models. In general, when one intrinsic inhibitory factor became more stringent, the G/NG boundary shifted to less stressful conditions of the other two factors, resulting in enlarged no growth zones. Abrupt changes of growth probability often occurred around the transition zones (between growth and no growth regions), which indicates that minor variations in environmental conditions near the G/NG boundaries can cause a significant impact on the growth probability. When comparing growth after 45days between the
Flux change in viscous laminar flow under oscillating boundary condition
Ueda, R.; Mikada, H.; Goto, T.; Takekawa, J.
2012-12-01
The behavior of interstitial fluid is one of major interest in earth sciences in terms of the exploitation of water resources, the initiation of earthquakes, enhanced oil recovery (EOR), etc. Seismic waves are often known to increase the flux of interstitial fluid but the relationship between the flux and propagating seismic waves have not been well investigated in the past, although seismic stimulation has been applied in the oil industry for enhanced oil recovery (EOR). Many observations indicated that seismic waves could stimulate the oil production due to lowering of apparent viscosity coefficient, to the coalescence and/or the dispersion of droplets of a phase in multiphase fluids. However, the detailed mechanism of seismic stimulation has not been fully understood, either. In this study, We attempt to understand the mechanism of the flux change in viscous laminar flow under oscillating boundary condition for the simulation of interstitial flow. Here, we analyze a monophase flow in a pore throat. We first assume a Hagen-Poiseuille flow of incompressible fluid through a pore-throat in a porous medium. We adopt the Lattice Boltzmann method (LBM) in which the motion of fluid is simulated through the variation of velocity distribution function representing the distribution of discrete particle velocities. We use an improved incompressible LBKG model (d2q9i) proposed in Zou et. al. (1995) to accurately accommodate the boundary conditions of pressure and velocity in the Hagen-Poiseuille flow. We also use an half-way bounce back boundary condition as the velocity boundary condition. Also, we assume a uniform pressure (density) difference between inlet and outlet flow, and the density difference could initiate the flow in our simulation. The oscillating boundary condition is given by the body force acting on fluid particles. In this simulation, we found that the flux change is negligible under small amplitude of oscillation in both horizontal and vertical directions
Reconnection Rate in Collisionless Magnetic Reconnection under Open Boundary Conditions
Institute of Scientific and Technical Information of China (English)
HUANG Jun; MA Zhi-Wei
2008-01-01
Collisionless magnetic reconnection is studied by using two-dimensional Darwin particle-in-cell simulations with different types of open boundary conditions.The simulation results indicate that reconnection rates are strongly dependent on the imposed boundary conditions of the magnetic field Bx in the inward side. Under the zerogradient Bx boundary condition,the reconnection rate quickly decreases after reaching its maximum and no steady-state is found.Under both electromagnetic and magnetosonic boundary conditions,the system can reach a quasi-steady state.However,the reconnection rate Er≈ 0.08 under the electromagnetic boundary condition is weaker than Er≈ 0.13 under the magnetosonic boundary condition.
Analysis of Boundary Conditions for Crystal Defect Atomistic Simulations
Ehrlacher, V.; Ortner, C.; Shapeev, A. V.
2016-12-01
Numerical simulations of crystal defects are necessarily restricted to finite computational domains, supplying artificial boundary conditions that emulate the effect of embedding the defect in an effectively infinite crystalline environment. This work develops a rigorous framework within which the accuracy of different types of boundary conditions can be precisely assessed. We formulate the equilibration of crystal defects as variational problems in a discrete energy space and establish qualitatively sharp regularity estimates for minimisers. Using this foundation we then present rigorous error estimates for (i) a truncation method (Dirichlet boundary conditions), (ii) periodic boundary conditions, (iii) boundary conditions from linear elasticity, and (iv) boundary conditions from nonlinear elasticity. Numerical results confirm the sharpness of the analysis.
Revisiting Johnson and Jackson boundary conditions for granular flows
Energy Technology Data Exchange (ETDEWEB)
Li, Tingwen; Benyahia, Sofiane
2012-07-01
In this article, we revisit Johnson and Jackson boundary conditions for granular flows. The oblique collision between a particle and a flat wall is analyzed by adopting the classic rigid-body theory and a more realistic semianalytical model. Based on the kinetic granular theory, the input parameter for the partial-slip boundary conditions, specularity coefficient, which is not measurable in experiments, is then interpreted as a function of the particle-wall restitution coefficient, the frictional coefficient, and the normalized slip velocity at the wall. An analytical expression for the specularity coefficient is suggested for a flat, frictional surface with a low frictional coefficient. The procedure for determining the specularity coefficient for a more general problem is outlined, and a working approximation is provided.
Model Reduction by Manifold Boundaries
Transtrum, Mark K.; Qiu, Peng
2015-01-01
Understanding the collective behavior of complex systems from their basic components is a difficult yet fundamental problem in science. Existing model reduction techniques are either applicable under limited circumstances or produce “black boxes” disconnected from the microscopic physics. We propose a new approach by translating the model reduction problem for an arbitrary statistical model into a geometric problem of constructing a low-dimensional, submanifold approximation to a high-dimensional manifold. When models are overly complex, we use the observation that the model manifold is bounded with a hierarchy of widths and propose using the boundaries as submanifold approximations. We refer to this approach as the manifold boundary approximation method. We apply this method to several models, including a sum of exponentials, a dynamical systems model of protein signaling, and a generalized Ising model. By focusing on parameters rather than physical degrees of freedom, the approach unifies many other model reduction techniques, such as singular limits, equilibrium approximations, and the renormalization group, while expanding the domain of tractable models. The method produces a series of approximations that decrease the complexity of the model and reveal how microscopic parameters are systematically “compressed” into a few macroscopic degrees of freedom, effectively building a bridge between the microscopic and the macroscopic descriptions. PMID:25216014
Phase modulated solitary waves controlled by bottom boundary condition
Mukherjee, Abhik
2014-01-01
A forced KdV equation is derived to describe weakly nonlinear, shallow water surface wave propagation over non trivial bottom boundary condition. We show that different functional forms of bottom boundary conditions self-consistently produce different forced kdV equations as the evolution equations for the free surface. Solitary wave solutions have been analytically obtained where phase gets modulated controlled by bottom boundary condition whereas amplitude remains constant.
High Energy Boundary Conditions for a Cartesian Mesh Euler Solver
Pandya, Shishir A.; Murman, Scott M.; Aftosmis, Michael J.
2004-01-01
Inlets and exhaust nozzles are often omitted or fared over in aerodynamic simulations of aircraft due to the complexities involving in the modeling of engine details such as complex geometry and flow physics. However, the assumption is often improper as inlet or plume flows have a substantial effect on vehicle aerodynamics. A tool for specifying inlet and exhaust plume conditions through the use of high-energy boundary conditions in an established inviscid flow solver is presented. The effects of the plume on the flow fields near the inlet and plume are discussed.
Second-order schemes for a boundary value problem with Neumann's boundary conditions
Dehghan, Mehdi
2002-01-01
A new second-order finite difference scheme based on the (3, 3) alternating direction implicit method and a new second-order finite difference technique based on the (5, 5) implicit formula are discussed for solving a nonlocal boundary value problem for the two-dimensional diffusion equation with Neumann's boundary conditions. While sharing some common features with the one-dimensional models, the solution of two-dimensional equations are substantially more difficult, thus some considerations are taken to be able to extend some ideas of the one-dimensional case. Using a suitable transformation the solution of this problem is equivalent to the solution of two other problems. The former, which is a one-dimensional nonlocal boundary value problem giving the value of [mu] through using the unconditionally stable standard implicit (3, 1) backward time-centred space (denoted BTCS) scheme. Using this result the second problem will be changed to a classical two-dimensional diffusion equation with Neumann's boundary conditions which will be solved numerically by using the unconditionally stable alternating direction implicit (3, 3) technique or the fully implicit finite difference scheme. The results of a numerical example are given and computation times are presented. Error estimates derived in the maximum norm are also tabulated.
Normal ordering and boundary conditions in open bosonic strings
Braga, N R F; Carrion, H L; Braga, Nelson R. F.; Godinho, Cresus F. L.; Carrion, Hector L.
2004-01-01
Boundary conditions play a non trivial role in string theory. For instance the rich structure of D-branes is generated by choosing appropriate combinations of Dirichlet and Neumann boundary conditions. Furthermore, when an antisymmetric background is present at the string end-points (corresponding to mixed boundary conditions) space time becomes non-commutative there. We show here how to build up normal ordered products for bosonic string position operators that satisfy both equations of motion and open string boundary conditions at quantum level. We also calculate the equal time commutator of these normal ordered products in the presence of antisymmetric tensor background.
Quantum “violation” of Dirichlet boundary condition
Directory of Open Access Journals (Sweden)
I.Y. Park
2017-02-01
Full Text Available Dirichlet boundary conditions have been widely used in general relativity. They seem at odds with the holographic property of gravity simply because a boundary configuration can be varying and dynamic instead of dying out as required by the conditions. In this work we report what should be a tension between the Dirichlet boundary conditions and quantum gravitational effects, and show that a quantum-corrected black hole solution of the 1PI action no longer obeys, in the naive manner one may expect, the Dirichlet boundary conditions imposed at the classical level. We attribute the ‘violation’ of the Dirichlet boundary conditions to a certain mechanism of the information storage on the boundary.
Directory of Open Access Journals (Sweden)
J. Y. Tang
2013-02-01
Full Text Available We describe a new top boundary condition (TBC for representing the air–soil diffusive exchange of a generic volatile tracer. This new TBC (1 accounts for the multi-phase flow of a generic tracer; (2 accounts for effects of soil temperature, pH, solubility, sorption, and desorption processes; (3 enables a smooth transition between wet and dry soil conditions; (4 is compatible with the conductance formulation for modeling air–water volatile tracer exchange; and (5 is applicable to site, regional, and global land models.
Based on the new TBC, we developed new formulations for bare-soil resistance and corresponding soil evaporation efficiency. The new soil resistance is predicted as the reciprocal of the harmonic sum of two resistances: (1 gaseous and aqueous molecular diffusion and (2 liquid mass flow resulting from the hydraulic pressure gradient between the soil surface and center of the topsoil control volume. We compared the predicted soil evaporation efficiency with those from several field and laboratory soil evaporation measurements and found good agreement with the typically observed two-stage soil evaporation curves. Comparison with the soil evaporation efficiency equation of Lee and Pielke (1992; hereafter LP92 indicates that their equation can overestimate soil evaporation when the atmospheric resistance is low and underestimate soil evaporation when the soil is dry. Using a synthetic inversion experiment, we demonstrated that using inverted soil resistance data from field measurements to derive empirical soil resistance formulations resulted in large uncertainty because (1 the inverted soil resistance data are always severely impacted by measurement error and (2 the derived empirical equation is very sensitive to the number of data points and the assumed functional form of the resistance.
We expect the application of our new TBC in land models will provide a consistent representation for the diffusive tracer
Directory of Open Access Journals (Sweden)
R. Dhote
2016-01-01
Full Text Available The behavior of shape memory alloy (SMA nanostructures is influenced by strain rate and temperature evolution during dynamic loading. The coupling between temperature, strain, and strain rate is essential to capture inherent thermomechanical behavior in SMAs. In this paper, we propose a new 3D phase-field model that accounts for two-way coupling between mechanical and thermal physics. We use the strain-based Ginzburg-Landau potential for cubic-to-tetragonal phase transformations. The variational formulation of the developed model is implemented in the isogeometric analysis framework to overcome numerical challenges. We have observed a complete disappearance of the out-of-plane martensitic variant in a very high aspect ratio SMA domain as well as the presence of three variants in equal portions in a low aspect ratio SMA domain. The dependence of different boundary conditions on the microstructure morphology has been examined energetically. The tensile tests on rectangular prism nanowires, using the displacement based loading, demonstrate the shape memory effect and pseudoelastic behavior. We have also observed that higher strain rates, as well as the lower aspect ratio domains, resulting in high yield stress and phase transformations occur at higher stress during dynamic axial loading.
Discrete holomorphicity and integrability in loop models with open boundaries
de Gier, Jan; Rasmussen, Jorgen
2012-01-01
We consider boundary conditions compatible with discrete holomorphicity for the dilute O(n) and C_2^(1) loop models. In each model, for a general set of boundary plaquettes, multiple types of loops can appear. A generalisation of Smirnov's parafermionic observable is therefore required in order to maintain the discrete holomorphicity property in the bulk. We show that there exist natural boundary conditions for this observable which are consistent with integrability, that is to say that, by imposing certain boundary conditions, we obtain a set of linear equations whose solutions also satisfy the corresponding reflection equation. In both loop models, several new sets of integrable weights are found using this approach.
Duality and conformal twisted boundaries in the Ising model
Grimm, U
2002-01-01
There has been recent interest in conformal twisted boundary conditions and their realisations in solvable lattice models. For the Ising and Potts quantum chains, these amount to boundary terms that are related to duality, which is a proper symmetry of the model at criticality. Thus, at criticality, the duality-twisted Ising model is translationally invariant, similar to the more familiar cases of periodic and antiperiodic boundary conditions. The complete finite-size spectrum of the Ising quantum chain with this peculiar boundary condition is obtained.
Modeling the summertime Arctic cloudy boundary layer
Energy Technology Data Exchange (ETDEWEB)
Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)
1996-04-01
Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.
Kastening, Boris; Dohm, Volker
2010-06-01
Finite-size effects are investigated in the Gaussian model with isotropic and anisotropic short-range interactions in film geometry with nonperiodic boundary conditions (bc) above, at, and below the bulk critical temperature Tc. We have obtained exact results for the free energy and the Casimir force for antiperiodic, Neumann, Dirichlet, and Neumann-Dirichlet mixed bc in 1film critical temperature Tc,film(L)film thickness L . Our results include an exact description of the dimensional crossover between the d -dimensional finite-size critical behavior near bulk Tc and the (d-1) -dimensional critical behavior near Tc,film(L). This dimensional crossover is illustrated for the critical behavior of the specific heat. Particular attention is paid to an appropriate representation of the free energy in the region Tc,film(L)≤T≤Tc. For 2theory at fixed dimension d and are then compared with the ε=4-d expansion results at ε=1 as well as with d=3 Monte Carlo data. For d=2 , the Gaussian results for the Casimir force scaling function are compared with those for the Ising model with periodic, antiperiodic, and free bc; unexpected exact relations are found between the Gaussian and Ising scaling functions. For both the d -dimensional Gaussian model and the two-dimensional Ising model it is shown that anisotropic couplings imply nonuniversal scaling functions of the Casimir force that depend explicitly on microscopic couplings. Our Gaussian results provide the basis for the investigation of finite-size effects of the mean spherical model in film geometry with nonperiodic bc above, at, and below the bulk critical temperature.
Impedance-based outflow boundary conditions for human carotid haemodynamics.
Malvè, M; Chandra, S; García, A; Mena, A; Martínez, M A; Finol, E A; Doblaré, M
2014-01-01
In this study, we develop structured tree outflow boundary conditions for modelling the human carotid haemodynamics. The model geometry was reconstructed through computerised tomography scan. Unsteady-state computational fluid dynamic analyses were performed under different conditions using a commercial software package ADINA R&D, Inc., (Watertown, MA, USA) in order to assess the impact of the boundary conditions on the flow variables. In particular, the results showed that the peripheral vessels massively impact the pressure while the flow is relatively unaffected. As an example of application of these outflow conditions, an unsteady fluid-structure interaction (FSI) simulation was carried out and the dependence of the wall shear stress (WSS) on the arterial wall compliance in the carotid bifurcation was studied. In particular, a comparison between FSI and rigid-wall models was conducted. Results showed that the WSS distributions were substantially affected by the diameter variation of the arterial wall. In particular, even similar WSS distributions were found for both cases, and differences in the computed WSS values were also found.
Alpha models and boundary-layer turbulence
Cheskidov, Alexey
We study boundary-layer turbulence using the Navier-Stokes-alpha model obtaining an extension of the Prandtl equations for the averaged flow in a turbulent boundary layer. In the case of a zero pressure gradient flow along a flat plate, we derive a nonlinear fifth-order ordinary differential equation, an extension of the Blasius equation. We study it analytically and prove the existence of a two-parameter family of solutions satisfying physical boundary conditions. From this equation we obtain a theoretical prediction of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce the maximal value of the skin-friction coefficient in the turbulent boundary layer. The two-parameter family of solutions to the equation matches experimental data in the transitional boundary layers with different free stream turbulence intensity. A one-parameter sub-family of solutions, obtained using our skin-friction coefficient law, matches experimental data in the turbulent boundary layer for moderately large Reynolds numbers.
Supersymmetry Breaking through Boundary Conditions Associated with the $U(1)_{R}$
Takenaga, K
1998-01-01
The effects of boundary conditions imposed on the fields for the compactified space directions to the supersymmetric theories are discussed. The boundary conditions can be taken to be periodic up to the degrees of freedom of localized $U(1)_{R}$ transformations. The boundary condition breaks the supersymmetry to yield universal soft supersymmetry breaking terms. The 4-dimensional supersymmetric QED with one flavour and the pure supersymmetric QCD are studied as toy models when one of the space coordinates is compactified on $S^1$.
On domain wall boundary conditions for the XXZ spin Hamiltonian
DEFF Research Database (Denmark)
Orlando, Domenico; Reffert, Susanne; Reshetikhin, Nicolai
In this note, we derive the spectrum of the infinite quantum XXZ spin chain with domain wall boundary conditions. The eigenstates are constructed as limits of Bethe states for the finite XXZ spin chain with quantum sl(2) invariant boundary conditions....
Periodic Boundary Conditions in the ALEGRA Finite Element Code
Energy Technology Data Exchange (ETDEWEB)
AIDUN,JOHN B.; ROBINSON,ALLEN C.; WEATHERBY,JOE R.
1999-11-01
This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given.
Gravitational instability on the brane: the role of boundary conditions
Shtanov, Y; Sahni, V; Shtanov, Yuri; Viznyuk, Alexander; Sahni, Varun
2007-01-01
An outstanding issue in braneworld theory concerns the setting up of proper boundary conditions for the brane-bulk system. Boundary conditions (BC's) employing regulatory branes or demanding that the bulk metric be nonsingular have yet to be implemented in full generality. In this paper, we take a different route and specify boundary conditions directly on the brane thereby arriving at a local and closed system of equations (on the brane). We consider a one-parameter family of boundary conditions involving the anisotropic stress of the projection of the bulk Weyl tensor on the brane and derive an exact system of equations describing scalar cosmological perturbations on a generic braneworld with induced gravity. Depending upon our choice of boundary conditions, perturbations on the brane either grow moderately (region of stability) or rapidly (instability). In the instability region, the evolution of perturbations usually depends upon the scale: small scale perturbations grow much more rapidly than those on la...
Boundary conditions towards realistic simulation of jet engine noise
Dhamankar, Nitin S.
Strict noise regulations at major airports and increasing environmental concerns have made prediction and attenuation of jet noise an active research topic. Large eddy simulation coupled with computational aeroacoustics has the potential to be a significant research tool for this problem. With the emergence of petascale computer clusters, it is now computationally feasible to include the nozzle geometry in jet noise simulations. In high Reynolds number experiments on jet noise, the turbulent boundary layer on the inner surface of the nozzle separates into a turbulent free shear layer. Inclusion of a nozzle with turbulent inlet conditions is necessary to simulate this phenomenon realistically. This will allow a reasonable comparison of numerically computed noise levels with the experimental results. Two viscous wall boundary conditions are implemented for modeling the nozzle walls. A characteristic-based approach is compared with a computationally cheaper, extrapolation-based formulation. In viscous flow over a circular cylinder under two different regimes, excellent agreement is observed between the results of the two approaches. The results agree reasonably well with reference experimental and numerical results. Both the boundary conditions are thus found to be appropriate, the extrapolation-based formulation having an edge with its low cost. This is followed with the crucial step of generation of a turbulent boundary layer inside the nozzle. A digital filter-based turbulent inflow condition, extended in a new way to non-uniform curvilinear grids is implemented to achieve this. A zero pressure gradient flat plate turbulent boundary layer is simulated at a high Reynolds number to show that the method is capable of producing sustained turbulence. The length of the adjustment region necessary for synthetic inlet turbulence to recover from modeling errors is estimated. A low Reynolds number jet simulation including a round nozzle geometry is performed and the method
Physiologically structured populations with diffusion and dynamic boundary conditions.
Farkas, József Z; Hinow, Peter
2011-04-01
We consider a linear size-structured population model with diffusion in the size-space. Individuals are recruited into the population at arbitrary sizes. We equip the model with generalized Wentzell-Robin (or dynamic) boundary conditions. This approach allows the modelling of populations in which individuals may have distinguished physiological states. We establish existence and positivity of solutions by showing that solutions are governed by a positive quasicontractive semigroup of linear operators on the biologically relevant state space. These results are obtained by establishing dissipativity of a suitably perturbed semigroup generator. We also show that solutions of the model exhibit balanced exponential growth, that is, our model admits a finite-dimensional global attractor. In case of strictly positive fertility we are able to establish that solutions in fact exhibit asynchronous exponential growth.
Stokes Flow with Slip and Kuwabara Boundary Conditions
Indian Academy of Sciences (India)
Sunil Datta; Satya Deo
2002-08-01
The forces experienced by randomly and homogeneously distributed parallel circular cylinder or spheres in uniform viscous flow are investigated with slip boundary condition under Stokes approximation using particle-in-cell model technique and the result compared with the no-slip case. The corresponding problem of streaming flow past spheroidal particles departing but little in shape from a sphere is also investigated. The explicit expression for the stream function is obtained to the first order in the small parameter characterizing the deformation. As a particular case of this we considered an oblate spheroid and evaluate the drag on it.
Boundary conditions for soft glassy flows: slippage and surface fluidization.
Mansard, Vincent; Bocquet, Lydéric; Colin, Annie
2014-09-28
We explore the question of surface boundary conditions for the flow of a dense emulsion. We make use of microlithographic tools to create surfaces with well controlled roughness patterns and measure using dynamic confocal microscopy both the slip velocity and the shear rate close to the wall, which we relate to the notion of surface fluidization. Both slippage and wall fluidization depend non-monotonously on the roughness. We interpret this behavior within a simple model in terms of the building of a stratified layer and the activation of plastic events by the surface roughness.
The DtN nonreflecting boundary condition for multiple scattering problems in the half-plane
Acosta, Sebastian; Malone, Bruce
2013-01-01
The multiple-Dirichlet-to-Neumann (multiple-DtN) non-reflecting boundary condition is adapted to acoustic scattering from obstacles embedded in the half-plane. The multiple-DtN map is coupled with the method of images as an alternative model for multiple acoustic scattering in the presence of acoustically soft and hard plane boundaries. As opposed to the current practice of enclosing all obstacles with a large semicircular artificial boundary that contains portion of the plane boundary, the proposed technique uses small artificial circular boundaries that only enclose the immediate vicinity of each obstacle in the half-plane. The adapted multiple-DtN condition is simultaneously imposed in each of the artificial circular boundaries. As a result the computational effort is significantly reduced. A computationally advantageous boundary value problem is numerically solved with a finite difference method supported on boundary-fitted grids. Approximate solutions to problems involving two scatterers of arbitrary geo...
Spatial heterogeneity of ocean surface boundary conditions under sea ice
Barthélemy, Antoine; Fichefet, Thierry; Goosse, Hugues
2016-06-01
The high heterogeneity of sea ice properties implies that its effects on the ocean are spatially variable at horizontal scales as small as a few meters. Previous studies have shown that taking this variability into account in models could be required to simulate adequately mixed layer processes and the upper ocean temperature and salinity structures. Although many advanced sea ice models include a subgrid-scale ice thickness distribution, potentially providing heterogeneous surface boundary conditions, the information is lost in the coupling with a unique ocean grid cell underneath. The present paper provides a thorough examination of boundary conditions at the ocean surface in the NEMO-LIM model, which can be used as a guideline for studies implementing subgrid-scale ocean vertical mixing schemes. Freshwater, salt, solar heat and non-solar heat fluxes are examined, as well as the norm of the surface stress. All of the thermohaline fluxes vary considerably between the open water and ice fractions of grid cells. To a lesser extent, this is also the case for the surface stress. Moreover, the salt fluxes in both hemispheres and the solar heat fluxes in the Arctic show a dependence on the ice thickness category, with more intense fluxes for thinner ice, which promotes further subgrid-scale heterogeneity. Our analysis also points out biases in the simulated open water fraction and in the ice thickness distribution, which should be investigated in more details in order to ensure that the latter is used to the best advantage.
Breakup of spiral wave under different boundary conditions
Institute of Scientific and Technical Information of China (English)
Zhao Ying-Kui; Wang Guang-Rui; Chen Shi-Gang
2007-01-01
In this paper, we investigate the breakup of spiral wave under no-flux, periodic and Dirichlet boundary conditions respectively. When the parameter ε is close to a critical value for Doppler-induced wave breakup, the instability of the system caused by the boundary effect occurs in the last two cases, resulting in the breakup of spiral wave near the boundary. With our defined average order measure of spiral wave (AOMSW), we quantify the degree of order of the system when the boundary-induced breakup of spiral wave happens. By analysing the AOMSW and outer diameter R of the spiral tip orbit, it is easy to find that this boundary effect is correlated with large values of R, especially under the Dirichlet boundary condition. This correlation is nonlinear, so the AOMSW sometimes oscillates with the variation of ε.
Boundary condition effects on maximum groundwater withdrawal in coastal aquifers.
Lu, Chunhui; Chen, Yiming; Luo, Jian
2012-01-01
Prevention of sea water intrusion in coastal aquifers subject to groundwater withdrawal requires optimization of well pumping rates to maximize the water supply while avoiding sea water intrusion. Boundary conditions and the aquifer domain size have significant influences on simulating flow and concentration fields and estimating maximum pumping rates. In this study, an analytical solution is derived based on the potential-flow theory for evaluating maximum groundwater pumping rates in a domain with a constant hydraulic head landward boundary. An empirical correction factor, which was introduced by Pool and Carrera (2011) to account for mixing in the case with a constant recharge rate boundary condition, is found also applicable for the case with a constant hydraulic head boundary condition, and therefore greatly improves the usefulness of the sharp-interface analytical solution. Comparing with the solution for a constant recharge rate boundary, we find that a constant hydraulic head boundary often yields larger estimations of the maximum pumping rate and when the domain size is five times greater than the distance between the well and the coastline, the effect of setting different landward boundary conditions becomes insignificant with a relative difference between two solutions less than 2.5%. These findings can serve as a preliminary guidance for conducting numerical simulations and designing tank-scale laboratory experiments for studying groundwater withdrawal problems in coastal aquifers with minimized boundary condition effects.
Effective boundary condition at a rough surface starting from a slip condition
Dalibard, Anne-Laure
2010-01-01
We consider the homogenization of the Navier-Stokes equation, set in a channel with a rough boundary, of small amplitude and wavelength $\\epsilon$. It was shown recently that, for any non-degenerate roughness pattern, and for any reasonable condition imposed at the rough boundary, the homogenized boundary condition in the limit $\\epsilon = 0$ is always no-slip. We give in this paper error estimates for this homogenized no-slip condition, and provide a more accurate effective boundary condition, of Navier type. Our result extends those obtained in previous works, in which the special case of a Dirichlet condition at the rough boundary was examined.
Heat-kernel coefficients for oblique boundary conditions
Dowker, John S; Kirsten, Klaus
1997-01-01
We calculate the heat-kernel coefficients, up to $a_2$, for a U(1) bundle on the 4-Ball for boundary conditions which are such that the normal derivative of the field at the boundary is related to a first-order operator in boundary derivatives acting on the field. The results are used to place restrictions on the general forms of the coefficients. In the specific case considered, there can be a breakdown of ellipticity.
Hydrodynamic Boundary Conditions and Dynamic Forces between Bubbles and Surfaces
Manor, Ofer; Vakarelski, Ivan U.; Tang, Xiaosong; O'Shea, Sean J.; Stevens, Geoffrey W.; Grieser, Franz; Dagastine, Raymond R.; Chan, Derek Y. C.
2008-07-01
Dynamic forces between a 50μm radius bubble driven towards and from a mica plate using an atomic force microscope in electrolyte and in surfactant exhibit different hydrodynamic boundary conditions at the bubble surface. In added surfactant, the forces are consistent with the no-slip boundary condition at the mica and bubble surfaces. With no surfactant, a new boundary condition that accounts for the transport of trace surface impurities explains variations of dynamic forces at different speeds and provides a direct connection between dynamic forces and surface transport effects at the air-water interface.
Exponential reduction of finite volume effects with twisted boundary conditions
Cherman, Aleksey; Wagman, Michael L; Yaffe, Laurence G
2016-01-01
Flavor-twisted boundary conditions can be used for exponential reduction of finite volume artifacts in flavor-averaged observables in lattice QCD calculations with $SU(N_f)$ light quark flavor symmetry. Finite volume artifact reduction arises from destructive interference effects in a manner closely related to the phase averaging which leads to large $N_c$ volume independence. With a particular choice of flavor-twisted boundary conditions, finite volume artifacts for flavor-singlet observables in a hypercubic spacetime volume are reduced to the size of finite volume artifacts in a spacetime volume with periodic boundary conditions that is four times larger.
Extensions of diffusion processes on intervals and Feller's boundary conditions
Yano, Kouji
2012-01-01
For a minimal diffusion process on $ (a,b) $, any possible extension of it to a standard process on $ [a,b] $ is characterized by the characteristic measures of excursions away from the boundary points $ a $ and $ b $. The generator of the extension is proved to be characterized by Feller's boundary condition.
Steady-State Axisymmetric MHD Solutions with Various Boundary Conditions
Wang, Lile
2014-01-01
Axisymmetric magnetohydrodynamics (MHD) can be invoked for describing astrophysical magnetized flows and formulated to model stellar magnetospheres including main sequence stars (e.g. the Sun), compact stellar objects [e.g. magnetic white dwarfs (MWDs), radio pulsars, anomalous X-ray pulsars (AXPs), magnetars, isolated neutron stars etc.], and planets as a major step forward towards a full three-dimensional model construction. Using powerful and reliable numerical solvers based on two distinct finite-difference method (FDM) and finite-element method (FEM) schemes of algorithm, we examine axisymmetric steady-state or stationary MHD models in Throumoulopoulos & Tasso (2001), finding that their separable semi-analytic nonlinear solutions are actually not unique given their specific selection of several free functionals and chosen boundary conditions. The multiplicity of nonlinear steady MHD solutions gives rise to differences in the total energies contained in the magnetic fields and flow velocity fields as ...
Numerical Solution for the Helmholtz Equation with Mixed Boundary Condition
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We consider the numerical solution for the Helmholtz equation in R2 with mixed boundary conditions. The solvability of this mixed boundary value problem is established by the boundary integral equation method. Based on the Green formula, we express the solution in terms of the boundary data. The key to the numerical realization of this method is the computation of weakly singular integrals. Numerical performances show the validity and feasibility of our method. The numerical schemes proposed in this paper have been applied in the realization of probe method for inverse scattering problems.
Boundary Conditions for Free Interfaces with the Lattice Boltzmann Method
Bogner, Simon; Rüde, Ulrich
2014-01-01
In this paper we analyze the boundary treatment of the Lattice Boltzmann method for simulating 3D flows with free surfaces. The widely used free surface boundary condition of K\\"orner et al. (2005) is shown to be first order accurate. The article presents new free surface boundary schemes that are suitable for the lattice Boltzmann method and that have second order spatial accuracy. The new method takes the free boundary position and orientation with respect to the computational lattice into account. Numerical experiments confirm the theoretical findings and illustrate the the difference between the old and the new method.
Boundary Conditions for 2D Boussinesq-type Wave-Current Interaction Equations
Directory of Open Access Journals (Sweden)
Mera M.
2011-01-01
Full Text Available This research focuses on the development of a set of two-dimensional boundary conditions for specific governing equations. The governing equations are existing Boussinesqtype equations which is capable of simulating wave-current interaction. The present boundary conditions consist of for waves only case and for currents only case. To simulate wave-current interaction, the two kinds of the present boundary conditions are then combined. A numerical model based on both the existing governing equations and the present boundary conditions is applied to simulation of currents only and of wave-current interaction propagating over a basin with a submerged shoal. The results of the numerical model show that the present boundary conditions go well with the existing Boussinesq-type wave-current interaction equations.
Absorption and impedance boundary conditions for phased geometrical-acoustics methods
DEFF Research Database (Denmark)
Jeong, Cheol-Ho
2012-01-01
Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, both absorption coefficients and surface impedances of the boundary surfaces can be used, but no guideline has been...... developed on which boundary condition produces accurate results. In this study, various boundary conditions in terms of normal, random, and field incidence absorption coefficients and normal incidence surface impedance are used in a phased beam tracing model, and the simulated results are validated...... with boundary element solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. Effects of the neglect of reflection phase shift are also investigated. It is concluded that the impedance, random incidence, and field incidence absorption boundary conditions produce...
Absorption and impedance boundary conditions for phased geometrical-acoustics methods.
Jeong, Cheol-Ho
2012-10-01
Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, both absorption coefficients and surface impedances of the boundary surfaces can be used, but no guideline has been developed on which boundary condition produces accurate results. In this study, various boundary conditions in terms of normal, random, and field incidence absorption coefficients and normal incidence surface impedance are used in a phased beam tracing model, and the simulated results are validated with boundary element solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. Effects of the neglect of reflection phase shift are also investigated. It is concluded that the impedance, random incidence, and field incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials.
The height of the atmospheric boundary layer during unstable conditions
Energy Technology Data Exchange (ETDEWEB)
Gryning, S.E.
2005-11-01
The height of the convective atmospheric boundary layer, also called the mixed-layer, is one of the fundamental parameters that characterise the structure of the atmosphere near the ground. It has many theoretical and practical applications such as the prediction of air pollution concentrations, surface temperature and the scaling of turbulence. However, as pointed out by Builtjes (2001) in a review paper on Major Twentieth Century Milestones in Air Pollution Modelling and Its Application, the weakest point in meteorology data is still the determination of the height of the mixed-layer, the so-called mixing height. A simple applied model for the height of the mixed-layer over homogeneous terrain is suggested in chapter 2. It is based on a parameterised budget for the turbulent kinetic energy. In the model basically three terms - the spin-up term and the production of mechanical and convective turbulent kinetic energy - control the growth of the mixed layer. The interplay between the three terms is related to the meteorological conditions and the height of the mixed layer. A stable layer, the so-called entrainment zone, which is confined between the mixed layer and the free air above, caps the mixed layer. A parameterisation of the depth of the entrainment zone is also suggested, and used to devise a combined model for the height of the mixed layer and the entrainment zone. Another important aspect of the mixed layer development exists in coastal areas where an internal boundary layer forms downwind from the coastline. A model for the growth of the internal boundary layer is developed in analogy with the model for mixed layer development over homogeneous terrain. The strength of this model is that it can operate on a very fine spatial resolution with minor computer resources. Chapter 3 deals with the validation of the models. It is based in parts on data from the literature, and on own measurements. For the validation of the formation of the internal boundary layer
Homogenized boundary conditions and resonance effects in Faraday cages
Hewett, D. P.; Hewitt, I. J.
2016-05-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.
Homogenized boundary conditions and resonance effects in Faraday cages
Hewitt, I. J.
2016-01-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. PMID:27279775
Homogenized boundary conditions and resonance effects in Faraday cages.
Hewett, D P; Hewitt, I J
2016-05-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called 'Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.
Topological boundary conditions in abelian Chern-Simons theory
Energy Technology Data Exchange (ETDEWEB)
Kapustin, Anton [California Institute of Technology, Pasadena, CA 91125 (United States); Saulina, Natalia, E-mail: saulina@theory.caltech.ed [Perimeter Institute, Waterloo (Canada)
2011-04-21
We study topological boundary conditions in abelian Chern-Simons theory and line operators confined to such boundaries. From the mathematical point of view, their relationships are described by a certain 2-category associated to an even integer-valued symmetric bilinear form (the matrix of Chern-Simons couplings). We argue that boundary conditions correspond to Lagrangian subgroups in the finite abelian group classifying bulk line operators (the discriminant group). We describe properties of boundary line operators; in particular we compute the boundary associator. We also study codimension one defects (surface operators) in abelian Chern-Simons theories. As an application, we obtain a classification of such theories up to isomorphism, in general agreement with the work of Belov and Moore.
Two Baryons with Twisted Boundary Conditions
Energy Technology Data Exchange (ETDEWEB)
Briceno, Raul [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Davoudi, Zohreh [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States); Luu, Thomas [Lawrence Livermore National Laboratory, Livermore, CA (United States); Savage, Martin [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States)
2014-04-01
The quantization condition for two particle systems with arbitrary number of two-body open coupled-channels, spin and masses in a finite cubic volume is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is fully relativistic and holds for all momenta below inelastic thresholds and is exact up to exponential volume corrections that are governed by m{sub {pi}} L, where m{sub {pi}} is the pion mass and L is the spatial extent of my box. Its implication for the studies of coupled-channel baryon-baryon systems is discussed, and the necessary tools for implementing the formalism are review.
A generalized theory on the penetrating boundary conditions
Institute of Scientific and Technical Information of China (English)
邵振海; 洪伟; 周健义
2000-01-01
A generalized formula for penetrating boundary conditions is derived based on the Z-transform. The well-known absorbing boundary conditions (ABCs), such as the Mur’s ABC, and Liao’s ABC, can be deduced from the formula. Furthermore, some new ABCs can also be deduced from it. The stability of these ABCs are demonstrated via Von Neumann method and their validity is verified by numerical examples.
A generalized theory on the penetrating boundary conditions
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A generalized formula for penetrating boundary conditions is derived based on the Z-transform. The well-known absorbing boundary conditions (ABCs), such as the Mur's ABC, and Liao's ABC, can be deduced from the formula. Furthermore, some new ABCs can also be deduced from it. The stability of these ABCs are demonstrated via Von Neumann method and their validity is verified by numerical examples.
Effects of Boundary Conditions on Near Field Plasma Plume Simulations
Boyd, Iain
2004-11-01
The successful development of various types of electric propulsion devices is providing the need for accurate assessment of integration effects generated by the interaction of the plasma plumes of these thrusters with the host spacecraft. Assessment of spacecraft interaction effects in ground based laboratory facilities is inadequate due to the technical difficulties involved in accurately recreating the near vacuum ambient conditions experienced in space. This situation therefore places a heavy demand on computational modeling of plasma plume phenomena. Recently (Boyd and Yim, Journal of Applied Physics, Vol. 95, 2004, pp. 4575-5484) a hybrid model of the near field of the plume of a Hall thruster was reported in which the heavy species are modeled using particles and the electrons are modeled using a detailed fluid description. The present study continues the model development and assessment by considering the sensitivity of computed results to different types of boundary conditions that must be formulated for the thruster exit, for the cathode exit, for the thruster walls, and for the plume far field. The model is assessed through comparison of its predictions with several sets of experimental data measured in the plume of the BHT-200 Hall thruster.
Coleman-Gurtin type equations with dynamic boundary conditions
Gal, Ciprian G.; Shomberg, Joseph L.
2015-02-01
We present a new formulation and generalization of the classical theory of heat conduction with or without fading memory. As a special case, we investigate the well-posedness of systems which consist of Coleman-Gurtin type equations subject to dynamic boundary conditions, also with memory. Nonlinear terms are defined on the interior of the domain and on the boundary and subject to either classical dissipation assumptions, or to a nonlinear balance condition in the sense of Gal (2012). Additionally, we do not assume that the interior and the boundary share the same memory kernel.
Directory of Open Access Journals (Sweden)
Guotao Wang
2012-01-01
Full Text Available We study nonlinear impulsive differential equations of fractional order with irregular boundary conditions. Some existence and uniqueness results are obtained by applying standard fixed-point theorems. For illustration of the results, some examples are discussed.
Nonlinear Vibrations of Multiwalled Carbon Nanotubes under Various Boundary Conditions
Directory of Open Access Journals (Sweden)
Hossein Aminikhah
2011-01-01
Full Text Available The present work deals with applying the homotopy perturbation method to the problem of the nonlinear oscillations of multiwalled carbon nanotubes embedded in an elastic medium under various boundary conditions. A multiple-beam model is utilized in which the governing equations of each layer are coupled with those of its adjacent ones via the van der Waals interlayer forces. The amplitude-frequency curves for large-amplitude vibrations of single-walled, double-walled, and triple-walled carbon nanotubes are obtained. The influences of some commonly used boundary conditions, changes in material constant of the surrounding elastic medium, and variations of the nanotubes geometrical parameters on the vibration characteristics of multiwalled carbon nanotubes are discussed. The comparison of the generated results with those from the open literature illustrates that the solutions obtained are of very high accuracy and clarifies the capability and the simplicity of the present method. It is worthwhile to say that the results generated are new and can be served as a benchmark for future works.
Boundary conditions and phase transitions in neural networks. Simulation results.
Demongeot, Jacques; Sené, Sylvain
2008-09-01
This paper gives new simulation results on the asymptotic behaviour of theoretical neural networks on Z and Z(2) following an extended Hopfield law. It specifically focuses on the influence of fixed boundary conditions on such networks. First, we will generalise the theoretical results already obtained for attractive networks in one dimension to more complicated neural networks. Then, we will focus on two-dimensional neural networks. Theoretical results have already been found for the nearest neighbours Ising model in 2D with translation-invariant local isotropic interactions. We will detail what happens for this kind of interaction in neural networks and we will also focus on more complicated interactions, i.e., interactions that are not local, neither isotropic, nor translation-invariant. For all these kinds of interactions, we will show that fixed boundary conditions have significant impacts on the asymptotic behaviour of such networks. These impacts result in the emergence of phase transitions whose geometric shape will be numerically characterised.
Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations
Energy Technology Data Exchange (ETDEWEB)
Li, Tingwen [URS Corporation; Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Benyahia, Sofiane [National Energy Technology Lab. (NETL), Morgantown, WV (United States)
2013-10-01
Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open literature for numerical modeling of gas-solids flow. In this study, a model for specularity coefficient used in Johnson and Jackson boundary conditions by Li and Benyahia (AIChE Journal, 2012, 58, 2058-2068) is implemented in the open-source CFD code-MFIX. The variable specularity coefficient model provides a physical way to calculate the specularity coefficient needed by the partial-slip boundary conditions for the solids phase. Through a series of 2-D numerical simulations of bubbling fluidized bed and circulating fluidized bed riser, the model predicts qualitatively consistent trends to the previous studies. Furthermore, a quantitative comparison is conducted between numerical results of variable and constant specularity coefficients to investigate the effect of spatial and temporal variations in specularity coefficient.
Sprlak, M.; Novak, P.; Pitonak, M.; Hamackova, E.
2015-12-01
Values of scalar, vectorial and second-order tensorial parameters of the Earth's gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and are well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. This fact may be documented by the terrestrial experiments Dulkyn and Magia, as well as by the proposal of the gravity-dedicated satellite mission called OPTIMA. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth's gravitational field is a subject of this study. Firstly, we derive integral transforms between the gravitational potential and gravitational curvatures, i.e., we find analytical solutions of the boundary value problems with gravitational curvatures as boundary conditions. Secondly, properties of the corresponding Green kernel functions are studied in the spatial and spectral domains. Thirdly, the correctness of the new analytical solutions is tested in a simulation study. The presented mathematical apparatus reveal important properties of the gravitational curvatures. It also extends the Meissl scheme, i.e., an important theoretical paradigm that relates various parameters of the Earth's gravitational field.
Janssen, R.H.H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.N.; Kabat, P.; Jimenez, J.L.; Farmer, D.K.; Heerwaarden, van C.C.; Mammarella, I.
2012-01-01
We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the mod
Boundary conditions for free surface inlet and outlet problems
Taroni, M.
2012-08-10
We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well known that the flux scales with Ca 2/3, but this classical result is non-uniform as the contact angle approaches π. By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed. © 2012 Cambridge University Press.
PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL
Institute of Scientific and Technical Information of China (English)
Hussein A.H. Salem
2011-01-01
In this article, we investigate the existence of Pseudo solutions for some frac- tional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important class of problems. They include two, three, multi-point and nonlocal boundary-value problems as special cases. In our investigation, the right hand side of the above problem is assumed to be Pettis integrable function. To encompass the full scope of this article, we give an example illustrating the main result.
Experimental studies of pedestrian flows under different boundary conditions
Zhang, Jun
2015-01-01
In this article the dynamics of pedestrian streams in four different scenarios are compared empirically to investigate the influence of boundary conditions on it. The Voronoi method, which allows high resolution and small fluctuations of measured density in time and space, is used to analyze the experiments. It is found that pedestrian movement in systems with different boundary conditions (open, periodic boundary conditions and outflow restrained) presents various characteristics especially when the density is larger than 2 m-2. In open corridor systems the specific flow increases continuously with increasing density till 4 m-2. The specific flow keeps constant in systems with restrained outflow, whereas it decreases from 1 (m.s)-1 to zero in system with closed periodical condition.
Determination of optical properties by variation of boundary conditions
Nickell, Stephan; Essenpreis, Matthias; Kraemer, U.; Kohl-Bareis, Matthias; Boecker, Dirk
1998-01-01
Propagation of photons in multiple scattering media depends on absorbing and scattering properties as well as the boundary conditions of the semi-infinite medium. A new method is shown that makes use of differences in boundary conditions to determine the optical properties. Induced are these different conditions by varying the reflectivity of a sensor head. We describe the influence of the change in reflectivity with the common diffusion theory. By building a ratio between the spatially-resolved diffuse reflectance under different boundary conditions it is possible to calculate the optical properties of homogeneous phantoms. Due to optical heterogeneities in living tissue, limitations of the method was observed, which restricts the application to in vivo measurements.
A unified slip boundary condition for flow over a surface
Thalakkottor, Joseph John
2015-01-01
Interface between two phases of matter are ubiquitous in nature and technology. Determining the correct velocity condition at an interface is essential for understanding and designing of flows over a surface. We demonstrate that both the widely used no-slip and the Navier and Maxwell slip boundary conditions do not capture the complete physics associated with complex problems, such as spreading of liquids or corner flows. Hence, we present a unified boundary condition that is applicable to a wide-range of flow problems.
Comment on the uncertainty relation with periodic boundary conditions
Fujikawa, Kazuo
2010-01-01
The Kennard-type uncertainty relation $\\Delta x\\Delta p >\\frac{\\hbar}{2}$ is formulated for a free particle with given momentum $ inside a box with periodic boundary conditions in the large box limit. Our construction of a free particle state is analogous to that of the Bloch wave in a periodic potential. A simple Robertson-type relation, which minimizes the effect of the box boundary and may be useful in some practical applications, is also presented.
STURM-LIOUVILLE PROBLEMS WITH EIGENDEPENDENT BOUNDARY AND TRANSMISSIONS CONDITIONS
Institute of Scientific and Technical Information of China (English)
Z. Akdo(g)an; M. Demirci; O.Sh. Mukhtarov
2005-01-01
The purpose of this paper is to extend some fundamental spectral properties of regular Sturm-Liouville problems to special kind discontinuous boundary value problem,which consist of a Sturm-Liouville equation with piecewise continuous potential together with eigenvalue parameter on the boundary and transmission conditions. The authors suggest their own approach for finding asymptotic approximations formulas for eigenvalues and eigenfunctions of such discontinuous problems.
Normal ordering and boundary conditions for fermionic string coordinates
Braga, N R F; Godinho, C F L; Braga, Nelson R. F.; Carrion, Hector L.; Godinho, Cresus F. L.
2006-01-01
We build up normal ordered products for fermionic open string coordinates consistent with boundary conditions. The results are obtained considering the presence of antisymmetric tensor fields. We find a discontinuity of the normal ordered products at string endpoints even in the absence of the background. We discuss how the energy momentum tensor also changes at the world-sheet boundary in such a way that the central charge keeps the standard value at string end points.
Normal ordering and boundary conditions for fermionic string coordinates
Energy Technology Data Exchange (ETDEWEB)
Braga, Nelson R.F. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil)]. E-mail: braga@if.ufrj.br; Carrion, Hector L. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, SP (Brazil)]. E-mail: hlc@fma.if.usp.br; Godinho, Cresus F.L. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)]. E-mail: godinho@cbpf.br
2006-07-06
We build up normal ordered products for fermionic open string coordinates consistent with boundary conditions. The results are obtained considering the presence of antisymmetric tensor fields. We find a discontinuity of the normal ordered products at string endpoints even in the absence of the background. We discuss how the energy-momentum tensor also changes at the world-sheet boundary in such a way that central charge keeps the standard value at string end points.
Hou, J S; Holmes, M H; Lai, W M; Mow, V C
1989-02-01
The objective of this study is to establish and verify the set of boundary conditions at the interface between a biphasic mixture (articular cartilage) and a Newtonian or non-Newtonian fluid (synovial fluid) such that a set of well-posed mathematical problems may be formulated to investigate joint lubrication problems. A "pseudo-no-slip" kinematic boundary condition is proposed based upon the principle that the conditions at the interface between mixtures or mixtures and fluids must reduce to those boundary conditions in single phase continuum mechanics. From this proposed kinematic boundary condition, and balances of mass, momentum and energy, the boundary conditions at the interface between a biphasic mixture and a Newtonian or non-Newtonian fluid are mathematically derived. Based upon these general results, the appropriate boundary conditions needed in modeling the cartilage-synovial fluid-cartilage lubrication problem are deduced. For two simple cases where a Newtonian viscous fluid is forced to flow (with imposed Couette or Poiseuille flow conditions) over a porous-permeable biphasic material of relatively low permeability, the well known empirical Taylor slip condition may be derived using matched asymptotic analysis of the boundary layer at the interface.
Meulenbroek, B.J.; Ebert, U.; Schäfer, L.
2005-01-01
The dynamics of ionization fronts that generate a conducting body, are in simplest approximation equivalent to viscous fingering without regularization. Going beyond this approximation, we suggest that ionization fronts can be modeled by a mixed Dirichlet-Neumann boundary condition. We derive exact
Theory of a curved planar waveguide with Robin boundary conditions
Olendski, O.; Mikhailovska, L.
2010-03-01
A model of a thin straight strip with a uniformly curved section and with boundary requirements zeroing at the edges a linear superposition of the wave function and its normal derivative (Robin boundary condition) is analyzed theoretically within the framework of the linear Schrödinger equation and is applied to the study of the processes in the bent magnetic multilayers, superconducting films and metallic ferrite-filled waveguides. In particular, subband thresholds of the straight and curved parts of the film are calculated and analyzed as a function of the Robin parameter 1/Λ , with Λ being an extrapolation length entering Robin boundary condition. For the arbitrary Robin coefficients which are equal on the opposite interfaces of the strip and for all bend parameters the lowest-mode energy of the continuously curved duct is always smaller than its straight counterpart. Accordingly, the bound state below the fundamental propagation threshold of the straight arms always exists as a result of the bend. In terms of the superconductivity language it means an increased critical temperature of the curved film compared to its straight counterpart. Localized-level dependence on the parameters of the curve is investigated with its energy decreasing with increasing bend angle and decreasing bend radius. Conditions of the bound-state existence for the different Robin parameters on the opposite edges are analyzed too; in particular, it is shown that the bound state below the first transverse threshold of the straight arm always exists if the inner extrapolation length is not larger than the outer one. In the opposite case there is a range of the bend parameters where the curved film cannot trap the wave and form the localized mode; for example, for the fixed bend radius the bound state emerges from the continuum at some nonzero bend angle that depends on the difference of the two lengths Λ at the opposite interfaces. Various transport properties of the film such as
Realistic boundary conditions for stochastic simulations of reaction-diffusion processes
Erban, R; Erban, Radek
2006-01-01
Many cellular and subcellular biological processes can be described in terms of diffusing and chemically reacting species (e.g. enzymes). Such reaction-diffusion processes can be mathematically modelled using either deterministic partial-differential equations or stochastic simulation algorithms. The latter provide a more detailed and precise picture, and several stochastic simulation algorithms have been proposed in recent years. Such models typically give the same description of the reaction-diffusion processes far from the boundary of the simulated domain, but the behaviour close to a reactive boundary (e.g. a membrane with receptors) is unfortunately model-dependent. In this paper, we study four different approaches to stochastic modelling of reaction-diffusion problems and show the correct choice of the boundary condition for each model. The reactive boundary is treated as partially reflective, which means that some molecules hitting the boundary are adsorbed (e.g. bound to the receptor) and some molecul...
Effects of microscopic boundary conditions on plastic deformations of small-sized single crystals
DEFF Research Database (Denmark)
Kuroda, Mitsutoshi; Tvergaard, Viggo
2009-01-01
The finite deformation version of the higher-order gradient crystal plasticity model proposed by the authors is applied to solve plane strain boundary value problems, in order to obtain an understanding of the effect of the higher-order boundary conditions. Numerical solutions are carried out...... effect of higher-order boundary conditions on the overall deformation mode of the block is observed. The bent foil has free surfaces through which dislocations can go out of the material, and we observe a strong size-dependent mechanical response resulting from the surface condition assumed....
Transport synthetic acceleration with opposing reflecting boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Zika, M.R.; Adams, M.L.
2000-02-01
The transport synthetic acceleration (TSA) scheme is extended to problems with opposing reflecting boundary conditions. This synthetic method employs a simplified transport operator as its low-order approximation. A procedure is developed that allows the use of the conjugate gradient (CG) method to solve the resulting low-order system of equations. Several well-known transport iteration algorithms are cast in a linear algebraic form to show their equivalence to standard iterative techniques. Source iteration in the presence of opposing reflecting boundary conditions is shown to be equivalent to a (poorly) preconditioned stationary Richardson iteration, with the preconditioner defined by the method of iterating on the incident fluxes on the reflecting boundaries. The TSA method (and any synthetic method) amounts to a further preconditioning of the Richardson iteration. The presence of opposing reflecting boundary conditions requires special consideration when developing a procedure to realize the CG method for the proposed system of equations. The CG iteration may be applied only to symmetric positive definite matrices; this condition requires the algebraic elimination of the boundary angular corrections from the low-order equations. As a consequence of this elimination, evaluating the action of the resulting matrix on an arbitrary vector involves two transport sweeps and a transmission iteration. Results of applying the acceleration scheme to a simple test problem are presented.
Role of the basin boundary conditions in gravity wave turbulence
Deike, Luc; Gutiérrez-Matus, Pablo; Jamin, Timothée; Semin, Benoit; Aumaitre, Sébastien; Berhanu, Michael; Falcon, Eric; BONNEFOY, Félicien
2014-01-01
Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely...
Nonlinear Vibrations of Timoshenko Beams with Various Boundary Conditions
Institute of Scientific and Technical Information of China (English)
郭强; 刘曦; 钟宏志
2004-01-01
This paper is concerned with the effects of boundary conditions on the large-amplitude free vibrations of Timoshenko beams. The effects of nonlinear terms on the frequency of Timoshenko beams with simply supported ends (supported-supported, SS), clamped ends (clamped-clamped, CC) and one end simply supported and the other end clamped (clamped-supported, CS) are discussed in detail. Given a specific vibration amplitude, the change of nonlinear frequency according to the effects of boundary conditions is always in the following descending order: SS, CS, and CC. It is found that the slenderness ratio has a significant influence on the nonlinear frequency. For slender beams, the nonlinear effects of bending curvature and shear strain are negligible regardless of the boundary conditions. For short beams and especially for those of large amplitude vibrations, however, the nonlinear effects of bending curvature and shear strain become noticeable in the following ascending order: SS, CS, and CC.
Boundary conditions on internal three-body wave functions
Energy Technology Data Exchange (ETDEWEB)
Mitchell, Kevin A.; Littlejohn, Robert G.
1999-10-01
For a three-body system, a quantum wave function {Psi}{sub m}{sup {ell}} with definite {ell} and m quantum numbers may be expressed in terms of an internal wave function {chi}{sub k}{sup {ell}} which is a function of three internal coordinates. This article provides necessary and sufficient constraints on {chi}{sub k}{sup {ell}} to ensure that the external wave function {Psi}{sub k}{sup {ell}} is analytic. These constraints effectively amount to boundary conditions on {chi}{sub k}{sup {ell}} and its derivatives at the boundary of the internal space. Such conditions find similarities in the (planar) two-body problem where the wave function (to lowest order) has the form r{sup |m|} at the origin. We expect the boundary conditions to prove useful for constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.
Directory of Open Access Journals (Sweden)
A. Malvandi
2015-01-01
Full Text Available The objective of this paper is to consider both effects of slip and convective heat boundary conditions on steady two-dimensional boundary layer flow of a nanofluid over a stretching sheet in the presence of blowing/suction simultaneously. Flow meets the Navier's slip condition at the surface and Biot number is also used to consider the effects of convective heat transfer. The employed model for nanofluid includes two-component four-equation nonhomogeneous equilibrium model that incorporates the effects of nanoparticle migration owing to Brownian motion and thermophoresis. The basic partial boundary layer equations have been transformed into a two-point boundary value problem via similarity variables. Results for impermeable isothermal surface and also no-slip boundary condition were in best agreements with those existing in literatures. Effects of governing parameters such as Biot number (Bi, slip parameter (λ, thermophoresis (Nt, Prandtl number (Pr, Lewis number (Le, Brownian motion (Nb and blowing/suction (S on reduced Nusselt and Sherwood numbers are analyzed and discussed in details. The obtained results indicate that unlike heat transfer rate, concentration rate is very sensitive to all parameters among which Le, S and Pr are the most effective ones.
Sensitivity of African easterly waves to boundary layer conditions
Directory of Open Access Journals (Sweden)
A. Lenouo
2008-06-01
Full Text Available A linearized version of the quasi-geostrophic model (QGM with an explicit Ekman layer and observed static stability parameter and profile of the African easterly jet (AEJ, is used to study the instability properties of the environment of the West African wave disturbances. It is found that the growth rate, the propagation velocity and the structure of the African easterly waves (AEW can be well simulated. Two different lower boundary conditions are applied. One assumes a lack of vertical gradient of perturbation stream function and the other assumes zero wind perturbation at the surface. The first case gives more realistic results since in the absence of horizontal diffusion, growth rate, phase speed and period have values of 0.5 day^{−1}, 10.83 m s^{−1} and 3.1 day, respectively. The zero wind perturbation at the surface case leads to values of these parameters that are 50 percent lower. The analysis of the sensitivity to diffusion shows that the magnitude of the growth rate decreases with this parameter. Modelled total relative vorticity has its low level maximum around 900 hPa under no-slip, and 700 hPa under free slip condition.
Behavior of the reversed field pinch with nonideal boundary conditions
Ho, Yung-Lung
1988-11-01
The linear and nonlinear magnetohydrodynamic stability of current-driven modes are studied for a reversed field pinch with nonideal boundary conditions. The plasma is bounded by a thin resistive shell surrounded by a vacuum region out to a radius at which a perfectly conducting wall is situated. The distant wall and the thin shell problems are studied by removing either the resistive shell or the conducting wall. Linearly, growth rates of tearing modes and kink modes are calculated by analytical solutions based on the modified Bessel function model for the equilibrium. The effects of variation of the shell resistivity and wall proximity on the growth rates are investigated. The modes that may be important in different parameter regimes and with different boundary conditions are identified. The nonlinear behaviors are studied with a three-dimensional magnetohydrodynamics code. The fluctuations generally rise with increasing distance between the conducting wall and the plasma. The enhanced fluctuation induced v x b electric field primarily oppose toroidal current; hence, loop voltage must increase to sustain the constant. Quasilinear interaction between modes typically associated with the dynamo action is identified as the most probable nonlinear destabilization mechanism. The helicity and energy balance properties of the simulation results are discussed. The interruption of current density along field lines intersecting the resistive shell is shown to lead to surface helicity leakage. This effect is intimately tied to stability, as fluctuation induced v x b electric field is necessary to transport the helicity to the surface. In this manner, all aspects of helicity balance, i.e., injection, transport, and dissipation, are considered self-consistently. The importance of the helicity and energy dissipation by the mean components of the magnetic field and current density is discussed.
Dirichlet-to-Neumann boundary conditions for multiple scattering problems
Grote, Marcus J.; Kirsch, Christoph
2004-12-01
A Dirichlet-to-Neumann (DtN) condition is derived for the numerical solution of time-harmonic multiple scattering problems, where the scatterer consists of several disjoint components. It is obtained by combining contributions from multiple purely outgoing wave fields. The DtN condition yields an exact non-reflecting boundary condition for the situation, where the computational domain and its exterior artificial boundary consist of several disjoint components. Because each sub-scatterer can be enclosed by a separate artificial boundary, the computational effort is greatly reduced and becomes independent of the relative distances between the different sub-domains. The DtN condition naturally fits into a variational formulation of the boundary-value problem for use with the finite element method. Moreover, it immediately yields as a by-product an exact formula for the far-field pattern of the scattered field. Numerical examples show that the DtN condition for multiple scattering is as accurate as the well-known DtN condition for single scattering problems [J. Comput. Phys. 82 (1989) 172; Numerical Methods for Problems in Infinite Domains, Elsevier, Amsterdam, 1992], while being more efficient due to the reduced size of the computational domain.
MODELING AND ANALYSIS OF REGIONAL BOUNDARY SYSTEM
Institute of Scientific and Technical Information of China (English)
YAN Guangle; WANG Huanchen
2001-01-01
In this paper, the problems of modeling and analyzing the system with change able boundary are researched. First, a kind of expanding system is set up, in which the changeable boundary is dealt with as a regional boundary. Then some relative models are developed to describe the regional boundary system. Next, the transition or the driftage of bifurcation points in the system is discussed. A fascinating case is studied in which two or more than two classes of chaotic attractive points coexist together or exist alternatively in the same system. Lastly, an effective new method of chaos avoidance for the system is put forward.
Optimal control problems for impulsive systems with integral boundary conditions
Directory of Open Access Journals (Sweden)
Allaberen Ashyralyev
2013-03-01
Full Text Available In this article, the optimal control problem is considered when the state of the system is described by the impulsive differential equations with integral boundary conditions. Applying the Banach contraction principle the existence and uniqueness of the solution is proved for the corresponding boundary problem by the fixed admissible control. The first and second variation of the functional is calculated. Various necessary conditions of optimality of the first and second order are obtained by the help of the variation of the controls.
Sub-Alfvenic inlet boundary conditions for axisymmetric MHD nozzles
Energy Technology Data Exchange (ETDEWEB)
Cassibry, J T [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Wu, S T [Center for Space Plasma and Aeronomy Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)
2007-09-07
There are numerous electromagnetic accelerator concepts which require plasma expansion through a magnetic nozzle. If the inlet flow is slower than one or all of the outgoing characteristics, namely, the Alfven, slow and fast magnetosonic speeds, then the number of inlet conditions which could be arbitrarily specified are reduced by the number of outgoing characteristics (up to three). We derive the axisymmetric compatibility equations using the method of projected characteristics for the inlet conditions in the z-plane to assure the boundary conditions being consistent with flow properties. We make simplifications to the equations assuming that the inlet Alfven speed is much faster than the sonic and slow magnetosonic speeds. We compare results for various inlet boundary conditions, including a modified Lax-Wendroff implementation of the compatibility equations, first order extrapolation and arbitrarily specifying the inlet conditions, in order to assess the stability and accuracy of various approaches.
A study on boundary conditions of k-ε model in Computational Wind Engineering%计算风工程中 k-ε模型的边界条件研究
Institute of Scientific and Technical Information of China (English)
郭威; 张悦
2016-01-01
从 k-ε湍流模型控制方程入手，对两类满足平衡大气边界层理论要求的入口边界条件进行了详细分析，比较了二者的理论差异。然后以我国公路桥梁抗风规范中建议的 A 类风场为来流条件，定义了相应的 k-ε模型常数与壁面条件，使用两类边界条件进行数值模拟。计算结果表明：两类边界条件结合相应的模型常数与壁面条件，均能在数值模拟中构建基本满足规范要求的平衡大气边界层，但各有其适用范围。在此基础上，对模型常数 C 1和湍动能耗散率与数值模拟结果之间的关系进行了研究，采用修改模型常数与边界条件的方法，改善了数值模拟结果。%Proceeded from the k-ε turbulence model control equation,two kinds of boundary conditions meet the theoretical conditions of horizontally homogenous Atmosphere Boundary Lay-er(ABL)were studied in detail,and their theoretical differences were compared.And then the class A wind field,which is suggested by the Chinese Wind-resistant Design Specification for Highway Bridges,was simulated as the inlet flow conditions in full scale using these two kinds of boundary conditions,with adapted k-ε model constants and wall conditions well defined.The re-sults show that,in numerical simulation,both two kinds of boundary conditions,combined with adapted model constants and wall conditions,are able to construct horizontally homogenous ABL,which basically satisfy the conditions required by the code,but each has its own applicable scope.Based on these works,the relation between model constant C 1 ,turbulent dissipation rateε and the numerical simulation results was studied,and a method to improve the results by modi-fying model constant andε was introduced.
Optimal Control of a Parabolic Equation with Dynamic Boundary Condition
Energy Technology Data Exchange (ETDEWEB)
Hoemberg, D., E-mail: hoemberg@wias-berlin.de; Krumbiegel, K., E-mail: krumbieg@wias-berlin.de [Weierstrass Institute for Applied Mathematics and Stochastics, Nonlinear Optimization and Inverse Problems (Germany); Rehberg, J., E-mail: rehberg@wias-berlin.de [Weierstrass Institute for Applied Mathematics and Stochastics, Partial Differential Equations (Germany)
2013-02-15
We investigate a control problem for the heat equation. The goal is to find an optimal heat transfer coefficient in the dynamic boundary condition such that a desired temperature distribution at the boundary is adhered. To this end we consider a function space setting in which the heat flux across the boundary is forced to be an L{sup p} function with respect to the surface measure, which in turn implies higher regularity for the time derivative of temperature. We show that the corresponding elliptic operator generates a strongly continuous semigroup of contractions and apply the concept of maximal parabolic regularity. This allows to show the existence of an optimal control and the derivation of necessary and sufficient optimality conditions.
New approach to streaming semigroups with multiplying boundary conditions
Directory of Open Access Journals (Sweden)
Mohamed Boulanouar
2008-11-01
Full Text Available This paper concerns the generation of a C_0-semigroup by the streaming operator with general multiplying boundary conditions. A first approach, presented in [2], is based on the Hille-Yosida's Theorem. Here, we present a second approach based on the construction of the generated semigroup, without using the Hille-Yosida's Theorem.
Heat Flow for the Minimal Surface with Plateau Boundary Condition
Institute of Scientific and Technical Information of China (English)
Kung Ching CHANG; Jia Quan LIU
2003-01-01
The heat flow for the minimal surface under Plateau boundary condition is defined to be aparabolic variational inequality, and then the existence, uniqueness, regularity, continuous dependenceon the initial data and the asymptotics are studied. It is applied as a deformation of the level sets inthe critical point theory.
Gravitational wave extraction and outer boundary conditions by perturbative matching
Abrahams, A M; Rupright, M E; Anderson, A; Anninos, P; Baumgarte, T W; Bishop, N T; Brandt, S R; Browne, J C; Camarda, K; Choptuik, M W; Cook, G B; Evans, C R; Finn, L S; Fox, G; Gómez, R; Haupt, T; Huq, M F; Kidder, L E; Klasky, S; Laguna, P; Landry, W; Lehner, L; Lenaghan, J T; Marsa, R L L; Massó, J; Matzner, R A; Mitra, S; Papadopoulos, P P; Parashar, M; Saied, F; Saylor, P E; Scheel, M A; Seidel, E; Shapiro, S L; Shoemaker, D M; Smarr, L L; Szilágyi, B; Teukolsky, S A; Van Putten, M H P M; Walker, P; Winicour, J; York, J W
1998-01-01
We present a method for extracting gravitational radiation from a three-dimensional numerical relativity simulation and, using the extracted data, to provide outer boundary conditions. The method treats dynamical gravitational variables as nonspherical perturbations of Schwarzschild geometry. We discuss a code which implements this method and present results of tests which have been performed with a three dimensional numerical relativity code.
Carleman Estimates for Parabolic Equations with Nonhomogeneous Boundary Conditions
Institute of Scientific and Technical Information of China (English)
Oleg Yu IMANUVILOV; Jean Pierre PUEL; Masahiro YAMAMOTO
2009-01-01
The authors prove a new Carleman estimate for general linear second order parabolic equation with nonhomogeneous boundary conditions.On the basis of this estimate,improved Carleman estimates for the Stokes system and for a system of parabolic equations with a penalty term are obtained.This system can be viewed as an approximation of the Stokes system.
On a stochastic Burgers equation with Dirichlet boundary conditions
Directory of Open Access Journals (Sweden)
Ekaterina T. Kolkovska
2003-01-01
Full Text Available We consider the one-dimensional Burgers equation perturbed by a white noise term with Dirichlet boundary conditions and a non-Lipschitz coefficient. We obtain existence of a weak solution proving tightness for a sequence of polygonal approximations for the equation and solving a martingale problem for the weak limit.
Institute of Scientific and Technical Information of China (English)
YAN Jing-hua(闫敬华); Detlev Majewski
2003-01-01
Based on the real case of a frontal precipitation process affecting South China, 27 controlled numerical experiments was made for the effects of hydrostatic and non-hydrostatic effects, different driving models, combinations of initial/boundary conditions, updates of lateral values and initial time levels of forecast, on model predictions. Features about the impact of initial/boundary conditions on mesoscale numerical weather prediction (NWP) model are analyzed and discussed in detail. Some theoretically and practically valuable conclusions aredrawn. It is found that the overall tendency of mesoscale NWP models is governed by its driving model, with the initial conditions showing remarkable impacts on mesoscale models for the first 10 hours of the predictions while leaving lateral boundary conditions to take care the period beyond; the latter affect the inner area of mesoscale predictions mainly through the propagation and movement of weather signals (waves) of different time scales; initial values of external model parameters such as soil moisture content may affect predictions of more longer time validity, while fast signals may be filtered away and only information with time scale 4 times as large as or more than the updated period of boundary values may be introduced, through lateral boundary, to mesoscale models, etc. Someresults may be taken as important guidance on mesoscale model and its data assimilation developments of the future.
Institute of Scientific and Technical Information of China (English)
Gui-Qiang Chen; Dan Osborne; Zhongmin Qian
2009-01-01
We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in RN with compact and smooth boundary, subject to the kinematic and vorticity boundary conditions on the non-fiat boundary. We observe that, under the nonhomogeneons boundary conditions, the pressure p can be still recovered by solving the Neumann problem for the Poisson equation. Then we establish the well-posedness of the unsteady Stokes equations and employ the solution to reduce our initial-boundary value problem into an initial-boundary value problem with absolute boundary conditions. Based on this, we first establish the well-posedness for an appropriate local linearized problem with the absolute boundary conditions and the initial condition (without the incompressibility condition), which establishes a velocity mapping. Then we develop apriori estimates for the velocity mapping, especially involving the Sobolev norm for the time-derivative of the mapping to deal with the complicated boundary conditions, which leads to the existence of the fixed point of the mapping and the existence of solutions to our initial-boundary value problem. Finally, we establish that, when the viscosity coefficient tends zero, the strong solutions of the initial-boundary value problem in RN(n≥3) with nonhomogeneous vorticity boundary condition converge in L2 to the corresponding Euler equations satisfying the kinematic condition.
Directory of Open Access Journals (Sweden)
Jeffrey W. Lyons
2017-01-01
Full Text Available For \\(\\alpha\\in(1,2]\\, the singular fractional boundary value problem \\[D^{\\alpha}_{0^+}x+f\\left(t,x,D^{\\mu}_{0^+}x\\right=0,\\quad 0\\lt t\\lt 1,\\] satisfying the boundary conditions \\(x(0=D^{\\beta}_{0^+}x(1=0\\, where \\(\\beta\\in(0,\\alpha-1]\\, \\(\\mu\\in(0,\\alpha-1]\\, and \\(D^{\\alpha}_{0^+}\\, \\(D^{\\beta}_{0^+}\\ and \\(D^{\\mu}_{0^+}\\ are Riemann-Liouville derivatives of order \\(\\alpha\\, \\(\\beta\\ and \\(\\mu\\ respectively, is considered. Here \\(f\\ satisfies a local Carathéodory condition, and \\(f(t,x,y\\ may be singular at the value 0 in its space variable \\(x\\. Using regularization and sequential techniques and Krasnosel'skii's fixed point theorem, it is shown this boundary value problem has a positive solution. An example is given.
On accurate boundary conditions for a shape sensitivity equation method
Duvigneau, R.; Pelletier, D.
2006-01-01
This paper studies the application of the continuous sensitivity equation method (CSEM) for the Navier-Stokes equations in the particular case of shape parameters. Boundary conditions for shape parameters involve flow derivatives at the boundary. Thus, accurate flow gradients are critical to the success of the CSEM. A new approach is presented to extract accurate flow derivatives at the boundary. High order Taylor series expansions are used on layered patches in conjunction with a constrained least-squares procedure to evaluate accurate first and second derivatives of the flow variables at the boundary, required for Dirichlet and Neumann sensitivity boundary conditions. The flow and sensitivity fields are solved using an adaptive finite-element method. The proposed methodology is first verified on a problem with a closed form solution obtained by the Method of Manufactured Solutions. The ability of the proposed method to provide accurate sensitivity fields for realistic problems is then demonstrated. The flow and sensitivity fields for a NACA 0012 airfoil are used for fast evaluation of the nearby flow over an airfoil of different thickness (NACA 0015).
Modelling stable atmospheric boundary layers over snow
Sterk, H.A.M.
2015-01-01
Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar re
Positive solutions of quasilinear parabolic systems with nonlinear boundary conditions
Pao, C. V.; Ruan, W. H.
2007-09-01
The aim of this paper is to investigate the existence, uniqueness, and asymptotic behavior of solutions for a coupled system of quasilinear parabolic equations under nonlinear boundary conditions, including a system of quasilinear parabolic and ordinary differential equations. Also investigated is the existence of positive maximal and minimal solutions of the corresponding quasilinear elliptic system as well as the uniqueness of a positive steady-state solution. The elliptic operators in both systems are allowed to be degenerate in the sense that the density-dependent diffusion coefficients Di(ui) may have the property Di(0)=0 for some or all i. Our approach to the problem is by the method of upper and lower solutions and its associated monotone iterations. It is shown that the time-dependent solution converges to the maximal solution for one class of initial functions and it converges to the minimal solution for another class of initial functions; and if the maximal and minimal solutions coincide then the steady-state solution is unique and the time-dependent solution converges to the unique solution. Applications of these results are given to three model problems, including a porous medium type of problem, a heat-transfer problem, and a two-component competition model in ecology. These applications illustrate some very interesting distinctive behavior of the time-dependent solutions between density-independent and density-dependent diffusions.
Positive solutions of quasilinear parabolic systems with Dirichlet boundary condition
Pao, C. V.; Ruan, W. H.
Coupled systems for a class of quasilinear parabolic equations and the corresponding elliptic systems, including systems of parabolic and ordinary differential equations are investigated. The aim of this paper is to show the existence, uniqueness, and asymptotic behavior of time-dependent solutions. Also investigated is the existence of positive maximal and minimal solutions of the corresponding quasilinear elliptic system. The elliptic operators in both systems are allowed to be degenerate in the sense that the density-dependent diffusion coefficients D(u) may have the property D(0)=0 for some or all i=1,…,N, and the boundary condition is u=0. Using the method of upper and lower solutions, we show that a unique global classical time-dependent solution exists and converges to the maximal solution for one class of initial functions and it converges to the minimal solution for another class of initial functions; and if the maximal and minimal solutions coincide then the steady-state solution is unique and the time-dependent solution converges to the unique solution. Applications of these results are given to three model problems, including a scalar polynomial growth problem, a coupled system of polynomial growth problem, and a two component competition model in ecology.
Directory of Open Access Journals (Sweden)
Li Ming
2013-03-01
Full Text Available In this study, a single beam model has been developed to analyze the thermal vibration of Single-Walled Carbon Nanotubes (SWCNT. The nonlocal elasticity takes into account the effect of small size into the formulation and the boundary condition. With exact solution of the dynamic governing equations, the thermal-vibrational characteristics of a cantilever SWCNT are obtained. Influence of nonlocal small scale effects, temperature change and vibration modes of the CNT on the frequency are investigated. The present study shows that the additional boundary conditions from small scale do not change natural frequencies at different temperature change. Thus for simplicity, one can apply the local boundary condition to replace the small scale boundary condition.
Corrected second-order slip boundary condition for fluid flows in nanochannels.
Zhang, Hongwu; Zhang, Zhongqiang; Zheng, Yonggang; Ye, Hongfei
2010-06-01
A corrected second-order slip boundary condition is proposed to solve the Navier-Stokes equations for fluid flows confined in parallel-plate nanochannels. Compared with the classical second-order slip boundary condition proposed by Beskok and Karniadakis, the corrected slip boundary condition is not only dependent on the Knudsen number and the tangential momentum accommodation coefficient, but also dependent on the relative position of the slip surface in the Knudsen layer. For the fluid flows in slip-flow regime with the Knudsen number less than 0.3, Couette cell is investigated using molecular-dynamics simulations to verify Newtonian flow behaviors by examining the constitutive relationship between shear stress and strain rate. By comparing the velocity profiles of Poiseuille flows predicted from the Navier-Stokes equations with the corrected slip boundary condition with that from molecular-dynamics simulations, it is found that the flow behaviors in our models can be effectively captured.
Boundary Conditions for NHEK through Effective Action Approach
Institute of Scientific and Technical Information of China (English)
CHEN Bin; NING Bo; ZHANG Jia-Ju
2012-01-01
We study the asymptotic symmetry group (ASG) of the near horizon geometry of extreme Kerr black hole through the effective action approach developed by Porfyriadis and Wilczek (arXiv:1007.1031v1[gr qc]).By requiring a finite boundary effective action,we derive a new set of asymptotic Killing vectors and boundary conditions,which are much more relaxed than the ones proposed by Matsuo Y et al.[Nucl.Phys.B 825 (2010) 231],and still allow a copy of a conformal group as its ASG.In the covariant formalism,the asymptotic charges are finite,with the corresponding central charge vanishing.By using the quasi-local charge and introducing a plausible cut-off,we find that the higher order terms of the asymptotic Killing vectors,which could not be determined through the effective action approach,contribute to the central charge as well.We also show that the boundary conditions suggested by Guica et al.[Phys.Rev.D 80 (2009)124008] lead to a divergent first-order boundary effective action.%We study the asymptotic symmetry group (ASG) of the near horizon geometry of extreme Kerr black hole through the effective action approach developed by Porfyriadis and Wilczek (arXiv:1007.1031vl[gr qc]). By requiring a finite boundary effective action, we derive a new set of asymptotic Killing vectors and boundary conditions, which are much more relaxed than the ones proposed by Matsuo Y et al. [Nucl. Phys. B 825 (2010) 231], and still allow a copy of a conformal group as its ASG. In the covariant formalism, the asymptotic charges are finite, with the corresponding central charge vanishing. By using the quasi-local charge and introducing a plausible cut-off, we find that the higher order terms of the asymptotic Killing vectors, which could not be determined through the effective action approach, contribute to the central charge as well. We also show that the boundary conditions suggested by Guica et al. [Phys. Rev. D 80 (2009) 124008] lead to a divergent first-order boundary effective action.
Free, transverse vibrations of thin plates with discontinuous boundary conditions
Febbo, M.; Vera, S. A.; Laura, P. A. A.
2005-03-01
Vibrations of circular and rectangular plates clamped on part of the boundary and simply supported along the remainder are analyzed by means of a method of perturbation of boundary conditions. This approach appears to be simple and straightforward, giving excellent results for the first mode and its versatility permits to extend it to higher modes of vibration without difficulty. Furthermore, it is shown that the fundamental frequency coefficient can also be determined using a modified Galerkin approach and very simple polynomial coordinate functions which yield good engineering accuracy.
The boundary conditions for point transformed electromagnetic invisibility cloaks
Energy Technology Data Exchange (ETDEWEB)
Weder, Ricardo [Departamento de Metodos Matematicos y Numericos, Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-726, Mexico DF 01000 (Mexico)], E-mail: weder@servidor.unam.mx
2008-10-17
In this paper we study point transformed electromagnetic invisibility cloaks in transformation media that are obtained by transformation from general anisotropic media. We assume that there are several point transformed electromagnetic cloaks located in different points in space. Our results apply in particular to the first-order invisibility cloaks introduced by Pendry et al and to the high-order invisibility cloaks introduced by Hendi et al and by Cai et al. We identify the appropriate cloaking boundary conditions that the solutions of Maxwell equations have to satisfy at the outside, {partial_derivative}K{sub +}, and at the inside, {partial_derivative}K{sub -}, of the boundary of the cloaked object K in the case where the permittivity and the permeability are bounded below and above in K. Namely, that the tangential components of the electric and the magnetic fields have to vanish at {partial_derivative}K{sub +}-which is always true-and that the normal components of the curl of the electric and the magnetic fields have to vanish at {partial_derivative}K{sub -}. These results are proven requiring that energy be conserved. In the case of one spherical cloak with a spherically stratified K and a radial current at {partial_derivative}K we verify by an explicit calculation that our cloaking boundary conditions are satisfied and that cloaking of active devices holds, even if the current is at the boundary of the cloaked object. As we prove our results for media that are obtained by transformation from general anisotropic media, our results apply to the cloaking of objects with passive and active devices contained in general anisotropic media, in particular to objects with passive and active devices contained inside general crystals. Our results suggest a method to enhance cloaking in the approximate transformation media that are used in practice. Namely, to coat the boundary of the cloaked object (the inner boundary of the cloak) with a material that imposes the
Most general AdS_3 boundary conditions
Grumiller, Daniel
2016-01-01
We consider the most general asymptotically anti-de Sitter boundary conditions in three-dimensional Einstein gravity with negative cosmological constant. The metric contains in total twelve independent functions, six of which are interpreted as chemical potentials (or non-normalizable fluctuations) and the other half as canonical boundary charges (or normalizable fluctuations). Their presence modifies the usual Fefferman-Graham expansion. The asymptotic symmetry algebra consists of two sl(2)_k current algebras, the levels of which are given by k=l/(4G_N), where l is the AdS radius and G_N the three-dimensional Newton constant.
Stretched flow of Carreau nanofluid with convective boundary condition
Indian Academy of Sciences (India)
T Hayat; M Waqas; S A Shehzad; A Alsaedi
2016-01-01
The steady laminar boundary layer flow of Carreau nanofluid over a stretching sheet is investigated. Effects of Brownian motion and thermophoresis are present. Heat transfer is characterized using convective boundary condition at the sheet. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations through suitable transformations. Results of velocity, temperature and concentration fields are computed via homotopic procedure. Numerical values of skin-friction coefficient, local Nusselt and Sherwood numbers are computed and discussed. A comparative study with existing solutions in a limiting sense is made.
Institute of Scientific and Technical Information of China (English)
M.Yakit ONGUN
2007-01-01
In this paper we consider the nonselfadjoint (dissipative) Schr(o)dinger boundary value problem in the limit-circle case with an eigenparameter in the boundary condition. Since the boundary conditions are nonselfadjoint, the approach is based on the use of the maximal dissipative operator,and the spectral analysis of this operator is adequate for the boundary value problem. We construct a selfadjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We construct a functional model of the maximal dissipative operator and define its characteristic function in terms of solutions of the corresponding Schr(o)dinger equation. Theorems on the completeness of the system of eigenvectors and the associated vectors of the maximal dissipative operator and the Schr(o)dinger boundary value problem are given.
Institute of Scientific and Technical Information of China (English)
M.Yakit; ONGUN
2007-01-01
In this paper we consider the nonselfadjoint (dissipative) Schrodinger boundary value problem in the limit-circle case with an eigenparameter in the boundary condition. Since the boundary conditions are nonselfadjoint, the approach is based on the use of the maximal dissipative operator, and the spectral analysis of this operator is adequate for the boundary value problem. We construct a selfadjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We construct a functional model of the maximal dissipative operator and define its characteristic function in terms of solutions of the corresponding Schrodinger equation. Theorems on the completeness of the system of eigenvectors and the associated vectors of the maximal dissipative operator and the Schrodinger boundary value problem are given.
Aramburu, Jorge; Antón, Raúl; Rivas, Alejandro; Ramos, Juan Carlos; Sangro, Bruno; Bilbao, José Ignacio
2016-11-01
Some of the latest treatments for unresectable liver malignancies (primary or metastatic tumours), which include bland embolisation, chemoembolisation, and radioembolisation, among others, take advantage of the increased arterial blood supply to the tumours to locally attack them. A better understanding of the factors that influence this transport may help improve the therapeutic procedures by taking advantage of flow patterns or by designing catheters and infusion systems that result in the injected beads having increased access to the tumour vasculature. Computational analyses may help understand the haemodynamic patterns and embolic-microsphere transport through the hepatic arteries. In addition, physiological inflow and outflow boundary conditions are essential in order to reliably represent the blood flow through arteries. This study presents a liver cancer arterial perfusion model based on a literature review and derives boundary conditions for tumour-bearing liver-feeding hepatic arteries based on the arterial perfusion characteristics of normal and tumorous liver segment tissue masses and the hepatic artery branching configuration. Literature-based healthy and tumour-bearing realistic scenarios are created and haemodynamically analysed for the same patient-specific hepatic artery. As a result, this study provides boundary conditions for computational fluid dynamics simulations that will allow researchers to numerically study, for example, various intravascular devices used for liver disease intra-arterial treatments with different cancer scenarios. Copyright © 2016 John Wiley & Sons, Ltd.
Diffusion processes, Feller semigroups and Wentzell boundary conditions.
Romanelli, S
2001-01-01
Different approaches to the study of many diffusion processes in Genetics involve Probability, Functional Analysis and Partial Differential Equations, as in the case of changes in gene frequency due only to random sampling or under random fluctuation of selective advantages. In the one-dimensional case, a unified treatment of them was given by Feller. For particular classes of Markov processes, Taira showed that these different approaches are equivalent even in the N-dimensional case. It follows that the generator of a Feller semigroup on the space of real-valued continuous functions C(D), where D is a bounded domain of RN with smooth boundary, can be identified with a particular Markov transition function. Under suitable assumptions, Taira, Favini and the author proved that some classes of degenerate elliptic operators with Wentzell boundary condition generate Feller semigroups on C(D), in such a way that the diffusion phenomenon of viscosity occurs at each point of the boundary.
DYNA3D Non-reflecting Boundary Conditions - Test Problems
Energy Technology Data Exchange (ETDEWEB)
Zywicz, E
2006-09-28
Two verification problems were developed to test non-reflecting boundary segments in DYNA3D (Whirley and Engelmann, 1993). The problems simulate 1-D wave propagation in a semi-infinite rod using a finite length rod and non-reflecting boundary conditions. One problem examines pure pressure wave propagation, and the other problem explores pure shear wave propagation. In both problems the non-reflecting boundary segments yield results that differ only slightly (less than 6%) during a short duration from their corresponding theoretical solutions. The errors appear to be due to the inability to generate a true step-function compressive wave in the pressure wave propagation problem and due to segment integration inaccuracies in the shear wave propagation problem. These problems serve as verification problems and as regression test problems for DYNA3D.
On the formulation of open boundary conditions at the mouth of a bay
Greatbatch, Richard J.; Otterson, Timm
1991-10-01
We describe our experience in formulating open boundary conditions to apply at the mouth of a reduced-gravity model of a bay. Our objective is to find a way to calculate the response of the bay to wind forcing over the bay itself, without being concerned about the influence of regions beyond. We show that open boundaries from which Kelvin waves can propagate along the coast into the model domain ("upstream" boundaries) must be treated with care. We begin by considering an "upstream" boundary which runs perpendicular to the coast. We find that if a radiation condition is applied on such a boundary, then spurious Kelvin waves of near-inertial period can propagate in from the boundary and contaminate the solution in the interior of the model domain. Also, if there is Ekman transport at the "upstream" boundary away from (toward) the coast, then upwelling (downwelling) will occur indefinitely and completely swamp the model solution in the bay. This is similar to the solution we expect when the coastline is straight and extends to infinity in the "upstream" direction. However, it is not the same, since the rate of upwelling (downwelling) is roughly half the theoretical value for that case. For the problem of a bay we suggest that the way to deal with this is to extend the coastline out to sea on the "upstream" side of the mouth and apply a condition on the artificial stretch of the boundary which suppresses Kelvin wave propagation but is also not prohibitively reflective to outgoing Poincaré waves. For our problem a condition of zero normal gradient in interface displacement seems to be sufficient. This condition also captures reasonably well the near-inertial Kelvin waves that are generated by the northwest corner of the bay (which are a genuine part of the solution) as long as the other boundaries are sufficiently far from the bay. We have also experimented with using sponge layers rather than radiation conditions on the other boundaries. We find that sponging only
A numerical model of stress driven grain boundary diffusion
Sethian, J. A.; Wilkening, Jon
2004-01-01
The stress driven grain boundary diffusion problem is a continuum model of mass transport phenomena in microelectronic circuits due to high current densities (electromigration) and gradients in normal stress along grain boundaries. The model involves coupling many different equations and phenomena, and difficulties such as non-locality, stiffness, complex geometry, and singularities in the stress tensor near corners and junctions make the problem difficult to analyze rigorously and simulate numerically. We present a new numerical approach to this problem using techniques from semigroup theory to represent the solution. The generator of this semigroup is the composition of a type of Dirichlet to Neumann map on the grain boundary network with the Laplace operator on the network. To compute the former, we solve the equations of linear elasticity several times, once for each basis function on the grain boundary. We resolve singularities in the stress field near corners and junctions by adjoining special singular basis functions to both finite element spaces (2d for elasticity, 1d for grain boundary functions). We develop data structures to handle jump discontinuities in displacement across grain boundaries, singularities in the stress field, complicated boundary conditions at junctions and interfaces, and the lack of a natural ordering for the nodes on a branching grain boundary network. The method is used to study grain boundary diffusion for several geometries.
Energy Technology Data Exchange (ETDEWEB)
Kerschbaumer, Andreas; Hannig, Katrin [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie, Troposphaerische Umweltforschung
2013-06-15
In this report the coupling of a global model is presented with a continental model. It examines how far the forecasts of regional air quality in Europe are affected by the choice of boundary conditions. The focus of this report is to analyze the influence of different boundary conditions on the calculated soil concentrations of ozone and PM10. A model evaluation, however, was not the aim of this study. [German] In diesem Bericht wird die Koppelung eines Globalmodells mit einem kontinentalen Modell vorgestellt. Es wird untersucht, wie weit die Prognosen der regionalen Luftqualitaet in Europa von der Wahl der Randbedingungen beeinflusst werden. Der Schwerpunkt des vorliegenden Berichts liegt in der Analyse des Einflusses der verschiedenen Randbedingungen auf die berechneten Bodenkonzentrationen von Ozon und PM10. Eine Modellevaluierung hingegen war nicht Ziel dieser Studie.
New Boundaries for the B-Model
Bergman, Aaron
2008-01-01
Witten couples the open topological B-model to a holomorphic vector bundle by adding to the boundary of the worldsheet a Wilson loop for an integrable connection on the bundle. Using the descent procedure for boundary vertex operators in this context, I generalize this construction to write a worldsheet coupling for a graded vector bundle with an integrable superconnection. I then compute the open string vertex operators between two such boundaries. A theorem of J. Block gives that this is equivalent to coupling the B-model to an arbitrary object in the derived category.
Stability of a flexible structure with destabilizing boundary conditions
Shubov, M.; Shubov, V.
2016-07-01
The Euler-Bernoulli beam model with non-dissipative boundary conditions of feedback control type is investigated. Components of the two-dimensional input vector are shear and moment at the right end, and components of the observation vector are time derivatives of displacement and slope at the right end. The codiagonal matrix depending on two control parameters relates input and observation. The paper contains five results. First, asymptotic approximation for eigenmodes is derived. Second, `the main identity' is established. It provides a relation between mode shapes of two systems: one with non-zero control parameters and the other one with zero control parameters. Third, when one control parameter is positive and the other one is zero, `the main identity' yields stability of all eigenmodes (though the system is non-dissipative). Fourth, the stability of eigenmodes is extended to the case when one control parameter is positive, and the other one is sufficiently small. Finally, existence and properties of `deadbeat' modes are investigated.
Performance of Numerical Boundary Condition based on Active Wave Absorption System
DEFF Research Database (Denmark)
Trouch, P.; Rouck, J. de; Frigaard, Peter
2001-01-01
that was first developed in the context of physical wave flume experiments, using a wave paddle. The method applies to regular and irregular waves. Velocities are measured at one location inside the computational domain. The reflected wave train is separated from the incident wave field in front of a structure......The implementation and performance of a new active wave generating‐absorbing boundary condition for a numerical model based on the Volume Of Fluid (VOF) method for tracking free surfaces is presented. This numerical boundary condition AWAVOF is based on an active wave absorption system...... by means of digital filtering and subsequent superposition of the measured velocity signals. The incident wave signal is corrected, so that the reflected wave is effectively absorbed at the boundary. The effectiveness of the active wave generating‐absorbing boundary condition is proved using numerical...
Zhao, Shan; Wei, G W
2009-03-19
High-order central finite difference schemes encounter great difficulties in implementing complex boundary conditions. This paper introduces the matched interface and boundary (MIB) method as a novel boundary scheme to treat various general boundary conditions in arbitrarily high-order central finite difference schemes. To attain arbitrarily high order, the MIB method accurately extends the solution beyond the boundary by repeatedly enforcing only the original set of boundary conditions. The proposed approach is extensively validated via boundary value problems, initial-boundary value problems, eigenvalue problems, and high-order differential equations. Successful implementations are given to not only Dirichlet, Neumann, and Robin boundary conditions, but also more general ones, such as multiple boundary conditions in high-order differential equations and time-dependent boundary conditions in evolution equations. Detailed stability analysis of the MIB method is carried out. The MIB method is shown to be able to deliver high-order accuracy, while maintaining the same or similar stability conditions of the standard high-order central difference approximations. The application of the proposed MIB method to the boundary treatment of other non-standard high-order methods is also considered.
CT image segmentation using FEM with optimized boundary condition.
Directory of Open Access Journals (Sweden)
Hiroyuki Hishida
Full Text Available The authors propose a CT image segmentation method using structural analysis that is useful for objects with structural dynamic characteristics. Motivation of our research is from the area of genetic activity. In order to reveal the roles of genes, it is necessary to create mutant mice and measure differences among them by scanning their skeletons with an X-ray CT scanner. The CT image needs to be manually segmented into pieces of the bones. It is a very time consuming to manually segment many mutant mouse models in order to reveal the roles of genes. It is desirable to make this segmentation procedure automatic. Although numerous papers in the past have proposed segmentation techniques, no general segmentation method for skeletons of living creatures has been established. Against this background, the authors propose a segmentation method based on the concept of destruction analogy. To realize this concept, structural analysis is performed using the finite element method (FEM, as structurally weak areas can be expected to break under conditions of stress. The contribution of the method is its novelty, as no studies have so far used structural analysis for image segmentation. The method's implementation involves three steps. First, finite elements are created directly from the pixels of a CT image, and then candidates are also selected in areas where segmentation is thought to be appropriate. The second step involves destruction analogy to find a single candidate with high strain chosen as the segmentation target. The boundary conditions for FEM are also set automatically. Then, destruction analogy is implemented by replacing pixels with high strain as background ones, and this process is iterated until object is decomposed into two parts. Here, CT image segmentation is demonstrated using various types of CT imagery.
Scattering of wedges and cones with impedance boundary conditions
Lyalinov, Mikhail
2012-01-01
This book is a systematic and detailed exposition of different analytical techniques used in studying two of the canonical problems, the wave scattering by wedges or cones with impedance boundary conditions. It is the first reference on novel, highly efficient analytical-numerical approaches for wave diffraction by impedance wedges or cones. The applicability of the reported solution procedures and formulae to existing software packages designed for real-world high-frequency problems encountered in antenna, wave propagation, and radar cross section.
On Vector Helmholtz Equation with a Coupling Boundary Condition
Institute of Scientific and Technical Information of China (English)
Gang Li; Jiangsong Zhang; Jiang Zhu; Danping Yang
2007-01-01
The Helmholtz equation is sometimes supplemented by conditions that include the specification of the boundary value of the divergence of the unknown. In this paper,we study the vector Helmholtz problem in domains of both C1,1 and Lipschitz. We establish a rigorous variational analysis such as equivalence, existence and uniqueness.And we propose finite element approximations based on the uncoupled solutions. Finally we present a convergence analysis and error estimates.
On the extraction of spectral quantities with open boundary conditions
Bruno, Mattia; Korzec, Tomasz; Lottini, Stefano; Schaefer, Stefan
2014-01-01
We discuss methods to extract decay constants, meson masses and gluonic observables in the presence of open boundary conditions. The ensembles have been generated by the CLS effort and have 2+1 flavors of O(a)-improved Wilson fermions with a small twisted-mass term as proposed by L\\"uscher and Palombi. We analyse the effect of the associated reweighting factors on the computation of different observables.
Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions
Briant, Marc; Guo, Yan
2016-12-01
In a general C1 domain, we study the perturbative Cauchy theory for the Boltzmann equation with Maxwell boundary conditions with an accommodation coefficient α in (√{ 2 / 3 } , 1 ], and discuss this threshold. We consider polynomial or stretched exponential weights m (v) and prove existence, uniqueness and exponential trend to equilibrium around a global Maxwellian in Lx,v∞ (m). Of important note is the fact that the methods do not involve contradiction arguments.
On Nonlinear Approximations to Cosmic Problems with Mixed Boundary Conditions
Mancinelli, Paul J.; Yahil, Amos; Ganon, Galit; Dekel, Avishai
1993-01-01
Nonlinear approximations to problems with mixed boundary conditions are useful for predicting large-scale streaming velocities from the density field, or vice-versa. We evaluate the schemes of Bernardeau \\cite{bernardeau92}, Gramann \\cite{gramann93}, and Nusser \\etal \\cite{nusser91}, using smoothed density and velocity fields obtained from $N$-body simulations of a CDM universe. The approximation of Nusser \\etal is overall the most accurate and robust. For Gaussian smoothing of 1000\\kms\\ the ...
Hydrodynamic boundary condition of water on hydrophobic surfaces.
Schaeffel, David; Yordanov, Stoyan; Schmelzeisen, Marcus; Yamamoto, Tetsuya; Kappl, Michael; Schmitz, Roman; Dünweg, Burkhard; Butt, Hans-Jürgen; Koynov, Kaloian
2013-05-01
By combining total internal reflection fluorescence cross-correlation spectroscopy with Brownian dynamics simulations, we were able to measure the hydrodynamic boundary condition of water flowing over a smooth solid surface with exceptional accuracy. We analyzed the flow of aqueous electrolytes over glass coated with a layer of poly(dimethylsiloxane) (advancing contact angle Θ = 108°) or perfluorosilane (Θ = 113°). Within an error of better than 10 nm the slip length was indistinguishable from zero on all surfaces.
Maxwell boundary conditions imply non-Lindblad master equation
Bamba, Motoaki; Imoto, Nobuyuki
2016-09-01
From the Hamiltonian connecting the inside and outside of a Fabry-Pérot cavity, which is derived from the Maxwell boundary conditions at a mirror of the cavity, a master equation of a non-Lindblad form is derived when the cavity embeds matters, although we can transform it to the Lindblad form by performing the rotating-wave approximation to the connecting Hamiltonian. We calculate absorption spectra by these Lindblad and non-Lindblad master equations and also by the Maxwell boundary conditions in the framework of the classical electrodynamics, which we consider the most reliable approach. We found that, compared to the Lindblad master equation, the absorption spectra by the non-Lindblad one agree better with those by the Maxwell boundary conditions. Although the discrepancy is highlighted only in the ultrastrong light-matter interaction regime with a relatively large broadening, the master equation of the non-Lindblad form is preferable rather than of the Lindblad one for pursuing the consistency with the classical electrodynamics.
Maxwell boundary conditions impose non-Lindblad master equation
Bamba, Motoaki
2016-01-01
From the Hamiltonian connecting the inside and outside of an Fabry-Perot cavity, which is derived from the Maxwell boundary conditions at a mirror of the cavity, a master equation of a non-Lindblad form is derived when the cavity embeds matters, although we can transform it to the Lindblad form by performing the rotating-wave approximation to that Hamiltonian. We calculate absorption spectra by these Lindblad and non-Lindblad master equations and also by the Maxwell boundary conditions in framework of the classical electrodynamics, which we consider the most reliable approach. We found that, compared to the Lindblad master equation, the absorption spectra by the non-Lindblad one agree better with those by the Maxwell boundary conditions. Although the discrepancy is highlighted only in the ultra-strong light-matter interaction regime with a relatively large broadening, the master equation of the non-Lindblad form is preferable rather than of the Lindblad one for pursuing the consistency with the classical elec...
The use of a wave boundary layer model in SWAN
DEFF Research Database (Denmark)
Du, Jianting; Bolaños, Rodolfo; Larsén, Xiaoli Guo
2017-01-01
A Wave Boundary Layer Model (WBLM) is implemented in the third-generation ocean wave model SWAN to improve the wind-input source function under idealized, fetch-limited condition. Accordingly, the white capping dissipation parameters are re-calibrated to fit the new wind-input source function...
Solitons induced by boundary conditions from the Boussinesq equation
Chou, Ru Ling; Chu, C. K.
1990-01-01
The behavior of solitons induced by boundary excitation is investigated at various time-dependent conditions and different unperturbed water depths, using the Korteweg-de Vries (KdV) equation. Then, solitons induced from Boussinesq equations under similar conditions were studied, making it possible to remove the restriction in the KdV equation and to treat soliton head-on collisions (as well as overtaking collisions) and reflections. It is found that the results obtained from the KdV and the Boussinesq equations are in good agreement.
Existence and Asymptotic Behavior of the Wave Equation with Dynamic Boundary Conditions
Energy Technology Data Exchange (ETDEWEB)
Graber, Philip Jameson, E-mail: pjg9g@virginia.edu [University of Virginia, Department of Mathematics (United States); Said-Houari, Belkacem, E-mail: belkacem.saidhouari@kaust.edu.sa [King Abdullah University of Science and Technology (KAUST), Division of Mathematical and Computer Sciences and Engineering (Saudi Arabia)
2012-08-15
The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time.
Existence and asymptotic behavior of the wave equation with dynamic boundary conditions
Graber, Philip Jameson
2012-03-07
The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time. © 2012 Springer Science+Business Media, LLC.
Pan, Qing; Wang, Ruofan; Reglin, Bettina; Fang, Luping; Pries, Axel R; Ning, Gangmin
2014-01-01
Estimation of the boundary condition is a critical problem in simulating hemodynamics in microvascular networks. This paper proposed a boundary estimation strategy based on a particle swarm optimization (PSO) algorithm, which aims to minimize the number of vessels with inverted flow direction in comparison to the experimental observation. The algorithm took boundary values as the particle swarm and updated the position of the particles iteratively to approach the optimization target. The method was tested in a real rat mesenteric network. With random initial boundary values, the method achieved a minimized 9 segments with an inverted flow direction in the network with 546 vessels. Compared with reported literature, the current work has the advantage of a better fit with experimental observations and is more suitable for the boundary estimation problem in pulsatile hemodynamic models due to the experiment-based optimization target selection.
Repulsive Casimir force from fractional Neumann boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Lim, S.C. [Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia)], E-mail: sclim@mmu.edu.my; Teo, L.P. [Faculty of Information Technology, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Department of Applied Mathematics, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan (Malaysia)], E-mail: lpteo@mmu.edu.my
2009-08-17
This Letter studies the finite temperature Casimir force acting on a rectangular piston associated with a massless fractional Klein-Gordon field at finite temperature. Dirichlet boundary conditions are imposed on the walls of a d-dimensional rectangular cavity, and a fractional Neumann condition is imposed on the piston that moves freely inside the cavity. The fractional Neumann condition gives an interpolation between the Dirichlet and Neumann conditions, where the Casimir force is known to be always attractive and always repulsive respectively. For the fractional Neumann boundary condition, the attractive or repulsive nature of the Casimir force is governed by the fractional order which takes values from zero (Dirichlet) to one (Neumann). When the fractional order is larger than 1/2, the Casimir force is always repulsive. For some fractional orders that are less than but close to 1/2, it is shown that the Casimir force can be either attractive or repulsive depending on the aspect ratio of the cavity and the temperature.
Generalized second-order slip boundary condition for nonequilibrium gas flows
Guo, Zhaoli; Qin, Jishun; Zheng, Chuguang
2014-01-01
It is a challenging task to model nonequilibrium gas flows within a continuum-fluid framework. Recently some extended hydrodynamic models in the Navier-Stokes formulation have been developed for such flows. A key problem in the application of such models is that suitable boundary conditions must be specified. In the present work, a generalized second-order slip boundary condition is developed in which an effective mean-free path considering the wall effect is used. By combining this slip scheme with certain extended Navier-Stokes constitutive relation models, we obtained a method for nonequilibrium gas flows with solid boundaries. The method is applied to several rarefied gas flows involving planar or curved walls, including the Kramers' problem, the planar Poiseuille flow, the cylindrical Couette flow, and the low speed flow over a sphere. The results show that the proposed method is able to give satisfied predictions, indicating the good potential of the method for nonequilibrium flows.
Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions
Hodge, Steve L.; Zorumski, William E.; Watson, Willie R.
1995-01-01
The Helmholtz equation is solved within a three-dimensional rectangular duct with a nonlocal radiation boundary condition at the duct exit plane. This condition accurately models the acoustic admittance at an arbitrarily-located computational boundary plane. A linear system of equations is constructed with second-order central differences for the Helmholtz operator and second-order backward differences for both local admittance conditions and the gradient term in the nonlocal radiation boundary condition. The resulting matrix equation is large, sparse, and non-Hermitian. The size and structure of the matrix makes direct solution techniques impractical; as a result, a nonstationary iterative technique is used for its solution. The theory behind the nonstationary technique is reviewed, and numerical results are presented for radiation from both a point source and a planar acoustic source. The solutions with the nonlocal boundary conditions are invariant to the location of the computational boundary, and the same nonlocal conditions are valid for all solutions. The nonlocal conditions thus provide a means of minimizing the size of three-dimensional computational domains.
Nonstationary Stokes System in Cylindrical Domains Under Boundary Slip Conditions
Zaja¸czkowski, Wojciech M.
2017-03-01
Existence and uniqueness of solutions to the nonstationary Stokes system in a cylindrical domain {Ωsubset{R}^3} and under boundary slip conditions are proved in anisotropic Sobolev spaces. Assuming that the external force belong to {L_r(Ω×(0,T))} and initial velocity to {W_r^{2-2/r}(Ω)} there exists a solution such that velocity belongs to {W_r^{2,1}(Ω×(0,T))} and gradient of pressure to {L_r(Ω×(0,T))}, {rin(1,∞)}, {T > 0}. Thanks to the slip boundary conditions and a partition of unity the Stokes system is transformed to the Poisson equation for pressure and the heat equation for velocity. The existence of solutions to these equations is proved by applying local considerations. In this case we have to consider neighborhoods near the edges which by local mapping can be transformed to dihedral angle {π/2}. Hence solvability of the problem bases on construction local Green functions (near an interior point, near a point of a smooth part of the boundary, near a point of the edge) and their appropriate estimates. The technique presented in this paper can also work in other functional spaces: Sobolev-Slobodetskii, Besov, Nikolskii, Hölder and so on.
Negative bending mode curvature via Robin boundary conditions
Adams, Samuel D. M.; Craster, Richard V.; Guenneau, Sébastien
2009-06-01
We examine the band spectrum, and associated Floquet-Bloch eigensolutions, arising in straight walled acoustic waveguides that have periodic structure along the guide. Homogeneous impedance (Robin) conditions are imposed along the guide walls and we find that in certain circumstances, negative curvature of the lowest (bending) mode can be achieved. This is unexpected, and has not been observed in a variety of physical situations examined by other authors. Further unexpected properties include the existence of the bending mode only on a subset of the Brillouin zone, as well as permitting otherwise unobtainable velocities of energy transmission. We conclude with a discussion of how such boundary conditions might be physically reproduced using effective conditions and homogenization theory, although the methodology to achieve these effective conditions is an open problem. To cite this article: S.D.M. Adams et al., C. R. Physique 10 (2009).
Applying Twisted Boundary Conditions for Few-body Nuclear Systems
Körber, Christopher
2015-01-01
We describe and implement twisted boundary conditions for the deuteron and triton systems within finite-volumes using the nuclear lattice EFT formalism. We investigate the finite-volume dependence of these systems with different twists angles. We demonstrate how various finite-volume information can be used to improve calculations of binding energies in such a framework. Our results suggests that with appropriate twisting of boundaries, infinite-volume binding energies can be reliably extracted from calculations using modest volume sizes with cubic length $L\\approx8-14$ fm. Of particular importance is our derivation and numerical verification of three-body analogue of `i-periodic' twist angles that eliminate the leading order finite-volume effects to the three-body binding energy.
Boundary Condition Effects on Taylor States in SSX
Han, Jeremy; Shrock, Jaron; Kaur, Manjit; Brown, Michael; Schaffner, David
2016-10-01
Three different boundary conditions are applied to the SSX 0.15 m diameter plasma wind tunnel and the resultant Taylor states are characterized. The glass walls of the wind tunnel act as an insulating boundary condition. For the second condition, a flux conserver is wrapped around the tunnel to trap magnetic field lines inside the SSX. For the last condition, the flux conserver is segmented to add theta pinch coils, which will accelerate the plasma. We used resistive stainless steel and copper mesh for the flux conservers, which have soak times of 3 μs and 250 μs , respectively. The goal is to increase the speed, temperature, and density of the plasma plume by adding magnetic energy into the system using the coils and compressing the plasma into small volumes by stagnation. The time of flight is measured by using a linear array of magnetic pick-up loops, which track the plasma plume's location as a function of time. The density is measured by precision quadrature He-Ne laser interferometry, and the temperature is measured by ion Doppler spectroscopy. Speed and density without the coils are 30km /s and 1015cm-3 . We will reach a speed of 100km /s and density of 1016cm-3 by adding the coil. Work supported by DOE OFES and ARPA-E ALPHA program.
Acoustic boundary conditions at an impedance lining in inviscid shear flow
Khamis, Doran; Brambley, Edward James
2016-01-01
This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Cambridge University Press. The accuracy of existing impedance boundary conditions is investigated, and new impedance boundary conditions are derived, for lined ducts with inviscid shear flow. The accuracy of the Ingard–Myers boundary condition is found to be poor. Matched asymptotic expansions are used to derive a boundary condition accurate to second order in the boundary layer thic...
Institute of Scientific and Technical Information of China (English)
Cheng-Qi Sun; Kai-Xin Liu; You-Shi Hong
2012-01-01
The paper studies the axisymmetric compressive buckling behavior of multi-walled carbon nanotubes (MWNTs) under different boundary conditions based on continuum mechanics model.A buckling condition is derived for determining the critical buckling load and associated buckling mode of MWNTs,and numerical results are worked out for MWNTs with different aspect ratios under fixed and simply supported boundary conditions.It is shown that the critical buckling load of MWNTs is insensitive to boundary conditions,except for nanotubes with smaller radii and very small aspect ratio.The associated buckling modes for different layers of MWNTs are in-phase,and the buckling displacement ratios for different layers are independent of the boundary conditions and the length of MWNTs.Moreover,for simply supported boundary conditions,the critical buckling load is compared with the corresponding one for axial compressive buckling,which indicates that the critical buckling load for axial compressive buckling can be well approximated by the corresponding one for axisymmetric compressive buckling.In particular,for axial compressive buckling of double-walled carbon nanotubes,an analytical expression is given for approximating the critical buckling load.The present investigation may be of some help in further understanding the mechanical properties of MWNTs.
Honti, Mark; Schuwirth, Nele; Rieckermann, Jörg; Ghielmetti, Nico; Stamm, Christian
2014-05-01
were predominantly determined by human activities in each simulated sub-catchment, as reflected by the socio-economic scenarios and management alternatives. Climatic and the corresponding hydrological changes had a much weaker influence. This indicates that - conditionally on the confidence of our predictions - catchment management would possess effective options to prevent the degradation of water quality in the future. However, prediction uncertainty varied between high and huge levels depending on compound. Most of the identified uncertainty was related to the quality of input data. Application rates and timings could be estimated only roughly for most compounds. Concentration peaks were simulated with high uncertainty. The highest pollutant concentrations were often associated with known but unidentified pollution sources such as accidental spills, or brief high-intensity precipitation events whose amount could only be observed with high uncertainty. So while acute exposure would be as important as the chronic one for IWRM, neither climatic nor catchment models excel at predicting rare and brief events. This deficiency highlights why the assessment of predictive uncertainty should be an integral part of OMP modeling.
On a price formation free boundary model by Lasry & Lions: The Neumann problem
Caffarelli, Luis A; Wolfram, Marie-Therese
2011-01-01
We discuss local and global existence and uniqueness for the price formation free boundary model with homogeneous Neumann boundary conditions introduced by Lasry & Lions in 2007. The results are based on a transformation of the problem to the heat equation with nonstandard boundary conditions. The free boundary becomes the zero level set of the solution of the heat equation. The transformation allows us to construct an explicit solution and discuss the behavior of the free boundary. Global existence can be verified under certain conditions on the free boundary and examples of non-existence are given.
Boundary conditions and generalized functions in a transition radiation problem
Villavicencio, M.; Jiménez, J. L.
2017-03-01
The aim of this work is to show how all the components of the electromagnetic field involved in the transition radiation problem can be obtained using distribution functions. The handling of the products and derivatives of distributions appearing in the differential equations governing transition radiation, allows to obtain the necessary boundary conditions, additional to those implied by Maxwell's equations, in order to exactly determine the longitudinal components of the electromagnetic field. It is shown that this method is not only useful but it is really convenient to achieve a full analysis of the problem.
Cauchy-perturbative matching and outer boundary conditions computational studies
Rezzolla, L; Matzner, R A; Rupright, M E; Shapiro, S L; Rezzolla, Luciano; Abrahams, Andrew M; Matzner, Richard A.; Rupright, Mark E.; Shapiro, Stuart L.
1999-01-01
We present results from a new technique which allows extraction of gravitational radiation information from a generic three-dimensional numerical relativity code and provides stable outer boundary conditions. In our approach we match the solution of a Cauchy evolution of the nonlinear Einstein field equations to a set of one-dimensional linear equations obtained through perturbation techniques over a curved background. We discuss the validity of this approach in the case of linear and mildly nonlinear gravitational waves and show how a numerical module developed for this purpose is able to provide an accurate and numerically convergent description of the gravitational wave propagation and a stable numerical evolution.
Quantum Nuclear Pasta Calculations with Twisted Angular Boundary Conditions
Schuetrumpf, Bastian; Nazarewicz, Witold
2015-10-01
Nuclear pasta, expected to be present in the inner crust of neutron stars and core collapse supernovae, can contain a wide spectrum of different exotic shapes such as nuclear rods and slabs. There are also more complicated, network-like structures, the triply periodic minimal surfaces, already known e.g. in biological systems. These shapes are studied with the Hartree-Fock method using modern Skyrme forces. Furthermore twisted angular boundary conditions are utilized to reduce finite size effects in the rectangular simulation boxes. It is shown, that this improves the accuracy of the calculations drastically and additionally more insights into the mechanism of forming minimal surfaces can be gained.
The effects of external conditions in turbulent boundary layers
Brzek, Brian G.
The effects of multiple external conditions on turbulent boundary layers were studied in detail. These external conditions include: surface roughness, upstream turbulence intensity, and pressure gradient. Furthermore, the combined effects of these conditions show the complicated nature of many realistic flow conditions. It was found that the effects of surface roughness are difficult to generalize, given the importance of so many parameters. These parameters include: roughness geometry, roughness regime, roughness height to boundary layer thickness, (k/delta), roughness parameter, ( k+), Reynolds number, and roughness function (Delta B+). A further complication, is the difficulty in computing the wall shear stress, tauw/rho. For the sand grain type roughness, the mean velocity and Reynolds stresses were studied in inner and outer variables, as well as, boundary layer parameters, anisotropy tensor, production term, and viscous stress and form drag contributions. To explore the effects of roughness and Reynolds number dependence in the boundary layer, a new experiment was carefully designed to properly capture the x-dependence of the single-point statistics. It was found that roughness destroys the viscous layer near the wall, thus, reducing the contribution of the viscous stress in the wall region. As a result, the contribution in the skin friction due to form drag increases, while the viscous stress decreases. This yields Reynolds number invariance in the skin friction, near-wall roughness parameters, and inner velocity profiles as k + increases into the fully rough regime. However, in the transitionally rough regime, (i.e., 5 component shows the largest influence of roughness, where the high peak near the wall was decreased and became nearly flat for the fully rough regime profiles. In addition, the Reynolds stresses in outer variables show self-similarity for fixed experimental conditions. However, as the roughness parameter, k +, increases, all Reynolds stress
GaN-based heterostructures: electric-static equilibrium and boundary conditions
Institute of Scientific and Technical Information of China (English)
Zhang Jin-Feng; Hao Yue
2006-01-01
In the GaN-based heterostructures, this paper reports that the strong electric fields induced by polarization effects at the structure boundaries complicate the electric-static equilibrium and the boundary conditions. The basic requirements of electric-static equilibrium for the heterostructure systems are discussed first, and it is deduced that in the application of the coupled Schr(o)dinger-Poisson model to the heterostructures of electric-static equilibrium state,zero external electric field guarantees the overall electric neutrality, and there is no need to introduce the charge balance equation. Then the relation between the screening of the polar charges in GaN-based heterostructures and the possible boundary conditions of the Poisson equation is analysed, it is shown that the various boundary conditions are equivalent to each other, and the surface charge, which can be used in studying the screening of the polar charges, can be precisely solved even if only the conduction band energy is correctly known at the surface. Finally, through the calculations on an AlGaN/GaN heterostructure with typical structure parameters by the coupled Schr(o)dinger-Poisson model under the various boundary conditions, the correctness of the above analyses are validated.
Boundary Correlation Functions of the gl(1|1) Supersymmetric Vertex Model
Institute of Scientific and Technical Information of China (English)
ZHANG Chen-Jun; ZHOU Jian-Hua; YUE Rui-Hong
2008-01-01
The gl(1|1) supersymmetric vertex model with domain wall boundary conditions (DWBC) on an N×N square lattice is considered.We derive the reduction formulae for the one-point boundary correlation functions of the model.The determinant representation for the boundary correlation functions is also obtained.
Directory of Open Access Journals (Sweden)
Cheng-yong Li
2015-01-01
Full Text Available The bottom-hole pressure response which can reflect the gas flow characteristics is important to study. A mathematical model for description of gas from porous coalbed methane (CBM reservoirs with complex boundary conditions flowing into horizontal wells has been developed. Meanwhile, basic solution of boundary elements has been acquired by combination of Lord Kelvin point source solution, the integral of Bessel function, and Poisson superimpose formula for CBM horizontal wells with complex boundary conditions. Using this model, type curves of dimensionless pressure and pressure derivative are obtained, and flow characteristics of horizontal wells in complex boundary reservoirs and relevant factors are accordingly analyzed.
Directory of Open Access Journals (Sweden)
Darae Jeong
2015-01-01
Full Text Available We briefly review and investigate the performance of various boundary conditions such as Dirichlet, Neumann, linear, and partial differential equation boundary conditions for the numerical solutions of the Black-Scholes partial differential equation. We use a finite difference method to numerically solve the equation. To show the efficiency of the given boundary condition, several numerical examples are presented. In numerical test, we investigate the effect of the domain sizes and compare the effect of various boundary conditions with pointwise error and root mean square error. Numerical results show that linear boundary condition is accurate and efficient among the other boundary conditions.
Mathematical analysis of the Navier-Stokes equations with non standard boundary conditions
Tidriri, M. D.
1995-01-01
One of the major applications of the domain decomposition time marching algorithm is the coupling of the Navier-Stokes systems with Boltzmann equations in order to compute transitional flows. Another important application is the coupling of a global Navier-Stokes problem with a local one in order to use different modelizations and/or discretizations. Both of these applications involve a global Navier-Stokes system with nonstandard boundary conditions. The purpose of this work is to prove, using the classical Leray-Schauder theory, that these boundary conditions are admissible and lead to a well posed problem.
Boundary conditions at closed edge of bilayer graphene and energy bands of collapsed nanotubes
Nakanishi, Takeshi; Ando, Tsuneya
2016-10-01
Band structure is systematically studied in an effective-mass scheme in collapsed armchair and zigzag nanotubes based on the model in which collapsed tubes are regarded as bilayer ribbons with closed edges. Boundary conditions at closed edges, describing the connection of the envelope wave functions between the bottom and top layers, are derived. Among electronic states in bilayers, which change sensitively depending on the relative displacement of two layers, those having wave functions matching well with the obtained boundary conditions, i.e., unaffected by the presence of closed edges, constitute important states near the Fermi level in collapsed nanotubes.
Non-diagonal boundary conditions for gl(1|1) super spin chains
Energy Technology Data Exchange (ETDEWEB)
Grabinski, Andre M; Frahm, Holger, E-mail: frahm@itp.uni-hannover.d [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstrasse 2, 30167 Hannover (Germany)
2010-01-29
We study a one-dimensional model of free fermions with gl(1|1) supersymmetry and demonstrate how non-diagonal boundary conditions can be incorporated into the framework of the graded quantum inverse scattering method (gQISM) by means of super matrices with entries from a superalgebra. For super Hermitian twists and open boundary conditions subject to a certain constraint, we solve the eigenvalue problem for the super transfermatrix by means of the graded algebraic Bethe ansatz technique (gABA) starting from a fermionic coherent state. For generic boundary conditions the algebraic Bethe ansatz cannot be applied. In this case the spectrum of the super transfermatrix is obtained from a functional relation.
Effects of various thermal boundary conditions on natural convection in porous cavities
Cheong, H. T.; Sivasankaran, S.; Bhuvaneswari, M.; Siri, Z.
2015-10-01
The present work analyzes numerically the effects of various thermal boundary conditions and the geometry of the cavity on natural convection in cavities with fluid-saturated porous medium. Cavity of square, right-angled trapezium and right-angled triangle shapes are considered. The different temperature profiles are imposed on the left wall of the cavity and the right wall is maintained at a lower constant temperature. The top and bottom walls are adiabatic. The Darcy model is adopted for the porous medium. The finite difference method is used to solve the governing equations and boundary conditions over a range of Darcy-Rayleigh numbers. Streamlines, isotherms and Nusselt numbers are used for presenting the results. The heat transfer of the square cavity is more enhanced at high Darcy-Rayleigh number for all the thermal boundary conditions considered.
Effective coastal boundary conditions for tsunami wave run-up over sloping bathymetry
Kristina, W.; Bokhove, O.; Groesen, van E.W.C.
2014-01-01
An effective boundary condition (EBC) is introduced as a novel technique for predicting tsunami wave run-up along the coast, and offshore wave reflections. Numerical modeling of tsunami propagation in the coastal zone has been a daunting task, since high accuracy is needed to capture aspects of wave
Current Percolation in Medium with Boundaries under Quantum Hall Effect Conditions
Directory of Open Access Journals (Sweden)
M. U. Malakeeva
2012-01-01
Full Text Available The current percolation has been considered in the medium with boundaries under quantum Hall effect conditions. It has been shown that in that case the effective Hall conductivity has a nonzero value due to percolation of the Hall current through the finite number of singular points (in our model these are corners at the phase joints.
A Formulation of Asymptotic and Exact Boundary Conditions Using Local Operators
Hagstrom, T.; Hariharan, S. I.
1998-01-01
In this paper we describe a systematic approach for constructing asymptotic boundary conditions for isotropic wave-like equations using local operators. The conditions take a recursive form with increasing order of accuracy. In three dimensions the recursion terminates and the resulting conditions are exact for solutions which are described by finite combinations of angular spherical harmonics. First, we develop the expansion for the two-dimensional wave equation and construct a sequence of easily implementable boundary conditions. We show that in three dimensions and analogous conditions are again easily implementable in addition to being exact. Also, we provide extensions of these ideas to hyperbolic systems. Namely, Maxwell's equations for TM waves are used to demonstrate the construction. Finally, we provide numerical examples to demonstrate the effectiveness of these conditions for a model problem governed by the wave equation.
Boundary conditions for NLTE polarized radiative transfer with incident radiation
Faurobert, Marianne; Atanackovic, Olga
2013-01-01
Polarized NLTE radiative transfer in the presence of scattering in spectral lines and/or in continua may be cast in a so-called reduced form for six reduced components of the radiation field. In this formalism the six components of the reduced source function are angle-independent quantities. It thus reduces drastically the storage requirement of numerical codes. This approach encounters a fundamental problem when the medium is illuminated by a polarized incident radiation, because there is a priori no way of relating the known (and measurable) Stokes parameters of the incident radiation to boundary conditions for the reduced equations. The origin of this problem is that there is no unique way of deriving the radiation reduced components from its Stokes parameters (only the inverse operation is clearly defined). The method proposed here aims at enabling to work with arbitrary incident radiation field (polarized or unpolarized). In previous works an ad-hoc treatment of the boundary conditions, applying to case...
Atmospheric Boundary Layers: Modeling and Parameterization
Holtslag, A.A.M.
2015-01-01
In this contribution we deal with the representation of the atmospheric boundary layer (ABL) for modeling studies of weather, climate, and air quality. As such we review the major characteristics of the ABL, and summarize the basic parameterizations for the description of atmospheric turbulence and
Influence of Spanwise Boundary Conditions on Slat Noise Simulations
Lockard, David P.; Choudhari, Meelan M.; Buning, Pieter G.
2015-01-01
The slat noise from the 30P/30N high-lift system is being investigated through computational fluid dynamics simulations with the OVERFLOW code in conjunction with a Ffowcs Williams-Hawkings acoustics solver. In the present study, two different spanwise grids are being used to investigate the effect of the spanwise extent and periodicity on the near-field unsteady structures and radiated noise. The baseline grid with periodic boundary conditions has a short span equal to 1/9th of the stowed chord, whereas the other, longer span grid adds stretched grids on both sides of the core, baseline grid to allow inviscid surface boundary conditions at both ends. The results indicate that the near-field mean statistics obtained using the two grids are similar to each other, as are the directivity and spectral shapes of the radiated noise. However, periodicity forces all acoustic waves with less than one wavelength across the span to be two-dimensional, without any variation in the span. The spanwise coherence of the acoustic waves is what is needed to make estimates of the noise that would be radiated from realistic span lengths. Simulations with periodic conditions need spans of at least six slat chords to allow spanwise variation in the low-frequencies associated with the peak of broadband slat noise. Even then, the full influence of the periodicity is unclear, so employing grids with a fine, central region and highly stretched meshes that go to slip walls may be a more efficient means of capturing the spanwise decorrelation of low-frequency acoustic phenomena.
DEFF Research Database (Denmark)
Villafruela, J.M.; Olmedo, Inés; Ruiz de Adana, M.;
2013-01-01
This paper analyses the dispersion of the exhaled contaminants by humans in indoor environments, with special attention to the exhalation jet and its interaction with the indoor airflow pattern in both mixing and displacement ventilation conditions. The way in which three different numerical boun...... with respect to Test a. These differences are evaluated by comparing the penetration length and vertical ascendance values for the different tests....... boundary conditions for the exhalation flow (one timedependent and two steady conditions) predict that contaminant dispersion is also analyzed. The first boundary condition is a time-dependent sinusoidal function, which is the most realistic condition (Test a), and it is used to validate the numerical...... model with experimental data obtained from a previous study. The second one (Test b) maintains the momentum of the exhalation flow and the third (Test c) uses the maximum exhalation velocity. The objectives of this study are to increase knowledge regarding the exhaled contaminant distribution under...
Electroosmotic flow of Eyring fluid in slit microchannel with slip boundary condition
Institute of Scientific and Technical Information of China (English)
谭臻; 齐海涛; 蒋晓芸
2014-01-01
In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier’s slip condition is used as the boundary condition. The governing equations are solved analytically, yielding the velocity distribution. The approximate expressions of the velocity distribution are also given and discussed. Furthermore, the effects of the dimensionless parameters, the electrokinetic parameter, and the slip length on the flow are studied numerically, and appropriate conclusions are drawn.
Topological susceptibility in lattice Yang-Mills theory with open boundary condition
Energy Technology Data Exchange (ETDEWEB)
Chowdhury, Abhishek; Harindranath, A. [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhan Nagar, Kolkata 700064 (India); Maiti, Jyotirmoy [Department of Physics, Barasat Government College,10 KNC Road, Barasat, Kolkata 700124 (India); Majumdar, Pushan [Department of Theoretical Physics, Indian Association for the Cultivation of Science,Kolkata 700032 (India)
2014-02-11
We find that using open boundary condition in the temporal direction can yield the expected value of the topological susceptibility in lattice SU(3) Yang-Mills theory. As a further check, we show that the result agrees with numerical simulations employing the periodic boundary condition. Our results support the preferability of the open boundary condition over the periodic boundary condition as the former allows for computation at smaller lattice spacings needed for continuum extrapolation at a lower computational cost.
Tabrizi, Amirhossein Molavi; Bardhan, Jaydeep P
2016-01-01
In this paper we extend the familiar continuum electrostatic model with a perturbation to the usual macroscopic boundary condition. The perturbation is based on the mean spherical approximation (MSA), to derive a multiscale hydration-shell boundary condition (HSBC). We show that the HSBC/MSA model reproduces MSA predictions for Born ions in a variety of polar solvents, including both protic and aprotic solvents. Importantly, the HSBC/MSA model predicts not only solvation free energies accurately but also solvation entropies, which standard continuum electrostatic models fail to predict. The HSBC/MSA model depends only on the normal electric field at the dielectric boundary, similar to our recent development of an HSBC model for charge-sign hydration asymmetry, and the reformulation of the MSA as a boundary condition enables its straightforward application to complex molecules such as proteins.
Analysis on Forced Vibration of Thin-Wall Cylindrical Shell with Nonlinear Boundary Condition
Directory of Open Access Journals (Sweden)
Qiansheng Tang
2016-01-01
Full Text Available Forced vibration of thin-wall cylindrical shell under nonlinear boundary condition was discussed in this paper. The nonlinear boundary was modeled as supported clearance in one end of shell and the restraint was assumed as linearly elastic in the radial direction. Based on Sanders’ shell theory, Lagrange equation was utilized to derive the nonlinear governing equations of cylindrical shell. The displacements in three directions were represented by beam functions and trigonometric functions. In the study of nonlinear dynamic responses of thin-wall cylindrical shell with supported clearance under external loads, the Newmark method is used to obtain time history, frequency spectrum plot, phase portraits, Poincare section, bifurcation diagrams, and three-dimensional spectrum plot with different parameters. The effects of external loads, supported clearance, and support stiffness on nonlinear dynamics behaviors of cylindrical shell with nonlinear boundary condition were discussed.
On the Navier-Stokes system with the Coulomb friction law boundary condition
Bălilescu, Loredana; San Martín, Jorge; Takahashi, Takéo
2017-02-01
We propose a new model for the motion of a viscous incompressible fluid. More precisely, we consider the Navier-Stokes system with a boundary condition governed by the Coulomb friction law. With this boundary condition, the fluid can slip on the boundary if the tangential component of the stress tensor is too large. We prove the existence and uniqueness of weak solution in the two-dimensional problem and the existence of at least one solution in the three-dimensional case, together with regularity properties and an energy estimate. We also propose a fully discrete scheme of our problem using the characteristic method, and we present numerical simulations in two physical examples.
Boundary Conditions for a New Type of Design Task
DEFF Research Database (Denmark)
McAloone, Tim C.
2011-01-01
object and research paradigm, studying service‐oriented approaches to product development and seeking to understand how to spell the systematic development of these so-called Product/Service‐Systems (PSS). When considering the shift towards PSS in the domain of engineering, it is in......-teresting to understand the shifting focus and identification of boundary conditions that manufacturing organisations must undergo, in order to develop just as systematic an approach to the service-related aspects of their business development, as they have in place for their product development. This chapter......Manufacturing companies have traditionally focused their efforts on developing and producing physical products for the market. Currently, however, many companies are rethinking their business strategies, from selling products to providing services. In place of the product alone, the activity...
Thermal momentum distribution from path integrals with shifted boundary conditions
Giusti, Leonardo
2011-01-01
For a thermal field theory formulated in the grand canonical ensemble, the distribution of the total momentum is an observable characterizing the thermal state. We show that its cumulants are related to thermodynamic potentials. In a relativistic system for instance, the thermal variance of the total momentum is a direct measure of the enthalpy. We relate the generating function of the cumulants to the ratio of (a) a partition function expressed as a Matsubara path integral with shifted boundary conditions in the compact direction, and (b) the ordinary partition function. In this form the generating function is well suited for Monte-Carlo evaluation, and the cumulants can be extracted straightforwardly. We test the method in the SU(3) Yang-Mills theory and obtain the entropy density at three different temperatures.
Solution of MHD problems with mixed-type boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Antimirov, M.IA.
1985-06-01
The introduction of artificial anisotropy of the dynamic viscosity in one of the subregions in which the solution is sought is utilized to derive an approximation method for MHD problems with mixed-type boundary conditions. The method is demonstrated through two problems: slow rotation of a disk and motion of a finite-width infinitely long plate in an infinite volume of a conducting fluid. The velocity and magnetic field solutions are obtained in the form of integrals of Bessel functions, and the torque is found. It is shown that when the Hartmann number approaches infinity the torque of a convex body of revolution in a longitudinal magnetic field is equal to that of a disk lying at the centerline section of the body.
Energy Technology Data Exchange (ETDEWEB)
Zhi-Gang Feng
2012-05-31
The simulation of particulate flows for industrial applications often requires the use of two-fluid models, where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of the two-fluid models in multiphase computations comes from the boundary condition of the solid phase. Typically, the gas or liquid fluid boundary condition at a solid wall is the so called no-slip condition, which has been widely accepted to be valid for single-phase fluid dynamics provided that the Knudsen number is low. However, the boundary condition for the solid phase is not well understood. The no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. Experimental or numerical simulation data are needed in order to determinate the slip boundary condition that is applicable to a two-fluid model. The goal of this project is to improve the performance and accuracy of the boundary conditions used in two-fluid models such as the MFIX code, which is frequently used in multiphase flow simulations. The specific objectives of the project are to use first principles embedded in a validated Direct Numerical Simulation particulate flow numerical program, which uses the Immersed Boundary method (DNS-IB) and the Direct Forcing scheme in order to establish, modify and validate needed energy and momentum boundary conditions for the MFIX code. To achieve these objectives, we have developed a highly efficient DNS code and conducted numerical simulations to investigate the particle-wall and particle-particle interactions in particulate flows. Most of our research findings have been reported in major conferences and archived journals, which are listed in Section 7 of this report. In this report, we will present a
DEFF Research Database (Denmark)
Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard;
2012-01-01
of the heating system in the glass moulding process considering detailed heating mechanisms therefore plays an important part in optimizing the heating system and the subsequent pressing stage in the lens manufacturing process.The current paper deals with three-dimensional transient thermal modelling...... of the multi-stage heating system in a wafer based glass moulding process. In order to investigate the importance of the radiation from the interior and surface of the glass, a simple finite volume code is developed to model one dimensional radiation–conduction heat transfer in the glass wafer for an extreme...... pressures. Finally, the three-dimensional modelling of the multi-stage heating system in the wafer based glass moulding process is simulated with the FEM software ABAQUS for a particular industrial application for mobile phone camera lenses to obtain the temperature distribution in the glass wafer...
Effects of boundary conditions on thermomechanical calculations: Spent fuel test - climax
Energy Technology Data Exchange (ETDEWEB)
Butkovich, T.R.
1982-10-01
The effects of varying certain boundary conditions on the results of finite-element calculations were studied in relation to the Spent Fuel Test - Climax. The study employed a thermomechanical model with the ADINA structural analysis. Nodal temperature histories were generated with the compatible ADINAT heat flow codes. The boundary conditions studied included: (1) The effect of boundary loading on three progressively larger meshes. (2) Plane strain vs plane stress conditions. (3) The effect of isothermal boundaries on a small mesh and on a significantly larger mesh. The results showed that different mesh sizes had an insignificant effect on isothermal boundaries up to 5 y, while on the smallest and largest mesh, the maximum temperature difference in the mesh was <1{sup 0}C. In the corresponding ADINA calculation, these different mesh sizes produce insignificant changes in the stress field and displacements in the region of interest near the heat sources and excavations. On the other hand, plane stress produces horizontal and vertical stress differences approx. 9% higher than does plane strain.
Vignon-Clementel, Irene; Jansen, K E; Taylor, C A; 10.1080/10255840903413565
2010-01-01
The simulation of blood flow and pressure in arteries requires outflow boundary conditions that incorporate models of downstream domains. We previously described a coupled multidomain method to couple analytical models of the downstream domains with 3D numerical models of the upstream vasculature. This prior work either included pure resistance boundary conditions or impedance boundary conditions based on assumed periodicity of the solution. However, flow and pressure in arteries are not necessarily periodic in time due to heart rate variability, respiration, complex transitional flow or acute physiological changes. We present herein an approach for prescribing lumped parameter outflow boundary conditions that accommodate transient phenomena. We have applied this method to compute haemodynamic quantities in different physiologically relevant cardiovascular models, including patient-specific examples, to study non-periodic flow phenomena often observed in normal subjects and in patients with acquired or congen...
Punzalan, Florencio Rusty; Kunieda, Yoshitoshi; Amano, Akira
2015-01-01
Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to
Directory of Open Access Journals (Sweden)
Florencio Rusty Punzalan
Full Text Available Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs. Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code
Modeling of particulate plumes transportation in boundary layers with obstacles
Karelsky, K. V.; Petrosyan, A. S.
2012-04-01
This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by nonslip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of high wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations. We deal with describing high
Gerbi, Stéphane
2013-01-15
The goal of this work is to study a model of the wave equation with dynamic boundary conditions and a viscoelastic term. First, applying the Faedo-Galerkin method combined with the fixed point theorem, we show the existence and uniqueness of a local in time solution. Second, we show that under some restrictions on the initial data, the solution continues to exist globally in time. On the other hand, if the interior source dominates the boundary damping, then the solution is unbounded and grows as an exponential function. In addition, in the absence of the strong damping, then the solution ceases to exist and blows up in finite time.
Efficient Smoothing for Boundary Value Models
1989-12-29
IEEE Transactions on Automatic Control , vol. 29, pp. 803-821, 1984. [2] A. Bagchi and H. Westdijk, "Smoothing...and likelihood ratio for Gaussian boundary value processes," IEEE Transactions on Automatic Control , vol. 34, pp. 954-962, 1989. [3] R. Nikoukhah et...77-96, 1988. [6] H. L. Weinert and U. B. Desai, "On complementary models and fixed- interval smoothing," IEEE Transactions on Automatic Control ,
Chen, Qing; Zhang, Xiaobing; Zhang, Junfeng
2013-09-01
In spite of the increasing applications of the lattice Boltzmann method (LBM) in simulating various flow and transport systems in recent years, complex boundary conditions for the convection-diffusion and heat transfer processes in LBM have not been well addressed. In this paper, we propose an improved bounce-back method by using the midpoint concentration value to modify the bounced-back density distribution for LBM simulations of the concentration field. An accurate finite-difference scheme in the normal boundary direction has also been introduced for gradient boundary conditions. Compared with existing boundary methods, our method has a simple algorithm and can easily deal with boundaries with general geometries, motions, and surface conditions (the Dirichlet, Neumann, and mixed conditions). Carefully designed simulations are performed to examine the capacity and accuracy of this proposed boundary method. Simulation results are compared with those from theory and a representative boundary method, and an improved performance is observed. We have also simulated the effect of reference velocity on global accuracy to examine the performance of our model in preserving the fundamental Galilean invariance. These boundary treatments for concentration boundary conditions can be readily applied to other processes such as heat transfer systems.
Chen, Qing; Zhang, Xiaobing; Zhang, Junfeng
2013-09-01
In spite of the increasing applications of the lattice Boltzmann method (LBM) in simulating various flow and transport systems in recent years, complex boundary conditions for the convection-diffusion and heat transfer processes in LBM have not been well addressed. In this paper, we propose an improved bounce-back method by using the midpoint concentration value to modify the bounced-back density distribution for LBM simulations of the concentration field. An accurate finite-difference scheme in the normal boundary direction has also been introduced for gradient boundary conditions. Compared with existing boundary methods, our method has a simple algorithm and can easily deal with boundaries with general geometries, motions, and surface conditions (the Dirichlet, Neumann, and mixed conditions). Carefully designed simulations are performed to examine the capacity and accuracy of this proposed boundary method. Simulation results are compared with those from theory and a representative boundary method, and an improved performance is observed. We have also simulated the effect of reference velocity on global accuracy to examine the performance of our model in preserving the fundamental Galilean invariance. These boundary treatments for concentration boundary conditions can be readily applied to other processes such as heat transfer systems.
Rezaei, M. P.; Zamanian, M.
2017-01-01
In this paper, the influences of nonideal boundary conditions (due to flexibility) on the primary resonant behavior of a piezoelectrically actuated microbeam have been studied, for the first time. The structure has been assumed to treat as an Euler-Bernoulli beam, considering the effects of geometric nonlinearity. In this work, the general nonideal supports have been modeled as a the combination of horizontal, vertical and rotational springs, simultaneously. Allocating particular values to the stiffness of these springs provides the mathematical models for the majority of boundary conditions. This consideration leads to use a two-dimensional analysis of the multiple scales method instead of previous works' method (one-dimensional analysis). If one neglects the nonideal effects, then this paper would be an effort to solve the two-dimensional equations of motion without a need of a combination of these equations using the shortening or stretching effect. Letting the nonideal effects equal to zero and comparing their results with the results of previous approaches have been demonstrated the accuracy of the two-dimensional solutions. The results have been identified the unique effects of constraining and stiffening of boundaries in horizontal, vertical and rotational directions. This means that it is inaccurate to suppose the nonideality of supports only in one or two of these directions like as previous works. The findings are of vital importance as a better prediction of the frequency response for the nonideal supports. Furthermore, the main findings of this effort can help to choose appropriate boundary conditions for desired systems.
Burgers equation with no-flux boundary conditions and its application for complete fluid separation
Watanabe, Shinya; Matsumoto, Sohei; Higurashi, Tomohiro; Ono, Naoki
2016-09-01
Burgers equation in a one-dimensional bounded domain with no-flux boundary conditions at both ends is proven to be exactly solvable. Cole-Hopf transformation converts not only the governing equation to the heat equation with an extra damping but also the nonlinear mixed boundary conditions to Dirichlet boundary conditions. The average of the solution v bar is conserved. Consequently, from an arbitrary initial condition, solutions converge to the equilibrium solution which is unique for the given v bar. The problem arises naturally as a continuum limit of a network of certain micro-devices. Each micro-device imperfectly separates a target fluid component from a mixture of more than one component, and its input-output concentration relationships are modeled by a pair of quadratic maps. The solvability of the initial boundary value problem is used to demonstrate that such a network acts as an ideal macro-separator, separating out the target component almost completely. Another network is also proposed which leads to a modified Burgers equation with a nonlinear diffusion coefficient.
Effects of physical boundary conditions on the transverse vibration of single-layer graphene sheets
Sadeghzadeh, S.; Khatibi, M. M.
2016-09-01
The effects of various approaches for a comprehensive application of boundary conditions on the molecular dynamics of graphene nanosheets were studied in this paper. Fixing more than two rows of carbon atoms was tested for satisfaction of clamped boundary condition in dynamics problems, and it was demonstrated that a completely different view should be taken for clamped boundary conditions. To do this, through the frequency domain decomposition approach, operational modal analysis has been developed to carry out the Laboratory of Nanometric Operational Modal Analysis on a molecular dynamics platform. The theory of the mentioned approach was introduced, and some comparisons were made with experimental works. The modeling results have shown that for graphene sheets with simply supported edges, fixing two or more rows leads to the same response as fixing one row. For clamped edges, the use of a flexible base as a substrate satisfies the boundary condition with the best possible. At the end, as an example, it has been demonstrated that the second and third natural vibration frequencies increase with the increase in aspect ratio, while the first frequency remains unchanged.
Pearce, Paul A; Tipunin, Ilya Yu
2014-01-01
For general Temperley-Lieb loop models, including the logarithmic minimal models $\\mathcal{LM}(p,p')$ with $p,p'$ coprime integers, we construct an infinite family of Robin boundary conditions on the strip as linear combinations of Neumann and Dirichlet boundary conditions. These boundary conditions are Yang-Baxter integrable and allow loop segments to terminate on the boundary. Algebraically, the Robin boundary conditions are described by the one-boundary Temperley-Lieb algebra. Solvable critical dense polymers is the first member $\\mathcal{LM}(1,2)$ of the family of logarithmic minimal models and has loop fugacity $\\beta=0$ and central charge $c=-2$. Specializing to $\\mathcal{LM}(1,2)$ with our Robin boundary conditions, we solve the model exactly on strips of arbitrary finite size $N$ and extract the finite-size conformal corrections using an Euler-Maclaurin formula. The key to the solution is an inversion identity satisfied by the commuting double row transfer matrices. This inversion identity is establis...
6d Dirac fermion on a rectangle; scrutinizing boundary conditions, mode functions and spectrum
Fujimoto, Yukihiro; Nishiwaki, Kenji; Sakamoto, Makoto; Tatsumi, Kentaro
2016-01-01
We classify possible boundary conditions of a 6d Dirac fermion $\\Psi$ on a rectangle under the requirement that the 4d Lorentz structure is maintained, and derive the profiles and spectrum of the zero modes and nonzero KK modes under the two specific boundary conditions, (i) 4d-chirality positive components being zero at the boundaries and (ii) 2d-chirality positive components being zero at the boundaries. In the case of (i), twofold degenerated chiral zero modes appear which are localized towards specific directions of the rectangle pointed by an angle parameter $\\theta$. This leads to an implication for a new direction of pursuing the origin of three generations in the matter fields of the standard model, even though triple-degenerated zero modes are not realized in the six dimensions. The emergence of the angle parameter $\\theta$ originates from a rotational symmetry in the degenerated chiral zero modes on the rectangle extra dimensions since they do not feel the boundaries. In the case of (ii), this rotat...
Fatigue crack damage detection using subharmonic component with nonlinear boundary condition
Energy Technology Data Exchange (ETDEWEB)
Wu, Weiliang, E-mail: wwl@whu.edu.cn; Qu, Wenzhong, E-mail: qwz@whu.edu.cn, E-mail: xiaoli6401@126.com; Xiao, Li, E-mail: qwz@whu.edu.cn, E-mail: xiaoli6401@126.com [Department of Engineering Mechanics, Wuhan University, Wuhan, Hubei (China); Shen, Yanfeng, E-mail: shen5@email.sc.edu; Giurgiutiu, Victor, E-mail: victorg@sc.edu [Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina (United States)
2015-03-31
In recent years, researchers have focused on structural health monitoring (SHM) and damage detection techniques using nonlinear vibration and nonlinear ultrasonic methods. Fatigue cracks may exhibit contact acoustic nonlinearity (CAN) with distinctive features such as superharmonics and subharmonics in the power spectrum of the sensing signals. However, challenges have been noticed in the practical applications of the harmonic methods. For instance, superharmonics can also be generated by the piezoelectric transducers and the electronic equipment; super/subharmonics may also stem from the nonlinear boundary conditions such as structural fixtures and joints. It is hard to tell whether the nonlinear features come from the structural damage or the intrinsic nonlinear boundary conditions. The objective of this paper is to demonstrate the application of nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as a single-degree-of-freedom (SDOF) system with non-classical hysteretic nonlinear interface forces at both sides of the crack surfaces. The threshold of subharmonic generation was studied, and the influence of crack interface parameters on the subharmonic resonance condition was investigated. The different threshold behaviors between the nonlinear boundary condition and the fatigue crack was found, which can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments of an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The fatigue damage was characterized in terms of a subharmonic damage index. The experimental results demonstrated that the subharmonic component of the sensing signal can be used to detect the fatigue crack and further distinguish it from
Positive Solutions to Fractional Boundary Value Problems with Nonlinear Boundary Conditions
Directory of Open Access Journals (Sweden)
Nemat Nyamoradi
2013-01-01
Full Text Available We consider a system of boundary value problems for fractional differential equation given by D0+βϕp(D0+αu(t=λ1a1(tf1(u(t,v(t, t∈(0,1, D0+βϕp(D0+αv(t=λ2a2(tf2(u(t,v(t, t∈(0,1, where 1<α, β≤2, 2<α+β≤4, λ1, λ2 are eigenvalues, subject either to the boundary conditions D0+αu(0=D0+αu(1=0, u(0=0, D0+β1u(1-Σi=1m-2a1i D0+β1u(ξ1i=0, D0+αv(0=D0+αv(1=0, v(0=0, D0+β1v(1-Σi=1m-2a2i D0+β1v(ξ2i=0 or D0+αu(0=D0+αu(1=0, u(0=0, D0+β1u(1-Σi=1m-2a1i D0+β1u(ξ1i=ψ1(u, D0+αv(0=D0+αv(1=0, v(0=0, D0+β1v(1-Σi=1m-2a2i D0+β1v(ξ2i=ψ2(v, where 0<β1<1, α-β1-1≥0 and ψ1, ψ2:C([0,1]→[0, ∞ are continuous functions. The Krasnoselskiis fixed point theorem is applied to prove the existence of at least one positive solution for both fractional boundary value problems. As an application, an example is given to demonstrate some of main results.
Exactly soluble model of boundary degeneracy
Ganeshan, Sriram; Gorshkov, Alexey V.; Gurarie, Victor; Galitski, Victor M.
2017-01-01
We investigate the topological degeneracy that can be realized in Abelian fractional quantum spin Hall states with multiply connected gapped boundaries. Such a topological degeneracy (also dubbed as "boundary degeneracy") does not require superconducting proximity effect and can be created by simply applying a depletion gate to the quantum spin Hall material and using a generic spin-mixing term (e.g., due to backscattering) to gap out the edge modes. We construct an exactly soluble microscopic model manifesting this topological degeneracy and solve it using the recently developed technique [S. Ganeshan and M. Levin, Phys. Rev. B 93, 075118 (2016), 10.1103/PhysRevB.93.075118]. The corresponding string operators spanning this degeneracy are explicitly calculated. It is argued that the proposed scheme is experimentally reasonable.
Geomagnetic Secular Variation Prediction with Thermal Heterogeneous Boundary Conditions
Kuang, Weijia; Tangborn, Andrew; Jiang, Weiyuan
2011-01-01
It has long been conjectured that thermal heterogeneity at the core-mantle boundary (CMB) affects the geodynamo substantially. The observed two pairs of steady and strong magnetic flux lobes near the Polar Regions and the low secular variation in the Pacific over the past 400 years (and perhaps longer) are likely the consequences of this CMB thermal heterogeneity. There are several studies on the impact of the thermal heterogeneity with numerical geodynamo simulations. However, direct correlation between the numerical results and the observations is found very difficult, except qualitative comparisons of certain features in the radial component of the magnetic field at the CMB. This makes it difficult to assess accurately the impact of thermal heterogeneity on the geodynamo and the geomagnetic secular variation. We revisit this problem with our MoSST_DAS system in which geomagnetic data are assimilated with our geodynamo model to predict geomagnetic secular variations. In this study, we implement a heterogeneous heat flux across the CMB that is chosen based on the seismic tomography of the lowermost mantle. The amplitude of the heat flux (relative to the mean heat flux across the CMB) varies in the simulation. With these assimilation studies, we will examine the influences of the heterogeneity on the forecast accuracies, e.g. the accuracies as functions of the heterogeneity amplitude. With these, we could be able to assess the model errors to the true core state, and thus the thermal heterogeneity in geodynamo modeling.
An Artificial Boundary Condition for the Vortex Movements in Two Dimensions
Institute of Scientific and Technical Information of China (English)
Qiyuan Cheng
2006-01-01
An approximate artificial boundary condition based on a boundary integral equation is designed for the vortex movements. Point vortex and cloud in cell methods are used in numerical simulation of vortex motions. The numerical experiments show that the approximate artificial boundary condition is useful and sufficiently accurate in hydrodynamics.
A Note on Fractional Differential Equations with Fractional Separated Boundary Conditions
Directory of Open Access Journals (Sweden)
Bashir Ahmad
2012-01-01
Full Text Available We consider a new class of boundary value problems of nonlinear fractional differential equations with fractional separated boundary conditions. A connection between classical separated and fractional separated boundary conditions is developed. Some new existence and uniqueness results are obtained for this class of problems by using standard fixed point theorems. Some illustrative examples are also discussed.
Directory of Open Access Journals (Sweden)
Nahed S. Hussein
2014-01-01
Full Text Available A numerical boundary integral scheme is proposed for the solution to the system of eld equations of plane. The stresses are prescribed on one-half of the circle, while the displacements are given. The considered problem with mixed boundary conditions in the circle is replaced by two problems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way, and the problem at this stage is reduced to the solution to a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution and the unknown boundary values of stresses or displacements on proper parts of the boundary. On the basis of the obtained results, it is inferred that a stress component has a singularity at each of the two separation points, thought to be of logarithmic type. The results are discussed and boundary plots are given. We have also calculated the unknown functions in the bulk directly from the given boundary conditions using the boundary collocation method. The obtained results in the bulk are discussed and three-dimensional plots are given. A tentative form for the singular solution is proposed and the corresponding singular stresses and displacements are plotted in the bulk. The form of the singular tangential stress is seen to be compatible with the boundary values obtained earlier. The efficiency of the used numerical schemes is discussed.
Free-boundary models of a meltwater conduit
Dallaston, Michael C.
2014-08-01
© 2014 AIP Publishing LLC. We analyse the cross-sectional evolution of an englacial meltwater conduit that contracts due to inward creep of the surrounding ice and expands due to melting. Making use of theoretical methods from free-boundary problems in Stokes flow and Hele-Shaw squeeze flow we construct an exact solution to the coupled problem of external viscous creep and internal heating, in which we adopt a Newtonian approximation for ice flow and an idealized uniform heat source in the conduit. This problem provides an interesting variant on standard free-boundary problems, coupling different internal and external problems through the kinematic condition at the interface. The boundary in the exact solution takes the form of an ellipse that may contract or expand (depending on the magnitudes of effective pressure and heating rate) around fixed focal points. Linear stability analysis reveals that without the melting this solution is unstable to perturbations in the shape. Melting can stabilize the interface unless the aspect ratio is too small; in that case, instabilities grow largest at the thin ends of the ellipse. The predictions are corroborated with numerical solutions using boundary integral techniques. Finally, a number of extensions to the idealized model are considered, showing that a contracting circular conduit is unstable to all modes of perturbation if melting occurs at a uniform rate around the boundary, or if the ice is modelled as a shear-thinning fluid.
Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations
Darmofal, David L.
1998-01-01
An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.
New boundary conditions from January; Vieles neu ab Januar
Energy Technology Data Exchange (ETDEWEB)
Wiedemann, Karsten
2011-12-15
The biogas industry now has to cope with changed public funding conditions. Manufacturers of biogas plant are trying out microsize plants and direct marketing models in an attempt to invite customers. But it is to be expected that few new customers will be acquired.
Investigating TIME-GCM Atmospheric Tides for Different Lower Boundary Conditions
Haeusler, K.; Hagan, M. E.; Lu, G.; Forbes, J. M.; Zhang, X.; Doornbos, E.
2013-12-01
It has been recently established that atmospheric tides generated in the lower atmosphere significantly influence the geospace environment. In order to extend our knowledge of the various coupling mechanisms between the different atmospheric layers, we rely on model simulations. Currently there exist two versions of the Global Scale Wave Model (GSWM), i.e. GSWM02 and GSWM09, which are used as a lower boundary (ca. 30 km) condition for the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) and account for the upward propagating atmospheric tides that are generated in the troposphere and lower stratosphere. In this paper we explore the various TIME-GCM upper atmospheric tidal responses for different lower boundary conditions and compare the model diagnostics with tidal results from satellite missions such as TIMED, CHAMP, and GOCE. We also quantify the differences between results associated with GSWM02 and GSWM09 forcing and results of TIMEGCM simulations using Modern-Era Retrospective Analysis for Research and Application (MERRA) data as a lower boundary condition.
Moment-based boundary conditions for lattice Boltzmann simulations of natural convection in cavities
Allen, Rebecca
2016-06-29
We study a multiple relaxation time lattice Boltzmann model for natural convection with moment-based boundary conditions. The unknown primary variables of the algorithm at a boundary are found by imposing conditions directly upon hydrodynamic moments, which are then translated into conditions for the discrete velocity distribution functions. The method is formulated so that it is consistent with the second order implementation of the discrete velocity Boltzmann equations for fluid flow and temperature. Natural convection in square cavities is studied for Rayleigh numbers ranging from 103 to 108. An excellent agreement with benchmark data is observed and the flow fields are shown to converge with second order accuracy. Copyright © 2016 Inderscience Enterprises Ltd.
Boundary States of the Potts Model on Random Planar Maps
Atkin, Max; Wheater, John
2015-01-01
We revisit the 3-states Potts model on random planar triangulations as a Hermitian matrix model. As a novelty, we obtain an algebraic curve which encodes the partition function on the disc with both fixed and mixed spin boundary conditions. We investigate the critical behaviour of this model and find scaling exponents consistent with previous literature. We argue that the conformal field theory that describes the double scaling limit is Liouville quantum gravity coupled to the $(A_4,D_4)$ minimal model with extended $\\mathcal{W}_3$-symmetry.
Estimation of Boundary Conditions for Coastal Models,
1974-09-01
equation: h(i) y ( t — i) di (3) The solution to Eq. (3) may be obtained by Fourier transformation. Because covariance function and spectral density function form...the cross— spectral density function estimate by a numerical Fourier transform, the even and odd parts of the cross—covariance function are determined...by A(k) = ½ [Y ~~ (k) + y (k)] (5) B(k) = ½ [Yxy (k) - y (k) ] (6) from which the co— spectral density function is estimated : k m—l -. C (f) = 2T[A(o
Ritto, T. G.; Sampaio, R.; Aguiar, R. R.
2016-02-01
In many mechanical applications (wind turbine tower, substructure joints, etc.), the stiffness of the boundary conditions is uncertain and might decrease with time, due to wear and/or looseness. In this paper, a torsional stiffness parameter is used to model the clamped side of a Timoshenko beam. The goal is to perform the identification with experimental data. To represent the decreasing stiffness of the clamped side, an experimental test rig is constructed, where several rubber layers are added to the clamped side, making it softer. Increasing the number of layers decreases the stiffness, thus representing a loss in the stiffness. The Bayesian approach is applied to update the probabilistic model related to the boundary condition (torsional stiffness parameter). The proposed Bayesian strategy worked well for the problem analyzed, where the experimental natural frequencies were within the 95% confidence limits of the computed natural frequencies probability density functions.
On Nonlinear Approximations to Cosmic Problems with Mixed Boundary Conditions
Mancinelli, P J; Ganon, G; Dekel, A; Mancinelli, Paul J.; Yahil, Amos; Ganon, Galit; Dekel, Avishai
1993-01-01
Nonlinear approximations to problems with mixed boundary conditions are useful for predicting large-scale streaming velocities from the density field, or vice-versa. We evaluate the schemes of Bernardeau \\cite{bernardeau92}, Gramann \\cite{gramann93}, and Nusser \\etal \\cite{nusser91}, using smoothed density and velocity fields obtained from $N$-body simulations of a CDM universe. The approximation of Nusser \\etal is overall the most accurate and robust. For Gaussian smoothing of 1000\\kms\\ the mean error in the approximated relative density perturbation, $\\delta$, is smaller than 0.06, and the dispersion is 0.1. The \\rms\\ error in the estimated velocity is smaller than 60\\kms, and the dispersion is 40\\kms. For smoothing of 500\\kms\\ these numbers increase by about a factor $\\sim 2$ for $\\delta < 4-5$, but deteriorate at higher densities. The other approximations are comparable to those of Nusser \\etal for smoothing of 1000\\kms, but are much less successful for the smaller smoothing of 500\\kms.
The representation of boundary currents in a finite element shallow water model
Düben, Peter D
2015-01-01
We evaluate the influence of local resolution, eddy viscosity, coastline structure, and boundary conditions on the numerical representation of boundary currents in a finite element shallow-water model. The use of finite element discretization methods offers a higher flexibility compared to finite difference and finite volume methods, that are mainly used in previous publications. This is true for the geometry of the coast lines and for the realization of boundary conditions. For our investigations we simulate steady separation of western boundary currents from idealized and realistic coast lines. The use of grid refinement allows a detailed investigation of boundary separation at reasonable numerical cost.
Beyer, Dirk; Keremoglu, M Erkan; Wendler, Philipp
2011-01-01
Software model checking, as an undecidable problem, has three possible outcomes: (1) the program satisfies the specification, (2) the program does not satisfy the specification, and (3) the model checker fails. The third outcome usually manifests itself in a space-out, time-out, or one component of the verification tool giving up; in all of these failing cases, significant computation is performed by the verification tool before the failure, but no result is reported. We propose to reformulate the model-checking problem as follows, in order to have the verification tool report a summary of the performed work even in case of failure: given a program and a specification, the model checker returns a condition P ---usually a state predicate--- such that the program satisfies the specification under the condition P ---that is, as long as the program does not leave states in which P is satisfied. We are of course interested in model checkers that return conditions P that are as weak as possible. Instead of outcome ...
Thermal Performance of Laser Diode Array under Constant Convective Heat Transfer Boundary Condition
Institute of Scientific and Technical Information of China (English)
YIN Cong; HUANG Lei; HE Fa-Hong; GONG Ma-Li
2007-01-01
Three-dimensional heat transfer model of laser diode array under constant convective heat transfer coefficient boundary condition is established and analytical temperature profiles within its heat sink are obtained by separation of variables. The influences on thermal resistance and maximum temperature variation among emitters from heat sink structure parameters and convective heat transfer coefficient are brought forward. The derived formula enables the thermal optimization of laser diode array.
Casimir Effect of Massive Scalar Field with Hybrid Boundary Condition in (1+1)-Dimensional Spacetime
Institute of Scientific and Technical Information of China (English)
HE Xiao-Kai; LIU Wen-Biao; QIU Wei-Gang
2009-01-01
The Casimir energy of maesive scalar field with hybrid (Dirichlet-Neumann) boundary condition is calcu-lated. In order to regularize the model, the typical methods named as mode summation method and Green's function method are used respectively. It is found that the regularized zero-point energy density depends on the scalar field's mass. When the field is massless, the result is consistent with previous literatures.
Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan; Shi, Qingyu
2016-09-01
For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, the lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. The simulated temperature field is validated by the good agreement to the experimental measurements.
Coupling the Gaussian free fields with free and with zero boundary conditions via common level lines
Qian, Wei; Werner, Wendelin
2017-01-01
We describe level-line decompositions of the two-dimensional Gaussian Free Field (GFF) with free boundary conditions. In particular, we point out a simple way to couple the GFF with free boundary conditions in a domain with the GFF with zero boundary conditions in the same domain: Starting from the latter, one just has to sample at random all the signs of the height gaps on its boundary touching 0-level lines (these signs are alternating for the zero-boundary GFF) in order to obtain a free bo...
Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes
Energy Technology Data Exchange (ETDEWEB)
Camley, Brian A. [Center for Theoretical Biological Physics and Department of Physics, University of California, San Diego, California 92093 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Lerner, Michael G. [Department of Physics and Astronomy, Earlham College, Richmond, Indiana 47374 (United States); Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States); Pastor, Richard W. [Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States); Brown, Frank L. H. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States)
2015-12-28
The Saffman-Delbrück hydrodynamic model for lipid-bilayer membranes is modified to account for the periodic boundary conditions commonly imposed in molecular simulations. Predicted lateral diffusion coefficients for membrane-embedded solid bodies are sensitive to box shape and converge slowly to the limit of infinite box size, raising serious doubts for the prospects of using detailed simulations to accurately predict membrane-protein diffusivities and related transport properties. Estimates for the relative error associated with periodic boundary artifacts are 50% and higher for fully atomistic models in currently feasible simulation boxes. MARTINI simulations of LacY membrane protein diffusion and LacY dimer diffusion in DPPC membranes and lipid diffusion in pure DPPC bilayers support the underlying hydrodynamic model.
Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes
Camley, Brian A.; Lerner, Michael G.; Pastor, Richard W.; Brown, Frank L. H.
2015-12-01
The Saffman-Delbrück hydrodynamic model for lipid-bilayer membranes is modified to account for the periodic boundary conditions commonly imposed in molecular simulations. Predicted lateral diffusion coefficients for membrane-embedded solid bodies are sensitive to box shape and converge slowly to the limit of infinite box size, raising serious doubts for the prospects of using detailed simulations to accurately predict membrane-protein diffusivities and related transport properties. Estimates for the relative error associated with periodic boundary artifacts are 50% and higher for fully atomistic models in currently feasible simulation boxes. MARTINI simulations of LacY membrane protein diffusion and LacY dimer diffusion in DPPC membranes and lipid diffusion in pure DPPC bilayers support the underlying hydrodynamic model.
Directory of Open Access Journals (Sweden)
Petar Glišović
2015-01-01
Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique
Error transport equation boundary conditions for the Euler and Navier-Stokes equations
Phillips, Tyrone S.; Derlaga, Joseph M.; Roy, Christopher J.; Borggaard, Jeff
2017-02-01
Discretization error is usually the largest and most difficult numerical error source to estimate for computational fluid dynamics, and boundary conditions often contribute a significant source of error. Boundary conditions are described with a governing equation to prescribe particular behavior at the boundary of a computational domain. Boundary condition implementations are considered sufficient when discretized with the same order of accuracy as the primary governing equations; however, careless implementations of boundary conditions can result in significantly larger numerical error. Investigations into different numerical implementations of Dirichlet and Neumann boundary conditions for Burgers' equation show a significant impact on the accuracy of Richardson extrapolation and error transport equation discretization error estimates. The development of boundary conditions for Burgers' equation shows significant improvements in discretization error estimates in general and a significant improvement in truncation error estimation. The latter of which is key to accurate residual-based discretization error estimation. This research investigates scheme consistent and scheme inconsistent implementations of inflow and outflow boundary conditions up to fourth order accurate and a formulation for a slip wall boundary condition for truncation error estimation are developed for the Navier-Stokes and Euler equations. The scheme consistent implementation resulted in much smoother truncation error near the boundaries and more accurate discretization error estimates.
Air Quality and Meteorological Boundary Conditions during the MCMA-2003 Field Campaign
Sosa, G.; Arriaga, J.; Vega, E.; Magaña, V.; Caetano, E.; de Foy, B.; Molina, L. T.; Molina, M. J.; Ramos, R.; Retama, A.; Zaragoza, J.; Martínez, A. P.; Márquez, C.; Cárdenas, B.; Lamb, B.; Velasco, E.; Allwine, E.; Pressley, S.; Westberg, H.; Reyes, R.
2004-12-01
A comprehensive field campaign to characterize photochemical smog in the Mexico City Metropolitan Area (MCMA) was conducted during April 2003. An important number of equipment was deployed all around the urban core and its surroundings to measure gas and particles composition from the various sources and receptor sites. In addition to air quality measurements, meteorology variables were also taken by regular weather meteorological stations, tethered balloons, radiosondes, sodars and lidars. One important issue with regard to the field campaign was the characterization of the boundary conditions in order to feed meteorological and air quality models. Four boundary sites were selected to measure continuously criteria pollutants, VOC and meteorological variables at surface level. Vertical meteorological profiles were measured at three other sites : radiosondes in Tacubaya site were launched every six hours daily; tethered balloons were launched at CENICA and FES-Cuautitlan sites according to the weather conditions, and one sodar was deployed at UNAM site in the south of the city. Additionally to these measurements, two fixed meteorological monitoring networks deployed along the city were available to complement these measurements. In general, we observed that transport of pollutants from the city to the boundary sites changes every day, according to the coupling between synoptic and local winds. This effect were less important at elevated sites such as Cerro de la Catedral and ININ, where synoptic wind were more dominant during the field campaign. Also, local sources nearby boundary sites hide the influence of pollution coming from the city some days, particularly at the La Reforma site.
Institute of Scientific and Technical Information of China (English)
Zhou Zhi-Dong; Zhang Chun-Zu; Jiang Quan
2011-01-01
The effects of internal stresses and depolarization fields on the properties of epitaxial ferroelectric perovskite thin films are discussed by employing the dynamic Ginzburg-Landau equation (DGLE).The numerical solution for BaTiO3 film shows that internal stress and the depolarization field have the most effects on ferroelectric properties such as polarization,Curie temperature and susceptibility.With the increase of the thickness of the film,the polarization of epitaxial ferroelectric thin film is enhanced rapidly under high internal compressively stress.With the thickness exceeding the critical thickness for dislocation formation,the polarization increases slowly and even weakens due to relaxed internal stresses and a weak electrical boundary condition.This indicates that the effects of mechanical and electrical boundary conditions both diminish for ferroelectric thick films.Consequently,our thermodynamic method is a full scale model that can predict the properties of ferroelectric perovskite films in a wide range of film thickness.
Energy Technology Data Exchange (ETDEWEB)
Ansari, R., E-mail: r_ansari@guilan.ac.i [Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of); Sahmani, S.; Rouhi, H. [Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of)
2011-02-28
Eringen's nonlocality is incorporated into the shell theory to include the small-scale effects on the axial buckling of single-walled carbon nanotubes (SWCNTs) with arbitrary boundary conditions. To this end, the Rayleigh-Ritz solution technique is implemented in conjunction with the set of beam functions as modal displacement functions. Then, molecular dynamics simulations are employed to obtain the critical buckling loads of armchair and zigzag SWCNTs, the results of which are matched with those of nonlocal shell model to extract the appropriate values of nonlocal parameter. It is found that in contrast to the chirality, boundary conditions have a considerable influence on the proper values of nonlocal parameter.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The structural acoustic coupling characteristics of a rectangular enclosure consisting of two elastic supported flexible plates and four rigid plates are analyzed. A general formulation considering the full coupling between the plates and cavity is developed by using Hamiltonian function and Rayleigh-Ritz method. By means of continuous distributions of artificial springs along boundary of flexible plates, a wide variety of boundary conditions and structure joint conditions are considered. To demonstrate the validity of the analytical model,the responses of sound pressure in the cavity and plate velocity are worked out. The analytical results coincides well with Kim's experimental results. The result is satisfactory. Finally, analytical results on the structure vibration and the sound field inside the cavity are presented.These results indicate that the coupling of the combined structure is relatively weak, so the internal cavity sound is controlled by plate directly excited,and the translational stiffness affects the sound more than the rotational stiffness does.
Glass, David E.; Tamma, Kumar K.; Railkar, Sudhir B.
1989-01-01
The paper describes the numerical simulation of hyperbolic heat conduction with convection boundary conditions. The effects of a step heat loading, a sudden pulse heat loading, and an internal heat source are considered in conjunction with convection boundary conditions. Two methods of solution are presened for predicting the transient behavior of the propagating thermal disturbances. In the first method, MacCormack's predictor-corrector method is employed for integrating the hyperbolic system of equations. Next, the transfinite element method, which employs specially tailored elements, is used for accurately representing the transient response of the propagating thermal wave fronts. The agreement between the results of various numerical test cases validate the representative behavior of the thermal wave fronts. Both methods represent hyperbolic heat conduction behavior by effectively modeling the sharp discontinuities of the propagating thermal disturbances.
RESEARCH INFLUENCE OF BOUNDARY CONDITIONS ON THE MOVE OF CFA PILE UNDER STATIC LOADS
Directory of Open Access Journals (Sweden)
Eschenko O. Y.
2013-12-01
Full Text Available The article discusses the influence of boundary conditions on the numerical results of displacement CFA piles under static loads. Comparative evaluation of the results of calculation of single movements of CFA piles to the extent of the computational domain, the number of grid points, FEM convergence criterion calculation has been presented. The recommendations on the appointment of the size of the computational domain in the vertical and horizontal direction, the number of grid points, FEM numerical value and choice to apply the criteria of convergence have been listed. On the example of calculating the movements of a single CFA piles we have chosen the parameters of the numerical model, eliminating the influence of boundary conditions on the results of the calculation
Revisit boundary conditions for the self-adjoint angular flux formulation
Energy Technology Data Exchange (ETDEWEB)
Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick N. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-03-01
We revisit the boundary conditions for SAAF. We derived the equivalent parity variational form ready for coding up. The more rigorous approach of evaluating odd parity should be solving the odd parity equation coupled with the even parity. We proposed a symmetric reflecting boundary condition although neither positive definiteness nor even-odd decoupling is achieved. A simple numerical test verifies the validity of these boundary conditions.
RADIATION BOUNDARY CONDITIONS FOR MAXWELL'S EQUATIONS: A REVIEW OF ACCURATE TIME-DOMAIN FORMULATIONS
Institute of Scientific and Technical Information of China (English)
Thomas Hagstrom; Stephen Lau
2007-01-01
We review time-domain formulations of radiation boundary conditions for Maxwell's equations, focusing on methods which can deliver arbitrary accuracy at acceptable computational cost. Examples include fast evaluations of nonlocal conditions on symmetric and general boundaries, methods based on identifying and evaluating equivalent sources, and local approximations such as the perfectly matched layer and sequences of local boundary conditions. Complexity estimates are derived to assess work and storage requirements as a function of wavelength and simulation time.
Energy Technology Data Exchange (ETDEWEB)
Pearce, Paul A., E-mail: p.pearce@ms.unimelb.edu.au [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia); Rasmussen, Jørgen, E-mail: j.rasmussen@uq.edu.au [School of Mathematics and Physics, University of Queensland, St Lucia, Brisbane, Queensland 4072 (Australia); Tipunin, Ilya Yu., E-mail: tipunin@gmail.com [TAMM Theory Division, Lebedev Physics Institute, Leninski Pr., 53, Moscow 119991 (Russian Federation)
2014-12-15
For general Temperley–Lieb loop models, including the logarithmic minimal models LM(p,p{sup ′}) with p,p{sup ′} coprime integers, we construct an infinite family of Robin boundary conditions on the strip as linear combinations of Neumann and Dirichlet boundary conditions. These boundary conditions are Yang–Baxter integrable and allow loop segments to terminate on the boundary. Algebraically, the Robin boundary conditions are described by the one-boundary Temperley–Lieb algebra. Solvable critical dense polymers is the first member LM(1,2) of the family of logarithmic minimal models and has loop fugacity β=0 and central charge c=−2. Specialising to LM(1,2) with our Robin boundary conditions, we solve the model exactly on strips of arbitrary finite size N and extract the finite-size conformal corrections using an Euler–Maclaurin formula. The key to the solution is an inversion identity satisfied by the commuting double row transfer matrices. This inversion identity is established directly in the Temperley–Lieb algebra. We classify the eigenvalues of the double row transfer matrices using the physical combinatorics of the patterns of zeros in the complex spectral parameter plane and obtain finitised characters related to spaces of coinvariants of Z{sub 4} fermions. In the continuum scaling limit, the Robin boundary conditions are associated with irreducible Virasoro Verma modules with conformal weights Δ{sub r,s−1/2} =1/(32) (L{sup 2}−4) where L=2s−1−4r, r∈Z, s∈N. These conformal weights populate a Kac table with half-integer Kac labels. Fusion of the corresponding modules with the generators of the Kac fusion algebra is examined and general fusion rules are proposed.
ASYMPTOTICS OF INITIAL BOUNDARY VALUE PROBLEMS OF BIPOLAR HYDRODYNAMIC MODEL FOR SEMICONDUCTORS
Institute of Scientific and Technical Information of China (English)
Ju Qiangchang
2004-01-01
In this paper, we study the asymptotic behavior of the solutions to the bipolar hydrodynamic model with Dirichlet boundary conditions. It is shown that the initial boundary problem of the model admits a global smooth solution which decays to the steady state exponentially fast.
Directory of Open Access Journals (Sweden)
Lizal Frantisek
2016-01-01
Full Text Available Correct definition of boundary conditions is crucial for the appropriate simulation of a flow. It is a common practice that simulation of sufficiently long upstream entrance section is performed instead of experimental investigation of the actual conditions at the boundary of the examined area, in the case that the measurement is either impossible or extremely demanding. We focused on the case of a benchmark channel with ventilation outlet, which models a regular automotive ventilation system. At first, measurements of air velocity and turbulence intensity were performed at the boundary of the examined area, i.e. in the rectangular channel 272.5 mm upstream the ventilation outlet. Then, the experimentally acquired results were compared with results obtained by numerical simulation of further upstream entrance section defined according to generally approved theoretical suggestions. The comparison showed that despite the simple geometry and general agreement of average axial velocity, certain difference was found in the shape of the velocity profile. The difference was attributed to the simplifications of the numerical model and the isotropic turbulence assumption of the used turbulence model. The appropriate recommendations were stated for the future work.
Hybrid model for QCD deconfining phase boundary
Srivastava, P. K.; Singh, C. P.
2012-06-01
Intensive search for a proper and realistic equations of state (EOS) is still continued for studying the phase diagram existing between quark gluon plasma (QGP) and hadron gas (HG) phases. Lattice calculations provide such EOS for the strongly interacting matter at finite temperature (T) and vanishing baryon chemical potential (μB). These calculations are of limited use at finite μB due to the appearance of notorious sign problem. In the recent past, we had constructed a hybrid model description for the QGP as well as HG phases where we make use of a new excluded-volume model for HG and a thermodynamically-consistent quasiparticle model for the QGP phase and used them further to get QCD phase boundary and a critical point. Since then many lattice calculations have appeared showing various thermal and transport properties of QCD matter at finite T and μB=0. We test our hybrid model by reproducing the entire data for strongly interacting matter and predict our results at finite μB so that they can be tested in future. Finally we demonstrate the utility of the model in fixing the precise location, the order of the phase transition and the nature of CP existing on the QCD phase diagram. We thus emphasize the suitability of the hybrid model as formulated here in providing a realistic EOS for the strongly interacting matter.
An Explicit Time-Domain Hybrid Formulation Based on the Unified Boundary Condition
Energy Technology Data Exchange (ETDEWEB)
Madsen, N; Fasenfest, B J; White, D; Stowell, M; Jandhyala, V; Pingenot, J; Champagne, N J; Rockway, J D
2007-02-28
An approach to stabilize the two-surface, time domain FEM/BI hybrid by means of a unified boundary condition is presented. The first-order symplectic finite element formulation [1] is used along with a version of the unified boundary condition of Jin [2] reformulated for Maxwell's first-order equations in time to provide both stability and accuracy over the first-order ABC. Several results are presented to validate the numerical solutions. In particular the dipole in a free-space box is analyzed and compared to the Dirchlet boundary condition of Ziolkowski and Madsen [3] and to a Neuman boundary condition approach.
S-duality of boundary conditions and the Geometric Langlands program
Gaiotto, Davide
2016-01-01
Maximally supersymmetric gauge theory in four dimensions admits local boundary conditions which preserve half of the bulk supersymmetries. The S-duality of the bulk gauge theory can be extended in a natural fashion to act on such half-BPS boundary conditions. The purpose of this note is to explain the role these boundary conditions can play in the Geometric Langlands program. In particular, we describe how to obtain pairs of Geometric Langland dual objects from S-dual pairs of half-BPS boundary conditions.
A data model for regions with indeterminate boundaries
Institute of Scientific and Technical Information of China (English)
NHAN Vu-thi-hong; CHI Jeong-hee; RYU Keun-ho
2004-01-01
Most of spatial phenomena like natural vegetation units and land use areas constantly change over time and have uncertainty spatial extents. Till now, a considerable number of data models have been proposed for spatial objects with sharp boundaries as well as with indeterminate boundaries. However, they mainly concern space and time or space and fuzziness and not yet integrate them into a single unified framework. This paper introduces a formal definition of the conceptual fuzzy spatiotemporal data model, called FSTDM for fuzzy regions based on fuzzy set theory. We also contribute a method of manipulating queries with the presence of both temporal predicate and fuzzy spatial predicate in the condition clause efficiently. We then implement a prototype system.Through the experimental results, we prove that our work can be used to build a specialized system such as GIS, spatial database, and so on.
Lācis, Uǧis
2016-01-01
Interfacial boundary conditions determined from empirical or ad-hoc models remain the standard approach to model fluid flows over porous media, even in situations where the topology of the porous medium is known. We propose a non-empirical and accurate method to compute the effective boundary conditions at the interface between a porous surface and an overlying flow. Using multiscale expansion (homogenization) approach, we derive a tensorial generalized version of the empirical condition suggested by Beavers & Joseph (1967). The components of the tensors determining the effective slip velocity at the interface are obtained by solving a set of Stokes equations in a small computational domain near the interface containing both free flow and porous medium. Using the lid-driven cavity flow with a porous bed, we demonstrate that the derived boundary condition is accurate and robust by comparing an effective model to direct numerical simulations. Finally, we provide an open source code that solves the microscal...
Solitonic sectors, conformal boundary conditions and three-dimensional topological field theory
Schweigert, C
2000-01-01
The correlation functions of a two-dimensional rational conformal field theory, for an arbitrary number of bulk and boundary fields and arbitrary world sheets can be expressed in terms of Wilson graphs in appropriate three-manifolds. We present a systematic approach to boundary conditions that break bulk symmetries. It is based on the construction, by `alpha-induction', of a fusion ring for the boundary fields. Its structure constants are the annulus coefficients and its 6j-symbols give the OPE of boundary fields. Symmetry breaking boundary conditions correspond to solitonic sectors.
Exact solutions to plaquette Ising models with free and periodic boundaries
Directory of Open Access Journals (Sweden)
Marco Mueller
2017-01-01
We clarify the exact relation between partition functions with free and periodic boundary conditions expressed in terms of original and product spin variables for the 2d plaquette and 3d fuki-nuke models, noting that the differences are already present in the 1d Ising model. In addition, we solve the 2d plaquette Ising model with helical boundary conditions. The various exactly solved examples illustrate how correlations can be induced in finite systems as a consequence of the choice of boundary conditions.
Borjan, Z.
2016-09-01
We consider critical Casimir force in the Ising strips with boundary conditions defined by standard normal and ordinary surface universality classes containing also the internal grain boundary. Using exact variational approach of Mikheev and Fisher we have elaborated on behaviors of Casimir amplitudes Δ++(g) , ΔOO(g) and Δ+O(g) , corresponding to normal-normal, ordinary-ordinary and mixed normal-ordinary boundary conditions, respectively, with g as a strength of the grain boundary. Closed analytic results describe Casimir amplitudes Δ++(g) and ΔOO(g) as continuous functions of the grain boundary's strength g, changing the character of the Casimir force from repulsive to attractive and vice versa for certain domains of g. Present results reveal a new type of symmetry between Casimir amplitudes Δ++(g) and ΔOO(g) . Unexpectedly simple constant result for the Casimir amplitude Δ+O(g) = π/12 we have comprehensively interpreted in terms of equilibrium states of the present Ising strip as a complex interacting system comprising two sub-systems. Short-distance expansions of energy density profiles in the vicinity of the grain boundary reveal new distant-wall correction amplitudes that we examined in detail. Analogy of present considerations with earlier more usual short-distance expansions near one of the (N), (O) and (SB) boundaries, as well as close to surfaces with variable boundary conditions refers to the set of scaling dimensions appearing in the present calculations but also to the discovery of the de Gennes-Fisher distant wall correction amplitudes.
Langevin equation model of dispersion in the convective boundary layer
Energy Technology Data Exchange (ETDEWEB)
Nasstrom, J S
1998-08-01
This dissertation presents the development and evaluation of a Lagrangian stochastic model of vertical dispersion of trace material in the convective boundary layer (CBL). This model is based on a Langevin equation of motion for a fluid particle, and assumes the fluid vertical velocity probability distribution is skewed and spatially homogeneous. This approach can account for the effect of large-scale, long-lived turbulent structures and skewed vertical velocity distributions found in the CBL. The form of the Langevin equation used has a linear (in velocity) deterministic acceleration and a skewed randomacceleration. For the case of homogeneous fluid velocity statistics, this ""linear-skewed" Langevin equation can be integrated explicitly, resulting in a relatively efficient numerical simulation method. It is shown that this approach is more efficient than an alternative using a "nonlinear-Gaussian" Langevin equation (with a nonlinear deterministic acceleration and a Gaussian random acceleration) assuming homogeneous turbulence, and much more efficient than alternative approaches using Langevin equation models assuming inhomogeneous turbulence. "Reflection" boundary conditions for selecting a new velocity for a particle that encounters a boundary at the top or bottom of the CBL were investigated. These include one method using the standard assumption that the magnitudes of the particle incident and reflected velocities are positively correlated, and two alternatives in which the magnitudes of these velocities are negatively correlated and uncorrelated. The constraint that spatial and velocity distributions of a well-mixed tracer must be the same as those of the fluid, was used to develop the Langevin equation models and the reflection boundary conditions. The two Langevin equation models and three reflection methods were successfully tested using cases for which exact, analytic statistical properties of particle velocity and position are known, including well
Multiple M2 to D2 and their boundary conditions (and vice versa) via 3-Leibniz bialgebra
Aali-Javanangrouh, M
2016-01-01
Using the concept of 3-Leibniz bialgebra, we construct Bagger-Lambert (BL) model for $N=6$ multiple M2-brane on Manin triple of special 3-Leibniz bialgebra. Then, according to correspondence of these 3-Leibniz bialgebras and Lie bialgebras, we reduce this model to an N = (4,4) WZW model (D2-brane) equipped with one 2-cocycle in it's Lie bialgebra structure. In other case, the Basu-Harvey equation which is found by considering boundary conditions for BL model containing Leibniz bialgebra structure, reduces to Nahm equation and vice versa using this correspondence. In this way, M2-brane and it's boundary conditions can be constructed from D2-brane and the related boundary conditions with utility of the correspondence of 3-Leibniz bialgebra and Lie bialgebra, and vice versa.
Heyland, Mark; Trepczynski, Adam; Duda, Georg N; Zehn, Manfred; Schaser, Klaus-Dieter; Märdian, Sven
2015-12-01
Selection of boundary constraints may influence amount and distribution of loads. The purpose of this study is to analyze the potential of inertia relief and follower load to maintain the effects of musculoskeletal loads even under large deflections in patient specific finite element models of intact or fractured bone compared to empiric boundary constraints which have been shown to lead to physiological displacements and surface strains. The goal is to elucidate the use of boundary conditions in strain analyses of bones. Finite element models of the intact femur and a model of clinically relevant fracture stabilization by locking plate fixation were analyzed with normal walking loading conditions for different boundary conditions, specifically re-balanced loading, inertia relief and follower load. Peak principal cortex surface strains for different boundary conditions are consistent (maximum deviation 13.7%) except for inertia relief without force balancing (maximum deviation 108.4%). Influence of follower load on displacements increases with higher deflection in fracture model (from 3% to 7% for force balanced model). For load balanced models, follower load had only minor influence, though the effect increases strongly with higher deflection. Conventional constraints of fixed nodes in space should be carefully reconsidered because their type and position are challenging to justify and for their potential to introduce relevant non-physiological reaction forces. Inertia relief provides an alternative method which yields physiological strain results.
Kettle, Ryan A.; Anton, Steven R.
2016-04-01
Conventionally, structural health monitoring (SHM) has been primarily concerned with sensing, identifying, locating, and determining the severity of damage present in a structure that is in a static state. Instead, this study will investigate adapting the impedance SHM method to rapidly evaluate a mechanical system during a dynamic event. Also in contrast to conventional SHM, the objective is not to detect damage but instead to detect changes in the boundary conditions as they occur during a dynamic event. Rapid detection of changes in boundary conditions in highly dynamic environments has the potential to be used in a wide variety of applications, including the aerospace, civil, and mining industries. A key feature of this work will be the use of frequency ranges higher than what is typically used for SHM impedance measurements, in the range of several MHz. Using such high frequencies will allow for faster measurements of impedance, thus enabling the capture of variations in boundary conditions as they change during a dynamic event. An existing analytical model from the literature for electromechanical impedance based SHM will be utilized for this study.
Conformal field theory, boundary conditions and applications to string theory
Schweigert, C.; Fuchs, J.; Walcher, J.
2000-01-01
This is an introduction to two-dimensional conformal field theory and its applications in string theory. Modern concepts of conformal field theory are explained, and it is outlined how they are used in recent studies of D-branes in the strong curvature regime by means of CFT on surfaces with boundary.
Sensitivity of Pliocene climate simulations in MRI-CGCM2.3 to respective boundary conditions
Kamae, Youichi; Yoshida, Kohei; Ueda, Hiroaki
2016-08-01
Accumulations of global proxy data are essential steps for improving reliability of climate model simulations for the Pliocene warming climate. In the Pliocene Model Intercomparison Project phase 2 (PlioMIP2), a part project of the Paleoclimate Modelling Intercomparison Project phase 4, boundary forcing data have been updated from the PlioMIP phase 1 due to recent advances in understanding of oceanic, terrestrial and cryospheric aspects of the Pliocene palaeoenvironment. In this study, sensitivities of Pliocene climate simulations to the newly archived boundary conditions are evaluated by a set of simulations using an atmosphere-ocean coupled general circulation model, MRI-CGCM2.3. The simulated Pliocene climate is warmer than pre-industrial conditions for 2.4 °C in global mean, corresponding to 0.6 °C warmer than the PlioMIP1 simulation by the identical climate model. Revised orography, lakes, and shrunk ice sheets compared with the PlioMIP1 lead to local and remote influences including snow and sea ice albedo feedback, and poleward heat transport due to the atmosphere and ocean that result in additional warming over middle and high latitudes. The amplified higher-latitude warming is supported qualitatively by the proxy evidences, but is still underestimated quantitatively. Physical processes responsible for the global and regional climate changes should be further addressed in future studies under systematic intermodel and data-model comparison frameworks.
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2014-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
Green's function of a heat problem with a periodic boundary condition
Erzhanov, Nurzhan E.
2016-08-01
In the paper, a nonlocal initial-boundary value problem for a non-homogeneous one-dimensional heat equation is considered. The domain under consideration is a rectangle. The classical initial condition with respect to t is put. A nonlocal periodic boundary condition by a spatial variable x is put. It is well-known that a solution of problem can be constructed in the form of convergent orthonormal series according to eigenfunctions of a spectral problem for an operator of multiple differentiation with periodic boundary conditions. Therefore Green's function can be also written in the form of an infinite series with respect to trigonometric functions (Fourier series). For classical first and second initial-boundary value problems there also exists a second representation of the Green's function by Jacobi function. In this paper we find the representation of the Green's function of the nonlocal initial-boundary value problem with periodic boundary conditions in the form of series according to exponents.
Boundary conditions for the Einstein-Christoffel formulation of Einstein's equations
Directory of Open Access Journals (Sweden)
Douglas N. Arnold
2007-02-01
Full Text Available Specifying boundary conditions continues to be a challenge in numerical relativity in order to obtain a long time convergent numerical simulation of Einstein's equations in domains with artificial boundaries. In this paper, we address this problem for the Einstein-Christoffel (EC symmetric hyperbolic formulation of Einstein's equations linearized around flat spacetime. First, we prescribe simple boundary conditions that make the problem well posed and preserve the constraints. Next, we indicate boundary conditions for a system that extends the linearized EC system by including the momentum constraints and whose solution solves Einstein's equations in a bounded domain.
An Implicit Method for Solving Fuzzy Partial Differential Equation with Nonlocal Boundary Conditions
Directory of Open Access Journals (Sweden)
B. Orouji
2015-06-01
Full Text Available In this paper we introduce a numerical solution for the fuzzy heat equation with nonlocal boundary conditions. The main purpose is finding a difference scheme for the one dimensional heat equation with nonlocal boundary conditions. In these types of problems, an integral equation is appeared in the boundary conditions. We first express the necessary materials and definitions, and then consider our difference scheme and next the integrals in the boundary equations are approximated by the composite trapezoid rule. In the final part, we present an example for checking the numerical results. In this example we obtain the Hausdorff distance between exact solution and approximate solution.
Characterizing summertime chemical boundary conditions for airmasses entering the US West Coast
Directory of Open Access Journals (Sweden)
G. G. Pfister
2010-11-01
Full Text Available The objective of this study is to analyze the pollution inflow into California during summertime and how it impacts surface air quality through combined analysis of a suite of observations and global and regional models. The focus is on the transpacific pollution transport investigated by the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS mission in June 2008. Additional observations include satellite retrievals of carbon monoxide and ozone by the EOS Aura Tropospheric Emissions Spectrometer (TES, aircraft measurements from the MOZAIC program and ozonesondes. We compare chemical boundary conditions (BC from the MOZART-4 global model, which are commonly used in regional simulations, with measured concentrations to quantify both the accuracy of the model results and the variability in pollution inflow. Both observations and model reflect a large variability in pollution inflow on temporal and spatial scales, but the global model captures only about half of the observed free tropospheric variability. Model tracer contributions show a large contribution from Asian emissions in the inflow. Recirculation of local US pollution can impact chemical BC, emphasizing the importance of consistency between the global model simulations used for BC and the regional model in terms of emissions, chemistry and transport. Aircraft measurements in the free troposphere over California show similar concentration range, variability and source contributions as free tropospheric air masses over ocean, but caution has to be taken that local pollution aloft is not misinterpreted as inflow. A flight route specifically designed to sample boundary conditions during ARCTAS-CARB showed a prevalence of plumes transported from Asia and thus may not be fully representative for average inflow conditions. Sensitivity simulations with a regional model with altered BCs show that the temporal variability in the pollution inflow does
General Considerations of the Electrostatic Boundary Conditions in Oxide Heterostructures
Energy Technology Data Exchange (ETDEWEB)
Higuchi, Takuya
2011-08-19
When the size of materials is comparable to the characteristic length scale of their physical properties, novel functionalities can emerge. For semiconductors, this is exemplified by the 'superlattice' concept of Esaki and Tsu, where the width of the repeated stacking of different semiconductors is comparable to the 'size' of the electrons, resulting in novel confined states now routinely used in opto-electronics. For metals, a good example is magnetic/non-magnetic multilayer films that are thinner than the spin-scattering length, from which giant magnetoresistance (GMR) emerged, used in the read heads of hard disk drives. For transition metal oxides, a similar research program is currently underway, broadly motivated by the vast array of physical properties that they host. This long-standing notion has been recently invigorated by the development of atomic-scale growth and probe techniques, which enables the study of complex oxide heterostructures approaching the precision idealized in Fig. 1(a). Taking the subset of oxides derived from the perovskite crystal structure, the close lattice match across many transition metal oxides presents the opportunity, in principle, to develop a 'universal' heteroepitaxial materials system. Hand-in-hand with the continual improvements in materials control, an increasingly relevant challenge is to understand the consequences of the electrostatic boundary conditions which arise in these structures. The essence of this issue can be seen in Fig. 1(b), where the charge sequence of the sublayer 'stacks' for various representative perovskites is shown in the ionic limit, in the (001) direction. To truly 'universally' incorporate different properties using different materials components, be it magnetism, ferroelectricity, superconductivity, etc., it is necessary to access and join different charge sequences, labelled here in analogy to the designations 'group IV, III-V, II
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
This paper is concerned with the existence of extreme solutions to three-point boundary value problems with nonlinear boundary conditions for a class of first order impulsive differential equations. We obtain suficient conditions for the existence of extreme solutions by the upper and lower solutions method coupled with a monotone iterative technique.
Daalen, van Edwin F.G.; Broeze, Jan; Groesen, van Embrecht
1992-01-01
Radiation boundary conditions are derived for partial differential equations which describe wave phenomena. Assuming the evolution of the system to be governed by a Lagrangian variational principle, boundary conditions are obtained with Noether's theorem from the requirement that they transmit some
Question of consistent boundary conditions when simulating reversed field pinch dynamics. Revision 1
Energy Technology Data Exchange (ETDEWEB)
Mirin, A.A.
1986-03-01
The issue of proper boundary conditions when performing magnetohydrodynamic simulations of the reversed field pinch is examined. Of particular concern is the choice of constant current, which when combined with other commonly used boundary conditions, may, under careless implementation, lead to an inconsistency. It is shown that this may cause erroneous results. Cases both with and without Hall terms are presented.
The effect of external boundary conditions on condensation heat transfer in rotating heat pipes
Daniels, T. C.; Williams, R. J.
1979-01-01
Experimental evidence shows the importance of external boundary conditions on the overall performance of a rotating heat pipe condenser. Data are presented for the boundary conditions of constant heat flux and constant wall temperature for rotating heat pipes containing either pure vapor or a mixture of vapor and noncondensable gas as working fluid.
Eigenstates of a particle in an array of hexagons with periodic boundary condition
Directory of Open Access Journals (Sweden)
A Nemati
2013-10-01
Full Text Available In this paper the problem of a particle in an array of hexagons with periodic boundary condition is solved. Using the projection operators, we categorize eigenfunctions corresponding to each of the irreducible representations of the symmetry group . Based on these results, the Dirichlet and Neumann boundary conditions are discussed.
Vibrations of stretched damped beams under non-ideal boundary conditions
Indian Academy of Sciences (India)
Hakan Boyaci
2006-02-01
A simply supported damped Euler–Bernoulli beam with immovable end conditions are considered. The concept of non-ideal boundary conditions is applied to the beam problem. In accordance, the boundaries are assumed to allow small deﬂections and moments. Approximate analytical solution of the problem is found using the method of multiple scales, a perturbation technique.
Institute of Scientific and Technical Information of China (English)
马西奎; 韩社教
2002-01-01
Based on the multipole expansion theory of the potential, a satisfactory interpretation is put forward of the exact nature of the approximations of asymptotic boundary condition (called the ABC) techniques for the numerical solutions of open-boundary static electromagnetic-field problems, and a definite physical meaning is bestowed on ABC, which provide a powerful theoretical background for laying down the operating rules and the key to the derivation of asymptotic boundary conditions. This paper is also intended to reveal the shortcomings of the conventional higher-order ABC, and at the same time to give the concept of a new type of higher-order ABC, and to present a somewhat different formulation of the new nth-order ABC. In order to test its feasibility, several simple problems of electrostatic potentials are analyzed. The results are found to be much better than those of conventional higher-order ABCs.
Controlling near shore nonlinear surging waves through bottom boundary conditions
Mukherjee, Abhik; Kundu, Anjan
2016-01-01
Instead of taking the usual passive view for warning of near shore surging waves including extreme waves like tsunamis, we aim to study the possibility of intervening and controlling nonlinear surface waves through the feedback boundary effect at the bottom. It has been shown through analytic result that the controlled leakage at the bottom may regulate the surface solitary wave amplitude opposing the hazardous variable depth effect. The theoretical results are applied to a real coastal bathymetry in India.
Conformal Boundary Conditions and Three-Dimensional Topological Field Theory
Felder, Giovanni; Fröhlich, Jürg; Fuchs, Jürgen; Schweigert, Christoph
2000-02-01
We present a general construction of all correlation functions of a two-dimensional rational conformal field theory, for an arbitrary number of bulk and boundary fields and arbitrary topologies. The correlators are expressed in terms of Wilson graphs in a certain three-manifold, the connecting manifold. The amplitudes constructed this way can be shown to be modular invariant and to obey the correct factorization rules.
Conformal boundary conditions and three-dimensional topological field theory
Felder, G; Fuchs, J; Schweigert, C
2000-01-01
We present a general construction of all correlation functions of a two-dimensional rational conformal field theory, for an arbitrary number of bulk and boundary fields and arbitrary topologies. The correlators are expressed in terms of Wilson graphs in a certain three-manifold, the connecting manifold. The amplitudes constructed this way can be shown to be modular invariant and to obey the correct factorization rules.
Modes and exceptional points in waveguides with impedance boundary conditions
Midya, Bikashkali
2016-01-01
A planar waveguide with impedance boundary, composed of non-perfect metallic plates, and with passive or active dielectric filling is considered. We show the possibility of selective mode guiding and amplification when homogeneous pump is added to the dielectric, and analyze differences in TE and TM mode propagation. Such a non-conservative system is also shown to feature exceptional points, for specific and experimentally tunable parameters, which are described for a particular case of transparent dielectric.
On the Boundary Condition Between Two Multiplying Media
Friedman, F. L.; Wigner, E. P.
1944-04-19
The transition region between two parts of a pile which have different compositions is investigated. In the case where the moderator is the same in both parts of the pile, it is found that the diffusion constant times thermal neutron density plus diffusion constant times fast neutron density satisfies the usual pile equations everywhere, right to the boundary. More complicated formulae apply in a more general case.
On the numerical solution of the diffusion equation with a nonlocal boundary condition
Directory of Open Access Journals (Sweden)
Dehghan Mehdi
2003-01-01
Full Text Available Parabolic partial differential equations with nonlocal boundary specifications feature in the mathematical modeling of many phenomena. In this paper, numerical schemes are developed for obtaining approximate solutions to the initial boundary value problem for one-dimensional diffusion equation with a nonlocal constraint in place of one of the standard boundary conditions. The method of lines (MOL semidiscretization approach is used to transform the model partial differential equation into a system of first-order linear ordinary differential equations (ODEs. The partial derivative with respect to the space variable is approximated by a second-order finite-difference approximation. The solution of the resulting system of first-order ODEs satisfies a recurrence relation which involves a matrix exponential function. Numerical techniques are developed by approximating the exponential matrix function in this recurrence relation. We use a partial fraction expansion to compute the matrix exponential function via Pade approximations, which is particularly useful in parallel processing. The algorithm is tested on a model problem from the literature.
Masselon, Chloé; Colin, Annie; Olmsted, Peter D
2010-02-01
In this paper we report on the influence of different geometric and boundary constraints on nonlocal (spatially inhomogeneous) effects in wormlike micellar systems. In a previous paper, nonlocal effects were observable by measuring the local rheological flow curves of micelles flowing in a microchannel under different pressure drops, which appeared to differ from the flow curve measured using conventional rheometry. Here we show that both the confinement and the boundary conditions can influence those nonlocal effects. The role of the nature of the surface is analyzed in detail using a simple scalar model that incorporates inhomogeneities, which captures the flow behavior in both wide and confined geometries. This leads to an estimate for the nonlocal "diffusion" coefficient (i.e., the shear curvature viscosity) which corresponds to a characteristic length from 1 to 10 microm.
Multi-component Cahn-Hilliard system with different boundary conditions in complex domains
Li, Yibao; Choi, Jung-Il; Kim, Junseok
2016-10-01
We propose an efficient phase-field model for multi-component Cahn-Hilliard (CH) systems in complex domains. The original multi-component Cahn-Hilliard system with a fixed phase is modified in order to make it suitable for complex domains in the Cartesian grid, along with contact angle or no mass flow boundary conditions on the complex boundaries. The proposed method uses a practically unconditionally gradient stable nonlinear splitting numerical scheme. Further, a nonlinear full approximation storage multigrid algorithm is used for solving semi-implicit formulations of the multi-component CH system, incorporated with an adaptive mesh refinement technique. The robustness of the proposed method is validated through various numerical simulations including multi-phase separations via spinodal decomposition, equilibrium contact angle problems, and multi-phase flows with a background velocity field in complex domains.
Euler–Lagrange simulation of gas–solid pipe flow with smooth and rough wall boundary conditions
DEFF Research Database (Denmark)
Mandø, Matthias; Yin, Chungen
2012-01-01
for the wall boundary condition ranging for smooth surfaces to very rough surfaces. This model accounts for the entire range of possible surface roughness found in pipes and industrial pneumatic equipment from smooth plastic pipes over machined steel pipes to cast iron surfaces. The model is based...
THE ARTIFICIAL BOUNDARY CONDITION FOR EXTERIOR OSEEN EQUATION IN 2-D SPACE
Institute of Scientific and Technical Information of China (English)
Chun-xiong Zheng; Hou-de Han
2002-01-01
A finite element method for the solution of Oseen equation in exterior domain is proposed. In this method, a circular artificial boundary is introduced to make the computational domain finite. Then, the exact relation between the normal stress and the prescribed velocity field on the artificial boundary can be obtained analytically. This relation can serve as an boundary condition for the boundary value problem defined on the finite domain bounded by the artificial boundary. Numerical experiment is presented to demonstrate the performance of the method.
Mogilevskii, Vadim
2011-01-01
We investigate in the paper general (not necessarily definite) canonical systems of differential equation in the framework of extension theory of symmetric linear relations. For this aim we first introduce the new notion of a boundary relation $\\G:\\gH^2\\to\\HH$ for $A^*$, where $\\gH$ is a Hilbert space, $A$ is a symmetric linear relation in $\\gH, \\cH_0$ is a boundary Hilbert space and $\\cH_1$ is a subspace in $\\cH_0$. Unlike known concept of a boundary relation (boundary triplet) for $A^*$ our definition of $\\G$ is applicable to relations $A$ with possibly unequal deficiency indices $n_\\pm(A)$. Next we develop the known results on minimal and maximal relations induced by the general canonical system $ J y'(t)-B(t)y(t)=\\D (t)f(t)$ on an interval $\\cI=(a,b),\\; -\\infty\\leq aboundary relation for $\\Tma$ we describe in terms of boundary conditions proper extensions of $\\Tmi$ in the case of the regular endpoint $a$ and arbitrary (possibly unequal)...
Entropy stable wall boundary conditions for the compressible Navier-Stokes equations
Parsani, Matteo; Nielsen, Eric J
2014-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary...
Multiple integral representation for the trigonometric SOS model with domain wall boundaries
Galleas, W
2011-01-01
Using the dynamical Yang-Baxter algebra we derive a functional equation for the partition function of the trigonometric SOS model with domain wall boundary conditions. The solution of the equation is given in terms of a multiple contour integral.
Algebraic Bethe Ansatz for the Osp(1|2) Model with Reflecting Boundaries
Institute of Scientific and Technical Information of China (English)
YUE Rui-Hong; XIONG Chuan-Hua
2001-01-01
In the framework of graded quantum inverse scattering method, we obtain the eigenvalues and the eigenvectors of the Osp(l|2) model with reflecting boundary conditions in FBF background. The corresponding Bathe ansatz equations are obtained.
Rahimi, Masoud; Movahedirad, Salman; Shahhosseini, Shahrokh
2017-03-01
Recently, great attention has been paid to predict the acoustic streaming field distribution inside the sonoreactors, induced by high-power ultrasonic wave generator. The focus of this paper is to model an ultrasonic vibrating horn and study the induced flow pattern with a newly developed moving boundary condition. The numerical simulation utilizes the modified cavitation model along with the "mixture" model for turbulent flow (RNG, k-ε), and a moving boundary condition with an oscillating parabolic-logarithmic profile, applied to the horn tip. This moving-boundary provides the situation in which the center of the horn tip vibrates stronger than that of the peripheral regions. The velocity field obtained by computational fluid dynamic was in a reasonably good agreement with the PIV results. The moving boundary model is more accurate since it better approximates the movement of the horn tip in the ultrasonic assisted process. From an optimizing point of view, the model with the new moving boundary is more suitable than the conventional models for design purposes because the displacement magnitude of the horn tip is the only fitting parameter. After developing and validating the numerical model, the model was utilized to predict various quantities such as cavitation zone, pressure field and stream function that are not experimentally feasible to measure.
Directory of Open Access Journals (Sweden)
Ibukun Sarah Oyelakin
2016-06-01
Full Text Available In this paper we report on combined Dufour and Soret effects on the heat and mass transfer in a Casson nanofluid flow over an unsteady stretching sheet with thermal radiation and heat generation. The effects of partial slip on the velocity at the boundary, convective thermal boundary condition, Brownian and thermophoresis diffusion coefficients on the concentration boundary condition are investigated. The model equations are solved using the spectral relaxation method. The results indicate that the fluid flow, temperature and concentration profiles are significantly influenced by the fluid unsteadiness, the Casson parameter, magnetic parameter and the velocity slip. The effect of increasing the Casson parameter is to suppress the velocity and temperature growth. An increase in the Dufour parameter reduces the flow temperature, while an increase in the value of the Soret parameter causes increase in the concentration of the fluid. Again, increasing the velocity slip parameter reduces the velocity profile whereas increasing the heat generation parameter increases the temperature profile. A validation of the work is presented by comparing the current results with existing literature.
Energy Technology Data Exchange (ETDEWEB)
Jang, Jin Seok; Yoo, Wan Suk [Pusan National University, Busan (Korea, Republic of); Kim, Kun Woo; Lee, Jae Wook [Korea Institute of Industrial Technology, Daegu (Korea, Republic of)
2015-07-15
The unwinding behavior of thin cable has been studied in textile engineering. Recently, J.W. Lee derived transient equations of motion for an unwinding cable. Thus, this paper discusses numerical simulations of unwinding behavior as compared to experiments. The cable unwinding system is modeled using cylindrical coordinates, and Hamilton's principle in an open system is used to represent the mass change of the cable in the control volume. In a transient equation of unwinding motion, the transient-state response is affected by two point boundary conditions, such as the guide-eyelet point and the lift-off point. In previous research, only the unwinding velocity at the guide-eyelet point defined the boundary. Here, a boundary condition at the lift-off point is also considered in the unwinding velocity along with the unwinding length of cable in the control volume. The results of this study show that transient equations of motion should be derived by considering angular acceleration because of time-varying angular velocity.
Boundary Relations, Unitary Colligations, and Functional Models
Behrndt, Jussi; Hassi, Seppo; de Snoo, Henk
2009-01-01
Recently a new notion, the so-called boundary relation, has been introduced involving an analytic object, the so-called Weyl family. Weyl families and boundary relations establish a link between the class of Nevanlinna families and unitary relations acting from one Krein in space, a basic (state) sp
DPL Model Analysis of Non-Fourier Heat Conduction Restricted by Continuous Boundary Interface
Institute of Scientific and Technical Information of China (English)
Jiang Fangming; Liu Dengying
2001-01-01
Dual-phase lag (DPL) model is used to describe the non-Fourier heat conduction in a finite medium where the boundary at x=-0 is heated by a rectangular pulsed energy source and the other boundary is tightly contacted with another medium and satisfies the continuous boundary condition. Numerical solution of this kind of. non-Fourier heat conduction is presented in this paper. The results are compared with those predicted by the hyperbolic heat conduction (HHC) equation.
Sircar, A.; Paul, C.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.
2016-11-01
The lack of accurate submodels for in-cylinder radiation and heat transfer has been identified as a key shortcoming in developing truly predictive CFD models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Recent measurements of wall layers in engines show discrepancies of up to 100% with respect to standard CFD boundary-layer models. And recent analysis of in-cylinder radiation based on recent spectral property databases and high-fidelity radiative transfer equation (RTE) solvers has shown that at operating conditions typical of heavy-duty CI engines, radiative emission can be as high as 40% of the wall heat losses, that molecular gas radiation can be more important than soot radiation, and that a significant fraction of the emitted radiation can be reabsorbed before reaching the walls. That is, radiation changes the in-cylinder temperature distribution, which in turn affects combustion and emissions. The goal of this research is to develop models that explicitly account for the potentially strong coupling between radiative and turbulent boundary layer heat transfer. For example, for optically thick conditions, a simple diffusion model might be formulated in terms of an absorption-coefficient-dependent turbulent Prandtl number. NSF, DOE.
Compatibility of conditionally specified models.
Chen, Hua Yun
2010-04-01
A conditionally specified joint model is convenient to use in fields such as spatial data modeling, Gibbs sampling, and missing data imputation. One potential problem with such an approach is that the conditionally specified models may be incompatible, which can lead to serious problems in applications. We propose an odds ratio representation of a joint density to study the issue and derive conditions under which conditionally specified distributions are compatible and yield a joint distribution. Our conditions are the simplest to verify compared with those proposed in the literature. The proposal also explicitly construct joint densities that are fully compatible with the conditionally specified densities when the conditional densities are compatible, and partially compatible with the conditional densities when they are incompatible. The construction result is then applied to checking the compatibility of the conditionally specified models. Ways to modify the conditionally specified models based on the construction of the joint models are also discussed when the conditionally specified models are incompatible.
A study on boundary separation in an idealized ocean model
Düben, Peter D
2015-01-01
In numerical ocean models coast lines change the direction from one grid cell to its neighbor and the value for viscosity is set to be as small as possible. Therefore, model simulations are not converged with resolution and boundary separation points differ in essential properties from flow separation in continuous flow fields. In this paper, we investigate the quality of the representation of boundary separation points in global ocean models. To this end, we apply well established criteria for boundary separation within an idealized ocean model setup. We investigate an eddy-resolving as well as a steady test case with idealized and unstructured coast lines in a shallow water model that is based on a finite element discretization method. The results show that well established criteria for separation fail to detect boundary separation points due to an insufficient representation of ocean flows along free-slip boundaries. Along no-slip boundaries, most separation criteria provide adequate results. However, a ve...
Boundary Effects for One-Dimensional Bariev Model with Hard-Core Repulsion
Institute of Scientific and Technical Information of China (English)
LIXiao-Jun; YUERui-Hong
2004-01-01
For the Bariev model for correlated hopping in one dimension under open boundary conditions, the Bethe ansatz equations are analyzed for both a repulsive and an attractive interaction in several limiting cases, i.e., the ground state, the weak and strong coupling limits. The contributions of the boundary fields to both the magnetic susceptibility and the specific heat are obtained.
Boundary Effects for One-Dimensional Bariev Model with Hard-Core Repulsion
Institute of Scientific and Technical Information of China (English)
LI Xiao-Jun; YUE Rui-Hong
2004-01-01
For the Bariey model for correlated hopping in one dimension under open boundary conditions, the Bethe ansatz equations are analyzed for both a repulsive and an attractive interaction in several limiting cases, i.e., the ground state, the weak and strong coupling limits. The contributions of the boundary fields to both the magnetic susceptibility and the specific heat are obtained.
Analysis of a Free Boundary Problem Modeling Tumor Growth
Institute of Scientific and Technical Information of China (English)
Shang Bin CUI
2005-01-01
In this paper, we study a free boundary problem arising from the modeling of tumor growth. The problem comprises two unknown functions: R = R(t), the radius of the tumor, and u = u(r, t), the concentration of nutrient in the tumor. The function u satisfies a nonlinear reaction diffusion equation in the region 0 ＜ r ＜ R(t), t ＞ 0, and the function R satisfies a nonlinear integrodifferential equation containing u. Under some general conditions, we establish global existence of transient solutions, unique existence of a stationary solution, and convergence of transient solutions toward the stationary solution as t →∞.
Towards Perfectly Absorbing Boundary Conditions for Euler Equations
Hayder, M. Ehtesham; Hu, Fang Q.; Hussaini, M. Yousuff
1997-01-01
In this paper, we examine the effectiveness of absorbing layers as non-reflecting computational boundaries for the Euler equations. The absorbing-layer equations are simply obtained by splitting the governing equations in the coordinate directions and introducing absorption coefficients in each split equation. This methodology is similar to that used by Berenger for the numerical solutions of Maxwell's equations. Specifically, we apply this methodology to three physical problems shock-vortex interactions, a plane free shear flow and an axisymmetric jet- with emphasis on acoustic wave propagation. Our numerical results indicate that the use of absorbing layers effectively minimizes numerical reflection in all three problems considered.
Energy Technology Data Exchange (ETDEWEB)
Lopez, J. Gonzalez [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Renner, D.B. [Jefferson Lab, Newport News, VA (United States); Shindler, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2012-08-23
The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a) effects requires the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in a quenched setup for several values of the renormalized gauge coupling, from perturbative to nonperturbative regimes, and for a range of lattice spacings. We also check that the correct boundary conditions and symmetries are restored in the continuum limit. (orig.)
Local absorbing boundary conditions for nonlinear wave equation on unbounded domain.
Li, Hongwei; Wu, Xiaonan; Zhang, Jiwei
2011-09-01
The numerical solution of the nonlinear wave equation on unbounded spatial domain is considered. The artificial boundary method is introduced to reduce the nonlinear problem on unbounded spatial domain to an initial boundary value problem on a bounded domain. Using the unified approach, which is based on the operator splitting method, we construct the efficient nonlinear local absorbing boundary conditions for the nonlinear wave equation, and give the stability analysis of the resulting boundary conditions. Finally, several numerical examples are given to demonstrate the effectiveness of our method.
DEFF Research Database (Denmark)
Yoon, Gil Ho; Park, Y.K.; Kim, Y.Y.
2007-01-01
A new topology optimization scheme, called the element stacking method, is developed to better handle design optimization involving material-dependent boundary conditions and selection of elements of different types. If these problems are solved by existing standard approaches, complicated finite...... element models or topology optimization reformulation may be necessary. The key idea of the proposed method is to stack multiple elements on the same discretization pixel and select a single or no element. In this method, stacked elements on the same pixel have the same coordinates but may have...
A new conformal absorbing boundary condition for finite element meshes and parallelization of FEMATS
Chatterjee, A.; Volakis, J. L.; Nguyen, J.; Nurnberger, M.; Ross, D.
1993-01-01
Some of the progress toward the development and parallelization of an improved version of the finite element code FEMATS is described. This is a finite element code for computing the scattering by arbitrarily shaped three dimensional surfaces composite scatterers. The following tasks were worked on during the report period: (1) new absorbing boundary conditions (ABC's) for truncating the finite element mesh; (2) mixed mesh termination schemes; (3) hierarchical elements and multigridding; (4) parallelization; and (5) various modeling enhancements (antenna feeds, anisotropy, and higher order GIBC).
Institute of Scientific and Technical Information of China (English)
XIE Zhi-nan; LIAO Zhen-peng
2008-01-01
In this paper the explanation of the mechanism of high-frequency oscillation instability resulted from absorbing boundary conditions is further improved. And we analytically prove the proposition that for one dimensional dis- crete model of elastic wave motion, the module of reflection factor will be greater than 1 in high frequency band when artificial wave velocity is greater than 1.5 times the ratio of discrete space step to discrete time step. Based on the proof, the frequency band in which instability occurs is discussed in detail, showing such high-frequency waves are meaningless for the numerical simulation of wave motion.
Directory of Open Access Journals (Sweden)
Nicolae Tarfulea
2009-10-01
Full Text Available We investigate the existence of weak solutions to a class of quasilinear elliptic equations with nonlinear Neumann boundary conditions in exterior domains. Problems of this kind arise in various areas of science and technology. An important model case related to the initial data problem in general relativity is presented. As an application of our main result, we deduce the existence of the conformal factor for the Hamiltonian constraint in general relativity in the presence of multiple black holes. We also give a proof for uniqueness in this case.
Peristaltic flow of Johnson-Segalman fluid in asymmetric channel with convective boundary conditions
Institute of Scientific and Technical Information of China (English)
H YASMIN; T HAYAT; A ALSAEDI; HH ALSULAMI
2014-01-01
This work is concerned with the peristaltic transport of the Johnson-Segalman fluid in an asymmetric channel with convective boundary conditions. The mathematical modeling is based upon the conservation laws of mass, linear momentum, and energy. The resulting equations are solved after long wavelength and low Reynolds number are used. The results for the axial pressure gradient, velocity, and temperature profiles are obtained for small Weissenberg number. The expressions of the pressure gra-dient, velocity, and temperature are analyzed for various embedded parameters. Pumping and trapping phenomena are also explored.
Stability and Bifurcation in a Delayed Reaction-Diffusion Equation with Dirichlet Boundary Condition
Guo, Shangjiang; Ma, Li
2016-04-01
In this paper, we study the dynamics of a diffusive equation with time delay subject to Dirichlet boundary condition in a bounded domain. The existence of spatially nonhomogeneous steady-state solution is investigated by applying Lyapunov-Schmidt reduction. The existence of Hopf bifurcation at the spatially nonhomogeneous steady-state solution is derived by analyzing the distribution of the eigenvalues. The direction of Hopf bifurcation and stability of the bifurcating periodic solution are also investigated by means of normal form theory and center manifold reduction. Moreover, we illustrate our general results by applications to the Nicholson's blowflies models with one- dimensional spatial domain.
The D(D3)-anyon chain: integrable boundary conditions and excitation spectra
Finch, Peter E.; Frahm, Holger
2013-05-01
Chains of interacting non-Abelian anyons with local interactions invariant under the action of the Drinfeld double of the dihedral group D3 are constructed. Formulated as a spin chain the Hamiltonians are generated from commuting transfer matrices of an integrable vertex model for periodic and braided as well as open boundaries. A different anyonic model with the same local Hamiltonian is obtained within the fusion path formulation. This model is shown to be related to an integrable fusion interaction round the face model. Bulk and surface properties of the anyon chain are computed from the Bethe equations for the spin chain. The low-energy effective theories and operator content of the models (in both the spin chain and fusion path formulation) are identified from analytical and numerical studies of the finite-size spectra. For all boundary conditions considered the continuum theory is found to be a product of two conformal field theories. Depending on the coupling constants the factors can be a Z4 parafermion or a {M}_{(5,6)} minimal model.
Implementation of higher-order absorbing boundary conditions for the Einstein equations
Rinne, Oliver; Scheel, Mark A; Pfeiffer, Harald P
2008-01-01
We present an implementation of absorbing boundary conditions for the Einstein equations based on the recent work of Buchman and Sarbach. In this paper, we assume that spacetime may be linearized about Minkowski space close to the outer boundary, which is taken to be a coordinate sphere. We reformulate the boundary conditions as conditions on the gauge-invariant Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated by rewriting the boundary conditions as a system of ODEs for a set of auxiliary variables intrinsic to the boundary. From these we construct boundary data for a set of well-posed constraint-preserving boundary conditions for the Einstein equations in a first-order generalized harmonic formulation. This construction has direct applications to outer boundary conditions in simulations of isolated systems (e.g., binary black holes) as well as to the problem of Cauchy-perturbative matching. As a test problem for our numerical implementation, we consider linearized multipolar grav...
Boundary conditions for Maxwell fields in Kerr-AdS spacetimes
Wang, Mengjie
2016-05-01
Perturbative methods are useful to study the interaction between black holes and test fields. The equation for a perturbation itself, however, is not complete to study such a composed system if we do not assign physically relevant boundary conditions. Recently we have proposed a new type of boundary conditions for Maxwell fields in Kerr-anti-de Sitter (Kerr-AdS) spacetimes, from the viewpoint that the AdS boundary may be regarded as a perfectly reflecting mirror, in the sense that energy flux vanishes asymptotically. In this paper, we prove explicitly that a vanishing energy flux leads to a vanishing angular momentum flux. Thus, these boundary conditions may be dubbed as vanishing flux boundary conditions.
Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I
2012-01-01
Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.
Directory of Open Access Journals (Sweden)
Mohammed J Uddin
Full Text Available Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.
Second order bounce back boundary condition for the lattice Boltzmann fluid simulation
Energy Technology Data Exchange (ETDEWEB)
Kim, In Chan [Kunsan National Univ., Kunsan (Korea, Republic of)
2000-01-01
A new bounce back boundary method of the second order in error is proposed for the lattice Boltzmann fluid simulation. This new method can be used for the arbitrarily irregular lattice geometry of a non-slip boundary. The traditional bounce back boundary condition for the lattice Boltzmann simulation is of the first order in error. Since the lattice Boltzmann method is the second order scheme by itself, a boundary technique of the second order has been desired to replace the first order bounce back method. This study shows that, contrary to the common belief that the bounce back boundary condition is unilaterally of the first order, the second order bounce back boundary condition can be realized. This study also shows that there exists a generalized bounce back technique that can be characterized by a single interpolation parameter. The second order bounce back method can be obtained by proper selection of this parameter in accordance with the detailed lattice geometry of the boundary. For an illustrative purpose, the transient Couette and the plane Poiseuille flows are solved by the lattice Boltzmann simulation with various boundary conditions. The results show that the generalized bounce back method yields the second order behavior in the error of the solution, provided that the interpolation parameter is properly selected. Coupled with its intuitive nature and the ease of implementation, the bounce back method can be as good as any second order boundary method.
Energy Technology Data Exchange (ETDEWEB)
Sharapov, T F [Bashkir State Pedagogical University, Ufa (Russian Federation)
2014-10-31
We consider an elliptic operator in a multidimensional domain with frequently changing boundary conditions in the case when the homogenized operator contains the Dirichlet boundary condition. We prove the uniform resolvent convergence of the perturbed operator to the homogenized operator and obtain estimates for the rate of convergence. A complete asymptotic expansion is constructed for the resolvent when it acts on sufficiently smooth functions. Bibliography: 41 titles.
Advanced boundary condition method in quantum transport and its application in nanodevices
He, Yu
Modern semiconductor devices have reached critical dimensions in the sub-20nm range. During the last decade, quantum transport methods have become the standard approaches to model nanoscale devices. In quantum transport methods, Schrodinger equations are solved in the critical device channel with the contacts served as the open boundary conditions. Proper and efficient treatments of these boundary conditions are essential to provide accurate prediction of device performance. The open boundary conditions, which represent charge injection and extraction effects, are described by contact self-energies. All existing contact self-energy methods assume periodic and semiinfinite contacts, which are in stark contrast to realistic devices where the contacts often have complicated geometries or imperfections. On the other hand, confined structures such as quantum dots, nanowires, and ultra-thin bodies play an important role in nanodevice designs. In the tight binding models of these confined structures, the surfaces require appropriate boundary treatments to remove the dangling bonds. The existing boundary treatments fall into two categories. One is to explicitly include the passivation atoms in the device. This is limited to passivation with atoms and small molecules due to the increasing rank of the Hamiltonian. The other is to implicitly incorporate passivation by altering the orbital energies of the dangling bonds with a passivation potential. This method only works for certain crystal structures and symmetries, and fails to distinguish different passivation scenarios, such as hydrogen and oxygen passivation. In this work, an efficient self-energy method applicable for arbitrary contact structures is developed. This method is based on an iterative algorithm which considers the explicit contact segments. The method is demonstrated on a graphene nanoribbon structure with trumpet shape contacts and a Si0.5Ge0.5 nanowire transistor with alloy disorder contacts. Furthermore
Skewon-Axion Medium and Soft-and-Hard/DB Boundary Condition
Lindell, Ismo V
2012-01-01
The class of skewon-axion media can be defined in a simple and natural manner applying four-dimensional differential-form representation of electromagnetic fields and media. It has been recently shown that an interface of a uniaxial skewon-axion medium acts as a DB boundary requiring vanishing normal components of the D and B vectors. In the present paper a more general skewon-axion medium is considered. It is shown that a planar interface of such a medium acts as a boundary generalizing both soft-and-hard (SH) and DB boundary conditions to SHDB conditions. Reflection of a plane wave from a planar SHDB boundary is studied. It is shown that for the two eigenpolarizations the boundary can be replaced by equivalent PEC or PMC boundaries. The theory is tested with a numerical example.
Livshits, Gideon I
2014-01-01
Superpotentials offer a direct means of calculating conserved charges associated with the asymptotic symmetries of space-time. Yet superpotentials have been plagued with inconsistencies, resulting in nonphysical or incongruent values for the mass, angular momentum and energy loss due to radiation. The approach of Regge and Teitelboim, aimed at a clear Hamiltonian formulation with a boundary, and its extension to the Lagrangian formulation by Julia and Silva have resolved these issues, and have resulted in a consistent, well-defined and unique variational equation for the superpotential, thereby placing it on a firm footing. A hallmark solution of this equation is the KBL superpotential obtained from the first-order Lovelock Lagrangian. Nevertheless, here we show that these formulations are still insufficient for Lovelock Lagrangians of higher orders. We present a paradox, whereby the choice of fields affects the superpotential for equivalent on-shell dynamics. We offer two solutions to this paradox: either th...
Free boundary conditions and the AdS{sub 3}/CFT{sub 2} correspondence
Energy Technology Data Exchange (ETDEWEB)
Apolo, Luis; Porrati, Massimo [Center for Cosmology and Particle Physics, Department of Physics, New York University,4 Washington Place, New York, NY 10003 (United States)
2014-03-26
We show that recently proposed free boundary conditions for AdS{sub 3} are dual to two-dimensional quantum gravity in certain fixed gauges. In particular, we note that an appropriate identification of the generator of Virasoro transformations leads to a vanishing total central charge in agreement with the theory at the boundary. We argue that this identification is necessary to match the bulk and boundary generators of Virasoro transformations and for consistency with the constraint equations.
Free boundary conditions and the AdS$_3$/CFT$_2$ correspondence
Apolo, Luis
2014-01-01
We show that the recently proposed free boundary conditions for AdS$_3$ are dual to two-dimensional quantum gravity in certain fixed gauges. In particular, we note that an appropriate identification of the generator of Virasoro transformations leads to a vanishing total central charge in agreement with the theory at the boundary. We argue that this identification is necessary to match the bulk and boundary generators of Virasoro transformations and for consistency with the constraint equations.
Time-dependent density functional theory with twist-averaged boundary conditions
Schuetrumpf, B; Reinhard, P -G
2016-01-01
Time-dependent density functional theory is widely used to describe excitations of many-fermion systems. In its many applications, 3D coordinate-space representation is used, and infinite-domain calculations are limited to a finite volume represented by a box. For finite quantum systems (atoms, molecules, nuclei), the commonly used periodic or reflecting boundary conditions introduce spurious quantization of the continuum states and artificial reflections from boundary; hence, an incorrect treatment of evaporated particles. These artifacts can be practically cured by introducing absorbing boundary conditions (ABC) through an absorbing potential in a certain boundary region sufficiently far from the described system. But also the calculations of infinite matter (crystal electrons, quantum fluids, neutron star crust) suffer artifacts from a finite computational box. In this regime, twist- averaged boundary conditions (TABC) have been used successfully to diminish the finite-volume effects. In this work, we exte...
Araneda, Bernardo
2016-01-01
The static region outside the event horizon of an asymptotically anti de Sitter black hole has a conformal timelike boundary $\\mathscr{I}$, the evolution from initial data of linear fields satisfying hyperbolic equations is a well posed problem only after imposing boundary conditions at $\\mathscr{I}$. Boundary conditions preserving the action of the background isometry group on the solution space are limited to the homogeneous Dirichlet, Neumann or Robin types. We study, scalar and Maxwell fields and gravitational perturbations on asymptotically AdS black holes arising in Einstein and Lovelock theories. A decomposition in modes transforms the field equations into a set of wave equations with time independent potentials for auxiliary fields in the $x<0$ half of 1+1 Minkowski spacetime. We study systematically these equations for the case of potentials not diverging at the boundary and prove that there is always an instability if Robin boundary conditions with large $\\gamma$ (the quotient between the derivat...
Energy Technology Data Exchange (ETDEWEB)
Nitis, T.; Moussiopoulos, N. [Aristotle Univ. Thessaloniki (Greece). Lab. of Heat Transfer and Environmental Engineering; Klaic, Z.B. [Univ. of Zagreb (Croatia). Andrija Mohorovicic Geophysical Inst., Faculty of Science; Kitsiou, D. [Univ. of the Aegean, Mytilene (Greece). Dept. of Marine Sciences
2004-07-01
The atmospheric boundary layer height is a fundamental parameter characterising the structure of the lower troposphere. The determination of this parameter is important in applications that range from meteorological modelling and forecasting to dispersion problems of atmospheric pollutants. Since substances emitted into the atmospheric boundary layer are dispersed horizontally and vertically through the action of turbulence, they are well-mixed over this layer that is widely known as ''mixing layer''. There are two basic approaches for the practical estimation of this height; the first approach suggests profile measurements, either in-situ or by remote sounding (sodar, clear-air radar, lidar) and the second one, the use of models with only a few measured parameters as input. As far as the second approach is concerned, the majority of the models use relatively crude estimates of the roughness length that is often based on constant values for land cover. Consequently, the model results are not quite accurate. The present work aims firstly to evaluate the effect of alternative calculations of the roughness length on the non-hydrostatic mesoscale model (MEMO) performance, based on the use of satellite data, and secondly, to estimate the mixing layer height and analyze its variability in relation to underlying topography and land use. Rijeka, a region with complex topography and several islands in its surroundings, offers the opportunity to examine the above mentioned relationships. The non-hydrostatic mesoscale model MEMO was applied under summertime anticyclonic weather conditions during two multi-day periods characterised by stagnant meteorological conditions. The results proved MEMO capable of simulating mesoscale wind flow reasonably well, however, the use of AVHRR satellite data for calculating the roughness length based on the calculation of the NDVI parameter, optimised the model performance and resulted to a more accurate determination of