Analytical solution for the convectively-mixed atmospheric boundary layer
Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.
2013-01-01
Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation
Analytic Solution to Shell Boundary – Value Problems
Directory of Open Access Journals (Sweden)
Yu. I. Vinogradov
2015-01-01
Full Text Available Object of research is to find analytical solution to the shell boundary – value problems, i.e. to consider the solution for a class of problems concerning the mechanics of hoop closed shells strain.The objective of work is to create an analytical method to define a stress – strain state of shells under non-axisymmetric loading. Thus, a main goal is to derive the formulas – solutions of the linear ordinary differential equations with variable continuous coefficients.The partial derivative differential equations of mechanics of shells strain by Fourier's method of variables division are reduced to the system of the differential equations with ordinary derivatives. The paper presents the obtained formulas to define solutions of the uniform differential equations and received on their basis formulas to define a particular solution depending on a type of the right parts of the differential equations.The analytical algorithm of the solution of a boundary task uses an approach to transfer the boundary conditions to the randomly chosen point of an interval of changing independent variable through the solution of the canonical matrix ordinary differential equation with the subsequent solution of system of algebraic equations for compatibility of boundary conditions at this point. Efficiency of algorithm is based on the fact that the solution of the ordinary differential equations is defined as the values of Cauchy – Krylova functions, which meet initial arbitrary conditions.The results of researches presented in work are useful to experts in the field of calculus mathematics, dealing with solution of systems of linear ordinary differential equations and creation of effective analytical computing methods to solve shell boundary – value problems.
An analytical solution for the Marangoni mixed convection boundary layer flow
DEFF Research Database (Denmark)
Moghimi, M. A.; Kimiaeifar, Amin; Rahimpour, M.
2010-01-01
In this article, an analytical solution for a Marangoni mixed convection boundary layer flow is presented. A similarity transform reduces the Navier-Stokes equations to a set of nonlinear ordinary differential equations, which are solved analytically by means of the homotopy analysis method (HAM...... the convergence of the solution. The numerical solution of the similarity equations is developed and the results are in good agreement with the analytical results based on the HAM....
The analytical solution for drug delivery system with nonhomogeneous moving boundary condition
Saudi, Muhamad Hakimi; Mahali, Shalela Mohd; Harun, Fatimah Noor
2017-08-01
This paper discusses the development and the analytical solution of a mathematical model based on drug release system from a swelling delivery device. The mathematical model is represented by a one-dimensional advection-diffusion equation with nonhomogeneous moving boundary condition. The solution procedures consist of three major steps. Firstly, the application of steady state solution method, which is used to transform the nonhomogeneous moving boundary condition to homogeneous boundary condition. Secondly, the application of the Landau transformation technique that gives a significant impact in removing the advection term in the system of equation and transforming the moving boundary condition to a fixed boundary condition. Thirdly, the used of separation of variables method to find the analytical solution for the resulted initial boundary value problem. The results show that the swelling rate of delivery device and drug release rate is influenced by value of growth factor r.
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.
Ding, Xiao-Li; Nieto, Juan J.
2017-11-01
In this paper, we consider the analytical solutions of coupling fractional partial differential equations (FPDEs) with Dirichlet boundary conditions on a finite domain. Firstly, the method of successive approximations is used to obtain the analytical solutions of coupling multi-term time fractional ordinary differential equations. Then, the technique of spectral representation of the fractional Laplacian operator is used to convert the coupling FPDEs to the coupling multi-term time fractional ordinary differential equations. By applying the obtained analytical solutions to the resulting multi-term time fractional ordinary differential equations, the desired analytical solutions of the coupling FPDEs are given. Our results are applied to derive the analytical solutions of some special cases to demonstrate their applicability.
Bakker, Mark
2010-08-01
A new analytic solution approach is presented for the modeling of steady flow to pumping wells near rivers in strip aquifers; all boundaries of the river and strip aquifer may be curved. The river penetrates the aquifer only partially and has a leaky stream bed. The water level in the river may vary spatially. Flow in the aquifer below the river is semi-confined while flow in the aquifer adjacent to the river is confined or unconfined and may be subject to areal recharge. Analytic solutions are obtained through superposition of analytic elements and Fourier series. Boundary conditions are specified at collocation points along the boundaries. The number of collocation points is larger than the number of coefficients in the Fourier series and a solution is obtained in the least squares sense. The solution is analytic while boundary conditions are met approximately. Very accurate solutions are obtained when enough terms are used in the series. Several examples are presented for domains with straight and curved boundaries, including a well pumping near a meandering river with a varying water level. The area of the river bottom where water infiltrates into the aquifer is delineated and the fraction of river water in the well water is computed for several cases.
Wijnant, Ysbrand H.; Spiering, R.M.E.J.; Blijderveen, M.; de Boer, Andries
2006-01-01
Previous research has shown that viscothermal wave propagation in narrow gaps can efficiently be described by means of the low reduced frequency model. For simple geometries and boundary conditions, analytical solutions are available. For example, Beltman [4] gives the acoustic pressure in the gap
Directory of Open Access Journals (Sweden)
Omar Abu Arqub
2014-01-01
Full Text Available The purpose of this paper is to present a new kind of analytical method, the so-called residual power series, to predict and represent the multiplicity of solutions to nonlinear boundary value problems of fractional order. The present method is capable of calculating all branches of solutions simultaneously, even if these multiple solutions are very close and thus rather difficult to distinguish even by numerical techniques. To verify the computational efficiency of the designed proposed technique, two nonlinear models are performed, one of them arises in mixed convection flows and the other one arises in heat transfer, which both admit multiple solutions. The results reveal that the method is very effective, straightforward, and powerful for formulating these multiple solutions.
Analytic solutions to a family of boundary-value problems for Ginsburg-Landau type equations
Vassilev, V. M.; Dantchev, D. M.; Djondjorov, P. A.
2017-10-01
We consider a two-parameter family of nonlinear ordinary differential equations describing the behavior of a critical thermodynamic system, e.g., a binary liquid mixture, of film geometry within the framework of the Ginzburg-Landau theory by means of the order-parameter. We focus on the case in which the confining surfaces are strongly adsorbing but prefer different components of the mixture, i.e., the order-parameter tends to infinity at one of the boundaries and to minus infinity at the other one. We assume that the boundaries of the system are positioned at a finite distance from each other and give analytic solutions to the corresponding boundary-value problems in terms of Weierstrass and Jacobi elliptic functions.
Approximate analytical solution to the Boussinesq equation with a sloping water-land boundary
Tang, Yuehao; Jiang, Qinghui; Zhou, Chuangbing
2016-04-01
An approximate solution is presented to the 1-D Boussinesq equation (BEQ) characterizing transient groundwater flow in an unconfined aquifer subject to a constant water variation at the sloping water-land boundary. The flow equation is decomposed to a linearized BEQ and a head correction equation. The linearized BEQ is solved using a Laplace transform. By means of the frozen-coefficient technique and Gauss function method, the approximate solution for the head correction equation can be obtained, which is further simplified to a closed-form expression under the condition of local energy equilibrium. The solutions of the linearized and head correction equations are discussed from physical concepts. Especially for the head correction equation, the well posedness of the approximate solution obtained by the frozen-coefficient method is verified to demonstrate its boundedness, which can be further embodied as the upper and lower error bounds to the exact solution of the head correction by statistical analysis. The advantage of this approximate solution is in its simplicity while preserving the inherent nonlinearity of the physical phenomenon. Comparisons between the analytical and numerical solutions of the BEQ validate that the approximation method can achieve desirable precisions, even in the cases with strong nonlinearity. The proposed approximate solution is applied to various hydrological problems, in which the algebraic expressions that quantify the water flow processes are derived from its basic solutions. The results are useful for the quantification of stream-aquifer exchange flow rates, aquifer response due to the sudden reservoir release, bank storage and depletion, and front position and propagation speed.
Most analytical solutions available for the equations governing the advective-dispersive transport of multiple solutes undergoing sequential first-order decay reactions have been developed for infinite or semi-infinite spatial domains and steady-state boundary conditions. In this work we present an ...
The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...
International Nuclear Information System (INIS)
Goncalez, Tifani T.; Segatto, Cynthia F.; Vilhena, Marco Tullio
2011-01-01
In this work, we report an analytical solution for the set of S N equations for the angular flux, in a rectangle, using the double Laplace transform technique. Its main idea comprehends the steps: application of the Laplace transform in one space variable, solution of the resulting equation by the LTS N method and reconstruction of the double Laplace transformed angular flux using the inversion theorem of the Laplace transform. We must emphasize that we perform the Laplace inversion by the LTS N method in the x direction, meanwhile we evaluate the inversion in the y direction performing the calculation of the corresponding line integral solution by the Stefest method. We have also to figure out that the application of Laplace transform to this type of boundary value problem introduces additional unknown functions associated to the partial derivatives of the angular flux at boundary. Based on the good results attained by the nodal LTS N method, we assume that the angular flux at boundary is also approximated by an exponential function. By analytical we mean that no approximation is done along the solution derivation except for the exponential hypothesis for the exiting angular flux at boundary. For sake of completeness, we report numerical comparisons of the obtained results against the ones of the literature. (author)
Analytical solutions of couple stress fluid flows with slip boundary conditions
Directory of Open Access Journals (Sweden)
Devakar M.
2014-09-01
Full Text Available In the present article, the exact solutions for fundamental flows namely Couette, Poiseuille and generalized Couette flows of an incompressible couple stress fluid between parallel plates are obtained using slip boundary conditions. The effect of various parameters on velocity for each problem is discussed. It is found that, for each of the problems, the solution in the limiting case as couple stresses approaches to zero is similar to that of classical viscous Newtonian fluid. The results indicate that, the presence of couple stresses decreases the velocity of the fluid.
Analytic solution of boundary-value problems for nonstationary model kinetic equations
International Nuclear Information System (INIS)
Latyshev, A.V.; Yushkanov, A.A.
1993-01-01
A theory for constructing the solutions of boundary-value problems for non-stationary model kinetic equations is constructed. This theory was incorrectly presented equation, separation of the variables is used, this leading to a characteristic equation. Eigenfunctions are found in the space of generalized functions, and the eigenvalue spectrum is investigated. An existence and uniqueness theorem for the expansion of the Laplace transform of the solution with respect to the eigenfunctions is proved. The proof is constructive and gives explicit expressions for the expansion coefficients. An application to the Rayleigh problem is obtained, and the corresponding result of Cercignani is corrected
Analytical solutions for tomato peeling with combined heat flux and convective boundary conditions
Cuccurullo, G.; Giordano, L.; Metallo, A.
2017-11-01
Peeling of tomatoes by radiative heating is a valid alternative to steam or lye, which are expensive and pollutant methods. Suitable energy densities are required in order to realize short time operations, thus involving only a thin layer under the tomato surface. This paper aims to predict the temperature field in rotating tomatoes exposed to the source irradiation. Therefore, a 1D unsteady analytical model is presented, which involves a semi-infinite slab subjected to time dependent heating while convective heat transfer takes place on the exposed surface. In order to account for the tomato rotation, the heat source is described as the positive half-wave of a sinusoidal function. The problem being linear, the solution is derived following the Laplace Transform Method. In addition, an easy-to-handle solution for the problem at hand is presented, which assumes a differentiable function for approximating the source while neglecting convective cooling, the latter contribution turning out to be negligible for the context at hand. A satisfying agreement between the two analytical solutions is found, therefore, an easy procedure for a proper design of the dry heating system can be set up avoiding the use of numerical simulations.
Analytical solution for beam with time-dependent boundary conditions versus response spectrum
International Nuclear Information System (INIS)
Gou, P.F.; Panahi, K.K.
2001-01-01
This paper studies the responses of a uniform simple beam for which the supports are subjected to time-dependent conditions. Analytical solution in terms of series was presented for two cases: (1) Two supports of a simple beam are subjected to a harmonic motion, and (2) One of the two supports is stationary while the other is subjected to a harmonic motion. The results of the analytical solution were investigated and compared with the results of conventional response spectrum method using the beam finite element model. One of the applications of the results presented in this paper can be used to assess the adequacy and accuracy of the engineering approaches such as response spectra methods. It has been found that, when the excitation frequency equals the fundamental frequency of the beam, the results from response spectrum method are in good agreement with the exact calculation. The effects of initial conditions on the responses are also examined. It seems that the non-zero initial velocity has pronounced effects on the displacement time histories but it has no effect on the maximum accelerations. (author)
Directory of Open Access Journals (Sweden)
G. H. Gudmundsson
2008-07-01
Full Text Available New analytical solutions describing the effects of small-amplitude perturbations in boundary data on flow in the shallow-ice-stream approximation are presented. These solutions are valid for a non-linear Weertman-type sliding law and for Newtonian ice rheology. Comparison is made with corresponding solutions of the shallow-ice-sheet approximation, and with solutions of the full Stokes equations. The shallow-ice-stream approximation is commonly used to describe large-scale ice stream flow over a weak bed, while the shallow-ice-sheet approximation forms the basis of most current large-scale ice sheet models. It is found that the shallow-ice-stream approximation overestimates the effects of bed topography perturbations on surface profile for wavelengths less than about 5 to 10 ice thicknesses, the exact number depending on values of surface slope and slip ratio. For high slip ratios, the shallow-ice-stream approximation gives a very simple description of the relationship between bed and surface topography, with the corresponding transfer amplitudes being close to unity for any given wavelength. The shallow-ice-stream estimates for the timescales that govern the transient response of ice streams to external perturbations are considerably more accurate than those based on the shallow-ice-sheet approximation. In particular, in contrast to the shallow-ice-sheet approximation, the shallow-ice-stream approximation correctly reproduces the short-wavelength limit of the kinematic phase speed given by solving a linearised version of the full Stokes system. In accordance with the full Stokes solutions, the shallow-ice-sheet approximation predicts surface fields to react weakly to spatial variations in basal slipperiness with wavelengths less than about 10 to 20 ice thicknesses.
Energy Technology Data Exchange (ETDEWEB)
Yokoi, T [Building Research Institute, Tokyo (Japan); Sanchez-Sesma, F [Universidad National Autonoma de Mexico, (Mexico). Institute de Ingenieria
1997-05-27
Formulation is introduced for discretizing a boundary integral equation into an indirect boundary element method for the solution of 3-dimensional topographic problems. Yokoi and Takenaka propose an analytical solution-capable reference solution (solution for the half space elastic body with flat free surface) to problems of topographic response to seismic motion in a 2-dimensional in-plane field. That is to say, they propose a boundary integral equation capable of effectively suppressing the non-physical waves that emerge in the result of computation in the wake of the truncation of the discretized ground surface making use of the wave field in a semi-infinite elastic body with flat free surface. They apply the proposed boundary integral equation discretized into the indirect boundary element method to solve some examples, and succeed in proving its validity. In this report, the equation is expanded to deal with 3-dimensional topographic problems. A problem of a P-wave vertically landing on a flat and free surface is solved by the conventional boundary integral equation and the proposed boundary integral equation, and the solutions are compared with each other. It is found that the new method, different from the conventional one, can delete non-physical waves from the analytical result. 4 figs.
Directory of Open Access Journals (Sweden)
Alsaedi Ahmed
2009-01-01
Full Text Available A generalized quasilinearization technique is developed to obtain a sequence of approximate solutions converging monotonically and quadratically to a unique solution of a boundary value problem involving Duffing type nonlinear integro-differential equation with integral boundary conditions. The convergence of order for the sequence of iterates is also established. It is found that the work presented in this paper not only produces new results but also yields several old results in certain limits.
Directory of Open Access Journals (Sweden)
Te-Wen Tu
2015-01-01
Full Text Available An analytical solution for the heat transfer in hollow cylinders with time-dependent boundary condition and time-dependent heat transfer coefficient at different surfaces is developed for the first time. The methodology is an extension of the shifting function method. By dividing the Biot function into a constant plus a function and introducing two specially chosen shifting functions, the system is transformed into a partial differential equation with homogenous boundary conditions only. The transformed system is thus solved by series expansion theorem. Limiting cases of the solution are studied and numerical results are compared with those in the literature. The convergence rate of the present solution is fast and the analytical solution is simple and accurate. Also, the influence of physical parameters on the temperature distribution of a hollow cylinder along the radial direction is investigated.
International Nuclear Information System (INIS)
Kulich, N.V.; Nemtsev, V.A.
1986-01-01
The analytical solution to the problem on the stationary temperature field in an infinite structural element of rectangular profile characteristic of the conjugation points of a vessel and a tube sheet of a heat exchanger (or of a finned surface) at the third-kind boundary conditions has been obtained by the methods of the complex variable function theory. With the help of the obtained analytical dependences the calculations of the given element of the design and the comparison with the known data have been conducted. The proposed analytical solution can be effectively used in calculations of temperature fields in finned surfaces and structural elements of the power equipment of the considered profile and the method is applied for solution of the like problems
Energy Technology Data Exchange (ETDEWEB)
Goncalez, Tifani T. [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Segatto, Cynthia F.; Vilhena, Marco Tullio, E-mail: csegatto@pq.cnpq.b, E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (DMPA/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada
2011-07-01
In this work, we report an analytical solution for the set of S{sub N} equations for the angular flux, in a rectangle, using the double Laplace transform technique. Its main idea comprehends the steps: application of the Laplace transform in one space variable, solution of the resulting equation by the LTS{sub N} method and reconstruction of the double Laplace transformed angular flux using the inversion theorem of the Laplace transform. We must emphasize that we perform the Laplace inversion by the LTS{sub N} method in the x direction, meanwhile we evaluate the inversion in the y direction performing the calculation of the corresponding line integral solution by the Stefest method. We have also to figure out that the application of Laplace transform to this type of boundary value problem introduces additional unknown functions associated to the partial derivatives of the angular flux at boundary. Based on the good results attained by the nodal LTS{sub N} method, we assume that the angular flux at boundary is also approximated by an exponential function. By analytical we mean that no approximation is done along the solution derivation except for the exponential hypothesis for the exiting angular flux at boundary. For sake of completeness, we report numerical comparisons of the obtained results against the ones of the literature. (author)
International Nuclear Information System (INIS)
Yin Chen; Xu Mingyu
2009-01-01
We set up a one-dimensional mathematical model with a Caputo fractional operator of a drug released from a polymeric matrix that can be dissolved into a solvent. A two moving boundaries problem in fractional anomalous diffusion (in time) with order α element of (0, 1] under the assumption that the dissolving boundary can be dissolved slowly is presented in this paper. The two-parameter regular perturbation technique and Fourier and Laplace transform methods are used. A dimensionless asymptotic analytical solution is given in terms of the Wright function
Energy Technology Data Exchange (ETDEWEB)
Xie, Wei; Lei, Wei-Hua; Wang, Ding-Xiong, E-mail: leiwh@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)
2016-12-20
A stellar-mass black hole (BH) surrounded by a neutrino-dominated accretion flow (NDAF) has been discussed in a number of works as the central engine of gamma-ray bursts (GRBs). It is widely believed that NDAF cannot liberate enough energy for bright GRBs. However, these works have been based on the assumption of a “no torque” boundary condition, which is invalid when the disk is magnetized. In this paper, we present both numerical and analytical solutions for NDAFs with non-zero boundary stresses and reexamine their properties. We find that an NDAF with such a boundary torque can be powerful enough to account for those bright short GRBs, energetic long GRBs, and ultra-long GRBs. The disk becomes viscously unstable, which makes it possible to interpret the variability of GRB prompt emission and the steep decay phase in the early X-ray afterglow. Finally, we study the gravitational waves radiated from a processing BH-NDAF. We find that the effects of the boundary torque on the strength of the gravitational waves can be ignored.
Directory of Open Access Journals (Sweden)
Hamid Khan
2012-01-01
Full Text Available We investigate squeezing flow between two large parallel plates by transforming the basic governing equations of the first grade fluid to an ordinary nonlinear differential equation using the stream functions ur(r,z,t=(1/r(∂ψ/∂z and uz(r,z,t=−(1/r(∂ψ/∂r and a transformation ψ(r,z=r2F(z. The velocity profiles are investigated through various analytical techniques like Adomian decomposition method, new iterative method, homotopy perturbation, optimal homotopy asymptotic method, and differential transform method.
Analytic invariants of boundary links
Garoufalidis, Stavros; Levine, Jerome
2001-01-01
Using basic topology and linear algebra, we define a plethora of invariants of boundary links whose values are power series with noncommuting variables. These turn out to be useful and elementary reformulations of an invariant originally defined by M. Farber.
Analytic solutions of hydrodynamics equations
International Nuclear Information System (INIS)
Coggeshall, S.V.
1991-01-01
Many similarity solutions have been found for the equations of one-dimensional (1-D) hydrodynamics. These special combinations of variables allow the partial differential equations to be reduced to ordinary differential equations, which must then be solved to determine the physical solutions. Usually, these reduced ordinary differential equations are solved numerically. In some cases it is possible to solve these reduced equations analytically to obtain explicit solutions. In this work a collection of analytic solutions of the 1-D hydrodynamics equations is presented. These can be used for a variety of purposes, including (i) numerical benchmark problems, (ii) as a basis for analytic models, and (iii) to provide insight into more complicated solutions
Asgharzadeh, Hafez; Borazjani, Iman
2017-02-15
The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the
Asgharzadeh, Hafez; Borazjani, Iman
2016-01-01
The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the
Numerical solution of the resistive magnetohydrodynamic boundary-layer equations
International Nuclear Information System (INIS)
Glasser, A.H.; Jardin, S.C.; Tesauro, G.
1983-10-01
Three different techniques are presented for numerical solution of the equations governing the boundary layer of resistive magnetohydrodynamic tearing and interchange instabilities in toroidal geometry. Excellent agreement among these methods and with analytical results provides confidence in the correctness of the results. Solutions obtained in regimes where analytical medthods fail indicate a new scaling for the tearing mode as well as the existence of a new regime of stability
Analytical Solution of General Bagley-Torvik Equation
Directory of Open Access Journals (Sweden)
William Labecca
2015-01-01
Full Text Available Bagley-Torvik equation appears in viscoelasticity problems where fractional derivatives seem to play an important role concerning empirical data. There are several works treating this equation by using numerical methods and analytic formulations. However, the analytical solutions presented in the literature consider particular cases of boundary and initial conditions, with inhomogeneous term often expressed in polynomial form. Here, by using Laplace transform methodology, the general inhomogeneous case is solved without restrictions in boundary and initial conditions. The generalized Mittag-Leffler functions with three parameters are used and the solutions presented are expressed in terms of Wiman’s functions and their derivatives.
A combined analytic-numeric approach for some boundary-value problems
Directory of Open Access Journals (Sweden)
Mustafa Turkyilmazoglu
2016-02-01
Full Text Available A combined analytic-numeric approach is undertaken in the present work for the solution of boundary-value problems in the finite or semi-infinite domains. Equations to be treated arise specifically from the boundary layer analysis of some two and three-dimensional flows in fluid mechanics. The purpose is to find quick but accurate enough solutions. Taylor expansions at either boundary conditions are computed which are next matched to the other asymptotic or exact boundary conditions. The technique is applied to the well-known Blasius as well as Karman flows. Solutions obtained in terms of series compare favorably with the existing ones in the literature.
Analytical Solution of General Bagley-Torvik Equation
William Labecca; Osvaldo Guimarães; José Roberto C. Piqueira
2015-01-01
Bagley-Torvik equation appears in viscoelasticity problems where fractional derivatives seem to play an important role concerning empirical data. There are several works treating this equation by using numerical methods and analytic formulations. However, the analytical solutions presented in the literature consider particular cases of boundary and initial conditions, with inhomogeneous term often expressed in polynomial form. Here, by using Laplace transform methodology, the general inhomoge...
Energy Technology Data Exchange (ETDEWEB)
Zou, Li [Dalian Univ. of Technology, Dalian City (China). State Key Lab. of Structural Analysis for Industrial Equipment; Liang, Songxin; Li, Yawei [Dalian Univ. of Technology, Dalian City (China). School of Mathematical Sciences; Jeffrey, David J. [Univ. of Western Ontario, London (Canada). Dept. of Applied Mathematics
2017-06-01
Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.
Analytical solution of one dimensional temporally dependent ...
African Journals Online (AJOL)
user
transfer of heat in fluids, flow through porous media, and the spread of ... In present paper, advection-dispersion equation is considered one dimensional longitudinal initially solute free semi- .... free. Thus initial and boundary conditions for eq.
Insight solutions are correct more often than analytic solutions
Salvi, Carola; Bricolo, Emanuela; Kounios, John; Bowden, Edward; Beeman, Mark
2016-01-01
How accurate are insights compared to analytical solutions? In four experiments, we investigated how participants’ solving strategies influenced their solution accuracies across different types of problems, including one that was linguistic, one that was visual and two that were mixed visual-linguistic. In each experiment, participants’ self-judged insight solutions were, on average, more accurate than their analytic ones. We hypothesised that insight solutions have superior accuracy because they emerge into consciousness in an all-or-nothing fashion when the unconscious solving process is complete, whereas analytic solutions can be guesses based on conscious, prematurely terminated, processing. This hypothesis is supported by the finding that participants’ analytic solutions included relatively more incorrect responses (i.e., errors of commission) than timeouts (i.e., errors of omission) compared to their insight responses. PMID:27667960
The boundary value problem for discrete analytic functions
Skopenkov, Mikhail
2013-06-01
This paper is on further development of discrete complex analysis introduced by R.Isaacs, J.Ferrand, R.Duffin, and C.Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete analytic, if for each face the difference quotients along the two diagonals are equal.We prove that the Dirichlet boundary value problem for the real part of a discrete analytic function has a unique solution. In the case when each face has orthogonal diagonals we prove that this solution uniformly converges to a harmonic function in the scaling limit. This solves a problem of S.Smirnov from 2010. This was proved earlier by R.Courant-K.Friedrichs-H.Lewy and L.Lusternik for square lattices, by D.Chelkak-S.Smirnov and implicitly by P.G.Ciarlet-P.-A.Raviart for rhombic lattices.In particular, our result implies uniform convergence of the finite element method on Delaunay triangulations. This solves a problem of A.Bobenko from 2011. The methodology is based on energy estimates inspired by alternating-current network theory. © 2013 Elsevier Ltd.
Analytical solutions to orthotropic variable thickness disk problems
Directory of Open Access Journals (Sweden)
Ahmet N. ERASLAN
2016-02-01
Full Text Available An analytical model is developed to estimate the mechanical response of nonisothermal, orthotropic, variable thickness disks under a variety of boundary conditions. Combining basic mechanical equations of disk geometry with the equations of orthotropic material, the elastic equation of the disk is obtained. This equation is transformed into a standard hypergeometric differential equation by means of a suitable transformation. An analytical solution is then obtained in terms of hypergeometric functions. The boundary conditions used to complete the solutions simulate rotating annular disks with two free surfaces, stationary annular disks with pressurized inner and free outer surfaces, and free inner and pressurized outer surfaces. The results of the solutions to each of these cases are presented in graphical forms. It is observed that, for the three cases investigated the elastic orthotropy parameter turns out to be an important parameter affecting the elastic behaviorKeywords: Orthotropic disk, Variable thickness, Thermoelasticity, Hypergeometric equation
Analytical solution of population balance equation involving ...
Indian Academy of Sciences (India)
This paper presents an effective analytical simulation to solve population .... considering spatial dependence and growth, based on the so-called LPA formulation as .... But the particle size distribution is defined so that n(v,t) dx is the number of ..... that was made beforehand in the construction of the analytical solutions ...
DEFF Research Database (Denmark)
Johannessen, Kim
2014-01-01
The exact solution to the one-dimensional Poisson–Boltzmann equation with asymmetric boundary conditions can be expressed in terms of the Jacobi elliptic functions. The boundary conditions determine the modulus of the Jacobi elliptic functions. The boundary conditions can not be solved analytically...
Analytic solutions of nonlinear Cournot duopoly game
Directory of Open Access Journals (Sweden)
Akio Matsumoto
2005-01-01
Full Text Available We construct a Cournot duopoly model with production externality in which reaction functions are unimodal. We consider the case of a Cournot model which has a stable equilibrium point. Then we show the existence of analytic solutions of the model. Moreover, we seek general solutions of the model in the form of nonlinear second-order difference equation.
Zheng, Jun; Han, Xinyue; Wang, ZhenTao; Li, Changfeng; Zhang, Jiazhong
2017-06-01
For about a century, people have been trying to seek for a globally convergent and closed analytical solution (CAS) of the Blasius Equation (BE). In this paper, we proposed a formally satisfied solution which could be parametrically expressed by two power series. Some analytical results of the laminar boundary layer of a flat plate, that were not analytically given in former studies, e.g. the thickness of the boundary layer and higher order derivatives, could be obtained based on the solution. Besides, the heat transfer in the laminar boundary layer of a flat plate with constant temperature could also be analytically formulated. Especially, the solution of the singular situation with Prandtl number Pr=0, which seems impossible to be analyzed in prior studies, could be given analytically. The method for finding the CAS of Blasius equation was also utilized in the problem of the boundary layer regulation through wall injection and slip velocity on the wall surface.
Analytic solution for a quartic electron mirror
Energy Technology Data Exchange (ETDEWEB)
Straton, Jack C., E-mail: straton@pdx.edu
2015-01-15
A converging electron mirror can be used to compensate for spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a diode (two-electrode) electrostatic mirror including the next term beyond the known hyperbolic shape. The latter is a solution of the Laplace equation to second order in the variables perpendicular to and along the mirror's radius (z{sup 2}−r{sup 2}/2) to which we add a quartic term (kλz{sup 4}). The analytical solution is found in terms of Jacobi cosine-amplitude functions. We find that a mirror less concave than the hyperbolic profile is more sensitive to changes in mirror voltages and the contrary holds for the mirror more concave than the hyperbolic profile. - Highlights: • We find the analytical solution for electron mirrors whose curvature has z4 dependence added to the usual z{sup 2} – r{sup 2}/2 terms. • The resulting Jacobi cosine-amplitude function reduces to the well-known cosh solution in the limit where the new term is 0. • This quartic term gives a mirror designer additional flexibility for eliminating spherical and chromatic aberrations. • The possibility of using these analytical results to approximately model spherical tetrode mirrors close to axis is noted.
Surface solitons in waveguide arrays: Analytical solutions.
Kominis, Yannis; Papadopoulos, Aristeidis; Hizanidis, Kyriakos
2007-08-06
A novel phase-space method is employed for the construction of analytical stationary solitary waves located at the interface between a periodic nonlinear lattice of the Kronig-Penney type and a linear or nonlinear homogeneous medium as well as at the interface between two dissimilar nonlinear lattices. The method provides physical insight and understanding of the shape of the solitary wave profile and results to generic classes of localized solutions having either zero or nonzero semi-infinite backgrounds. For all cases, the method provides conditions involving the values of the propagation constant of the stationary solutions, the linear refractive index and the dimensions of each part in order to assure existence of solutions with specific profile characteristics. The evolution of the analytical solutions under propagation is investigated for cases of realistic configurations and interesting features are presented such as their remarkable robustness which could facilitate their experimental observation.
Analytic solution of the lifeguard problem
De Luca, Roberto; Di Mauro, Marco; Naddeo, Adele
2018-03-01
A simple version due to Feynman of Fermat’s principle is analyzed. It deals with the path a lifeguard on a beach must follow to reach a drowning swimmer. The solution for the exact point, P(x, 0) , at the beach-sea boundary, corresponding to the fastest path to the swimmer, is worked out in detail and the analogy with light traveling at the air-water boundary is described. The results agree with the known conclusion that the shortest path does not coincide with the fastest one. The relevance of the subject for a basic physics course, at an advanced high school level, is pointed out.
Analytic vortex solutions on compact hyperbolic surfaces
International Nuclear Information System (INIS)
Maldonado, Rafael; Manton, Nicholas S
2015-01-01
We construct, for the first time, abelian Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations. (paper)
Analytic Solutions of Special Functional Equations
Directory of Open Access Journals (Sweden)
Octav Olteanu
2013-07-01
Full Text Available We recall some of our earlier results on the construction of a mapping defined implicitly, without using the implicit function theorem. All these considerations work in the real case, for functions and operators. Then we consider the complex case, proving the analyticity of the function defined implicitly, under certain hypothesis. Some consequences are given. An approximating formula for the analytic form of the solution is also given. Finally, one illustrates the preceding results by an application to a concrete functional and operatorial equation. Some related examples are given.
Analytic Solutions and Resonant Solutions of Hyperbolic Partial Differential Equations
Wagenmaker, Timothy Roger
This dissertation contains two main subject areas. The first deals with solutions to the wave equation Du/Dt + a Du/Dx = 0, where D/Dt and D/Dx represent partial derivatives and a(t,x) is real valued. The question I studied, which arises in control theory, is whether solutions which are real analytic with respect to the time variable are dense in the space of all solutions. If a is real analytic in t and x, the Cauchy-Kovalevsky Theorem implies that the solutions real analytic in t and x are dense, since it suffices to approximate the initial data by polynomials. The same positive result is valid when a is continuously differentiable and independent of t. This is proved by regularization in time. The hypothesis that a is independent of t cannot be replaced by the weaker assumption that a is real analytic in t, even when it is infinitely smooth. I construct a(t,x) for which the solutions which are analytic in time are automatically periodic in time. In particular these solutions are not dense in the space of all solutions. The second area concerns the resonant interaction of oscillatory waves propagating in a compressible inviscid fluid. An asymptotic description given by Andrew Majda, Rodolfo Rosales, and Maria Schonbek (MRS) involves the genuinely nonlinear quasilinear hyperbolic system Du/Dt + D(uu/2)/Dt + v = 0, Dv/Dt - D(vv/2)/Dt - u = 0. They performed many numerical simulations which indicated that small amplitude solutions of this system tend to evade shock formation, and conjectured that "smooth initial data with a sufficiently small amplitude never develop shocks throughout a long time interval of integration.". I proved that for smooth periodic U(x), V(x) and initial data u(0,x) = epsilonU(x), v(0,x) = epsilonV(x), the solution is smooth for time at least constant times | ln epsilon| /epsilon. This is longer than the lifetime order 1/ epsilon of the solution to the decoupled Burgers equations. The decoupled equation describes nonresonant interaction of
Analytical solutions to matrix diffusion problems
Energy Technology Data Exchange (ETDEWEB)
Kekäläinen, Pekka, E-mail: pekka.kekalainen@helsinki.fi [Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)
2014-10-06
We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.
Analytic theory of curvature effects for wave problems with general boundary conditions
DEFF Research Database (Denmark)
Willatzen, Morten; Gravesen, Jens; Voon, L. C. Lew Yan
2010-01-01
A formalism based on a combination of differential geometry and perturbation theory is used to obtain analytic expressions for confined eigenmode changes due to general curvature effects. In cases of circular-shaped and helix-shaped structures, where alternative analytic solutions can be found......, the perturbative solution is shown to yield the same result. The present technique allows the generalization of earlier results to arbitrary boundary conditions. The power of the method is illustrated using examples based on Maxwell’s and Schrödinger’s equations for applications in photonics and nanoelectronics....
Directory of Open Access Journals (Sweden)
Xiao-Ying Qin
2014-01-01
Full Text Available An Adomian decomposition method (ADM is applied to solve a two-phase Stefan problem that describes the pure metal solidification process. In contrast to traditional analytical methods, ADM avoids complex mathematical derivations and does not require coordinate transformation for elimination of the unknown moving boundary. Based on polynomial approximations for some known and unknown boundary functions, approximate analytic solutions for the model with undetermined coefficients are obtained using ADM. Substitution of these expressions into other equations and boundary conditions of the model generates some function identities with the undetermined coefficients. By determining these coefficients, approximate analytic solutions for the model are obtained. A concrete example of the solution shows that this method can easily be implemented in MATLAB and has a fast convergence rate. This is an efficient method for finding approximate analytic solutions for the Stefan and the inverse Stefan problems.
Analytic, High-beta Solutions of the Helical Grad-Shafranov Equation
International Nuclear Information System (INIS)
Smith, D.R.; Reiman, A.H.
2004-01-01
We present analytic, high-beta (β ∼ O(1)), helical equilibrium solutions for a class of helical axis configurations having large helical aspect ratio, with the helix assumed to be tightly wound. The solutions develop a narrow boundary layer of strongly compressed flux, similar to that previously found in high beta tokamak equilibrium solutions. The boundary layer is associated with a strong localized current which prevents the equilibrium from having zero net current
Sabirov, K.; Rakhmanov, S.; Matrasulov, D.; Susanto, H.
2018-04-01
We consider the stationary sine-Gordon equation on metric graphs with simple topologies. Exact analytical solutions are obtained for different vertex boundary conditions. It is shown that the method can be extended for tree and other simple graph topologies. Applications of the obtained results to branched planar Josephson junctions and Josephson junctions with tricrystal boundaries are discussed.
Positive solutions for a fourth order boundary value problem
Directory of Open Access Journals (Sweden)
Bo Yang
2005-02-01
Full Text Available We consider a boundary value problem for the beam equation, in which the boundary conditions mean that the beam is embedded at one end and free at the other end. Some new estimates to the positive solutions to the boundary value problem are obtained. Some sufficient conditions for the existence of at least one positive solution for the boundary value problem are established. An example is given at the end of the paper to illustrate the main results.
Solution of moving boundary problems with implicit boundary condition
International Nuclear Information System (INIS)
Moyano, E.A.
1990-01-01
An algorithm that solves numerically a model for studying one dimensional moving boundary problems, with implicit boundary condition, is described. Landau's transformation is used, in order to work with a fixed number of nodes at each instant. Then, it is necessary to deal with a parabolic partial differential equation, whose diffusive and convective terms have variable coefficients. The partial differential equation is implicitly discretized, using Laasonen's scheme, always stable, instead of employing Crank-Nicholson sheme, as it has been done by Ferris and Hill. Fixed time and space steps (Δt, Δξ) are used, and the iteration is made with variable positions of the interface, i.e. varying δs until a boundary condition is satisfied. The model has the same features of the oxygen diffusion in absorbing tissue. It would be capable of estimating time variant radiation treatments of cancerous tumors. (Author) [es
International Nuclear Information System (INIS)
Boisseau, Bruno; Forgacs, Peter; Giacomini, Hector
2007-01-01
A new (algebraic) approximation scheme to find global solutions of two-point boundary value problems of ordinary differential equations (ODEs) is presented. The method is applicable for both linear and nonlinear (coupled) ODEs whose solutions are analytic near one of the boundary points. It is based on replacing the original ODEs by a sequence of auxiliary first-order polynomial ODEs with constant coefficients. The coefficients in the auxiliary ODEs are uniquely determined from the local behaviour of the solution in the neighbourhood of one of the boundary points. The problem of obtaining the parameters of the global (connecting) solutions, analytic at one of the boundary points, reduces to find the appropriate zeros of algebraic equations. The power of the method is illustrated by computing the approximate values of the 'connecting parameters' for a number of nonlinear ODEs arising in various problems in field theory. We treat in particular the static and rotationally symmetric global vortex, the skyrmion, the Abrikosov-Nielsen-Olesen vortex, as well as the 't Hooft-Polyakov magnetic monopole. The total energy of the skyrmion and of the monopole is also computed by the new method. We also consider some ODEs coming from the exact renormalization group. The ground-state energy level of the anharmonic oscillator is also computed for arbitrary coupling strengths with good precision. (fast track communication)
Lau, Chun Sing
This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in
Closed form analytic solutions describing glow discharge plasma
International Nuclear Information System (INIS)
Pai, S.T.; Guo, X.M.; Zhou, T.D.
1996-01-01
On the basis of an analytic model developed previously [S. T. Pai, J. Appl. Phys. 71, 5820 (1992)], an improved version of the model for the description of dc glow discharge plasma was successfully developed. A set of closed form solutions was obtained from the governing equations. The two-dimensional, analytic solutions are functional and completely satisfy the governing equations, the actual boundary conditions, and Maxwell equations. They can be readily used to carry out numerical calculations without the necessity of employing any assumed boundary conditions. Results obtained from the model reveal that as the discharge gap spacing or pressure increases the maximum value in the electron density distribution moves toward the cathode. At a sufficiently large value of gap spacing, the positive column phenomenon begins to appear in the discharge region. The model has the capability of treating the positive column and negative glow as a continuous system without the necessity of studying them separately. The model also predicts a sharp rise of the positive ion density near the cathode and field reversal in the anode region. Variation of the electrode radius produces little effect on the axial spatial distribution of physical quantities studied. copyright 1996 American Institute of Physics
Recovery of uranium from analytical waste solution
International Nuclear Information System (INIS)
Kumar, Pradeep; Anitha, M.; Singh, D.K.
2016-01-01
Dispersion fuels are considered as advance fuel for the nuclear reactor. Liquid waste containing significant quantity of uranium gets generated during chemical characterization of dispersion fuel. The present paper highlights the effort in devising a counter current solvent extraction process based on the synergistic mixture of D2EHPA and Cyanex 923 to recover uranium from such waste solutions. A typical analytical waste solution was found to have the following composition: U 3 O 8 (∼3 g/L), Al: 0.3 g/L, V: 15 ppm, Phosphoric acid: 3M, sulphuric acid : 1M and nitric acid : 1M. The aqueous solution is composed of mixture of either 3M phosphoric acid and 1M sulphuric acid or 1M sulphuric acid and 1M nitric acid, keeping metallic concentrations in the above mentioned range. Different organic solvents were tested. Based on the higher extraction of uranium with synergistic mixture of 0.5M D2EHPA + 0.125M Cyanex 923, it was selected for further investigation in the present work
International Nuclear Information System (INIS)
Abadi, Mohammad Tahaye
2015-01-01
A recursive solution method is derived for the transient response of one-dimensional structures subjected to the general form of time dependent boundary conditions. Unlike previous solution methods that assumed the separation of variables, the present method involves formulating and solving the dynamic problems using the summation of two single-argument functions satisfying the motion equation. Based on boundary and initial conditions, a recursive procedure is derived to determine the single-argument functions. Such a procedure is applied to the general form of boundary conditions, and an analytical solution is derived by solving the recursive equation. The present solution method is implemented for base excitation problems, and the results are compared with those of the previous analytical solution and the Finite element (FE) analysis. The FE results converge to the present analytical solution, although considerable error is found in predicting a solution method on the basis of the separation of variables. The present analytical solution predicts the transient response for wave propagation problems in broadband excitation frequencies.
Energy Technology Data Exchange (ETDEWEB)
Abadi, Mohammad Tahaye [Aerospace Research Institute, Tehran (Iran, Islamic Republic of)
2015-10-15
A recursive solution method is derived for the transient response of one-dimensional structures subjected to the general form of time dependent boundary conditions. Unlike previous solution methods that assumed the separation of variables, the present method involves formulating and solving the dynamic problems using the summation of two single-argument functions satisfying the motion equation. Based on boundary and initial conditions, a recursive procedure is derived to determine the single-argument functions. Such a procedure is applied to the general form of boundary conditions, and an analytical solution is derived by solving the recursive equation. The present solution method is implemented for base excitation problems, and the results are compared with those of the previous analytical solution and the Finite element (FE) analysis. The FE results converge to the present analytical solution, although considerable error is found in predicting a solution method on the basis of the separation of variables. The present analytical solution predicts the transient response for wave propagation problems in broadband excitation frequencies.
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
Analytical Solution of Multicompartment Solute Kinetics for Hemodialysis
Directory of Open Access Journals (Sweden)
Przemysław Korohoda
2013-01-01
Full Text Available Objective. To provide an exact solution for variable-volume multicompartment kinetic models with linear volume change, and to apply this solution to a 4-compartment diffusion-adjusted regional blood flow model for both urea and creatinine kinetics in hemodialysis. Methods. A matrix-based approach applicable to linear models encompassing any number of compartments is presented. The procedure requires the inversion of a square matrix and the computation of its eigenvalues λ, assuming they are all distinct. This novel approach bypasses the evaluation of the definite integral to solve the inhomogeneous ordinary differential equation. Results. For urea two out of four eigenvalues describing the changes of concentrations in time are about 105 times larger than the other eigenvalues indicating that the 4-compartment model essentially reduces to the 2-compartment regional blood flow model. In case of creatinine, however, the distribution of eigenvalues is more balanced (a factor of 102 between the largest and the smallest eigenvalue indicating that all four compartments contribute to creatinine kinetics in hemodialysis. Interpretation. Apart from providing an exact analytic solution for practical applications such as the identification of relevant model and treatment parameters, the matrix-based approach reveals characteristic details on model symmetry and complexity for different solutes.
Analytic structure of solutions to multiconfiguration equations
Energy Technology Data Exchange (ETDEWEB)
Fournais, Soeren [Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, Building 1530, DK-8000 Arhus C (Denmark); Hoffmann-Ostenhof, Maria [Fakultaet fuer Mathematik, Universitaet Wien, Nordbergstrasse 15, A-1090 Vienna (Austria); Hoffmann-Ostenhof, Thomas [Institut fuer Theoretische Chemie, Waehringerstrasse 17, Universitaet Wien, A-1090 Vienna (Austria); Soerensen, Thomas Oestergaard [Department of Mathematics, Imperial College London, Huxley Building, 180 Queen' s Gate, London SW7 2AZ (United Kingdom)], E-mail: fournais@imf.au.dk, E-mail: Maria.Hoffmann-Ostenhof@univie.ac.at, E-mail: thoffman@esi.ac.at, E-mail: t.sorensen@imperial.ac.uk
2009-08-07
We study the regularity at the positions of the (fixed) nuclei of solutions to (non-relativistic) multiconfiguration equations (including Hartree-Fock) of Coulomb systems. We prove the following: let {l_brace}{psi}{sub 1}, ..., {psi}{sub M}{r_brace} be any solution to the rank-M multiconfiguration equations for a molecule with L fixed nuclei at R{sub 1},...,R{sub L} element of R{sup 3}. Then, for any j in {l_brace}1, ..., M{r_brace}, k in {l_brace}1, ..., L{r_brace}, there exists a neighborhood U{sub j,k} subset or equal R{sup 3} of R{sub k}, and functions {psi}{sup (1)}{sub j,k}, {psi}{sup (2)}{sub j,k}, real analytic in U{sub j,k}, such that {phi}{sub j}(x)={phi}{sub j,k}{sup (1)}(x)+|x-R{sub k}|{phi}{sub j,k}{sup (2)}(x), x element of U{sub j,k}. A similar result holds for the corresponding electron density. The proof uses the Kustaanheimo-Stiefel transformation, as applied in [9] to the study of the eigenfunctions of the Schroedinger operator of atoms and molecules near two-particle coalescence points.
PN solutions of radiative heat transfer in a slab with reflective boundaries
International Nuclear Information System (INIS)
Atalay, M.A.
2006-01-01
The spherical harmonics method is used to obtain solution for the radiative heat transfer equation for a slab with reflective boundaries. An absorbing, emitting, non-isothermal, gray medium is considered with linearly anisotropic scattering. Under the condition of the thermal equilibrium, the slab boundaries are subjected to specular and diffuse reflection. The analytical form of solutions is obtained for both conservative and non-conservative cases. The accuracy of the method was verified by benchmark comparisons against the solutions of an earlier work performed by the normal-mode expansion technique. The present predictions of heat flux were found to be in good agreement with the benchmark data. a
ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS
International Nuclear Information System (INIS)
Chu Zhe; Lin, W. P.; Yang Xiaofeng
2013-01-01
Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.
Problem of the Moving Boundary in Continuous Casting Solved by The Analytic-Numerical Method
Directory of Open Access Journals (Sweden)
Grzymkowski R.
2013-03-01
Full Text Available Mathematical modeling of thermal processes combined with the reversible phase transitions of type: solid phase - liquid phase leads to formulation of the parabolic or elliptic moving boundary problem. Solution of such defined problem requires, most often, to use some sophisticated numerical techniques and far advanced mathematical tools. The paper presents an analytic-numerical method, especially attractive from the engineer’s point of view, applied for finding the approximate solutions of the selected class of problems which can be reduced to the one-phase solidification problem of a plate with the unknown a priori, varying in time boundary of the region in which the solution is sought. Proposed method is based on the known formalism of initial expansion of a sought function, describing the field of temperature, into the power series, some coefficients of which are determined with the aid of boundary conditions, and on the approximation of a function defining the freezing front location with the broken line, parameters of which are determined numerically. The method represents a combination of the analytical and numerical techniques and seems to be an effective and relatively easy in using tool for solving problems of considered kind.
Problem of the Moving Boundary in Continuous Casting Solved by the Analytic-Numerical Method
Directory of Open Access Journals (Sweden)
R. Grzymkowski
2013-01-01
Full Text Available Mathematical modeling of thermal processes combined with the reversible phase transitions of type: solid phase – liquid phase leads to formulation of the parabolic or elliptic moving boundary problem. Solution of such defined problem requires, most often, to use some sophisticated numerical techniques and far advanced mathematical tools. The paper presents an analytic-numerical method, especially attractive from the engineer’s point of view, applied for finding the approximate solutions of the selected class of problems which can be reduced to the one-phase solidification problem of a plate with the unknown a priori, varying in time boundary of the region in which the solution is sought. Proposed method is based on the known formalism of initial expansion of a sought function, describing the field of temperature, into the power series, some coefficients of which are determined with the aid of boundary conditions, and on the approximation of a function defining the freezing front location with the broken line, parameters of which are determined numerically. The method represents a combination of the analytical and numerical techniques and seems to be an effective and relatively easy in using tool for solving problems of considered kind.
Directory of Open Access Journals (Sweden)
Qingkai Kong
2012-02-01
Full Text Available In this paper, we study the existence and multiplicity of positive solutions of a class of nonlinear fractional boundary value problems with Dirichlet boundary conditions. By applying the fixed point theory on cones we establish a series of criteria for the existence of one, two, any arbitrary finite number, and an infinite number of positive solutions. A criterion for the nonexistence of positive solutions is also derived. Several examples are given for demonstration.
Analytic solutions of a class of nonlinearly dynamic systems
International Nuclear Information System (INIS)
Wang, M-C; Zhao, X-S; Liu, X
2008-01-01
In this paper, the homotopy perturbation method (HPM) is applied to solve a coupled system of two nonlinear differential with first-order similar model of Lotka-Volterra and a Bratus equation with a source term. The analytic approximate solutions are derived. Furthermore, the analytic approximate solutions obtained by the HPM with the exact solutions reveals that the present method works efficiently
Two-dimensional analytical solution for nodal calculation of nuclear reactors
International Nuclear Information System (INIS)
Silva, Adilson C.; Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.
2017-01-01
Highlights: • A proposal for a coarse mesh nodal method is presented. • The proposal uses the analytical solution of the two-dimensional neutrons diffusion equation. • The solution is performed homogeneous nodes with dimensions of the fuel assembly. • The solution uses four average fluxes on the node surfaces as boundary conditions. • The results show good accuracy and efficiency. - Abstract: In this paper, the two-dimensional (2D) neutron diffusion equation is analytically solved for two energy groups (2G). The spatial domain of reactor core is divided into a set of nodes with uniform nuclear parameters. To determine iteratively the multiplication factor and the neutron flux in the reactor we combine the analytical solution of the neutron diffusion equation with an iterative method known as power method. The analytical solution for different types of regions that compose the reactor is obtained, such as fuel and reflector regions. Four average fluxes in the node surfaces are used as boundary conditions for analytical solution. Discontinuity factors on the node surfaces derived from the homogenization process are applied to maintain averages reaction rates and the net current in the fuel assembly (FA). To validate the results obtained by the analytical solution a relative power density distribution in the FAs is determined from the neutron flux distribution and compared with the reference values. The results show good accuracy and efficiency.
Perturbed solutions of fixed boundary MHD equilibria
International Nuclear Information System (INIS)
Portone, A.
2004-01-01
In this study, the fixed boundary plasma MHD equilibrium problem is solved by the finite element method; then, by perturbing the flux at the plasma boundary nodes, linear formulae are derived linking the variation of several plasma parameters of interest to the variation of the currents flowing in the external circuits. On the basis of these formulae it is shown how it is possible to efficiently solve two central problems in plasma engineering, namely (1) the optimization of the currents in a given set of coils necessary to maintain a specified equilibrium configuration and (2) the derivation of a linear dynamic model describing the plasma axisymmetric displacement (n = 0 mode) about a given magnetic configuration. A case study-based on the ITER reference equilibrium magnetic configuration at burn-is analysed both in terms of equilibrium currents optimality as well as axisymmetric stability features. The results obtained by these formulae are also compared with the predictions of a non-linear free boundary code and of a linear, dynamic model. As shown, the formulae derived here are in good agreement with such predictions, confirming the validity of the present approach. (author)
New analytic solutions of stochastic coupled KdV equations
International Nuclear Information System (INIS)
Dai Chaoqing; Chen Junlang
2009-01-01
In this paper, firstly, we use the exp-function method to seek new exact solutions of the Riccati equation. Then, with the help of Hermit transformation, we employ the Riccati equation and its new exact solutions to find new analytic solutions of the stochastic coupled KdV equation in the white noise environment. As some special examples, some analytic solutions can degenerate into these solutions reported in open literatures.
Numerical solution of fuzzy boundary value problems using Galerkin ...
Indian Academy of Sciences (India)
1 College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China. 2 Department of ... exact solution of fuzzy first-order boundary value problems. (BVPs). ...... edge partial financial support by the Ministerio de Economıa.
Solution to random differential equations with boundary conditions
Directory of Open Access Journals (Sweden)
Fairouz Tchier
2017-04-01
Full Text Available We study a family of random differential equations with boundary conditions. Using a random fixed point theorem, we prove an existence theorem that yields a unique random solution.
Positive solutions and eigenvalues of nonlocal boundary-value problems
Directory of Open Access Journals (Sweden)
Jifeng Chu
2005-07-01
Full Text Available We study the ordinary differential equation $x''+lambda a(tf(x=0$ with the boundary conditions $x(0=0$ and $x'(1=int_{eta}^{1}x'(sdg(s$. We characterize values of $lambda$ for which boundary-value problem has a positive solution. Also we find appropriate intervals for $lambda$ so that there are two positive solutions.
Uniqueness of solution to a stationary boundary kinetic problem
International Nuclear Information System (INIS)
Zhykharsky, A.V.
1992-01-01
The paper treats the question of uniqueness of solution to the boundary kinetic problem. This analysis is based on the accurate solutions to the stationary one-dimensional boundary kinetic problem for the limited plasma system. In the paper a simplified problem statement is used (no account is taken of the external magnetic field, a simplest form of boundary conditions is accepted) which, however, covers all features of the problem considered. Omitting the details of the conclusion we will write a set of Vlasov stationary kinetic equations for the cases of plane, cylindrical and spherical geometry of the problem. (author) 1 ref
Exact solution of nonsteady thermal boundary layer equation
International Nuclear Information System (INIS)
Dorfman, A.S.
1995-01-01
There are only a few exact solutions of the thermal boundary layer equation. Most of them are derived for a specific surface temperature distribution. The first exact solution of the steady-state boundary layer equation was given for a plate with constant surface temperature and free-stream velocity. The same problem for a plate with polynomial surface temperature distribution was solved by Chapmen and Rubesin. Levy gave the exact solution for the case of a power law distribution of both surface temperature and free-stream velocity. The exact solution of the steady-state boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution was given by the author in two forms: of series and of the integral with an influence function of unheated zone. A similar solution of the nonsteady thermal boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution is presented here. In this case, the coefficients of series depend on time, and in the limit t → ∞ they become the constant coefficients of a similar solution published before. This solution, unlike the one presented here, does not satisfy the initial conditions at t = 0, and, hence, can be used only in time after the beginning of the process. The solution in the form of a series becomes a closed-form exact solution for polynomial surface temperature and a power law free-stream velocity distribution. 7 refs., 2 figs
Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping
2017-11-01
A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.
Electronic states of graphene nanoribbons and analytical solutions
Directory of Open Access Journals (Sweden)
Katsunori Wakabayashi, Ken-ichi Sasaki, Takeshi Nakanishi and Toshiaki Enoki
2010-01-01
Full Text Available Graphene is a one-atom-thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion. The orientation of the graphene edge determines the energy spectrum of π-electrons. For example, zigzag edges possess localized edge states with energies close to the Fermi level. In this review, we investigate nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries. We also provide analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nanoribbons with their detailed derivation using wave mechanics based on the tight-binding model. The energy band structures of armchair nanoribbons can be obtained by making the transverse wavenumber discrete, in accordance with the edge boundary condition, as in the case of carbon nanotubes. However, zigzag nanoribbons are not analogous to carbon nanotubes, because in zigzag nanoribbons the transverse wavenumber depends not only on the ribbon width but also on the longitudinal wavenumber. The quantization rule of electronic conductance as well as the magnetic instability of edge states due to the electron–electron interaction are briefly discussed.
Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback
Al Noufaey, K. S.
2018-06-01
This paper considers the application of a semi-analytical method to the Schnakenberg model of a reaction-diffusion cell. The semi-analytical method is based on the Galerkin method which approximates the original governing partial differential equations as a system of ordinary differential equations. Steady-state curves, bifurcation diagrams and the region of parameter space in which Hopf bifurcations occur are presented for semi-analytical solutions and the numerical solution. The effect of feedback control, via altering various concentrations in the boundary reservoirs in response to concentrations in the cell centre, is examined. It is shown that increasing the magnitude of feedback leads to destabilization of the system, whereas decreasing this parameter to negative values of large magnitude stabilizes the system. The semi-analytical solutions agree well with numerical solutions of the governing equations.
three solutions for a semilinear elliptic boundary value problem
Indian Academy of Sciences (India)
69
Keywords: The Laplacian operator, elliptic problem, Nehari man- ifold, three critical points, weak solution. 1. Introduction. Let Ω be a smooth bounded domain in RN , N ≥ 3 . In this work, we show the existence of at least three solutions for the semilinear elliptic boundary- value problem: (Pλ).. −∆u = f(x)|u(x)|p−2u(x) + ...
A numerical solution of a singular boundary value problem arising in boundary layer theory.
Hu, Jiancheng
2016-01-01
In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.
Semi-analytic solution to planar Helmholtz equation
Directory of Open Access Journals (Sweden)
Tukač M.
2013-06-01
Full Text Available Acoustic solution of interior domains is of great interest. Solving acoustic pressure fields faster with lower computational requirements is demanded. A novel solution technique based on the analytic solution to the Helmholtz equation in rectangular domain is presented. This semi-analytic solution is compared with the finite element method, which is taken as the reference. Results show that presented method is as precise as the finite element method. As the semi-analytic method doesn’t require spatial discretization, it can be used for small and very large acoustic problems with the same computational costs.
Akai, Takashi; Bijeljic, Branko; Blunt, Martin J.
2018-06-01
In the color gradient lattice Boltzmann model (CG-LBM), a fictitious-density wetting boundary condition has been widely used because of its ease of implementation. However, as we show, this may lead to inaccurate results in some cases. In this paper, a new scheme for the wetting boundary condition is proposed which can handle complicated 3D geometries. The validity of our method for static problems is demonstrated by comparing the simulated results to analytical solutions in 2D and 3D geometries with curved boundaries. Then, capillary rise simulations are performed to study dynamic problems where the three-phase contact line moves. The results are compared to experimental results in the literature (Heshmati and Piri, 2014). If a constant contact angle is assumed, the simulations agree with the analytical solution based on the Lucas-Washburn equation. However, to match the experiments, we need to implement a dynamic contact angle that varies with the flow rate.
Fundamental solutions and dual boundary element methods for fracture in plane Cosserat elasticity.
Atroshchenko, Elena; Bordas, Stéphane P A
2015-07-08
In this paper, both singular and hypersingular fundamental solutions of plane Cosserat elasticity are derived and given in a ready-to-use form. The hypersingular fundamental solutions allow to formulate the analogue of Somigliana stress identity, which can be used to obtain the stress and couple-stress fields inside the domain from the boundary values of the displacements, microrotation and stress and couple-stress tractions. Using these newly derived fundamental solutions, the boundary integral equations of both types are formulated and solved by the boundary element method. Simultaneous use of both types of equations (approach known as the dual boundary element method (BEM)) allows problems where parts of the boundary are overlapping, such as crack problems, to be treated and to do this for general geometry and loading conditions. The high accuracy of the boundary element method for both types of equations is demonstrated for a number of benchmark problems, including a Griffith crack problem and a plate with an edge crack. The detailed comparison of the BEM results and the analytical solution for a Griffith crack and an edge crack is given, particularly in terms of stress and couple-stress intensity factors, as well as the crack opening displacements and microrotations on the crack faces and the angular distributions of stresses and couple-stresses around the crack tip.
Analytical solution of population balance equation involving ...
Indian Academy of Sciences (India)
This paper presents an effective analytical simulation to solve population balance equation (PBE), involving particulate aggregation and breakage, by making use ... The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various ...
Analytical solutions of one-dimensional advection–diffusion
Indian Academy of Sciences (India)
Analytical solutions are obtained for one-dimensional advection –diffusion equation with variable coefficients in a longitudinal ﬁnite initially solute free domain,for two dispersion problems.In the ﬁrst one,temporally dependent solute dispersion along uniform ﬂow in homogeneous domain is studied.In the second problem the ...
Exact analytical solutions for nonlinear reaction-diffusion equations
International Nuclear Information System (INIS)
Liu Chunping
2003-01-01
By using a direct method via the computer algebraic system of Mathematica, some exact analytical solutions to a class of nonlinear reaction-diffusion equations are presented in closed form. Subsequently, the hyperbolic function solutions and the triangular function solutions of the coupled nonlinear reaction-diffusion equations are obtained in a unified way
Xin, F X; Lu, T J
2009-03-01
The air-borne sound insulation performance of a rectangular double-panel partition clamp mounted on an infinite acoustic rigid baffle is investigated both analytically and experimentally and compared with that of a simply supported one. With the clamped (or simply supported) boundary accounted for by using the method of modal function, a double series solution for the sound transmission loss (STL) of the structure is obtained by employing the weighted residual (Galerkin) method. Experimental measurements with Al double-panel partitions having air cavity are subsequently carried out to validate the theoretical model for both types of the boundary condition, and good overall agreement is achieved. A consistency check of the two different models (based separately on clamped modal function and simply supported modal function) is performed by extending the panel dimensions to infinite where no boundaries exist. The significant discrepancies between the two different boundary conditions are demonstrated in terms of the STL versus frequency plots as well as the panel deflection mode shapes.
Approximate analytical solution of two-dimensional multigroup P-3 equations
International Nuclear Information System (INIS)
Matausek, M.V.; Milosevic, M.
1981-01-01
Iterative solution of multigroup spherical harmonics equations reduces, in the P-3 approximation and in two-dimensional geometry, to a problem of solving an inhomogeneous system of eight ordinary first order differential equations. With appropriate boundary conditions, these equations have to be solved for each energy group and in each iteration step. The general solution of the corresponding homogeneous system of equations is known in analytical form. The present paper shows how the right-hand side of the system can be approximated in order to derive a particular solution and thus an approximate analytical expression for the general solution of the inhomogeneous system. This combined analytical-numerical approach was shown to have certain advantages compared to the finite-difference method or the Lie-series expansion method, which have been used to solve similar problems. (orig./RW) [de
Approximate analytical solution of two-dimensional multigroup P-3 equations
International Nuclear Information System (INIS)
Matausek, M.V.; Milosevic, M.
1981-01-01
Iterative solution of multigroup spherical harmonics equations reduces, in the P-3 approximation and in two-dimensional geometry, to a problem of solving an inhomogeneous system of eight ordinary first order differential equations. With appropriate boundary conditions, these equations have to be solved for each energy group and in each iteration step. The general solution of the corresponding homogeneous system of equations is known in analytical form. The present paper shows how the right-hand side of the system can be approximated in order to derive a particular solution and thus an approximate analytical expression for the general solution of the inhomogeneous system. This combined analytical-numerical approach was shown to have certain advantages compared to the finite-difference method or the Lie-series expansion method, which have been used to solve similar problems. (author)
A Study of Analytical Solution for the Special Dissolution Rate Model of Rock Salt
Directory of Open Access Journals (Sweden)
Xin Yang
2017-01-01
Full Text Available By calculating the concentration distributions of rock salt solutions at the boundary layer, an ordinary differential equation for describing a special dissolution rate model of rock salt under the assumption of an instantaneous diffusion process was established to investigate the dissolution mechanism of rock salt under transient but stable conditions. The ordinary differential equation was then solved mathematically to give an analytical solution and related expressions for the dissolved radius and solution concentration. Thereafter, the analytical solution was fitted with transient dissolution test data of rock salt to provide the dissolution parameters at different flow rates, and the physical meaning of the analytical formula was also discussed. Finally, the influential factors of the analytical formula were investigated. There was approximately a linear relationship between the dissolution parameters and the flow rate. The effects of the dissolution area and initial volume of the solution on the dissolution rate equation of rock salt were computationally investigated. The results showed that the present analytical solution gives a good description of the dissolution mechanism of rock salt under some special conditions, which may provide a primary theoretical basis and an analytical way to investigate the dissolution characteristics of rock salt.
Analytical solution of strongly nonlinear Duffing oscillators
Directory of Open Access Journals (Sweden)
A.M. El-Naggar
2016-06-01
Full Text Available In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε is defined such that the value of α is always small regardless of the magnitude of the original parameter ε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to α. Approximate solution obtained by the present method is compared with the solution of energy balance method, homotopy perturbation method, global error minimization method and lastly numerical solution. We observe from the results that this method is very simple, easy to apply, and gives a very good accuracy not only for small parameter εbut also for large values of ε.
Analytical solution of strongly nonlinear Duffing oscillators
El-Naggar, A.M.; Ismail, G.M.
2016-01-01
In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε)α=α(ε) is defined such that the value of α is always small regardless of the magnitude of the original parameter εε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to αα. Approximate solution obtained by the present method is compared with the solution of energy balance m...
Analytic solutions for marginal deformations in open superstring field theory
International Nuclear Information System (INIS)
Okawa, Y.
2007-04-01
We extend the calculable analytic approach to marginal deformations recently developed in open bosonic string field theory to open superstring field theory formulated by Berkovits. We construct analytic solutions to all orders in the deformation parameter when operator products made of the marginal operator and the associated superconformal primary field are regular. (orig.)
Analytic solutions of QCD motivated Hamiltonians at low energy
International Nuclear Information System (INIS)
Yepez, T.; Amor, A.; Hess, P.O.; Szczepaniak, A.; Civitarese, O.
2011-01-01
A model Hamiltonian, motivated by QCD, is investigated in order to study only the quark sector, then only the gluon sector and finally both together. Restricting to the pure quark sector and setting the mass of the quarks to zero, we find analytic solutions, involving two to three orbitals. Allowing the mass of the quarks to be different to zero, we find semi-analytic solutions involving an arbitrary number of orbitals. Afterwards, we indicate on how to incorporate gluons. (author)
Analytical solution of dispersion relations for the nuclear optical model
Energy Technology Data Exchange (ETDEWEB)
VanderKam, J.M. [Center for Communications Research, Thanet Road, Princeton, NJ 08540 (United States); Weisel, G.J. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States); Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601-3760 (United States); Tornow, W. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States)
2000-12-01
Analytical solutions of dispersion integral relations, linking the real and imaginary parts of the nuclear optical model, have been derived. These are displayed for some widely used forms of the volume- and surface-absorptive nuclear potentials. When the analytical solutions are incorporated into the optical-model search code GENOA, replacing a numerical integration, the code runs three and a half to seven times faster, greatly aiding the analysis of direct-reaction, elastic scattering data. (author)
Analytical Solutions of Ionic Diffusion and Heat Conduction in Multilayered Porous Media
Directory of Open Access Journals (Sweden)
Yu Bai
2015-01-01
Full Text Available Ionic diffusion and heat conduction in a multiple layered porous medium have many important engineering applications. One of the examples is the chloride ions from deicers penetrating into concrete structures such as bridge decks. Different overlays can be placed on top of concrete surface to slowdown the chloride penetration. In this paper, the chloride ion diffusion equations were established for concrete structures with multiple layers of protective system. By using Laplace transformation, an analytical solution was developed first for chloride concentration profiles in two-layered system and then extended to multiple layered systems with nonconstant boundary conditions, including the constant boundary and linear boundary conditions. Because ionic diffusion in saturated media and heat conduction are governed by the same form of partial differential equations with different materials parameters, the analytical solution was further extended to handle heat conduction in a multiple layered system under nonconstant boundary conditions. The numerical results were compared with available test data. The basic trends of the analytical solution and the test data agreed quite well.
Analytic solutions of the multigroup space-time reactor kinetics equations
International Nuclear Information System (INIS)
Lee, C.E.; Rottler, S.
1986-01-01
The development of analytical and numerical solutions to the reactor kinetics equations is reviewed. Analytic solutions of the multigroup space-time reactor kinetics equations are developed for bare and reflected slabs and spherical reactors for zero flux, zero current and extrapolated endpoint boundary conditions. The material properties of the reactors are assumed constant in space and time, but spatially-dependent source terms and initial conditions are investigated. The system of partial differential equations is reduced to a set of linear ordinary differential equations by the Laplace transform method. These equations are solved by matrix Green's functions yielding a general matrix solution for the neutron flux and precursor concentration in the Laplace transform space. The detailed pole structure of the Laplace transform matrix solutions is investigated. The temporally- and spatially-dependent solutions are determined from the inverse Laplace transform using the Cauchy residue theorem, the theorem of Frobenius, a knowledge of the detailed pole structure and matrix operators. (author)
Analytical solutions to SSC coil end design
International Nuclear Information System (INIS)
Bossert, R.C.; Brandt, J.S.; Carson, J.A.; Fulton, H.J.; Lee, G.C.; Cook, J.M.
1989-03-01
As part of the SCC magnet effort, Fermilab will build and test a series of one meter model SSC magnets. The coils in these magnets will be constructed with several different end configurations. These end designs must satisfy both mechanical and magnetic criteria. Only the mechanical problem will be addressed. Solutions will attempt to minimize stresses and provide internal support for the cable. Different end designs will be compared in an attempt to determine which is most appropriate for the SSC dipole. The mathematics required to create each end configuration will be described. The computer aided design, programming and machine technology needed to make the parts will be reviewed. 2 refs., 10 figs
Analytic solution of integral equations for molecular fluids
International Nuclear Information System (INIS)
Cummings, P.T.
1984-01-01
We review some recent progress in the analytic solution of integral equations for molecular fluids. The site-site Ornstein-Zernike (SSOZ) equation with approximate closures appropriate to homonuclear diatomic fluids both with and without attractive dispersion-like interactions has recently been solved in closed form analytically. In this paper, the close relationship between the SSOZ equation for homonuclear dumbells and the usual Ornstein-Zernike (OZ) equation for atomic fluids is carefully elucidated. This relationship is a key motivation for the analytic solutions of the SSOZ equation that have been obtained to date. (author)
Analytic plane wave solutions for the quaternionic potential step
International Nuclear Information System (INIS)
De Leo, Stefano; Ducati, Gisele C.; Madureira, Tiago M.
2006-01-01
By using the recent mathematical tools developed in quaternionic differential operator theory, we solve the Schroedinger equation in the presence of a quaternionic step potential. The analytic solution for the stationary states allows one to explicitly show the qualitative and quantitative differences between this quaternionic quantum dynamical system and its complex counterpart. A brief discussion on reflected and transmitted times, performed by using the stationary phase method, and its implication on the experimental evidence for deviations of standard quantum mechanics is also presented. The analytic solution given in this paper represents a fundamental mathematical tool to find an analytic approximation to the quaternionic barrier problem (up to now solved by numerical method)
Speciation—targets, analytical solutions and markets
Łobiński, Ryszard
1998-02-01
An analysis of speciation-relevant issues leads to the conclusion that, despite the rapidly increasing number of reports, the field has reached a level of virtual stagnation in terms of research originality and market perspectives. A breakthrough is in sight but requires an advanced interdisciplinary collaboration of chemists-analysts with clinicians, ecotoxicologists and nutricionists aimed at the definition of metal (metalloid)-dependent problems relevant to human health. The feedback from analytical chemists will be stimulated by a wider availability of efficient HPLC (CZE)-inductively coupled plasma mass spectrometry (ICP MS) interfaces, chromatographic software for ICP AES and MS and sensitive on-line methods for compound identification (electrospray MS/MS). The maturity of purge and trap thermal desorption techniques and capillary GC chromatography is likely to be reflected by an increasing number of commercial dedicated systems for small molecules containing Hg, Pb, Sn and metalloids. The pre-requisite of success for such systems is the integration of a sample preparation step (based on focused low-power microwave technology) into the marketed set-up.
Analytical determination of distillation boundaries for ternary azeotropic systems
Marcilla Gomis, Antonio; Reyes Labarta, Juan Antonio; Velasco, Raúl; Serrano Cayuelas, María Dolores; Olaya López, María del Mar
2009-01-01
A new straight forward algorithm to calculate distillation boundaries in ternary azeotropic systems has been developed. The proposed method allows, using cubic splines, the calculation of distillation trajectories and the calculation of that corresponding to the searched distillation boundaries. The algorithm is applied to 4 ternary liquid-vapour systems to test its validity. Vicepresidency of Research (University of Alicante) and Generalitat Valenciana (GV/2007/125)
Analytical solutions of advection-dispersion equation for varying ...
African Journals Online (AJOL)
Analytical solutions are obtained for a one-dimensional advection–dispersion equation with variable coefficients in a longitudinal domain. Two cases are considered. In the first one the solute dispersion is time dependent along a uniform flow in a semi-infinite domain while in the second case the dispersion and the velocity ...
Analytical solutions for one-dimensional advection–dispersion ...
Indian Academy of Sciences (India)
We present simple analytical solutions for the unsteady advection–dispersion equations describing the pollutant concentration (, ) in one dimension. The solutions are obtained by using Laplace transformation technique. In this study we divided the river into two regions ≤ 0 and ≥0 and the origin at = 0.
Analytical solutions in the two-cavity coupling problem
International Nuclear Information System (INIS)
Ayzatsky, N.I.
2000-01-01
Analytical solutions of precise equations that describe the rf-coupling of two cavities through a co-axial cylindrical hole are given for various limited cases.For their derivation we have used the method of solution of an infinite set of linear algebraic equations,based on its transformation into dual integral equations
On Analytic Solution of resonant Mixing for Solar Neutrino Oscillations
Masatoshi, ITO; Takao, KANEKO; Masami, NAKAGAWA; Department of Physics, Meijo University; Department of Physics, Meijo University; Department of Physics, Meijo University
1988-01-01
Behavior of resonant mixing in matter-enhancing region for solar neutrino oscillation, the Mikheyev-Smirnov-Wolfenstein mechanism, is reanalyzed by means of an analytic treatment recently proposed. We give solutions in terms of confluent hypergeometric functions, which agree with "exact" solutions of coupled differential equations.
Analytical Solutions of the KDV-KZK Equation
Gan, W. S.
The KdV-KZK equation for fluids developed by me was presented at the ICSV 11 in St. Petersburg in July 2004. In this paper, I made an attempt on the analytical solutions of this equation using the perturbation method. Some physical interpretation of the solutions is given. A brief introduction to KdV-KZK equation for solids is given
Transmission Line Adapted Analytical Power Charts Solution
Sakala, Japhet D.; Daka, James S. J.; Setlhaolo, Ditiro; Malichi, Alec Pulu
2017-08-01
The performance of a transmission line has been assessed over the years using power charts. These are graphical representations, drawn to scale, of the equations that describe the performance of transmission lines. Various quantities that describe the performance, such as sending end voltage, sending end power and compensation to give zero voltage regulation, may be deduced from the power charts. Usually required values are read off and then converted using the appropriate scales and known relationships. In this paper, the authors revisit this area of circle diagrams for transmission line performance. The work presented here formulates the mathematical model that analyses the transmission line performance from the power charts relationships and then uses them to calculate the transmission line performance. In this proposed approach, it is not necessary to draw the power charts for the solution. However the power charts may be drawn for the visual presentation. The method is based on applying derived equations and is simple to use since it does not require rigorous derivations.
A Semi-Analytical Model for Dispersion Modelling Studies in the Atmospheric Boundary Layer
Gupta, A.; Sharan, M.
2017-12-01
The severe impact of harmful air pollutants has always been a cause of concern for a wide variety of air quality analysis. The analytical models based on the solution of the advection-diffusion equation have been the first and remain the convenient way for modeling air pollutant dispersion as it is easy to handle the dispersion parameters and related physics in it. A mathematical model describing the crosswind integrated concentration is presented. The analytical solution to the resulting advection-diffusion equation is limited to a constant and simple profiles of eddy diffusivity and wind speed. In practice, the wind speed depends on the vertical height above the ground and eddy diffusivity profiles on the downwind distance from the source as well as the vertical height. In the present model, a method of eigen-function expansion is used to solve the resulting partial differential equation with the appropriate boundary conditions. This leads to a system of first order ordinary differential equations with a coefficient matrix depending on the downwind distance. The solution of this system, in general, can be expressed in terms of Peano-baker series which is not easy to compute, particularly when the coefficient matrix becomes non-commutative (Martin et al., 1967). An approach based on Taylor's series expansion is introduced to find the numerical solution of first order system. The method is applied to various profiles of wind speed and eddy diffusivities. The solution computed from the proposed methodology is found to be efficient and accurate in comparison to those available in the literature. The performance of the model is evaluated with the diffusion datasets from Copenhagen (Gryning et al., 1987) and Hanford (Doran et al., 1985). In addition, the proposed method is used to deduce three dimensional concentrations by considering the Gaussian distribution in crosswind direction, which is also evaluated with diffusion data corresponding to a continuous point source.
Analytical Solution for 2D Inter-Well Porous Flow in a Rectangular Reservoir
Directory of Open Access Journals (Sweden)
Junfeng Ding
2018-04-01
Full Text Available Inter-well fluid flows through porous media are commonly encountered in the production of groundwater, oil, and geothermal energy. In this paper, inter-well porous flow inside a rectangular reservoir is solved based on the complex variable function theory combined with the method of mirror images. In order to derive the solution analytically, the inter-well flow is modeled as a 2D flow in a homogenous and isotropic porous medium. The resulted exact analytical solution takes the form of an infinite series, but it can be truncated to give high accuracy approximation. In terms of nine cases of inter-well porous flow associated with enhanced geothermal systems, the applications of the obtained analytical solution are demonstrated, and the convergence properties of the truncated series are investigated. It is shown that the convergent rate of the truncated series increases with the symmetric level of well distribution inside the reservoir, and the adoption of Euler transform significantly accelerates the convergence of alternating series cases associated with asymmetric well distribution. In principle, the analytical solution proposed in this paper can be applied to other scientific and engineering fields, as long as the involved problem is governed by 2D Laplace equation in a rectangular domain and subject to similar source/sink and boundary conditions, i.e., isolated point sources/sinks and uniform Dirichlet or homogeneous Neumann boundary conditions.
International Nuclear Information System (INIS)
Jing, Wu; Chun-Yan, Xiao
2010-01-01
The solutions to the electromagnetic field excited by a long axial current outside a conductive and magnetic cylindrical shell of finite length are studied in this paper. The more accurate analytical solutions are obtained by solving the proper boundary value problems by the separation variable method. Then the solutions are simplified according to asymptotic formulas of Bessel functions. Compared with the accurate solutions, the simplified solutions do not contain the Bessel functions and the inverse operation of the singular matrix, and can be calculated out fast by computers. The simplified solutions are more suitable for the cylindrical shell of high permeability and conductivity excited by a high frequency source. Both of the numerical results and the physical experimental results validate the simplified solutions obtained. (classical areas of phenomenology)
A comprehensive analytical solution of the nonlinear pendulum
International Nuclear Information System (INIS)
Ochs, Karlheinz
2011-01-01
In this paper, an analytical solution for the differential equation of the simple but nonlinear pendulum is derived. This solution is valid for any time and is not limited to any special initial instance or initial values. Moreover, this solution holds if the pendulum swings over or not. The method of approach is based on Jacobi elliptic functions and starts with the solution of a pendulum that swings over. Due to a meticulous sign correction term, this solution is also valid if the pendulum does not swing over.
An analytical solution for improved HIFU SAR estimation
International Nuclear Information System (INIS)
Dillon, C R; Vyas, U; Christensen, D A; Roemer, R B; Payne, A
2012-01-01
Accurate determination of the specific absorption rates (SARs) present during high intensity focused ultrasound (HIFU) experiments and treatments provides a solid physical basis for scientific comparison of results among HIFU studies and is necessary to validate and improve SAR predictive software, which will improve patient treatment planning, control and evaluation. This study develops and tests an analytical solution that significantly improves the accuracy of SAR values obtained from HIFU temperature data. SAR estimates are obtained by fitting the analytical temperature solution for a one-dimensional radial Gaussian heating pattern to the temperature versus time data following a step in applied power and evaluating the initial slope of the analytical solution. The analytical method is evaluated in multiple parametric simulations for which it consistently (except at high perfusions) yields maximum errors of less than 10% at the center of the focal zone compared with errors up to 90% and 55% for the commonly used linear method and an exponential method, respectively. For high perfusion, an extension of the analytical method estimates SAR with less than 10% error. The analytical method is validated experimentally by showing that the temperature elevations predicted using the analytical method's SAR values determined for the entire 3D focal region agree well with the experimental temperature elevations in a HIFU-heated tissue-mimicking phantom. (paper)
ANALYTICAL SOLUTION OF THE K-TH ORDER AUTONOMOUS ORDINARY DIFFERENTIAL EQUATION
Directory of Open Access Journals (Sweden)
Ronald Orozco López
2017-04-01
Full Text Available The main objective of this paper is to find the analytical solution of the autonomous equation y(k = f (y and prove its convergence using autonomous polynomials of order k, define here in addition of the formula of Faá di Bruno for composition of functions and Bell polynomials. Autonomous polynomials of order k are defined in terms of the boundary values of the equation. Also special values of autonomous polynomials of order 1 are given.
Generalized Analytical Treatment Of The Source Strength In The Solution Of The Diffusion Equation
International Nuclear Information System (INIS)
Essa, Kh.S.M.; EI-Otaify, M.S.
2007-01-01
The source release strength (which is an integral part of the mathematical formulation of the diffusion equation) together with the boundary conditions leads to three different forms of the diffusion equation. The obtained forms have been solved analytically under different boundary conditions, by using transformation of axis, cosine, and Fourier transformation. Three equivalent alternative mathematical formulations of the problem have been obtained. The estimated solution of the concentrations at the ground source has been used for comparison with observed concentrations data for SF 6 tracer experiments in low wind and unstable conditions at lIT Delhi sports ground. A good agreement between estimated and observed concentrations is found
IMPSOR, 3-D Boundary Problems Solution for Thermal Conductivity Calculation
International Nuclear Information System (INIS)
Wilson, D.G.; Williams, M.A.
1994-01-01
1 - Description of program or function: IMPSOR implements finite difference methods for multidimensional moving boundary problems with Dirichlet or Neumann boundary conditions. The geometry of the spatial domain is a rectangular parallelepiped with dimensions specified by the user. Dirichlet or Neumann boundary conditions may be specified on each face of the box independently. The user defines the initial and boundary conditions as well as the thermal and physical properties of the problem and several parameters for the numerical method, e.g. degree of implicitness, time-step size. 2 - Method of solution: The spatial domain is partitioned and the governing equation discretized, which yields a nonlinear system of equations at each time-step. This nonlinear system is solved using a successive over-relaxation (SOR) algorithm. For a given node, the previous iteration's temperature and thermal conductivity values are used for advanced points with current values at previous points. This constitutes a Gauss-Seidel iteration. Most of the computing time used by the numerical method is spent in the iterative solution of the nonlinear system. The SOR scheme employed is designed to accommodate vectorization on a Cray X-MP. 3 - Restrictions on the complexity of the problem: Maximum of 70,000 nodes
An analytical model for radioactive pollutant release simulation in the atmospheric boundary layer
International Nuclear Information System (INIS)
Weymar, Guilherme J.; Vilhena, Marco T.; Bodmann, Bardo E.J.; Buske, Daniela; Quadros, Regis
2013-01-01
Simulations of emission of radioactive substances in the atmosphere from the Brazilian nuclear power plant Angra 1 are a necessary tool for control and elaboration of emergency plans as a preventive action for possible accidents. In the present work we present an analytical solution for radioactive pollutant dispersion in the atmosphere, solving the time-dependent three-dimensional advection-diffusion equation. The experiment here used as a reference in the simulations consisted of the controlled releases of radioactive tritiated water vapor from the meteorological tower close to the power plant at Itaorna Beach. The wind profile was determined using experimental meteorological data and the micrometeorological parameters were calculated from empirical equations obtained in the literature. We report on a novel analytical formulation for the concentration of products of a radioactive chain released in the atmospheric boundary layer and solve the set of coupled equations for each chain radionuclide by the GILTT solution, assuming the decay of all progenitors radionuclide for each equation as source term. Further we report on numerical simulations, as an explicit but fictitious example and consider three radionuclides in the radioactive chain of Uranium 235. (author)
An analytical model for radioactive pollutant release simulation in the atmospheric boundary layer
Energy Technology Data Exchange (ETDEWEB)
Weymar, Guilherme J.; Vilhena, Marco T.; Bodmann, Bardo E.J., E-mail: guicefetrs@gmail.com, E-mail: mtmbvilhena@gmail.com, E-mail: bejbodmann@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Buske, Daniela; Quadros, Regis, E-mail: danielabuske@gmail.com, E-mail: quadros99@gmail.com [Universidade Federal de Pelotas (UFPel), Capao do Leao, RS (Brazil). Programa de Pos-Graduacao em Modelagem Matematica
2013-07-01
Simulations of emission of radioactive substances in the atmosphere from the Brazilian nuclear power plant Angra 1 are a necessary tool for control and elaboration of emergency plans as a preventive action for possible accidents. In the present work we present an analytical solution for radioactive pollutant dispersion in the atmosphere, solving the time-dependent three-dimensional advection-diffusion equation. The experiment here used as a reference in the simulations consisted of the controlled releases of radioactive tritiated water vapor from the meteorological tower close to the power plant at Itaorna Beach. The wind profile was determined using experimental meteorological data and the micrometeorological parameters were calculated from empirical equations obtained in the literature. We report on a novel analytical formulation for the concentration of products of a radioactive chain released in the atmospheric boundary layer and solve the set of coupled equations for each chain radionuclide by the GILTT solution, assuming the decay of all progenitors radionuclide for each equation as source term. Further we report on numerical simulations, as an explicit but fictitious example and consider three radionuclides in the radioactive chain of Uranium 235. (author)
Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.
2018-03-01
Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.
International Nuclear Information System (INIS)
Marshall, H.; Sahraoui, M.; Kaviany, M.
1994-01-01
The Kuwabara solution for creeping fluid flow through periodic arrangement of cylinders is widely used in analytic and numerical studies of fibrous filters. Numerical solutions have shown that the Kuwabara solution has systematic errors, and when used for the particle trajectories in filters it results in some error in the predicted filter efficiency. The numerical solutions, although accurate, preclude further analytic treatments, and are not as compact and convenient to use as the Kuwabara solution. By reexamining the outer boundary conditions of the Kuwabara solution, a correction term to the Kuwabara solution has been derived to obtain an extended solution that is more accurate and improves prediction of the filter efficiency. By comparison with the numerical solutions, it is shown that the Kuwabara solution is the high porosity asymptote, and that the extended solution has an improved porosity dependence. A rectification is explained that can make particle collection less efficient for periodic, in-line arrangements of fibers with particle diffusion or body force. This rectification also results in the alignment of particles with inertia (i.e., high Stokes number particles)
Analytical solution to the hybrid diffusion-transport equation
International Nuclear Information System (INIS)
Nanneh, M.M.; Williams, M.M.R.
1986-01-01
A special integral equation was derived in previous work using a hybrid diffusion-transport theory method for calculating the flux distribution in slab lattices. In this paper an analytical solution of this equation has been carried out on a finite reactor lattice. The analytical results of disadvantage factors are shown to be accurate in comparison with the numerical results and accurate transport theory calculations. (author)
Approximate analytical solutions in the analysis of elastic structures of complex geometry
Goloskokov, Dmitriy P.; Matrosov, Alexander V.
2018-05-01
A method of analytical decomposition for analysis plane structures of a complex configuration is presented. For each part of the structure in the form of a rectangle all the components of the stress-strain state are constructed by the superposition method. The method is based on two solutions derived in the form of trigonometric series with unknown coefficients using the method of initial functions. The coefficients are determined from the system of linear algebraic equations obtained while satisfying the boundary conditions and the conditions for joining the structure parts. The components of the stress-strain state of a bent plate with holes are calculated using the analytical decomposition method.
On the General Analytical Solution of the Kinematic Cosserat Equations
Michels, Dominik L.
2016-09-01
Based on a Lie symmetry analysis, we construct a closed form solution to the kinematic part of the (partial differential) Cosserat equations describing the mechanical behavior of elastic rods. The solution depends on two arbitrary analytical vector functions and is analytical everywhere except a certain domain of the independent variables in which one of the arbitrary vector functions satisfies a simple explicitly given algebraic relation. As our main theoretical result, in addition to the construction of the solution, we proof its generality. Based on this observation, a hybrid semi-analytical solver for highly viscous two-way coupled fluid-rod problems is developed which allows for the interactive high-fidelity simulations of flagellated microswimmers as a result of a substantial reduction of the numerical stiffness.
On the General Analytical Solution of the Kinematic Cosserat Equations
Michels, Dominik L.; Lyakhov, Dmitry; Gerdt, Vladimir P.; Hossain, Zahid; Riedel-Kruse, Ingmar H.; Weber, Andreas G.
2016-01-01
Based on a Lie symmetry analysis, we construct a closed form solution to the kinematic part of the (partial differential) Cosserat equations describing the mechanical behavior of elastic rods. The solution depends on two arbitrary analytical vector functions and is analytical everywhere except a certain domain of the independent variables in which one of the arbitrary vector functions satisfies a simple explicitly given algebraic relation. As our main theoretical result, in addition to the construction of the solution, we proof its generality. Based on this observation, a hybrid semi-analytical solver for highly viscous two-way coupled fluid-rod problems is developed which allows for the interactive high-fidelity simulations of flagellated microswimmers as a result of a substantial reduction of the numerical stiffness.
Analytical solutions of weakly coupled map lattices using recurrence relations
Energy Technology Data Exchange (ETDEWEB)
Sotelo Herrera, Dolores, E-mail: dsh@dfmf.uned.e [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); San Martin, Jesus [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); Dep. Fisica Matematica y de Fluidos, UNED, Senda del Rey 9-28040 Madrid (Spain)
2009-07-20
By using asymptotic methods recurrence relations are found that rule weakly CML evolution, with both global and diffusive coupling. The solutions obtained from these relations are very general because they do not hold restrictions about boundary conditions, initial conditions and number of oscilators in the CML. Furthermore, oscillators are ruled by an arbitraty C{sup 2} function.
Analytical and grid-free solutions to the Lighthill-Whitham-Richards traffic flow model
Mazaré , Pierre Emmanuel; Dehwah, Ahmad H.; Claudel, Christian G.; Bayen, Alexandre M.
2011-01-01
In this article, we propose a computational method for solving the Lighthill-Whitham-Richards (LWR) partial differential equation (PDE) semi-analytically for arbitrary piecewise-constant initial and boundary conditions, and for arbitrary concave fundamental diagrams. With these assumptions, we show that the solution to the LWR PDE at any location and time can be computed exactly and semi-analytically for a very low computational cost using the cumulative number of vehicles formulation of the problem. We implement the proposed computational method on a representative traffic flow scenario to illustrate the exactness of the analytical solution. We also show that the proposed scheme can handle more complex scenarios including traffic lights or moving bottlenecks. The computational cost of the method is very favorable, and is compared with existing algorithms. A toolbox implementation available for public download is briefly described, and posted at http://traffic.berkeley.edu/project/downloads/lwrsolver. © 2011 Elsevier Ltd.
Analytical and grid-free solutions to the Lighthill-Whitham-Richards traffic flow model
Mazaré, Pierre Emmanuel
2011-12-01
In this article, we propose a computational method for solving the Lighthill-Whitham-Richards (LWR) partial differential equation (PDE) semi-analytically for arbitrary piecewise-constant initial and boundary conditions, and for arbitrary concave fundamental diagrams. With these assumptions, we show that the solution to the LWR PDE at any location and time can be computed exactly and semi-analytically for a very low computational cost using the cumulative number of vehicles formulation of the problem. We implement the proposed computational method on a representative traffic flow scenario to illustrate the exactness of the analytical solution. We also show that the proposed scheme can handle more complex scenarios including traffic lights or moving bottlenecks. The computational cost of the method is very favorable, and is compared with existing algorithms. A toolbox implementation available for public download is briefly described, and posted at http://traffic.berkeley.edu/project/downloads/lwrsolver. © 2011 Elsevier Ltd.
Analytical solutions for systems of partial differential-algebraic equations.
Benhammouda, Brahim; Vazquez-Leal, Hector
2014-01-01
This work presents the application of the power series method (PSM) to find solutions of partial differential-algebraic equations (PDAEs). Two systems of index-one and index-three are solved to show that PSM can provide analytical solutions of PDAEs in convergent series form. What is more, we present the post-treatment of the power series solutions with the Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions. The main advantage of the proposed methodology is that the procedure is based on a few straightforward steps and it does not generate secular terms or depends of a perturbation parameter.
Analytical solution for a coaxial plasma gun: Weak coupling limit
International Nuclear Information System (INIS)
Dietz, D.
1987-01-01
The analytical solution of the system of coupled ODE's which describes the time evolution of an ideal (i.e., zero resistance) coaxial plasma gun operating in the snowplow mode is obtained in the weak coupling limit, i.e, when the gun is fully influenced by the driving (RLC) circuit in which it resides but the circuit is negligibly influenced by the gun. Criteria for the validity of this limit are derived and numerical examples are presented. Although others have obtained approximate, asymptotic and numerical solutions of the equations, the present analytical results seem not to have appeared previously in the literature
Analytical solution for Van der Pol-Duffing oscillators
International Nuclear Information System (INIS)
Kimiaeifar, A.; Saidi, A.R.; Bagheri, G.H.; Rahimpour, M.; Domairry, D.G.
2009-01-01
In this paper, the problem of single-well, double-well and double-hump Van der Pol-Duffing oscillator is studied. Governing equation is solved analytically using a new kind of analytic technique for nonlinear problems namely the 'Homotopy Analysis Method' (HAM), for the first time. Present solution gives an expression which can be used in wide range of time for all domain of response. Comparisons of the obtained solutions with numerical results show that this method is effective and convenient for solving this problem. This method is a capable tool for solving this kind of nonlinear problems.
Analytic solution to variance optimization with no short positions
Kondor, Imre; Papp, Gábor; Caccioli, Fabio
2017-12-01
We consider the variance portfolio optimization problem with a ban on short selling. We provide an analytical solution by means of the replica method for the case of a portfolio of independent, but not identically distributed, assets. We study the behavior of the solution as a function of the ratio r between the number N of assets and the length T of the time series of returns used to estimate risk. The no-short-selling constraint acts as an asymmetric \
On numerical-analytic techniques for boundary value problems
Czech Academy of Sciences Publication Activity Database
Rontó, András; Rontó, M.; Shchobak, N.
2012-01-01
Roč. 12, č. 3 (2012), s. 5-10 ISSN 1335-8243 Institutional support: RVO:67985840 Keywords : numerical-analytic method * periodic successive approximations * Lyapunov-Schmidt method Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/aeei.2012.12.issue-3/v10198-012-0035-1/v10198-012-0035-1.xml?format=INT
Energy Technology Data Exchange (ETDEWEB)
Jo, Jong Chull; Shin, Won Ky [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)
1997-12-31
This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available. 22 refs., 3 figs. (Author)
International Nuclear Information System (INIS)
Jo, Jong Chull; Shin, Won Ky
1997-01-01
This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available
Energy Technology Data Exchange (ETDEWEB)
Jo, Jong Chull; Shin, Won Ky [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)
1998-12-31
This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available. 22 refs., 3 figs. (Author)
Wang, Chaoyue; Li, Hailong; Wan, Li; Wang, Xusheng; Jiang, Xiaowei
2014-07-01
Pumping wells are common in coastal aquifers affected by tides. Here we present analytical solutions of groundwater table or head variations during a constant rate pumping from a single, fully-penetrating well in coastal aquifer systems comprising an unconfined aquifer, a confined aquifer and semi-permeable layer between them. The unconfined aquifer terminates at the coastline (or river bank) and the other two layers extend under tidal water (sea or tidal river) for a certain distance L. Analytical solutions are derived for 11 reasonable combinations of different situations of the L-value (zero, finite, and infinite), of the middle layer's permeability (semi-permeable and impermeable), of the boundary condition at the aquifer's submarine terminal (Dirichlet describing direct connection with seawater and no-flow describing the existence of an impermeable capping), and of the tidal water body (sea and tidal river). Solutions are discussed with application examples in fitting field observations and parameter estimations.
Analytical solution of the transpiration on the boundary layer flow ...
African Journals Online (AJOL)
The values of the skin friction coefficient, the local Nusselt number, curvature parameter, buoyancy or mixed convection parameter and Prandtl number are tabulated. Comparison is also made with the corresponding results of viscous fluid with no mixed convection and an excellent agreement is noted. Keywords: Vertical ...
International Nuclear Information System (INIS)
Lancaster, H.
1982-01-01
Although the SUPERFISH program is used for calculating the design parameters of an RFQ structure with complex vanes, an analytical solution for electrical properties of an RFQ with simple vanes provides insight into the parametric behavior of these more complicated resonators. The fields in an inclined plane wave guide with proper boundary conditions match those in one quadrant of an RFQ. The principle of duality is used to exploit the solutions to a radial transmission line in solving the field equations. Calculated are the frequency equation, frequency sensitivity factors, electric field, magnetic field, stored energy (U), power dissipation, and quality factor
Analytical Determination of the Boundaries of Transition Natural Zones (Ecotones
Directory of Open Access Journals (Sweden)
Rulev Aleksandr Sergeevich
2015-04-01
Full Text Available The morphological units that are part of the catena, are recognized in accordance with the response to the geomorphological and soil processes. The spatial relationship is the main unit between them. In this regard, the landscape patterns acquire a cascade type, and their main link becomes the zonal catena, which has specific stable features, reflecting the dependence of the complex of natural conditions and processes of latitude. However, clear-cut boundaries do not exist – they have spatial and temporal displacement, associated with the cyclical nature of the global climatic processes. The landscapes in these transition zones (ecotones a priori can be considered unstable. The detection of ecotones boundaries provides the opportunity to divide natural zones to potentially stable and potentially unstable parts for planning measures on preventing the degradation of landscapes localized in them. The latitude of the ecotones localization can be determined through the connection of the radiation heat flux on land (R with the normalized geographical latitude of the subboreal belt (x, which is described by the equation of the energy balance, expressed in the logistic function R = А / [1 + 0,72 exp(4,25 – Bx] + C.
Horses for courses: analytical tools to explore planetary boundaries
van Vuuren, Detlef P.; Lucas, Paul L.; Häyhä, Tiina; Cornell, Sarah E.; Stafford-Smith, Mark
2016-03-01
There is a need for more integrated research on sustainable development and global environmental change. In this paper, we focus on the planetary boundaries framework to provide a systematic categorization of key research questions in relation to avoiding severe global environmental degradation. The four categories of key questions are those that relate to (1) the underlying processes and selection of key indicators for planetary boundaries, (2) understanding the impacts of environmental pressure and connections between different types of impacts, (3) better understanding of different response strategies to avoid further degradation, and (4) the available instruments to implement such strategies. Clearly, different categories of scientific disciplines and associated model types exist that can accommodate answering these questions. We identify the strength and weaknesses of different research areas in relation to the question categories, focusing specifically on different types of models. We discuss that more interdisciplinary research is need to increase our understanding by better linking human drivers and social and biophysical impacts. This requires better collaboration between relevant disciplines (associated with the model types), either by exchanging information or by fully linking or integrating them. As fully integrated models can become too complex, the appropriate type of model (the racehorse) should be applied for answering the target research question (the race course).
Bifurcation of solutions to Hamiltonian boundary value problems
McLachlan, R. I.; Offen, C.
2018-06-01
A bifurcation is a qualitative change in a family of solutions to an equation produced by varying parameters. In contrast to the local bifurcations of dynamical systems that are often related to a change in the number or stability of equilibria, bifurcations of boundary value problems are global in nature and may not be related to any obvious change in dynamical behaviour. Catastrophe theory is a well-developed framework which studies the bifurcations of critical points of functions. In this paper we study the bifurcations of solutions of boundary-value problems for symplectic maps, using the language of (finite-dimensional) singularity theory. We associate certain such problems with a geometric picture involving the intersection of Lagrangian submanifolds, and hence with the critical points of a suitable generating function. Within this framework, we then study the effect of three special cases: (i) some common boundary conditions, such as Dirichlet boundary conditions for second-order systems, restrict the possible types of bifurcations (for example, in generic planar systems only the A-series beginning with folds and cusps can occur); (ii) integrable systems, such as planar Hamiltonian systems, can exhibit a novel periodic pitchfork bifurcation; and (iii) systems with Hamiltonian symmetries or reversing symmetries can exhibit restricted bifurcations associated with the symmetry. This approach offers an alternative to the analysis of critical points in function spaces, typically used in the study of bifurcation of variational problems, and opens the way to the detection of more exotic bifurcations than the simple folds and cusps that are often found in examples.
Decision Exploration Lab : A Visual Analytics Solution for Decision Management
Broeksema, Bertjan; Baudel, Thomas; Telea, Alex; Crisafulli, Paolo
2013-01-01
We present a visual analytics solution designed to address prevalent issues in the area of Operational Decision Management (ODM). In ODM, which has its roots in Artificial Intelligence (Expert Systems) and Management Science, it is increasingly important to align business decisions with business
Foam for Enhanced Oil Recovery : Modeling and Analytical Solutions
Ashoori, E.
2012-01-01
Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our
Analytical construction of peaked solutions for the nonlinear ...
African Journals Online (AJOL)
These results demonstrate the existence of peaked pulses propagating through a pair plasma. The algebraic decay rate of the pulses are determined analytically, as well. The method discussed here can be applied to approximate solutions to similar nonlinear partial differential equations of nonlinear Schrödinger type.
A hybrid ICT-solution for smart meter data analytics
DEFF Research Database (Denmark)
Liu, Xiufeng; Nielsen, Per Sieverts
2016-01-01
data processing, and using the machine learning toolkit, MADlib, for doing in-database data analytics in PostgreSQL database. This paper evaluates the key technologies of the proposed ICT-solution, and the results show the effectiveness and efficiency of using the system for both batch and online...
General analytical shakedown solution for structures with kinematic hardening materials
Guo, Baofeng; Zou, Zongyuan; Jin, Miao
2016-09-01
The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.
International Nuclear Information System (INIS)
Baxter, Mathew; Van Gorder, Robert A
2013-01-01
We obtain solutions to a transformation of the axially symmetric Ernst equation, which governs a class of exact solutions of Einstein's field equations. Physically, the equation serves as a model of axially symmetric stationary vacuum gravitational fields. By an application of the method of homotopy analysis, we are able to construct approximate analytic solutions to the relevant boundary value problem in the case where exact solutions are not possible. The results presented constitute a solution for a complicated nonlinear and singular initial value problem. Through appropriate selection of the auxiliary linear operator and convergence control parameter, we are able to obtain low order approximations which minimize residual error over the problem domain. The benefit to such approach is that we obtain very accurate approximations after computing very few terms, hence the computational efficiency is high. Finally, an exact solution is provided in a special case, and this corresponds to the analytical solutions obtained in the more general case. The approximate solutions agree qualitatively with the exact solutions. (paper)
Lin, Yezhi; Liu, Yinping; Li, Zhibin
2013-01-01
The Adomian decomposition method (ADM) is one of the most effective methods to construct analytic approximate solutions for nonlinear differential equations. In this paper, based on the new definition of the Adomian polynomials, Rach (2008) [22], the Adomian decomposition method and the Padé approximants technique, a new algorithm is proposed to construct analytic approximate solutions for nonlinear fractional differential equations with initial or boundary conditions. Furthermore, a MAPLE software package is developed to implement this new algorithm, which is user-friendly and efficient. One only needs to input the system equation, initial or boundary conditions and several necessary parameters, then our package will automatically deliver the analytic approximate solutions within a few seconds. Several different types of examples are given to illustrate the scope and demonstrate the validity of our package, especially for non-smooth initial value problems. Our package provides a helpful and easy-to-use tool in science and engineering simulations. Program summaryProgram title: ADMP Catalogue identifier: AENE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12011 No. of bytes in distributed program, including test data, etc.: 575551 Distribution format: tar.gz Programming language: MAPLE R15. Computer: PCs. Operating system: Windows XP/7. RAM: 2 Gbytes Classification: 4.3. Nature of problem: Constructing analytic approximate solutions of nonlinear fractional differential equations with initial or boundary conditions. Non-smooth initial value problems can be solved by this program. Solution method: Based on the new definition of the Adomian polynomials [1], the Adomian decomposition method and the Pad
A semi-analytical solution for slug tests in an unconfined aquifer considering unsaturated flow
Sun, Hongbing
2016-01-01
A semi-analytical solution considering the vertical unsaturated flow is developed for groundwater flow in response to a slug test in an unconfined aquifer in Laplace space. The new solution incorporates the effects of partial penetrating, anisotropy, vertical unsaturated flow, and a moving water table boundary. Compared to the Kansas Geological Survey (KGS) model, the new solution can significantly improve the fittings of the modeled to the measured hydraulic heads at the late stage of slug tests in an unconfined aquifer, particularly when the slug well has a partially submerged screen and moisture drainage above the water table is significant. The radial hydraulic conductivities estimated with the new solution are comparable to those from the KGS, Bouwer and Rice, and Hvorslev methods. In addition, the new solution also can be used to examine the vertical conductivity, specific storage, specific yield, and the moisture retention parameters in an unconfined aquifer based on slug test data.
Analytical Solution of Flow and Heat Transfer over a Permeable Stretching Wall in a Porous Medium
Directory of Open Access Journals (Sweden)
M. Dayyan
2013-01-01
Full Text Available Boundary layer flow through a porous medium over a stretching porous wall has seen solved with analytical solution. It has been considered two wall boundary conditions which are power-law distribution of either wall temperature or heat flux. These are general enough to cover the isothermal and isoflux cases. In addition to momentum, both first and second laws of thermodynamics analyses of the problem are investigated. The governing equations are transformed into a system of ordinary differential equations. The transformed ordinary equations are solved analytically using homotopy analysis method. A comprehensive parametric study is presented, and it is shown that the rate of heat transfer increases with Reynolds number, Prandtl number, and suction to the surface.
Triangular dislocation: an analytical, artefact-free solution
Nikkhoo, Mehdi; Walter, Thomas R.
2015-05-01
Displacements and stress-field changes associated with earthquakes, volcanoes, landslides and human activity are often simulated using numerical models in an attempt to understand the underlying processes and their governing physics. The application of elastic dislocation theory to these problems, however, may be biased because of numerical instabilities in the calculations. Here, we present a new method that is free of artefact singularities and numerical instabilities in analytical solutions for triangular dislocations (TDs) in both full-space and half-space. We apply the method to both the displacement and the stress fields. The entire 3-D Euclidean space {R}3 is divided into two complementary subspaces, in the sense that in each one, a particular analytical formulation fulfils the requirements for the ideal, artefact-free solution for a TD. The primary advantage of the presented method is that the development of our solutions involves neither numerical approximations nor series expansion methods. As a result, the final outputs are independent of the scale of the input parameters, including the size and position of the dislocation as well as its corresponding slip vector components. Our solutions are therefore well suited for application at various scales in geoscience, physics and engineering. We validate the solutions through comparison to other well-known analytical methods and provide the MATLAB codes.
The big bang and inflation united by an analytic solution
International Nuclear Information System (INIS)
Bars, Itzhak; Chen, Shih-Hung
2011-01-01
Exact analytic solutions for a class of scalar-tensor gravity theories with a hyperbolic scalar potential are presented. Using an exact solution we have successfully constructed a model of inflation that produces the spectral index, the running of the spectral index, and the amplitude of scalar perturbations within the constraints given by the WMAP 7 years data. The model simultaneously describes the big bang and inflation connected by a specific time delay between them so that these two events are regarded as dependent on each other. In solving the Friedmann equations, we have utilized an essential Weyl symmetry of our theory in 3+1 dimensions which is a predicted remaining symmetry of 2T-physics field theory in 4+2 dimensions. This led to a new method of obtaining analytic solutions in the 1T field theory which could in principle be used to solve more complicated theories with more scalar fields. Some additional distinguishing properties of the solution includes the fact that there are early periods of time when the slow-roll approximation is not valid. Furthermore, the inflaton does not decrease monotonically with time; rather, it oscillates around the potential minimum while settling down, unlike the slow-roll approximation. While the model we used for illustration purposes is realistic in most respects, it lacks a mechanism for stopping inflation. The technique of obtaining analytic solutions opens a new window for studying inflation, and other applications, more precisely than using approximations.
International Nuclear Information System (INIS)
Khambampati, Anil Kumar; Kim, Sin; Lee, Bo An; Kim, Kyung Youn
2012-01-01
This paper is about locating the boundary of a moving cavity within a homogeneous background from the voltage measurements recorded on the outer boundary. An inverse boundary problem of a moving cavity is formulated by considering a two-phase vapor–liquid flow in a pipe. The conductivity of the flow components (vapor and liquid) is assumed to be constant and known a priori while the location and shape of the inclusion (vapor) are the unknowns to be estimated. The forward problem is solved using the boundary element method (BEM) with the integral equations solved analytically. A special situation is considered such that the cavity changes its location and shape during the time taken to acquire a full set of independent measurement data. The boundary of a cavity is assumed to be elliptic and is parameterized with Fourier series. The inverse problem is treated as a state estimation problem with the Fourier coefficients that represent the center and radii of the cavity as the unknowns to be estimated. An extended Kalman filter (EKF) is used as an inverse algorithm to estimate the time varying Fourier coefficients. Numerical experiments are shown to evaluate the performance of the proposed method. Through the results, it can be noticed that the proposed BEM with EKF method is successful in estimating the boundary of a moving cavity. (paper)
Analytic study of nonperturbative solutions in open string field theory
International Nuclear Information System (INIS)
Bars, I.; Kishimoto, I.; Matsuo, Y.
2003-01-01
We propose an analytic framework to study the nonperturbative solutions of Witten's open string field theory. The method is based on the Moyal star formulation where the kinetic term can be split into two parts. The first one describes the spectrum of two identical half strings which are independent from each other. The second one, which we call midpoint correction, shifts the half string spectrum to that of the standard open string. We show that the nonlinear equation of motion of string field theory is exactly solvable at zeroth order in the midpoint correction. An infinite number of solutions are classified in terms of projection operators. Among them, there exists only one stable solution which is identical to the standard butterfly state. We include the effect of the midpoint correction around each exact zeroth order solution as a perturbation expansion which can be formally summed to the complete exact solution
An analytic solution of the static problem of inclined risers conveying fluid
Alfosail, Feras
2016-05-28
We use the method of matched asymptotic expansion to develop an analytic solution to the static problem of clamped–clamped inclined risers conveying fluid. The inclined riser is modeled as an Euler–Bernoulli beam taking into account its self-weight, mid-plane stretching, an applied axial tension, and the internal fluid velocity. The solution consists of three parts: an outer solution valid away from the two boundaries and two inner solutions valid near the two ends. The three solutions are then matched and combined into a so-called composite expansion. A Newton–Raphson method is used to determine the value of the mid-plane stretching corresponding to each applied tension and internal velocity. The analytic solution is in good agreement with those obtained with other solution methods for large values of applied tensions. Therefore, it can be used to replace other mathematical solution methods that suffer numerical limitations and high computational cost. © 2016 Springer Science+Business Media Dordrecht
On the Partial Analytical Solution of the Kirchhoff Equation
Michels, Dominik L.
2015-09-01
We derive a combined analytical and numerical scheme to solve the (1+1)-dimensional differential Kirchhoff system. Here the object is to obtain an accurate as well as an efficient solution process. Purely numerical algorithms typically have the disadvantage that the quality of solutions decreases enormously with increasing temporal step sizes, which results from the numerical stiffness of the underlying partial differential equations. To prevent that, we apply a differential Thomas decomposition and a Lie symmetry analysis to derive explicit analytical solutions to specific parts of the Kirchhoff system. These solutions are general and depend on arbitrary functions, which we set up according to the numerical solution of the remaining parts. In contrast to a purely numerical handling, this reduces the numerical solution space and prevents the system from becoming unstable. The differential Kirchhoff equation describes the dynamic equilibrium of one-dimensional continua, i.e. slender structures like fibers. We evaluate the advantage of our method by simulating a cilia carpet.
Analytical exact solution of the non-linear Schroedinger equation
International Nuclear Information System (INIS)
Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da
2011-01-01
Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)
On the Partial Analytical Solution of the Kirchhoff Equation
Michels, Dominik L.; Lyakhov, Dmitry; Gerdt, Vladimir P.; Sobottka, Gerrit A.; Weber, Andreas G.
2015-01-01
We derive a combined analytical and numerical scheme to solve the (1+1)-dimensional differential Kirchhoff system. Here the object is to obtain an accurate as well as an efficient solution process. Purely numerical algorithms typically have the disadvantage that the quality of solutions decreases enormously with increasing temporal step sizes, which results from the numerical stiffness of the underlying partial differential equations. To prevent that, we apply a differential Thomas decomposition and a Lie symmetry analysis to derive explicit analytical solutions to specific parts of the Kirchhoff system. These solutions are general and depend on arbitrary functions, which we set up according to the numerical solution of the remaining parts. In contrast to a purely numerical handling, this reduces the numerical solution space and prevents the system from becoming unstable. The differential Kirchhoff equation describes the dynamic equilibrium of one-dimensional continua, i.e. slender structures like fibers. We evaluate the advantage of our method by simulating a cilia carpet.
Development of CAD implementing the algorithm of boundary elements’ numerical analytical method
Directory of Open Access Journals (Sweden)
Yulia V. Korniyenko
2015-03-01
Full Text Available Up to recent days the algorithms for numerical-analytical boundary elements method had been implemented with programs written in MATLAB environment language. Each program had a local character, i.e. used to solve a particular problem: calculation of beam, frame, arch, etc. Constructing matrices in these programs was carried out “manually” therefore being time-consuming. The research was purposed onto a reasoned choice of programming language for new CAD development, allows to implement algorithm of numerical analytical boundary elements method and to create visualization tools for initial objects and calculation results. Research conducted shows that among wide variety of programming languages the most efficient one for CAD development, employing the numerical analytical boundary elements method algorithm, is the Java language. This language provides tools not only for development of calculating CAD part, but also to build the graphic interface for geometrical models construction and calculated results interpretation.
Analytical approximate solutions of the time-domain diffusion equation in layered slabs.
Martelli, Fabrizio; Sassaroli, Angelo; Yamada, Yukio; Zaccanti, Giovanni
2002-01-01
Time-domain analytical solutions of the diffusion equation for photon migration through highly scattering two- and three-layered slabs have been obtained. The effect of the refractive-index mismatch with the external medium is taken into account, and approximate boundary conditions at the interface between the diffusive layers have been considered. A Monte Carlo code for photon migration through a layered slab has also been developed. Comparisons with the results of Monte Carlo simulations showed that the analytical solutions correctly describe the mean path length followed by photons inside each diffusive layer and the shape of the temporal profile of received photons, while discrepancies are observed for the continuous-wave reflectance or transmittance.
Explicit analytical solution of a pendulum with periodically varying length
International Nuclear Information System (INIS)
Yang Tianzhi; Fang Bo; Li Song; Huang Wenhu
2010-01-01
A pendulum with periodically varying length is an interesting physical system. It has been studied by some researchers using traditional perturbation methods (for example, the averaging method). But due to the limitation of the conventional perturbation methods, the solutions are not valid for long-term prediction of the pendulum. In this paper, we use the homotopy analysis method to explore the approximate solution to this system. The method can easily self-adjust and control the convergence region. By applying the method to the governing equation of the pendulum, we obtain the approximation solution in a closed form. It is shown by the numerical method that the homotopy analysis method supplies a more accurate analytical solution for predicting the long-term behaviour of the pendulum. We believe that this system may be a good example for undergraduate and graduate students for better understanding of nonlinear oscillations.
Analytical solution of the PNP equations at AC applied voltage
International Nuclear Information System (INIS)
Golovnev, Anatoly; Trimper, Steffen
2012-01-01
A symmetric binary polymer electrolyte subjected to an AC voltage is considered. The analytical solution of the Poisson–Nernst–Planck equations (PNP) is found and analyzed for small applied voltages. Three distinct time regimes offering different behavior can be discriminated. The experimentally realized stationary behavior is discussed in detail. An expression for the external current is derived. Based on the theoretical result a simple method is suggested of measuring the ion mobility and their concentration separately. -- Highlights: ► Analytical solution of Poisson–Nernst–Planck equations. ► Binary polymer electrolyte subjected to an external AC voltage. ► Three well separated time scales exhibiting different behavior. ► The experimentally realized stationary behavior is discussed in detail. ► A method is proposed measuring the mobility and the concentration separately.
Quantum decay model with exact explicit analytical solution
Marchewka, Avi; Granot, Er'El
2009-01-01
A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.
An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders
DEFF Research Database (Denmark)
Larsen, Niels Vesterdal; Breinbjerg, Olav
2004-01-01
Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...
Explicit analytical solution of the nonlinear Vlasov Poisson system
International Nuclear Information System (INIS)
Skarka, V.; Mahajan, S.M.; Fijalkow, E.
1993-10-01
In order to describe the time evolution of an inhomogeneous collisionless plasma the nonlinear Vlasov equation is solved perturbatively, using the subdynamics approach and the diagrammatic techniques. The solution is given in terms of a double perturbation series, one with respect to the nonlinearities and the other with respect to the interaction between particles. The infinite sum of interaction terms can be performed exactly due to the property of dynamical factorization. Following the methodology, the exact solution in each order with respect to nonlinearities is computed. For a choice of initial perturbation the first order exact solution is numerically integrated in order to find the local density excess. The approximate analytical solution is found to be in excellent agreement with exact numerical integration as well as with ab initio numerical simulations. Analytical computation gives a better insight into the problem and it has the advantage to be simpler, and also accessible in some range of parameters where it is difficult to find numerical solutions. (author). 27 refs, 12 figs
Analytic solution of the Starobinsky model for inflation
Energy Technology Data Exchange (ETDEWEB)
Paliathanasis, Andronikos [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Durban University of Technology, Institute of Systems Science, Durban (South Africa)
2017-07-15
We prove that the field equations of the Starobinsky model for inflation in a Friedmann-Lemaitre-Robertson-Walker metric constitute an integrable system. The analytical solution in terms of a Painleve series for the Starobinsky model is presented for the case of zero and nonzero spatial curvature. In both cases the leading-order term describes the radiation era provided by the corresponding higher-order theory. (orig.)
Semi-analytical solution to arbitrarily shaped beam scattering
Wang, Wenjie; Zhang, Huayong; Sun, Yufa
2017-07-01
Based on the field expansions in terms of appropriate spherical vector wave functions and the method of moments scheme, an exact semi-analytical solution to the scattering of an arbitrarily shaped beam is given. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are presented to a spheroid and a circular cylinder of finite length, and the scattering properties are analyzed concisely.
Muonium hyperfine structure : An analytical solution to perturbative calculations
International Nuclear Information System (INIS)
Wotzasek, C.J.; Gregorio, M.A.; Reinecke, S.
1982-01-01
The purely coulombian contribution to the terms of order E sub(F) (α 2 m sub(e)/m sub(μ))ln α - 1 of the hyperfine splitting of muonium is computed. Results agree with those of other authors. The goal of the work was twofold: first, to confirm that contribution; second, and perhaps more important, to check the analytic solution of the relativistic coulombian problem of the Bethe-Salpeter equation with instantaneous kernel. (Author) [pt
Electromagnetic wave theory for boundary-value problems an advanced course on analytical methods
Eom, Hyo J
2004-01-01
Electromagnetic wave theory is based on Maxwell's equations, and electromagnetic boundary-value problems must be solved to understand electromagnetic scattering, propagation, and radiation. Electromagnetic theory finds practical applications in wireless telecommunications and microwave engineering. This book is written as a text for a two-semester graduate course on electromagnetic wave theory. As such, Electromagnetic Wave Theory for Boundary-Value Problems is intended to help students enhance analytic skills by solving pertinent boundary-value problems. In particular, the techniques of Fourier transform, mode matching, and residue calculus are utilized to solve some canonical scattering and radiation problems.
Existence of solutions to boundary value problem of fractional differential equations with impulsive
Directory of Open Access Journals (Sweden)
Weihua JIANG
2016-12-01
Full Text Available In order to solve the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line, the existence of solutions to the boundary problem is specifically studied. By defining suitable Banach spaces, norms and operators, using the properties of fractional calculus and applying the contraction mapping principle and Krasnoselskii's fixed point theorem, the existence of solutions for the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line is proved, and examples are given to illustrate the existence of solutions to this kind of equation boundary value problems.
A Generic analytical solution for modelling pumping tests in wells intersecting fractures
Dewandel, Benoît; Lanini, Sandra; Lachassagne, Patrick; Maréchal, Jean-Christophe
2018-04-01
The behaviour of transient flow due to pumping in fractured rocks has been studied for at least the past 80 years. Analytical solutions were proposed for solving the issue of a well intersecting and pumping from one vertical, horizontal or inclined fracture in homogeneous aquifers, but their domain of application-even if covering various fracture geometries-was restricted to isotropic or anisotropic aquifers, whose potential boundaries had to be parallel or orthogonal to the fracture direction. The issue thus remains unsolved for many field cases. For example, a well intersecting and pumping a fracture in a multilayer or a dual-porosity aquifer, where intersected fractures are not necessarily parallel or orthogonal to aquifer boundaries, where several fractures with various orientations intersect the well, or the effect of pumping not only in fractures, but also in the aquifer through the screened interval of the well. Using a mathematical demonstration, we show that integrating the well-known Theis analytical solution (Theis, 1935) along the fracture axis is identical to the equally well-known analytical solution of Gringarten et al. (1974) for a uniform-flux fracture fully penetrating a homogeneous aquifer. This result implies that any existing line- or point-source solution can be used for implementing one or more discrete fractures that are intersected by the well. Several theoretical examples are presented and discussed: a single vertical fracture in a dual-porosity aquifer or in a multi-layer system (with a partially intersecting fracture); one and two inclined fractures in a leaky-aquifer system with pumping either only from the fracture(s), or also from the aquifer between fracture(s) in the screened interval of the well. For the cases with several pumping sources, analytical solutions of flowrate contribution from each individual source (fractures and well) are presented, and the drawdown behaviour according to the length of the pumped screened interval of
Analytic solution of pseudocolloid migration in fractured rock
International Nuclear Information System (INIS)
Hwang, Y.; Pigford, T.H.; Lee, W.W.L.; Chambre, P.L.
1989-06-01
A form of colloid migration that can enhance or retard the migration of a dissolved contaminant in ground water is the sorption of the contaminant on the moving colloidal particulate to form pseudocolloids. In this paper we develop analytical solutions for the interactive migration of radioactive species dissolved in ground water and sorbed as pseudocolloids. The solute and pseudocolloids are assumed to undergo advection and dispersion in a one-dimensional flow field in planar fractures in porous rock. Interaction between pseudocolloid and dissolved species is described by equilibrium sorption. Sorbed species on the pseudocolloids undergo radioactive decay, and pseudocolloids can sorb on fracture surfaces and sediments. Filtration is neglected. The solute can decay and sorb on pseudocolloids, on the fracture surfaces, and on sediments and can diffuse into the porous rock matrix. 1 fig
Off-shell amplitudes as boundary integrals of analytically continued Wilson line slope
International Nuclear Information System (INIS)
Kotko, P.; Serino, M.; Staśto, A.M.
2016-01-01
One of the methods to calculate tree-level multi-gluon scattering amplitudes is to use the Berends-Giele recursion relation involving off-shell currents or off-shell amplitudes, if working in the light cone gauge. As shown in recent works using the light-front perturbation theory, solutions to these recursions naturally collapse into gauge invariant and gauge-dependent components, at least for some helicity configurations. In this work, we show that such structure is helicity independent and emerges from analytic properties of matrix elements of Wilson line operators, where the slope of the straight gauge path is shifted in a certain complex direction. This is similar to the procedure leading to the Britto-Cachazo-Feng-Witten (BCFW) recursion, however we apply a complex shift to the Wilson line slope instead of the external momenta. While in the original BCFW procedure the boundary integrals over the complex shift vanish for certain deformations, here they are non-zero and are equal to the off-shell amplitudes. The main result can thus be summarized as follows: we derive a decomposition of a helicity-fixed off-shell current into gauge invariant component given by a matrix element of a straight Wilson line plus a reminder given by a sum of products of gauge invariant and gauge dependent quantities. We give several examples realizing this relation, including the five-point next-to-MHV helicity configuration.
An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem
International Nuclear Information System (INIS)
Milazzo, A; Orlando, C; Alaimo, A
2009-01-01
Based on the Timoshenko beam theory and on the assumption that the electric and magnetic fields can be treated as steady, since elastic waves propagate very slowly with respect to electromagnetic ones, a general analytical solution for the transient analysis of a magneto-electro-elastic bimorph beam is obtained. General magneto-electric boundary conditions can be applied on the top and bottom surfaces of the beam, allowing us to study the response of the bilayer structure to electromagnetic stimuli. The model reveals that the magneto-electric loads enter the solution as an equivalent external bending moment per unit length and as time-dependent mechanical boundary conditions through the definition of the bending moment. Moreover, the influences of the electro-mechanic, magneto-mechanic and electromagnetic coupling on the stiffness of the bimorph stem from the computation of the beam equivalent stiffness constants. Free and forced vibration analyses of both multiphase and laminated magneto-electro-elastic composite beams are carried out to check the effectiveness and reliability of the proposed analytic solution
Analytical Solution for Optimum Design of Furrow Irrigation Systems
Kiwan, M. E.
1996-05-01
An analytical solution for the optimum design of furrow irrigation systems is derived. The non-linear calculus optimization method is used to formulate a general form for designing the optimum system elements under circumstances of maximizing the water application efficiency of the system during irrigation. Different system bases and constraints are considered in the solution. A full irrigation water depth is considered to be achieved at the tail of the furrow line. The solution is based on neglecting the recession and depletion times after off-irrigation. This assumption is valid in the case of open-end (free gradient) furrow systems rather than closed-end (closed dike) systems. Illustrative examples for different systems are presented and the results are compared with the output obtained using an iterative numerical solution method. The final derived solution is expressed as a function of the furrow length ratio (the furrow length to the water travelling distance). The function of water travelling developed by Reddy et al. is considered for reaching the optimum solution. As practical results from the study, the optimum furrow elements for free gradient systems can be estimated to achieve the maximum application efficiency, i.e. furrow length, water inflow rate and cutoff irrigation time.
Small-scale engagement model with arrivals: analytical solutions
International Nuclear Information System (INIS)
Engi, D.
1977-04-01
This report presents an analytical model of small-scale battles. The specific impetus for this effort was provided by a need to characterize hypothetical battles between guards at a nuclear facility and their potential adversaries. The solution procedure can be used to find measures of a number of critical parameters; for example, the win probabilities and the expected duration of the battle. Numerical solutions are obtainable if the total number of individual combatants on the opposing sides is less than 10. For smaller force size battles, with one or two combatants on each side, symbolic solutions can be found. The symbolic solutions express the output parameters abstractly in terms of symbolic representations of the input parameters while the numerical solutions are expressed as numerical values. The input parameters are derived from the probability distributions of the attrition and arrival processes. The solution procedure reduces to solving sets of linear equations that have been constructed from the input parameters. The approach presented in this report does not address the problems associated with measuring the inputs. Rather, this report attempts to establish a relatively simple structure within which small-scale battles can be studied
Directory of Open Access Journals (Sweden)
Nahed S. Hussein
2014-01-01
Full Text Available A numerical boundary integral scheme is proposed for the solution to the system of eld equations of plane. The stresses are prescribed on one-half of the circle, while the displacements are given. The considered problem with mixed boundary conditions in the circle is replaced by two problems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way, and the problem at this stage is reduced to the solution to a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution and the unknown boundary values of stresses or displacements on proper parts of the boundary. On the basis of the obtained results, it is inferred that a stress component has a singularity at each of the two separation points, thought to be of logarithmic type. The results are discussed and boundary plots are given. We have also calculated the unknown functions in the bulk directly from the given boundary conditions using the boundary collocation method. The obtained results in the bulk are discussed and three-dimensional plots are given. A tentative form for the singular solution is proposed and the corresponding singular stresses and displacements are plotted in the bulk. The form of the singular tangential stress is seen to be compatible with the boundary values obtained earlier. The efficiency of the used numerical schemes is discussed.
Numerical solution of singularity-perturbed two-point boundary-value problems
International Nuclear Information System (INIS)
Masenge, R.W.P.
1993-07-01
Physical processes which involve transportation of slowly diffusing substances in a fast-flowing medium are mathematically modelled by so-called singularly-perturbed second order convection diffusion differential equations in which the convective first order terms dominate over the diffusive second order terms. In general, analytical solutions of such equations are characterized by having sharp solution fronts in some sections of the interior and/or the boundary of the domain of solution. The presence of these (usually very narrow) layer regions in the solution domain makes the task of globally approximating such solutions by standard numerical techniques very difficult. In this expository paper we use a simple one-dimensional prototype problem as a vehicle for analysing the nature of the numerical approximation difficulties involved. In the sequel we present, without detailed derivation, two practical numerical schemes which succeed in varying degrees in numerically resolving the layer of the solution to the prototype problem. (author). 3 refs, 1 fig., 1 tab
Analytic solutions for neutrino momenta in decay of top quarks
Energy Technology Data Exchange (ETDEWEB)
Betchart, Burton A., E-mail: bbetchar@pas.rochester.edu; Demina, Regina, E-mail: regina@pas.rochester.edu; Harel, Amnon, E-mail: amnon.harel@cern.ch
2014-02-01
We employ a geometric approach to analytically solve equations of constraint on the decay of top quarks involving leptons. The neutrino momentum is found as a function of the 4-vectors of the associated bottom quark and charged lepton, the masses of the top quark and W boson, and a single parameter, which constrains it to an ellipse. We show how the measured imbalance of momenta in the event reduces the solutions for neutrino momenta to a discrete set, in the cases of one or two top quarks decaying to leptons. The algorithms can be implemented concisely with common linear algebra routines. -- Highlights: • Neutrino momentum from top quark decay is constrained to an ellipse. • We find analytically the best neutrino momenta given the momentum imbalance. • A reference implementation of the algorithms is included.
Analytical solution of Mori's equation with secant hyperbolic memory
International Nuclear Information System (INIS)
Tankeshwar, K.; Pathak, K.N.
1993-07-01
The equation of motion of the auto-correlation function has been solved analytically using a secant-hyperbolic form of the memory function. The analytical results obtained for the long time expansion together with the short time expansion provide a good description over the whole time domain as judged by their comparison with the numerical solution of Mori's equation of motion. We also find that the time evolution of the auto-correlation function is determined by a single parameter τ which is related to the frequency sum rules up to the fourth order. The auto-correlation function has been found to show simple decaying or oscillatory behaviour depending on whether the parameter τ is greater than or less than some critical values. Similarities as well as differences in time evolution of the auto-correlation have been discussed for exponential, secant-hyperbolic and Gaussian approaches of the memory function. (author). 16 refs, 5 figs
Fayolle, Guy; Malyshev, Vadim
2017-01-01
This monograph aims to promote original mathematical methods to determine the invariant measure of two-dimensional random walks in domains with boundaries. Such processes arise in numerous applications and are of interest in several areas of mathematical research, such as Stochastic Networks, Analytic Combinatorics, and Quantum Physics. This second edition consists of two parts. Part I is a revised upgrade of the first edition (1999), with additional recent results on the group of a random walk. The theoretical approach given therein has been developed by the authors since the early 1970s. By using Complex Function Theory, Boundary Value Problems, Riemann Surfaces, and Galois Theory, completely new methods are proposed for solving functional equations of two complex variables, which can also be applied to characterize the Transient Behavior of the walks, as well as to find explicit solutions to the one-dimensional Quantum Three-Body Problem, or to tackle a new class of Integrable Systems. Part II borrows spec...
Analytic Closed-Form Solution of a Mixed Layer Model for Stratocumulus Clouds
Akyurek, Bengu Ozge
Stratocumulus clouds play an important role in climate cooling and are hard to predict using global climate and weather forecast models. Thus, previous studies in the literature use observations and numerical simulation tools, such as large-eddy simulation (LES), to solve the governing equations for the evolution of stratocumulus clouds. In contrast to the previous works, this work provides an analytic closed-form solution to the cloud thickness evolution of stratocumulus clouds in a mixed-layer model framework. With a focus on application over coastal lands, the diurnal cycle of cloud thickness and whether or not clouds dissipate are of particular interest. An analytic solution enables the sensitivity analysis of implicitly interdependent variables and extrema analysis of cloud variables that are hard to achieve using numerical solutions. In this work, the sensitivity of inversion height, cloud-base height, and cloud thickness with respect to initial and boundary conditions, such as Bowen ratio, subsidence, surface temperature, and initial inversion height, are studied. A critical initial cloud thickness value that can be dissipated pre- and post-sunrise is provided. Furthermore, an extrema analysis is provided to obtain the minima and maxima of the inversion height and cloud thickness within 24 h. The proposed solution is validated against LES results under the same initial and boundary conditions. Then, the proposed analytic framework is extended to incorporate multiple vertical columns that are coupled by advection through wind flow. This enables a bridge between the micro-scale and the mesoscale relations. The effect of advection on cloud evolution is studied and a sensitivity analysis is provided.
Biological and analytical studies of peritoneal dialysis solutions
Directory of Open Access Journals (Sweden)
N. Hudz
2018-04-01
Full Text Available The purpose of our work was to conduct biological and analytical studies of the peritoneal dialysis (PD solutions containing glucose and sodium lactate and establish correlations between cell viability of the Vero cell line and values of analytical indexes of the tested solutions. The results of this study confirm the cytotoxicity of the PD solutions even compared with the isotonic solution of sodium chloride, which may be due to the low pH of the solutions, presence of glucose degradation products (GDPs and high osmolarity of the solutions, and unphysiological concentrations of glucose and sodium lactate. However, it is not yet known what factors or their combination and to what extent cause the cytotoxicity of PD solutions. In the neutral red (NR test the weak, almost middle (r = -0.496 and 0.498, respectively and unexpected correlations were found between reduced viability of monkey kidney cells and increased pH of the PD solutions and between increased cell viability and increased absorbance at 228 nm of the tested PD solutions. These two correlations can be explained by a strong correlation (r = -0.948 between a decrease in pH and an increase in the solution absorbance at 228 nm. The opposite effect was observed in the MTT test. The weak, but expected correlations (r = 0.32 and -0.202, respectively were found between increased cell viability and increased pH in the PD solutions and between decreased cell viability and increased absorbance at 228 nm of the tested PD solutions. The middle and weak correlations (r = 0.56 and 0.29, respectively were detected between increased cell viability and increased lactate concentration in the NR test and MTT test. The data of these correlations can be partially explained by the fact that a correlation with a coefficient r = -0.34 was found between decreased pH in the solutions and increased lactate concentration. The very weak correlations (0.138 and 0.196, respectively were found between increased cell
Numerical and analytical solutions for problems relevant for quantum computers
International Nuclear Information System (INIS)
Spoerl, Andreas
2008-01-01
Quantum computers are one of the next technological steps in modern computer science. Some of the relevant questions that arise when it comes to the implementation of quantum operations (as building blocks in a quantum algorithm) or the simulation of quantum systems are studied. Numerical results are gathered for variety of systems, e.g. NMR systems, Josephson junctions and others. To study quantum operations (e.g. the quantum fourier transform, swap operations or multiply-controlled NOT operations) on systems containing many qubits, a parallel C++ code was developed and optimised. In addition to performing high quality operations, a closer look was given to the minimal times required to implement certain quantum operations. These times represent an interesting quantity for the experimenter as well as for the mathematician. The former tries to fight dissipative effects with fast implementations, while the latter draws conclusions in the form of analytical solutions. Dissipative effects can even be included in the optimisation. The resulting solutions are relaxation and time optimised. For systems containing 3 linearly coupled spin (1)/(2) qubits, analytical solutions are known for several problems, e.g. indirect Ising couplings and trilinear operations. A further study was made to investigate whether there exists a sufficient set of criteria to identify systems with dynamics which are invertible under local operations. Finally, a full quantum algorithm to distinguish between two knots was implemented on a spin(1)/(2) system. All operations for this experiment were calculated analytically. The experimental results coincide with the theoretical expectations. (orig.)
Analytical solution of the toroidal constant tension solenoid
International Nuclear Information System (INIS)
Gralnick, S.L.; Tenney, F.H.
1975-01-01
The coil shape is determined by requiring that the curvature of the flexible conductor be proportional to the distance from the toroidal axis. The resulting second order differential equation for the coil coordinates can be integrated once but for the second and final integration no closed form has been found and the integration has been done numerically. This solution of this differential equation is analytical in terms of an absolutely and uniformly convergent infinite series. The series converges quite rapidly and in practice ignoring all but the first five terms of the series introduces an error of less than 2 percent
Analytical solutions for tsunami runup on a plane beach
DEFF Research Database (Denmark)
Madsen, Per A.; Schäffer, Hemming Andreas
2010-01-01
wavetrains generated by monopole and dipole disturbances in the deep ocean. The evolution of these wavetrains, while travelling a considerable distance over a constant depth, is influenced by weak dispersion and is governed by the linear Korteweg-De Vries (KdV) equation. This process is described......) of the wave, which is not realistic for geophysical tsunamis. To resolve this problem, we first derive analytical solutions to the nonlinear shallow-water (NSW) equations for the runup/rundown of single waves, where the duration and the wave height can be specified separately. The formulation is then extended...
Analytical Solution of a Generalized Hirota-Satsuma Equation
Kassem, M.; Mabrouk, S.; Abd-el-Malek, M.
A modified version of generalized Hirota-Satsuma is here solved using a two parameter group transformation method. This problem in three dimensions was reduced by Estevez [1] to a two dimensional one through a Lie transformation method and left unsolved. In the present paper, through application of symmetry transformation the Lax pair has been reduced to a system of ordinary equations. Three transformations cases are investigated. The obtained analytical solutions are plotted and show a profile proper to deflagration processes, well described by Degasperis-Procesi equation.
An Exact Analytical Solution to Exponentially Tapered Piezoelectric Energy Harvester
Directory of Open Access Journals (Sweden)
H. Salmani
2015-01-01
Full Text Available It has been proven that tapering the piezoelectric beam through its length optimizes the power extracted from vibration based energy harvesting. This phenomenon has been investigated by some researchers using semianalytical, finite element and experimental methods. In this paper, an exact analytical solution is presented to calculate the power generated from vibration of exponentially tapered unimorph and bimorph with series and parallel connections. The mass normalized mode shapes of the exponentially tapered piezoelectric beam with tip mass are implemented to transfer the proposed electromechanical coupled equations into modal coordinates. The steady states harmonic solution results are verified both numerically and experimentally. Results show that there exist values for tapering parameter and electric resistance in a way that the output power per mass of the energy harvester will be maximized. Moreover it is concluded that the electric resistance must be higher than a specified value for gaining more power by tapering the beam.
Rivera, Jaime; Blum, Philipp; Bayer, Peter
2015-04-01
Borehole heat exchangers (BHE) are the most widely used technologies for tapping low-enthalpy energy resources in the shallow subsurface. Analysis of these systems requires a proper simulation of the relevant processes controlling the transfer of heat between the BHE and the ground. Among the available simulation approaches, analytical methods are broadly accepted, especially when low computational costs and comprehensive analyses are demanded. Moreover, these methods constitute the benchmark solutions to evaluate the performance of more complex numerical models. Within the spectrum of existing (semi-)analytical models, those based on the superposition of problem-specific Green's functions are particularly appealing. Green's functions can be derived, for instance, for nodal or line sources with constant or transient strengths. In the same manner, functional forms can be obtained for scenarios with complex top boundary conditions whose temperature may vary in space and time. Other relevant processes, such as advective heat transport, mechanical dispersion and heat transfer through the unsaturated zone could be incorporated as well. A keystone of the methodology is that individual solutions can be added up invoking the superposition principle. This leads to a flexible and robust framework for studying the interaction of multiple processes on thermal plumes of BHEs. In this contribution, we present a new analytical framework and its verification via comparison with a numerical model. It simulates a BHE as a line source, and it integrates both horizontal groundwater flow and the effect of top boundary effects due to variable land use. All these effects may be implemented as spatially and temporally variable. For validation, the analytical framework is successfully applied to study cases where highly resolved temperature data is available.
International Nuclear Information System (INIS)
Sarmiento, G.S.; Laura, P.A.A.
1979-01-01
Domains of complicated boundary shape are of great practical importance in several fields of technology and applied science; e.g. solid propellant rocket grains, electromagnetic and acoustic waveguides, and certain elements used in nuclear engineering. The technical literature contains very few comparative studies of analytical and numerical solutions when dealing with such rather complex geometries. The present study constitutes an effort in that direction. (Auth.)
Positive Solutions of Two-Point Boundary Value Problems for Monge-Ampère Equations
Directory of Open Access Journals (Sweden)
Baoqiang Yan
2015-01-01
Full Text Available This paper considers the following boundary value problem: ((-u'(tn'=ntn-1f(u(t, 01 is odd. We establish the method of lower and upper solutions for some boundary value problems which generalizes the above equations and using this method we present a necessary and sufficient condition for the existence of positive solutions to the above boundary value problem and some sufficient conditions for the existence of positive solutions.
Energy Technology Data Exchange (ETDEWEB)
Sharma, Pankaj, E-mail: psharma@rtu.ac.in; Parashar, Sandeep Kumar, E-mail: parashar2@yahoo.com [Mechanical Engineering Department, Rajasthan Technical University, Kota (India)
2016-05-06
The priority of this paper is to obtain the exact analytical solution for free flexural vibration of FGPM beam actuated using the d{sub 15} effect. In piezoelectric actuators, the potential use of d{sub 15} effect has been of particular interest for engineering applications since shear piezoelectric coefficient d15 is much higher than the other piezoelectric coupling constants d{sub 31} and d{sub 33}. The applications of shear actuators are to induce and control the flexural vibrations of beams and plates. In this study, a modified Timoshenko beam theory is used where electric potential is assumed to vary sinusoidaly along the thickness direction. The material properties are assumed to be graded across the thickness in accordance with power law distribution. Hamilton's principle is employed to obtain the equations of motion along with the associated boundary conditions for FGPM beams. Exact analytical solution is derived thus obtained equations of motion. Results for clamped-clamped and clamped-free boundary conditions are presented. The presented result and method shell serve as benchmark for comparing the results obtained from the other approximate methods.
Analytic electrostatic solution of an axisymmetric accelerator gap
International Nuclear Information System (INIS)
Boyd, J.K.
1995-01-01
Numerous computer codes calculate beam dynamics of particles traversing an accelerating gap. In order to carry out these calculations the electric field of a gap must be determined. The electric field is obtained from derivatives of the scalar potential which solves Laplace's equation and satisfies the appropriate boundary conditions. An integral approach for the solution of Laplace's equation is used in this work since the objective is to determine the potential and fields without solving on a traditional spatial grid. The motivation is to quickly obtain forces for particle transport, and eliminate the need to keep track of a large number of grid point fields. The problem then becomes one of how to evaluate the appropriate integral. In this work the integral solution has been converted to a finite sum of easily computed functions. Representing the integral solution in this manner provides a readily calculable formulation and avoids a number of difficulties inherent in dealing with an integral that can be weakly convergent in some regimes, and is, in general, highly oscillatory
Sedghi, Mohammad Mahdi; Samani, Nozar; Sleep, Brent
2009-06-01
The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471-80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.
Capacity of the circular plate condenser: analytical solutions for large gaps between the plates
International Nuclear Information System (INIS)
Rao, T V
2005-01-01
A solution of Love's integral equation (Love E R 1949 Q. J. Mech. Appl. Math. 2 428), which forms the basis for the analysis of the electrostatic field due to two equal circular co-axial parallel conducting plates, is considered for the case when the ratio, τ, of distance of separation to radius of the plates is greater than 2. The kernel of the integral equation is expanded into an infinite series in odd powers of 1/τ and an approximate kernel accurate to O(τ -(2N+1) ) is deduced therefrom by terminating the series after an arbitrary but finite number of terms, N. The approximate kernel is rearranged into a degenerate form and the integral equation with this kernel is reduced to a system of N linear equations. An explicit analytical solution is obtained for N = 4 and the resulting analytical expression for the capacity of the circular plate condenser is shown to be accurate to O(τ -9 ). Analytical expressions of lower orders of accuracy with respect to 1/τ are deduced from the four-term (i.e., N 4) solution and predictions (of capacity) from the expressions of different orders of accuracy (with respect to 1/τ) are compared with very accurate numerical solutions obtained by solving the linear system for large enough N. It is shown that the O(τ -9 ) approximation predicts the capacity extremely well for any τ ≥ 2 and an O(τ -3 ) approximation gives, for all practical purposes, results of adequate accuracy for τ ≥ 4. It is further shown that an approximate solution, applicable for the case of large distances of separation between the plates, due to Sneddon (Sneddon I N 1966 Mixed Boundary Value Problems in Potential Theory (Amsterdam: North-Holland) pp 230-46) is accurate to O(τ -6 ) for τ ≥ 2
Lower and Upper Solutions Method for Positive Solutions of Fractional Boundary Value Problems
Directory of Open Access Journals (Sweden)
R. Darzi
2013-01-01
Full Text Available We apply the lower and upper solutions method and fixed-point theorems to prove the existence of positive solution to fractional boundary value problem D0+αut+ft,ut=0, 0
Solution of Moving Boundary Space-Time Fractional Burger’s Equation
Directory of Open Access Journals (Sweden)
E. A.-B. Abdel-Salam
2014-01-01
Full Text Available The fractional Riccati expansion method is used to solve fractional differential equations with variable coefficients. To illustrate the effectiveness of the method, the moving boundary space-time fractional Burger’s equation is studied. The obtained solutions include generalized trigonometric and hyperbolic function solutions. Among these solutions, some are found for the first time. The linear and periodic moving boundaries for the kink solution of the Burger’s equation are presented graphically and discussed.
International Nuclear Information System (INIS)
Li Xicheng; Xu Mingyu; Wang Shaowei
2008-01-01
In this paper, we give similarity solutions of partial differential equations of fractional order with a moving boundary condition. The solutions are given in terms of a generalized Wright function. The time-fractional Caputo derivative and two types of space-fractional derivatives are considered. The scale-invariant variable and the form of the solution of the moving boundary are obtained by the Lie group analysis. A comparison between the solutions corresponding to two types of fractional derivative is also given
Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure
Energy Technology Data Exchange (ETDEWEB)
Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weaver, Jamie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-11-01
This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce ^{99m}Tc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of ^{99}Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)_{3}. The precipitate of Gd(OH)_{3} carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity ^{99}Mo and ^{99m}Tc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.
Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure
International Nuclear Information System (INIS)
Soderquist, Chuck Z.; Weaver, Jamie L.
2015-01-01
This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99m Tc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99 Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH) 3 . The precipitate of Gd(OH) 3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99 Mo and 99m Tc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.
A class of backward free-convective boundary-layer similarity solutions
Kuiken, H.K.
1983-01-01
This paper presents a class of backward free-convective boundary-layer similarity solutions. It is shown that these boundary layers can be produced along slender downward-projecting slabs of prescribed thickness variation, which are infinitely long. It is pointed out that these solutions can be used
Analytic solution of the relativistic Coulomb problem for a spinless Salpeter equation
International Nuclear Information System (INIS)
Durand, B.; Durand, L.
1983-01-01
We construct an analytic solution to the spinless S-wave Salpeter equation for two quarks interacting via a Coulomb potential, [2(-del 2 +m 2 )/sup 1/2/-M-α/r] psi(r) = 0, by transforming the momentum-space form of the equation into a mapping or boundary-value problem for analytic functions. The principal part of the three-dimensional wave function is identical to the solution of a one-dimensional Salpeter equation found by one of us and discussed here. The remainder of the wave function can be constructed by the iterative solution of an inhomogeneous singular integral equation. We show that the exact bound-state eigenvalues for the Coulomb problem are M/sub n/ = 2m/(1+α 2 /4n 2 )/sup 1/2/, n = 1,2,..., and that the wave function for the static interaction diverges for r→0 as C(mr)/sup -nu/, where #betta# = (α/π)(1+α/π+...) is known exactly
Liu, Ping; Shi, Junping
2018-01-01
The bifurcation of non-trivial steady state solutions of a scalar reaction-diffusion equation with nonlinear boundary conditions is considered using several new abstract bifurcation theorems. The existence and stability of positive steady state solutions are proved using a unified approach. The general results are applied to a Laplace equation with nonlinear boundary condition and bistable nonlinearity, and an elliptic equation with superlinear nonlinearity and sublinear boundary conditions.
International Nuclear Information System (INIS)
Dai, Hui-Hui; Wang Jiong; Chen Zhen
2009-01-01
In this paper, we study phase transitions in a slender circular cylinder composed of a compressible hyperelastic material with a non-convex strain energy function. We aim to construct asymptotic solutions based on an axisymmetrical three-dimensional setting and use the results to describe the key features observed in the experiments by others. The problem of the solution bifurcations of the governing nonlinear partial differential equations (PDEs) is solved through a novel approach involving coupled series–asymptotic expansions. We derive the normal form equation of the original complicated system of nonlinear PDEs. By writing the normal form equation into a first-order dynamical system and with a phase-plane analysis, we deduce the global bifurcation properties and solve the boundary-value problem analytically. The asymptotic solutions in terms of integrals are obtained. The engineering stress–strain curve plotted from the asymptotic solutions can capture some key features of the curve measured in the experiments. It appears that the asymptotic solutions obtained shed certain light on the instability phenomena associated with phase transitions in a cylinder. Also, an important feature of this work is that we consider the clamped end conditions, which are more practical but rarely used in the literature for phase transition problems
Initial-Boundary Value Problem Solution of the Nonlinear Shallow-water Wave Equations
Kanoglu, U.; Aydin, B.
2014-12-01
The hodograph transformation solutions of the one-dimensional nonlinear shallow-water wave (NSW) equations are usually obtained through integral transform techniques such as Fourier-Bessel transforms. However, the original formulation of Carrier and Greenspan (1958 J Fluid Mech) and its variant Carrier et al. (2003 J Fluid Mech) involve evaluation integrals. Since elliptic integrals are highly singular as discussed in Carrier et al. (2003), this solution methodology requires either approximation of the associated integrands by smooth functions or selection of regular initial/boundary data. It should be noted that Kanoglu (2004 J Fluid Mech) partly resolves this issue by simplifying the resulting integrals in closed form. Here, the hodograph transform approach is coupled with the classical eigenfunction expansion method rather than integral transform techniques and a new analytical model for nonlinear long wave propagation over a plane beach is derived. This approach is based on the solution methodology used in Aydın & Kanoglu (2007 CMES-Comp Model Eng) for wind set-down relaxation problem. In contrast to classical initial- or boundary-value problem solutions, here, the NSW equations are formulated to yield an initial-boundary value problem (IBVP) solution. In general, initial wave profile with nonzero initial velocity distribution is assumed and the flow variables are given in the form of Fourier-Bessel series. The results reveal that the developed method allows accurate estimation of the spatial and temporal variation of the flow quantities, i.e., free-surface height and depth-averaged velocity, with much less computational effort compared to the integral transform techniques such as Carrier et al. (2003), Kanoglu (2004), Tinti & Tonini (2005 J Fluid Mech), and Kanoglu & Synolakis (2006 Phys Rev Lett). Acknowledgments: This work is funded by project ASTARTE- Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV
Penkov, V. B.; Ivanychev, D. A.; Novikova, O. S.; Levina, L. V.
2018-03-01
The article substantiates the possibility of building full parametric analytical solutions of mathematical physics problems in arbitrary regions by means of computer systems. The suggested effective means for such solutions is the method of boundary states with perturbations, which aptly incorporates all parameters of an orthotropic medium in a general solution. We performed check calculations of elastic fields of an anisotropic rectangular region (test and calculation problems) for a generalized plane stress state.
International Nuclear Information System (INIS)
Anezaki, S.
1998-03-01
Sea/fresh-water boundary caused by density and concentration balance of sea-water and fresh-water is an important item for groundwater flow evaluation in deep underground near the coast. Also, in order to evaluate groundwater quality, it is important to understand the characteristics of sea/fresh-water boundary, for example boundary shape, salt distribution. In order to establish the evaluation and analytical methods for groundwater flow with considering sea/fresh-water boundary, we investigated the following items in this study. (1) Literature survey and data collection. (2) Investigation of analytical methods. (3) Planning of further study. (author). 78 refs
Analytical Solution and Physics of a Propellant Damping Device
Yang, H. Q.; Peugeot, John
2011-01-01
NASA design teams have been investigating options for "detuning" Ares I to prevent oscillations originating in the vehicle solid-rocket main stage from synching up with the natural resonance of the rest of the vehicle. An experimental work started at NASA MSFC center in 2008 using a damping device showed great promise in damping the vibration level of an 8 resonant tank. However, the mechanisms of the vibration damping were not well understood and there were many unknowns such as the physics, scalability, technology readiness level (TRL), and applicability for the Ares I vehicle. The objectives of this study are to understand the physics of intriguing slosh damping observed in the experiments, to further validate a Computational Fluid Dynamics (CFD) software in propellant sloshing against experiments with water, and to study the applicability and efficiency of the slosh damper to a full scale propellant tank and to cryogenic fluids. First a 2D fluid-structure interaction model is built to model the system resonance of liquid sloshing and structure vibration. A damper is then added into the above model to simulate experimentally observed system damping phenomena. Qualitative agreement is found. An analytical solution is then derived from the Newtonian dynamics for the thrust oscillation damper frequency, and a slave mass concept is introduced in deriving the damper and tank interaction dynamics. The paper will elucidate the fundamental physics behind the LOX damper success from the derivation of the above analytical equation of the lumped Newtonian dynamics. Discussion of simulation results using high fidelity multi-phase, multi-physics, fully coupled CFD structure interaction model will show why the LOX damper is unique and superior compared to other proposed mitigation techniques.
An analytical solution to the heat transfer problem in thick-walled hunt flow
International Nuclear Information System (INIS)
Bluck, Michael J; Wolfendale, Michael J
2017-01-01
Highlights: • Convective heat transfer in Hunt type flow of a liquid metal in a rectangular duct. • Analytical solution to the H1 constant peripheral temperature in a rectangular duct. • New H1 result demonstrating the enhancement of heat transfer due to flow distortion by the applied magnetic field. • Analytical solution to the H2 constant peripheral heat flux in a rectangular duct. • New H2 result demonstrating the reduction of heat transfer due to flow distortion by the applied magnetic field. • Results are important for validation of CFD in magnetohydrodynamics and for implementation of systems code approaches. - Abstract: The flow of a liquid metal in a rectangular duct, subject to a strong transverse magnetic field is of interest in a number of applications. An important application of such flows is in the context of coolants in fusion reactors, where heat is transferred to a lead-lithium eutectic. It is vital, therefore, that the heat transfer mechanisms are understood. Forced convection heat transfer is strongly dependent on the flow profile. In the hydrodynamic case, Nusselt numbers and the like, have long been well characterised in duct geometries. In the case of liquid metals in strong magnetic fields (magnetohydrodynamics), the flow profiles are very different and one can expect a concomitant effect on convective heat transfer. For fully developed laminar flows, the magnetohydrodynamic problem can be characterised in terms of two coupled partial differential equations. The problem of heat transfer for perfectly electrically insulating boundaries (Shercliff case) has been studied previously (Bluck et al., 2015). In this paper, we demonstrate corresponding analytical solutions for the case of conducting hartmann walls of arbitrary thickness. The flow is very different from the Shercliff case, exhibiting jets near the side walls and core flow suppression which have profound effects on heat transfer.
Directory of Open Access Journals (Sweden)
Salomatov Vladimir
2016-01-01
Full Text Available This work is dedicated to the search for the exact analytical dependences of microwave heating due to absorption of a plane electromagnetic wave by coal layer with asymmetric and non-uniform heat dissipation conditions I and III kind. Some of simplifications have been made, such as one-dimensional problem, uniformity and isotropic coal material, and the constancy of the electrical properties of thermal coal during heating of microwave radiation. This has led to the fact that the Maxwell’s task is solved separately from the Fourier’s task, and a heat source generated in the carbon layer is subject to Bouguer law. For the system of equations of heat transfer has been found a new dependent variable, which is to simplify the search for a final solution. All this has given the possibility of finding rigorous analytical solution of the problem of microwave heating of the coal layer in the presence of asymmetric and inhomogeneous boundary conditions I and III kind.
Analytical solutions of heat transfer for laminar flow in rectangular channels
Directory of Open Access Journals (Sweden)
Rybiński Witold
2014-12-01
Full Text Available The paper presents two analytical solutions namely for Fanning friction factor and for Nusselt number of fully developed laminar fluid flow in straight mini channels with rectangular cross-section. This type of channels is common in mini- and microchannel heat exchangers. Analytical formulae, both for velocity and temperature profiles, were obtained in the explicit form of two terms. The first term is an asymptotic solution of laminar flow between parallel plates. The second one is a rapidly convergent series. This series becomes zero as the cross-section aspect ratio goes to infinity. This clear mathematical form is also inherited by the formulae for friction factor and Nusselt number. As the boundary conditions for velocity and temperature profiles no-slip and peripherally constant temperature with axially constant heat flux were assumed (H1 type. The velocity profile is assumed to be independent of the temperature profile. The assumption of constant temperature at the channel’s perimeter is related to the asymptotic case of channel’s wall thermal resistance: infinite in the axial direction and zero in the peripheral one. It represents typical conditions in a minichannel heat exchanger made of metal.
Simple and Accurate Analytical Solutions of the Electrostatically Actuated Curled Beam Problem
Younis, Mohammad I.
2014-01-01
We present analytical solutions of the electrostatically actuated initially deformed cantilever beam problem. We use a continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We derive simple analytical expressions
Analytical solutions for peak and residual uplift resistance of pipelines
Energy Technology Data Exchange (ETDEWEB)
Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Oswell, J.M. [Naviq Consulting Inc., Calgary, AB (Canada)
2010-07-01
Frost heave can occur on cold pipelines that traverse unfrozen, non permafrost terrain. The stresses experienced by the pipeline are partly a function of the strength of the soil on the non heaving side of the frozen-unfrozen interface. This paper proposed three analytical solutions to estimate the soil uplift resistance by considering the pipeline and soil to act similar to a strip footing, a punching shear failure, and by considering the formation of horizontal crack emanating from the spring line of the pipe. Peak uplift resistance and residual uplift resistance were discussed. Results for full scale pipe and for laboratory scale model pipes were presented, with particular reference to cover depth, temperature and crack width; and limits to residual uplift resistance. It was concluded that the peak uplift resistance and the residual uplift resistance are generally independent and controlled by different factors. The peak resistance is related directly to pipe diameter, and less strongly dependent on springline depth. It is also strongly dependent on soil temperature. However, the residual uplift resistance is strongly dependent on burial depth, weakly dependent on pipe displacement rate and also on soil temperature. 15 refs., 19 figs.
School Boundaries: Finding Solutions While Gaining Community Support
Lazarus, William
2010-01-01
Some of the most complicated issues facing school districts across the country revolve around resource allocation and student assignment planning. Determining school attendance boundaries, selecting sites for new schools, closing existing ones, balancing seat utilization while minimizing travel costs, and achieving socioeconomic diversity are all…
International Nuclear Information System (INIS)
Mayhoub, A.B.; Etman, S.M.
1985-05-01
An analytical model for the dispersion of particulates and finely divided material released into the atmosphere near the ground is presented. The possible precipitation when the particles are dense enough and large enough to have deposition velocity, is taken into consideration. The model is derived analytically in the mixing layer or Ekman boundary layer where the mixing process is a direct consequence of turbulent and convective motions generated in the boundary layer. (author)
Solution of the isotopic depletion equation using decomposition method and analytical solution
Energy Technology Data Exchange (ETDEWEB)
Prata, Fabiano S.; Silva, Fernando C.; Martinez, Aquilino S., E-mail: fprata@con.ufrj.br, E-mail: fernando@con.ufrj.br, E-mail: aquilino@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear
2011-07-01
In this paper an analytical calculation of the isotopic depletion equations is proposed, featuring a chain of major isotopes found in a typical PWR reactor. Part of this chain allows feedback reactions of (n,2n) type. The method is based on decoupling the equations describing feedback from the rest of the chain by using the decomposition method, with analytical solutions for the other isotopes present in the chain. The method was implemented in a PWR reactor simulation code, that makes use of the nodal expansion method (NEM) to solve the neutron diffusion equation, describing the spatial distribution of neutron flux inside the reactor core. Because isotopic depletion calculation module is the most computationally intensive process within simulation systems of nuclear reactor core, it is justified to look for a method that is both efficient and fast, with the objective of evaluating a larger number of core configurations in a short amount of time. (author)
Solution of the isotopic depletion equation using decomposition method and analytical solution
International Nuclear Information System (INIS)
Prata, Fabiano S.; Silva, Fernando C.; Martinez, Aquilino S.
2011-01-01
In this paper an analytical calculation of the isotopic depletion equations is proposed, featuring a chain of major isotopes found in a typical PWR reactor. Part of this chain allows feedback reactions of (n,2n) type. The method is based on decoupling the equations describing feedback from the rest of the chain by using the decomposition method, with analytical solutions for the other isotopes present in the chain. The method was implemented in a PWR reactor simulation code, that makes use of the nodal expansion method (NEM) to solve the neutron diffusion equation, describing the spatial distribution of neutron flux inside the reactor core. Because isotopic depletion calculation module is the most computationally intensive process within simulation systems of nuclear reactor core, it is justified to look for a method that is both efficient and fast, with the objective of evaluating a larger number of core configurations in a short amount of time. (author)
Kanda, H.; Hashimoto, N.; Takahashi, H.
The phenomenon of grain boundary migration due to boundary diffusion via vacancies is a well-known process for recrystallization and grain growth during annealing. This phenomenon is known as diffusion-induced grain boundary migration (DIGM) and has been recognized in various binary systems. On the other hand, grain boundary migration often occurs under irradiation. Furthermore, such radiation-induced grain boundary migration (RIGM) gives rise to solute segregation. In order to investigate the RIGM mechanism and the interaction between solutes and point defects during the migration, stainless steel and Ni-Si model alloys were electron-irradiated using a HVEM. RIGM was often observed in stainless steels during irradiation. The migration rate of boundary varied, and three stages of the migration were recognized. At lower temperatures, incubation periods up to the occurrence of the boundary migration were observed prior to first stage. These behaviors were recognized particularly for lower solute containing alloys. From the relation between the migration rates at stage I and inverse temperatures, activation energies for the boundary migration were estimated. In comparison to the activation energy without irradiation, these values were very low. This suggests that the RIGM is caused by the flow of mixed-dumbbells toward the grain boundary. The interaction between solute and point defects and the effective defect concentration generating segregation will be discussed.
Hejranfar, Kazem; Parseh, Kaveh
2017-09-01
The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter in the flow field and also at the far-field boundary is automatically calculated based on the local flow conditions to enhance the robustness and performance of the solution algorithm. The code is fully parallelized using the Concurrency Runtime standard and Parallel Patterns Library (PPL) and its performance on a multi-core CPU is analyzed. The incompressible viscous flows around a 2-D circular cylinder, a 2-D NACA0012 airfoil and also a 3-D wavy cylinder are simulated and the accuracy and performance of the preconditioned characteristic boundary conditions applied at the far-field boundaries are evaluated in comparison to the simplified boundary conditions and the non-preconditioned characteristic boundary conditions. It is indicated that the preconditioned characteristic boundary conditions considerably improve the convergence rate of the solution of incompressible flows compared to the other boundary conditions and the computational costs are significantly decreased.
Energy Technology Data Exchange (ETDEWEB)
Petracca, S [Salerno Univ. (Italy)
1996-08-01
Debye potentials, the Lorentz reciprocity theorem, and (extended) Leontovich boundary conditions can be used to obtain simple and accurate analytic estimates of the longitudinal and transverse coupling impedances of (piecewise longitudinally uniform) multi-layered pipes with non simple transverse geometry and/or (spatially inhomogeneous) boundary conditions. (author)
Positive solutions for a nonlocal boundary-value problem with vector-valued response
Directory of Open Access Journals (Sweden)
Andrzej Nowakowski
2002-05-01
Full Text Available Using variational methods, we study the existence of positive solutions for a nonlocal boundary-value problem with vector-valued response. We develop duality and variational principles for this problem and present a numerical version which enables the approximation of solutions and gives a measure of a duality gap between primal and dual functional for approximate solutions for this problem.
Temperature field conduction solution by incomplete boundary condition
Energy Technology Data Exchange (ETDEWEB)
Novakovic, M; Petrasinovic, Lj; Djuric, M [Tehnoloski fakultet, Novi Sad (Yugoslavia); Perovic, N [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)
1977-01-01
The problem of determination of one part boundary conditions temperatures for Fourier partial differential equation when the other part of boundary condition and derivates (heat fluxes) are known is a practical interest as it enables one to determine and accessible temperature by measuring temperatures on other side, of the wall. Method developed and applied here consist of transforming the Fourier partial differential equation by time discretisation in sets of pairs of ordinary differential equations for temperature and heat flux. Such pair of differential equations of first order was solved by Runge-Kutta method. The integration proceeds along space interval simultaneosly for all time intervals. It is interesting to note that this procedure does not require the initial condition.
Numerical solution of boundary-integral equations for molecular electrostatics.
Bardhan, Jaydeep P
2009-03-07
Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.
Directory of Open Access Journals (Sweden)
Ali Belhocine
2018-01-01
Full Text Available In the thermal entrance region, a thermal boundary layer develops and also reaches the circular tube center. The fully developed region is the zone in which the flow is both hydrodynamically and thermally developed. The heat flux will be higher near the inlet because the heat transfer coefficient is highest at the tube inlet where the thickness of the thermal boundary layer is zero and decreases gradually to the fully developed value. In this paper, the assumptions implicit in Leveque's approximation are re-examined, and the analytical solution of the problem with additional boundary conditions, for the temperature field and the boundary layer thickness through the long tube is presented. By defining a similarity variable, the governing equations are reduced to a dimensionless equation with an analytic solution in the entrance region. This report gives justification for the similarity variable via scaling analysis, details the process of converting to a similarity form, and presents a similarity solution. The analytical solutions are then checked against numerical solution programming by Fortran code obtained via using Runge-Kutta fourth order (RK4 method. Finally, others important thermal results obtained from this analysis, such as; approximate Nusselt number in the thermal entrance region was discussed in detail.
Khan, Farman U; Qamar, Shamsul
2017-05-01
A set of analytical solutions are presented for a model describing the transport of a solute in a fixed-bed reactor of cylindrical geometry subjected to the first (Dirichlet) and third (Danckwerts) type inlet boundary conditions. Linear sorption kinetic process and first-order decay are considered. Cylindrical geometry allows the use of large columns to investigate dispersion, adsorption/desorption and reaction kinetic mechanisms. The finite Hankel and Laplace transform techniques are adopted to solve the model equations. For further analysis, statistical temporal moments are derived from the Laplace-transformed solutions. The developed analytical solutions are compared with the numerical solutions of high-resolution finite volume scheme. Different case studies are presented and discussed for a series of numerical values corresponding to a wide range of mass transfer and reaction kinetics. A good agreement was observed in the analytical and numerical concentration profiles and moments. The developed solutions are efficient tools for analyzing numerical algorithms, sensitivity analysis and simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hooshyar, Milad; Wang, Dingbao
2016-08-01
The empirical proportionality relationship, which indicates that the ratio of cumulative surface runoff and infiltration to their corresponding potentials are equal, is the basis of the extensively used Soil Conservation Service Curve Number (SCS-CN) method. The objective of this paper is to provide the physical basis of the SCS-CN method and its proportionality hypothesis from the infiltration excess runoff generation perspective. To achieve this purpose, an analytical solution of Richards' equation is derived for ponded infiltration in shallow water table environment under the following boundary conditions: (1) the soil is saturated at the land surface; and (2) there is a no-flux boundary which moves downward. The solution is established based on the assumptions of negligible gravitational effect, constant soil water diffusivity, and hydrostatic soil moisture profile between the no-flux boundary and water table. Based on the derived analytical solution, the proportionality hypothesis is a reasonable approximation for rainfall partitioning at the early stage of ponded infiltration in areas with a shallow water table for coarse textured soils.
Directory of Open Access Journals (Sweden)
Ryoichi Chiba
2018-01-01
Full Text Available An analytical solution is derived for one-dimensional transient heat conduction in a composite slab consisting of n layers, whose heat transfer coefficient on an external boundary is an arbitrary function of time. The composite slab, which has thermal contact resistance at n-1 interfaces, as well as an arbitrary initial temperature distribution and internal heat generation, convectively exchanges heat at the external boundaries with two different time-varying surroundings. To obtain the analytical solution, the shifting function method is first used, which yields new partial differential equations under conventional types of external boundary conditions. The solution for the derived differential equations is then obtained by means of an orthogonal expansion technique. Numerical calculations are performed for two composite slabs, whose heat transfer coefficient on the heated surface is either an exponential or a trigonometric function of time. The numerical results demonstrate the effects of temporal variations in the heat transfer coefficient on the transient temperature field of composite slabs.
Multiple positive solutions for second order impulsive boundary value problems in Banach spaces
Directory of Open Access Journals (Sweden)
Zhi-Wei Lv
2010-06-01
Full Text Available By means of the fixed point index theory of strict set contraction operators, we establish new existence theorems on multiple positive solutions to a boundary value problem for second-order impulsive integro-differential equations with integral boundary conditions in a Banach space. Moreover, an application is given to illustrate the main result.
The analytical solution of the problem of a shock focusing in a gas for one-dimensional case
Shestakovskaya, E. S.; Magazov, F. G.
2018-03-01
The analytical solution of the problem of an imploding shock wave in the vessel with an impermeable wall is constructed for the cases of planar, cylindrical and spherical symmetry. The negative velocity is set at the vessel boundary. The velocity of cold ideal gas is zero. At the initial time the shock spreads from this point into the center of symmetry. The boundary moves under the particular law which conforms to the movement of the shock. In Euler variables it moves but in Lagrangian variables its trajectory is a vertical line. Equations that determine the structure of the gas flow between the shock front and the boundary as a function of time and the Lagrangian coordinate as well as the dependence of the entropy on the shock wave velocity are obtained. Self-similar coefficients and corresponding critical values of self-similar coordinates were found for a wide range of adiabatic index. The problem is solved for Lagrangian coordinates.
Closed form solution to a second order boundary value problem and its application in fluid mechanics
International Nuclear Information System (INIS)
Eldabe, N.T.; Elghazy, E.M.; Ebaid, A.
2007-01-01
The Adomian decomposition method is used by many researchers to investigate several scientific models. In this Letter, the modified Adomian decomposition method is applied to construct a closed form solution for a second order boundary value problem with singularity
Directory of Open Access Journals (Sweden)
Johnny Henderson
2016-01-01
Full Text Available We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations with two parameters, subject to coupled integral boundary conditions.
Existence of Three Positive Solutions to Some p-Laplacian Boundary Value Problems
Directory of Open Access Journals (Sweden)
Moulay Rchid Sidi Ammi
2013-01-01
Full Text Available We obtain, by using the Leggett-Williams fixed point theorem, sufficient conditions that ensure the existence of at least three positive solutions to some p-Laplacian boundary value problems on time scales.
On Existence of Solutions to the Caputo Type Fractional Order Three-Point Boundary Value Problems
Directory of Open Access Journals (Sweden)
B.M.B. Krushna
2016-10-01
Full Text Available In this paper, we establish the existence of solutions to the fractional order three-point boundary value problems by utilizing Banach contraction principle and Schaefer's fixed point theorem.
The numerical solution of boundary value problems over an infinite domain
International Nuclear Information System (INIS)
Shepherd, M.; Skinner, R.
1976-01-01
A method is presented for the numerical solution of boundary value problems over infinite domains. An example that illustrates also the strength and accuracy of a numerical procedure for calculating Green's functions is described in detail
A New Iterative Scheme for the Solution of Tenth Order Boundary ...
African Journals Online (AJOL)
Tonistar
Nigerian Journal of Basic and Applied Science (June, 2016), 24(1): 76-81 ... boundary value problems into a system of ordinary differential equations (ODEs). The trial solution is introduced ... of applied mathematics, sciences and engineering.
Analytic prediction of unconfined boundary layer flashback limits in premixed hydrogen-air flames
Hoferichter, Vera; Hirsch, Christoph; Sattelmayer, Thomas
2017-05-01
Flame flashback is a major challenge in premixed combustion. Hence, the prediction of the minimum flow velocity to prevent boundary layer flashback is of high technical interest. This paper presents an analytic approach to predicting boundary layer flashback limits for channel and tube burners. The model reflects the experimentally observed flashback mechanism and consists of a local and global analysis. Based on the local analysis, the flow velocity at flashback initiation is obtained depending on flame angle and local turbulent burning velocity. The local turbulent burning velocity is calculated in accordance with a predictive model for boundary layer flashback limits of duct-confined flames presented by the authors in an earlier publication. This ensures consistency of both models. The flame angle of the stable flame near flashback conditions can be obtained by various methods. In this study, an approach based on global mass conservation is applied and is validated using Mie-scattering images from a channel burner test rig at ambient conditions. The predicted flashback limits are compared to experimental results and to literature data from preheated tube burner experiments. Finally, a method for including the effect of burner exit temperature is demonstrated and used to explain the discrepancies in flashback limits obtained from different burner configurations reported in the literature.
Niknejadi, Pardis; Madey, John M. J.
2017-09-01
By the covariant statement of the distance in space-time separating transmitter and receivers, the emission and absorption of the retarded and advanced waves are all simultaneous. In other words, for signals carried on electromagnetic waves (advanced or retarded) the invariant interval (cdt) 2 -dr2 between the emission of a wave and it's absorption at the non-reflecting boundary is always identically zero. Utilizing this principle, we have previously explained the advantages of including the coherent radiation reaction force as a part of the solution to the boundary value problem for FELs that radiate into "free space" (Self Amplified Spontaneous Emission (SASE) FELs) and discussed how the advanced field of the absorber can interact with the radiating particles at the time of emission. Here we present an analytical test which verifies that a multilayer mirror can act as a band pass filter and can contribute to microbunching in the electron beam. Here we will discuss motivation, conditions and requirements, and method for testing this effect.
International Nuclear Information System (INIS)
Jeong, Miseon; Kang, Chulhyung; Hwang, Yongsoo
2011-01-01
Many papers have already dealt with the problem of the radionuclide transport in various fractured porous systems, but without discussing daughter products. However, natural radionuclides may decay to radioactive daughter muscled, which may travel farther than the the parent nuclides. It is considered the multi-member decay chain of the actinide nuclide with the band release inlet boundary condition in a fractured porous rock. In this paper, it is developed the pseudo-colloid migration with the band release inlet boundary conditions with multi-member decay chains in a fractured porous matrix. It is obtained a semi-analytical solution for the multi-member decay chains as a canonical form. As one can expected, the colloid has significantly important influence to the radionuclide transport in the geologic system and the decay chain also isn't neglecting. The concept of deep geological disposal of high-level radioactive waste has been widely accepted at many countries. The repositories aim mainly to prevent the radionuclides form migrating to the biosphere through any one of many pathways. Fractures can act as main pathways for radionuclide transport because of their relatively high permeabilities
Boundary Value Problems for a Super-Sublinear Asymmetric Oscillator: The Exact Number of Solutions
Directory of Open Access Journals (Sweden)
Armands Gritsans
2013-01-01
Full Text Available Properties of asymmetric oscillator described by the equation (i, where and , are studied. A set of such that the problem (i, (ii, and (iii have a nontrivial solution, is called α-spectrum. We give full description of α-spectra in terms of solution sets and solution surfaces. The exact number of nontrivial solutions of the two-parameter Dirichlet boundary value problem (i, and (ii is given.
Lin, Tian Ran; Zhang, Kai
2018-05-01
An analytical study to predict the vibration response of a ribbed plate with free boundary conditions is presented. The analytical solution was derived using a double cosine integral transform technique and then utilized to study the free and forced vibration of the ribbed plate, as well as the effect of the rib on the modal response of the uniform plate. It is shown that in addition to the three zero-frequency rigid body modes of the plate, the vibration modes of the uniform plate can be classified into four mode groups according to the symmetric properties of the plate with respect to the two orthogonal middle lines parallel to the plate edges. The four mode groups correspond to a double symmetric group, a double anti-symmetric group and two symmetric/anti-symmetric groups. Whilst the inclusion of the rib to the plate is shown to cause distortion to the distribution of vibration modes, most modes can still be traced back to the original modes of the uniform plate. Both the mass and stiffness of the rib are shown to affect the modal vibration of the uniform plate, whereby a dominant effect from the rib mass leads to a decrease in the modal frequency of the plate, whereas a dominant effect from the rib stiffness leads to an increase in plate modal frequency. When the stiffened rib behaves as an effective boundary to the plate vibration, an original plate mode becomes a pair of degenerate modes, whereby one mode has a higher frequency and the other mode has a lower frequency than that of the original mode.
Hashimoto, Itsuko
2016-01-01
We investigate the large-time behavior of the radially symmetric solution for Burgers equation on the exterior of a small ball in multi-dimensional space, where the boundary data and the data at the far field are prescribed. In a previous paper [1], we showed that, for the case in which the boundary data is equal to $0$ or negative, the asymptotic stability is the same as that for the viscous conservation law. In the present paper, it is proved that if the boundary data i...
Zhu, C
2003-01-01
This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation.
International Nuclear Information System (INIS)
Zhu, Changjiang; Duan, Renjun
2003-01-01
This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation
Energy Technology Data Exchange (ETDEWEB)
Guo, Y.; Keppens, R. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Xia, C. [Centre for mathematical Plasma-Astrophysics, Department of Mathematics, KU Leuven, B-3001 Leuven (Belgium); Valori, G., E-mail: guoyang@nju.edu.cn [University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)
2016-09-10
We report our implementation of the magneto-frictional method in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). The method aims at applications where local adaptive mesh refinement (AMR) is essential to make follow-up dynamical modeling affordable. We quantify its performance in both domain-decomposed uniform grids and block-adaptive AMR computations, using all frequently employed force-free, divergence-free, and other vector comparison metrics. As test cases, we revisit the semi-analytic solution of Low and Lou in both Cartesian and spherical geometries, along with the topologically challenging Titov–Démoulin model. We compare different combinations of spatial and temporal discretizations, and find that the fourth-order central difference with a local Lax–Friedrichs dissipation term in a single-step marching scheme is an optimal combination. The initial condition is provided by the potential field, which is the potential field source surface model in spherical geometry. Various boundary conditions are adopted, ranging from fully prescribed cases where all boundaries are assigned with the semi-analytic models, to solar-like cases where only the magnetic field at the bottom is known. Our results demonstrate that all the metrics compare favorably to previous works in both Cartesian and spherical coordinates. Cases with several AMR levels perform in accordance with their effective resolutions. The magneto-frictional method in MPI-AMRVAC allows us to model a region of interest with high spatial resolution and large field of view simultaneously, as required by observation-constrained extrapolations using vector data provided with modern instruments. The applications of the magneto-frictional method to observations are shown in an accompanying paper.
Alexandrov, Dmitri V.; Ivanov, Alexander A.; Alexandrova, Irina V.
2018-01-01
The processes of particle nucleation and their evolution in a moving metastable layer of phase transition (supercooled liquid or supersaturated solution) are studied analytically. The transient integro-differential model for the density distribution function and metastability level is solved for the kinetic and diffusionally controlled regimes of crystal growth. The Weber-Volmer-Frenkel-Zel'dovich and Meirs mechanisms for nucleation kinetics are used. We demonstrate that the phase transition boundary lying between the mushy and pure liquid layers evolves with time according to the following power dynamic law: , where Z1(t)=βt7/2 and Z1(t)=βt2 in cases of kinetic and diffusionally controlled scenarios. The growth rate parameters α, β and ε are determined analytically. We show that the phase transition interface in the presence of crystal nucleation and evolution propagates slower than in the absence of their nucleation. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
Analytical solutions of steady-state conjugate heat transfer in ducts with turbulent flow
International Nuclear Information System (INIS)
Cerqueira, Djane R.; Jian Su
2007-01-01
In this work, we present an approximate analytical solution of the steady-state conjugate heat transfer of turbulent forced convection in a circular pipe with wall axial heat conduction and external convective boundary conditions. Improved lumped differential approach based on two points Hermite approximation for integrals was applied to reduce the heat conduction equation in the solid into a second-order ordinary differential equation for the radially averaged solid temperature. The energy equation in the fluid was solved by applying the generalized integral transform technique (GITT). The Sturm-Lioville eigenproblem for fluid energy equation in the cylindrical coordinate system was solved by the sign-count method. The truncated system of N ordinary differential equations for transformed potentials of the fluid temperature and the second-order ordinary differential equation for radially averaged solid temperature formed a homogeneous system of N+2 ordinary differential equations, which was solved analytically. The effects of the fluid-solid thermal conductivity ratio on the Nusselt number, the average fluid and solid temperatures, and the fluid-solid interface temperature were investigated. (author)
International Nuclear Information System (INIS)
Chen, C.S.; Yates, S.R.
1989-01-01
In dealing with problems related to land-based nuclear waste management, a number of analytical and approximate solutions were developed to quantify radionuclide transport through fractures contained in the porous formation. It has been reported that by treating the radioactive decay constant as the appropriate first-order rate constant, these solutions can also be used to study injection problems of a similar nature subject to first-order chemical or biological reactions. The fracture is idealized by a pair of parallel, smooth plates separated by an aperture of constant thickness. Groundwater was assumed to be immobile in the underlying and overlying porous formations due to their low permeabilities. However, the injected radionuclides were able to move from the fracture into the porous matrix by molecular diffusion (the matrix diffusion) due to possible concentration gradients across the interface between the fracture and the porous matrix. Calculation of the transient solutions is not straightforward, and the paper documents a contained Fortran program, which computes the Stehfest inversion, the Airy functions, and gives the concentration distributions in the fracture as well as in the porous matrix for both transient and steady-state cases
Singularly perturbed Burger-Huxley equation: Analytical solution ...
African Journals Online (AJOL)
user
solutions of singularly perturbed nonlinear differential equations. ... for solving generalized Burgers-Huxley equation but this equation is not singularly ...... Solitary waves solutions of the generalized Burger Huxley equations, Journal of.
Analytical solutions of the electrostatically actuated curled beam problem
Younis, Mohammad I.
2014-01-01
This works presents analytical expressions of the electrostatically actuated initially deformed cantilever beam problem. The formulation is based on the continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We
International Nuclear Information System (INIS)
Liu Chunliang; Xie Xi; Chen Yinbao
1991-01-01
The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation
An analytical solution to assess the SH seismoelectric response of the vadose zone
Monachesi, L. B.; Zyserman, F. I.; Jouniaux, L.
2018-03-01
We derive an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is crossed by a pure shear horizontal (SH) wave. Seismoelectric conversions are induced by electrokinetic effects linked to relative motions between fluid and porous media. The considered model assumes a one-dimensional soil constituted by a single layer on top of a half space in contact at the water table, and a shearing force located at the earth's surface as the wave source. The water table is an interface expected to induce a seismoelectric interfacial response (IR). The top layer represents a porous rock which porous space is partially saturated by water and air, while the half-space is completely saturated with water, representing the saturated zone. The analytical expressions for the coseismic fields and the interface responses, both electric and magnetic, are derived by solving Pride's equations with proper boundary conditions. An approximate analytical expression of the solution is also obtained, which is very simple and applicable in a fairly broad set of situations. Hypothetical scenarios are proposed to study and analyse the dependence of the electromagnetic fields on various parameters of the medium. An analysis of the approximate solution is also made together with a comparison to the exact solution. The main result of the present analysis is that the amplitude of the interface response generated at the water table is found to be proportional to the jump in the electric current density, which in turn depends on the saturation contrast, poro-mechanical and electrical properties of the medium and on the amplitude of the solid displacement produced by the source. This result is in agreement with the one numerically obtained by the authors, which has been published in a recent work. We also predict the existence of an interface response located at the surface, and that the electric interface response is several orders of magnitude bigger than
An analytical solution to assess the SH seismoelectric response of the vadose zone
Monachesi, L. B.; Zyserman, F. I.; Jouniaux, L.
2018-06-01
We derive an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is crossed by a pure shear horizontal (SH) wave. Seismoelectric conversions are induced by electrokinetic effects linked to relative motions between fluid and porous media. The considered model assumes a 1D soil constituted by a single layer on top of a half-space in contact at the water table, and a shearing force located at the earth's surface as the wave source. The water table is an interface expected to induce a seismoelectric interfacial response (IR). The top layer represents a porous rock in which porous space is partially saturated by water and air, while the half-space is completely saturated with water, representing the saturated zone. The analytical expressions for the coseismic fields and the interface responses, both electric and magnetic, are derived by solving Pride's equations with proper boundary conditions. An approximate analytical expression of the solution is also obtained, which is very simple and applicable in a fairly broad set of situations. Hypothetical scenarios are proposed to study and analyse the dependence of the electromagnetic fields on various parameters of the medium. An analysis of the approximate solution is also made together with a comparison to the exact solution. The main result of the present analysis is that the amplitude of the interface response generated at the water table is found to be proportional to the jump in the electric current density, which in turn depends on the saturation contrast, poro-mechanical and electrical properties of the medium and on the amplitude of the solid displacement produced by the source. This result is in agreement with the one numerically obtained by the authors, which has been published in a recent work. We also predict the existence of an interface response located at the surface, and that the electric interface response is several orders of magnitude bigger than the
Barrett, Steven R. H.; Britter, Rex E.
Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial sources are frequently of concern in regulatory and public health contexts. Many emissions are represented geometrically as ground-level line or area sources. Well developed modelling tools such as AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration schemes have been developed. For example, some models decompose area sources into a large number of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Models also employ a time-series approach, which involves computing mean pollutant concentrations for every hour over one or more years of meteorological data. This can give rise to computer runtimes of several days for assessment of a site. While this may be acceptable for assessment of a single industrial complex, airport, etc., this level of computational cost precludes national or international policy assessments at the level of detail available with dispersion modelling. In this paper, we extend previous work [S.R.H. Barrett, R.E. Britter, 2008. Development of algorithms and approximations for rapid operational air quality modelling. Atmospheric Environment 42 (2008) 8105-8111] to line and area sources. We introduce approximations which allow for the development of new analytical solutions for long-term mean dispersion from line and area sources, based on hypergeometric functions. We describe how these solutions can be parameterized from a single point source run from an existing advanced dispersion model, thereby accounting for all processes modelled in the more costly algorithms. The parameterization method combined with the analytical solutions for long-term mean
Auto-Baecklund Transformation and Analytic Solutions of (2+1)-Dimensional Boussinesq Equation
International Nuclear Information System (INIS)
Liu Guanting
2008-01-01
Using the truncated Painleve expansion, symbolic computation, and direct integration technique, we study analytic solutions of (2+1)-dimensional Boussinesq equation. An auto-Baecklund transformation and a number of exact solutions of this equation have been found. The set of solutions include solitary wave solutions, solitoff solutions, and periodic solutions in terms of elliptic Jacobi functions and Weierstrass wp function. Some of them are novel.
Directory of Open Access Journals (Sweden)
Asterios Pantokratoras
2008-01-01
Full Text Available Exact analytical solutions of boundary layer flows along a vertical porous plate with uniform suction are derived and presented in this paper. The solutions concern the Blasius, Sakiadis, and Blasius-Sakiadis flows with buoyancy forces combined with either MHD Lorentz or EMHD Lorentz forces. In addition, some exact solutions are presented specifically for water in the temperature range of 0∘C≤≤8∘C, where water density is nearly parabolic. Except for their use as benchmarking means for testing the numerical solution of the Navier-Stokes equations, the presented exact solutions with EMHD forces have use in flow separation control in aeronautics and hydronautics, whereas the MHD results have applications in process metallurgy and fusion technology. These analytical solutions are valid for flows with strong suction.
Directory of Open Access Journals (Sweden)
R. T. Al-Khairy
2009-01-01
source, whose capacity is given by (,=((1−− while the semi-infinite body has insulated boundary. The solution is obtained by Laplace transforms method, and the discussion of solutions for different time characteristics of heat sources capacity (constant, instantaneous, and exponential is presented. The effect of absorption coefficients on the temperature profiles is examined in detail. It is found that the closed form solution derived from the present study reduces to the previously obtained analytical solution when the medium velocity is set to zero in the closed form solution.
Explicit homoclinic tube solutions and chaos for Zakharov system with periodic boundary
International Nuclear Information System (INIS)
Dai Zhengde; Huang Jian; Jiang Murong
2006-01-01
In this Letter, the explicit homoclinic tube solutions for Zakharov system with periodic boundary conditions, and even constraints, are exhibited. The results show that there exist two family homoclinic tube solutions depending on parameters (a,p), which asymptotic to a periodic cycle of one dimension. The structures of homoclinic tubes have been investigated
Existence of positive solutions for a multi-point four-order boundary-value problem
Directory of Open Access Journals (Sweden)
Le Xuan Truong
2011-10-01
Full Text Available The article shows sufficient conditions for the existence of positive solutions to a multi-point boundary-value problem for a fourth-order differential equation. Our main tools are the Guo-Krasnoselskii fixed point theorem and the monotone iterative technique. We also show that the set of positive solutions is compact.
Numerical solutions of a three-point boundary value problem with an ...
African Journals Online (AJOL)
Numerical solutions of a three-point boundary value problem with an integral condition for a third-order partial differential equation by using Laplace transform method Solutions numeriques d'un probleme pour une classe d'equations differentielles d'ordr.
Directory of Open Access Journals (Sweden)
Xiaofeng Zhang
2017-12-01
Full Text Available In this paper, we consider the existence of positive solutions to a singular semipositone boundary value problem of nonlinear fractional differential equations. By applying the fixed point index theorem, some new results for the existence of positive solutions are obtained. In addition, an example is presented to demonstrate the application of our main results.
Three symmetric positive solutions of fourth-order singular nonlocal boundary value problems
Directory of Open Access Journals (Sweden)
Fuyi Xu
2011-12-01
Full Text Available In this paper, we study the existence of three positive solutions of fourth-order singular nonlocal boundary value problems. We show that there exist triple symmetric positive solutions by using Leggett-Williams fixed-point theorem. The conclusions in this paper essentially extend and improve some known results.
The Method of Subsuper Solutions for Weighted p(r-Laplacian Equation Boundary Value Problems
Directory of Open Access Journals (Sweden)
Zhimei Qiu
2008-10-01
Full Text Available This paper investigates the existence of solutions for weighted p(r-Laplacian ordinary boundary value problems. Our method is based on Leray-Schauder degree. As an application, we give the existence of weak solutions for p(x-Laplacian partial differential equations.
Singularly perturbed Burger-Huxley equation: Analytical solution ...
African Journals Online (AJOL)
The work presented considers the initial boundary value problem for nonlinear singularly perturbed time dependent Burger- Huxley equation. The equation contains two terms with nonlinearities, the cubic term and the advection term. Generally, the severe difficulties of two types encounter in solving this problem. The first ...
A new analytical solution to the diffusion problem: Fourier series ...
African Journals Online (AJOL)
This paper reviews briefly the origin of Fourier Series Method. The paper then gives a vivid description of how the method can be applied to solve a diffusion problem, subject to some boundary conditions. The result obtained is quite appealing as it can be used to solve similar examples of diffusion equations. JONAMP Vol.
Analytical solution of advection–diffusion equation in heterogeneous ...
Indian Academy of Sciences (India)
media like rivers as well as in porous media like aquifers. ... boundary conditions, and aquifer dimensions and dimensions of the ... tially dependent dispersion along non-uniform flow through ..... domain is initially pollutant free, i.e., c(x,0) = 0.
Closed-form solution for piezoelectric layer with two collinear cracks parallel to the boundaries
Directory of Open Access Journals (Sweden)
B. M. Singh
2006-01-01
Full Text Available We consider the problem of determining the stress distribution in an infinitely long piezoelectric layer of finite width, with two collinear cracks of equal length and parallel to the layer boundaries. Within the framework of reigning piezoelectric theory under mode III, the cracked piezoelectric layer subjected to combined electromechanical loading is analyzed. The faces of the layers are subjected to electromechanical loading. The collinear cracks are located at the middle plane of the layer parallel to its face. By the use of Fourier transforms we reduce the problem to solving a set of triple integral equations with cosine kernel and a weight function. The triple integral equations are solved exactly. Closed form analytical expressions for stress intensity factors, electric displacement intensity factors, and shape of crack and energy release rate are derived. As the limiting case, the solution of the problem with one crack in the layer is derived. Some numerical results for the physical quantities are obtained and displayed graphically.
Cengizci, Süleyman; Atay, Mehmet Tarık; Eryılmaz, Aytekin
2016-01-01
This paper is concerned with two-point boundary value problems for singularly perturbed nonlinear ordinary differential equations. The case when the solution only has one boundary layer is examined. An efficient method so called Successive Complementary Expansion Method (SCEM) is used to obtain uniformly valid approximations to this kind of solutions. Four test problems are considered to check the efficiency and accuracy of the proposed method. The numerical results are found in good agreement with exact and existing solutions in literature. The results confirm that SCEM has a superiority over other existing methods in terms of easy-applicability and effectiveness.
On the physical solutions to the heat equation subjected to nonlinear boundary conditions
International Nuclear Information System (INIS)
Gama, R.M.S. da.
1990-01-01
This work consists of a discussion on the physical solutions to the steady-state heat transfer equation, when it is subjected to nonlinear boundary conditions. It will be presented a functional, whose minimum occurs for the (unique) physical solution to the condidered heat transfer problem, suitable for a large class of typical (nonlinear) boundary conditions (representing the radiative/convective loss from the body to the environment). It will be demonstrated that these problems admit-always one, and only one, physical solution (which represents the absolute temperature). (author)
Directory of Open Access Journals (Sweden)
Huaying Zhao
Full Text Available Fluorescence optical detection in sedimentation velocity analytical ultracentrifugation allows the study of macromolecules at nanomolar concentrations and below. This has significant promise, for example, for the study of systems of high-affinity protein interactions. Here we describe adaptations of the direct boundary modeling analysis approach implemented in the software SEDFIT that were developed to accommodate unique characteristics of the confocal fluorescence detection system. These include spatial gradients of signal intensity due to scanner movements out of the plane of rotation, temporal intensity drifts due to instability of the laser and fluorophores, and masking of the finite excitation and detection cone by the sample holder. In an extensive series of experiments with enhanced green fluorescent protein ranging from low nanomolar to low micromolar concentrations, we show that the experimental data provide sufficient information to determine the parameters required for first-order approximation of the impact of these effects on the recorded data. Systematic deviations of fluorescence optical sedimentation velocity data analyzed using conventional sedimentation models developed for absorbance and interference optics are largely removed after these adaptations, resulting in excellent fits that highlight the high precision of fluorescence sedimentation velocity data, thus allowing a more detailed quantitative interpretation of the signal boundaries that is otherwise not possible for this system.
Directory of Open Access Journals (Sweden)
Ji Juan-Juan
2017-01-01
Full Text Available A table lookup method for solving nonlinear fractional partial differential equations (fPDEs is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.
International Nuclear Information System (INIS)
Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.
2016-01-01
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses
Energy Technology Data Exchange (ETDEWEB)
Messaris, Gerasimos A. T., E-mail: messaris@upatras.gr [Department of Physics, Division of Theoretical Physics, University of Patras, GR 265 04 Rion (Greece); School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras (Greece); Hadjinicolaou, Maria [School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras (Greece); Karahalios, George T. [Department of Physics, Division of Theoretical Physics, University of Patras, GR 265 04 Rion (Greece)
2016-08-15
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses
Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.
2016-08-01
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions
Hoenders, BJ; Benaron, DA; Chance, B; Muller, GJ; Katzir, A
1996-01-01
We will present two methods leading to the solution for the problem of anisotropical light scattering by arbitrarily shaped bodies. Each method converts the equation of radiative transfer and the boundary conditions valid at the boundary of the scattering medium into a set of Fredholm integral
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny; Birkholzer, Jens T.
2017-11-01
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1-D, 2-D, and 3-D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, td. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, td0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the first two terms for high-accuracy approximations (with less than 10-7 relative error) for 1-D isotropic (spheres, cylinders, slabs) and 2-D/3-D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1-D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2-D/3-D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.
Analytic continuation of solutions of some nonlinear convolution partial differential equations
Directory of Open Access Journals (Sweden)
Hidetoshi Tahara
2015-01-01
Full Text Available The paper considers a problem of analytic continuation of solutions of some nonlinear convolution partial differential equations which naturally appear in the summability theory of formal solutions of nonlinear partial differential equations. Under a suitable assumption it is proved that any local holomorphic solution has an analytic extension to a certain sector and its extension has exponential growth when the variable goes to infinity in the sector.
New analytical solutions for nonlinear physical models of the ...
Indian Academy of Sciences (India)
In mathematical physics, we studied two complex systems, the Maccari system and the coupled Higgs field equation. We construct sufficient exact solutions for nonlinear evolution equations. To study travelling wave solutions, we used a fractional complex transform to convert the particular partial differential equation of ...
On analytical solution of the Navier-Stokes equations
International Nuclear Information System (INIS)
Scheffel, J.
2001-04-01
An analytical method for solving the dissipative, nonlinear and non-stationary Navier-Stokes equations is presented. Velocity and pressure is expanded in power series of cartesian coordinates and time. The method is applied to 2-D incompressible gravitational flow in a bounded, rectangular domain
International Nuclear Information System (INIS)
Makhan'kov, V.G.; Slavov, S.I.
1989-01-01
Vector nonlinear Schroedinger equations (VS3) is investigated under quasi-constant boundary conditions. New two-soliton solutions are obtained with such non-trivial dynamics that they may be called the breather solutions. A version of the basic Novikov-Dubrovin-Krichever algebro-geometrical approach is applied to obtain breather like solutions existing for all types of internal symmetry is specified are formulated in terms of the soliton velocity expressed via the parameters of the problem. 4 refs
Directory of Open Access Journals (Sweden)
Long Yuhua
2017-12-01
Full Text Available In this paper, we study second-order nonlinear discrete Robin boundary value problem with parameter dependence. Applying invariant sets of descending flow and variational methods, we establish some new sufficient conditions on the existence of sign-changing solutions, positive solutions and negative solutions of the system when the parameter belongs to appropriate intervals. In addition, an example is given to illustrate our results.
International Nuclear Information System (INIS)
Choi, C. Y.; Park, C. T.; Kim, T. H.; Han, K. N.; Choe, S. H.
1995-01-01
A geometrical inverse heat conduction problem is solved for the development of Infrared Computerized-Axial-Tomography (IR CAT) Scan by using a boundary element method in conjunction with regularization procedure. In this problem, an overspecified temperature condition by infrared scanning is provided on the surface, and is used together with other conditions to solve the position of an unknown boundary (cavity). An auxiliary problem is introduced in the solution of this problem. By defining a hypothetical inner boundary for the auxiliary problem domain, the cavity is located interior to the domain and its position is determined by solving a potential problem. Boundary element method with regularization procedure is used to solve this problem, and the effects of regularization on the inverse solution method are investigated by means of numerical analysis
International Nuclear Information System (INIS)
Kuddusi, Luetfullah; Denton, Jesse C.
2007-01-01
The constructal solution for cooling of electronics requires solution of a fundamental heat conduction problem in a composite slab composed of a heat generating slab and a thin strip of high conductivity material that is responsible for discharging the generated heat to a heat sink located at one end of the strip. The fundamental 2D heat conduction problem is solved analytically by applying an integral transform method. The analytical solution is then employed in a constructal solution, following Bejan, for cooling of electronics. The temperature and heat flux distributions of the elemental heat generating slabs are assumed to be the same as those of the analytical solution in all the elemental volumes and the high conductivity strips distributed in the different constructs. Although the analytical solution of the fundamental 2D heat conduction problem improves the accuracy of the distributions in the elemental slabs, the results following Bejan's strategy do not affirm the accuracy of Bejan's constructal solution itself as applied to this problem of cooling of electronics. Several different strategies are possible for developing a constructal solution to this problem as is indicated
Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi
2014-01-01
Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.
Directory of Open Access Journals (Sweden)
Mohammad Zamani Nejad
2014-01-01
Full Text Available Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT. These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM is also presented and good agreement was found.
Singularly perturbed Burger-Huxley equation: Analytical solution ...
African Journals Online (AJOL)
user
numbers, Navier-Stokes flows with large Reynolds numbers, chemical reactor ... It is to observe the layer behavior of the solution for smaller values of ε leading to singular ...... Burger equation, momentum gas equation and heat equation.
Analytical solution of groundwater waves in unconfined aquifers with ...
Indian Academy of Sciences (India)
Selva Balaji Munusamy
2017-07-29
Jul 29, 2017 ... higher-order Boussinesq equation. The homotopy perturbation solution is derived using a virtual perturbation .... reality, seepage face formation is common for tide–aquifer interaction problems. To simplify the complexity of the.
A family of analytical solutions of a nonlinear diffusion-convection equation
Hayek, Mohamed
2018-01-01
Despite its popularity in many engineering fields, the nonlinear diffusion-convection equation has no general analytical solutions. This work presents a family of closed-form analytical traveling wave solutions for the nonlinear diffusion-convection equation with power law nonlinearities. This kind of equations typically appears in nonlinear problems of flow and transport in porous media. The solutions that are addressed are simple and fully analytical. Three classes of analytical solutions are presented depending on the type of the nonlinear diffusion coefficient (increasing, decreasing or constant). It has shown that the structure of the traveling wave solution is strongly related to the diffusion term. The main advantage of the proposed solutions is that they are presented in a unified form contrary to existing solutions in the literature where the derivation of each solution depends on the specific values of the diffusion and convection parameters. The proposed closed-form solutions are simple to use, do not require any numerical implementation, and may be implemented in a simple spreadsheet. The analytical expressions are also useful to mathematically analyze the structure and properties of the solutions.
Analytical Solution of Pantograph Equation with Incommensurate Delay
Patade, Jayvant; Bhalekar, Sachin
2017-08-01
Pantograph equation is a delay differential equation (DDE) arising in electrodynamics. This paper studies the pantograph equation with two delays. The existence, uniqueness, stability and convergence results for DDEs are presented. The series solution of the proposed equation is obtained by using Daftardar-Gejji and Jafari method and given in terms of a special function. This new special function has several properties and relations with other functions. Further, we generalize the proposed equation to fractional-order case and obtain its solution.
Selecting analytical tools for characterization of polymersomes in aqueous solution
DEFF Research Database (Denmark)
Habel, Joachim Erich Otto; Ogbonna, Anayo; Larsen, Nanna
2015-01-01
Selecting the appropriate analytical methods for characterizing the assembly and morphology of polymer-based vesicles, or polymersomes are required to reach their full potential in biotechnology. This work presents and compares 17 different techniques for their ability to adequately report size....../purification. Of the analytical methods tested, Cryo-transmission electron microscopy and atomic force microscopy (AFM) turned out to be advantageous for polymersomes with smaller diameter than 200 nm, whereas confocal microscopy is ideal for diameters >400 nm. Polymersomes in the intermediate diameter range can be characterized...... using freeze fracture Cryo-scanning electron microscopy (FF-Cryo-SEM) and nanoparticle tracking analysis (NTA). Small angle X-ray scattering (SAXS) provides reliable data on bilayer thickness and internal structure, Cryo-TEM on multilamellarity. Taken together, these tools are valuable...
Analytical solutions of the electrostatically actuated curled beam problem
Younis, Mohammad I.
2014-07-24
This works presents analytical expressions of the electrostatically actuated initially deformed cantilever beam problem. The formulation is based on the continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We derive simple analytical expressions for two commonly observed deformed beams configurations: the curled and tilted configurations. The derived analytical formulas are validated by comparing their results to experimental data and numerical results of a multi-mode reduced order model. The derived expressions do not involve any complicated integrals or complex terms and can be conveniently used by designers for quick, yet accurate, estimations. The formulas are found to yield accurate results for most commonly encountered microbeams of initial tip deflections of few microns. For largely deformed beams, we found that these formulas yield less accurate results due to the limitations of the single-mode approximation. In such cases, multi-mode reduced order models are shown to yield accurate results. © 2014 Springer-Verlag Berlin Heidelberg.
Yang, Jianwen
2012-04-01
A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.
International Nuclear Information System (INIS)
Hung, Nguyen M
1999-01-01
An existence and uniqueness theorem for generalized solutions of the first initial-boundary-value problem for strongly hyperbolic systems in bounded domains is established. The question of estimates in Sobolev spaces of the derivatives with respect to time of the generalized solution is discussed. It is shown that the smoothness of generalized solutions with respect to time is independent of the structure of the boundary of the domain but depends on the coefficients of the right-hand side. Results on the smoothness of the generalized solution and its asymptotic behaviour in a neighbourhood of a conical boundary point are also obtained
Solution matching for a three-point boundary-value problem on atime scale
Directory of Open Access Journals (Sweden)
Martin Eggensperger
2004-07-01
Full Text Available Let $mathbb{T}$ be a time scale such that $t_1, t_2, t_3 in mathbb{T}$. We show the existence of a unique solution for the three-point boundary value problem $$displaylines{ y^{DeltaDeltaDelta}(t = f(t, y(t, y^Delta(t, y^{DeltaDelta}(t, quad t in [t_1, t_3] cap mathbb{T},cr y(t_1 = y_1, quad y(t_2 = y_2, quad y(t_3 = y_3,. }$$ We do this by matching a solution to the first equation satisfying a two-point boundary conditions on $[t_1, t_2] cap mathbb{T}$ with a solution satisfying a two-point boundary conditions on $[t_2, t_3] cap mathbb{T}$.
Analytical Solutions for the Surface States of Bi1-xSbx (0 ≤ x ≲ 0.1)
Fuseya, Yuki; Fukuyama, Hidetoshi
2018-04-01
Analytical solutions for the surface state (SS) of an extended Wolff Hamiltonian, which is a common Hamiltonian for strongly spin-orbit coupled systems, are obtained both for semi-infinite and finite-thickness boundary conditions. For the semi-infinite system, there are two types of SS solutions: (I-a) linearly crossing SSs in the direct bulk band gap, and (I-b) SSs with linear dispersions entering the bulk conduction or valence bands away from the band edge. For the finite-thickness system, a gap opens in the SS of solution I-a. Numerical solutions for the SS are also obtained based on the tight-binding model of Liu and Allen [https://doi.org/10.1103/PhysRevB.52.1566" xlink:type="simple">Phys. Rev. B 52, 1566 (1995)] for Bi1-xSbx (0 ≤ x ≤ 0.1). A perfect correspondence between the analytic and numerical solutions is obtained around the \\bar{M} point including their thickness dependence. This is the first time that the character of the SS numerically obtained is identified with the help of analytical solutions. The size of the gap for I-a SS can be larger than that of bulk band gap even for a "thick" films ( ≲ 200 bilayers ≃ 80 nm) of pure bismuth. Consequently, in such a film of Bi1-xSbx, there is no apparent change in the SSs through the band inversion at x ≃ 0.04, even though the nature of the SS is changed from solution I-a to I-b. Based on our theoretical results, the experimental results on the SS of Bi1-xSbx (0 ≤ x ≲ 0.1) are discussed.
Analytic solution for American strangle options using Laplace-Carson transforms
Kang, Myungjoo; Jeon, Junkee; Han, Heejae; Lee, Somin
2017-06-01
A strangle has been important strategy for options when the trader believes there will be a large movement in the underlying asset but are uncertain of which way the movement will be. In this paper, we derive analytic formula for the price of American strangle options. American strangle options can be mathematically formulated into the free boundary problems involving two early exercise boundaries. By using Laplace-Carson Transform(LCT), we can derive the nonlinear system of equations satisfied by the transformed value of two free boundaries. We then solve this nonlinear system using Newton's method and finally get the free boundaries and option values using numerical Laplace inversion techniques. We also derive the Greeks for the American strangle options as well as the value of perpetual American strangle options. Furthermore, we present various graphs for the free boundaries and option values according to the change of parameters.
Analytical solution using computer algebra of a biosensor for detecting toxic substances in water
Rúa Taborda, María. Isabel
2014-05-01
In a relatively recent paper an electrochemical biosensor for water toxicity detection based on a bio-chip as a whole cell was proposed and numerically solved and analyzed. In such paper the kinetic processes in a miniaturized electrochemical biosensor system was described using the equations for specific enzymatic reaction and the diffusion equation. The numerical solution shown excellent agreement with the measured data but such numerical solution is not enough to design efficiently the corresponding bio-chip. For this reason an analytical solution is demanded. The object of the present work is to provide such analytical solution and then to give algebraic guides to design the bio-sensor. The analytical solution is obtained using computer algebra software, specifically Maple. The method of solution is the Laplace transform, with Bromwich integral and residue theorem. The final solution is given as a series of Bessel functions and the effective time for the bio-sensor is computed. It is claimed that the analytical solutions that were obtained will be very useful to predict further current variations in similar systems with different geometries, materials and biological components. Beside of this the analytical solution that we provide is very useful to investigate the relationship between different chamber parameters such as cell radius and height; and electrode radius.
POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS
Directory of Open Access Journals (Sweden)
FAOUZI HADDOUCHI
2015-11-01
Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.
Unsteady analytical solutions to the Poisson–Nernst–Planck equations
International Nuclear Information System (INIS)
Schönke, Johannes
2012-01-01
It is shown that the Poisson–Nernst–Planck equations for a single ion species can be formulated as one equation in terms of the electric field. This previously not analyzed equation shows similarities to the vector Burgers equation and is identical with it in the one dimensional case. Several unsteady exact solutions for one and multidimensional cases are presented. Besides new mathematical insights which these first known unsteady solutions give, they can serve as test cases in computer simulations to analyze numerical algorithms and to verify code. (paper)
Analytical solutions of hypersonic type IV shock - shock interactions
Frame, Michael John
An analytical model has been developed to predict the effects of a type IV shock interaction at high Mach numbers. This interaction occurs when an impinging oblique shock wave intersects the most normal portion of a detached bow shock. The flowfield which develops is complicated and contains an embedded jet of supersonic flow, which may be unsteady. The jet impinges on the blunt body surface causing very high pressure and heating loads. Understanding this type of interaction is vital to the designers of cowl lips and leading edges on air- breathing hypersonic vehicles. This analytical model represents the first known attempt at predicting the geometry of the interaction explicitly, without knowing beforehand the jet dimensions, including the length of the transmitted shock where the jet originates. The model uses a hyperbolic equation for the bow shock and by matching mass continuity, flow directions and pressure throughout the flowfield, a prediction of the interaction geometry can be derived. The model has been shown to agree well with the flowfield patterns and properties of experiments and CFD, but the prediction for where the peak pressure is located, and its value, can be significantly in error due to a lack of sophistication in the model of the jet fluid stagnation region. Therefore it is recommended that this region of the flowfield be modeled in more detail and more accurate experimental and CFD measurements be used for validation. However, the analytical model has been shown to be a fast and economic prediction tool, suitable for preliminary design, or for understanding the interactions effects, including the basic physics of the interaction, such as the jet unsteadiness. The model has been used to examine a wide parametric space of possible interactions, including different Mach number, impinging shock strength and location, and cylinder radius. It has also been used to examine the interaction on power-law shaped blunt bodies, a possible candidate for
Analytical solution of a stochastic content-based network model
International Nuclear Information System (INIS)
Mungan, Muhittin; Kabakoglu, Alkan; Balcan, Duygu; Erzan, Ayse
2005-01-01
We define and completely solve a content-based directed network whose nodes consist of random words and an adjacency rule involving perfect or approximate matches for an alphabet with an arbitrary number of letters. The analytic expression for the out-degree distribution shows a crossover from a leading power law behaviour to a log-periodic regime bounded by a different power law decay. The leading exponents in the two regions have a weak dependence on the mean word length, and an even weaker dependence on the alphabet size. The in-degree distribution, on the other hand, is much narrower and does not show any scaling behaviour
Analytical Solutions for Predicting Underwater Explosion Gas Bubble Behaviour
2010-11-01
décrit différents modèles analytiques élaborés antérieurement pour prévoir la croissance et l’implosion radiales en champ libre des bulles gazeuses...9.80665 Air pressure (kPa), Pair 101.325 101.325 4.4 Code Development The visualization software IDL was used to develop a code for calculating the...models and assumptions provide better predictions. Using the visualization software IDL the various analytical models and similitude equations, a code
Selecting analytical tools for characterization of polymersomes in aqueous solution
DEFF Research Database (Denmark)
Habel, Joachim Erich Otto; Ogbonna, Anayo; Larsen, Nanna
2015-01-01
/purification. Of the analytical methods tested, Cryo-transmission electron microscopy and atomic force microscopy (AFM) turned out to be advantageous for polymersomes with smaller diameter than 200 nm, whereas confocal microscopy is ideal for diameters >400 nm. Polymersomes in the intermediate diameter range can be characterized...... using freeze fracture Cryo-scanning electron microscopy (FF-Cryo-SEM) and nanoparticle tracking analysis (NTA). Small angle X-ray scattering (SAXS) provides reliable data on bilayer thickness and internal structure, Cryo-TEM on multilamellarity. Taken together, these tools are valuable...
Towards an analytic solution of QCD: The glueball mass gap
International Nuclear Information System (INIS)
West, G.B.
1987-01-01
Certain general features and beliefs concerning quantum chromodynamics are reviewed with he view to seeing whether the theory sense and whether its physical spectrum can be determined. A typical Green's function is represented as an expansion around the minima of the action, each term of which is divergent and requires renormalization. It is shown that even after renormalization, each of the series generated by expansion around a minimum is divergent and requires a summability procedure to make sense. The causality and analyticity of the resulting Green's function is then discussed. The ideas thus developed are shown to determine the position of the first singularity of the Green's function
Applicability of the Analytical Solution to N-Person Social Dilemma Games
Directory of Open Access Journals (Sweden)
Ugo Merlone
2018-05-01
Full Text Available The purpose of this study is to present an analysis of the applicability of an analytical solution to the N−person social dilemma game. Such solution has been earlier developed for Pavlovian agents in a cellular automaton environment with linear payoff functions and also been verified using agent based simulation. However, no discussion has been offered for the applicability of this result in all Prisoners' Dilemma game scenarios or in other N−person social dilemma games such as Chicken or Stag Hunt. In this paper it is shown that the analytical solution works in all social games where the linear payoff functions are such that each agent's cooperating probability fluctuates around the analytical solution without cooperating or defecting with certainty. The social game regions where this determination holds are explored by varying payoff function parameters. It is found by both simulation and a special method that the analytical solution applies best in Chicken when the payoff parameter S is slightly negative and then the analytical solution slowly degrades as S becomes more negative. It turns out that the analytical solution is only a good estimate for Prisoners' Dilemma games and again becomes worse as S becomes more negative. A sensitivity analysis is performed to determine the impact of different initial cooperating probabilities, learning factors, and neighborhood size.
Holst, Michael; Meier, Caleb; Tsogtgerel, G.
2018-01-01
In this article we continue our effort to do a systematic development of the solution theory for conformal formulations of the Einstein constraint equations on compact manifolds with boundary. By building in a natural way on our recent work in Holst and Tsogtgerel (Class Quantum Gravity 30:205011, 2013), and Holst et al. (Phys Rev Lett 100(16):161101, 2008, Commun Math Phys 288(2):547-613, 2009), and also on the work of Maxwell (J Hyperbolic Differ Eqs 2(2):521-546, 2005a, Commun Math Phys 253(3):561-583, 2005b, Math Res Lett 16(4):627-645, 2009) and Dain (Class Quantum Gravity 21(2):555-573, 2004), under reasonable assumptions on the data we prove existence of both near- and far-from-constant mean curvature (CMC) solutions for a class of Robin boundary conditions commonly used in the literature for modeling black holes, with a third existence result for CMC appearing as a special case. Dain and Maxwell addressed initial data engineering for space-times that evolve to contain black holes, determining solutions to the conformal formulation on an asymptotically Euclidean manifold in the CMC setting, with interior boundary conditions representing excised interior black hole regions. Holst and Tsogtgerel compiled the interior boundary results covered by Dain and Maxwell, and then developed general interior conditions to model the apparent horizon boundary conditions of Dainand Maxwell for compact manifolds with boundary, and subsequently proved existence of solutions to the Lichnerowicz equation on compact manifolds with such boundary conditions. This paper picks up where Holst and Tsogtgerel left off, addressing the general non-CMC case for compact manifolds with boundary. As in our previous articles, our focus here is again on low regularity data and on the interaction between different types of boundary conditions. While our work here serves primarily to extend the solution theory for the compact with boundary case, we also develop several technical tools that have
Analytical travelling wave solutions and parameter analysis for the ...
Indian Academy of Sciences (India)
done in the past few decades to improve this equation. Especially, in ... For exam- ple, the solutions of DS equation could describe the interaction between a ... In this paper, we consider the following (2+1)-dimensional Davey–Stewartson-type.
General scalar-tensor cosmology: analytical solutions via noether symmetry
Energy Technology Data Exchange (ETDEWEB)
Massaeli, Erfan; Motaharfar, Meysam; Sepangi, Hamid Reza [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of)
2017-02-15
We analyze the cosmology of a general scalar-tensor theory which encompasses generalized Brans-Dicke theory, Gauss-Bonnet gravity, non-minimal derivative gravity, generalized Galilean gravity and also the general k-essence type models. Instead of taking into account phenomenological considerations we adopt a Noether symmetry approach, as a physical criterion, to single out the form of undetermined functions in the action. These specified functions symmetrize equations of motion in the simplest possible form which result in exact solutions. Demanding de Sitter, power-law and bouncing universe solutions in the absence and presence of matter density leads to exploring new as well as well-investigated models. We show that there are models for which the dynamics of the system allows a transition from a decelerating phase (matter dominated era) to an accelerating phase (dark energy epoch) and could also lead to general Brans-Dicke with string correction without a self-interaction potential. Furthermore, we classify the models based on a phantom or quintessence dark energy point of view. Finally, we obtain the condition for stability of a de Sitter solution for which the solution is an attractor of the system. (orig.)
Analytic method for solitary solutions of some partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya@firat.edu.tr
2007-10-22
In this Letter by considering an improved tanh function method, we found some exact solutions of the clannish random walker's parabolic equation, the modified Korteweg-de Vries (KdV) equation, and the Sharma-Tasso-Olver (STO) equation with its fission and fusion, the Jaulent-Miodek equation.
Analytic method for solitary solutions of some partial differential equations
International Nuclear Information System (INIS)
Ugurlu, Yavuz; Kaya, Dogan
2007-01-01
In this Letter by considering an improved tanh function method, we found some exact solutions of the clannish random walker's parabolic equation, the modified Korteweg-de Vries (KdV) equation, and the Sharma-Tasso-Olver (STO) equation with its fission and fusion, the Jaulent-Miodek equation
An analytic solution for the enrichment of uranium hexafluoride in long countercurrent centrifuges
International Nuclear Information System (INIS)
Raetz, E.
1977-01-01
The paper describes an analytic solution for the enrichment and the separative power of long countercurrent centrifuges. Equations to derive optimal operation parameters like feed and feed input height are derived and solved. (orig.) [de
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
Analytical solutions for ozone generation by point to plane corona discharge
International Nuclear Information System (INIS)
Bestman, A.R.
1990-12-01
A recent mathematical model developed for ozone production is tackled analytically by asymptotic approximation. The results obtained are compared with existing numerical solutions. The comparison shows good agreement. (author). 3 refs, 1 fig
Shan, Zhendong; Ling, Daosheng
2018-02-01
This article develops an analytical solution for the transient wave propagation of a cylindrical P-wave line source in a semi-infinite elastic solid with a fluid layer. The analytical solution is presented in a simple closed form in which each term represents a transient physical wave. The Scholte equation is derived, through which the Scholte wave velocity can be determined. The Scholte wave is the wave that propagates along the interface between the fluid and solid. To develop the analytical solution, the wave fields in the fluid and solid are defined, their analytical solutions in the Laplace domain are derived using the boundary and interface conditions, and the solutions are then decomposed into series form according to the power series expansion method. Each item of the series solution has a clear physical meaning and represents a transient wave path. Finally, by applying Cagniard's method and the convolution theorem, the analytical solutions are transformed into the time domain. Numerical examples are provided to illustrate some interesting features in the fluid layer, the interface and the semi-infinite solid. When the P-wave velocity in the fluid is higher than that in the solid, two head waves in the solid, one head wave in the fluid and a Scholte wave at the interface are observed for the cylindrical P-wave line source.
International Nuclear Information System (INIS)
Chen Changyuan; Sun Dongsheng; Lu Falin
2007-01-01
Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Klein-Gordon equation with the vector and scalar Hulthen potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of bound states are attained for different l. The analytical energy equation and the unnormalized radial wave functions expressed in terms of hypergeometric polynomials are given
Non-perturbative analytical solutions of the space- and time-fractional Burgers equations
International Nuclear Information System (INIS)
Momani, Shaher
2006-01-01
Non-perturbative analytical solutions for the generalized Burgers equation with time- and space-fractional derivatives of order α and β, 0 < α, β ≤ 1, are derived using Adomian decomposition method. The fractional derivatives are considered in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed
Analytical Solutions for Systems of Singular Partial Differential-Algebraic Equations
Directory of Open Access Journals (Sweden)
U. Filobello-Nino
2015-01-01
Full Text Available This paper proposes power series method (PSM in order to find solutions for singular partial differential-algebraic equations (SPDAEs. We will solve three examples to show that PSM method can be used to search for analytical solutions of SPDAEs. What is more, we will see that, in some cases, Padé posttreatment, besides enlarging the domain of convergence, may be employed in order to get the exact solution from the truncated series solutions of PSM.
A Novel Method for Analytical Solutions of Fractional Partial Differential Equations
Mehmet Ali Akinlar; Muhammet Kurulay
2013-01-01
A new solution technique for analytical solutions of fractional partial differential equations (FPDEs) is presented. The solutions are expressed as a finite sum of a vector type functional. By employing MAPLE software, it is shown that the solutions might be extended to an arbitrary degree which makes the present method not only different from the others in the literature but also quite efficient. The method is applied to special Bagley-Torvik and Diethelm fractional differential equations as...
The presentation of explicit analytical solutions of a class of nonlinear evolution equations
International Nuclear Information System (INIS)
Feng Jinshun; Guo Mingpu; Yuan Deyou
2009-01-01
In this paper, we introduce a function set Ω m . There is a conjecture that an arbitrary explicit travelling-wave analytical solution of a real constant coefficient nonlinear evolution equation is necessarily a linear (or nonlinear) combination of the product of some elements in Ω m . A widespread applicable approach for solving a class of nonlinear evolution equations is established. The new analytical solutions to two kinds of nonlinear evolution equations are described with the aid of the guess.
Dual solutions in boundary layer flow of Maxwell fluid over a porous shrinking sheet
International Nuclear Information System (INIS)
Bhattacharyya Krishnendu; Hayat Tasawar; Alsaedi Ahmed
2014-01-01
An analysis is carried out for dual solutions of the boundary layer flow of Maxwell fluid over a permeable shrinking sheet. In the investigation, a constant wall mass transfer is considered. With the help of similarity transformations, the governing partial differential equations (PDEs) are converted into a nonlinear self-similar ordinary differential equation (ODE). For the numerical solution of transformed self-similar ODE, the shooting method is applied. The study reveals that the steady flow of Maxwell fluid is possible with a smaller amount of imposed mass suction compared with the viscous fluid flow. Dual solutions for the velocity distribution are obtained. Also, the increase of Deborah number reduces the boundary layer thickness for both solutions. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Valent, Tullio
1988-01-01
In this book I present, in a systematic form, some local theorems on existence, uniqueness, and analytic dependence on the load, which I have recently obtained for some types of boundary value problems of finite elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal generalization of three-dimensional elasticity. Such a generalization, be sides being quite spontaneous, allows us to consider a great many inter esting mathematical situations, and sometimes allows us to clarify certain aspects of the three-dimensional case. Part of the matter presented is unpublished; other arguments have been only partially published and in lesser generality. Note that I concentrate on simultaneous local existence and uniqueness; thus, I do not deal with the more general theory of exis tence. Moreover, I restrict my discussion to compressible elastic bodies and I do not treat unilateral problems. The clever use of the inverse function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 1957b]...
Analytical solution for dynamic pressurization of viscoelastic fluids
International Nuclear Information System (INIS)
Hashemabadi, S.H.; Etemad, S.Gh.; Thibault, J.; Golkar Naranji, M.R.
2003-01-01
The flow of simplified Phan-Thien-Tanner model fluid between parallel plates is studied analytically for the case where the upper plate moves at constant velocity. Two forms of the stress coefficient, linear and exponential, are used in the constitutive equation. For the linear stress coefficient, the dimensionless pressure gradient, the velocity profile and the product of friction factor and Reynolds number are obtained for a wide range of flow rate, Deborah number and elongational parameter. The results indicate the strong effects of the viscoelastic parameter on the velocity profile, the extremum of the velocity, and the friction factor. A correlation for the maximum pressure rise in single screw extruders is proposed. For the exponential stress coefficient, only velocity profiles were obtained and compared with velocity profiles obtained with the linear stress coefficient
Kacimov, A. R.; Obnosov, Y. V.
2018-01-01
A study is made of a steady, two-dimensional groundwater flow with a horizontal well (drain), which pumps out freshwater from an aquifer sandwiched between a horizontal bedrock and ponded soil surface, and containing a lens-shaped static volume of a heavier saline water (DNAPL-dense nonaqueous phase liquid) as a free surface. For flow toward a line sink, an explicit analytical solution is obtained by a conformal mapping of the hexagon in the complex potential plane onto a reference plane and the Keldysh-Sedov integral representation of a mixed boundary-value problem for a complex physical coordinate. The interface is found as a function of the pumping rate, the well locus, the ratio of liquid densities, and the hydraulic heads at the soil surface and in the well. The shape with two inflexion points and fronts varies from a small-thickness bedrock-spread pancake to a critical curvilinear triangle, which cusps toward the sink. The problem is mathematically solvable in a relatively narrow band of geometric and hydraulic parameters. A similar analytic solution for a static heavy bubble confined by a closed-curve interface (no contact with the bedrock) is outlined as an illustration of the method to solve a mixed boundary-value problem.
Analytical solution to the coupled evolution of multidimensional NMR data
International Nuclear Information System (INIS)
Mueller, Geoffrey A.
2009-01-01
A substantial time savings in the collection of multidimensional NMR data can be achieved by coupling the evolution of nuclei in the indirect dimensions. In order to save time, the sampling of the indirect dimensions is inherently incomplete. Therefore, many algorithms and samplings schemes have been developed aimed at separating the coevolved frequencies into analyzable data with limited artifacts. This paper extends the use of circulant matrices to describe coupled evolution with convolutions. By understanding the data in terms of convolutions, there is an exact solution to the inversion problem of extracting the orthogonal vectors from the coupled dimensions. Previously, this inversion problem has been solved using peak coordinates extracted from spectra. In contrast, the method described here uses spectra directly. This solution suggests a simple sampling scheme of collecting N orthogonal spectra, and N + 1 projections at specific projection angles, however, the theory developed can be extended generally to arbitrary projection angles. The circulant matrix methodology is demonstrated for simulated and real data. Further, an algorithm for separating overlapped signals in the detected dimension is presented. The algorithm involves the forward calculation of the coupled spectra from the orthogonal spectra, followed by back calculation of the orthogonal spectra from the coupled spectra, thus permitting rigorous cross-validation. This algorithm is shown to be robust in that erroneous solutions give rise to large artifacts
Positive solutions for a nonlinear periodic boundary-value problem with a parameter
Directory of Open Access Journals (Sweden)
Jingliang Qiu
2012-08-01
Full Text Available Using topological degree theory with a partially ordered structure of space, sufficient conditions for the existence and multiplicity of positive solutions for a second-order nonlinear periodic boundary-value problem are established. Inspired by ideas in Guo and Lakshmikantham [6], we study the dependence of positive periodic solutions as a parameter approaches infinity, $$ lim_{lambdao +infty}|x_{lambda}|=+infty,quadhbox{or}quad lim_{lambdao+infty}|x_{lambda}|=0. $$
Exact solutions and critical chaos in dilaton gravity with a boundary
Energy Technology Data Exchange (ETDEWEB)
Fitkevich, Maxim [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary Prospect 7a, Moscow 117312 (Russian Federation); Moscow Institute of Physics and Technology,Institutskii per. 9, Dolgoprudny 141700, Moscow Region (Russian Federation); Levkov, Dmitry [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary Prospect 7a, Moscow 117312 (Russian Federation); Zenkevich, Yegor [Dipartimento di Fisica, Università di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); INFN, sezione di Milano-Bicocca,I-20126 Milano (Italy); National Research Nuclear University MEPhI,Moscow 115409 (Russian Federation)
2017-04-19
We consider (1+1)-dimensional dilaton gravity with a reflecting dynamical boundary. The boundary cuts off the region of strong coupling and makes our model causally similar to the spherically-symmetric sector of multidimensional gravity. We demonstrate that this model is exactly solvable at the classical level and possesses an on-shell SL(2, ℝ) symmetry. After introducing general classical solution of the model, we study a large subset of soliton solutions. The latter describe reflection of matter waves off the boundary at low energies and formation of black holes at energies above critical. They can be related to the eigenstates of the auxiliary integrable system, the Gaudin spin chain. We argue that despite being exactly solvable, the model in the critical regime, i.e. at the verge of black hole formation, displays dynamical instabilities specific to chaotic systems. We believe that this model will be useful for studying black holes and gravitational scattering.
Numerical solution of system of boundary value problems using B-spline with free parameter
Gupta, Yogesh
2017-01-01
This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.
Energy Technology Data Exchange (ETDEWEB)
Samin, Adib; Lahti, Erik; Zhang, Jinsuo, E-mail: zhang.3558@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19" t" h Avenue, Columbus, Ohio 43210 (United States)
2015-08-15
Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes.
International Nuclear Information System (INIS)
th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Samin, Adib; th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Lahti, Erik; th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Zhang, Jinsuo
2015-01-01
Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes
Czech Academy of Sciences Publication Activity Database
Lejček, Pavel; Hofmann, S.
2016-01-01
Roč. 28, č. 6 (2016), 1-9, č. článku 064001. ISSN 0953-8984 R&D Projects: GA ČR GAP108/12/0144 Institutional support: RVO:68378271 Keywords : anisotropy * enthalpy- entropy compensation effect * grain boundary * iron solute segregation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.649, year: 2016
B-spline solution of a singularly perturbed boundary value problem arising in biology
International Nuclear Information System (INIS)
Lin Bin; Li Kaitai; Cheng Zhengxing
2009-01-01
We use B-spline functions to develop a numerical method for solving a singularly perturbed boundary value problem associated with biology science. We use B-spline collocation method, which leads to a tridiagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical result is found in good agreement with exact solution.
L^p-continuity of solutions to parabolic free boundary problems
Directory of Open Access Journals (Sweden)
Abdeslem Lyaghfouri
2015-07-01
Full Text Available In this article, we consider a class of parabolic free boundary problems. We establish some properties of the solutions, including L^infinity-regularity in time and a monotonicity property, from which we deduce strong L^p-continuity in time.
Directory of Open Access Journals (Sweden)
Tengfei Shen
2015-12-01
Full Text Available This paper deals with the multiplicity of solutions for Dirichlet boundary conditions of second-order quasilinear equations with impulsive effects. By using critical point theory, a new result is obtained. An example is given to illustrate the main result.
Triple solutions for multi-point boundary-value problem with p-Laplace operator
Directory of Open Access Journals (Sweden)
Yansheng Liu
2009-11-01
Full Text Available Using a fixed point theorem due to Avery and Peterson, this article shows the existence of solutions for multi-point boundary-value problem with p-Laplace operator and parameters. Also, we present an example to illustrate the results obtained.
Czech Academy of Sciences Publication Activity Database
Lomtatidze, Alexander; Vodstrčil, Petr
2005-01-01
Roč. 84, č. 2 (2005), s. 197-209 ISSN 0003-6811 Institutional research plan: CEZ:AV0Z10190503 Keywords : second order linear functional differential equations * nonnegative solution * two-point boundary value problem Subject RIV: BA - General Mathematics http://www.tandfonline.com/doi/full/10.1080/00036810410001724427
Directory of Open Access Journals (Sweden)
Jian Liu
2013-09-01
Full Text Available In this article, we consider the free boundary value problem for one-dimensional compressible bipolar Navier-Stokes-Possion (BNSP equations with density-dependent viscosities. For general initial data with finite energy and the density connecting with vacuum continuously, we prove the global existence of the weak solution. This extends the previous results for compressible NS [27] to NSP.
The analytical solution to the 1D diffusion equation in heterogeneous media
International Nuclear Information System (INIS)
Ganapol, B.D.; Nigg, D.W.
2011-01-01
The analytical solution to the time-independent multigroup diffusion equation in heterogeneous plane cylindrical and spherical media is presented. The solution features the simplicity of the one-group formulation while addressing the complication of multigroup diffusion in a fully heterogeneous medium. Beginning with the vector form of the diffusion equation, the approach, based on straightforward mathematics, resolves a set of coupled second order ODEs. The analytical form is facilitated through matrix diagonalization of the neutron interaction matrix rendering the multigroup solution as a series of one-group solutions which, when re-assembled, gives the analytical solution. Customized Eigenmode solutions of the one-group diffusion operator then represent the homogeneous solution in a uniform spatial domain. Once the homogeneous solution is known, the particular solution naturally emerges through variation of parameters. The analytical expression is then numerically implemented through recurrence. Finally, we apply the theory to assess the accuracy of a second order finite difference scheme and to a 1D slab BWR reactor in the four-group approximation. (author)
Directory of Open Access Journals (Sweden)
M. I. Popov
2016-01-01
Full Text Available The approximate analytical solution of a problem about nonstationary free convection in the conductive and laminar mode of the Newtonian liquid in square area at the instantaneous change of temperature of a sidewall and lack of heat fluxes is submitted on top and bottom the bases. The equations of free convection in an approximation of Oberbeka-Bussinesk are linearized due to neglect by convective items. For reduction of number of hydrothermal parameters the system is given to the dimensionless look by introduction of scales for effect and explanatory variables. Transition from classical variables to the variables "whirlwind-a flow function" allowed to reduce system to a nonstationary heat conduction equation and a nonstationary nonuniform biharmonic equation, and the first is not dependent on the second. The decision in the form of a flow function is received by application integral a sine - Fourier transforms with terminating limits to a biharmonic equation at first on a variable x, and then on a variable y. The flow function has an appearance of a double series of Fourier on sine with coefficients in an integral form. Coefficients of a row represent integrals from unknown functions. On the basis of a hypothesis of an express type of integrals coefficients are calculated from the linear equation system received from boundary conditions on partial derivatives of function. Dependence of structure of a current on Prandtl's number is investigated. The cards of streamlines and isolines of components of speed describing development of a current from the moment of emergence before transition to a stationary state are received. The schedules of a field of vectors of speeds in various time illustrating dynamics of a current are provided. Reliability of a hypothesis of an express type of integral coefficients is confirmed by adequacy to physical sense and coherence of the received results with the numerical solution of a problem.
Analytical solutions for Dirac and Klein-Gordon equations using Backlund transformations
Energy Technology Data Exchange (ETDEWEB)
Zabadal, Jorge R.; Borges, Volnei, E-mail: jorge.zabadal@ufrgs.br, E-mail: borges@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Engenharia Mecanica; Ribeiro, Vinicius G., E-mail: vinicius_ribeiro@uniritter.edu.br [Centro Universitario Ritter dos Reis (UNIRITTER), Porto Alegre, RS (Brazil); Santos, Marcio, E-mail: marciophd@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Centro de Estudos Interdisciplinares
2015-07-01
This work presents a new analytical method for solving Klein-Gordon type equations via Backlund transformations. The method consists in mapping the Klein-Gordon model into a first order system of partial differential equations, which contains a generalized velocity field instead of the Dirac matrices. This system is a tensor model for quantum field theory whose space solution is wider than the Dirac model in the original form. Thus, after finding analytical expressions for the wave functions, the Maxwell field can be readily obtained from the Dirac equations, furnishing a self-consistent field solution for the Maxwell-Dirac system. Analytical and numerical results are reported. (author)
An Analytical Solution for Cylindrical Concrete Tank on Deformable Soil
Directory of Open Access Journals (Sweden)
Shirish Vichare
2010-07-01
Full Text Available Cylindrical concrete tanks are commonly used in wastewater treatment plants. These are usually clarifier tanks. Design codes of practice provide methods to calculate design forces in the wall and raft of such tanks. These methods neglect self-weight of tank material and assume extreme, namely ‘fixed’ and ‘hinged’ conditions for the wall bottom. However, when founded on deformable soil, the actual condition at the wall bottom is neither fixed nor hinged. Further, the self-weight of the tank wall does affect the design forces. Thus, it is required to offer better insight of the combined effect of deformable soil and bottom raft stiffness on the design forces induced in such cylindrical concrete tanks. A systematic analytical method based on fundamental equations of shells is presented in this paper. Important observations on variation of design forces across the wall and the raft with different soil conditions are given. Set of commonly used tanks, are analysed using equations developed in the paper and are appended at the end.
Cutting solid figures by plane - analytical solution and spreadsheet implementation
Benacka, Jan
2012-07-01
In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and cosine rules. The basic problem is to find the section of the figure by a plane that is defined by three points related to the figure. In this article, a formula is derived that gives the positions of the intersection points of such a plane and the figure edges, that is, the vertices of the section polygon. Spreadsheet implementations of the formula for cuboid and right rectangular pyramids are presented. The user can check his/her graphical solution, or proceed if he/she is not able to complete the section.
Exact analytic solutions for Mikheyev-Smirnov-Wolfenstein level crossings
International Nuclear Information System (INIS)
Noetzold, D.
1987-01-01
An exact formula for the transition probability in level-crossing phenomena is derived for a general case, ranging from adiabatic to sudden crossings. This is done in the context of neutrino flavor oscillations for the Mikheyev-Smirnov-Wolfenstein (MSW) effect, where hitherto only numerical or approximate solutions were obtained. The matter density or level splitting is assumed to be governed by a hyperbolic-tangent function which, however, can change arbitrarily fast between two constant values. For example, in context of the MSW effect this furnishes a nice fit to the solar density determining the level crossing of solar neutrinos. In the quasiadiabatic limit the exact Landau-Zener factor can be read off, correcting some expressions obtained so far. Even in the opposite limit of a sudden level crossing a conversion is found, which can have far-reaching consequences for neutrino detection on Earth
Analytical Lie-algebraic solution of a 3D sound propagation problem in the ocean
Energy Technology Data Exchange (ETDEWEB)
Petrov, P.S., E-mail: petrov@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Prants, S.V., E-mail: prants@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Petrova, T.N., E-mail: petrova.tn@dvfu.ru [Far Eastern Federal University, 8 Sukhanova str., 690950, Vladivostok (Russian Federation)
2017-06-21
The problem of sound propagation in a shallow sea with variable bottom slope is considered. The sound pressure field produced by a time-harmonic point source in such inhomogeneous 3D waveguide is expressed in the form of a modal expansion. The expansion coefficients are computed using the adiabatic mode parabolic equation theory. The mode parabolic equations are solved explicitly, and the analytical expressions for the modal coefficients are obtained using a Lie-algebraic technique. - Highlights: • A group-theoretical approach is applied to a problem of sound propagation in a shallow sea with variable bottom slope. • An analytical solution of this problem is obtained in the form of modal expansion with analytical expressions of the coefficients. • Our result is the only analytical solution of the 3D sound propagation problem with no translational invariance. • This solution can be used for the validation of the numerical propagation models.
Salama, Amgad
2013-09-01
In this work the problem of flow in three-dimensional, axisymmetric, heterogeneous porous medium domain is investigated numerically. For this system, it is natural to use cylindrical coordinate system, which is useful in describing phenomena that have some rotational symmetry about the longitudinal axis. This can happen in porous media, for example, in the vicinity of production/injection wells. The basic feature of this system is the fact that the flux component (volume flow rate per unit area) in the radial direction is changing because of the continuous change of the area. In this case, variables change rapidly closer to the axis of symmetry and this requires the mesh to be denser. In this work, we generalize a methodology that allows coarser mesh to be used and yet yields accurate results. This method is based on constructing local analytical solution in each cell in the radial direction and moves the derivatives in the other directions to the source term. A new expression for the harmonic mean of the hydraulic conductivity in the radial direction is developed. Apparently, this approach conforms to the analytical solution for uni-directional flows in radial direction in homogeneous porous media. For the case when the porous medium is heterogeneous or the boundary conditions is more complex, comparing with the mesh-independent solution, this approach requires only coarser mesh to arrive at this solution while the traditional methods require more denser mesh. Comparisons for different hydraulic conductivity scenarios and boundary conditions have also been introduced. © 2013 Elsevier B.V.
New integrable models and analytical solutions in f (R ) cosmology with an ideal gas
Papagiannopoulos, G.; Basilakos, Spyros; Barrow, John D.; Paliathanasis, Andronikos
2018-01-01
In the context of f (R ) gravity with a spatially flat FLRW metric containing an ideal fluid, we use the method of invariant transformations to specify families of models which are integrable. We find three families of f (R ) theories for which new analytical solutions are given and closed-form solutions are provided.
International Nuclear Information System (INIS)
Chen, C.T.; Li, S.H.
1997-01-01
Analytical solutions are developed for the problem of radionuclide transport in a system of parallel fractures situated in a porous rock matrix. A constant flux is used as the inlet boundary condition. The solutions consider the following processes: (a) advective transport along the fractures; (b) mechanical dispersion and molecular diffusion along the fractures; (c) molecular diffusion from a fracture to the porous matrix; (d) molecular diffusion within the porous matrix in the direction perpendicular to the fracture axis; (e) adsorption onto the fracture wall; (f) adsorption within the porous matrix, and (g) radioactive decay. The solutions are based on the Laplace transform method. The general transient solution is in the form of a double integral that is evaluated using composite Gauss-Legendre quadrature. A simpler transient solution that is in the form of a single integral is also presented for the case that assumes negligible longitudinal dispersion along the fractures. The steady-state solutions are also provided. A number of examples are given to illustrate the effects of various important parameters, including: (a) fracture spacing; (b) fracture dispersion coefficient; (c) matrix diffusion coefficient; (d) fracture width; (e) groundwater velocity; (f) matrix retardation factor; and (g) matrix porosity
On Perturbation Solutions for Axisymmetric Bending Boundary Values of a Deep Thin Spherical Shell
Directory of Open Access Journals (Sweden)
Rong Xiao
2014-01-01
Full Text Available On the basis of the general theory of elastic thin shells and the Kirchhoff-Love hypothesis, a fundamental equation for a thin shell under the moment theory is established. In this study, the author derives Reissner’s equation with a transverse shear force Q1 and the displacement component w. These basic unknown quantities are derived considering the axisymmetry of the deep, thin spherical shell and manage to constitute a boundary value question of axisymmetric bending of the deep thin spherical shell under boundary conditions. The asymptotic solution is obtained by the composite expansion method. At the end of this paper, to prove the correctness and accuracy of the derivation, an example is given to compare the numerical solution by ANSYS and the perturbation solution. Meanwhile, the effects of material and geometric parameters on the nonlinear response of axisymmetric deep thin spherical shell under uniform external pressure are also analyzed in this paper.
On the asymptotic of solutions of elliptic boundary value problems in domains with edges
International Nuclear Information System (INIS)
Nkemzi, B.
2005-10-01
Solutions of elliptic boundary value problems in three-dimensional domains with edges may exhibit singularities. The usual procedure to study these singularities is by the application of the classical Mellin transformation or continuous Fourier transformation. In this paper, we show how the asymptotic behavior of solutions of elliptic boundary value problems in general three-dimensional domains with straight edges can be investigated by means of discrete Fourier transformation. We apply this approach to time-harmonic Maxwell's equations and prove that the singular solutions can fully be described in terms of Fourier series. The representation here can easily be used to approximate three-dimensional stress intensity factors associated with edge singularities. (author)
Directory of Open Access Journals (Sweden)
Yanmei Sun
2012-01-01
Full Text Available By using the Leggett-Williams fixed theorem, we establish the existence of multiple positive solutions for second-order nonhomogeneous Sturm-Liouville boundary value problems with linear functional boundary conditions. One explicit example with singularity is presented to demonstrate the application of our main results.
Analytical Structuring of Periodic and Regular Cascading Solutions in Self-Pulsing Lasers
Directory of Open Access Journals (Sweden)
Belkacem Meziane
2008-01-01
Full Text Available A newly proposed strong harmonic-expansion method is applied to the laser-Lorenz equations to analytically construct a few typical solutions, including the first few expansions of the well-known period-doubling cascade that characterizes the system in its self-pulsing regime of operation. These solutions are shown to evolve in accordance with the driving frequency of the permanent solution that we recently reported to illustrate the system. The procedure amounts to analytically construct the signal Fourier transform by applying an iterative algorithm that reconstitutes the first few terms of its development.
Analytical SN solutions in heterogeneous slabs using symbolic algebra computer programs
International Nuclear Information System (INIS)
Warsa, J.S.
2002-01-01
A modern symbolic algebra computer program, MAPLE, is used to compute solutions to the well-known analytical discrete ordinates, or S N , solutions in one-dimensional, slab geometry. Symbolic algebra programs compute the solutions with arbitrary precision and are free of spatial discretization error so they can be used to investigate new discretizations for one-dimensional slab, geometry S N methods. Pointwise scalar flux solutions are computed for several sample calculations of interest. Sample MAPLE command scripts are provided to illustrate how easily the theory can be translated into a working solution and serve as a complete tool capable of computing analytical S N solutions for mono-energetic, one-dimensional transport problems
Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza
2018-06-01
Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the comparison with both the finite element solution of the main partial differential equations and the experimental observations. The effect of excitation angle of the resonator on horizontal oscillation of the probe tip and the effect of different parameters on the frequency-response of the system are investigated.
Matching of analytical and numerical solutions for neutron stars of arbitrary rotation
International Nuclear Information System (INIS)
Pappas, George
2009-01-01
We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (R ISCO ), the rotation frequency and the epicyclic frequencies Ω ρ , Ω z . Finally we present some results of the comparison.
Matching of analytical and numerical solutions for neutron stars of arbitrary rotation
Energy Technology Data Exchange (ETDEWEB)
Pappas, George, E-mail: gpappas@phys.uoa.g [Section of Astrophysics, Astronomy, and Mechanics, Department of Physics, University of Athens, Panepistimiopolis Zografos GR15783, Athens (Greece)
2009-10-01
We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (R{sub ISCO}), the rotation frequency and the epicyclic frequencies {Omega}{sub {rho}}, {Omega}{sub z}. Finally we present some results of the comparison.
Directory of Open Access Journals (Sweden)
Soheil Salahshour
2015-02-01
Full Text Available In this paper, we apply the concept of Caputo’s H-differentiability, constructed based on the generalized Hukuhara difference, to solve the fuzzy fractional differential equation (FFDE with uncertainty. This is in contrast to conventional solutions that either require a quantity of fractional derivatives of unknown solution at the initial point (Riemann–Liouville or a solution with increasing length of their support (Hukuhara difference. Then, in order to solve the FFDE analytically, we introduce the fuzzy Laplace transform of the Caputo H-derivative. To the best of our knowledge, there is limited research devoted to the analytical methods to solve the FFDE under the fuzzy Caputo fractional differentiability. An analytical solution is presented to confirm the capability of the proposed method.
International Nuclear Information System (INIS)
Mello, Kelen Berra de
2005-02-01
In this work is shown the solution of the advection-diffusion equation to simulate a pollutant dispersion in the Planetary Boundary Layer. The solution is obtained through of the GILTT (Generalized Integral Laplace Transform Technique) analytic method and of the numerical inversion Gauss Quadrature. The validity of the solution is proved using concentration obtained from the model with concentration obtained for Copenhagen experiment. In this comparison was utilized potential and logarithmic wind profile and eddy diffusivity derived by Degrazia et al (1997) [17] and (2002) [19]. The best results was using the potential wind profile and the eddy diffusivity derived by Degrazia et al (1997). The vertical velocity influence is shown in the plume behavior of the pollutant concentration. Moreover, the vertical and longitudinal velocity provided by Large Eddy Simulation (LES) was stood in the model to simulate the turbulent boundary layer more realistic, the result was satisfactory when compared with contained in the literature. (author)
Use of Green's functions in the numerical solution of two-point boundary value problems
Gallaher, L. J.; Perlin, I. E.
1974-01-01
This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.
Analytical approximate solutions for a general class of nonlinear delay differential equations.
Căruntu, Bogdan; Bota, Constantin
2014-01-01
We use the polynomial least squares method (PLSM), which allows us to compute analytical approximate polynomial solutions for a very general class of strongly nonlinear delay differential equations. The method is tested by computing approximate solutions for several applications including the pantograph equations and a nonlinear time-delay model from biology. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using other methods.
International Nuclear Information System (INIS)
Basak, K C; Ray, P C; Bera, R K
2009-01-01
The aim of the present analysis is to apply the Adomian decomposition method and He's variational method for the approximate analytical solution of a nonlinear ordinary fractional differential equation. The solutions obtained by the above two methods have been numerically evaluated and presented in the form of tables and also compared with the exact solution. It was found that the results obtained by the above two methods are in excellent agreement with the exact solution. Finally, a surface plot of the approximate solutions of the fractional differential equation by the above two methods is drawn for 0≤t≤2 and 1<α≤2.
Directory of Open Access Journals (Sweden)
D. A. Eliseev
2015-01-01
Full Text Available The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.
Joekar-Niasar, V.
2013-01-25
Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.
Joekar-Niasar, V.; Schotting, R.; Leijnse, A.
2013-01-01
Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.
On Solutions of the Integrable Boundary Value Problem for KdV Equation on the Semi-Axis
International Nuclear Information System (INIS)
Ignatyev, M. Yu.
2013-01-01
This paper is concerned with the Korteweg–de Vries (KdV) equation on the semi-axis. The boundary value problem with inhomogeneous integrable boundary conditions is studied. We establish some characteristic properties of solutions of the problem. Also we construct a wide class of solutions of the problem using the inverse spectral method.
Directory of Open Access Journals (Sweden)
V. Rukavishnikov
2014-01-01
Full Text Available The existence and uniqueness of the Rv-generalized solution for the first boundary value problem and a second order elliptic equation with coordinated and uncoordinated degeneracy of input data and with strong singularity solution on all boundary of a two-dimensional domain are established.
A Boundary Element Solution to the Problem of Interacting AC Fields in Parallel Conductors
Directory of Open Access Journals (Sweden)
Einar M. Rønquist
1984-04-01
Full Text Available The ac fields in electrically insulated conductors will interact through the surrounding electromagnetic fields. The pertinent field equations reduce to the Helmholtz equation inside each conductor (interior problem, and to the Laplace equation outside the conductors (exterior problem. These equations are transformed to integral equations, with the magnetic vector potential and its normal derivative on the boundaries as unknowns. The integral equations are then approximated by sets of algebraic equations. The interior problem involves only unknowns on the boundary of each conductor, while the exterior problem couples unknowns from several conductors. The interior and the exterior problem are coupled through the field continuity conditions. The full set of equations is solved by standard Gaussian elimination. We also show how the total current and the dissipated power within each conductor can be expressed as boundary integrals. Finally, computational results for a sample problem are compared with a finite difference solution.
International Nuclear Information System (INIS)
Fenwick, John D.; Pardo-Montero, Juan
2010-01-01
Purpose: Homogenized blocked arcs are intuitively appealing as basis functions for multicriteria optimization of rotational radiotherapy. Such arcs avoid an organ-at-risk (OAR), spread dose out well over the rest-of-body (ROB), and deliver homogeneous doses to a planning target volume (PTV) using intensity modulated fluence profiles, obtainable either from closed-form solutions or iterative numerical calculations. Here, the analytic and iterative arcs are compared. Methods: Dose-distributions have been calculated for nondivergent beams, both including and excluding scatter, beam penumbra, and attenuation effects, which are left out of the derivation of the analytic arcs. The most straightforward analytic arc is created by truncating the well-known Brahme, Roos, and Lax (BRL) solution, cutting its uniform dose region down from an annulus to a smaller nonconcave region lying beyond the OAR. However, the truncation leaves behind high dose hot-spots immediately on either side of the OAR, generated by very high BRL fluence levels just beyond the OAR. These hot-spots can be eliminated using alternative analytical solutions ''C'' and ''L,'' which, respectively, deliver constant and linearly rising fluences in the gap region between the OAR and PTV (before truncation). Results: Measured in terms of PTV dose homogeneity, ROB dose-spread, and OAR avoidance, C solutions generate better arc dose-distributions than L when scatter, penumbra, and attenuation are left out of the dose modeling. Including these factors, L becomes the best analytical solution. However, the iterative approach generates better dose-distributions than any of the analytical solutions because it can account and compensate for penumbra and scatter effects. Using the analytical solutions as starting points for the iterative methodology, dose-distributions almost as good as those obtained using the conventional iterative approach can be calculated very rapidly. Conclusions: The iterative methodology is
Directory of Open Access Journals (Sweden)
Jie Peng
Full Text Available The vacuum preloading is an effective method which is widely used in ground treatment. In consolidation analysis, the soil around prefabricated vertical drain (PVD is traditionally divided into smear zone and undisturbed zone, both with constant permeability. In reality, the permeability of soil changes continuously within the smear zone. In this study, the horizontal permeability coefficient of soil within the smear zone is described by an exponential function of radial distance. A solution for vacuum preloading consolidation considers the nonlinear distribution of horizontal permeability within the smear zone is presented and compared with previous analytical results as well as a numerical solution, the results show that the presented solution correlates well with the numerical solution, and is more precise than previous analytical solution.
Static solutions with nontrivial boundaries for the Einstein-Gauss-Bonnet theory in vacuum
International Nuclear Information System (INIS)
Dotti, Gustavo; Oliva, Julio; Troncoso, Ricardo
2010-01-01
The classification of a certain class of static solutions for the Einstein-Gauss-Bonnet theory in vacuum is performed in d≥5 dimensions. The class of metrics under consideration is such that the spacelike section is a warped product of the real line and an arbitrary base manifold. It is shown that for a generic value of the Gauss-Bonnet coupling, the base manifold must be necessarily Einstein, with an additional restriction on its Weyl tensor for d>5. The boundary admits a wider class of geometries only in the special case when the Gauss-Bonnet coupling is such that the theory admits a unique maximally symmetric solution. The additional freedom in the boundary metric enlarges the class of allowed geometries in the bulk, which are classified within three main branches, containing new black holes and wormholes in vacuum.
Analytic solution of magnetic induction distribution of ideal hollow spherical field sources
Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min
2017-12-01
The Halbach type hollow spherical permanent magnet arrays (HSPMA) are volume compacted, energy efficient field sources, and capable of producing multi-Tesla field in the cavity of the array, which have attracted intense interests in many practical applications. Here, we present analytical solutions of magnetic induction to the ideal HSPMA in entire space, outside of array, within the cavity of array, and in the interior of the magnet. We obtain solutions using concept of magnetic charge to solve the Poisson's and Laplace's equations for the HSPMA. Using these analytical field expressions inside the material, a scalar demagnetization function is defined to approximately indicate the regions of magnetization reversal, partial demagnetization, and inverse magnetic saturation. The analytical field solution provides deeper insight into the nature of HSPMA and offer guidance in designing optimized one.
International Nuclear Information System (INIS)
Liu Hongzhun; Pan Zuliang; Li Peng
2006-01-01
In this article, we will derive an equality, where the Taylor series expansion around ε = 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter ε must be admitted. By making use of the equality, we may obtain a transformation, which directly map the analytical solutions of a given unperturbed PDE to the asymptotical analytical solutions of the corresponding perturbed one. The notion of Lie-Baecklund symmetries is introduced in order to obtain more transformations. Hence, we can directly create more transformations in virtue of known Lie-Baecklund symmetries and recursion operators of corresponding unperturbed equation. The perturbed Burgers equation and the perturbed Korteweg-de Vries (KdV) equation are used as examples.
Exact solutions to plaquette Ising models with free and periodic boundaries
International Nuclear Information System (INIS)
Mueller, Marco; Johnston, Desmond A.; Janke, Wolfhard
2017-01-01
An anisotropic limit of the 3d plaquette Ising model, in which the plaquette couplings in one direction were set to zero, was solved for free boundary conditions by Suzuki (1972) , who later dubbed it the fuki-nuke, or “no-ceiling”, model. Defining new spin variables as the product of nearest-neighbour spins transforms the Hamiltonian into that of a stack of (standard) 2d Ising models and reveals the planar nature of the magnetic order, which is also present in the fully isotropic 3d plaquette model. More recently, the solution of the fuki-nuke model was discussed for periodic boundary conditions, which require a different approach to defining the product spin transformation, by Castelnovo et al. (2010) . We clarify the exact relation between partition functions with free and periodic boundary conditions expressed in terms of original and product spin variables for the 2d plaquette and 3d fuki-nuke models, noting that the differences are already present in the 1d Ising model. In addition, we solve the 2d plaquette Ising model with helical boundary conditions. The various exactly solved examples illustrate how correlations can be induced in finite systems as a consequence of the choice of boundary conditions.
Semi-Analytic Solution of HIV and TB Co-Infection Model BOLARIN ...
African Journals Online (AJOL)
ADOWIE PERE
HIV/TB co-infection is the most powerful known risk factor for ... homotopy transform to generate a convergent series solution of ... the boundary of the domain Ω. The operator A can be divided into two parts L and N, where L is the linear part,.
International Nuclear Information System (INIS)
Karimov, Ruslan Kh; Kozhevnikova, Larisa M
2010-01-01
The first mixed problem with homogeneous Dirichlet boundary condition and initial function with compact support is considered for quasilinear second order parabolic equations in a cylindrical domain D=(0,∞)xΩ. Upper bounds are obtained, which give the rate of decay of the solutions as t→∞ as a function of the geometry of the unbounded domain Ω subset of R n , n≥2. Bibliography: 18 titles.
A method for the approximate solutions of the unsteady boundary layer equations
International Nuclear Information System (INIS)
Abdus Sattar, Md.
1990-12-01
The approximate integral method proposed by Bianchini et al. to solve the unsteady boundary layer equations is considered here with a simple modification to the scale function for the similarity variable. This is done by introducing a time dependent length scale. The closed form solutions, thus obtained, give satisfactory results for the velocity profile and the skin friction to a limiting case in comparison with the results of the past investigators. (author). 7 refs, 2 figs
Czech Academy of Sciences Publication Activity Database
Haslinger, Jaroslav; Kučera, R.; Šátek, V.
2017-01-01
Roč. 22, October 2017 (2017), s. 1-14 ISSN 1081-2865 R&D Projects: GA MŠk LQ1602; GA ČR(CZ) GA17-01747S Institutional support: RVO:68145535 Keywords : Stokes system * threshold slip boundary conditions * solution dependent slip function Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http://journals.sagepub.com/doi/abs/10.1177/1081286517716222
Existence and Estimates of Positive Solutions for Some Singular Fractional Boundary Value Problems
Directory of Open Access Journals (Sweden)
Habib Mâagli
2014-01-01
fractional boundary value problem:Dαu(x=−a(xuσ(x, x∈(0,1 with the conditions limx→0+x2−αu(x=0, u(1=0, where 1<α≤2, σ∈(−1,1, and a is a nonnegative continuous function on (0,1 that may be singular at x=0 or x=1. We also give the global behavior of such a solution.
Infinitely many solutions for a fourth-order boundary-value problem
Directory of Open Access Journals (Sweden)
Seyyed Mohsen Khalkhali
2012-09-01
Full Text Available In this article we consider the existence of infinitely many solutions to the fourth-order boundary-value problem $$displaylines{ u^{iv}+alpha u''+eta(x u=lambda f(x,u+h(u,quad xin]0,1[cr u(0=u(1=0,cr u''(0=u''(1=0,. }$$ Our approach is based on variational methods and critical point theory.
Czech Academy of Sciences Publication Activity Database
Haslinger, Jaroslav; Kučera, R.; Šátek, V.
2017-01-01
Roč. 22, October 2017 (2017), s. 1-14 ISSN 1081-2865 R&D Projects: GA MŠk LQ1602; GA ČR(CZ) GA17-01747S Institutional support: RVO:68145535 Keywords : Stokes system * threshold slip boundary conditions * solution dependent slip function Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http:// journals .sagepub.com/doi/abs/10.1177/1081286517716222
Directory of Open Access Journals (Sweden)
Salih Yalcinbas
2016-01-01
Full Text Available In this study, a numerical approach is proposed to obtain approximate solutions of nonlinear system of second order boundary value problem. This technique is essentially based on the truncated Fermat series and its matrix representations with collocation points. Using the matrix method, we reduce the problem system of nonlinear algebraic equations. Numerical examples are also given to demonstrate the validity and applicability of the presented technique. The method is easy to implement and produces accurate results.
On the Analytical Solution of Non-Orthogonal Stagnation Point Flow towards a Stretching Sheet
DEFF Research Database (Denmark)
Kimiaeifar, Amin; Bagheri, G. H.; Barari, Amin
2011-01-01
An analytical solution for non-orthogonal stagnation point for the steady flow of a viscous and incompressible fluid is presented. The governing nonlinear partial differential equations for the flow field are reduced to ordinary differential equations by using similarity transformations existed...... in the literature and are solved analytically by means of the Homotopy Analysis Method (HAM). The comparison of results from this paper and those published in the literature confirms the precise accuracy of the HAM. The resulting analytical equation from HAM is valid for entire physical domain and effective...
Student Solutions Manual to Boundary Value Problems and Partial Differential Equations
Powers, David L
2005-01-01
This student solutions manual accompanies the text, Boundary Value Problems and Partial Differential Equations, 5e. The SSM is available in print via PDF or electronically, and provides the student with the detailed solutions of the odd-numbered problems contained throughout the book.Provides students with exercises that skillfully illustrate the techniques used in the text to solve science and engineering problemsNearly 900 exercises ranging in difficulty from basic drills to advanced problem-solving exercisesMany exercises based on current engineering applications
Yan, Yan
2015-01-01
We study a new optimization scheme that generates smooth and robust solutions for Dirichlet velocity boundary control (DVBC) of conjugate heat transfer (CHT) processes. The solutions to the DVBC of the incompressible Navier-Stokes equations are typically nonsmooth, due to the regularity degradation of the boundary stress in the adjoint Navier-Stokes equations. This nonsmoothness is inherited by the solutions to the DVBC of CHT processes, since the CHT process couples the Navier-Stokes equations of fluid motion with the convection-diffusion equations of fluid-solid thermal interaction. Our objective in the CHT boundary control problem is to select optimally the fluid inflow profile that minimizes an objective function that involves the sum of the mismatch between the temperature distribution in the fluid system and a prescribed temperature profile and the cost of the control.Our strategy to resolve the nonsmoothness of the boundary control solution is based on two features, namely, the objective function with a regularization term on the gradient of the control profile on both the continuous and the discrete levels, and the optimization scheme with either explicit or implicit smoothing effects, such as the smoothed Steepest Descent and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) methods. Our strategy to achieve the robustness of the solution process is based on combining the smoothed optimization scheme with the numerical continuation technique on the regularization parameters in the objective function. In the section of numerical studies, we present two suites of experiments. In the first one, we demonstrate the feasibility and effectiveness of our numerical schemes in recovering the boundary control profile of the standard case of a Poiseuille flow. In the second one, we illustrate the robustness of our optimization schemes via solving more challenging DVBC problems for both the channel flow and the flow past a square cylinder, which use initial
Boundary integral equation methods and numerical solutions thin plates on an elastic foundation
Constanda, Christian; Hamill, William
2016-01-01
This book presents and explains a general, efficient, and elegant method for solving the Dirichlet, Neumann, and Robin boundary value problems for the extensional deformation of a thin plate on an elastic foundation. The solutions of these problems are obtained both analytically—by means of direct and indirect boundary integral equation methods (BIEMs)—and numerically, through the application of a boundary element technique. The text discusses the methodology for constructing a BIEM, deriving all the attending mathematical properties with full rigor. The model investigated in the book can serve as a template for the study of any linear elliptic two-dimensional problem with constant coefficients. The representation of the solution in terms of single-layer and double-layer potentials is pivotal in the development of a BIEM, which, in turn, forms the basis for the second part of the book, where approximate solutions are computed with a high degree of accuracy. The book is intended for graduate students and r...
A Novel Method for Analytical Solutions of Fractional Partial Differential Equations
Directory of Open Access Journals (Sweden)
Mehmet Ali Akinlar
2013-01-01
Full Text Available A new solution technique for analytical solutions of fractional partial differential equations (FPDEs is presented. The solutions are expressed as a finite sum of a vector type functional. By employing MAPLE software, it is shown that the solutions might be extended to an arbitrary degree which makes the present method not only different from the others in the literature but also quite efficient. The method is applied to special Bagley-Torvik and Diethelm fractional differential equations as well as a more general fractional differential equation.
Mueller, A. C.
1977-01-01
An analytical first order solution has been developed which describes the motion of an artificial satellite perturbed by an arbitrary number of zonal harmonics of the geopotential. A set of recursive relations for the solution, which was deduced from recursive relations of the geopotential, was derived. The method of solution is based on Von-Zeipel's technique applied to a canonical set of two-body elements in the extended phase space which incorporates the true anomaly as a canonical element. The elements are of Poincare type, that is, they are regular for vanishing eccentricities and inclinations. Numerical results show that this solution is accurate to within a few meters after 500 revolutions.
International Nuclear Information System (INIS)
Jahshan, S.N.; Wemple, C.A.; Ganapol, B.D.
1993-01-01
A comparison of the numerical solutions of the transport equation describing the steady neutron slowing down in an infinite medium with constant cross sections is made with stochastic solutions obtained from tracking successive neutron histories in the same medium. The transport equation solution is obtained using a numerical Laplace transform inversion algorithm. The basis for the algorithm is an evaluation of the Bromwich integral without analytical continuation. Neither the transport nor the stochastic solution is limited in the number of scattering species allowed. The medium may contain an absorption component as well. (orig.)
Auxiliary fields as a tool for computing analytical solutions of the Schroedinger equation
International Nuclear Information System (INIS)
Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien
2008-01-01
We propose a new method to obtain approximate solutions for the Schroedinger equation with an arbitrary potential that possesses bound states. This method, relying on the auxiliary field technique, allows to find in many cases, analytical solutions. It offers a convenient way to study the qualitative features of the energy spectrum of bound states in any potential. In particular, we illustrate our method by solving the case of central potentials with power-law form and with logarithmic form. For these types of potentials, we propose very accurate analytical energy formulae which greatly improves the corresponding formulae that can be found in the literature
Auxiliary fields as a tool for computing analytical solutions of the Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be
2008-07-11
We propose a new method to obtain approximate solutions for the Schroedinger equation with an arbitrary potential that possesses bound states. This method, relying on the auxiliary field technique, allows to find in many cases, analytical solutions. It offers a convenient way to study the qualitative features of the energy spectrum of bound states in any potential. In particular, we illustrate our method by solving the case of central potentials with power-law form and with logarithmic form. For these types of potentials, we propose very accurate analytical energy formulae which greatly improves the corresponding formulae that can be found in the literature.
Verification of T2VOC using an analytical solution for VOC transport in vadose zone
Energy Technology Data Exchange (ETDEWEB)
Shan, C. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)
1995-03-01
T2VOC represents an adaption of the STMVOC to the TOUGH2 environment. In may contaminated sites, transport of volatile organic chemicals (VOC) is a serious problem which can be simulated by T2VOC. To demonstrate the accuracy and robustness of the code, we chose a practical problem of VOC transport as the test case, conducted T2VOC simulations, and compared the results of T2VOC with those of an analytical solution. The agreements between T2VOC and the analytical solutions are excellent. In addition, the numerical results of T2VOC are less sensitive to grid size and time step to a certain extent.
Domains of analyticity for response solutions in strongly dissipative forced systems
International Nuclear Information System (INIS)
Corsi, Livia; Feola, Roberto; Gentile, Guido
2013-01-01
We study the ordinary differential equation εx ¨ +x . +εg(x)=εf(ωt), where g and f are real-analytic functions, with f quasi-periodic in t with frequency vector ω. If c 0 ∈R is such that g(c 0 ) equals the average of f and g′(c 0 ) ≠ 0, under very mild assumptions on ω there exists a quasi-periodic solution close to c 0 with frequency vector ω. We show that such a solution depends analytically on ε in a domain of the complex plane tangent more than quadratically to the imaginary axis at the origin
Developing Semi-Analytical solutions for Saint-Venant Equations in the Uniform Flow Region
Directory of Open Access Journals (Sweden)
M.M. Heidari
2016-09-01
-Venant equations. The got transcendental function can then be simplified using various methods to get a model expressed as a rational function of s (the Laplace variable, possibly including a time delay. It is therefore important to develop simple analytical models able to accurately reproduce the dynamic behavior of the system in realistic conditions. Materials and Methods: Changes in water demand can create transient flow in irrigation networks. The Saint Venant equations are the equations governing open channel flow when unsteady flow propagates. In this research, the finite volume method using the time splitting scheme was employed to develop a computer code for solving the one dimensional unsteady flow equations. Considering stationary regime and small variations around it, the Saint-Venant equations around initial condition was linearized. The Laplace transform is applied to the linearized saint venant equations, leading to an ordinary differential equation in the space variable x and parameterized by the Laplace variable s. The integration of this equation lead to a transfer matrix, and gives the discharge Q*(x, s at any location with respect for the upstream discharge. This matrix is coupled with the downstream boundary condition and developed an equation that solved using Simpson integration algorithm. It should be noted numerical solution of developed equation is easier than solving fully dynamic saint venant and is less sensitive to the spatial step and the researcher simply writing code. Results and Discussion: Froud Number (F, variation of inflow discharge (ΔQ/Q, and dimensionless parameter of KF2 in which K is the kinematic flow number, are effective factors on accuracy of developed equation. In order to determine the effect of the factors on accuracy of presenting formula, several simulations were performed using numerical model. The presented formula and numerical model were compared for 10, 20 and 30 percent discharge variation and error calculated, the maximum
Sousa, A. N. Laurindo; Ojeda-González, A.; Prestes, A.; Klausner, V.; Caritá, L. A.
2018-02-01
This work aims to demonstrate the analytical solution of the Grad-Shafranov (GS) equation or generalized Ampere's law, which is important in the studies of self-consistent 2.5-D solution for current sheet structures. A detailed mathematical development is presented to obtain the generating function as shown by Walker (RSPSA 91, 410, 1915). Therefore, we study the general solution of the GS equation in terms of the Walker's generating function in details without omitting any step. The Walker's generating function g( ζ) is written in a new way as the tangent of an unspecified function K( ζ). In this trend, the general solution of the GS equation is expressed as exp(- 2Ψ) = 4| K '( ζ)|2/cos2[ K( ζ) - K( ζ ∗)]. In order to investigate whether our proposal would simplify the mathematical effort to find new generating functions, we use Harris's solution as a test, in this case K( ζ) = arctan(exp( i ζ)). In summary, one of the article purposes is to present a review of the Harris's solution. In an attempt to find a simplified solution, we propose a new way to write the GS solution using g( ζ) = tan( K( ζ)). We also present a new analytical solution to the equilibrium Ampere's law using g( ζ) = cosh( b ζ), which includes a generalization of the Harris model and presents isolated magnetic islands.
International Nuclear Information System (INIS)
Esmail, S.F.H.
2011-01-01
The mathematical formulation of numerous physical problems a results in differential equations actually partial or ordinary differential equations.In our study we are interested in solutions of partial differential equations.The aim of this work is to calculate the concentrations of the pollution, by solving the atmospheric diffusion equation(ADE) using different mathematical methods of solution. It is difficult to solve the general form of ADE analytically, so we use some assumptions to get its solution.The solutions of it depend on the eddy diffusivity profiles(k) and the wind speed u. We use some physical assumptions to simplify its formula and solve it. In the present work, we solve the ADE analytically in three dimensions using Green's function method, Laplace transform method, normal mode method and these separation of variables method. Also, we use ADM as a numerical method. Finally, comparisons are made with the results predicted by the previous methods and the observed data.
Analytic solution to leading order coupled DGLAP evolution equations: A new perturbative QCD tool
International Nuclear Information System (INIS)
Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.
2011-01-01
We have analytically solved the LO perturbative QCD singlet DGLAP equations [V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)][G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977)][Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)] using Laplace transform techniques. Newly developed, highly accurate, numerical inverse Laplace transform algorithms [M. M. Block, Eur. Phys. J. C 65, 1 (2010)][M. M. Block, Eur. Phys. J. C 68, 683 (2010)] allow us to write fully decoupled solutions for the singlet structure function F s (x,Q 2 ) and G(x,Q 2 ) as F s (x,Q 2 )=F s (F s0 (x 0 ),G 0 (x 0 )) and G(x,Q 2 )=G(F s0 (x 0 ),G 0 (x 0 )), where the x 0 are the Bjorken x values at Q 0 2 . Here F s and G are known functions--found using LO DGLAP splitting functions--of the initial boundary conditions F s0 (x)≡F s (x,Q 0 2 ) and G 0 (x)≡G(x,Q 0 2 ), i.e., the chosen starting functions at the virtuality Q 0 2 . For both G(x) and F s (x), we are able to either devolve or evolve each separately and rapidly, with very high numerical accuracy--a computational fractional precision of O(10 -9 ). Armed with this powerful new tool in the perturbative QCD arsenal, we compare our numerical results from the above equations with the published MSTW2008 and CTEQ6L LO gluon and singlet F s distributions [A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009)], starting from their initial values at Q 0 2 =1 GeV 2 and 1.69 GeV 2 , respectively, using their choice of α s (Q 2 ). This allows an important independent check on the accuracies of their evolution codes and, therefore, the computational accuracies of their published parton distributions. Our method completely decouples the two LO distributions, at the same time guaranteeing that both G and F s satisfy the singlet coupled DGLAP equations. It also allows one to easily obtain the effects of the starting functions on the evolved gluon and singlet structure functions, as functions of both Q
Chesnaux, R.
2016-04-01
Closed-form analytical solutions for assessing the consequences of sea-level rise on fresh groundwater oceanic island lenses are provided for the cases of both strip and circular islands. Solutions are proposed for directly calculating the change in the thickness of the lens, the changes in volume and the changes in travel time of fresh groundwater within island aquifers. The solutions apply for homogenous aquifers recharged by surface infiltration and discharged by a down-gradient, fixed-head boundary. They also take into account the inland shift of the ocean due to land surface inundation, this shift being determined by the coastal slope of inland aquifers. The solutions are given for two simple island geometries: circular islands and strip islands. Base case examples are presented to illustrate, on one hand, the amplitude of the change of the fresh groundwater lens thickness and the volume depletion of the lens in oceanic island with sea-level rise, and on the other hand, the shortening of time required for groundwater to discharge into the ocean. These consequences can now be quantified and may help decision-makers to anticipate the effects of sea-level rise on fresh groundwater availability in oceanic island aquifers.
Simon, Laurent; Ospina, Juan
2016-07-25
Three-dimensional solute transport was investigated for a spherical device with a release hole. The governing equation was derived using the Fick's second law. A mixed Neumann-Dirichlet condition was imposed at the boundary to represent diffusion through a small region on the surface of the device. The cumulative percentage of drug released was calculated in the Laplace domain and represented by the first term of an infinite series of Legendre and modified Bessel functions of the first kind. Application of the Zakian algorithm yielded the time-domain closed-form expression. The first-order solution closely matched a numerical solution generated by Mathematica(®). The proposed method allowed computation of the characteristic time. A larger surface pore resulted in a smaller effective time constant. The agreement between the numerical solution and the semi-analytical method improved noticeably as the size of the orifice increased. It took four time constants for the device to release approximately ninety-eight of its drug content. Copyright © 2016 Elsevier B.V. All rights reserved.
Analytical solution for a linearly graded-index-profile planar waveguide.
Touam, T; Yergeau, F
1993-01-20
An analytical solution is presented for the TE modes of a planar waveguide structure comprising a high-index guiding layer and a buried layer with a profile such that the square of the index varies linearly and matches the substrate and high-index guiding layer. The electric-field profiles and the dispersion relation are obtained and discussed, and a solution by the WKB method is compared.
Analytical solution of point kinetic equations for sub-critical systems
International Nuclear Information System (INIS)
Henrice Junior, Edson; Goncalves, Alessandro C.
2013-01-01
This article presents an analytical solution for the set of point kinetic equations for sub-critical reactors. This solution stems from the ordinary, non-homogeneous differential equation that rules the neutron density and that presents the incomplete Gamma function in its functional form. The method used proved advantageous and allowed practical applications such as the linear insertion of reactivity, considering an external constant source or with both varying linearly. (author)
An approximate and an analytical solution to the carousel-pendulum problem
Energy Technology Data Exchange (ETDEWEB)
Vial, Alexandre [Pole Physique, Mecanique, Materiaux et Nanotechnologies, Universite de technologie de Troyes, 12, rue Marie Curie BP-2060, F-10010 Troyes Cedex (France)], E-mail: alexandre.vial@utt.fr
2009-09-15
We show that an improved solution to the carousel-pendulum problem can be easily obtained through a first-order Taylor expansion, and its accuracy is determined after the obtention of an unusable analytical exact solution, advantageously replaced by a numerical one. It is shown that the accuracy is unexpectedly high, even when the ratio length of the pendulum to carousel radius approaches unity. (letters and comments)
Developing Boundary/PMI Solutions for Next-Step Fusion Devices
Guo, H. Y.; Leonard, A. W.; Thomas, D. M.; Allen, S. L.; Hill, D. N.; Unterberg, Z.
2014-10-01
The path towards next-step fusion development requires increased emphasis on the boundary/plasma-material interface. The new DIII-D Boundary/Plasma-Material Interactions (PMI) Center has been established to address these critical issues on a timescale relevant to the design of FNSF, adopting the following transformational approaches: (1) Develop and test advanced divertor configurations on DIII-D compatible with core plasma high performance operational scenarios in FNSF; (2) Validate candidate reactor PFC materials at reactor-relevant temperatures in DIII-D high-performance plasmas, in collaboration with the broad material research/development community; (3) Integrate validated boundary-materials interface with high performance plasmas to provide viable boundary/PMI solutions for next-step fusion devices. This program leverages unique DIII-D capabilities, promotes synergistic programs within the broad PMI community, including linear material research facilities. It will also enable us to build a compelling bridge for the US research on long-pulse facilities. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344, DE-AC05-00OR2725.
Analytic solutions for colloid transport with time- or depth-dependent retention in porous media
Elucidating and quantifying the transport of industrial nanoparticles (e.g. silver, carbon nanotubes, and graphene oxide) and other colloid-size particles such as viruses and bacteria is important to safeguard and manage the quality of the subsurface environment. Analytic solutions were derived for...
Analytic solution for one-dimensional diffusion of radionuclides from a waste package
International Nuclear Information System (INIS)
Oliver, D.L.
1985-01-01
This work implements an analytical solution for diffusion of radionuclides from a cylindrical waste form through the packing material into the surrounding host rock. Recent interest in predicting the performance of a proposed geological repository for nuclear waste has led to the development of several computer programs to predict the performance of such a repository for the next several millenia. These numerical codes are generally designed to accommodate a broad spectrum of geometrical configurations and repository conditions in order to accurately predict the behavior of the radionuclides in the repository environment. Confidence in such general purpose codes is gained by verifying the numerical modeling and the software through comparison of the numerical predictions generated by these computer codes with analytical solutions to reasonably complex problems. The analysis discussed herein implements the analytic solution, proposed by J.C. Jaeger in 1941 for radial diffusion through two concentric circular cylinders. Jaeger's solution was applied to the problem of diffusional mass transfer from a long cylindrical waste form and subsequently into the surrounding geological formation. Analytic predictions of fractional release rates, including the effects of sorption, were generated
Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...
Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method
Directory of Open Access Journals (Sweden)
De-Gang Wang
2012-01-01
Full Text Available A novel algorithm, called variable weight fuzzy marginal linearization (VWFML method, is proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden equations. And it is easy to be implemented and extended for solving other nonlinear differential equations. Numerical examples are included to demonstrate the validity and applicability of the developed technique.
An analytic solution for one-dimensional diffusion of radionuclides from a waste package
International Nuclear Information System (INIS)
1985-01-01
This work implements an analytical solution for diffusion of radionuclides from a cylindrical waste form through the packing material into the surrounding host rock. Recent interest in predicting the performance of a proposed geological repository for nuclear waste has led to the development of several computer programs to predict the performance of such a repository for the next several millenia. These numerical codes are generally designed to accommodate a broad spectrum of geometrical configurations and repository conditions in order to accurately predict the behavior of the radionuclides in the repository environment. Confidence in such general purpose codes is gained by verifying the numerical modeling and the software through comparison of the numerical predictions generated by these computer codes with analytical solutions to reasonably complex problems. The analysis discussed herein implements the analytic solution, proposed by J.C. Jaeger in 1941 for radial diffusion through two concentric circular cylinders. Jaeger's solution was applied to the problem of diffusional mass transfer from a long cylindrical waste form and subsequently into the surrounding geological formation. Analytic predictions of fractional release rates, including the effects of sorption, were generated. 6 refs., 2 figs., 2 tabs
Analytical Solution of Nonlinear Problems in Classical Dynamics by Means of Lagrange-Ham
DEFF Research Database (Denmark)
Kimiaeifar, Amin; Mahdavi, S. H; Rabbani, A.
2011-01-01
In this work, a powerful analytical method, called Homotopy Analysis Methods (HAM) is coupled with Lagrange method to obtain the exact solution for nonlinear problems in classic dynamics. In this work, the governing equations are obtained by using Lagrange method, and then the nonlinear governing...
Comment on 'analytic solution of the relativistic Coulomb problem for a spinless Salpeter equation'
International Nuclear Information System (INIS)
Lucha, W.; Schoeberl, F.F.
1994-01-01
We demonstrate that the analytic solution for the set of energy eigenvalues of the semi-relativistic Coulomb problem reported by B. and L. Durand is in clear conflict with an upper bound on the ground-state energy level derived by some straightforward variational procedure. (authors)
Analytical Solution of Unsteady Gravity Flows of A Power-Law Fluid ...
African Journals Online (AJOL)
We present an analytical study of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The governing equations are derived and similarity solutions are determined. The results show the existence of traveling waves. It is assumed that the viscosity is temperature ...
An analytic solution of the static problem of inclined risers conveying fluid
Alfosail, Feras; Nayfeh, Ali H.; Younis, Mohammad I.
2016-01-01
We use the method of matched asymptotic expansion to develop an analytic solution to the static problem of clamped–clamped inclined risers conveying fluid. The inclined riser is modeled as an Euler–Bernoulli beam taking into account its self
Big Data Analytics Solutions: The Implementation Challenges in the Financial Services Industry
Ojo, Michael O.
2016-01-01
The challenges of Big Data (BD) and Big Data Analytics (BDA) have attracted disproportionately less attention than the overwhelmingly espoused benefits and game-changing promises. While many studies have examined BD challenges across multiple industry verticals, very few have focused on the challenges of implementing BDA solutions. Fewer of these…
An analytical solution for Dean flow in curved ducts with rectangular cross section
Norouzi, M.; Biglari, N.
2013-05-01
In this paper, a full analytical solution for incompressible flow inside the curved ducts with rectangular cross-section is presented for the first time. The perturbation method is applied to solve the governing equations and curvature ratio is considered as the perturbation parameter. The previous perturbation solutions are usually restricted to the flow in curved circular or annular pipes related to the overly complex form of solutions or singularity situation for flow in curved ducts with non-circular shapes of cross section. This issue specifies the importance of analytical studies in the field of Dean flow inside the non-circular ducts. In this study, the main flow velocity, stream function of lateral velocities (secondary flows), and flow resistance ratio in rectangular curved ducts are obtained analytically. The effect of duct curvature and aspect ratio on flow field is investigated as well. Moreover, it is important to mention that the current analytical solution is able to simulate the Taylor-Görtler and Dean vortices (vortices in stable and unstable situations) in curved channels.
International Nuclear Information System (INIS)
Stefanovic, D.B.
1970-12-01
The objective of this work is to describe the new analytical solution of the neutron slowing down equation for infinite monoatomic media with arbitrary energy dependence of cross section. The solution is obtained by introducing Green slowing down functions instead of starting from slowing down equations directly. The previously used methods for calculation of fission neutron spectra in the reactor cell were numerical. The proposed analytical method was used for calculating the space-energy distribution of fast neutrons and number of neutron reactions in a thermal reactor cell. The role of analytical method in solving the neutron slowing down in reactor physics is to enable understating of the slowing down process and neutron transport. The obtained results could be used as standards for testing the accuracy od approximative and practical methods
Regularity of the solutions to a nonlinear boundary problem with indefinite weight
Directory of Open Access Journals (Sweden)
Aomar Anane
2011-01-01
Full Text Available In this paper we study the regularity of the solutions to the problemDelta_p u = |u|^{p−2}u in the bounded smooth domainOmega ⊂ R^N,with|∇u|^{p−2} partial_{nu} u = lambda V (x|u|^{p−2}u + h as a nonlinear boundary condition, where partial Omega is C^{2,beta}, with beta ∈]0, 1[, and V is a weight in L^s(partial Omega and h ∈ L^s(partial Omega for some s ≥ 1. We prove that all solutions are in L^{infty}(Omega cap L^{infty}(Omega, and using the D.Debenedetto’s theorem of regularity in [1] we conclude that those solutions are in C^{1,alpha} overline{Omega} for some alpha ∈ ]0, 1[.
Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min
2017-09-01
The Halbach type hollow cylindrical permanent magnet array (HCPMA) is a volume compact and energy conserved field source, which have attracted intense interests in many practical applications. Here, using the complex variable integration method based on the Biot-Savart Law (including current distributions inside the body and on the surfaces of magnet), we derive analytical field solutions to an ideal multipole HCPMA in entire space including the interior of magnet. The analytic field expression inside the array material is used to construct an analytic demagnetization function, with which we can explain the origin of demagnetization phenomena in HCPMA by taking into account an ideal magnetic hysteresis loop with finite coercivity. These analytical field expressions and demagnetization functions provide deeper insight into the nature of such permanent magnet array systems and offer guidance in designing optimized array system.
Application of an analytical method for solution of thermal hydraulic conservation equations
Energy Technology Data Exchange (ETDEWEB)
Fakory, M.R. [Simulation, Systems & Services Technologies Company (S3 Technologies), Columbia, MD (United States)
1995-09-01
An analytical method has been developed and applied for solution of two-phase flow conservation equations. The test results for application of the model for simulation of BWR transients are presented and compared with the results obtained from application of the explicit method for integration of conservation equations. The test results show that with application of the analytical method for integration of conservation equations, the Courant limitation associated with explicit Euler method of integration was eliminated. The results obtained from application of the analytical method (with large time steps) agreed well with the results obtained from application of explicit method of integration (with time steps smaller than the size imposed by Courant limitation). The results demonstrate that application of the analytical approach significantly improves the numerical stability and computational efficiency.
Analytical Solution for Fractional Derivative Gas-Flow Equation in Porous Media
El-Amin, Mohamed; Radwan, Ahmed G.; Sun, Shuyu
2017-01-01
In this paper, we introduce an analytical solution of the fractional derivative gas transport equation using the power-series technique. We present a new universal transform, namely, generalized Boltzmann change of variable which depends on the fractional order, time and space. This universal transform is employed to transfer the partial differential equation into an ordinary differential equation. Moreover, the convergence of the solution has been investigated and found that solutions are unconditionally converged. Results are introduced and discussed for the universal variable and other physical parameters such as porosity and permeability of the reservoir; time and space.
Directory of Open Access Journals (Sweden)
Mohammad Mehdi Rashidi
2008-01-01
Full Text Available The flow of a viscous incompressible fluid between two parallel plates due to the normal motion of the plates is investigated. The unsteady Navier-Stokes equations are reduced to a nonlinear fourth-order differential equation by using similarity solutions. Homotopy analysis method (HAM is used to solve this nonlinear equation analytically. The convergence of the obtained series solution is carefully analyzed. The validity of our solutions is verified by the numerical results obtained by fourth-order Runge-Kutta.
Directory of Open Access Journals (Sweden)
S. Das
2013-12-01
Full Text Available In this article, optimal homotopy-analysis method is used to obtain approximate analytic solution of the time-fractional diffusion equation with a given initial condition. The fractional derivatives are considered in the Caputo sense. Unlike usual Homotopy analysis method, this method contains at the most three convergence control parameters which describe the faster convergence of the solution. Effects of parameters on the convergence of the approximate series solution by minimizing the averaged residual error with the proper choices of parameters are calculated numerically and presented through graphs and tables for different particular cases.
Analytical Solution for Fractional Derivative Gas-Flow Equation in Porous Media
El-Amin, Mohamed
2017-07-06
In this paper, we introduce an analytical solution of the fractional derivative gas transport equation using the power-series technique. We present a new universal transform, namely, generalized Boltzmann change of variable which depends on the fractional order, time and space. This universal transform is employed to transfer the partial differential equation into an ordinary differential equation. Moreover, the convergence of the solution has been investigated and found that solutions are unconditionally converged. Results are introduced and discussed for the universal variable and other physical parameters such as porosity and permeability of the reservoir; time and space.
International Nuclear Information System (INIS)
Darmani, G.; Setayeshi, S.; Ramezanpour, H.
2012-01-01
In this paper an efficient computational method based on extending the sensitivity approach (SA) is proposed to find an analytic exact solution of nonlinear differential difference equations. In this manner we avoid solving the nonlinear problem directly. By extension of sensitivity approach for differential difference equations (DDEs), the nonlinear original problem is transformed into infinite linear differential difference equations, which should be solved in a recursive manner. Then the exact solution is determined in the form of infinite terms series and by intercepting series an approximate solution is obtained. Numerical examples are employed to show the effectiveness of the proposed approach. (general)
Solution standards for quality control of nuclear-material analytical measurements
International Nuclear Information System (INIS)
Clark, J.P.
1981-01-01
Analytical chemistry measurement control depends upon reliable solution standards. At the Savannah River Plant Control Laboratory over a thousand analytical measurements are made daily for process control, product specification, accountability, and nuclear safety. Large quantities of solution standards are required for a measurement quality control program covering the many different analytical chemistry methods. Savannah River Plant produced uranium, plutonium, neptunium, and americium metals or oxides are dissolved to prepare stock solutions for working or Quality Control Standards (QCS). Because extensive analytical effort is required to characterize or confirm these solutions, they are prepared in large quantities. These stock solutions are diluted and blended with different chemicals and/or each other to synthesize QCS that match the matrices of different process streams. The target uncertainty of a standard's reference value is 10% of the limit of error of the methods used for routine measurements. Standard Reference Materials from NBS are used according to special procedures to calibrate the methods used in measuring the uranium and plutonium standards so traceability can be established. Special precautions are required to minimize the effects of temperature, radiolysis, and evaporation. Standard reference values are periodically corrected to eliminate systematic errors caused by evaporation or decay products. Measurement control is achieved by requiring analysts to analyze a blind QCS each shift a measurement system is used on plant samples. Computer evaluation determines whether or not a measurement is within the +- 3 sigma control limits. Monthly evaluations of the QCS measurements are made to determine current bias correction factors for accountability measurements and detect significant changes in the bias and precision statistics. The evaluations are also used to plan activities for improving the reliability of the analytical chemistry measurements
Directory of Open Access Journals (Sweden)
Chen Yuming
2011-01-01
Full Text Available Though boundary value problems for fractional differential equations have been extensively studied, most of the studies focus on scalar equations and the fractional order between 1 and 2. On the other hand, delay is natural in practical systems. However, not much has been done for fractional differential equations with delays. Therefore, in this paper, we consider a boundary value problem of a general delayed nonlinear fractional system. With the help of some fixed point theorems and the properties of the Green function, we establish several sets of sufficient conditions on the existence of positive solutions. The obtained results extend and include some existing ones and are illustrated with some examples for their feasibility.
An analytical solution of the Navier-Stokes equation for internal flows
International Nuclear Information System (INIS)
Lyberg, Mats D; Tryggeson, Henrik
2007-01-01
This paper derives a solution to the Navier-Stokes equation by considering vorticity generated at system boundaries. The result is an explicit expression for the velocity. The Navier-Stokes equation is reformulated as a divergence and integrated, giving a tensor equation that splits into a symmetric and a skew-symmetric part. One equation gives an algebraic system of quadratic equations involving velocity components. A system of nonlinear partial differential equations is reduced to algebra. The velocity is then explicitly calculated and shown to depend on boundary conditions only. This removes the need to solve the Navier-Stokes equation by a 3D numerical computation, replacing it by computation of 2D surface integrals over the boundary. (fast track communication)
An accurate analytical solution of a zero-dimensional greenhouse model for global warming
International Nuclear Information System (INIS)
Foong, S K
2006-01-01
In introducing the complex subject of global warming, books and papers usually use the zero-dimensional greenhouse model. When the ratio of the infrared radiation energy of the Earth's surface that is lost to outer space to the non-reflected average solar radiation energy is small, the model admits an accurate approximate analytical solution-the resulting energy balance equation of the model is a quartic equation that can be solved analytically-and thus provides an alternative solution and instructional strategy. A search through the literature fails to find an analytical solution, suggesting that the solution may be new. In this paper, we review the model, derive the approximation and obtain its solution. The dependence of the temperature of the surface of the Earth and the temperature of the atmosphere on seven parameters is made explicit. A simple and convenient formula for global warming (or cooling) in terms of the percentage change of the parameters is derived. The dependence of the surface temperature on the parameters is illustrated by several representative graphs
Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport
International Nuclear Information System (INIS)
Litvinenko, Yuri E.; Effenberger, Frederic
2014-01-01
Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.
Baseline configuration for GNSS attitude determination with an analytical least-squares solution
International Nuclear Information System (INIS)
Chang, Guobin; Wang, Qianxin; Xu, Tianhe
2016-01-01
The GNSS attitude determination using carrier phase measurements with 4 antennas is studied on condition that the integer ambiguities have been resolved. The solution to the nonlinear least-squares is often obtained iteratively, however an analytical solution can exist for specific baseline configurations. The main aim of this work is to design this class of configurations. Both single and double difference measurements are treated which refer to the dedicated and non-dedicated receivers respectively. More realistic error models are employed in which the correlations between different measurements are given full consideration. The desired configurations are worked out. The configurations are rotation and scale equivariant and can be applied to both the dedicated and non-dedicated receivers. For these configurations, the analytical and optimal solution for the attitude is also given together with its error variance–covariance matrix. (paper)
Garnier, Alain; Gaillet, Bruno
2015-12-01
Not so many fermentation mathematical models allow analytical solutions of batch process dynamics. The most widely used is the combination of the logistic microbial growth kinetics with Luedeking-Piret bioproduct synthesis relation. However, the logistic equation is principally based on formalistic similarities and only fits a limited range of fermentation types. In this article, we have developed an analytical solution for the combination of Monod growth kinetics with Luedeking-Piret relation, which can be identified by linear regression and used to simulate batch fermentation evolution. Two classical examples are used to show the quality of fit and the simplicity of the method proposed. A solution for the combination of Haldane substrate-limited growth model combined with Luedeking-Piret relation is also provided. These models could prove useful for the analysis of fermentation data in industry as well as academia. © 2015 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Jin, Congrui; Davoodabadi, Ali; Li, Jianlin; Wang, Yanli; Singler, Timothy
2017-01-01
Because of the development of novel micro-fabrication techniques to produce ultra-thin materials and increasing interest in thin biological membranes, in recent years, the mechanical characterization of thin films has received a significant amount of attention. To provide a more accurate solution for the relationship among contact radius, load and deflection, the fundamental and widely applicable problem of spherical indentation of a freestanding circular membrane have been revisited. The work presented here significantly extends the previous contributions by providing an exact analytical solution to the governing equations of Föppl–Hecky membrane indented by a frictionless spherical indenter. In this study, experiments of spherical indentation has been performed, and the exact analytical solution presented in this article is compared against experimental data from existing literature as well as our own experimental results.
Analytical steady-state solutions for water-limited cropping systems using saline irrigation water
Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.
2014-12-01
Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.
Numerical solution of large nonlinear boundary value problems by quadratic minimization techniques
International Nuclear Information System (INIS)
Glowinski, R.; Le Tallec, P.
1984-01-01
The objective of this paper is to describe the numerical treatment of large highly nonlinear two or three dimensional boundary value problems by quadratic minimization techniques. In all the different situations where these techniques were applied, the methodology remains the same and is organized as follows: 1) derive a variational formulation of the original boundary value problem, and approximate it by Galerkin methods; 2) transform this variational formulation into a quadratic minimization problem (least squares methods) or into a sequence of quadratic minimization problems (augmented lagrangian decomposition); 3) solve each quadratic minimization problem by a conjugate gradient method with preconditioning, the preconditioning matrix being sparse, positive definite, and fixed once for all in the iterative process. This paper will illustrate the methodology above on two different examples: the description of least squares solution methods and their application to the solution of the unsteady Navier-Stokes equations for incompressible viscous fluids; the description of augmented lagrangian decomposition techniques and their application to the solution of equilibrium problems in finite elasticity
International Nuclear Information System (INIS)
Lee, D.A.
1979-02-01
Acids and corrosion products in used perchloroethylene scrubber solutions collected from HTGR fuel preparation processes have been analyzed by several analytical methods to determine the source and possible remedy of the corrosion caused by these solutions. Hydrochloric acid was found to be concentrated on the carbon particles suspended in perchloroethylene. Filtration of carbon from the scrubber solutions removed the acid corrosion source in the process equipment. Corrosion products chemisorbed on the carbon particles were identified. Filtered perchloroethylene from used scrubber solutions contained practically no acid. It is recommended that carbon particles be separated from the scrubber solutions immediately after the scrubbing process to remove the source of acid and that an inhibitor be used to prevent the hydrolysis of perchloroethylene and the formation of acids
On analytic solutions of (1+3)D relativistic ideal hydrodynamic equations
International Nuclear Information System (INIS)
Lin Shu; Liao Jinfeng
2010-01-01
In this paper, we find various analytic (1+3)D solutions to relativistic ideal hydrodynamic equations based on embedding of known low-dimensional scaling solutions. We first study a class of flows with 2D Hubble embedding, for which a single ordinary differential equation for the remaining velocity field can be derived. Using this equation, all solutions with transverse 2D Hubble embedding and power law ansatz for the remaining longitudinal velocity field will be found. Going beyond the power law ansatz, we further find a few solutions with transverse 2D Hubble embedding and nontrivial longitudinal velocity field. Finally we investigate general scaling flows with each component of the velocity fields scaling independently, for which we also find all possible solutions.
Analytical solutions for the profile of two-dimensional droplets with finite-length precursor films
Perazzo, Carlos Alberto; Mac Intyre, J. R.; Gomba, J. M.
2017-12-01
By means of the lubrication approximation we obtain the full family of static bidimensional profiles of a liquid resting on a substrate under partial-wetting conditions imposed by a disjoining-conjoining pressure. We show that for a set of quite general disjoining-conjoining pressure potentials, the free surface can adopt only five nontrivial static patterns; in particular, we find solutions when the height goes to zero which describe satisfactorily the complete free surface for a finite amount of fluid deposited on a substrate. To test the extension of the applicability of our solutions, we compare them with those obtained when the lubrication approximations are not employed and under conditions where the lubrication hypothesis are not strictly valid, and also with axisymmetric solutions. For a given disjoining-conjoining potential, we report a new analytical solution that accounts for all the five possible solutions.
The influence of solution composition and grain boundaries on the replacement of calcite by dolomite
Moraila Martinez, Teresita de Jesus; Putnis, Christine V.; Putnis, Andrew
2016-04-01
Dolomite formation is a mineral replacement reaction that affects extensive rock volumes and comprises a large fraction of oil and gas reservoirs [1,2]. The most accepted hypothesis is the 'dolomitization' of limestone by Mg-rich fluids [3]. The objective of this research is to study the replacement mechanism of calcite by dolomite, the role of grain boundaries, highlighted by Etschmann et al. (2014), and the possible influence of solutions in dolomite formation under the presence of ions that are normally in crustal aqueous fluids. To accomplish this purpose, we performed hydrothermal experiments using Carrara marble cubes of ~1.5 mm size and 7-9 mg weight as starting material, reacted with 1M (Mg,Ca)Cl2 aqueous solutions, with Mg/Ca ratios of 3 and 5 at 200°C, for different reaction times. Additional experiments were performed adding 1mM of Na2SO4, NaCl or NaF to the previous solutions. After the reaction, the product phases were identified using Raman spectroscopy, X-Ray powder diffraction (XRD), electron microprobe analysis (EMPA), and the textural evolution was studied by scanning electron microscopy (SEM). Samples reacted with aqueous solutions resulted in the replacements of the calcite rock into magnesite and dolomite. The amount and type of reaction strongly depends on the Mg/Ca ratio. Samples reacted with a Mg/Ca ratio of 5 resulted in an almost complete replacement reaction and more favorable for magnesite formation than for dolomite. When the Mg/Ca ratio was 3 dolomite formed but the replacement was located in the core of the sample. We show that grain boundaries are very important for the infiltration of solution and the progress of a replacement reaction, acting as fluid pathways. Solution composition controls the nature of the replacement product. Acknowledgment: This work is funded within a Marie Curie EU Initial Training Network- CO2-React. 1. Etschmann B., Brugger J., Pearce M.A., Ta C., Brautigan D., Jung M., Pring A. (2014). Grain boundaries as
Directory of Open Access Journals (Sweden)
Zhigang Hu
2014-01-01
Full Text Available In this paper, we apply the method of the Nehari manifold to study the fractional differential equation (d/dt((1/2 0Dt-β(u′(t+(1/2 tDT-β(u′(t= f(t,u(t, a.e. t∈[0,T], and u0=uT=0, where 0Dt-β, tDT-β are the left and right Riemann-Liouville fractional integrals of order 0≤β<1, respectively. We prove the existence of a ground state solution of the boundary value problem.
Directory of Open Access Journals (Sweden)
Chuanzhi Bai
2010-06-01
Full Text Available This paper deals with the existence of positive solutions for a boundary value problem involving a nonlinear functional differential equation of fractional order $\\alpha$ given by $ D^{\\alpha} u(t + f(t, u_t = 0$, $t \\in (0, 1$, $2 < \\alpha \\le 3$, $ u^{\\prime}(0 = 0$, $u^{\\prime}(1 = b u^{\\prime}(\\eta$, $u_0 = \\phi$. Our results are based on the nonlinear alternative of Leray-Schauder type and Krasnosel'skii fixed point theorem.
Existence of Triple Positive Solutions for Second-Order Discrete Boundary Value Problems
Directory of Open Access Journals (Sweden)
Yanping Guo
2007-01-01
Full Text Available By using a new fixed-point theorem introduced by Avery and Peterson (2001, we obtain sufficient conditions for the existence of at least three positive solutions for the equation Δ2x(k−1+q(kf(k,x(k,Δx(k=0, for k∈{1,2,…,n−1}, subject to the following two boundary conditions: x(0=x(n=0 or x(0=Δx(n−1=0, where n≥3.
Numerical solution of sixth-order boundary-value problems using Legendre wavelet collocation method
Sohaib, Muhammad; Haq, Sirajul; Mukhtar, Safyan; Khan, Imad
2018-03-01
An efficient method is proposed to approximate sixth order boundary value problems. The proposed method is based on Legendre wavelet in which Legendre polynomial is used. The mechanism of the method is to use collocation points that converts the differential equation into a system of algebraic equations. For validation two test problems are discussed. The results obtained from proposed method are quite accurate, also close to exact solution, and other different methods. The proposed method is computationally more effective and leads to more accurate results as compared to other methods from literature.
Analytic solution of vector model kinetic equations with constant kernel and their applications
International Nuclear Information System (INIS)
Latyshev, A.V.
1993-01-01
For the first time exact solutions the heif-space boundary value problems for model kinetic equations is obtained. Here x > 0, μ is an element of (-∞, 0) union (0, +∞), Σ = diag {σ 1 , σ 2 }, C = [c ij ] - 2 x 2-matrix, Ψ (x, μ) is vector-column with elements ψ 1 and ψ 2 . Exact solution of the diffusion slip flow of the binary gas mixture as a application for the model Boltzmann equation with collision operator in the McCormack's form is found. 18 refs
Directory of Open Access Journals (Sweden)
Mabrouk Briki
2016-05-01
Full Text Available In this paper, a fourth-order boundary value problem on the half-line is considered and existence of solutions is proved using a minimization principle and the mountain pass theorem.
Efficient robust control of first order scalar conservation laws using semi-analytical solutions
Li, Yanning; Canepa, Edward S.; Claudel, Christian G.
2014-01-01
This article presents a new robust control framework for transportation problems in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi equation, we pose the problem of controlling the state of the system on a network link, using initial density control and boundary flow control, as a Linear Program. We then show that this framework can be extended to arbitrary control problems involving the control of subsets of the initial and boundary conditions. Unlike many previously investigated transportation control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e. discontinuities in the state of the system). We also demonstrate that the same framework can handle robust control problems, in which the uncontrollable components of the initial and boundary conditions are encoded in intervals on the right hand side of inequalities in the linear program. The lower bound of the interval which defines the smallest feasible solution set is used to solve the robust LP/MILP. Since this framework leverages the intrinsic properties of the Hamilton-Jacobi equation used to model the state of the system, it is extremely fast. Several examples are given to demonstrate the performance of the robust control solution and the trade-off between the robustness and the optimality.
Cremer, Clemens; Neuweiler, Insa
2016-04-01
Flow and solute transport in the shallow subsurface is strongly governed by atmospheric boundary conditions. Erratically varying infiltration and evaporation cycles lead to alternating upward and downward flow, as well as spatially and temporally varying water contents and associated hydraulic conductivity of the prevailing materials. Thus presenting a highly complicated, dynamic system. Knowledge of subsurface solute transport processes is vital to assess e.g. the entry of, potentially hazardous, solutes to the groundwater and nutrient uptake by plant roots and can be gained in many ways. Besides field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. With the aim to gain a better understanding and to quantify solute transport in the unsaturated shallow subsurface under natural precipitation conditions in heterogeneous media, we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell that is filled with two types of sand and apply cyclic infiltration-evaporation phases at the soil surface. Pressure at the bottom of the domain is kept constant. Following recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a), heterogeneity is introduced by a sharp vertical interface between coarse and fine sand. Fluorescent tracers are used to i) qualitatively visualize transport paths within the domain and ii) quantify solute leaching at the bottom of the domain. Temporal and spatial variations in water content during the experiment are derived from x-ray radiographic images. Monitored water contents between infiltration and evaporation considerably changed in the coarse sand while the fine sand remained saturated throughout the experiments. Lateral solute transport through the interface in both directions at different depths of the investigated soil columns were observed. This depended on the flow rate applied at the soil surface and
Energy Technology Data Exchange (ETDEWEB)
Dobranskis, R. R.; Zharkova, V. V., E-mail: valentina.zharkova@northumbria.ac.uk [Department of Mathematics and Information Sciences, University of Northumbria, Newcastle upon Tyne NE1 2XP (United Kingdom)
2014-06-10
The original continuity equation (CE) used for the interpretation of the power law energy spectra of beam electrons in flares was written and solved for an electron beam flux while ignoring an additional free term with an electron density. In order to remedy this omission, the original CE for electron flux, considering beam's energy losses in Coulomb collisions, was first differentiated by the two independent variables: depth and energy leading to partial differential equation for an electron beam density instead of flux with the additional free term. The analytical solution of this partial differential continuity equation (PDCE) is obtained by using the method of characteristics. This solution is further used to derive analytical expressions for mean electron spectra for Coulomb collisions and to carry out numeric calculations of hard X-ray (HXR) photon spectra for beams with different parameters. The solutions revealed a significant departure of electron densities at lower energies from the original results derived from the CE for the flux obtained for Coulomb collisions. This departure is caused by the additional exponential term that appeared in the updated solutions for electron differential density leading to its faster decrease at lower energies (below 100 keV) with every precipitation depth similar to the results obtained with numerical Fokker-Planck solutions. The effects of these updated solutions for electron densities on mean electron spectra and HXR photon spectra are also discussed.
Henclik, Sławomir
2018-03-01
The influence of dynamic fluid-structure interaction (FSI) onto the course of water hammer (WH) can be significant in non-rigid pipeline systems. The essence of this effect is the dynamic transfer of liquid energy to the pipeline structure and back, which is important for elastic structures and can be negligible for rigid ones. In the paper a special model of such behavior is analyzed. A straight pipeline with a steady flow, fixed to the floor with several rigid supports is assumed. The transient is generated by a quickly closed valve installed at the end of the pipeline. FSI effects are assumed to be present mainly at the valve which is fixed with a spring dash-pot attachment. Analysis of WH runs, especially transient pressure changes, for various stiffness and damping parameters of the spring dash-pot valve attachment is presented in the paper. The solutions are found analytically and numerically. Numerical results have been computed with the use of an own computer program developed on the basis of the four equation model of WH-FSI and the specific boundary conditions formulated at the valve. Analytical solutions have been found with the separation of variables method for slightly simplified assumptions. Damping at the dash-pot is taken into account within the numerical study. The influence of valve attachment parameters onto the WH courses was discovered and it was found the transient amplitudes can be reduced. Such a system, elastically attached shut-off valve in a pipeline or other, equivalent design can be a real solution applicable in practice.
Effects of Unsaturated Zones on Baseflow Recession: Analytical Solution and Application
Zhan, H.; Liang, X.; Zhang, Y. K.
2017-12-01
Unsaturated flow is an important process in baseflow recessions and its effect is rarely investigated. A mathematical model for a coupled unsaturated-saturated flow in a horizontally unconfined aquifer with time-dependent infiltrations is presented. Semi-analytical solutions for hydraulic heads and discharges are derived using Laplace transform and Cosine transform. The solutions are compared with solutions of the linearized Boussinesq equation (LB solution) and the linearized Laplace equation (LL solution), respectively. The result indicates that a larger dimensionless constitutive exponent κD of the unsaturated zone leads to a smaller discharge during the infiltration period and a larger discharge after the infiltration. The lateral discharge of the unsaturated zone is significant when κD≤1, and becomes negligible when κD≥100. For late times, the power index b of the recession curve-dQ/dt aQb, is 1 and independent of κD, where Q is the baseflow and a is a constant lumped aquifer parameter. For early times, b is approximately equal to 3 but it approaches infinity when t→1. The present solution is applied to synthetic and field cases. The present solution matched the synthetic data better than both the LL and LB solutions, with a minimum relative error of 16% for estimate of hydraulic conductivity. The present solution was applied to the observed streamflow discharge in Iowa, and the estimated values of the aquifer parameters were reasonable.
Solution of the Stokes system by boundary integral equations and fixed point iterative schemes
International Nuclear Information System (INIS)
Chidume, C.E.; Lubuma, M.S.
1990-01-01
The solution to the exterior three dimensional Stokes problem is sought in the form of a single layer potential of unknown density. This reduces the problem to a boundary integral equation of the first kind whose operator is the velocity component of the single layer potential. It is shown that this component is an isomorphism between two appropriate Sobolev spaces containing the unknown densities and the data respectively. The isomorphism corresponds to a variational problem with coercive bilinear form. The latter property allows us to consider various fixed point iterative schemes that converge to the unique solution of the integral equation. Explicit error estimates are also obtained. The successive approximations are also considered in a more computable form by using the product integration method of Atkinson. (author). 47 refs
Positive Solutions of Three-Order Delayed Periodic Boundary Value Problems
Directory of Open Access Journals (Sweden)
Na Wang
2017-01-01
Full Text Available Our main purpose is to consider the existence of positive solutions for three-order two-point boundary value problem in the following form: u′′′(t+ρ3u(t=f(t,u(t-τ, 0≤t≤2π, u(i(0=u(i(2π, i=1,2, u(t=σ, -τ≤t≤0, where σ,ρ, and τ are given constants satisfying τ∈(0,π/2. Some inequality conditions on ρ3u-f(t,u guaranteeing the existence and nonexistence of positive solutions are presented. Our discussion is based on the fixed point theorem in cones.
Directory of Open Access Journals (Sweden)
Imran Talib
2015-12-01
Full Text Available In this article, study the existence of solutions for the second-order nonlinear coupled system of ordinary differential equations $$\\displaylines{ u''(t=f(t,v(t,\\quad t\\in [0,1],\\cr v''(t=g(t,u(t,\\quad t\\in [0,1], }$$ with nonlinear coupled boundary conditions $$\\displaylines{ \\phi(u(0,v(0,u(1,v(1,u'(0,v'(0=(0,0, \\cr \\psi(u(0,v(0,u(1,v(1,u'(1,v'(1=(0,0, }$$ where $f,g:[0,1]\\times \\mathbb{R}\\to \\mathbb{R}$ and $\\phi,\\psi:\\mathbb{R}^6\\to \\mathbb{R}^2$ are continuous functions. Our main tools are coupled lower and upper solutions, Arzela-Ascoli theorem, and Schauder's fixed point theorem.
Formulation of natural convection around repository for dual reciprocity boundary element solution
International Nuclear Information System (INIS)
Vrankar, L.; Sarler, B.
1998-01-01
The disposal of high-level radioactive wastes in deep geological formations is of pronounced technological importance for nuclear safety. The understanding of related fluid flow, heat and mass transport in geological systems is of great interest. This article prepares necessary physical, mathematical and numerical fundamentals for computational modeling of related phenomena. The porous media is described by the simple Darcy law and momentum-energy coupling is due to Boussinesq approximation. The Dual Reciprocity of Boundary Element Method (DRBEM) is used for solving coupled mass, momentum and energy equations in two-dimensions for the steady buoyancy induced convection problem in an semi-infinite porous media. It is structured by weighting with the fundamental solution of the Laplace equation. The inverse multi quadrics are used in the DRBEM transformation. The solution is obtained in an iterative way.(author)
Multiple solutions of a free-boundary FRC equilibrium problem in a metal cylinder
International Nuclear Information System (INIS)
Spencer, R.L.; Hewett, D.W.
1981-01-01
A new approach to the computation of FRC equilibria that avoids previously encountered difficulties is presented. For arbitrary pressure profiles it is computationally expensive, but for one special pressure profile the problem is simple enough to require only minutes of Cray time; it is this problem that we have solved. We solve the Grad-Shafranov equation, Δ/sup */psi = r 2 p'(psi), in an infinitely long flux conserving cylinder of radius a with the boundary conditions that psi(a,z) = -psi/sub w/ and that delta psi/delta z = 0 as [z] approaches infinity. The pressure profile is p'(psi) = cH(psi) where c is a constant and where H(x) is the Heaviside function. We have found four solutions to this problem: There is a purely vacuum state, two z-independent plasma solutions, and an r-z-dependent plasma state
Positive solutions for second-order boundary-value problems with phi-Laplacian
Directory of Open Access Journals (Sweden)
Diana-Raluca Herlea
2016-02-01
Full Text Available This article concerns the existence, localization and multiplicity of positive solutions for the boundary-value problem $$\\displaylines{ \\big(\\phi(u' \\big '+f(t,u =0, \\cr u(0 - a u'(0 = u'(1= 0, }$$ where $f:[0,1]\\times \\mathbb{R}_{+}\\to \\mathbb{R}_{+}$ is a continuous function and $\\phi :\\mathbb{R}\\to (-b,b$ is an increasing homeomorphism with $\\phi (0=0$. We obtain existence, localization and multiplicity results of positive solutions using Krasnosel'skii fixed point theorem in cones, and a weak Harnack type inequality. Concerning systems, the localization is established by the vector version of Krasnosel'skii theorem, where the compression-expansion conditions are expressed on components.
Existence of solutions to fractional boundary-value problems with a parameter
Directory of Open Access Journals (Sweden)
Ya-Ning Li
2013-06-01
Full Text Available This article concerns the existence of solutions to the fractional boundary-value problem $$displaylines{ -frac{d}{dt} ig(frac{1}{2} {}_0D_t^{-eta}+ frac{1}{2}{}_tD_{T}^{-eta}igu'(t=lambda u(t+abla F(t,u(t,quad hbox{a.e. } tin[0,T], cr u(0=0,quad u(T=0. }$$ First for the eigenvalue problem associated with it, we prove that there is a sequence of positive and increasing real eigenvalues; a characterization of the first eigenvalue is also given. Then under different assumptions on the nonlinearity F(t,u, we show the existence of weak solutions of the problem when $lambda$ lies in various intervals. Our main tools are variational methods and critical point theorems.
SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries
International Nuclear Information System (INIS)
Nichols, B.D.; Hirt, C.W.; Hotchkiss, R.S.
1980-08-01
In this report a simple, but powerful, computer program is presented for the solution of two-dimensional transient fluid flow with free boundaries. The SOLA-VOF program, which is based on the concept of a fractional volume of fluid (VOF), is more flexible and efficient than other methods for treating arbitrary free boundaries. SOLA-VOF has a variety of user options that provide capabilities for a wide range of applications. Its basic mode of operation is for single fluid calculations having multiple free surfaces. However, SOLA-VOF can also be used for calculations involving two fluids separated by a sharp interface. In either case, the fluids may be treated as incompressible or as having limited compressibility. Surface tension forces with wall adhesion are permitted in both cases. Internal obstacles may be defined by blocking out any desired combination of cells in the mesh, which is composed of rectangular cells of variable size. SOLA-VOF is an easy-to-use program. Its logical parts are isolated in separate subroutines, and numerous special features have been included to simplify its operation, such as an automatic time-step control, a flexible mesh generator, extensive output capabilities, a variety of optional boundary conditions, and instructive internal documentation
Diffusion of drag-reducing polymer solutions within a rough-walled turbulent boundary layer
Elbing, Brian R.; Dowling, David R.; Perlin, Marc; Ceccio, Steven L.
2010-04-01
The influence of surface roughness on diffusion of wall-injected, drag-reducing polymer solutions within a turbulent boundary layer was studied with a 0.94 m long flat-plate test model at speeds of up to 10.6 m s-1 and Reynolds numbers of up to 9×106. The surface was hydraulically smooth, transitionally rough, or fully rough. Mean concentration profiles were acquired with planar laser induced fluorescence, which was the primary flow diagnostic. Polymer concentration profiles with high injection concentrations (≥1000 wppm) had the peak concentration shifted away from the wall, which was partially attributed to a lifting phenomenon. The diffusion process was divided into three zones—initial, intermediate, and final. Studies of polymer injection into a polymer ocean at concentrations sufficient for maximum drag reduction indicated that the maximum initial zone length is of the order of 100 boundary layer thicknesses. The intermediate zone results indicate that friction velocity and roughness height are important scaling parameters in addition to flow and injection conditions. Lastly, the current results were combined with those in Petrie et al. ["Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow," Exp. Fluids 35, 8 (2003)] to demonstrate that the influence of polymer degradation increases with increased surface roughness.
Ferrás, L. L.; Afonso, A. M.; Alves, M. A.; Nóbrega, J. M.; Pinho, F. T.
2016-09-01
In this work, we present a series of solutions for combined electro-osmotic and pressure-driven flows of viscoelastic fluids in microchannels. The solutions are semi-analytical, a feature made possible by the use of the Debye-Hückel approximation for the electrokinetic fields, thus restricted to cases with small electric double-layers, in which the distance between the microfluidic device walls is at least one order of magnitude larger than the electric double-layer thickness. To describe the complex fluid rheology, several viscoelastic differential constitutive models were used, namely, the simplified Phan-Thien-Tanner model with linear, quadratic or exponential kernel for the stress coefficient function, the Johnson-Segalman model, and the Giesekus model. The results obtained illustrate the effects of the Weissenberg number, the Johnson-Segalman slip parameter, the Giesekus mobility parameter, and the relative strengths of the electro-osmotic and pressure gradient-driven forcings on the dynamics of these viscoelastic flows.
International Nuclear Information System (INIS)
Amirkhanov, I.V.; Zhidkov, E.P.; Konnova, S.V.
2000-01-01
For the case of spherical-symmetrical potential we have considered the convergence of the solution of singular-perturbated Schroedinger equation of the 4th order to the solution of the corresponding standard nonrelativistic Schroedinger equation by numerical and analytical methods. The questions of existence of the solutions are explored. Numerical results are given. (author)
The boundary element method for the solution of the multidimensional inverse heat conduction problem
International Nuclear Information System (INIS)
Lagier, Guy-Laurent
1999-01-01
This work focuses on the solution of the inverse heat conduction problem (IHCP), which consists in the determination of boundary conditions from a given set of internal temperature measurements. This problem is difficult to solve due to its ill-posedness and high sensitivity to measurement error. As a consequence, numerical regularization procedures are required to solve this problem. However, most of these methods depend on the dimension and the nature, stationary or transient, of the problem. Furthermore, these methods introduce parameters, called hyper-parameters, which have to be chosen optimally, but can not be determined a priori. So, a new general method is proposed for solving the IHCP. This method is based on a Boundary Element Method formulation, and the use of the Singular Values Decomposition as a regularization procedure. Thanks to this method, it's possible to identify and eliminate the directions of the solution where the measurement error plays the major role. This algorithm is first validated on two-dimensional stationary and one-dimensional transient problems. Some criteria are presented in order to choose the hyper-parameters. Then, the methodology is applied to two-dimensional and three-dimensional, theoretical or experimental, problems. The results are compared with those obtained by a standard method and show the accuracy of the method, its generality, and the validity of the proposed criteria. (author) [fr
Simple and Accurate Analytical Solutions of the Electrostatically Actuated Curled Beam Problem
Younis, Mohammad I.
2014-08-17
We present analytical solutions of the electrostatically actuated initially deformed cantilever beam problem. We use a continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We derive simple analytical expressions for two commonly observed deformed beams configurations: the curled and tilted configurations. The derived analytical formulas are validated by comparing their results to experimental data in the literature and numerical results of a multi-mode reduced order model. The derived expressions do not involve any complicated integrals or complex terms and can be conveniently used by designers for quick, yet accurate, estimations. The formulas are found to yield accurate results for most commonly encountered microbeams of initial tip deflections of few microns. For largely deformed beams, we found that these formulas yield less accurate results due to the limitations of the single-mode approximations they are based on. In such cases, multi-mode reduced order models need to be utilized.
New Analytic Solution to the Lane-Emden Equation of Index 2
Directory of Open Access Journals (Sweden)
S. S. Motsa
2012-01-01
Full Text Available We present two new analytic methods that are used for solving initial value problems that model polytropic and stellar structures in astrophysics and mathematical physics. The applicability, effectiveness, and reliability of the methods are assessed on the Lane-Emden equation which is described by a second-order nonlinear differential equation. The results obtained in this work are also compared with numerical results of Horedt (1986 which are widely used as a benchmark for testing new methods of solution. Good agreement is observed between the present results and the numerical results. Comparison is also made between the proposed new methods and existing analytical methods and it is found that the new methods are more efficient and have several advantages over some of the existing analytical methods.
International Nuclear Information System (INIS)
Totović, A R; Crnjanski, J V; Krstić, M M; Gvozdić, D M
2014-01-01
In this paper, we analyze two semiconductor optical amplifier (SOA) structures, traveling-wave and reflective, with the active region made of the bulk material. The model is based on the stationary traveling-wave equations for forward and backward propagating photon densities of the signal and the amplified spontaneous emission, along with the stationary carrier rate equation. We start by introducing linear approximation of the carrier density spatial distribution, which enables us to find solutions for the photon densities in a closed analytical form. An analytical approach ensures a low computational resource occupation and an easy analysis of the parameters influencing the SOA’s response. The comparison of the analytical and numerical results shows high agreement for a wide range of the input optical powers and bias currents. (paper)
Microchannel electrokinetics of charged analytes in buffered solutions near floating electrodes
DEFF Research Database (Denmark)
Andersen, Mathias Bækbo; Wolfcale, Trevor; Gregersen, Misha Marie
to accurately predict such behavior in these flow regimes. Experimentally, using conventional fluorescence microscopy, we investigated the concentration gradient (as well as the associated electroosmosis, induced-charge electro-osmosis, and electrophoresis) of the charged analyte near the floating electrode......We present both experimental and numerical studies of nonlinear electrokinetic flow of buffered solutions seeded with dilute analytes in a straight microchannel (0.6 μm high, 250 μm wide, and 9000 μm long) with a 0.15 μm high 60 μm wide electrode situated at the bottom center of the channel...... as a function of analyte (1 to 10 μM fluorescein and bodipy) and buffer (1 to 10 mM borate and posphate) concentrations and an externally applied voltage drop (50 to 100 V) along the channel. We have implemented a nonlinear continuum kinetics model of the system involving the electric potential, the buffer flow...
R. Haggerty
2013-01-01
In this technical note, a steady-state analytical solution of concentrations of a parent solute reacting to a daughter solute, both of which are undergoing transport and multirate mass transfer, is presented. Although the governing equations are complicated, the resulting solution can be expressed in simple terms. A function of the ratio of concentrations, In (daughter...
Ebaid, Abdelhalim; Wazwaz, Abdul-Majid; Alali, Elham; Masaedeh, Basem S.
2017-03-01
Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.
Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan
2016-04-01
Quantification of flow and solute transport in the shallow subsurface adjacent to the atmosphere is decisive to prevent groundwater pollution and conserve groundwater quality, to develop successful remediation strategies and to understand nutrient cycling. In nature, due to erratic precipitation-evaporation patterns, soil moisture content and related hydraulic conductivity in the vadose zone are not only variable in space but also in time. Flow directions and flow paths locally change between precipitation and evaporation periods. This makes the identification and description of solute transport processes in the vadose zone a complex problem. Recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a) focused on the investigation of upward transport of solutes during evaporation in heterogeneous soil columns, where heterogeneity was introduced by a sharp vertical material interface between two types of sand. Lateral solute transport through the interface in both (lateral) directions was observed at different depths of the investigated soil columns. Following recent approaches, we conduct two-dimensional numerical simulations in a similar setup which is composed of two sands with a sharp vertical material interface. The investigation is broadened from the sole evaporation to combined precipitation-evaporation cycles in order to quantify transport processes resulting from the combined effects of heterogeneous soil structure and dynamic flow conditions. Simulations are performed with a coupled finite volume and random walk particle tracking algorithm (Ippisch et al., 2006; Bechtold et al., 2011b). By comparing scenarios with cyclic boundary conditions and stationary counterparts with the same net flow rate, we found that duration and intensity of precipitation and evaporation periods potentially have an influence on lateral redistribution of solutes and thus leaching rates. Whether or not dynamic boundary conditions lead to significant deviations in the transport
International Nuclear Information System (INIS)
Xiao, Tiejun
2015-01-01
In this paper, the longitudinal dielectric function ϵ_l(k) of primitive electrolyte solutions is discussed. Starting from a modified mean spherical approximation, an analytical dielectric function in terms of two parameters is established. These two parameters can be related to the first two decay parameters k_1_,_2 of the dielectric response modes of the bulk system, and can be determined using constraints of k_1_,_2 from statistical theories. Furthermore, a combination of this dielectric function and the molecular Debye-Hückel theory[J. Chem. Phys. 135(2011)104104] leads to a self-consistent mean filed description of electrolyte solutions. Our theory reveals a relationship between the microscopic structure parameters of electrolyte solutions and the macroscopic thermodynamic properties, which is applied to concentrated electrolyte solutions.
Analytic rotating black-hole solutions in N-dimensional f(T) gravity
Energy Technology Data Exchange (ETDEWEB)
Nashed, G.G.L. [The British University in Egypt, Centre for Theoretical Physics, P.O. Box 43, Cairo (Egypt); Ain Shams University, Faculty of Science, Mathematics Department, Cairo (Egypt); Egyptian Relativity Group (ERG), Cairo (Egypt); El Hanafy, W. [The British University in Egypt, Centre for Theoretical Physics, P.O. Box 43, Cairo (Egypt); Egyptian Relativity Group (ERG), Cairo (Egypt)
2017-02-15
A non-diagonal vielbein ansatz is applied to the N-dimension field equations of f(T) gravity. An analytical vacuum solution is derived for the quadratic polynomial f(T)=T+εT{sup 2} and an inverse relation between the coupling constant ε and the cosmological constant Λ. Since the induced metric has off-diagonal components, it cannot be removed by a mere coordinate transformation, the solution has a rotating parameter. The curvature and torsion scalars invariants are calculated to study the singularities and horizons of the solution. In contrast to general relativity, the Cauchy horizon differs from the horizon which shows the effect of the higher order torsion. The general expression of the energy-momentum vector of f(T) gravity is used to calculate the energy of the system. Finally, we have shown that this kind of solution satisfies the first law of thermodynamics in the framework of f(T) gravitational theories. (orig.)
Pauritsch, Marcus; Birk, Steffen; Hergarten, Stefan; Kellerer-Pirklbauer, Andreas; Winkler, Gerfried
2014-05-01
Rock glaciers as aquifer systems in alpine catchments may strongly influence the hydrological characteristics of these catchments. Thus, they have a high impact on the ecosystem and potential natural hazards such as for example debris flow. Therefore, knowledge of the hydrodynamic processes, internal structure and properties of these aquifers is important for resource management and risk assessment. The investigation of such aquifers often turns out to be expensive and technically complicated because of their strongly limited accessibility. Analytical solutions of discharge recession provide a quick and easy way to estimate aquifer parameters. However, due to simplifying assumptions the validity of the interpretation is often questionable. In this study we compared results of an analytical solution of discharge recessions with results based on a numerical model. This was done in order to analyse the range of uncertainties and the applicability of the analytical method in alpine catchment areas. The research area is a 0.76 km² large catchment in the Seckauer Tauern Range, Austria. The dominant aquifer in this catchment is a rock glacier, namely the Schöneben Rock Glacier. This relict rock glacier (i.e. containing no permafrost at present) covers an area of 0.11 km² and is drained by one spring at the rock glacier front. The rock glacier consists predominantly of gneissic sediments (mainly coarse-grained, blocky at the surface) and extends from 1720 to 1905 m a.s.l.. Discharge of the rock glacier spring is automatically measured since 2002. Electric conductivity and water temperature is monitored since 2008. An automatic weather station was installed in 2011 in the central part of the catchment. Additionally data of geophysical surveys (refraction seismic and ground penetrating radar) have been used to analyse the base slope and inner structure of the rock glacier. The measured data are incorporated into a numerical model implemented in MODFLOW. The numerical
On Analytical Solutions of f(R) Modified Gravity Theories in FLRW Cosmologies
Domazet, Silvije; Radovanović, Voja; Simonović, Marko; Štefančić, Hrvoje
2013-02-01
A novel analytical method for f(R) modified theories without matter in Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes is introduced. The equation of motion for the scale factor in terms of cosmic time is reduced to the equation for the evolution of the Ricci scalar R with the Hubble parameter H. The solution of equation of motion for actions of the form of power law in Ricci scalar R is presented with a detailed elaboration of the action quadratic in R. The reverse use of the introduced method is exemplified in finding functional forms f(R), which leads to specified scale factor functions. The analytical solutions are corroborated by numerical calculations with excellent agreement. Possible further applications to the phases of inflationary expansion and late-time acceleration as well as f(R) theories with radiation are outlined.
Analytical Solutions of a Model for Brownian Motion in the Double Well Potential
International Nuclear Information System (INIS)
Liu Ai-Jie; Zheng Lian-Cun; Zhang Xin-Xin; Ma Lian-Xi
2015-01-01
In this paper, the analytical solutions of Schrödinger equation for Brownian motion in a double well potential are acquired by the homotopy analysis method and the Adomian decomposition method. Double well potential for Brownian motion is always used to obtain the solutions of Fokker—Planck equation known as the Klein—Kramers equation, which is suitable for separation and additive Hamiltonians. In essence, we could study the random motion of Brownian particles by solving Schrödinger equation. The analytical results obtained from the two different methods agree with each other well. The double well potential is affected by two parameters, which are analyzed and discussed in details with the aid of graphical illustrations. According to the final results, the shapes of the double well potential have significant influence on the probability density function. (general)
An analytical solution describing the shape of a yield stress material subjected to an overpressure
DEFF Research Database (Denmark)
Hovad, Emil; Spangenberg, Jon; Larsen, P.
2016-01-01
as well as the spread length and height of the material when deformed in a box due to gravity. In the present work, the analytical solution is extended with the addition of an overpressure that acts over the entire body of the material. This extension enables finding the shape of a yield stress material......Many fluids and granular materials are able to withstand a limited shear stress without flowing. These materials are known as yields stress materials. Previously, an analytical solution was presented to quantify the yield stress for such materials. The yields stress is obtained based on the density...... with known density and yield stress when for instance deformed under water or subjected to a forced air pressure....
International Nuclear Information System (INIS)
Ceolin, Celina; Vilhena, Marco T.; Petersen, Claudio Z.
2009-01-01
In this work we report an analytical solution for the monoenergetic neutron diffusion kinetic equation in cartesian geometry. Bearing in mind that the equation for the delayed neutron precursor concentration is a first order linear differential equation in the time variable, to make possible the application of the GITT approach to the kinetic equation, we introduce a fictitious diffusion term multiplied by a positive small value ε. By this procedure, we are able to solve this set of equations. Indeed, applying the GITT technique to the modified diffusion kinetic equation, we come out with a matrix differential equation which has a well known analytical solution when ε goes to zero. We report numerical simulations as well study of numerical convergence of the results attained. (author)
Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube
International Nuclear Information System (INIS)
Eraslan, Ahmet N.; Akis, Tolga
2006-01-01
Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states are investigated. It is shown that the elastoplastic response of the functionally graded pressurized tube is affected significantly by the material nonhomogeneity. Different modes of plasticization may take place unlike the homogeneous case. It is also shown mathematically that the nonhomogeneous elastoplastic solution presented here reduces to that of a homogeneous one by appropriate choice of the material parameters
Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions. Disordered Phase
Bleher, P M
2005-01-01
The six-vertex model, or the square ice model, with domain wall boundary conditions (DWBC) has been introduced and solved for finite $N$ by Korepin and Izergin. The solution is based on the Yang-Baxter equations and it represents the free energy in terms of an $N\\times N$ Hankel determinant. Paul Zinn-Justin observed that the Izergin-Korepin formula can be re-expressed in terms of the partition function of a random matrix model with a nonpolynomial interaction. We use this observation to obtain the large $N$ asymptotics of the six-vertex model with DWBC in the disordered phase. The solution is based on the Riemann-Hilbert approach and the Deift-Zhou nonlinear steepest descent method. As was noticed by Kuperberg, the problem of enumeration of alternating sign matrices (the ASM problem) is a special case of the the six-vertex model. We compare the obtained exact solution of the six-vertex model with known exact results for the 1, 2, and 3 enumerations of ASMs, and also with the exact solution on the so-called f...
Analytical solution for the mode conversion equations with steep exponential density profiles
International Nuclear Information System (INIS)
Alava, M.J.; Heikkinen, J.A.
1992-01-01
A general analytical solution for the converted power from the fast magnetosonic wave to an ion Bernstein wave in a magnetized plasma with an exponential steeply increasing density profile is given in the closed form. The solution covers both the conversion at the lower-hybrid resonance and the conversion through the density gradient for small parallel wave numbers. As an application, the conversion coefficients at the scrape-off layer plasma are estimated in the context of ion cyclotron heating of a tokamak plasma
An analytical solution for the two-group kinetic neutron diffusion equation in cylindrical geometry
International Nuclear Information System (INIS)
Fernandes, Julio Cesar L.; Vilhena, Marco Tullio; Bodmann, Bardo Ernst
2011-01-01
Recently the two-group Kinetic Neutron Diffusion Equation with six groups of delay neutron precursor in a rectangle was solved by the Laplace Transform Technique. In this work, we report on an analytical solution for this sort of problem but in cylindrical geometry, assuming a homogeneous and infinite height cylinder. The solution is obtained applying the Hankel Transform to the Kinetic Diffusion equation and solving the transformed problem by the same procedure used in the rectangle. We also present numerical simulations and comparisons against results available in literature. (author)
Chen, Shanzhen; Jiang, Xiaoyun
2012-08-01
In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.
International Nuclear Information System (INIS)
Zeng, Huihui
2015-01-01
In this paper we establish the global existence of smooth solutions to vacuum free boundary problems of the one-dimensional compressible isentropic Navier–Stokes equations for which the smoothness extends all the way to the boundaries. The results obtained in this work include the physical vacuum for which the sound speed is C 1/2 -Hölder continuous near the vacuum boundaries when 1 < γ < 3. The novelty of this result is its global-in-time regularity which is in contrast to the previous main results of global weak solutions in the literature. Moreover, in previous studies of the one-dimensional free boundary problems of compressible Navier–Stokes equations, the Lagrangian mass coordinates method has often been used, but in the present work the particle path (flow trajectory) method is adopted, which has the advantage that the particle paths and, in particular, the free boundaries can be traced. (paper)
Xie, Dexuan; Volkmer, Hans W.; Ying, Jinyong
2016-04-01
The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins (or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study, in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in the expressions of simple series for a dielectric sphere containing any number of point charges. As a special case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which significantly improves the well known Kirkwood's double series expansion. Furthermore, a convolution of one nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they are programed as a free fortran software package, which can input point charge data directly from a protein data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric solvers.
Analytic solution of the potential and electric field of a jet type drift chamber
Energy Technology Data Exchange (ETDEWEB)
Weltin, A
1988-02-15
Starting from the known two-dimensional potential of a multiwire proportional chamber, the analytic expressions of the potential and the electric field are derived for a jet type drift chamber with a central wire plane of alternating sense and potential wires. The design goal of any jet chamber, namely the periodicity of the electric drift field, is imposed as a boundary condition at the beginning. In this way, the formulae are short and can be easily evaluated. In particular, expressions are given for the mean potential of the central wire plane, the drift field and the wire surface fields. Moreover, wire cathodes frequently used in jet chambers are described by analytic expressions. For a given drift field the difference of the potential as compared to a continuous metal cathode is presented. These results allowed to construct a two-dimensional computer simulation of the full OPAL jet chamber with no explicit periodicity but all its boundaries. Using field shaping electrodes a geometrically short yet quite satisfactory termination of a sense wire plane is demonstrated. Finally an example is presented, which is calculated in detail.
Analytical Solutions of Fractional Differential Equations Using the Convenient Adomian Series
Directory of Open Access Journals (Sweden)
Xiang-Chao Shi
2014-01-01
Full Text Available Due to the memory trait of the fractional calculus, numerical or analytical solution of higher order becomes very difficult even impossible to obtain in real engineering problems. Recently, a new and convenient way was suggested to calculate the Adomian series and the higher order approximation was realized. In this paper, the Adomian decomposition method is applied to nonlinear fractional differential equation and the error analysis is given which shows the convenience.
Analytical solutions for the study of immersed unanchored structures under seismic loading
International Nuclear Information System (INIS)
Mege, Romain
2011-01-01
In the nuclear energy industry, most of the major components are anchored to the civil works using numerous types of supports devices. These anchorages are big issues of the nuclear plant design: the implantation of the components has to be fixed definitely, stress concentration in the surroundings of the anchorage, and for immersed structure, possible loss of the impermeability. Thereby, under certain safety regulations, some structures lay directly on the ground. This is the case for in air or underwater structure, such as fuel storage racks. This solution gives more flexibility in the use of the components and a decrease of the stress. However, one has to evaluate precisely the behavior of this sliding structure, and in particular, the cumulated sliding displacement during a seismic event in order to prevent any impact with other components. During a seismic event, the unanchored structure can slide, rotate and tilt. The aim of this paper is to present analytical solutions to estimate the sliding amplitudes of different simplified systems which represent a given dynamic behavior. These simplified models are: a sliding mass and a complex sliding structure defined by its eigenmodes. Each simplified system corresponds to a different set of assumptions made on the flexibility of the structure. Two analytical solutions are presented in this article: single sliding mass and a vertical sliding beam. In each model, the fluid-structure interaction between the immersed body and the pool is modeled as hydrodynamic masses. The sliding is represented by Coulomb friction. The seismic loading can be any 3D seismic accelerogram. The analytical solutions are obtained considering the different phases of the movement and the continuity between each phase. The results are then compared to the values computed with the commercial Finite Element package ANSYS TM . The analytical curves show a good fit of the computational results. (author)
An analytical approach to the solution of in-itself strong focusing beam
International Nuclear Information System (INIS)
Paulin, A.; Ticar, I.; Zoric, T.; Znidarsic, K.; Bezic, N.
1981-01-01
The aim of this paper is a description of the problem, how to represent the high current, high current density charged particle beam with straightforward analytical expressions. The principal difficulties in the solution of differential equation for stationary, axial and radial distribution of charged particles in the high current, high current density beam are mentioned. In all the derivations, an accomplished space charge effects compensation with suitable combined beam of oppositely charged particles is assumed. (author)
Energy Technology Data Exchange (ETDEWEB)
Caplan, Matthew E.; Giri, Ashutosh; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)
2014-04-21
We develop an analytical model for the thermal boundary conductance between a solid and a liquid. By infusing recent developments in the phonon theory of liquid thermodynamics with diffuse mismatch theory, we derive a closed form model that can predict the effects of wetting on the thermal boundary conductance across an interface between a solid and a classical liquid. We account for the complete wetting (hydrophilicity), or lack thereof (hydrophobicity), of the liquid to the solid by considering varying contributions of transverse mode interactions between the solid and liquid interfacial layers; this transverse coupling relationship is determined with local density of states calculations from molecular dynamics simulations between Lennard-Jones solids and a liquids with different interfacial interaction energies. We present example calculations for the thermal boundary conductance between both hydrophobic and hydrophilic interfaces of Al/water and Au/water, which show excellent agreement with measured values reported by Ge et al. [Z. Ge, D. G. Cahill, and P. V. Braun, Phys. Rev. Lett. 96, 186101 (2006)]. Our model does not require any fitting parameters and is appropriate to model heat flow across any planar interface between a solid and a classical liquid.
Gupta, Sumeet; Poulikakos, Dimos; Kurtcuoglu, Vartan
2008-09-01
We present here the analytical solution of transient, laminar, viscous flow of an incompressible, Newtonian fluid driven by a harmonically oscillating pressure gradient in a straight elliptic annulus. The analytical formulation is based on the exact solution of the governing fluid flow equations known as Navier-Stokes equations. We validate the analytical solution using a finite-volume computational fluid dynamics approach. As the analytical solution includes Mathieu and modified Mathieu functions, we also present a stepwise procedure for their evaluation for large complex arguments typically associated with viscous flows. We further outline the procedure for evaluating the associated Fourier coefficients and their eigenvalues. We finally apply the analytical solution to investigate the cerebrospinal fluid flow in the human spinal cavity, which features a shape similar to an elliptic annulus.
Bing, Xue; Yicai, Ji
2018-06-01
In order to understand directly and analyze accurately the detected magnetotelluric (MT) data on anisotropic infinite faults, two-dimensional partial differential equations of MT fields are used to establish a model of anisotropic infinite faults using the Fourier transform method. A multi-fault model is developed to expand the one-fault model. The transverse electric mode and transverse magnetic mode analytic solutions are derived using two-infinite-fault models. The infinite integral terms of the quasi-analytic solutions are discussed. The dual-fault model is computed using the finite element method to verify the correctness of the solutions. The MT responses of isotropic and anisotropic media are calculated to analyze the response functions by different anisotropic conductivity structures. The thickness and conductivity of the media, influencing MT responses, are discussed. The analytic principles are also given. The analysis results are significant to how MT responses are perceived and to the data interpretation of the complex anisotropic infinite faults.
Big data analytics as a service infrastructure: challenges, desired properties and solutions
International Nuclear Information System (INIS)
Martín-Márquez, Manuel
2015-01-01
CERN's accelerator complex generates a very large amount of data. A large volumen of heterogeneous data is constantly generated from control equipment and monitoring agents. These data must be stored and analysed. Over the decades, CERN's researching and engineering teams have applied different approaches, techniques and technologies for this purpose. This situation has minimised the necessary collaboration and, more relevantly, the cross data analytics over different domains. These two factors are essential to unlock hidden insights and correlations between the underlying processes, which enable better and more efficient daily-based accelerator operations and more informed decisions. The proposed Big Data Analytics as a Service Infrastructure aims to: (1) integrate the existing developments; (2) centralise and standardise the complex data analytics needs for CERN's research and engineering community; (3) deliver real-time, batch data analytics and information discovery capabilities; and (4) provide transparent access and Extract, Transform and Load (ETL), mechanisms to the various and mission-critical existing data repositories. This paper presents the desired objectives and properties resulting from the analysis of CERN's data analytics requirements; the main challenges: technological, collaborative and educational and; potential solutions. (paper)
Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil
2012-10-01
We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configurations of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the Universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the Universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null-energy condition. There is a special subset of geodesically complete nongeneric solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For these, initial values of the fields are synchronized and quantized but the parameters of the model are not restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of parameter space without fine-tuning the initial conditions. To obtain these results, we identified 25 regions of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.
Energy Technology Data Exchange (ETDEWEB)
Salinic, Slavisa [University of Kragujevac, Faculty of Mechanical Engineering, Kraljevo (RS)
2010-10-15
In this paper, an analytical solution for the problem of finding profiles of gravity flow discharge chutes required to achieve maximum exit velocity under Coulomb friction is obtained by application of variational calculus. The model of a particle which moves down a rough curve in a uniform gravitational field is used to obtain a solution of the problem for various boundary conditions. The projection sign of the normal reaction force of the rough curve onto the normal to the curve and the restriction requiring that the tangential acceleration be non-negative are introduced as the additional constraints in the form of inequalities. These inequalities are transformed into equalities by introducing new state variables. Although this is fundamentally a constrained variational problem, by further introducing a new functional with an expanded set of unknown functions, it is transformed into an unconstrained problem where broken extremals appear. The obtained equations of the chute profiles contain a certain number of unknown constants which are determined from a corresponding system of nonlinear algebraic equations. The obtained results are compared with the known results from the literature. (orig.)
International Nuclear Information System (INIS)
Okita, Taishi; Takagi, Toshiyuki
2010-01-01
We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The dipole moment is driven in the low frequency f = 1 kHz and high frequency f = 1 GHz regimes. The electrical properties of the conductor are appropriately chosen in each frequency. Electromagnetic fields are rigorously formulated at an arbitrary point in a spherical geometry, in which the magnetic vector potential is straightforwardly given by the Biot-Savart formula, and the scalar potential is expanded with the Legendre polynomials, taking into account the appropriate boundary conditions at the spherical surface of the conductor. The induced electric fields are numerically calculated along the several paths in the low and high frequency excitation. The self-consistent solutions obtained in this work will be of much importance in a wide region of electromagnetic induction problems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Analytical and exact solutions of the spherical and cylindrical diodes of Langmuir-Blodgett law
Torres-Cordoba, Rafael; Martinez-Garcia, Edgar
2017-10-01
This paper discloses the exact solutions of a mathematical model that describes the cylindrical and spherical electron current emissions within the context of a physics approximation method. The solution involves analyzing the 1D nonlinear Poisson equation, for the radial component. Although an asymptotic solution has been previously obtained, we present a theoretical solution that satisfies arbitrary boundary conditions. The solution is found in its parametric form (i.e., φ(r )=φ(r (τ)) ) and is valid when the electric field at the cathode surface is non-zero. Furthermore, the non-stationary spatial solution of the electric potential between the anode and the cathode is also presented. In this work, the particle-beam interface is considered to be at the end of the plasma sheath as described by Sutherland et al. [Phys. Plasmas 12, 033103 2005]. Three regimes of space charge effects—no space charge saturation, space charge limited, and space charge saturation—are also considered.
Directory of Open Access Journals (Sweden)
Giai Giang Vo
2015-01-01
Full Text Available This paper is devoted to the study of a wave equation with a boundary condition of many-point type. The existence of weak solutions is proved by using the Galerkin method. Also, the uniqueness and the stability of solutions are established.
Directory of Open Access Journals (Sweden)
Mitsuhiro Nakao
2014-01-01
Full Text Available We prove the existence and uniqueness of a global decaying solution to the initial boundary value problem for the quasilinear wave equation with Kelvin-Voigt dissipation and a derivative nonlinearity. To derive the required estimates of the solutions we employ a 'loan' method and use a difference inequality on the energy.
Directory of Open Access Journals (Sweden)
Bila Adolphe Kyelem
2017-04-01
Full Text Available In this article, we prove the existence of solutions for some discrete nonlinear difference equations subjected to a potential boundary type condition. We use a variational technique that relies on Szulkin's critical point theory, which ensures the existence of solutions by ground state and mountain pass methods.
Analytical Solution for Two-Dimensional Coupled Thermoelastodynamics in a Cylinder
Directory of Open Access Journals (Sweden)
Morteza Eskandari-Ghadi
2013-12-01
Full Text Available An infinitely long hollow cylinder containing isotropic linear elastic material is considered under the effect of arbitrary boundary stress and thermal condition. The two-dimensional coupled thermoelastodynamic PDEs are specified based on equations of motion and energy equation, which are uncoupled using Nowacki potential functions. The Laplace integral transform and Bessel-Fourier series are used to derive the solution for the potential functions, and then the displacements-, stresses- and temperature-potential relationships are used to determine the displacements, stresses and temperature fields. It is shown that the formulation presented here are identically collapsed on the solution existed in the literature for simpler case of axissymetric configuration. A numerical procedure is needed to evaluate the displacements, stresses and temperature at any point and any time. The numerical inversion method proposed by Durbin is applied to evaluate the inverse Laplace transforms of different functions involved in this paper. For numerical inversion, there exist many difficulties such as singular points in the integrand functions, infinite limit of the integral and the time step of integration. With a very precise attention, the desired functions have been numerically evaluated and shown that the boundary conditions have been satisfied very accurately. The numerical evaluations are graphically shown to make engineering sense for the problem involved in this paper for different case of boundary conditions. The results show the wave velocity and the time lack of receiving stress waves. The effect of temperature boundary conditions are shown to be somehow oscillatory, which is used in designing of such an elements.
International Nuclear Information System (INIS)
Oliveira, F.L. de; Maiorino, J.R.; Santos, R.S.
2007-01-01
This paper describes a closed form solution obtained by the expansion method for the general time dependent diffusion model with delayed emission for source transients in homogeneous media. In particular, starting from simple models, and increasing the complexity, numerical results were obtained for different types of source transients. Thus, first an analytical solution of the one group without precursors was solved, followed by considering one precursors family. The general case of G-groups with R families of precursor although having a closed form solution, cannot be solved analytically, since there are no explicit formulae for the eigenvalues, and numerical methods must be used to solve such problem. To illustrate the general solution, the multi-group (three groups) time-dependent without precursors was also solved and the results inter compared with results obtained by the previous one group models for a given fast homogeneous media, and different types of source transients. The results are being compared with the obtained by numerical methods. (author)
International Nuclear Information System (INIS)
Yabushita, Kazuki; Yamashita, Mariko; Tsuboi, Kazuhiro
2007-01-01
We consider the problem of two-dimensional projectile motion in which the resistance acting on an object moving in air is proportional to the square of the velocity of the object (quadratic resistance law). It is well known that the quadratic resistance law is valid in the range of the Reynolds number: 1 x 10 3 ∼ 2 x 10 5 (for instance, a sphere) for practical situations, such as throwing a ball. It has been considered that the equations of motion of this case are unsolvable for a general projectile angle, although some solutions have been obtained for a small projectile angle using perturbation techniques. To obtain a general analytic solution, we apply Liao's homotopy analysis method to this problem. The homotopy analysis method, which is different from a perturbation technique, can be applied to a problem which does not include small parameters. We apply the homotopy analysis method for not only governing differential equations, but also an algebraic equation of a velocity vector to extend the radius of convergence. Ultimately, we obtain the analytic solution to this problem and investigate the validation of the solution