WorldWideScience

Sample records for boundaries regulates formation

  1. Line tension at lipid phase boundaries regulates formation of membrane vesicles in living cells

    DEFF Research Database (Denmark)

    Vind-Kezunovic, D.; Nielsen, C.H.; Wojewodzka, U.

    2008-01-01

    Ternary lipid compositions in model membranes segregate into large-scale liquid-ordered (L(o)) and liquid-disordered (L(d)) phases. Here, we show mum-sized lipid domain separation leading to vesicle formation in unperturbed human HaCaT keratinocytes. Budding vesicles in the apical portion of the ...... mum-sized surfaces to cap-like budding vesicles. Thus living cells may utilize membrane line tension energies as a control mechanism of exocytic events Udgivelsesdato: 2008/11....... Based on these observations we describe the energetic requirements for plasma membrane vesiculation. We propose that the decrease in total 'L(o)/L(d)' boundary line tension arising from the coalescence of smaller L(d)-like domains makes it energetically favourable for L(d)-like domains to bend from flat...

  2. Line tension at lipid phase boundaries regulates formation of membrane vesicles in living cells

    DEFF Research Database (Denmark)

    Vind-Kezunovic, Dina; Helix Nielsen, Claus; Wojewodzka, Urszula

    2008-01-01

    on these observations we describe the energetic requirements for plasma membrane vesiculation. We propose that the decrease in total 'L-o/L-d' boundary line tension arising from the coalescence of smaller L-d-like domains makes it energetically favourable for L-d-like domains to bend from flat mu m-sized surfaces...... to cap-like budding vesicles. Thus living cells may utilize membrane line tension energies as a control mechanism of exocytic events....

  3. Notch-dependent epithelial fold determines boundary formation between developmental fields in the Drosophila antenna.

    Science.gov (United States)

    Ku, Hui-Yu; Sun, Y Henry

    2017-07-01

    Compartment boundary formation plays an important role in development by separating adjacent developmental fields. Drosophila imaginal discs have proven valuable for studying the mechanisms of boundary formation. We studied the boundary separating the proximal A1 segment and the distal segments, defined respectively by Lim1 and Dll expression in the eye-antenna disc. Sharp segregation of the Lim1 and Dll expression domains precedes activation of Notch at the Dll/Lim1 interface. By repressing bantam miRNA and elevating the actin regulator Enable, Notch signaling then induces actomyosin-dependent apical constriction and epithelial fold. Disruption of Notch signaling or the actomyosin network reduces apical constriction and epithelial fold, so that Dll and Lim1 cells become intermingled. Our results demonstrate a new mechanism of boundary formation by actomyosin-dependent tissue folding, which provides a physical barrier to prevent mixing of cells from adjacent developmental fields.

  4. Notch-dependent epithelial fold determines boundary formation between developmental fields in the Drosophila antenna.

    Directory of Open Access Journals (Sweden)

    Hui-Yu Ku

    2017-07-01

    Full Text Available Compartment boundary formation plays an important role in development by separating adjacent developmental fields. Drosophila imaginal discs have proven valuable for studying the mechanisms of boundary formation. We studied the boundary separating the proximal A1 segment and the distal segments, defined respectively by Lim1 and Dll expression in the eye-antenna disc. Sharp segregation of the Lim1 and Dll expression domains precedes activation of Notch at the Dll/Lim1 interface. By repressing bantam miRNA and elevating the actin regulator Enable, Notch signaling then induces actomyosin-dependent apical constriction and epithelial fold. Disruption of Notch signaling or the actomyosin network reduces apical constriction and epithelial fold, so that Dll and Lim1 cells become intermingled. Our results demonstrate a new mechanism of boundary formation by actomyosin-dependent tissue folding, which provides a physical barrier to prevent mixing of cells from adjacent developmental fields.

  5. Notch-dependent epithelial fold determines boundary formation between developmental fields in the Drosophila antenna

    Science.gov (United States)

    2017-01-01

    Compartment boundary formation plays an important role in development by separating adjacent developmental fields. Drosophila imaginal discs have proven valuable for studying the mechanisms of boundary formation. We studied the boundary separating the proximal A1 segment and the distal segments, defined respectively by Lim1 and Dll expression in the eye-antenna disc. Sharp segregation of the Lim1 and Dll expression domains precedes activation of Notch at the Dll/Lim1 interface. By repressing bantam miRNA and elevating the actin regulator Enable, Notch signaling then induces actomyosin-dependent apical constriction and epithelial fold. Disruption of Notch signaling or the actomyosin network reduces apical constriction and epithelial fold, so that Dll and Lim1 cells become intermingled. Our results demonstrate a new mechanism of boundary formation by actomyosin-dependent tissue folding, which provides a physical barrier to prevent mixing of cells from adjacent developmental fields. PMID:28708823

  6. Formation flying design and applications in weak stability boundary regions.

    Science.gov (United States)

    Folta, David

    2004-05-01

    Weak stability regions serve as superior locations for interferomertric scientific investigations. These regions are often selected to minimize environmental disturbances and maximize observation efficiency. Designs of formations in these regions are becoming ever more challenging as more complex missions are envisioned. The development of algorithms to enable the capability for formation design must be further enabled to incorporate better understanding of weak stability boundary solution space. This development will improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple formation missions in weak stability boundary regions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes both algorithm and software development. The Constellation-X, Maxim, and Stellar Imager missions are examples of the use of improved numeric methods to attain constrained formation geometries and control their dynamical evolution. This paper presents a survey of formation missions in the weak stability boundary regions and a brief description of formation design using numerical and dynamical techniques.

  7. Formation of intra-island grain boundaries in pentacene monolayers

    NARCIS (Netherlands)

    Zhang, Jian; Wu, Yu; Duhm, Steffen; Rabe, Juergen P.; Rudolf, Petra; Koch, Norbert; Rabe, Jürgen P.

    2011-01-01

    To assess the formation of intra-island grain boundaries during the early stages of pentacene film growth, we studied sub-monolayers of pentacene on pristine silicon oxide and silicon oxide with high pinning centre density (induced by UV/O(3) treatment). We investigated the influence of the kinetic

  8. ON A PARABOLIC FREE BOUNDARY EQUATION MODELING PRICE FORMATION

    KAUST Repository

    MARKOWICH, P. A.

    2009-10-01

    We discuss existence and uniqueness of solutions for a one-dimensional parabolic evolution equation with a free boundary. This problem was introduced by Lasry and Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in-time-extension of the local solution which is closely related to the regularity of the free boundary. We also present numerical results. © 2009 World Scientific Publishing Company.

  9. UK: disputing boundaries of biotechnology regulation

    OpenAIRE

    Les Levidow; Susan Carr

    1996-01-01

    UK biotechnology regulation has developed ‘precautionary controls’ for GMO releases. Stringent legislation was drafted and eventually implemented by the Department of Environment (DoE). In parallel, the DoE established a broadly-based advisory committee, which included ecologists and an implicit public-interest representation. The committee was assigned the task to advise on the release of all “novel organisms” — a term which implies an analogy between GMOs and non-indigenous organisms. Copyr...

  10. Regulation of Reactionary Dentine Formation.

    Science.gov (United States)

    Neves, V C M; Sharpe, P T

    2017-11-01

    During the treatment of dental caries that has not penetrated the tooth pulp, maintenance of as much unaffected dentine as possible is a major goal during the physical removal of decayed mineral. Damage to dentine leads to release of fossilized factors (transforming growth factor-β [TGF-β] and bone morphogenic protein [BMP]) in the dentine that are believed to stimulate odontoblasts to secrete new "tertiary" dentine (reactionary dentine). This is formed on the pulpal surface of existing dentine and rethickens the dentine. We have previously shown that activation of Wnt/β-catenin signaling is pivotal for tooth repair in exposed pulp injury, and the pathway can be activated by small-molecule GSK-3 antagonists, resulting in enhanced reparative dentine formation. Here, we use a nonexposed pulp injury model to investigate the mechanisms of reactionary dentine formation in vivo, using small molecules to modulate the Wnt/β-catenin, TGF-β, and BMP pathways. We found that a local increase of Wnt activation at the injury site enhances reactionary dentine secretion. In addition, inhibition of TGF-β, BMP, or Wnt pathways does not impede reactionary dentine formation, although inhibition of TGF-β and/or BMP signaling does result in more disorganized, nontubular reactionary dentine. This suggests that Wnt/β-catenin signaling plays no major role in the formation of reactionary dentine, but in common with reparative dentine formation, exogenous elevation of Wnt/β-catenin signaling can enhance tertiary dentine formation. Release of latent TGF-β or BMPs from dentine is not required for the deposition of mineral to form reactionary dentine but does play a role in its organization.

  11. Grain damage, phase mixing and plate-boundary formation

    Science.gov (United States)

    Bercovici, David; Skemer, Philip

    2017-07-01

    The generation of plate tectonics on Earth relies on complex mechanisms for shear localization, as well as for the retention and reactivation of weak zones in the cold ductile lithosphere. Pervasive mylonitization, wherein zones of high deformation coincide with extensive mineral grain size reduction, is an important clue to this process. In that regard, the grain-damage model of lithospheric weakening provides a physical framework for both mylonitization and plate generation, and accounts for the competition between grain size reduction by deformation and damage, and healing by grain growth. Zener pinning at the evolving interface between mineral components, such as olivine and pyroxene, plays a key role in helping drive grains to small mylonitic sizes during deformation, and then retards their growth once deformation ceases. The combined effects of damage and pinning, however, rely on the efficiency of inter-grain mixing between phases (e.g., olivine and pyroxene) and grain dispersal, which likely depends on grain size itself. Here we present a new model for inter-grain mixing and damage and the onset of rapid mixing. The model considers the competition between the formation of new grains behind a receding interphase triple junction (e.g., olivine growing into a boundary between two pyroxene grains) and their severance or spalling during progressive deformation and damage. The newly formed grains of one phase are then transported along the opposing phase's grain-boundaries and the two phases become dispersed at the grain-scale in a growing mixed layer. The small intermixed grains also affect the grain evolution of the surrounding host grains by Zener pinning, and hence influence the rheology and growth of the mixed layer. As the grains in the mixed layer shrink, subsequently spalled new grains are also smaller, causing a feedback that leads to more rapid mixing and shear localization in the mixed layer. The early stages of mixing can be compared to laboratory

  12. How Galactic Environment Regulates Star Formation

    Science.gov (United States)

    Meidt, Sharon E.

    2016-02-01

    In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itself inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.

  13. Formation of Boundary Film from Ionic Liquids Enhanced by Additives

    Directory of Open Access Journals (Sweden)

    Erik Nyberg

    2017-04-01

    Full Text Available Room temperature ionic liquids (RTILs have several properties that make them interesting candidates as base fluids for extreme conditions. However, a lack of compatibility with tribo-improving additives combined with an often overly aggressive nature is limiting their use as base fluids. To overcome these drawbacks, hydrocarbon-imitating RTIL base fluids have recently been developed. In this study, the effects of several common additives in the novel RTIL (P-SiSO were examined by laboratory tribotesting. A reciprocating steel-steel ball-on-flat setup in an air atmosphere was used, where the lubricant performance was evaluated over a range of loads and temperatures. Surface analyses after testing were carried out using optical profilometry, scanning electron microscopy (SEM, and energy dispersive X-ray spectroscopy (EDS. Neat P-SiSO displayed high performance in the tribotests. At an elevated load and temperature, a shift in lubrication mode was observed with an accompanying increase in friction and wear. Surface analysis revealed a boundary film rich in Si and O in the primary lubrication mode, while P was detected after a shift to the secondary lubrication mode. An amine additive was effective in reducing wear and friction under harsh conditions. The amine was determined to increase formation of the protective Si–O film, presumably by enhancing the anion activity.

  14. Seasonal regulation of primary production in eastern boundary upwelling systems

    Science.gov (United States)

    Messié, Monique; Chavez, Francisco P.

    2015-05-01

    The regulation of seasonal satellite-derived primary production (PP) was investigated within a 150 km coastal box in four eastern boundary upwelling systems (EBUS): California, Peru, Northwest Africa and Benguela. The following regulating factors were considered: (1) wind-driven nitrate supply; (2) iron supply inferred from proxies (shelf mud belt width, modeled atmospheric iron deposition, river discharge); (3) temperature; (4) light and (5) physical export consisting of offshore export, eddy-driven and wind-driven subduction. The ratio of potential new production (carbon-equivalent of nitrate supply) to primary production, termed the N-ratio, is shown to be an indicator of PP limitation by nitrate supply (low N-ratios) vs. inhibition by other factors (high N-ratios). The factors regulating PP were assessed by analyzing the N-ratios and computing spatial correlations between PP and each factor each month. The regulation of primary production was found to vary spatially, seasonally and from one EBUS to another. Macronutrient supply is shown to be the dominant regulating factor off Northwest Africa and during some seasons and locations in other systems. Light regulation within the mixed layer occurs in all EBUS in winter but may only inhibit PP (high N-ratios) off Peru and Benguela. Evidence for iron limitation was found in each EBUS (except Northwest Africa) at varying levels and was greatest off Peru during austral winter when iron demand by phytoplankton increases due to low light levels. Rapid offshore advection combined with wind-driven and/or eddy-driven subduction may inhibit PP off California. A simple generalization regarding the regulation of primary production in EBUS is not forthcoming.

  15. Regulators of autophagosome formation in Drosophila muscles.

    Directory of Open Access Journals (Sweden)

    Jonathan Zirin

    2015-02-01

    Full Text Available Given the diversity of autophagy targets and regulation, it is important to characterize autophagy in various cell types and conditions. We used a primary myocyte cell culture system to assay the role of putative autophagy regulators in the specific context of skeletal muscle. By treating the cultures with rapamycin (Rap and chloroquine (CQ we induced an autophagic response, fully suppressible by knockdown of core ATG genes. We screened D. melanogaster orthologs of a previously reported mammalian autophagy protein-protein interaction network, identifying several proteins required for autophagosome formation in muscle cells, including orthologs of the Rab regulators RabGap1 and Rab3Gap1. The screen also highlighted the critical roles of the proteasome and glycogen metabolism in regulating autophagy. Specifically, sustained proteasome inhibition inhibited autophagosome formation both in primary culture and larval skeletal muscle, even though autophagy normally acts to suppress ubiquitin aggregate formation in these tissues. In addition, analyses of glycogen metabolic genes in both primary cultured and larval muscles indicated that glycogen storage enhances the autophagic response to starvation, an important insight given the link between glycogen storage disorders, autophagy, and muscle function.

  16. Sociocultural Boundary Formations in College Life and Intercultural Capital Development

    Science.gov (United States)

    Oikonomidoy, Eleni

    2015-01-01

    Based on selective findings from a qualitative study with first generation college students, this article presents the contradictory and complex ways in which the participants perceived sociocultural diversity on campus and their place within it. The students' narratives both affirmed existing boundaries of social belonging based on the…

  17. Maori intellectual property rights and the formation of ethnic boundaries

    NARCIS (Netherlands)

    Meijl, A.H.M. van

    2009-01-01

    This article questions and contextualizes the emergence of a discourse of intellectual property rights in Māori society. It is argued that Māori claims regarding intellectual property function primarily to demarcate ethnic boundaries between Māori and non-Māori. Māori consider the reinforcement of

  18. Parabolic Free Boundary Price Formation Models Under Market Size Fluctuations

    KAUST Repository

    Markowich, Peter A.

    2016-10-04

    In this paper we propose an extension of the Lasry-Lions price formation model which includes uctuations of the numbers of buyers and vendors. We analyze the model in the case of deterministic and stochastic market size uctuations and present results on the long time asymptotic behavior and numerical evidence and conjectures on periodic, almost periodic, and stochastic uctuations. The numerical simulations extend the theoretical statements and give further insights into price formation dynamics.

  19. Application of conventional propagation resistivity logging for formation boundary identification in geosteering

    Science.gov (United States)

    Qin, Zhen; Pan, Heping; Wu, Aiping; Yang, Huaijie; Hu, Ting; Hou, Min; Wang, Zhonghao

    2017-10-01

    Previous studies indicate that the polarization horn effect of conventional propagation resistivity (CPR) logs will occur once the logging tool is close to or passes through the boundary between high conductivity contrast layers with a small relative angle. Polarization horns cannot be used to distinguish between the top or bottom boundary. This situation disturbs the application of CPR in geosteering. Considering the cycle sequence features in sedimentary formation, e.g. fining upward sequence, coarsening upward sequence and massive cycle, they can be identified by analyzing the shapes of spontaneous potential (SP) or gamma-ray (GR) logs in logging geologic analysis. Previous studies mostly focused on the ideal medium formation models, which can only represent the massive cycle. Thus in this study, the fining upward sequence and coarsening upward sequence formation models are established, and the logging responses of CPR in the two formation models are simulated under the condition of horizontal well. The simulation analysis shows that polarization horns will either occur at the top boundary in the coarsening upward sequence or at the bottom boundary in the fining upward sequence, if the influence of formation thickness and mud invasion is ignored. The occurrence probability density chart is plotted to determine that polarization horns will occur in what formation resistivity contrast and deviation conditions. In order to identify the top or bottom boundary in sedimentary formation using CPR, a convenient method is established to facilitate geosteering. Firstly, the cycle type of the subject reservoir should be determined by analyzing the SP or GR logs of the offset wells. Secondly, the top boundary in coarsening upward sequence and the bottom boundary in fining upward sequence can be identified by using the occurred polarization horns of CPR logs. Finally, when the tool is close to the boundary, the rough distance from CPR tool to the top boundary (in coarsening

  20. Stacking fault tetrahedra formation in the neighbourhood of grain boundaries

    CERN Document Server

    Samaras, M; Van Swygenhoven, H; Victoria, M

    2003-01-01

    Large scale molecular dynamics computer simulations are performed to study the role of the grain boundary (GB) during the cascade evolution in irradiated nanocrystalline Ni. At all primary knock-on atom (PKA) energies in cascades near GBs, the damage produced after cooling down is vacancy dominated. Truncated stacking fault tetrahedra (TSFTs) are easily formed at 10 keV and higher PKA energies. At the higher energies a complex partial dislocation network forms, consisting of TSFTs. The GB acts as an interstitial sink without undergoing major structural changes.

  1. Boundary conditions for the formation of the Moon

    NARCIS (Netherlands)

    Reuver, Maarten; de Meijer, R. J.; ten Kate, I. L.; van Westrenen, W.

    Recent measurements of the chemical and isotopic composition of lunar samples indicate that the Moon's bulk composition shows great similarities with the composition of the silicate Earth. Moon formation models that attempt to explain these similarities make a wide variety of assumptions about the

  2. On a price formation free boundary model by Lasry and Lions

    KAUST Repository

    Caffarelli, Luis A.

    2011-06-01

    We discuss global existence and asymptotic behaviour of a price formation free boundary model introduced by Lasry and Lions in 2007. Our results are based on a construction which transforms the problem into the heat equation with specially prepared initial datum. The key point is that the free boundary present in the original problem becomes the zero level set of this solution. Using the properties of the heat operator we can show global existence, regularity and asymptotic results of the free boundary. 2011 Académie des sciences.

  3. Surface transition on ice induced by the formation of a grain boundary.

    Directory of Open Access Journals (Sweden)

    Christian Pedersen

    Full Text Available Interfaces between individual ice crystals, usually referred to as grain boundaries, play an important part in many processes in nature. Grain boundary properties are, for example, governing the sintering processes in snow and ice which transform a snowpack into a glacier. In the case of snow sintering, it has been assumed that there are no variations in surface roughness and surface melting, when considering the ice-air interface of an individual crystal. In contrast to that assumption, the present work suggests that there is an increased probability of molecular surface disorder in the vicinity of a grain boundary. The conclusion is based on the first detailed visualization of the formation of an ice grain boundary. The visualization is enabled by studying ice crystals growing into contact, at temperatures between -20°C and -15°C and pressures of 1-2 Torr, using Environmental Scanning Electron Microscopy. It is observed that the formation of a grain boundary induces a surface transition on the facets in contact. The transition does not propagate across facet edges. The surface transition is interpreted as the spreading of crystal dislocations away from the grain boundary. The observation constitutes a qualitatively new finding, and can potentially increase the understanding of specific processes in nature where ice grain boundaries are involved.

  4. Nanocomposites with thermosetting matrix: structure formation at the interphase boundary

    Directory of Open Access Journals (Sweden)

    KOROLEV Evgenij Valerjevich

    2014-06-01

    Full Text Available Composites with thermosetting matrix are often characterized by elevated values of operational properties – flexural and compressive strength, resistance to aggressive environments, etc. At the same time the cost of most thermosets (particularly – epoxy resins is quite high. Because of this the area of application of polymer composites in construction is limited. One of such application is the creation of multifunctional coatings. The high cost of resin dictates the need to improve the operational properties to ensure economic efficiency. So far, the known way to improve the operational properties is to produce nanoscale interfacial layer between fine filler and matrix in block. This way proved to be effective, but mechanism of the improvement is still uncertain. There areat least two different theories – so-called «adhesion theory» and «theory of deformable layer». The investigation is complicated by the variety of oligomers, hardeners (crosslinking agents and precursors of nanomodifiers. It is becoming more common lately to use adducts of aliphatic amines and epoxy oligomers as hardeners. As precursors of nanomodifiers the organosilicon compounds with siloxane bond in the main chain can be successfully used. In this paper we present results of investigation of a model system comprised of oligomer, crosslinking agent and precursor. The analysis of structure is carried out by means of Raman spectroscopy and atomic force microscopy. It is shown that at gelation point modifier has no significant effect on the chemical composition of the curing products; nevertheless, the admixture of modifier reduces the regularity of the emerging three-dimensional spatial net of thermoset. After completion of curing process the irregular spatial grid is still present. This indicates that in composites admixture of organosilicon precursors may lead to the formation of transition layer with reduced modulus of elasticity. Such layer, in turn, causes stress

  5. Lbx2 regulates formation of myofibrils

    Directory of Open Access Journals (Sweden)

    Westerfield Monte

    2009-02-01

    Full Text Available Abstract Background Skeletal muscle differentiation requires assembly of contractile proteins into organized myofibrils. The Drosophila ladybird homeobox gene (lad functions in founder cells of the segmental border muscle to promote myoblast fusion and muscle shaping. Tetrapods have two homologous genes (Lbx. Lbx1 functions in migration and/or proliferation of hypaxial myoblasts, whereas the function of Lbx2 is poorly understood. Results To elucidate the role of Lbx in vertebrate myogenesis, we examined Lbx function in zebrafish. Zebrafish lbx2 transcripts appear in newly formed paraxial mesoderm and become restricted to adaxial cells, precursors of slow muscle. Slow muscles lose lbx2 expression as they differentiate, while a subset of differentiating fast muscle cells transiently expresses lbx2. Fin and hyoid muscle express lbx2 later. In contrast, lbx1b expression first appears lateral to the somites at late segmentation stages and is later restricted to fin muscle. Morpholino knockdown of Lbx1b and Lbx2 suppresses hypaxial muscle development. Moreover, knockdown of Lbx2 results in malformation of muscle fibers and reduced fusion of fast precursors, although no obvious effects on induction or specification are observed. Expression of myofilament genes, including actin and myosin, requires the engrailed repressor domain of Lbx2. Conclusion Our results elucidate a new function of Lbx2 as a regulator of myofibril formation.

  6. Nogo Receptor 1 Regulates Formation of Lasting Memories

    National Research Council Canada - National Science Library

    Alexandra Karlén; Tobias E. Karlsson; Anna Mattsson; Karin Lundströmer; Simone Codeluppi; Therese M. Pham; Cristina M. Bäckman; Sven Ove Ögren; Elin Åberg; Alexander F. Hoffman; Michael A. Sherling; Carl R. Lupica; Barry J. Hoffer; Christian Spenger; Anna Josephson; Stefan Brené; Lars Olson

    2009-01-01

    .... We had found that increased neuronal activity down-regulates Nogo receptor-1 (NgR1) in brain regions linked to memory formation and storage, and postulated this to be required for formation of lasting memories...

  7. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    Science.gov (United States)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  8. Exploring bainite formation kinetics distinguishing grain-boundary and autocatalytic nucleation in high and low-Si steels

    NARCIS (Netherlands)

    Ravi, A.M.; Sietsma, J.; Santofimia, M.J.

    2016-01-01

    Bainite formation in steels begins with nucleation of bainitic ferrite at austenite grain boundaries (?/? interfaces). This leads to creation of bainitic ferrite/austenite interfaces (?/? interfaces). Bainite formation continues through autocatalysis with nucleation of bainitic ferrite at these

  9. 20 CFR 632.3 - Format for these regulations.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Format for these regulations. 632.3 Section 632.3 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR INDIAN AND NATIVE AMERICAN EMPLOYMENT AND TRAINING PROGRAMS Introduction § 632.3 Format for these regulations...

  10. New-particle formation events in a continental boundary layer: first results from the SATURN experiment

    Directory of Open Access Journals (Sweden)

    F. Stratmann

    2003-01-01

    Full Text Available During the SATURN experiment, which took place from 27 May to 14 June 2002, new particle formation in the continental boundary layer was investigated. Simultaneous ground-based and tethered-balloon-borne measurements were performed, including meteorological parameters, particle number concentrations and size distributions, gaseous precursor concentrations and SODAR and LIDAR observations. Newly formed particles were observed inside the residual layer, before the break-up process of the nocturnal inversion, and inside the mixing layer throughout the break-up of the nocturnal inversion and during the evolution of the planetary boundary layer.

  11. The Role of Boundary Spanners in the Formation of Customer Attractiveness

    DEFF Research Database (Denmark)

    Hald, Kim Sundtoft

    2012-01-01

    This paper examines the question of how to understand the formation of suppliers perceived customer attractiveness. It argues that existing conceptualization of buyer–supplier relationships are too simplistic to understand the full complexity involved in the formation of such perceptions, and mod......This paper examines the question of how to understand the formation of suppliers perceived customer attractiveness. It argues that existing conceptualization of buyer–supplier relationships are too simplistic to understand the full complexity involved in the formation of such perceptions...... of action” is deployed. The analysis demonstrates how suppliers' formation of perceptions related to customer attractiveness can be understood as constituted through a set of discrete historical means/ends alignments and misalignments between boundary spanning roles in the involved organizations....

  12. Regulating time commitments in healthcare organizations: managers' boundary approaches at work and in life.

    Science.gov (United States)

    Tengelin, Ellinor; Arman, Rebecka; Wikström, Ewa; Dellve, Lotta

    2011-01-01

    The purpose of this paper is to explore managers' boundary setting in order to better understand their handling of time commitment to work activities, stress, and recovery during everyday work and at home. The paper has qualitatively-driven, mixed method design including observational data, individual interviews, and focus group discussions. Data were analyzed according to Charmaz' view on constructivist grounded theory. A first step in boundary setting was to recognize areas with conflicting expectations and inexhaustible needs. Second, strategies were formed through negotiating the handling of managerial time commitment, resulting in boundary-setting, but also boundary-dissolving, approaches. The continuous process of individual recognition and negotiation could work as a form of proactive coping, provided that it was acknowledged and questioned. These findings suggest that recognition of perceived boundary challenges can affect stress and coping. It would therefore be interesting to more accurately assess stress, coping, and health status among managers by means of other methodologies (e.g. physiological assessments). In regulating managers' work assignments, work-related stress and recovery, it seems important to: acknowledge boundary work as an ever-present dilemma requiring continuous negotiation; and encourage individuals and organizations to recognize conflicting perspectives inherent in the leadership assignment, in order to decrease harmful negotiations between them. Such awareness would benefit more sustainable management of healthcare practice. This paper highlights how managers can handle ever-present boundary dilemmas in the healthcare sector by regulating their time commitments in various ways.

  13. Epigenetic Regulation of Memory Formation and Maintenance

    Science.gov (United States)

    Zovkic, Iva B.; Guzman-Karlsson, Mikael C.; Sweatt, J. David

    2013-01-01

    Understanding the cellular and molecular mechanisms underlying the formation and maintenance of memories is a central goal of the neuroscience community. It is well regarded that an organism's ability to lastingly adapt its behavior in response to a transient environmental stimulus relies on the central nervous system's capability for structural…

  14. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether

    Science.gov (United States)

    Faungnawakij, Kajornsak; Kikuchi, Ryuji; Eguchi, Koichi

    Thermodynamic analysis of dimethyl ether steam reforming (DME SR) was investigated for carbon formation boundary, DME conversion, and hydrogen yield for fuel cell application. The equilibrium calculation employing Gibbs free minimization was performed to figure out the required steam-to-carbon ratio (S/C = 0-5) and reforming temperature (25-1000 °C) where coke formation was thermodynamically unfavorable. S/C, reforming temperature and product species strongly contributed to the coke formation and product composition. When chemical species DME, methanol, CO 2, CO, H 2, H 2O and coke were considered, complete conversion of DME and hydrogen yield above 78% without coke formation were achieved at the normal operating temperatures of molten carbonate fuel cell (600 °C) and solid oxide fuel cell (900 °C), when S/C was at or above 2.5. When CH 4 was favorable, production of coke and that of hydrogen were significantly suppressed.

  15. Formation and Regulation of Mitochondrial Membranes

    Directory of Open Access Journals (Sweden)

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  16. Charge accumulation and barrier formation at grain boundaries in ZnO decorated with bismuth

    Science.gov (United States)

    Domingos, H. S.; Carlsson, J. M.; Bristowe, P. D.; Hellsing, B.

    2002-12-01

    Density functional plane-wave pseudopotential calculations have been performed on two high-angle grain boundaries in ZnO which have been decorated with various quantities of Bi. The results show that both grain boundaries, which have significantly different structures, can accommodate up to about 30% of substitutional Bi in qualitative agreement with experimental observations. The segregation of Bi to the boundaries results in local charge accumulation which is localized within Bi-Bi bonds or on Bi atoms. The charge accumulation in both boundaries results in fluctuations in potential across the interface and the formation of a barrier to electron transport. However, there is no evidence for a deep acceptor level usually associated with the Schottky barrier model. The present results suggest an alternative mechanism in which electrons are trapped in Bi-Bi bonds and depleted in an external field. However, defect states have not been ruled out and it is suggested that if they exist they are caused by more complex defects than those considered here.

  17. The Formation of Boundary Clinopyroxenes and Associated Glass Veins in Type B1 CAIs

    Energy Technology Data Exchange (ETDEWEB)

    Paque, J M; Beckett, J R; Ishii, H A; Toppani, A; Burnett, D S; Teslich, N; Dai, Z R; Bradley, J P

    2008-05-18

    We used focused ion beam thin section preparation and scanning transmission electron microscopy (FIB/STEM) to examine the interfacial region between spinel and host melilite for three spinel grains, two from the mantle and one from the core of an Allende type B1 inclusion, and a second pair of spinel grains from a type B1 inclusion from the Leoville carbonaceous chondrite. The compositions of boundary clinopyroxenes decorating spinel surfaces are generally consistent with those of coarser clinopyroxenes from the same region of the inclusion, suggesting little movement of spinels between mantle and core regions after the formation of boundary clinopyroxenes. The host melilite displays no anomalous compositions near the interface, and anorthite or other late-stage minerals are not observed, suggesting that crystallization of residual liquid was not responsible for the formation of boundary clinopyroxenes. Allende spinels display either direct spinel-melilite contact or an intervening boundary clinopyroxene between the two phases. In the core, boundary clinopyroxene is mantled by a thin (1-2 {micro}m thick) layer of normally zoned (X{sub Ak} increasing away from the melilite-clinopyroxene contact) melilite with X{sub Ak} matching that of the host melilite at the melilite-melilite contact. In the mantle, X{sub Ak} near boundary spinels is constant. Spinels in a Leoville type B1 inclusion are more complex with boundary clinopyroxene, as observed in Allende, but also variable amounts of glass ({approx}1 {micro}m width), secondary calcite, perovskite, and an unknown Mg-, Al-, OH-rich and Ca-, Si-poor crystalline phase that may be a layered double hydrate. Glass compositions are consistent to first order with a precursor consisting mostly of Mg-carpholite or sudoite with some aluminous diopside. One possible scenario of formation for the glass veins is that open system alteration of melilite produced a porous, hydrated aggregate of Mg-carpholite or sudoite + aluminous

  18. Formation of self-regulation culture of physical education faculty

    Directory of Open Access Journals (Sweden)

    Kudin S.F.

    2016-02-01

    Full Text Available Purpose: to experimentally substantiate effectiveness of pedagogic conditions of self-regulation culture formation of future physical culture teachers. Material: in the research 110 3rd year students of physical education faculty participated. The students were questioned. The level of students’ anxiety was assessed. Results: Implementation of the author’s course in educational process facilitated formation of students’ self-regulation skills and abilities; raises confidence and self estimation; influences positively on functional state. It was found that students acquire ability to consciously observe their own verbal constructs of negative thinking and create positive alternatives. Conclusions: preparing of future physical culture teachers stipulates his (her ability to effectively fulfill professional functioning in the aspect of health preservation. The necessary conditions of self-regulation culture formation are formation of students’ holistic value-meaningful attitude to individual health and health of surrounding people.

  19. MicroRNA filters Hox temporal transcription noise to confer boundary formation in the spinal cord

    Science.gov (United States)

    Li, Chung-Jung; Hong, Tian; Tung, Ying-Tsen; Yen, Ya-Ping; Hsu, Ho-Chiang; Lu, Ya-Lin; Chang, Mien; Nie, Qing; Chen, Jun-An

    2017-03-01

    The initial rostrocaudal patterning of the neural tube leads to differential expression of Hox genes that contribute to the specification of motor neuron (MN) subtype identity. Although several 3' Hox mRNAs are expressed in progenitors in a noisy manner, these Hox proteins are not expressed in the progenitors and only become detectable in postmitotic MNs. MicroRNA biogenesis impairment leads to precocious expression and propagates the noise of Hoxa5 at the protein level, resulting in an imprecise Hoxa5-Hoxc8 boundary. Here we uncover, using in silico simulation, two feed-forward Hox-miRNA loops accounting for the precocious and noisy Hoxa5 expression, as well as an ill-defined boundary phenotype in Dicer mutants. Finally, we identify mir-27 as a major regulator coordinating the temporal delay and spatial boundary of Hox protein expression. Our results provide a novel trans Hox-miRNA circuit filtering transcription noise and controlling the timing of protein expression to confer robust individual MN identity.

  20. Preliminary Paleomagnetism of Paleocene-Eocene Boundary of the Lodo Formation

    Science.gov (United States)

    Nick, W.; Pluhar, C. J.; Kemp, C. D.

    2011-12-01

    Lee & Kodama (2009) showed evidence for a short normal-polarity subchron during the Paleocene-Eocene thermal maximum (PETM) at the Paleocene-Eocene boundary. This led them to speculate on a causal relationship between this subchron and the PETM, which constituted a major climate fluctuation. If true, such a relationship would be highly significant and the presence of a subchron at the PETM would also be useful in synchronizing PETM records across the globe. Our preliminary study sought evidence to support the proposed subchron at the PETM, which had not been documented prior to Lee & Kodama's study. We collected and analyzed sediments of the Lodo formation, CA spanning the PETM using standard techniques, including stepwise thermal and alternating field demagnetization experiments, finding no evidence for a normal-polarity subchron, and instead revealing stable reversed polarities. This does not support Lee & Kodama's results. Further work will sample more densely and at multiple locations to ensure that no evidence of a PETM normal subchron was missed. In contrast to the excellent remanence behavior of Lodo formation PETM samples, preliminary sampling and analysis for a magnetostratigraphy spanning the whole formation revealed poor thermal demagnetization behavior. Initial hypotheses for this poor sample behavior include, unrecognized creep processes affecting the physical structure of samples, as well as rock magnetic effects. These will be investigated further in our ongoing study of the of the Lodo Formation.

  1. Cyclic diguanylate regulation of Bacillus cereus group biofilm formation.

    Science.gov (United States)

    Fagerlund, Annette; Smith, Veronika; Røhr, Åsmund K; Lindbäck, Toril; Parmer, Marthe P; Andersson, K Kristoffer; Reubsaet, Leon; Økstad, Ole Andreas

    2016-08-01

    Biofilm formation can be considered a bacterial virulence mechanism. In a range of Gram-negatives, increased levels of the second messenger cyclic diguanylate (c-di-GMP) promotes biofilm formation and reduces motility. Other bacterial processes known to be regulated by c-di-GMP include cell division, differentiation and virulence. Among Gram-positive bacteria, where the function of c-di-GMP signalling is less well characterized, c-di-GMP was reported to regulate swarming motility in Bacillus subtilis while having very limited or no effect on biofilm formation. In contrast, we show that in the Bacillus cereus group c-di-GMP signalling is linked to biofilm formation, and to several other phenotypes important to the lifestyle of these bacteria. The Bacillus thuringiensis 407 genome encodes eleven predicted proteins containing domains (GGDEF/EAL) related to c-di-GMP synthesis or breakdown, ten of which are conserved through the majority of clades of the B. cereus group, including Bacillus anthracis. Several of the genes were shown to affect biofilm formation, motility, enterotoxin synthesis and/or sporulation. Among these, cdgF appeared to encode a master diguanylate cyclase essential for biofilm formation in an oxygenated environment. Only two cdg genes (cdgA, cdgJ) had orthologs in B. subtilis, highlighting differences in c-di-GMP signalling between B. subtilis and B. cereus group bacteria. © 2016 John Wiley & Sons Ltd.

  2. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Floss, Daniela S; Levy, Julien G; Lévesque-Tremblay, Véronique; Pumplin, Nathan; Harrison, Maria J

    2013-12-17

    Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.

  3. Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells

    Directory of Open Access Journals (Sweden)

    Guillaume van Niel

    2015-10-01

    Full Text Available Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms.

  4. Self-regulated model of galactic spiral structure formation.

    Science.gov (United States)

    Cartin, Daniel; Khanna, Gaurav

    2002-01-01

    The presence of spiral structure in isolated galaxies is a problem that has only been partially explained by theoretical models. Because the rate and pattern of star formation in the disk must depend only on mechanisms internal to the disk, we may think of the spiral galaxy as a self-regulated system far from equilibrium. This paper uses this idea to look at a reaction-diffusion model for the formation of spiral structures in certain types of galaxies. In numerical runs of the model, spiral structure forms and persists over several revolutions of the disk, but eventually dies out.

  5. Black-hole-regulated star formation in massive galaxies

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  6. Black-hole-regulated star formation in massive galaxies.

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  7. Boundary layer new particle formation over East Antarctic sea ice – possible Hg-driven nucleation?

    Directory of Open Access Journals (Sweden)

    R. S. Humphries

    2015-12-01

    Full Text Available Aerosol observations above the Southern Ocean and Antarctic sea ice are scarce. Measurements of aerosols and atmospheric composition were made in East Antarctic pack ice on board the Australian icebreaker Aurora Australis during the spring of 2012. One particle formation event was observed during the 32 days of observations. This event occurred on the only day to exhibit extended periods of global irradiance in excess of 600 W m−2. Within the single air mass influencing the measurements, number concentrations of particles larger than 3 nm (CN3 reached almost 7700 cm−3 within a few hours of clouds clearing, and grew at rates of 5.6 nm h−1. Formation rates of 3 nm particles were in the range of those measured at other Antarctic locations at 0.2–1.1 ± 0.1 cm−3 s−1. Our investigations into the nucleation chemistry found that there were insufficient precursor concentrations for known halogen or organic chemistry to explain the nucleation event. Modelling studies utilising known sulfuric acid nucleation schemes could not simultaneously reproduce both particle formation or growth rates. Surprising correlations with total gaseous mercury (TGM were found that, together with other data, suggest a mercury-driven photochemical nucleation mechanism may be responsible for aerosol nucleation. Given the very low vapour pressures of the mercury species involved, this nucleation chemistry is likely only possible where pre-existing aerosol concentrations are low and both TGM concentrations and solar radiation levels are relatively high (∼ 1.5 ng m−3 and ≥ 600 W m−2, respectively, such as those observed in the Antarctic sea ice boundary layer in this study or in the global free troposphere, particularly in the Northern Hemisphere.

  8. Notch1-Dll4 signaling and mechanical force regulate leader cell formation during collective cell migration

    Science.gov (United States)

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D.; Wong, Pak Kin

    2015-01-01

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct “leader” phenotype with characteristic morphology and motility. However, the factors driving leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here, we use single cell gene expression analysis and computational modeling to show that leader cell identity is dynamically regulated by Dll4 signaling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signaling to dynamically regulate the density of leader cells during collective cell migration. PMID:25766473

  9. Notch1-Dll4 signalling and mechanical force regulate leader cell formation during collective cell migration.

    Science.gov (United States)

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D; Wong, Pak Kin

    2015-03-13

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct 'leader' phenotype with characteristic morphology and motility. However, the factors driving the leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here we use single-cell gene expression analysis and computational modelling to show that the leader cell identity is dynamically regulated by Dll4 signalling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signalling to dynamically regulate the density of leader cells during collective cell migration.

  10. Formation and Regulation of Adaptive Response in Nematode Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Y.-L. Zhao

    2012-01-01

    Full Text Available All organisms respond to environmental stresses (e.g., heavy metal, heat, UV irradiation, hyperoxia, food limitation, etc. with coordinated adjustments in order to deal with the consequences and/or injuries caused by the severe stress. The nematode Caenorhabditis elegans often exerts adaptive responses if preconditioned with low concentrations of agents or stressor. In C. elegans, three types of adaptive responses can be formed: hormesis, cross-adaptation, and dietary restriction. Several factors influence the formation of adaptive responses in nematodes, and some mechanisms can explain their response formation. In particular, antioxidation system, heat-shock proteins, metallothioneins, glutathione, signaling transduction, and metabolic signals may play important roles in regulating the formation of adaptive responses. In this paper, we summarize the published evidence demonstrating that several types of adaptive responses have converged in C. elegans and discussed some possible alternative theories explaining the adaptive response control.

  11. Tilt boundary formation in GeSi/Si (001 vicinal heterosystem

    Directory of Open Access Journals (Sweden)

    Aleksei V. Kolesnikov

    2015-03-01

    Full Text Available The structural state of GexSi1-x films grown on Si substrates with the vicinal orientation (1 1 13 has been studied. The (1 1 13 orientation has been obtained by rotating the singular plane (001 around the [1 1 ¯0] axis. The x parameter of GexSi1-x films in different samples ranged from 0.083 to 0.268. Triclinic distortions arising in film crystal lattice have been analyzed using our technique developed for the determination of epitaxial layer structural parameters based on the X-ray diffractometry data. It has been established that during the epitaxial process the film lattice turns around the direction of surface steps due to the introduction of misfit dislocations into the interface. Dislocations with Burgers vector a/2〈110〉 which is not parallel to the interface create an analog of a tilt boundary. The turning angle value ψ is proportional to the misfit dislocation density. This phenomenon is associated with a decrease of the interface symmetry that leads to a change in the efficiency of stress relieving by dislocations belonging to different families. The influence of these families on the low-angle boundary formation is considered. Experimental values of the ψ angle and shear strain for the [13 13 2¯] and [1¯ 1 0] directions lying in the interface (1 1 13 have been defined. A comparison of the experimental and calculated values of ψ for the [13 13 2¯] direction is provided.

  12. Magnetic Skyrmion Formation at Lattice Defects and Grain Boundaries Studied by Quantitative Off-Axis Electron Holography.

    Science.gov (United States)

    Li, Zi-An; Zheng, Fengshan; Tavabi, Amir Hossein; Caron, Jan; Jin, Chiming; Du, Haifeng; Kovács, András; Tian, Mingliang; Farle, Michael; Dunin-Borkowski, Rafal E

    2017-03-08

    We use in situ Lorentz microscopy and off-axis electron holography to investigate the formation and characteristics of skyrmion lattice defects and their relationship to the underlying crystallographic structure of a B20 FeGe thin film. We obtain experimental measurements of spin configurations at grain boundaries, which reveal inversions of crystallographic and magnetic chirality across adjacent grains, resulting in the formation of interface spin stripes at the grain boundaries. In the absence of material defects, we observe that skyrmions lattices possess dislocations and domain boundaries, in analogy to atomic crystals. Moreover, the distorted skyrmions can flexibly change their size and shape to accommodate local geometry, especially at sites of dislocations in the skyrmion lattice. Our findings provide a detailed understanding of the elasticity of topologically protected skyrmions and their correlation with underlying material defects.

  13. The formation of snow streamers in the turbulent atmosphere boundary layer

    Science.gov (United States)

    Huang, Ning; Wang, Zheng-Shi

    2016-12-01

    The drifting snow in the turbulent atmosphere boundary layer is an important type of aeolian multi-phase flow. Current theoretical and numerical studies of drifting snow mostly consider the flow field as steady wind velocity. Whereas, little is known about the effects of turbulent wind structures on saltating snow particles. In this paper, a 3-D drifting snow model based on Large Eddy Simulation is established, in which the trajectory of every snow grain is calculated and the coupling effect between wind field and snow particles is considered. The results indicate that the saltating snow particles are re-organized by the suction effect of high-speed rotating vortexes, which results in the local convergence of particle concentration, known as snow streamers. The turbulent wind leads to the spatial non-uniform of snow particles lifted by aerodynamic entrainment, but this does not affect the formation of snow streamers. Whereas the stochastic grain-bed interactions make a great contribution to the final shapes of snow streamers. Generally, snow streamers display a characteristic length about 0.5 m and a characteristic width of approximately 0.16 m, and their characteristic sizes are not sensitive to the wind speed. Compared to the typical sand streamer, snow streamer is slightly narrower and the occurrence of other complex streamer patterns is later than that of sand streamers due to the better follow performance of snow grains with air flow.

  14. Formation of the zebrafish midbrain-hindbrain boundary constriction requires laminin-dependent basal constriction.

    Science.gov (United States)

    Gutzman, Jennifer H; Graeden, Ellie G; Lowery, Laura Anne; Holley, Heidi S; Sive, Hazel

    2008-01-01

    The midbrain-hindbrain boundary (MHB) is a highly conserved fold in the vertebrate embryonic brain. We have termed the deepest point of this fold the MHB constriction (MHBC) and have begun to define the mechanisms by which it develops. In the zebrafish, the MHBC is formed soon after neural tube closure, concomitant with inflation of the brain ventricles. The MHBC is unusual, as it forms by bending the basal side of the neuroepithelium. At single cell resolution, we show that zebrafish MHBC formation involves two steps. The first is a shortening of MHB cells to approximately 75% of the length of surrounding cells. The second is basal constriction, and apical expansion, of a small group of cells that contribute to the MHBC. In the absence of inflated brain ventricles, basal constriction still occurs, indicating that the MHBC is not formed as a passive consequence of ventricle inflation. In laminin mutants, basal constriction does not occur, indicating an active role for the basement membrane in this process. Apical expansion also fails to occur in laminin mutants, suggesting that apical expansion may be dependent on basal constriction. This study demonstrates laminin-dependent basal constriction as a previously undescribed molecular mechanism for brain morphogenesis.

  15. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis

    Science.gov (United States)

    Spracklen, Andrew J.; Kelpsch, Daniel J.; Chen, Xiang; Spracklen, Cassandra N.; Tootle, Tina L.

    2014-01-01

    Prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton—temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin remodeling, including actin filaments and aggregates, within the posterior nurse cells of S9 follicles; wild-type follicles exhibit similar structures at a low frequency. Hu li tai shao (Hts-RC) and Villin (Quail), an actin bundler, localize to all early actin structures, whereas Enabled (Ena), an actin elongation factor, preferentially localizes to those in pxt mutants. Reduced Ena levels strongly suppress early actin remodeling in pxt mutants. Furthermore, loss of Pxt results in reduced Ena localization to the sites of bundle formation during S10B. Together these data lead to a model in which PGs temporally regulate actin remodeling during Drosophila oogenesis by controlling Ena localization/activity, such that in S9, PG signaling inhibits, whereas at S10B, it promotes Ena-dependent actin remodeling. PMID:24284900

  16. Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development.

    Science.gov (United States)

    Foppiano, Silvia; Hu, Diane; Marcucio, Ralph S

    2007-12-01

    We previously described a signaling center, the Frontonasal Ectodermal Zone (FEZ) that regulates growth and patterning of the frontonasal process (FNP). The FEZ is comprised of FNP ectoderm flanking a boundary between Sonic hedgehog (Shh) and Fibroblast growth factor 8 (Fgf8) expression domains. Our objective was to examine BMP signaling during formation of the FEZ. We blocked BMP signaling throughout the FNP prior to FEZ formation by infecting chick embryos at stage 10 (HH10) with a replication-competent avian retrovirus encoding the BMP antagonist Noggin. We assessed gene expression patterns in the FNP 72 h after infection (approximately HH22) and observed that Shh expression was reduced or absent. In the mesenchyme, we observed that Bmp2 transcripts were absent while the Bmp4 expression domain was expanded proximally. In addition to the molecular changes, infected embryos also exhibited facial malformations at 72 and 96 h after infection suggesting that the FEZ did not form. Our data indicate that reduced cell proliferation, but not apoptosis, in the mesenchyme contributed to the phenotype that we observed. Additionally, adding exogenous SHH into the mesenchyme of RCAS-Noggin-infected embryos did not restore Bmp2 and Bmp4 to a normal pattern of expression. These data indicate that BMP signaling mediates interactions between tissues in the FNP that regulate FEZ formation; and that the correct pattern of Bmp2 and Bmp4, but not Bmp7, expression in the FNP mesenchyme requires signaling by the BMP pathway.

  17. Homeostatic regulation of meiotic DSB formation by ATM/ATR

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Tim J.; Wardell, Kayleigh; Garcia, Valerie; Neale, Matthew J., E-mail: m.neale@sussex.ac.uk

    2014-11-15

    Ataxia–telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.

  18. Vinculin-dependent Cadherin mechanosensing regulates efficient epithelial barrier formation

    Directory of Open Access Journals (Sweden)

    Floor Twiss

    2012-09-01

    Proper regulation of the formation and stabilization of epithelial cell–cell adhesion is crucial in embryonic morphogenesis and tissue repair processes. Defects in this process lead to organ malformation and defective epithelial barrier function. A combination of chemical and mechanical cues is used by cells to drive this process. We have investigated the role of the actomyosin cytoskeleton and its connection to cell–cell junction complexes in the formation of an epithelial barrier in MDCK cells. We find that the E-cadherin complex is sufficient to mediate a functional link between cell–cell contacts and the actomyosin cytoskeleton. This link involves the actin binding capacity of α-catenin and the recruitment of the mechanosensitive protein Vinculin to tensile, punctate cell–cell junctions that connect to radial F-actin bundles, which we name Focal Adherens Junctions (FAJ. When cell–cell adhesions mature, these FAJs disappear and linear junctions are formed that do not contain Vinculin. The rapid phase of barrier establishment (as measured by Trans Epithelial Electrical Resistance (TER correlates with the presence of FAJs. Moreover, the rate of barrier establishment is delayed when actomyosin contraction is blocked or when Vinculin recruitment to the Cadherin complex is prevented. Enhanced presence of Vinculin increases the rate of barrier formation. We conclude that E-cadherin-based FAJs connect forming cell–cell adhesions to the contractile actomyosin cytoskeleton. These specialized junctions are sites of Cadherin mechanosensing, which, through the recruitment of Vinculin, is a driving force in epithelial barrier formation.

  19. Regulation of contractile ring formation and septation in Schizosaccharomyces pombe.

    Science.gov (United States)

    Willet, Alaina H; McDonald, Nathan A; Gould, Kathleen L

    2015-12-01

    The fission yeast Schizosaccharomyces pombe has become a powerful model organism for cytokinesis studies, propelled by pioneering genetic screens in the 1980s and 1990s. S. pombe cells are rod-shaped and divide similarly to mammalian cells, utilizing a medially-placed actin-and myosin-based contractile ring. A cell wall division septum is deposited behind the constricting ring, forming the new ends of each daughter cell. Here we discuss recent advances in our understanding of the regulation of contractile ring formation through formin proteins and the role of the division septum in S. pombe cell division. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A comparison of the regulation of health professional boundaries across OECD countries

    National Research Council Canada - National Science Library

    Bourgeault, Ivy Lynn; Grignon, Michel

    2013-01-01

    .... Our case studies focus on the inter-professional boundary negotiation between medicine and nursing and the intraprofessional boundary negotiation between domestic and internationally trained physicians...

  1. Circadian Rhythms and Memory Formation: Regulation by Chromatin Remodeling

    Directory of Open Access Journals (Sweden)

    Saurabh eSahar

    2012-03-01

    Full Text Available Epigenetic changes, such as DNA methylation or histone modification, can remodel the chromatin and regulate gene expression. Remodeling of chromatin provides an efficient mechanism of transducing signals, such as light or nutrient availability, to regulate gene expression. CLOCK:BMAL1 mediated activation of clock-controlled genes (CCGs is coupled to circadian changes in histone modification at their promoters. Several chromatin modifiers, such as the deacetylases SIRT1 and HDAC3 or methyltransferase MLL1, have been shown to be recruited to the promoters of the CCGs in a circadian manner. Interestingly, the central element of the core clock machinery, the transcription factor CLOCK, also possesses histone acetyltransferase activity. Rhythmic expression of the CCGs is abolished in the absence of these chromatin modifiers. Recent research has demonstrated that chromatin remodeling is at the cross-roads of circadian rhythms and regulation of metabolism and aging. It would be of interest to identify if similar pathways exist in the epigenetic regulation of memory formation.

  2. One out of many? Boundary negotiation and identity formation in postmerger integration

    NARCIS (Netherlands)

    Drori, Israel; Wrzesniewski, Amy; Ellis, Shmuel

    2013-01-01

    This research investigates how boundaries are utilized during the postmerger integration process to influence the postmerger identity of the firm. We suggest that the boundaries that define the structures, practices, and values of firms prior to a merger become reinforced, contested, or revised in

  3. Regulation of Memory Formation by the Transcription Factor XBP1

    Directory of Open Access Journals (Sweden)

    Gabriela Martínez

    2016-02-01

    Full Text Available Contextual memory formation relies on the induction of new genes in the hippocampus. A polymorphism in the promoter of the transcription factor XBP1 was identified as a risk factor for Alzheimer’s disease and bipolar disorders. XBP1 is a major regulator of the unfolded protein response (UPR, mediating adaptation to endoplasmic reticulum (ER stress. Using a phenotypic screen, we uncovered an unexpected function of XBP1 in cognition and behavior. Mice lacking XBP1 in the nervous system showed specific impairment of contextual memory formation and long-term potentiation (LTP, whereas neuronal XBP1s overexpression improved performance in memory tasks. Gene expression analysis revealed that XBP1 regulates a group of memory-related genes, highlighting brain-derived neurotrophic factor (BDNF, a key component in memory consolidation. Overexpression of BDNF in the hippocampus reversed the XBP1-deficient phenotype. Our study revealed an unanticipated function of XBP1 in cognitive processes that is apparently unrelated to its role in ER stress.

  4. CHIP Regulates Osteoclast Formation through Promoting TRAF6 Protein Degradation

    Science.gov (United States)

    Li, Shan; Shu, Bing; Zhang, Yanquan; Li, Jia; Guo, Junwei; Wang, Yinyin; Ren, Fangli; Xiao, Guozhi; Chang, Zhijie; Chen, Di

    2014-01-01

    Objective Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in tumor growth and metastasis. However, the role of CHIP in bone growth and bone remodeling in vivo has not been reported. The objective of this study is to investigate the role and mechanism of CHIP in regulation of bone mass and bone remodeling. Methods The bone phenotype of Chip−/− mice was examined by histology, histomorphometry and micro-CT analyses. The regulatory mechanism of CHIP on the degradation of TRAF6 and the inhibition of NF-κB signaling was examined by immunoprecipitation (IP), western blotting and luciferase reporter assays. Results In this study, we found that deletion of the Chip gene leads to osteopenic phenotype and increased osteoclast formation. We further found that TRAF6, as a novel substrate of CHIP, is up-regulated in Chip−/− osteoclasts. TRAF6 is critical for RANKL-induced osteoclastogenesis. TRAF6 is an adaptor protein which functions as an E3 ligase to regulate the activation of TAK1 and the I-κB kinase (IKK) and is a key regulator of NF-κB signaling. CHIP interacts with TRAF6 to promote TRAF6 ubiquitination and proteasome degradation. CHIP inhibits p65 nuclear translocation, leading to the repression of the TRAF6-mediated NF-κB transcription. Conclusion CHIP inhibits NF-κB signaling via promoting TRAF6 degradation and plays an important role in osteoclastogenesis and bone remodeling, suggesting that it may be a novel therapeutic target for the treatment of bone loss associated diseases. PMID:24578159

  5. Engineering transcriptional regulation to control Pdu microcompartment formation.

    Directory of Open Access Journals (Sweden)

    Edward Y Kim

    Full Text Available Bacterial microcompartments (MCPs show great promise for the organization of engineered metabolic pathways within the bacterial cytoplasm. This subcellular organelle is composed of a protein shell of 100-200 nm diameter that natively encapsulates multi-enzyme pathways. The high energy cost of synthesizing the thousands of protein subunits required for each MCP demands precise regulation of MCP formation for both native and engineered systems. Here, we study the regulation of the propanediol utilization (Pdu MCP, for which growth on 1,2-propanediol induces expression of the Pdu operon for the catabolism of 1,2-propanediol. We construct a fluorescence-based transcriptional reporter to investigate the activation of the Ppdu promoter, which drives the transcription of 21 pdu genes. Guided by this reporter, we find that MCPs can be expressed in strains grown in rich media, provided that glucose is not present. We also characterize the response of the Ppdu promoter to a transcriptional activator of the pdu operon, PocR, and find PocR to be a necessary component of Pdu MCP formation. Furthermore, we find that MCPs form normally upon the heterologous expression of PocR even in the absence of the natural inducer 1,2-propanediol and in the presence of glucose, and that Pdu MCPs formed in response to heterologous PocR expression can metabolize 1,2-propanediol in vivo. We anticipate that this technique of overexpressing a key transcription factor may be used to study and engineer the formation, size, and/or number of MCPs for the Pdu and related MCP systems.

  6. Epigenetic regulation and reprogramming during gamete formation in plants.

    Science.gov (United States)

    Baroux, Célia; Raissig, Michael T; Grossniklaus, Ueli

    2011-04-01

    Plants and animals reproduce sexually via specialized, highly differentiated gametes. Yet, gamete formation drastically differs between the two kingdoms. In flowering plants, the specification of cells destined to enter meiosis occurs late in development, gametic and accessory cells are usually derived from the same meiotic product, and two distinct female gametes involved in double fertilization differentiate. This poses fascinating questions in terms of gamete development and the associated epigenetic processes. Although studies in this area remain at their infancy, it becomes clear that large-scale epigenetic reprogramming, involving RNA-directed DNA methylation, chromatin modifications, and nucleosome remodeling, contributes to the establishment of transcriptionally repressive or permissive epigenetic landscapes. Furthermore, a role for small RNAs in the regulation of transposable elements during gametogenesis is emerging. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Formation of the Abundance Boundaries of the Heavier Neutron-capture Elements in Metal-poor Stars

    Science.gov (United States)

    Yang, Guochao; Li, Hongjie; Liu, Nian; Zhang, Lu; Cui, Wenyuan; Liang, Yanchun; Niu, Ping; Zhang, Bo

    2017-06-01

    The abundance scatter of heavier r-process elements (Z≥slant 56) relative to Fe ([r/Fe]) in metal-poor stars preserves excellent information of the star formation history and provides important insights into the various situations of the Galactic chemical enrichment. In this respect, the upper and lower boundaries of [r/Fe] could present useful clues for investigating the extreme situations of the star formation history and the early Galactic chemical evolution. In this paper, we investigate the formation of the upper and lower boundaries of [r/Fe] for the gas clouds. We find that, for a cloud from which metal-poor stars formed, the formation of the upper limits of [r/Fe] is mainly due to the pollution from a single main r-process event. For a cloud from which metal-poor stars formed, the formation of the lower limits of [r/Fe] is mainly due to the pollution from a single SN II event that ejects primary Fe.

  8. Regulation of BMP-induced ectopic bone formation by Ahsg.

    Science.gov (United States)

    Rittenberg, B; Partridge, E; Baker, G; Clokie, C; Zohar, R; Dennis, J W; Tenenbaum, H C

    2005-05-01

    alpha2-HS-glycoprotein (Ahsg), also known as fetuin is a serum and bone resident glycoprotein, which binds to TGF-beta superfamily members including bone morphogenetic proteins (BMP) and inhibits dexamethasone-induced osteogenesis in bone marrow cultures in vitro. Here we demonstrate that Ahsg reduces cytokine binding to its cognate receptor in HOS osteocyte cells and suppresses intracellular signaling, while in vivo, we test the hypothesis that Ahsg-deficient mice are hyper-responsive to BMP-induced osteogenesis. Human native BMP was implanted into the hindquarter muscles of Ahsg(+/+), Ahsg(+/-) and Ahsg(-/-) mice and 4 weeks later, ossicle formation was analyzed by radiography, bone density scanning (DEXA) and histomorphometry. Alkaline phosphatase (AP) activity was measured in ossicles as a marker for bone cell differentiation, and was significantly higher in Ahsg(-/-) versus Ahsg(+/-) and/or Ahsg(+/+) mice. Ectopic ossicle size in the Ahsg(+/-) mouse was 4-fold greater than that in the wild type (Ahsg(+/+)), and intermediate to that shown in Ahsg(-/-) mouse. Bone mineral density (BMD) was lower in the Ahsg(-/+) and Ahsg(-/-) mice compared to Ahsg(+/+) littermates. The ratio of cortical to cancellous bone was found to be >2-fold higher in Ahsg(-/-) mouse in comparison to the Ahsg(+/+) mice with no significant change in the Ahsg(-/+) mouse. Finally, a significantly higher incidence of satellite ossification; small islands of immature bone, was shown in Ahsg(-/-) mice as compared to Ahsg(+/+) mice. Although Ahsg binds to TGF-beta/BMP and blocks receptor signalling, it may also sequester cytokines in matrix, thereby acting as a reservoir of osteoinductive activity when released. This may explain the non-linear relationship between ectopic bone formation characteristics and Ahsg(+/+), Ahsg(+/-) and Ahsg(-/-) genotypes, although the increase in satellite bone formation might also explain this phenomenon. Our results suggest that Ahsg may be useful for prevention of

  9. Regulation of bone formation and resorption by Beta Adrenergic system

    Directory of Open Access Journals (Sweden)

    Fateme Mohammadali

    2016-04-01

    Full Text Available Background Following initial studies reporting the presence of βeta adrenergic receptors on bone cells, several studies have investigated the role of the Beta adrenergic system in the formation and resorption of bone. The goal of this report was to review the data supporting the role of the  beta adrenergic system and osteo-neuromediators in the regulation of bone homeostasis. Materials and Methods: In this review, more than 100 published articles were reviewed for the evidence of the adrenergic effect on bone remodeling and focused on the latest advances in this area. Results: Based on a variety of pharmacologic, genetic and clinical studies focused on b-adrenergic receptor (bAR signaling in bone cells, The adrenergic activity of the sympathetic nervous system has been shown to be a negative regulator of bone mass; adrenergic signaling inhibits osteoblast proliferation and promotes osteoclastogenesis . Conclusion: Altogether, these observations and linked findings are of great significance since they improve our understanding of bone physiology., and uncovered new potential therapeutic strategies for the design of bone anabolic drugs. Certainly, knowledge about downstream factors of beta-adrenergic system can be helpful in making decisions about appropriate therapeutic interventions.

  10. Palynostratigraphy of the Zorritas Formation, Antofagasta region, Chile: Insights on the Devonian/Carboniferous boundary in western Gondwana

    Directory of Open Access Journals (Sweden)

    Claudia V. Rubinstein

    2017-05-01

    Full Text Available The Middle Member of the Zorritas Formation in the Antofagasta region of northern Chile, yielded terrestrial and marine palynomorph assemblages which span the Devonian/Carboniferous boundary. The assemblages show a clear predominance of terrestrial palynomorphs with 70 miospore species, 18 marine phytoplankton species, two non-marine algae and one chitinozoan species, all coming from 15 productive levels. Palynomorphs are poorly preserved and most of them are reworked. Three palynological associations are recognized based on miospores. These are assigned to the Tournaisian–Visean, Tournaisian and probable latest Famennian. Age assignments are discussed in the frame of the spore zonal schemes established for Euramerica and western Gondwana. The stratigraphical distribution of spores allows the identification of the probable position of the Devonian/Carboniferous boundary within the Zorritas Formation. This system boundary is proposed for the first time in Palaeozoic sedimentary rocks of northern Chile. The presence of Gondwanan typical miospore species indicates affinities with this palaeocontinent even though the Tournaisian and Tournaisian–Visean miospore associations support the cosmopolitanism already suggested for the early Carboniferous flora. The significant number of reworked palynomorphs together with the sedimentological analysis of the studied sections, suggest that these deposits were severely impacted by the climatic change and major sea level fluctuations. Similar conditions were recorded in coeval western Gondwana basins.

  11. Lin-28 regulates oogenesis and muscle formation in Drosophila melanogaster.

    Science.gov (United States)

    Stratoulias, Vassilis; Heino, Tapio I; Michon, Frederic

    2014-01-01

    Understanding the control of stem cell (SC) differentiation is important to comprehend developmental processes as well as to develop clinical applications. Lin28 is a conserved molecule that is involved in SC maintenance and differentiation by regulating let-7 miRNA maturation. However, little is known about the in vivo function of Lin28. Here, we report critical roles for lin-28 during oogenesis. We found that let-7 maturation was increased in lin-28 null mutant fly ovaries. We showed that lin-28 null mutant female flies displayed reduced fecundity, due to defects in egg chamber formation. More specifically, we demonstrated that in mutant ovaries, the egg chambers fuse during early oogenesis resulting in abnormal late egg chambers. We also showed that this phenotype is the combined result of impaired germline SC differentiation and follicle SC differentiation. We suggest a model in which these multiple oogenesis defects result from a misregulation of the ecdysone signaling network, through the fine-tuning of Abrupt and Fasciclin2 expression. Our results give a better understanding of the evolutionarily conserved role of lin-28 on GSC maintenance and differentiation.

  12. Mechanical confinement regulates cartilage matrix formation by chondrocytes

    Science.gov (United States)

    Lee, Hong-Pyo; Gu, Luo; Mooney, David J.; Levenston, Marc E.; Chaudhuri, Ovijit

    2017-12-01

    Cartilage tissue equivalents formed from hydrogels containing chondrocytes could provide a solution for replacing damaged cartilage. Previous approaches have often utilized elastic hydrogels. However, elastic stresses may restrict cartilage matrix formation and alter the chondrocyte phenotype. Here we investigated the use of viscoelastic hydrogels, in which stresses are relaxed over time and which exhibit creep, for three-dimensional (3D) culture of chondrocytes. We found that faster relaxation promoted a striking increase in the volume of interconnected cartilage matrix formed by chondrocytes. In slower relaxing gels, restriction of cell volume expansion by elastic stresses led to increased secretion of IL-1β, which in turn drove strong up-regulation of genes associated with cartilage degradation and cell death. As no cell-adhesion ligands are presented by the hydrogels, these results reveal cell sensing of cell volume confinement as an adhesion-independent mechanism of mechanotransduction in 3D culture, and highlight stress relaxation as a key design parameter for cartilage tissue engineering.

  13. Formation of Cavities at and Away from Grain Boundaries during 600 MeV Proton Irradiation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Leffers, Torben; Green, W. V.

    1982-01-01

    ) regions beyond the CCZ containing a very low density of cavities. At the dose level of 2 dpa, a dense population of very small cavities is resolved on the grain boundaries and also in their immediate vicinity (in the CDZ). Furthermore, at the dose levels of 0.6 and 2 dpa, a well defined dual size...... were carried out at 120 degree C (0,42*Tm where Tm is the melting temperature in K). Transmission electron microscopy on specimens irradiated to 0.2 and 0.6 dpa has shown the presence of (a) cavity-denuded zones (CDZ) along grain boundaries, (b) cavity-containing zones (CCZ) adjacent to the CDZ and (c...... distribution of cavities is observed in the CCZ. The results are discussed in terms of agglomeration of helium atoms which are considered, during irradiation, to diffuse mainly via vacancies....

  14. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    DEFF Research Database (Denmark)

    Lauros, J.; Sogachev, Andrey; Smolander, S.

    2010-01-01

    We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the vertical...

  15. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    DEFF Research Database (Denmark)

    Lauros, J.; Sogachev, Andrey; Smolander, S.

    2011-01-01

    We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the simulated...

  16. LRP8-Reelin-Regulated Neuronal Enhancer Signature Underlying Learning and Memory Formation

    National Research Council Canada - National Science Library

    Telese, Francesca; Ma, Qi; Perez, Patricia Montilla; Notani, Dimple; Oh, Soohwan; Li, Wenbo; Comoletti, Davide; Ohgi, Kenneth A; Taylor, Havilah; Rosenfeld, Michael G

    2015-01-01

    .... Here, we identify the epigenetic signature of the neuronal enhancers required for transcriptional regulation of synaptic plasticity genes during memory formation, linking this to Reelin signaling...

  17. Pyruvate Formate-Lyase Interacts Directly with the Formate Channel FocA to Regulate Formate Translocation

    OpenAIRE

    Doberenz, Claudia; Zorn, Michael; Falke, Dörte; Nannemann, David; Hunger, Doreen; Beyer, Lydia; Christian H Ihling; Meiler, Jens; Sinz, Andrea; Sawers, R. Gary

    2014-01-01

    The FNT (formate-nitrite transporters) form a superfamily of pentameric membrane channels that translocate monovalent anions across biological membranes. FocA (formate channel A) translocates formate bidirectionally but the mechanism underlying how translocation of formate is controlled and what governs substrate specificity remains unclear. Here we demonstrate that the normally soluble dimeric enzyme pyruvate formate-lyase (PflB), which is responsible for intracellular formate generation in ...

  18. Interfacial wave theory of pattern formation in solidification dendrites, fingers, cells and free boundaries

    CERN Document Server

    Xu, Jian-Jun

    2017-01-01

    This comprehensive work explores interfacial instability and pattern formation in dynamic systems away from the equilibrium state in solidification and crystal growth. Further, this significantly expanded 2nd edition introduces and reviews the progress made during the last two decades. In particular, it describes the most prominent pattern formation phenomena commonly observed in material processing and crystal growth in the framework of the previously established interfacial wave theory, including free dendritic growth from undercooled melt, cellular growth and eutectic growth in directional solidification, as well as viscous fingering in Hele-Shaw flow. It elucidates the key problems, systematically derives their mathematical solutions by pursuing a unified, asymptotic approach, and finally carefully examines these results by comparing them with the available experimental results. The asymptotic approach described here will be useful for the investigation of pattern formation phenomena occurring in a much b...

  19. Possible role of electric forces in bromine activation during polar boundary layer ozone depletion and aerosol formation events

    Science.gov (United States)

    Tkachenko, Ekaterina

    2017-11-01

    This work presents a hypothesis about the mechanism of bromine activation during polar boundary layer ozone depletion events (ODEs) as well as the mechanism of aerosol formation from the frost flowers. The author suggests that ODEs may be initiated by the electric-field gradients created at the sharp tips of ice formations as a result of the combined effect of various environmental conditions. According to the author's estimates, these electric-field gradients may be sufficient for the onset of point or corona discharges followed by generation of high local concentrations of the reactive oxygen species and initiation of free-radical and redox reactions. This process may be responsible for the formation of seed bromine which then undergoes further amplification by HOBr-driven bromine explosion. The proposed hypothesis may explain a variety of environmental conditions and substrates as well as poor reproducibility of ODE initiation observed by researchers in the field. According to the author's estimates, high wind can generate sufficient conditions for overcoming the Rayleigh limit and thus can initiate ;spraying; of charged aerosol nanoparticles. These charged aerosol nanoparticles can provoke formation of free radicals, turning the ODE on. One can also envision a possible emission of halogen ion as a result of the ;electrospray; process analogous to that of electrospray ionization mass-spectrometry.

  20. 20 CFR 626.2 - Format of the Job Training Partnership Act regulations.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Format of the Job Training Partnership Act regulations. 626.2 Section 626.2 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR INTRODUCTION TO THE REGULATIONS UNDER THE JOB TRAINING PARTNERSHIP ACT § 626.2 Format of the Job...

  1. Additional Boundary Condition for List-Method Directed Forgetting: The Effect of Presentation Format

    Science.gov (United States)

    Hupbach, Almut; Sahakyan, Lili

    2014-01-01

    The attempt to forget some recently encoded information renders this information difficult to recall in a subsequent memory test. "Forget" instructions are only effective when followed by learning of new material. In the present study, we asked whether the new material needs to match the format of the to-be-forgotten information for…

  2. Operando formation of an ultra-low friction boundary film from synthetic magnesium silicon hydroxide additive

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Qiuying; Rudenko, Pavlo; Miller, Dean J.; Wen, Jianguo; Berman, Diana; Zhang, Yuepeng; Arey, Bruce; Zhu, Zihua; Erdemir, Ali

    2017-06-01

    The paper reports the operando and self-healing formation of DLC films at sliding contact surfaces by the addition of synthetic magnesium silicon hydroxide (MSH) nanoparticles to base oil. The formation of such films leads to a reduction of the coefficient of friction by nearly an order of magnitude and substantially reduces wear losses. The ultralow friction layer characterized by transmission electron microscope (TEM), electron energy loss spectroscopy (EELS), and Raman spectroscopy consists of amorphous DLC containing SiOx that forms in a continuous and self-repairing manner during operation. This environmentally benign and simple approach offers promise for significant advances in lubrication and reduced energy losses in engines and other mechanical systems.

  3. Boundary conditions and formation of pure spin currents in magnetic field

    Science.gov (United States)

    Eliashvili, Merab; Tsitsishvili, George

    2017-09-01

    Schrödinger equation for an electron confined to a two-dimensional strip is considered in the presence of homogeneous orthogonal magnetic field. Since the system has edges, the eigenvalue problem is supplied by the boundary conditions (BC) aimed in preventing the leakage of matter away across the edges. In the case of spinless electrons the Dirichlet and Neumann BC are considered. The Dirichlet BC result in the existence of charge carrying edge states. For the Neumann BC each separate edge comprises two counterflow sub-currents which precisely cancel out each other provided the system is populated by electrons up to certain Fermi level. Cancelation of electric current is a good starting point for developing the spin-effects. In this scope we reconsider the problem for a spinning electron with Rashba coupling. The Neumann BC are replaced by Robin BC. Again, the two counterflow electric sub-currents cancel out each other for a separate edge, while the spin current survives thus modeling what is known as pure spin current - spin flow without charge flow.

  4. Ferroelectric domain formation in discotic liquid crystals: Monte Carlo study on the influence of boundary conditions

    Science.gov (United States)

    Bose, Tushar Kanti; Saha, Jayashree

    2015-10-01

    The realization of a spontaneous macroscopic ferroelectric order in fluids of anisotropic mesogens is a topic of both fundamental and technological interest. Recently we demonstrated that a system of dipolar achiral disklike ellipsoids can exhibit long-searched ferroelectric liquid crystalline phases of dipolar origin. In the present work, extensive off-lattice Monte Carlo simulations are used to investigate the phase behavior of the system under the influences of the electrostatic boundary conditions that restrict any global polarization. We find that the system develops strongly ferroelectric slablike domains periodically arranged in an antiferroelectric fashion. Exploring the phase behavior at different dipole strengths, we find existence of the ferroelectric nematic and ferroelectric columnar order inside the domains. For higher dipole strengths, a biaxial phase is also obtained with a similar periodic array of ferroelectric slabs of antiparallel polarizations. We have studied the depolarizing effects by using both the Ewald summation and the spherical cutoff techniques. We present and compare the results of the two different approaches of considering the depolarizing effects in this anisotropic system. It is explicitly shown that the domain size increases with the system size as a result of considering a longer range of dipolar interactions. The system exhibits pronounced system size effects for stronger dipolar interactions. The results provide strong evidence to the novel understanding that the dipolar interactions are indeed sufficient to produce long-range ferroelectric order in anisotropic fluids.

  5. Trainable Gene Regulation Networks with Applications to Drosophila Pattern Formation

    Science.gov (United States)

    Mjolsness, Eric

    2000-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila melanogaster. For details the reader is referred to the papers introduced below. It will then introduce a new gene regulation network model which can describe promoter-level substructure in gene regulation. As described in chapter 2, gene regulation may be thought of as a combination of cis-acting regulation by the extended promoter of a gene (including all regulatory sequences) by way of the transcription complex, and of trans-acting regulation by the transcription factor products of other genes. If we simplify the cis-action by using a phenomenological model which can be tuned to data, such as a unit or other small portion of an artificial neural network, then the full transacting interaction between multiple genes during development can be modelled as a larger network which can again be tuned or trained to data. The larger network will in general need to have recurrent (feedback) connections since at least some real gene regulation networks do. This is the basic modeling approach taken, which describes how a set of recurrent neural networks can be used as a modeling language for multiple developmental processes including gene regulation within a single cell, cell-cell communication, and cell division. Such network models have been called "gene circuits", "gene regulation networks", or "genetic regulatory networks", sometimes without distinguishing the models from the actual modeled systems.

  6. Anthropogenic pollution elevates the peak height of new particle formation from planetary boundary layer to lower free troposphere

    Science.gov (United States)

    Quan, Jiannong; Liu, Yangang; Liu, Quan; Jia, Xingcan; Li, Xia; Gao, Yang; Ding, Deping; Li, Jie; Wang, Zifa

    2017-07-01

    New particle formation (NPF) and subsequent growth are primary sources of atmospheric aerosol particles and cloud condensation nuclei. Previous studies have been conducted in relatively clean environments; investigation of NPF events over highly polluted megacities is still lacking. Here we show, based on a recent yearlong aircraft campaign conducted over Beijing, China, from April 2011 to June 2012, that NPF occurrence peaks in the lower free troposphere (LT), instead of planetary boundary layer (PBL), as most previous studies have found and that the distance of NPF peak to PBL top increases with increasing aerosol loading. Further analysis reveals that increased aerosols suppress NPF in PBL, but enhance NPF in LT due to a complex chain of aerosol-radiation-photochemistry interactions that affect both NPF sources and sinks. These findings shed new light on our understanding of NPF occurrence, NPF vertical distribution, and thus their effects on atmospheric photochemistry, clouds, and climate.

  7. Formation of the sleep-regulating mechanisms in vertebrates.

    Science.gov (United States)

    Khomutetskaya, O E; Shilling, N V; Karmanova, I G

    1979-04-01

    The paper presents new data concerning the mechanisms of regulation of sleep-like states in vertebrates. Somato-vegetative and behavioral correlates of primary sleep (fish, amphibians), intermediate sleep (reptiles), slow-wave and paradoxical sleep (birds) are described. The evolutionary more ancient hypothalamo-cortical and young thalamo-cortical levels of regulation of different forms of sleep are examined. Problems of existence of functional analogues of homoiotherms' sleep are discussed.

  8. Integrative modeling reveals the principles of multi-scale chromatin boundary formation in human nuclear organization.

    Science.gov (United States)

    Moore, Benjamin L; Aitken, Stuart; Semple, Colin A

    2015-05-27

    Interphase chromosomes adopt a hierarchical structure, and recent data have characterized their chromatin organization at very different scales, from sub-genic regions associated with DNA-binding proteins at the order of tens or hundreds of bases, through larger regions with active or repressed chromatin states, up to multi-megabase-scale domains associated with nuclear positioning, replication timing and other qualities. However, we have lacked detailed, quantitative models to understand the interactions between these different strata. Here we collate large collections of matched locus-level chromatin features and Hi-C interaction data, representing higher-order organization, across three human cell types. We use quantitative modeling approaches to assess whether locus-level features are sufficient to explain higher-order structure, and identify the most influential underlying features. We identify structurally variable domains between cell types and examine the underlying features to discover a general association with cell-type-specific enhancer activity. We also identify the most prominent features marking the boundaries of two types of higher-order domains at different scales: topologically associating domains and nuclear compartments. We find parallel enrichments of particular chromatin features for both types, including features associated with active promoters and the architectural proteins CTCF and YY1. We show that integrative modeling of large chromatin dataset collections using random forests can generate useful insights into chromosome structure. The models produced recapitulate known biological features of the cell types involved, allow exploration of the antecedents of higher-order structures and generate testable hypotheses for further experimental studies.

  9. Focus on Formative Feedback communication and self-regulated learning – a study in compulsory schools

    DEFF Research Database (Denmark)

    Kirkegaard, Preben Olund

    2016-01-01

    This study addresses the conceptual challenge of providing students in compulsory schools with good quality formative feedback to enhance self-regulated learning in social interactions. Resent educational research indicates that social communicative interactions in the classroom, with a focus...... on formative feedback, hold the potential to enhance students learning. Self-regulated learning is highly pertinent and can be seen as one of the most import skills for the 21st century learner. We argue that formative feedbackcommunication in interactions is crucial for students to develop self......-regulating skills and that feedback is not only something the teacher gives to the student. We refer to this as formative Feedbackcommunication. As a basis for exploring identifying and discussing relevant aspects of formative Feedbackcommunication to enhance student self-regulating learning skills we analyze...

  10. Environmental conditions regulate the impact of plants on cloud formation

    Science.gov (United States)

    Zhao, D. F.; Buchholz, A.; Tillmann, R.; Kleist, E.; Wu, C.; Rubach, F.; Kiendler-Scharr, A.; Rudich, Y.; Wildt, J.; Mentel, Th. F.

    2017-02-01

    The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate.

  11. Regulation of complement membrane attack complex formation in myocardial infarction.

    OpenAIRE

    Väkevä, A.; Laurila, P; Meri, S.

    1993-01-01

    Recent studies have suggested that the complement (C) system is involved in the development of tissue injury of myocardial infarction. As it is not known why the strictly controlled C system starts to react against autologous heart tissue, we have analyzed the expression of various membrane regulators of C (CR1, DAF, MCP, CD59, C8 binding protein) and the pattern of deposition of C components and plasma C regulators (C4b binding protein and vitronectin) in normal (n = 7) and infarcted (n = 13...

  12. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation

    Science.gov (United States)

    Zeng, Zhirui; Tice, Michael M.

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms.

  13. Pyruvate formate-lyase interacts directly with the formate channel FocA to regulate formate translocation.

    Science.gov (United States)

    Doberenz, Claudia; Zorn, Michael; Falke, Dörte; Nannemann, David; Hunger, Doreen; Beyer, Lydia; Ihling, Christian H; Meiler, Jens; Sinz, Andrea; Sawers, R Gary

    2014-07-29

    The FNT (formate-nitrite transporters) form a superfamily of pentameric membrane channels that translocate monovalent anions across biological membranes. FocA (formate channel A) translocates formate bidirectionally but the mechanism underlying how translocation of formate is controlled and what governs substrate specificity remains unclear. Here we demonstrate that the normally soluble dimeric enzyme pyruvate formate-lyase (PflB), which is responsible for intracellular formate generation in enterobacteria and other microbes, interacts specifically with FocA. Association of PflB with the cytoplasmic membrane was shown to be FocA dependent and purified, Strep-tagged FocA specifically retrieved PflB from Escherichia coli crude extracts. Using a bacterial two-hybrid system, it could be shown that the N-terminus of FocA and the central domain of PflB were involved in the interaction. This finding was confirmed by chemical cross-linking experiments. Using constraints imposed by the amino acid residues identified in the cross-linking study, we provide for the first time a model for the FocA-PflB complex. The model suggests that the N-terminus of FocA is important for interaction with PflB. An in vivo assay developed to monitor changes in formate levels in the cytoplasm revealed the importance of the interaction with PflB for optimal translocation of formate by FocA. This system represents a paradigm for the control of activity of FNT channel proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The Two-Component Signal Transduction System VxrAB Positively Regulates Vibrio cholerae Biofilm Formation.

    Science.gov (United States)

    Teschler, Jennifer K; Cheng, Andrew T; Yildiz, Fitnat H

    2017-09-15

    Two-component signal transduction systems (TCSs), typically composed of a sensor histidine kinase (HK) and a response regulator (RR), are the primary mechanism by which pathogenic bacteria sense and respond to extracellular signals. The pathogenic bacterium Vibrio cholerae is no exception and harbors 52 RR genes. Using in-frame deletion mutants of each RR gene, we performed a systematic analysis of their role in V. cholerae biofilm formation. We determined that 7 RRs impacted the expression of an essential biofilm gene and found that the recently characterized RR, VxrB, regulates the expression of key structural and regulatory biofilm genes in V. choleraevxrB is part of a 5-gene operon, which contains the cognate HK vxrA and three genes of unknown function. Strains carrying ΔvxrA and ΔvxrB mutations are deficient in biofilm formation, while the ΔvxrC mutation enhances biofilm formation. The overexpression of VxrB led to a decrease in motility. We also observed a small but reproducible effect of the absence of VxrB on the levels of cyclic di-GMP (c-di-GMP). Our work reveals a new function for the Vxr TCS as a regulator of biofilm formation and suggests that this regulation may act through key biofilm regulators and the modulation of cellular c-di-GMP levels.IMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, providing protection from environmental stresses and contributing to the transmission of V. cholerae to the human host. V. cholerae can utilize two-component systems (TCS), composed of a histidine kinase (HK) and a response regulator (RR), to regulate biofilm formation in response to external cues. We performed a systematic analysis of V. cholerae RRs and identified a new regulator of biofilm formation, VxrB. We demonstrated that the VxrAB TCS is essential for robust biofilm formation and that this system may regulate biofilm formation via its regulation of key biofilm regulators and cyclic di-GMP levels. This research furthers our

  15. Effects of plant growth regulators on callus, shoot and root formation ...

    African Journals Online (AJOL)

    Root and stem explants of fluted pumpkin were cultured in medium containing different types and concentrations of plant growth regulators (PGRs). The explants were observed for callus, root and shoot formation parameters after four months. Differences among explants, plant growth regulators and their interaction were ...

  16. Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries

    Directory of Open Access Journals (Sweden)

    Meritxell Reverter

    2014-05-01

    Full Text Available Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN. Here, using Chinese hamster ovary (CHO Niemann-Pick type C1 (NPC1 mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6 accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs. This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.

  17. Factor H C-Terminal Domains Are Critical for Regulation of Platelet/Granulocyte Aggregate Formation

    Directory of Open Access Journals (Sweden)

    Adam Z. Blatt

    2017-11-01

    Full Text Available Platelet/granulocyte aggregates (PGAs increase thromboinflammation in the vasculature, and PGA formation is tightly controlled by the complement alternative pathway (AP negative regulator, Factor H (FH. Mutations in FH are associated with the prothrombotic disease atypical hemolytic uremic syndrome (aHUS, yet it is unknown whether increased PGA formation contributes to the thrombosis seen in patients with aHUS. Here, flow cytometry assays were used to evaluate the effects of aHUS-related mutations on FH regulation of PGA formation and characterize the mechanism. Utilizing recombinant fragments of FH spanning the entire length of the protein, we mapped the regions of FH most critical for limiting AP activity on the surface of isolated human platelets and neutrophils, as well as the regions most critical for regulating PGA formation in human whole blood stimulated with thrombin receptor-activating peptide (TRAP. FH domains 19–20 were the most critical for limiting AP activity on platelets, neutrophils, and at the platelet/granulocyte interface. The role of FH in PGA formation was attributed to its ability to regulate AP-mediated C5a generation. AHUS-related mutations in domains 19–20 caused differential effects on control of PGA formation and AP activity on platelets and neutrophils. Our data indicate FH C-terminal domains are key for regulating PGA formation, thus increased FH protection may have a beneficial impact on diseases characterized by increased PGA formation, such as cardiovascular disease. Additionally, aHUS-related mutations in domains 19–20 have varying effects on control of TRAP-mediated PGA formation, suggesting that some, but not all, aHUS-related mutations may cause increased PGA formation that contributes to excessive thrombosis in patients with aHUS.

  18. Position of the Triassic-Jurassic boundary and timing of the end-Triassic extinctions on land: Data from the Moenave Formation on the southern Colorado Plateau, USA

    Science.gov (United States)

    Lucas, S.G.; Tanner, L.H.; Donohoo-Hurley, L.; Geissman, J.W.; Kozur, H.W.; Heckert, A.B.; Weems, R.E.

    2011-01-01

    Strata of the Moenave Formation on and adjacent to the southern Colorado Plateau in Utah-Arizona, U.S.A., represent one of the best known and most stratigraphically continuous, complete and fossiliferous terrestrial sections across the Triassic-Jurassic boundary. We present a synthesis of new biostratigraphic and magnetostratigraphic data collected from across the Moenave Formation outcrop belt, which extends from the St. George area in southwestern Utah to the Tuba City area in northern Arizona. These data include palynomorphs, conchostracans and vertebrate fossils (including footprints) and a composite polarity record based on four overlapping magnetostratigraphic sections. Placement of the Triassic-Jurassic boundary in strata of the Moenave Formation has long been imprecise and debatable, but these new data (especially the conchostracans) allow us to place the Triassic-Jurassic boundary relatively precisely in the middle part of the Whitmore Point Member of the Moenave Formation, stratigraphically well above the highest occurrence of crurotarsan body fossils or footprints. Correlation to marine sections based on this placement indicates that major terrestrial vertebrate extinctions preceded marine extinctions across the Triassic-Jurassic boundary and therefore were likely unrelated to the Central Atlantic Magmatic Province (CAMP) volcanism. ?? 2011 Elsevier B.V.

  19. LBD14/ASL17 Positively Regulates Lateral Root Formation and Is Involved in ABA Response for Root Architecture in Arabidopsis.

    Science.gov (United States)

    Jeon, Eunkyeong; Kang, Na Young; Cho, Chuloh; Seo, Pil Joon; Suh, Mi Chung; Kim, Jungmook

    2017-10-11

    The LATERAL ORGAN BOUNDARIES (LOB) DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family members play key roles in diverse aspects of plant development. Previous studies have shown that LBD16, 18, 29, and 33 are critical for integrating the plant hormone auxin to control lateral root development in Arabidopsis thaliana. In the present study, we show that LBD14 is expressed exclusively in the root where it promotes lateral root (LR) emergence. Repression of LBD14 expression by ABA correlates with the inhibitory effects of ABA on LR emergence. Transient gene expression assays with Arabidopsis protoplasts demonstrated that LBD14 is a nuclear-localized transcriptional activator. The knock-down of LBD14 expression by RNAi resulted in reduced LR formation by delaying both the LR primordium development and LR emergence, whereas overexpression of LBD14 in Arabidopsis enhances LR formation. We show that ABA (but not other plant hormones such as auxin, brassinosteroids, and cytokinin) specifically downregulated GUS expression under the control of the LBD14 promoter in transgenic Arabidopsis during LR development from initiation to emergence and endogenous LBD14 transcript levels in the root. Moreover, RNAi of LBD14 enhanced the LR suppression in response to ABA, whereas LBD14 overexpression did not alter the ABA-mediated suppression of LR formation. Taken together, these results suggest that LBD14 promoting LR formation is one of the critical factors regulated by ABA to inhibit LR growth, contributing to the regulation of the Arabidopsis root system architecture in response to ABA. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. China’s New Urban Space Regulation Policies: A Study of Urban Development Boundary Delineations

    Directory of Open Access Journals (Sweden)

    Zhuzhou Zhuang

    2016-12-01

    Full Text Available China’s rapid urbanisation has led to ecological deterioration and reduced the land available for agricultural production. The purpose of this study is to develop an urban development boundary delineation (UDBD model using the high-tech manufacturing area of Xinbei in the District of Changzhou as a case study, and by applying remote sensing, GIS, and other technologies. China’s UDBD policies are reviewed, spatiotemporal changes since 1985 are documented, and future expansion is modelled to 2020. The simulated urban-growth patterns are analysed in relation to China’s policies for farmland preservation, ecological redlines protection areas, and housing developments. The UDBD model developed in this study satisfies regional farmland and ecological space protection constraints, while being consistent with urban development strategies. This study provides theoretical references and technological support for the implementation of land management policies that will optimize land allocations for urban growth, agriculture, and ecological protection.

  1. SNAP-23 regulates phagosome formation and maturation in macrophages

    Science.gov (United States)

    Sakurai, Chiye; Hashimoto, Hitoshi; Nakanishi, Hideki; Arai, Seisuke; Wada, Yoh; Sun-Wada, Ge-Hong; Wada, Ikuo; Hatsuzawa, Kiyotaka

    2012-01-01

    Synaptosomal associated protein of 23 kDa (SNAP-23), a plasma membrane–localized soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE), has been implicated in phagocytosis by macrophages. For elucidation of its precise role in this process, a macrophage line overexpressing monomeric Venus–tagged SNAP-23 was established. These cells showed enhanced Fc receptor–mediated phagocytosis. Detailed analyses of each process of phagocytosis revealed a marked increase in the production of reactive oxygen species within phagosomes. Also, enhanced accumulation of a lysotropic dye, as well as augmented quenching of a pH-sensitive fluorophore were observed. Analyses of isolated phagosomes indicated the critical role of SNAP-23 in the functional recruitment of the NADPH oxidase complex and vacuolar-type H+-ATPase to phagosomes. The data from the overexpression experiments were confirmed by SNAP-23 knockdown, which demonstrated a significant delay in phagosome maturation and a reduction in uptake activity. Finally, for analyzing whether phagosomal SNAP-23 entails a structural change in the protein, an intramolecular Förster resonance energy transfer (FRET) probe was constructed, in which the distance within a TagGFP2-TagRFP was altered upon close approximation of the N-termini of its two SNARE motifs. FRET efficiency on phagosomes was markedly enhanced only when VAMP7, a lysosomal SNARE, was coexpressed. Taken together, our results strongly suggest the involvement of SNAP-23 in both phagosome formation and maturation in macrophages, presumably by mediating SNARE-based membrane traffic. PMID:23087210

  2. Magnetically Self-regulated Formation of Early Protoplanetary Disks

    Science.gov (United States)

    Hennebelle, Patrick; Commerçon, Benoît; Chabrier, Gilles; Marchand, Pierre

    2016-10-01

    The formation of protoplanetary disks during the collapse of molecular dense cores is significantly influenced by angular momentum transport, notably by the magnetic torque. In turn, the evolution of the magnetic field is determined by dynamical processes and non-ideal MHD effects such as ambipolar diffusion. Considering simple relations between various timescales characteristic of the magnetized collapse, we derive an expression for the early disk radius, r≃ 18 {au} {({η }{AD}/0.1{{s}})}2/9{({B}z/0.1{{G}})}-4/9{(M/0.1{M}⊙ )}1/3, where M is the total disk plus protostar mass, {η }{AD} is the ambipolar diffusion coefficient, and B z is the magnetic field in the inner part of the core. This is significantly smaller than the disks that would form if angular momentum was conserved. The analytical predictions are confronted against a large sample of 3D, non-ideal MHD collapse calculations covering variations of a factor 100 in core mass, a factor 10 in the level of turbulence, a factor 5 in rotation, and magnetic mass-to-flux over critical mass-to-flux ratios 2 and 5. The disk radius estimates are found to agree with the numerical simulations within less than a factor 2. A striking prediction of our analysis is the weak dependence of circumstellar disk radii upon the various relevant quantities, suggesting weak variations among class-0 disk sizes. In some cases, we note the onset of large spiral arms beyond this radius.

  3. Collaborative jurisdiction in the regulation of electric utilities: A new look at jurisdictional boundaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    This conference is one of several activities initiated by FERC, DOE and NARUC to improve the dialogue between Federal and State regulators and policymakers. I am pleased to be here to participate in this conference and to address, with you, electricity issues of truly national significance. I would like to commend Ashley Brown and the NARUC Electricity Committee for its foresight in devising a conference on these issues at this critical juncture in the regulation of the electric utility industry. I also would like to commend Chairman Allday and the FERC for their efforts to improve communication between Federal and State electricity regulators; both through FERC`s Public Conference on Electricity Issues that was held last June, and through the FERC/NARUC workshops that are scheduled to follow this conference. These collaborative efforts are important and necessary steps in addressing successfully the many issues facing the electric utility industry those who regulate it, and those who depend upon it - in other words, about everyone.

  4. GEOTAIL observation of tilted X-line formation during flux transfer events (FTEs in the dayside magnetospheric boundary layers

    Directory of Open Access Journals (Sweden)

    M. Nowada

    2004-09-01

    Full Text Available The magnetic field and plasma structures during two successive crossings of the subsolar magnetospheric boundary layers (i.e. MagnetoPause Current Layer (MPCL and Low-Latitude Boundary Layer (LLBL under the southward-dawnward IMF are examined on the basis of the data obtained by the GEOTAIL spacecraft. A significant and interesting feature is found, that is, Flux Transfer Events (FTEs occur in association with the formation of the tilted X-line. During the first inbound MPCL/LLBL crossing, the ion velocity enhancement (in particular, the Vl component negatively increases can be observed in association with simultaneous typical bipolar signature (positive followed by negative in the Bn component. In addition, a clear D-shaped ion distribution whose origin is the magnetosheath can also be found in the dawnward direction. A few minutes later, the satellite experiences outbound MPCL crossing. The negative enhancement of the Vm component can be found as well as the positive enhancement of the Vl component. Simultaneously, a typical bipolar signature with the polarity (negative followed by positive opposite that observed in the first encounter can also be observed. The ions from the magnetosheath flow predominantly in the duskward direction, although the D-shaped ion distribution cannot be observed. These results indicate that the satellite initially observes one part of a reconnected flux tube formed by FTEs whose magnetospheric side is anchored to the Southern Hemisphere. The ions confined in this partial flux tube are flowing in the south-dawnward direction. Then, the satellite observes the other part of the reconnected flux tube whose magnetospheric side is anchored to the Northern Hemisphere. The ions confined in this flux tube flow dominantly in the north-duskward direction. Furthermore, it can be considered that the second MPCL crossing is a direct cut through the diffusion

  5. Formation of modern theoretical regulations about organization concerning management development

    Directory of Open Access Journals (Sweden)

    Zhalinska I.V.

    2017-03-01

    Full Text Available The article deals with the scientific concepts about an organization as the entity of management concerning management development. The author studies the principal theoretical regulations about an organization within the most spread schools of management and context of development of other managerial concepts in particular, strategic management. It is found out that an organization and its development had not considered as the factor of an effective activity before. Researches paid their attention to single aspects of organization activity where the aspects allowed to increase economic efficiency. However, the objective complication of conditions of enterprises’ activities caused the necessity of scientific research of adequate models of functioning and development of organizations, which currently cannot be provided by traditional management concepts. Thus, theoretical and practical prerequisites arise for a separate scientific set of researches within the science of management such as the theory of an organization. The article describes the main classified approaches to the models of an organization. The paper researches the challenges in present management, and those ones, which have caused the crisis in modern management. It is singled out the following actual aspects of modern organizational processes as the all-round use of modern information and computer systems, the development of integration and in cooperation in management, the appearance of new management technologies, the use of new assessment criteria for organization activity, striving for organizational shifts and innovations. Due to the generalization of the study results, the authors single out such key aspects in the development of the science of management, as the crisis of traditional management influences upon practical activity of modern organizations; the achievements of traditional management schools are becoming necessary, but not determinant factors of organization

  6. Oxygen diffusion enables anti-wear boundary film formation on titanium surfaces in zinc-dialkyl-dithiophosphate (ZDDP)-containing lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Qu Jun [Materials Science and Technology Division, Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6063, Oak Ridge, TN 37831-6063 (United States)], E-mail: qujn@ornl.gov; Blau, Peter J.; Howe, Jane Y.; Meyer, Harry M. [Materials Science and Technology Division, Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6063, Oak Ridge, TN 37831-6063 (United States)

    2009-05-15

    This paper reports a wear reduction by up to six orders of magnitude for Ti-6Al-4V alloy when treated by an oxygen diffusion (OD) process and subsequently tested in a zinc-dialkyl-dithiophosphate (ZDDP)-containing lubricant. In addition to case hardening, it is discovered that OD enables the formation of an anti-wear boundary film on the titanium surface. Transmission electron microscopy and surface chemical analyses revealed that this boundary film has a two-layer structure comprising an amorphous oxide interlayer and a ZDDP-based top film with complex compounds.

  7. Oxygen Diffusion Enables Anti-Wear Boundary Film Formation on Titanium Surfaces in Zinc-Dialkyl-Dithiophosphate (ZDDP)-Containing Lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Howe, Jane Y [ORNL; Meyer III, Harry M [ORNL

    2009-01-01

    This paper reports a wear reduction by up to six orders of magnitude for Ti-6Al-4V alloy when treated by an oxygen diffusion (OD) process and subsequently tested in a zinc-dialkyl-dithiophosphate (ZDDP)-containing lubricant. In addition to case hardening, it is discovered that OD enables the formation of an anti-wear boundary film on the titanium surface. Transmission electron microscopy and surface chemical analyses revealed that this boundary film has a two-layer structure comprising an amorphous oxide interlayer and a ZDDP-based top film with complex compounds.

  8. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength.

    Science.gov (United States)

    Fu, Xiumin; Chen, Yiyong; Mei, Xin; Katsuno, Tsuyoshi; Kobayashi, Eiji; Dong, Fang; Watanabe, Naoharu; Yang, Ziyin

    2015-11-16

    Regulation of plant growth and development by light wavelength has been extensively studied. Less attention has been paid to effect of light wavelength on formation of plant metabolites. The objective of this study was to investigate whether formation of volatiles in preharvest and postharvest tea (Camellia sinensis) leaves can be regulated by light wavelength. In the present study, in contrast to the natural light or dark treatment, blue light (470 nm) and red light (660 nm) significantly increased most endogenous volatiles including volatile fatty acid derivatives (VFADs), volatile phenylpropanoids/benzenoids (VPBs), and volatile terpenes (VTs) in the preharvest tea leaves. Furthermore, blue and red lights significantly up-regulated the expression levels of 9/13-lipoxygenases involved in VFADs formation, phenylalanine ammonialyase involved in VPBs formation, and terpene synthases involved in VTs formation. Single light wavelength had less remarkable influences on formation of volatiles in the postharvest leaves compared with the preharvest leaves. These results suggest that blue and red lights can be promising technology for remodeling the aroma of preharvest tea leaves. Furthermore, our study provided evidence that light wavelength can activate the expression of key genes involved in formation of plant volatiles for the first time.

  9. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis

    DEFF Research Database (Denmark)

    Vroemen, Casper W; Mordhorst, Andreas P; Albrecht, Cathy

    2003-01-01

    From an enhancer trap screen for genes expressed in Arabidopsis embryos, we identified a gene expressed from the octant stage onward in the boundary between the two presumptive cotyledons and in a variety of postembryonic organ and meristem boundaries. This gene, CUP-SHAPED COTYLEDON3 (CUC3), enc...

  10. Osterix Regulates Tooth Root Formation in a Site-specific Manner

    Science.gov (United States)

    Kim, T.H.; Bae, C.H.; Lee, J.C.; Kim, J.E.; Yang, X.; de Crombrugghe, B.

    2015-01-01

    Bone and dentin share similar biochemical compositions and physiological properties. Dentin, a major tooth component, is formed by odontoblasts; in contrast, bone is produced by osteoblasts. Osterix (Osx), a zinc finger-containing transcription factor, has been identified as an essential regulator of osteoblast differentiation and bone formation. However, it has been difficult to establish whether Osx functions in odontoblast differentiation and dentin formation. To understand the role of Osx in dentin formation, we analyzed mice in which Osx was subjected to tissue-specific ablation under the control of either the Col1a1 or the OC promoter. Two independent Osx conditional knockout mice exhibited similar molar abnormalities. Although no phenotype was found in the crowns of these teeth, both mutant lines exhibited short molar roots due to impaired root elongation. Furthermore, the interradicular dentin in these mice showed severe hypoplastic features, which were likely caused by disruptions in odontoblast differentiation and dentin formation. These phenotypes were closely related to the temporospatial expression pattern of Osx during tooth development. These findings indicate that Osx is required for root formation by regulating odontoblast differentiation, maturation, and root elongation. Cumulatively, our data strongly indicate that Osx is a site-specific regulator in tooth root formation. PMID:25568170

  11. Procedural justice and social regulation across group boundaries: does subgroup identity undermine relationship-based governance?

    Science.gov (United States)

    Huo, Yuen J

    2003-03-01

    The relational model of authority suggests that people are inclined to accept the decisions of ethnic outgroup authorities when they identify with a superordinate category they share with the authority, and when the authority satisfies their relational justice concerns. Using responses from a random sample of African Americans, Latinos, and Whites about their cross-ethnic interactions with legal authorities, the findings indicated that those who are highly identified with the superordinate category of America indicate greater reliance on relational concerns and less on instrumental concerns when evaluating the authority's decision. In contrast, identification with one's ethnic subgroup did not moderate the linkage between relational concerns and acceptance. Across all ethnic groups, there were positive rather than negative correlations between measures of American and ethnic identity. Together, these findings indicate that subgroup identity does not undermine the relational basis of social regulation and that relationship-based governance is compatible with multiculturalism.

  12. HOXC9 regulates formation of parachordal lymphangioplasts and the thoracic duct in zebrafish via stabilin 2.

    Directory of Open Access Journals (Sweden)

    Sandra J Stoll

    Full Text Available HOXC9 belongs to the family of homeobox transcription factors, which are regulators of body patterning and development. HOXC9 acts as a negative regulator on blood endothelial cells but its function on lymphatic vessel development has not been studied. The hyaluronan receptor homologs stabilin 1 and stabilin 2 are expressed in endothelial cells but their role in vascular development is poorly understood. This study was aimed at investigating the function of HOXC9, stabilin 2 and stabilin 1 in lymphatic vessel development in zebrafish and in endothelial cells. Morpholino-based expression silencing of HOXC9 repressed parachordal lymphangioblast assembly and thoracic duct formation in zebrafish. HOXC9 positively regulated stabilin 2 expression in zebrafish and in HUVECs and expression silencing of stabilin 2 phenocopied the HOXC9 morphant vascular phenotype. This effect could be compensated by HOXC9 mRNA injection in stabilin 2 morphant zebrafish embryos. Stabilin 1 also regulated parachordal lymphangioblast and thoracic duct formation in zebrafish but acts independently of HOXC9. On a cellular level stabilin 1 and stabilin 2 regulated endothelial cell migration and in-gel sprouting angiogenesis in endothelial cells. HOXC9 was identified as novel transcriptional regulator of parachordal lymphangioblast assembly and thoracic duct formation in zebrafish that acts via stabilin 2. Stabilin 1, which acts independently of HOXC9, has a similar function in zebrafish and both receptors control important cellular processes in endothelial cells.

  13. Contributions of the wall boundary layer to the formation of the counter-rotating vortex pair in transverse jets

    KAUST Repository

    SCHLEGEL, FABRICE

    2011-04-08

    Using high-resolution 3-D vortex simulations, this study seeks a mechanistic understanding of vorticity dynamics in transverse jets at a finite Reynolds number. A full no-slip boundary condition, rigorously formulated in terms of vorticity generation along the channel wall, captures unsteady interactions between the wall boundary layer and the jet - in particular, the separation of the wall boundary layer and its transport into the interior. For comparison, we also implement a reduced boundary condition that suppresses the separation of the wall boundary layer away from the jet nozzle. By contrasting results obtained with these two boundary conditions, we characterize near-field vortical structures formed as the wall boundary layer separates on the backside of the jet. Using various Eulerian and Lagrangian diagnostics, it is demonstrated that several near-wall vortical structures are formed as the wall boundary layer separates. The counter-rotating vortex pair, manifested by the presence of vortices aligned with the jet trajectory, is initiated closer to the jet exit. Moreover tornado-like wall-normal vortices originate from the separation of spanwise vorticity in the wall boundary layer at the side of the jet and from the entrainment of streamwise wall vortices in the recirculation zone on the lee side. These tornado-like vortices are absent in the case where separation is suppressed. Tornado-like vortices merge with counter-rotating vorticity originating in the jet shear layer, significantly increasing wall-normal circulation and causing deeper jet penetration into the crossflow stream. © 2011 Cambridge University Press.

  14. DNA damage inhibits lateral root formation by up-regulating cytokinin biosynthesis genes in Arabidopsis thaliana.

    Science.gov (United States)

    Davis, La Ode Muhammad Muchdar; Ogita, Nobuo; Inagaki, Soichi; Takahashi, Naoki; Umeda, Masaaki

    2016-11-01

    Lateral roots (LRs) are an important organ for water and nutrient uptake from soil. Thus, control of LR formation is crucial in the adaptation of plant growth to environmental conditions. However, the underlying mechanism controlling LR formation in response to external factors has remained largely unknown. Here, we found that LR formation was inhibited by DNA damage. Treatment with zeocin, which causes DNA double-strand breaks, up-regulated several DNA repair genes in the LR primordium (LRP) through the signaling pathway mediated by the transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1). Cell division was severely inhibited in the LRP of zeocin-treated sog1-1 mutant, which in turn inhibited LR formation. This result suggests that SOG1-mediated maintenance of genome integrity is crucial for proper cell division during LRP development. Furthermore, zeocin induced several cytokinin biosynthesis genes in a SOG1-dependent manner, thereby activating cytokinin signaling in the LRP. LR formation was less inhibited by zeocin in mutants defective in cytokinin biosynthesis or signaling, suggesting that elevated cytokinin signaling is crucial for the inhibition of LR formation in response to DNA damage. We conclude that SOG1 regulates DNA repair and cytokinin signaling separately and plays a key role in controlling LR formation under genotoxic stress. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  15. Data supporting regulating temporospatial dynamics of morphogen for structure formation of the lacrimal gland by chitosan biomaterials

    Directory of Open Access Journals (Sweden)

    Ya-Chuan Hsiao

    2017-02-01

    Full Text Available The lacrimal gland is responsible for tear synthesis and secretion, and is derived from the epithelia of ocular surface and generated by branching morphogenesis. The dataset presented in this article is to support the research results of the effect of chitosan biomaterials on facilitating the structure formation of the lacrimal gland by regulating temporospatial dynamics of morphogen. The embryonic lacrimal gland explants were used as the standard experimental model for investigating lacrimal gland branching morphogenesis. Chitosan biomaterials promoted lacrimal gland branching with a dose-dependent effect. It helped in vivo binding of hepatocyte growth factor (HGF related molecules in the epithelial-mesenchymal boundary of emerging epithelial branches. When mitogen-activated protein kinase (MAPK or protein kinase B (Akt/PKB inhibitors applied, the chitosan effects reduced. Nonetheless, the ratios of MAPK and Akt/PKB phosphorylation were still greater in the chitosan group than the control. The data demonstrated here confirm the essential role of HGF-signaling in chitosan-promoted structure formation of the lacrimal gland.

  16. Regulation of photosynthetic electron flow in isolated chloroplasts by bicarbonate, formate and herbicides

    NARCIS (Netherlands)

    Snel, J.F.H.

    1985-01-01

    This thesis describes some efforts that were made to gain a better understanding of the processes involved in the regulation of photosynthetic electron flow by bicarbonate, formate and herbicides in chloroplasts. In the past decade a large amount of research has been devoted to get insight into the

  17. Tetraspanin 7 regulates sealing zone formation and the bone-resorbing activity of osteoclasts

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jun-Oh; Lee, Yong Deok; Kim, Haemin; Kim, Min Kyung; Song, Min-Kyoung; Lee, Zang Hee; Kim, Hong-Hee, E-mail: hhbkim@snu.ac.kr

    2016-09-02

    Tetraspanin family proteins regulate morphology, motility, fusion, and signaling in various cell types. We investigated the role of the tetraspanin 7 (Tspan7) isoform in the differentiation and function of osteoclasts. Tspan7 was up-regulated during osteoclastogenesis. When Tspan7 expression was reduced in primary precursor cells by siRNA-mediated gene knock-down, the generation of multinuclear osteoclasts was not affected. However, a striking cytoskeletal abnormality was observed: the formation of the podosome belt structure was inhibited and the microtubular network were disrupted by Tspan7 knock-down. Decreases in acetylated microtubules and levels of phosphorylated Src and Pyk2 in Tspan7 knock-down cells supported the involvement of Tspan7 in cytoskeletal rearrangement signaling in osteoclasts. This cytoskeletal defect interfered with sealing zone formation and subsequently the bone-resorbing activity of mature osteoclasts on dentin surfaces. Our results suggest that Tspan7 plays an important role in cytoskeletal organization required for the bone-resorbing function of osteoclasts by regulating signaling to Src, Pyk2, and microtubules. - Highlights: • Tspan7 expression is up-regulated during osteoclastogenesis. • Tspan7 regulates podosome belt organization in osteoclasts. • Tspan7 is crucial for sealing zone formation and bone-resorption by osteoclasts. • Src and Pyk2 phosphorylation and microtubule acetylation mediate Tspan7 function.

  18. Essential roles and regulation of the Legionella pneumophila collagen-like adhesin during biofilm formation.

    Directory of Open Access Journals (Sweden)

    Julia Mallegol

    Full Text Available Legionellosis is mostly caused by Legionella pneumophila (Lp and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In a previous study, we showed that a glycosaminoglycan (GAG-binding adhesin of Lp, named Lcl, is produced during legionellosis and is unique to the L. pneumophila species. Importantly, a mutant depleted in Lcl (Δlpg2644 is impaired in adhesion to GAGs and epithelial cells and in biofilm formation. Here, we examine the molecular function(s of Lcl and the transcriptional regulation of its encoding gene during different stages of the biofilm development. We show that the collagen repeats and the C-terminal domains of Lcl are crucial for the production of biofilm. We present evidence that Lcl is involved in the early step of surface attachment but also in intercellular interactions. Furthermore, we address the relationship between Lcl gene regulation during biofilm formation and quorum sensing (QS. In a static biofilm assay, we show that Lcl is differentially regulated during growth phases and biofilm formation. Moreover, we show that the transcriptional regulation of lpg2644, mediated by a prototype of QS signaling homoserine lactone (3OC12-HSL, may play a role during the biofilm development. Thus, transcriptional down-regulation of lpg2644 may facilitate the dispersion of Lp to reinitiate biofilm colonization on a distal surface.

  19. CcpA Regulates Biofilm Formation and Competence in Streptococcus gordonii

    Science.gov (United States)

    Zheng, Lanyan; Chen, Zhiyun; Itzek, Andreas; Herzberg, Mark C.; Kreth, Jens

    2011-01-01

    Summary Streptococcus gordonii is an important member of the oral biofilm community. As oral commensal streptococci, S. gordonii is considered beneficial in promoting biofilm homeostasis. CcpA is known as central regulator of carbon catabolite repression in Gram-positive bacteria and is also involved in the control of virulence gene expression. To further establish the role of CcpA as central regulator in S. gordonii, the effect of CcpA on biofilm formation and natural competence of S. gordonii was investigated. These phenotypic traits have been suggested to be important to oral streptococci in coping with environmental stress. Here we demonstrate that a CcpA mutant was severely impaired in its biofilm forming ability, showed a defect in extracellular polysaccharide production and reduced competence. The data suggest that CcpA is involved in the regulation of biofilm formation and competence development in S. gordonii. PMID:22394467

  20. Relative contributions of norspermidine synthesis and signaling pathways to the regulation of Vibrio cholerae biofilm formation.

    Science.gov (United States)

    Wotanis, Caitlin K; Brennan, William P; Angotti, Anthony D; Villa, Elizabeth A; Zayner, Josiah P; Mozina, Alexandra N; Rutkovsky, Alexandria C; Sobe, Richard C; Bond, Whitney G; Karatan, Ece

    2017-01-01

    The polyamine norspermidine is one of the major polyamines synthesized by Vibrionales and has also been found in various aquatic organisms. Norspermidine is among the environmental signals that positively regulate Vibrio cholerae biofilm formation. The NspS/MbaA signaling complex detects extracellular norspermidine and mediates the response to this polyamine. Norspermidine binding to the NspS periplasmic binding protein is thought to inhibit the phosphodiesterase activity of MbaA, increasing levels of the biofilm-promoting second messenger cyclic diguanylate monophosphate, thus enhancing biofilm formation. V. cholerae can also synthesize norspermidine using the enzyme NspC as well as import it from the environment. Deletion of the nspC gene was shown to reduce accumulation of bacteria in biofilms, leading to the conclusion that intracellular norspermidine is also a positive regulator of biofilm formation. Because V. cholerae uses norspermidine to synthesize the siderophore vibriobactin it is possible that intracellular norspermidine is required to obtain sufficient amounts of iron, which is also necessary for robust biofilm formation. The objective of this study was to assess the relative contributions of intracellular and extracellular norspermidine to the regulation of biofilm formation in V. cholerae. We show the biofilm defect of norspermidine synthesis mutants does not result from an inability to produce vibriobactin as vibriobactin synthesis mutants do not have diminished biofilm forming abilities. Furthermore, our work shows that extracellular, but not intracellular norspermidine, is mainly responsible for promoting biofilm formation. We establish that the NspS/MbaA signaling complex is the dominant mediator of biofilm formation in response to extracellular norspermidine, rather than norspermidine synthesized by NspC or imported into the cell.

  1. The transcription factor p8 regulates autophagy during diapause embryo formation in Artemia parthenogenetica.

    Science.gov (United States)

    Lin, Cheng; Jia, Sheng-Nan; Yang, Fan; Jia, Wen-Huan; Yu, Xiao-Jian; Yang, Jin-Shu; Yang, Wei-Jun

    2016-07-01

    Autophagy is an essential homeostatic process by which cytoplasmic components, including macromolecules and organelles, are degraded by lysosome. Increasing evidence suggests that phosphorylated AMP-activated protein kinase (p-AMPK) and target of rapamycin (TOR) play key roles in the regulation of autophagy. However, the regulation of autophagy in quiescent cells remains unclear, despite the fact that autophagy is known to be critical for normal development, regeneration, and degenerative diseases. Here, crustacean Artemia parthenogenetica was used as a model system because they produced and released encysted embryos that enter a state of obligate dormancy in cell quiescence to withstand various environmental threats. We observed that autophagy was increased before diapause stage but dropped to extremely low level in diapause cysts in Artemia. Western blot analyses indicated that the regulation of autophagy was AMPK/TOR independent during diapause embryo formation. Importantly, the level of p8 (Ar-p8), a stress-inducible transcription cofactor, was elevated at the stage just before diapause and was absent in encysted embryos, indicating that Ar-p8 may regulate autophagy. The results of Ar-p8 knockdown revealed that Ar-p8 regulated autophagy during diapause formation in Artemia. Moreover, we observed that activating transcription factors 4 and 6 (ATF4 and ATF6) responded to Ar-p8-regulated autophagy, indicating that autophagy targeted endoplasmic reticulum (ER) during diapause formation in Artemia. Additionally, AMPK/TOR-independent autophagy was validated in human gastric cancer MKN45 cells overexpressing Ar-p8. The findings presented here may provide insights into the role of p8 in regulating autophagy in quiescent cells.

  2. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal

    DEFF Research Database (Denmark)

    Gjermansen, Morten; Ragas, Paula Cornelia; Tolker-Nielsen, Tim

    2006-01-01

    Microbial biofilm formation often causes problems in medical and industrial settings, and knowledge about the factors that are involved in biofilm development and dispersion is useful for creating strategies to control the processes. In this report, we present evidence that proteins with GGDEF...... and EAL domains are involved in the regulation of biofilm formation and biofilm dispersion in Pseudomonas putida. Overexpression in P. putida of the Escherichia coli YedQ protein, which contains a GGDEF domain, resulted in increased biofilm formation. Overexpression in P. putida of the E. coli Yhj......H protein, which contains an EAL domain, strongly inhibited biofilm formation. Induction of YhjH expression in P. putida cells situated in established biofilms led to rapid dispersion of the biofilms. These results support the emerging theme that GGDEF-domain and EAL-domain proteins are involved...

  3. Dynamics of ordering in highly degenerate models with anisotropic grain-boundary potential: Effects of temperature and vortex formation

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Flyvbjerg, Henrik; Mouritsen, Ole G.

    1989-01-01

    universality class, and that all models with nonconserved order parameter, independent of ordering degeneracy and softness and origin of domain boundaries, obey the classical growth law at finite temperatures. In quenches to the Potts-ordered phase vortices and antivortices occur and annihilate mutually......-boundary network. The time evolution of this quantity is shown to obey the growth law, ΔE(t)∼t-n, over an extended time range at late times. It is found that the zero-temperature dynamics is characterized by a special exponent value which for the Q=48 model is n≃0.25 in accordance with earlier work. However......, for quenches to finite temperatures in the Potts-ordered phase there is a distinct crossover to the classical Lifshitz-Allen-Cahn exponent value, n=1 / 2, for both values of Q. This supports the conjecture that the zero-temperature dynamics for models with soft domain boundaries belong to a special...

  4. Radiative effects of tropospheric aerosols on the evolution of the atmospheric boundary layer and its feedback on the haze formation

    Science.gov (United States)

    Wei, Chao; Su, Hang; Cheng, Yafang

    2016-04-01

    Planetary boundary layer (PBL) plays a key role in air pollution dispersion and influences day-to-day air quality. Some studies suggest that high aerosol loadings during severe haze events may modify PBL dynamics by radiative effects and hence enhance the development of haze. This study mainly investigates the radiative effects of tropospheric aerosols on the evolution of the atmospheric boundary layer by conducting simulations with Weather Research and Forecasting single-column model (WRF-SCM). We find that high aerosol loading in PBL depressed boundary layer height (PBLH). But the magnitude of the changes of PBLH after adding aerosol loadings in our simulations are small and can't explain extreme high aerosol concentrations observed. We also investigate the impacts of the initial temperature and moisture profiles on the evolution of PBL. Our studies show that the impact of the vertical profile of moisture is comparable with aerosol effects.

  5. Spermidine promotes Bacillus subtilis biofilm formation by activating expression of the matrix regulator slrR.

    Science.gov (United States)

    Hobley, Laura; Li, Bin; Wood, Jennifer L; Kim, Sok Ho; Naidoo, Jacinth; Ferreira, Ana Sofia; Khomutov, Maxim; Khomutov, Alexey; Stanley-Wall, Nicola R; Michael, Anthony J

    2017-07-21

    Ubiquitous polyamine spermidine is not required for normal planktonic growth of Bacillus subtilis but is essential for robust biofilm formation. However, the structural features of spermidine required for B. subtilis biofilm formation are unknown and so are the molecular mechanisms of spermidine-stimulated biofilm development. We report here that in a spermidine-deficient B. subtilis mutant, the structural analogue norspermidine, but not homospermidine, restored biofilm formation. Intracellular biosynthesis of another spermidine analogue, aminopropylcadaverine, from exogenously supplied homoagmatine also restored biofilm formation. The differential ability of C-methylated spermidine analogues to functionally replace spermidine in biofilm formation indicated that the aminopropyl moiety of spermidine is more sensitive to C-methylation, which it is essential for biofilm formation, but that the length and symmetry of the molecule is not critical. Transcriptomic analysis of a spermidine-depleted B. subtilis speD mutant uncovered a nitrogen-, methionine-, and S-adenosylmethionine-sufficiency response, resulting in repression of gene expression related to purine catabolism, methionine and S-adenosylmethionine biosynthesis and methionine salvage, and signs of altered membrane status. Consistent with the spermidine requirement in biofilm formation, single-cell analysis of this mutant indicated reduced expression of the operons for production of the exopolysaccharide and TasA protein biofilm matrix components and SinR antagonist slrR Deletion of sinR or ectopic expression of slrR in the spermidine-deficient ΔspeD background restored biofilm formation, indicating that spermidine is required for expression of the biofilm regulator slrR Our results indicate that spermidine functions in biofilm development by activating transcription of the biofilm matrix exopolysaccharide and TasA operons through the regulator slrR. © 2017 by The American Society for Biochemistry and

  6. PERP regulates enamel formation via effects on cell–cell adhesion and gene expression

    Science.gov (United States)

    Jheon, Andrew H.; Mostowfi, Pasha; Snead, Malcolm L.; Ihrie, Rebecca A.; Sone, Eli; Pramparo, Tiziano; Attardi, Laura D.; Klein, Ophir D.

    2011-01-01

    Little is known about the role of cell–cell adhesion in the development of mineralized tissues. Here we report that PERP, a tetraspan membrane protein essential for epithelial integrity, regulates enamel formation. PERP is necessary for proper cell attachment and gene expression during tooth development, and its expression is controlled by P63, a master regulator of stratified epithelial development. During enamel formation, PERP is localized to the interface between the enamel-producing ameloblasts and the stratum intermedium (SI), a layer of cells subjacent to the ameloblasts. Perp-null mice display dramatic enamel defects, which are caused, in part, by the detachment of ameloblasts from the SI. Microarray analysis comparing gene expression in teeth of wild-type and Perp-null mice identified several differentially expressed genes during enamel formation. Analysis of these genes in ameloblast-derived LS8 cells upon knockdown of PERP confirmed the role for PERP in the regulation of gene expression. Together, our data show that PERP is necessary for the integrity of the ameloblast–SI interface and that a lack of Perp causes downregulation of genes that are required for proper enamel formation. PMID:21285247

  7. DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity.

    Science.gov (United States)

    Miller, Courtney A; Campbell, Susan L; Sweatt, J David

    2008-05-01

    A clear understanding is developing concerning the importance of epigenetic-related molecular mechanisms in transcription-dependent long-term memory formation. Chromatin modification, in particular histone acetylation, is associated with transcriptional activation, and acetylation of histone 3 (H3) occurs in Area CA1 of the hippocampus following contextual fear conditioning training. Conversely, DNA methylation is associated with transcriptional repression, but is also dynamically regulated in Area CA1 following training. We recently reported that inhibition of the enzyme responsible for DNA methylation, DNA methyltransferase (DNMT), in the adult rat hippocampus blocks behavioral memory formation. Here, we report that DNMT inhibition also blocks the concomitant memory-associated H3 acetylation, without affecting phosphorylation of its upstream regulator, extracellular signal-regulated kinase (ERK). Interestingly, the DNMT inhibitor-induced deficit in memory consolidation, along with deficits in long-term potentiation, can be rescued by pharmacologically increasing levels of histone acetylation prior to DNMT inhibition. These observations suggest that DNMT activity is not only necessary for memory and plasticity, but that DNA methylation may work in concert with histone modifications to regulate plasticity and memory formation in the adult rat hippocampus.

  8. Regulation of germinal center, B-cell memory and plasma cell formation by histone modifiers

    Directory of Open Access Journals (Sweden)

    Kim eGood-Jacobson

    2014-11-01

    Full Text Available Understanding the regulation of antibody production and B-cell memory formation and function is core to finding new treatments for B-cell-derived cancers, antibody-mediated autoimmune disorders and immunodeficiencies. Progression from a small number of antigen-specific B-cells to the production of a large number of antibody-secreting cells is tightly regulated. Although much progress has been made in revealing the transcriptional regulation of B-cell differentiation that occurs during humoral immune responses, there are still many questions that remain unanswered. Recent work on the expression and roles of histone modifiers in lymphocytes has begun to shed light on this additional level of regulation. This review will discuss the recent advancements in understanding how humoral immune responses, in particular germinal centers and memory cells, are modulated by histone modifiers.

  9. Regulation of biofilm formation by sigma B is a common mechanism in Staphylococcus epidermidis and is not mediated by transcriptional regulation of sarA.

    Science.gov (United States)

    Jäger, Sebastian; Jonas, Beate; Pfanzelt, Dorothea; Horstkotte, Matthias A; Rohde, Holger; Mack, Dietrich; Knobloch, Johannes K-M

    2009-09-01

    Biofilm formation is a major pathogenetic factor of Staphylococcus epidermidis. In S. epidermidis the alternative sigma factor sigma B was identified to regulate biofilm formation in S. epidermidis 1457. In S. aureus sigma B dependent regulation plays a minor role, whereas sarA (Staphylococcus accessory regulator) is an essential regulator. Therefore, we investigated the impact of sigma B on sarA transcription and biofilm formation in three independent S. epidermidis isolates. Mutants with dysfunctional sigma B displayed a strongly reduced biofilm formation, whereas in mutants with constitutive sigma B activity biofilm formation was increased. Transcriptional analysis revealed that icaA transcription was down-regulated in all sigma B negative mutants while icaR transcription was up-regulated. However, transcriptional differences varied between individual strains, indicating that additional sigma B-dependent regulators are involved in biofilm expression. Interestingly, despite the presence of a sigma B promoter beside two sigma A promoters no differences, or only minor ones, were observed in sarA transcription, indicating that sigma B-dependent sarA transcript has no influence on the phenotypic changes. The data observed in independent clinical S. epidermidis isolates suggests that, in contrast to S. aureus, regulation of biofilm formation by sigma B is a general feature in S. epidermidis. Additionally, we were able to demonstrate that the sarA- dependent regulation is not involved in this regulatory pathway.

  10. Members of the LATERAL ORGAN BOUNDARIES DOMAIN transcription factor family are involved in the regulation of secondary growth in Populus.

    Science.gov (United States)

    Yordanov, Yordan S; Regan, Sharon; Busov, Victor

    2010-11-01

    Regulation of secondary (woody) growth is of substantial economic and environmental interest but is poorly understood. We identified and subsequently characterized an activation-tagged poplar (Populus tremula × Populus alba) mutant with enhanced woody growth and changes in bark texture caused primarily by increased secondary phloem production. Molecular characterization of the mutation through positioning of the tag and retransformation experiments shows that the phenotype is conditioned by activation of an uncharacterized gene that encodes a novel member of the LATERAL ORGAN BOUNDARIES DOMAIN (LBD) family of transcription factors. Homology analysis showed highest similarity to an uncharacterized LBD1 gene from Arabidopsis thaliana, and we consequently named it Populus tremula × Populus alba (Pta) LBD1. Dominant-negative suppression of Pta LBD1 via translational fusion with the repressor SRDX domain caused decreased diameter growth and suppressed and highly irregular phloem development. In wild-type plants, LBD1 was most highly expressed in the phloem and cambial zone. Two key Class I KNOTTED1-like homeobox genes that promote meristem identity in the cambium were downregulated, while an Altered Phloem Development gene that is known to promote phloem differentiation was upregulated in the mutant. A set of four LBD genes, including the LBD1 gene, was predominantly expressed in wood-forming tissues, suggesting a broader regulatory role of these transcription factors during secondary woody growth in poplar.

  11. Aggresome formation is regulated by RanBPM through an interaction with HDAC6

    Directory of Open Access Journals (Sweden)

    Louisa M. Salemi

    2014-05-01

    Full Text Available In conditions of proteasomal impairment, the build-up of damaged or misfolded proteins activates a cellular response leading to the recruitment of damaged proteins into perinuclear aggregates called aggresomes. Aggresome formation involves the retrograde transport of cargo proteins along the microtubule network and is dependent on the histone deacetylase HDAC6. Here we show that ionizing radiation (IR promotes Ran-Binding Protein M (RanBPM relocalization into discrete perinuclear foci where it co-localizes with aggresome components ubiquitin, dynein and HDAC6, suggesting that the RanBPM perinuclear clusters correspond to aggresomes. RanBPM was also recruited to aggresomes following treatment with the proteasome inhibitor MG132 and the DNA-damaging agent etoposide. Strikingly, aggresome formation by HDAC6 was markedly impaired in RanBPM shRNA cells, but was restored by re-expression of RanBPM. RanBPM was found to interact with HDAC6 and to inhibit its deacetylase activity. This interaction was abrogated by a RanBPM deletion of its LisH/CTLH domain, which also prevented aggresome formation, suggesting that RanBPM promotes aggresome formation through an association with HDAC6. Our results suggest that RanBPM regulates HDAC6 activity and is a central regulator of aggresome formation.

  12. Regulation of primary cilia formation by the ubiquitin-proteasome system.

    Science.gov (United States)

    Shearer, Robert F; Saunders, Darren N

    2016-10-15

    Primary cilia form at the surface of most vertebrate cell types, where they are essential signalling antennae for signal transduction pathways important for development and cancer, including Hedgehog. The importance of primary cilia in development is clearly demonstrated by numerous disorders (known as ciliopathies) associated with disrupted cilia formation (ciliogenesis). Recent advances describing functional regulators of the primary cilium highlight an emerging role for the ubiquitin-proteasome system (UPS) as a key regulator of ciliogenesis. Although there are well-documented examples of E3 ubiquitin ligases and deubiquitases in the regulation of cilia proteins, many putative components remain unvalidated. This review explores current understanding of how the UPS influences primary cilia formation, and also how recent screen data have identified more putative regulators of the UPS. Emerging research has identified many promising leads in the search for regulators of this important organelle and may identify potential novel therapeutic targets for intervention in cancer and other disease contexts. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  13. Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation.

    Science.gov (United States)

    Von Offenberg Sweeney, Nicholas; Cummins, Philip M; Cotter, Eoin J; Fitzpatrick, Paul A; Birney, Yvonne A; Redmond, Eileen M; Cahill, Paul A

    2005-04-08

    Hemodynamic forces exerted by blood flow (cyclic strain, shear stress) affect the initiation and progression of angiogenesis; however, the precise signaling mechanism(s) involved are unknown. In this study, we examine the role of cyclic strain in regulating bovine aortic endothelial cell (BAEC) migration and tube formation, indices of angiogenesis. Considering their well-documented mechanosensitivity, functional inter-dependence, and involvement in angiogenesis, we hypothesized roles for matrix metalloproteinases (MMP-2/9), RGD-dependent integrins, and urokinase plasminogen activator (uPA) in this process. BAECs were exposed to equibiaxial cyclic strain (5% strain, 1Hz for 24h) before their migration and tube formation was assessed by transwell migration and collagen gel tube formation assays, respectively. In response to strain, both migration and tube formation were increased by 1.83+/-0.1- and 1.84+/-0.1-fold, respectively. Pertussis toxin, a Gi-protein inhibitor, decreased strain-induced migration by 45.7+/-32% and tube formation by 69.8+/-13%, whilst protein tyrosine kinase (PTK) inhibition with genistein had no effect. siRNA-directed attenuation of endothelial MMP-9 (but not MMP-2) expression/activity decreased strain-induced migration and tube formation by 98.6+/-41% and 40.7+/-31%, respectively. Finally, integrin blockade with cRGD peptide and siRNA-directed attenuation of uPA expression reduced strain-induced tube formation by 85.7+/-15% and 84.7+/-31%, respectively, whilst having no effect on migration. Cyclic strain promotes BAEC migration and tube formation in a Gi-protein-dependent PTK-independent manner. Moreover, we demonstrate for the first time a putative role for MMP-9 in both strain-induced events, whilst RGD-dependent integrins and uPA appear only to be involved in strain-induced tube formation.

  14. Mosaic and Regulation Phenomena during the Early Formation of the Chick Blastoderm

    Directory of Open Access Journals (Sweden)

    Marc Callebaut

    2010-01-01

    Full Text Available After culturing symmetrically hemisectioned unincubated chicken blastoderms, asymmetric hemiembryos developed (indicating mosaic development. In the present study, we observed that after prolonged culture, the further asymmetric development (way with no possible return becomes profoundly disturbed, more particularly the Rauber's sickle-dependent phenomena: gastrulation and the formation of the coelomo-cardiovascular complex with absence of heart and pericard development. By contrast, the neural plate develops symmetrically. Asymmetrical ablation of Rauber's sickle and the neighboring upper layer results in the development of an apparently normal symmetrical embryo. Indeed, at the unoperated side, a normal half coelomo-cardiovascular system develops with a unilateral or bilateral heart tube and pericard formation (indicating regulation. Both regulation and mosaicism indicate that during normal early development, the interaction between the left and right sides of the caudal area centralis of the blastoderm is indispensable, depending on the spatial relationship between the elementary tissues (upper layer, Rauber's sickle, endophyll.

  15. The human language-associated gene SRPX2 regulates synapse formation and vocalization in mice.

    Science.gov (United States)

    Sia, G M; Clem, R L; Huganir, R L

    2013-11-22

    Synapse formation in the developing brain depends on the coordinated activity of synaptogenic proteins, some of which have been implicated in a number of neurodevelopmental disorders. Here, we show that the sushi repeat-containing protein X-linked 2 (SRPX2) gene encodes a protein that promotes synaptogenesis in the cerebral cortex. In humans, SRPX2 is an epilepsy- and language-associated gene that is a target of the foxhead box protein P2 (FoxP2) transcription factor. We also show that FoxP2 modulates synapse formation through regulating SRPX2 levels and that SRPX2 reduction impairs development of ultrasonic vocalization in mice. Our results suggest FoxP2 modulates the development of neural circuits through regulating synaptogenesis and that SRPX2 is a synaptogenic factor that plays a role in the pathogenesis of language disorders.

  16. Revisiting the Extended Schmidt Law: The Important Role of Existing Stars in Regulating Star Formation

    Science.gov (United States)

    Shi, Yong; Yan, Lin; Armus, Lee; Gu, Qiusheng; Helou, George; Qiu, Keping; Gwyn, Stephen; Stierwalt, Sabrina; Fang, Min; Chen, Yanmei; Zhou, Luwenjia; Wu, Jingwen; Zheng, Xianzhong; Zhang, Zhi-Yu; Gao, Yu; Wang, Junzhi

    2018-02-01

    We revisit the proposed extended Schmidt law, which posits that the star formation efficiency in galaxies depends on the stellar mass surface density, by investigating spatially resolved star formation rates (SFRs), gas masses, and stellar masses of star formation regions in a vast range of galactic environments, from the outer disks of dwarf galaxies, to spiral disks and to merging galaxies, as well as individual molecular clouds in M33. We find that these regions are distributed in a tight power law as {{{Σ }}}{SFR} ∝ {({{{Σ }}}{star}0.5{{{Σ }}}{gas})}1.09, which is also valid for the integrated measurements of disk and merging galaxies at high-z. Interestingly, we show that star formation regions in the outer disks of dwarf galaxies with {{{Σ }}}{SFR} down to 10‑5 {M}ȯ yr‑1 kpc‑2, which are outliers of both the Kennicutt–Schmidt and Silk–Elmegreen laws, also follow the extended Schmidt law. Other outliers in the Kennicutt–Schmidt law, such as extremely metal-poor star formation regions, also show significantly reduced deviation from the extended Schmidt law. These results suggest an important role for existing stars in helping to regulate star formation through the effect of their gravity on the midplane pressure in a wide range of galactic environments.

  17. Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa

    Science.gov (United States)

    Pusic, Petra; Tata, Muralidhar; Wolfinger, Michael T.; Sonnleitner, Elisabeth; Häussler, Susanne; Bläsi, Udo

    2016-12-01

    Pseudomonas aeruginosa (PA) can thrive in anaerobic biofilms in the lungs of cystic fibrosis (CF) patients. Here, we show that CrcZ is the most abundant PA14 RNA bound to the global regulator Hfq in anoxic biofilms grown in cystic fibrosis sputum medium. Hfq was crucial for anoxic biofilm formation. This observation complied with an RNAseq based transcriptome analysis and follow up studies that implicated Hfq in regulation of a central step preceding denitrification. CrcZ is known to act as a decoy that sequesters Hfq during relief of carbon catabolite repression, which in turn alleviates Hfq-mediated translational repression of catabolic genes. We therefore inferred that CrcZ indirectly impacts on biofilm formation by competing for Hfq. This hypothesis was supported by the findings that over-production of CrcZ mirrored the biofilm phenotype of the hfq deletion mutant, and that deletion of the crcZ gene augmented biofilm formation. To our knowledge, this is the first example where competition for Hfq by CrcZ cross-regulates an Hfq-dependent physiological process unrelated to carbon metabolism.

  18. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation.

    Science.gov (United States)

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  19. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida

    2013-10-01

    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  20. Regulation of reactionary dentin formation by odontoblasts in response to polymicrobial invasion of dentin matrix.

    Science.gov (United States)

    Charadram, Nattida; Farahani, Ramin M; Harty, Derek; Rathsam, Catherine; Swain, Michael V; Hunter, Neil

    2012-01-01

    Odontoblast synthesis of dentin proceeds through discrete but overlapping phases characterized by formation of a patterned organic matrix followed by remodelling and active mineralization. Microbial invasion of dentin in caries triggers an adaptive response by odontoblasts, culminating in formation of a structurally altered reactionary dentin, marked by biochemical and architectonic modifications including diminished tubularity. Scanning electron microscopy of the collagen framework in reactionary dentin revealed a radically modified yet highly organized meshwork as indicated by fractal and lacunarity analyses. Immuno-gold labelling demonstrated increased density and regular spatial distribution of dentin sialoprotein (DSP) in reactionary dentin. DSP contributes putative hydroxyapatite nucleation sites on the collagen scaffold. To further dissect the formation of this altered dentin matrix, the associated enzymatic machinery was investigated. Analysis of extracted dentin matrix indicated increased activity of matrix metalloproteinase-2 (MMP-2) in the reactionary zone referenced to physiologic dentin. Likewise, gene expression analysis of micro-dissected odontoblast layer revealed up-regulation of MMP-2. Parallel up-regulation of tissue inhibitor of metalloproteinase-2 (TIMP-2) and membrane type 1- matrix metalloproteinase (MT1-MMP) was observed in response to caries. Next, modulation of odontoblastic dentinogenic enzyme repertoire was addressed. In the odontoblast layer expression of Toll-like receptors was markedly altered in response to bacterial invasion. In carious teeth TLR-2 and the gene encoding the corresponding adaptor protein MyD88 were down-regulated whereas genes encoding TLR-4 and adaptor proteins TRAM and Mal/TIRAP were up-regulated. TLR-4 signalling mediated by binding of bacterial products has been linked to up-regulation of MMP-2. Further, increased expression of genes encoding components of the TGF-β signalling pathway, namely SMAD-2 and SMAD-4

  1. Effects of formative assessments to develop self-regulation among sixth grade students: Results from a randomized controlled intervention

    NARCIS (Netherlands)

    Meusen-Beekman, Kelly; Joosten-ten Brinke, Desirée; Boshuizen, Els

    2018-01-01

    This article presents the results of a formative assessment intervention in writing assignments in sixth grade. We examined whether formative assessments would improve self-regulation, motivation and self-efficacy among sixth graders, and whether differential effects exist between formative

  2. Nucleotide synthesis is regulated by cytoophidium formation during neurodevelopment and adaptive metabolism

    Directory of Open Access Journals (Sweden)

    Gabriel N. Aughey

    2014-10-01

    Full Text Available The essential metabolic enzyme CTP synthase (CTPsyn can be compartmentalised to form an evolutionarily-conserved intracellular structure termed the cytoophidium. Recently, it has been demonstrated that the enzymatic activity of CTPsyn is attenuated by incorporation into cytoophidia in bacteria and yeast cells. Here we demonstrate that CTPsyn is regulated in a similar manner in Drosophila tissues in vivo. We show that cytoophidium formation occurs during nutrient deprivation in cultured cells, as well as in quiescent and starved neuroblasts of the Drosophila larval central nervous system. We also show that cytoophidia formation is reversible during neurogenesis, indicating that filament formation regulates pyrimidine synthesis in a normal developmental context. Furthermore, our global metabolic profiling demonstrates that CTPsyn overexpression does not significantly alter CTPsyn-related enzymatic activity, suggesting that cytoophidium formation facilitates metabolic stabilisation. In addition, we show that overexpression of CTPsyn only results in moderate increase of CTP pool in human stable cell lines. Together, our study provides experimental evidence, and a mathematical model, for the hypothesis that inactive CTPsyn is incorporated into cytoophidia.

  3. Negative regulation of bone formation by the transmembrane Wnt antagonist Kremen-2.

    Directory of Open Access Journals (Sweden)

    Jochen Schulze

    Full Text Available Wnt signalling is a key pathway controlling bone formation in mice and humans. One of the regulators of this pathway is Dkk1, which antagonizes Wnt signalling through the formation of a ternary complex with the transmembrane receptors Krm1/2 and Lrp5/6, thereby blocking the induction of Wnt signalling by the latter ones. Here we show that Kremen-2 (Krm2 is predominantly expressed in bone, and that its osteoblast-specific over-expression in transgenic mice (Col1a1-Krm2 results in severe osteoporosis. Histomorphometric analysis revealed that osteoblast maturation and bone formation are disturbed in Col1a1-Krm2 mice, whereas bone resorption is increased. In line with these findings, primary osteoblasts derived from Col1a1-Krm2 mice display a cell-autonomous differentiation defect, impaired canonical Wnt signalling and decreased production of the osteoclast inhibitory factor Opg. To determine whether the observed effects of Krm2 on bone remodeling are physiologically relevant, we analyzed the skeletal phenotype of 24 weeks old Krm2-deficient mice and observed high bone mass caused by a more than three-fold increase in bone formation. Taken together, these data identify Krm2 as a regulator of bone remodeling and raise the possibility that antagonizing KRM2 might prove beneficial in patients with bone loss disorders.

  4. Load regulates bone formation and Sclerostin expression through a TGFβ-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Jacqueline Nguyen

    Full Text Available Bone continually adapts to meet changing physical and biological demands. Osteoblasts, osteoclasts, and osteocytes cooperate to integrate these physical and biochemical cues to maintain bone homeostasis. Although TGFβ acts on all three of these cell types to maintain bone homeostasis, the extent to which it participates in the adaptation of bone to mechanical load is unknown. Here, we investigated the role of the TGFβ pathway in load-induced bone formation and the regulation of Sclerostin, a mechanosensitive antagonist of bone anabolism. We found that mechanical load rapidly represses the net activity of the TGFβ pathway in osteocytes, resulting in reduced phosphorylation and activity of key downstream effectors, Smad2 and Smad3. Loss of TGFβ sensitivity compromises the anabolic response of bone to mechanical load, demonstrating that the mechanosensitive regulation of TGFβ signaling is essential for load-induced bone formation. Furthermore, sensitivity to TGFβ is required for the mechanosensitive regulation of Sclerostin, which is induced by TGFβ in a Smad3-dependent manner. Together, our results show that physical cues maintain bone homeostasis through the TGFβ pathway to regulate Sclerostin expression and the deposition of new bone.

  5. A FERONIA-Like Receptor Kinase Regulates Strawberry (Fragaria × ananassa) Fruit Ripening and Quality Formation

    Science.gov (United States)

    Jia, Meiru; Ding, Ning; Zhang, Qing; Xing, Sinian; Wei, Lingzhi; Zhao, Yaoyao; Du, Ping; Mao, Wenwen; Li, Jizheng; Li, Bingbing; Jia, Wensuo

    2017-01-01

    Ripening of fleshy fruits is controlled by a series of intricate signaling processes. Here, we report a FERONIA/FER-like receptor kinase, FaMRLK47, that regulates both strawberry (Fragaria × ananassa) fruit ripening and quality formation. Overexpression and RNAi-mediated downregulation of FaMRLK47 delayed and accelerated fruit ripening, respectively. We showed that FaMRLK47 physically interacts with FaABI1, a negative regulator of abscisic acid (ABA) signaling, and demonstrated that FaMRLK47 regulates fruit ripening by modulating ABA signaling, a major pathway governing strawberry fruit ripening. In accordance with these findings, overexpression and RNAi-mediated downregulation of FaMRLK47 caused a decrease and increase, respectively, in the ABA-induced expression of a series of ripening-related genes. Additionally, overexpression and RNAi-mediated downregulation of FaMRLK47 resulted in an increase and decrease in sucrose content, respectively, as compared with control fruits, and respectively promoted and inhibited the expression of genes in the sucrose biosynthesis pathway (FaSS and FaSPS). Collectively, this study demonstrates that FaMRLK47 is an important regulator of strawberry fruit ripening and quality formation, and sheds light on the signaling mechanisms underlying strawberry fruit development and ripening. PMID:28702036

  6. Lipid nanotube formation using space-regulated electric field above interdigitated electrodes.

    Science.gov (United States)

    Bi, Hongmei; Fu, Dingguo; Wang, Lei; Han, Xiaojun

    2014-04-22

    Lipid nanotubes have great potential in biology and nanotechnology. Here we demonstrate a method to form lipid nanotubes using space-regulated AC electric fields above coplanar interdigitated electrodes. The AC electric field distribution can be regulated by solution height above the electrodes. The ratio of field component in x axis (Ex) to field component in z axis (Ez) increases dramatically at solution height below 50 μm; therefore, at lower solution height, the force from Ex predominantly drives lipids to form lipid nanotubes along with the electric field direction. The forces exerted on the lipid nanotube during its formation were analyzed in detail, and an equation was obtained to describe the relationship among nanotube length and field frequency, amplitude, and time. We believe that the presented approach opens a way to design and prepare nanoscale materials with unique structural and functional properties using space-regulated electric fields.

  7. Ameloblastin in Hertwig's epithelial root sheath regulates tooth root formation and development.

    Science.gov (United States)

    Hirose, Naoto; Shimazu, Atsushi; Watanabe, Mineo; Tanimoto, Kotaro; Koyota, Souichi; Sugiyama, Toshihiro; Uchida, Takashi; Tanne, Kazuo

    2013-01-01

    Tooth root formation begins after the completion of crown morphogenesis. At the end edge of the tooth crown, inner and outer enamel epithelia form Hertwig's epithelial root sheath (HERS). HERS extends along with dental follicular tissue for root formation. Ameloblastin (AMBN) is an enamel matrix protein secreted by ameloblasts and HERS derived cells. A number of enamel proteins are eliminated in root formation, except for AMBN. AMBN may be related to tooth root formation; however, its role in this process remains unclear. In this study, we found AMBN in the basal portion of HERS of lower first molar in mice, but not at the tip. We designed and synthesized small interfering RNA (siRNA) targeting AMBN based on the mouse sequence. When AMBN siRNA was injected into a prospective mandibular first molar of postnatal day 10 mice, the root became shorter 10 days later. Furthermore, HERS in these mice revealed a multilayered appearance and 5-bromo-2'-deoxyuridine (BrdU) positive cells increased in the outer layers. In vitro experiments, when cells were compared with and without transiently expressing AMBN mRNA, expression of growth suppressor genes such as p21(Cip1) and p27(Kip1) was enhanced without AMBN and BrdU incorporation increased. Thus, AMBN may regulate differentiation state of HERS derived cells. Moreover, our results suggest that the expression of AMBN in HERS functions as a trigger for normal root formation.

  8. FORMS OF ADDRESS IN REGULATED SPHERES OF COMMUNICATION: THE FORMATION OF A NEW STANDARD

    Directory of Open Access Journals (Sweden)

    T. S. Zhukova

    2014-01-01

    Full Text Available The aim of the article is to analyze forms of address in regulated spheres of communication, such as communication with country leaders, police officers and judges in various types of proceedings. Regulated communication is communication restricted by the rules of an organization or a socio-political institute, as well as by the rules and standards of speech etiquette and corporate ethics adopted by an organization. The article is an attempt to interpret the formation of new standards of the use of forms of address in regulated spheres of communication. It is indicated that for modern linguistics conservative and restrictive perception of standards are not typical. A new view on the nature of the standard is being formed: the standard must be as close to the communicative situation as possible. Tendencies in the formation of standards are identified on the basis of the observation over modern word usage, on the analysis of native speakers’ metalinguistic reflection and on the surveys of preferable choices of form of address in a particular communicative situation. In conclusion it is emphasized that the new standards of functioning of the forms of address need further theoretical understanding of this problem, as well as analysis and recommendations for the use of new forms.

  9. Expression profile and regulation of spore and parasporal crystal formation-associated genes in Bacillus thuringiensis.

    Science.gov (United States)

    Wang, Jieping; Mei, Han; Qian, Hongliang; Tang, Qing; Liu, Xiaocui; Yu, Ziniu; He, Jin

    2013-12-06

    Bacillus thuringiensis, a Gram-positive endospore-forming bacterium, is characterized by the formation of parasporal crystals consisting of insecticidal crystal proteins (ICPs) during sporulation. We reveal gene expression profiles and regulatory mechanisms associated with spore and parasporal crystal formation based on transcriptomics and proteomics data of B. thuringiensis strain CT-43. During sporulation, five ICP genes encoded by CT-43 were specifically transcribed; moreover, most of the spore structure-, assembly-, and maturation-associated genes were specifically expressed or significantly up-regulated, with significant characteristics of temporal regulation. These findings suggest that it is essential for the cell to maintain efficient operation of transcriptional and translational machinery during sporulation. Our results indicate that the RNA polymerase complex δ and ω subunits, cold shock proteins, sigma factors, and transcriptional factors as well as the E2 subunit of the pyruvate dehydrogenase complex could cooperatively participate in transcriptional regulation via different mechanisms. In particular, differences in processing and modification of ribosomal proteins, rRNA, and tRNA combined with derepression of translational inhibition could boost the rate of ribosome recycling and assembly as well as translation initiation, elongation, and termination efficiency, thereby compensating for the reduction in ribosomal levels. The efficient operation of translational machineries and powerful protein-quality controlling systems would thus ensure biosyntheses of a large quantity of proteins with normal biological functions during sporulation.

  10. Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation.

    Science.gov (United States)

    Lubin, Farah D

    2011-07-01

    Brain-derived neurotrophic factor (bdnf) is one of numerous gene products necessary for long-term memory formation and dysregulation of bdnf has been implicated in the pathogenesis of cognitive and mental disorders. Recent work indicates that epigenetic-regulatory mechanisms including the markings of histone proteins and associated DNA remain labile throughout the life-span and represent an attractive molecular process contributing to gene regulation in the brain. In this review, important information will be discussed on epigenetics as a set of newly identified dynamic transcriptional mechanisms serving to regulate gene expression changes in the adult brain with particular emphasis on bdnf transcriptional readout in learning and memory formation. This review will also highlight evidence for the role of epigenetics in aberrant bdnf gene regulation in the pathogenesis of cognitive dysfunction associated with seizure disorders, Rett syndrome, Schizophrenia, and Alzheimer's disease. Such research offers novel concepts for understanding epigenetic transcriptional mechanisms subserving adult cognition and mental health, and furthermore promises novel avenues for therapeutic approach in the clinic. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Proteomic Analysis of Fetal Ovaries Reveals That Primordial Follicle Formation and Transition Are Differentially Regulated

    Directory of Open Access Journals (Sweden)

    Mengmeng Xu

    2017-01-01

    Full Text Available Primordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90. The identified proteins at the g55 time-point are mainly involved in the development of anatomical structures [reticulocalbin-1 (RCN1, reticulocalbin-3 (RCN3], cell differentiation (actin, and stress response [heterogeneous nuclear ribonucleoprotein K (HNRNPK]. Meanwhile, at the g90 stage, the isolated proteins with altered expression levels were mainly associated with cell proliferation [major vault protein (MVP] and stress response [heat shock-related 70 kDa protein 2 (HSPA2]. In conclusion, our work revealed that primordial follicle formation is regulated by RCN1, RCN3, actin, and HNRNPK, while the primordial follicle transformation to primary follicle is regulated by MVP and HSPA2. Therefore, our results provide further information for the prospective understanding of the molecular mechanism(s involved in the regulation of the ovarian follicle development.

  12. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater.

    Science.gov (United States)

    Szczuka, Aleksandra; Parker, Kimberly M; Harvey, Cassandra; Hayes, Erin; Vengosh, Avner; Mitch, William A

    2017-10-01

    Coastal utilities exploiting mildly saline groundwater (Groundwater from North Carolina coastal aquifers is characterized by large variations in concentrations of halides (bromide up to 10,600 μg/L) and dissolved organic carbon (up to 5.7 mg-C/L). Formation of 33 regulated and unregulated halogenated DBPs, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles, haloacetamides, and haloacetaldehydes, was measured after simulated chlorination of 24 coastal North Carolina groundwater samples under typical chlorination conditions. Results of chlorination simulation show that THM levels exceeded the Primary Maximum Contaminant Levels in half of the chlorinated samples. Addition of halides to a low salinity groundwater (110 mg/L chloride) indicated that elevated bromide triggered DBP formation, but chloride was not a critical factor for their formation. DBP speciation, but not overall molar formation, was strongly correlated with bromide variations in the groundwater. THMs and HAAs dominated the measured halogenated DBPs on a mass concentration basis. When measured concentrations were weighted by metrics of toxic potency, haloacetonitriles, and to a lesser degree, haloacetaldehydes and HAAs, were the predominant contributors to calculated DBP-associated toxicity. For some samples exhibiting elevated ammonia concentrations, the addition of chlorine to form chloramines in situ significantly reduced halogenated DBP concentrations and calculated toxicity. HAAs dominated the calculated toxicity of chloraminated waters. Reverse osmosis treatment of saline groundwater (chloride >250 mg/L) can reduce DBP formation by removing halides and organic precursors. However, we show that in a case where reverse osmosis permeate is blended with a separate raw groundwater, the residual bromide level in the permeate could still exceed that in the raw groundwater, and thereby induce DBP formation in the blend. DBP-associated calculated toxicity increased for

  13. Synapse Formation in Monosynaptic Sensory–Motor Connections Is Regulated by Presynaptic Rho GTPase Cdc42

    Science.gov (United States)

    Imai, Fumiyasu; Ladle, David R.; Leslie, Jennifer R.; Duan, Xin; Rizvi, Tilat A.; Ciraolo, Georgianne M.; Zheng, Yi

    2016-01-01

    Spinal reflex circuit development requires the precise regulation of axon trajectories, synaptic specificity, and synapse formation. Of these three crucial steps, the molecular mechanisms underlying synapse formation between group Ia proprioceptive sensory neurons and motor neurons is the least understood. Here, we show that the Rho GTPase Cdc42 controls synapse formation in monosynaptic sensory–motor connections in presynaptic, but not postsynaptic, neurons. In mice lacking Cdc42 in presynaptic sensory neurons, proprioceptive sensory axons appropriately reach the ventral spinal cord, but significantly fewer synapses are formed with motor neurons compared with wild-type mice. Concordantly, electrophysiological analyses show diminished EPSP amplitudes in monosynaptic sensory–motor circuits in these mutants. Temporally targeted deletion of Cdc42 in sensory neurons after sensory–motor circuit establishment reveals that Cdc42 does not affect synaptic transmission. Furthermore, addition of the synaptic organizers, neuroligins, induces presynaptic differentiation of wild-type, but not Cdc42-deficient, proprioceptive sensory neurons in vitro. Together, our findings demonstrate that Cdc42 in presynaptic neurons is required for synapse formation in monosynaptic sensory–motor circuits. SIGNIFICANCE STATEMENT Group Ia proprioceptive sensory neurons form direct synapses with motor neurons, but the molecular mechanisms underlying synapse formation in these monosynaptic sensory–motor connections are unknown. We show that deleting Cdc42 in sensory neurons does not affect proprioceptive sensory axon targeting because axons reach the ventral spinal cord appropriately, but these neurons form significantly fewer presynaptic terminals on motor neurons. Electrophysiological analysis further shows that EPSPs are decreased in these mice. Finally, we demonstrate that Cdc42 is involved in neuroligin-dependent presynaptic differentiation of proprioceptive sensory neurons in vitro

  14. Postgraduate education and research in Brazil: regulation and reconfiguration processes of academic work formation and production

    Directory of Open Access Journals (Sweden)

    João Ferreira de Oliveira

    2015-07-01

    Full Text Available This text analyses some of the processes of formation and production regulation and reconfiguration of the scholarly work in Brazil. Initially we examine the context and meaning of knowledge production in times of flexible accumulation, as well as the current landscape of Postgraduate education in the country. We seek to understand how public policies in the area, particularly the actions of evaluation and promotion, and the new modus operandi of the Postgraduate study and research organization have been reconfiguring the work production of teaching and students within the programs, especially in education. Above all, we seek to highlight the role of promotion and evaluation agencies, increasingly committed to a vision of expansion that drives the production of knowledge associated with demands of economic-productivity, rather than a consistent formative project that would result in a significant advancement in the production and dissemination of knowledge in the different areas.

  15. Self-regulation of charged defect compensation and formation energy pinning in semiconductors.

    Science.gov (United States)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai

    2015-11-20

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.

  16. Artificial induction of Sox21 regulates sensory cell formation in the embryonic chicken inner ear.

    Directory of Open Access Journals (Sweden)

    Stephen D Freeman

    Full Text Available During embryonic development, hair cells and support cells in the sensory epithelia of the inner ear derive from progenitors that express Sox2, a member of the SoxB1 family of transcription factors. Sox2 is essential for sensory specification, but high levels of Sox2 expression appear to inhibit hair cell differentiation, suggesting that factors regulating Sox2 activity could be critical for both processes. Antagonistic interactions between SoxB1 and SoxB2 factors are known to regulate cell differentiation in neural tissue, which led us to investigate the potential roles of the SoxB2 member Sox21 during chicken inner ear development. Sox21 is normally expressed by sensory progenitors within vestibular and auditory regions of the early embryonic chicken inner ear. At later stages, Sox21 is differentially expressed in the vestibular and auditory organs. Sox21 is restricted to the support cell layer of the auditory epithelium, while it is enriched in the hair cell layer of the vestibular organs. To test Sox21 function, we used two temporally distinct gain-of-function approaches. Sustained over-expression of Sox21 from early developmental stages prevented prosensory specification, and abolished the formation of both hair cells and support cells. However, later induction of Sox21 expression at the time of hair cell formation in organotypic cultures of vestibular epithelia inhibited endogenous Sox2 expression and Notch activity, and biased progenitor cells towards a hair cell fate. Interestingly, Sox21 did not promote hair cell differentiation in the immature auditory epithelium, which fits with the expression of endogenous Sox21 within mature support cells in this tissue. These results suggest that interactions among endogenous SoxB family transcription factors may regulate sensory cell formation in the inner ear, but in a context-dependent manner.

  17. Inhibition of proliferation by PERK regulates mammary acinar morphogenesis and tumor formation.

    Directory of Open Access Journals (Sweden)

    Sharon J Sequeira

    Full Text Available Endoplasmic reticulum (ER stress signaling can be mediated by the ER kinase PERK, which phosphorylates its substrate eIF2alpha. This in turn, results in translational repression and the activation of downstream programs that can limit cell growth through cell cycle arrest and/or apoptosis. These responses can also be initiated by perturbations in cell adhesion. Thus, we hypothesized that adhesion-dependent regulation of PERK signaling might determine cell fate. We tested this hypothesis in a model of mammary acini development, a morphogenetic process regulated in part by adhesion signaling. Here we report a novel role for PERK in limiting MCF10A mammary epithelial cell proliferation during acinar morphogenesis in 3D Matrigel culture as well as in preventing mammary tumor formation in vivo. We show that loss of adhesion to a suitable substratum induces PERK-dependent phosphorylation of eIF2alpha and selective upregulation of ATF4 and GADD153. Further, inhibition of endogenous PERK signaling during acinar morphogenesis, using two dominant-negative PERK mutants (PERK-DeltaC or PERK-K618A, does not affect apoptosis but results instead in hyper-proliferative and enlarged lumen-filled acini, devoid of proper architecture. This phenotype correlated with an adhesion-dependent increase in translation initiation, Ki67 staining and upregulation of Laminin-5, ErbB1 and ErbB2 expression. More importantly, the MCF10A cells expressing PERKDeltaC, but not a vector control, were tumorigenic in vivo upon orthotopic implantation in denuded mouse mammary fat pads. Our results reveal that the PERK pathway is responsive to adhesion-regulated signals and that it is essential for proper acinar morphogenesis and in preventing mammary tumor formation. The possibility that deficiencies in PERK signaling could lead to hyperproliferation of the mammary epithelium and increase the likelihood of tumor formation, is of significance to the understanding of breast cancer.

  18. CLUMPY DISKS AS A TESTBED FOR FEEDBACK-REGULATED GALAXY FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Lucio; Tamburello, Valentina [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Lupi, Alessandro; Madau, Piero [Institut d’Astrophysique de Paris, Sorbonne Universités, UPMC Univ Paris 6 et CNRS, UMR 7095, 98 bis bd Arago, F-75014 Paris (France); Keller, Ben; Wadsley, James [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2016-10-10

    We study the dependence of fragmentation in massive gas-rich galaxy disks at z >1 on stellar feedback schemes and hydrodynamical solvers, employing the GASOLINE2 SPH code and the lagrangian mesh-less code GIZMO in finite mass mode. Non-cosmological galaxy disk runs with the standard delayed-cooling blastwave feedback are compared with runs adopting a new superbubble feedback, which produces winds by modeling the detailed physics of supernova-driven bubbles and leads to efficient self-regulation of star formation. We find that, with blastwave feedback, massive star-forming clumps form in comparable number and with very similar masses in GASOLINE2 and GIZMO. Typical clump masses are in the range 10{sup 7}–10{sup 8} M {sub ⊙}, lower than in most previous works, while giant clumps with masses above 10{sup 9} M {sub ⊙} are exceedingly rare. By contrast, superbubble feedback does not produce massive star-forming bound clumps as galaxies never undergo a phase of violent disk instability. In this scheme, only sporadic, unbound star-forming overdensities lasting a few tens of Myr can arise, triggered by non-linear perturbations from massive satellite companions. We conclude that there is severe tension between explaining massive star-forming clumps observed at z >1 primarily as the result of disk fragmentation driven by gravitational instability and the prevailing view of feedback-regulated galaxy formation. The link between disk stability and star formation efficiency should thus be regarded as a key testing ground for galaxy formation theory.

  19. The Staphylococcus epidermidis gdpS regulates biofilm formation independently of its protein-coding function.

    Science.gov (United States)

    Zhu, Tao; Zhao, Yanfeng; Wu, Yang; Qu, Di

    2017-04-01

    The second messenger cyclic di-guanylate (c-di-GMP) plays an important role in controlling the switch between planktonic and biofilm lifestyles. The synthesis of c-di-GMP is catalyzed by di-guanylate cyclases (DGCs) and the enzymes are characterized by the presence of a conserved GGDEF domain. In the sequenced staphylococcal genomes, gdpS is the only gene encoding a GGDEF domain-containing protein. Previous studies have shown that gdpS contributes to staphylococcal biofilm formation, but its effect remains under debate. In the present study, we deleted gdpS in Staphylococcus epidermidis strain RP62A. Disruption of gdpS in this strain impaired biofilm formation under both static and dynamic flow conditions, suggesting that gdpS act as a positive regulator of biofilm development in this high-biofilm-forming isolate. The predicted translational start site of gdpS in S. epidermidis differs between the Refseq database and the Genbank database. By using site-directed mutagenesis and Western blot analysis, we determined GdpS is translated from the start codon annotated in the Refseq database. In addition, mutation in the GGDEF domain did not affect the ability of gdpS to complement the biofilm defect of the gdpS mutant. Heterologous di-guanylate cyclases expressed in trans failed to complement the gdpS mutant. These results confirmed that gdpS modulates staphylococcal biofilm independently of c-di-GMP signaling pathway. Furthermore, mutations of the start codon did not abolish the capacity of gdpS to enhance biofilm formation. Taken together, these findings indicated that the S. epidermidis gdpS regulates biofilm formation independently of its protein-coding function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary

    Directory of Open Access Journals (Sweden)

    Blair W. McPhee

    2017-09-01

    Full Text Available The latest Triassic is notable for coinciding with the dramatic decline of many previously dominant groups, followed by the rapid radiation of Dinosauria in the Early Jurassic. Among the most common terrestrial vertebrates from this time, sauropodomorph dinosaurs provide an important insight into the changing dynamics of the biota across the Triassic–Jurassic boundary. The Elliot Formation of South Africa and Lesotho preserves the richest assemblage of sauropodomorphs known from this age, and is a key index assemblage for biostratigraphic correlations with other similarly-aged global terrestrial deposits. Past assessments of Elliot Formation biostratigraphy were hampered by an overly simplistic biozonation scheme which divided it into a lower “Euskelosaurus” Range Zone and an upper Massospondylus Range Zone. Here we revise the zonation of the Elliot Formation by: (i synthesizing the last three decades’ worth of fossil discoveries, taxonomic revision, and lithostratigraphic investigation; and (ii systematically reappraising the stratigraphic provenance of important fossil locations. We then use our revised stratigraphic information in conjunction with phylogenetic character data to assess morphological disparity between Late Triassic and Early Jurassic sauropodomorph taxa. Our results demonstrate that the Early Jurassic upper Elliot Formation is considerably more taxonomically and morphologically diverse than previously thought. In contrast, the sauropodomorph fauna of the Late Triassic lower Elliot Formation remains relatively poorly understood due to the pervasive incompleteness of many key specimens, as well as the relative homogeneity of their diagnostic character suites. Our metrics indicate that both Elliot Formation and global sauropodomorph assemblages had greater morphological disparity within the Early Jurassic than the Late Triassic. This result is discussed in the context of changing palaeoclimatic conditions, as well as

  1. Original Mineralogy and Recognition of Upper Boundary of the Sarvak Formation Based on Geochemistry and Isotope Studies

    DEFF Research Database (Denmark)

    Asgari, M; Tahmasebi Poor, A; Barari, Amin

    2014-01-01

    elements and carbon and oxygen isotope values and bivariate plot of them indicate that aragonite was the original carbonate mineralogy of the Sarvak Formation. Variations of Sr/Ca and delta O-18 values versus Mn also illustrate that they were affected by nonmarine diagenesis in a nearly closed system...

  2. HDAC3 Is a Critical Negative Regulator of Long-Term Memory Formation

    Science.gov (United States)

    McQuown, Susan C.; Barrett, Ruth M.; Matheos, Dina P.; Post, Rebecca J.; Rogge, George A.; Alenghat, Theresa; Mullican, Shannon E.; Jones, Steven; Rusche, James R.; Lazar, Mitchell A.; Wood, Marcelo A.

    2011-01-01

    Gene expression is dynamically regulated by chromatin modifications on histone tails, such as acetylation. In general, histone acetylation promotes transcription, whereas histone deacetylation negatively regulates transcription. The interplay between histone acetyl-transerases and histone deacetylases (HDACs) is pivotal for the regulation of gene expression required for long-term memory processes. Currently, very little is known about the role of individual HDACs in learning and memory. We examined the role of HDAC3 in long-term memory using a combined genetic and pharmacologic approach. We used HDAC3–FLOX genetically modified mice in combination with adeno-associated virus-expressing Cre recombinase to generate focal homozygous deletions of Hdac3 in area CA1 of the dorsal hippocampus. To complement this approach, we also used a selective inhibitor of HDAC3, RGFP136 [N-(6-(2-amino-4-fluorophenylamino)-6-oxohexyl)-4-methylbenzamide]. Immunohistochemistry showed that focal deletion or intrahippocampal delivery of RGFP136 resulted in increased histone acetylation. Both the focal deletion of HDAC3 as well as HDAC3 inhibition via RGFP136 significantly enhanced long-term memory in a persistent manner. Next we examined expression of genes implicated in long-term memory from dorsal hippocampal punches using quantitative reverse transcription-PCR. Expression of nuclear receptor subfamily 4 group A, member 2 (Nr4a2) and c-fos was significantly increased in the hippocampus of HDAC3–FLOX mice compared with wild-type controls. Memory enhancements observed in HDAC3–FLOX mice were abolished by intrahippocampal delivery of Nr4a2 small interfering RNA, suggesting a mechanism by which HDAC3 negatively regulates memory formation. Together, these findings demonstrate a critical role for HDAC3 in the molecular mechanisms underlying long-term memory formation. PMID:21228185

  3. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus.

    Science.gov (United States)

    Ribeiro, Cintia L; Silva, Cynthia M; Drost, Derek R; Novaes, Evandro; Novaes, Carolina R D B; Dervinis, Christopher; Kirst, Matias

    2016-03-16

    Adventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural traits and root biomass in cuttings from a pseudo-backcross population of Populus deltoides and Populus trichocarpa. Quantitative trait loci (QTL) mapping and whole-transcriptome analysis of individuals with alternative QTL alleles for AR number were used to identify putative regulators of AR development. Parental individuals and progeny showed extensive segregation for AR developmental traits. Quantitative trait loci for number of AR mapped consistently in the same interval of linkage group (LG) II and LG XIV, explaining 7-10 % of the phenotypic variation. A time series transcriptome analysis identified 26,121 genes differentially expressed during AR development, particularly during the first 24 h after cuttings were harvested. Of those, 1929 genes were differentially regulated between individuals carrying alternative alleles for the two QTL for number of AR, in one or more time point. Eighty-one of these genes were physically located within the QTL intervals for number of AR, including putative homologs of the Arabidopsis genes SUPERROOT2 (SUR2) and TRYPTOPHAN SYNTHASE ALPHA CHAIN (TSA1), both of which are involved in the auxin indole-3-acetic acid (IAA) biosynthesis pathway. This study suggests the involvement of two genes of the tryptophan-dependent auxin biosynthesis pathway, SUR2 and TSA1, in the regulation of a critical trait for the clonal propagation of woody species. A possible model for this regulation is that poplar individuals that have poor AR formation synthesize auxin indole-3-acetic acid (IAA) primarily through the tryptophan (Trp) pathway. Much of the Trp pathway flux appears to be directed to the

  4. Forms of Address in the Regulated Sphere of Communication: The Formation of a New Standard

    Directory of Open Access Journals (Sweden)

    Татьяна Сергеевна Жукова

    2014-12-01

    Full Text Available The article is an attempt to interpret the formation of new standards of use of the forms of address in regulated spheres of communication. Regulated communication is considered as communication restricted by the rules of an organization or a socio-political institute, as well as the rules and standards of speech etiquette and corporate ethics adopted by an organization. It is noted that in modern linguistics there are no typically occurring the conservative and restrictive perception of standards. A new view on the nature of the standard is being formed: the standard must be as close to the communicative situation as possible. The trends in the formation of the standards are identified on the basis of the observation over modern word usage, the analysis of metalinguistic reflection of the native speakers and the surveys of preferable choices of form of address in a particular communicative situation. To conclude it is stressed that the new standards of functioning of the forms of address need further theoretical understanding of this problem, analysis and recommendations for the use of new forms.

  5. Forkhead box O transcription factors in chondrocytes regulate endochondral bone formation.

    Science.gov (United States)

    Eelen, G; Verlinden, L; Maes, C; Beullens, I; Gysemans, C; Paik, J-H; DePinho, R A; Bouillon, R; Carmeliet, G; Verstuyf, A

    2016-11-01

    The differentiation of embryonic mesenchymal cells into chondrocytes and the subsequent formation of a cartilaginous scaffold that enables the formation of long bones are hallmarks of endochondral ossification. During this process, chondrocytes undergo a remarkable sequence of events involving proliferation, differentiation, hypertrophy and eventually apoptosis. Forkhead Box O (FoxO) transcription factors (TFs) are well-known regulators of such cellular processes. Although FoxO3a was previously shown to be regulated by 1,25-dihydroxyvitamin D3 in osteoblasts, a possible role for this family of TFs in chondrocytes during endochondral ossification remains largely unstudied. By crossing Collagen2-Cre mice with FoxO1(lox/lox);FoxO3a(lox/lox);FoxO4(lox/lox) mice, we generated mice in which the three main FoxO isoforms were deleted in growth plate chondrocytes (chondrocyte triple knock-out; CTKO). Intriguingly, CTKO neonates showed a distinct elongation of the hypertrophic zone of the growth plate. CTKO mice had increased overall body and tail length at eight weeks of age and suffered from severe skeletal deformities at older ages. CTKO chondrocytes displayed decreased expression of genes involved in redox homeostasis. These observations illustrate the importance of FoxO signaling in chondrocytes during endochondral ossification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Histone Arginine Methylation by PRMT7 Controls Germinal Center Formation via Regulating Bcl6 Transcription.

    Science.gov (United States)

    Ying, Zhengzhou; Mei, Mei; Zhang, Peizhun; Liu, Chunyi; He, Huacheng; Gao, Fei; Bao, Shilai

    2015-08-15

    B cells are the center of humoral immunity and produce Abs to protect against foreign Ags. B cell defects lead to diseases such as leukemia and lymphomas. Histone arginine methylation is important for regulating gene activation and silencing in cells. Although the process commonly exists in mammalian cells, its roles in B cells are unknown. To explore the effects of aberrant histone arginine methylation on B cells, we generated mice with a B cell-specific knockout of PRMT7, a member of the methyltransferases that mediate arginine methylation of histones. In this article, we showed that the loss of PRMT7 led to decreased mature marginal zone B cells and increased follicular B cells and promoted germinal center formation after immunization. Furthermore, mice lacking PRMT7 expression in B cells secreted low levels of IgG1 and IgA. Abnormal expression of germinal center genes (i.e., Bcl6, Prdm1, and Irf4) was detected in conditional knockout mice. By overexpressing PRMT7 in the Raji and A20 cell lines derived from B cell lymphomas, we validated the fact that PRMT7 negatively regulated Bcl6 expression. Using chromatin immunoprecipitation-PCR, we found that PRMT7 could recruit H4R3me1 and symmetric H4R3me2 to the Bcl6 promoter. These results provide evidence for the important roles played by PRMT7 in germinal center formation. Copyright © 2015 by The American Association of Immunologists, Inc.

  7. Iodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe Roscoff coastal study

    Directory of Open Access Journals (Sweden)

    G. McFiggans

    2010-03-01

    Full Text Available This paper presents a summary of the measurements made during the heavily-instrumented Reactive Halogens in the Marine Boundary Layer (RHaMBLe coastal study in Roscoff on the North West coast of France throughout September 2006. It was clearly demonstrated that iodine-mediated coastal particle formation occurs, driven by daytime low tide emission of molecular iodine, I2, by macroalgal species fully or partially exposed by the receding waterline. Ultrafine particle concentrations strongly correlate with the rapidly recycled reactive iodine species, IO, produced at high concentrations following photolysis of I2. The heterogeneous macroalgal I2 sources lead to variable relative concentrations of iodine species observed by path-integrated and in situ measurement techniques.

    Apparent particle emission fluxes were associated with an enhanced apparent depositional flux of ozone, consistent with both a direct O3 deposition to macroalgae and involvement of O3 in iodine photochemistry and subsequent particle formation below the measurement height. The magnitude of the particle formation events was observed to be greatest at the lowest tides with the highest concentrations of ultrafine particles growing to the largest sizes, probably by the condensation of anthropogenically-formed condensable material. At such sizes the particles should be able to act as cloud condensation nuclei at reasonable atmospheric supersaturations.

  8. BpsR modulates Bordetella biofilm formation by negatively regulating the expression of the Bps polysaccharide.

    Science.gov (United States)

    Conover, Matt S; Redfern, Crystal J; Ganguly, Tridib; Sukumar, Neelima; Sloan, Gina; Mishra, Meenu; Deora, Rajendar

    2012-01-01

    Bordetella bacteria are Gram-negative respiratory pathogens of animals, birds, and humans. A hallmark feature of some Bordetella species is their ability to efficiently survive in the respiratory tract even after vaccination. Bordetella bronchiseptica and Bordetella pertussis form biofilms on abiotic surfaces and in the mouse respiratory tract. The Bps exopolysaccharide is one of the critical determinants for biofilm formation and the survival of Bordetella in the murine respiratory tract. In order to gain a better understanding of regulation of biofilm formation, we sought to study the mechanism by which Bps expression is controlled in Bordetella. Expression of bpsABCD (bpsA-D) is elevated in biofilms compared with levels in planktonically grown cells. We found that bpsA-D is expressed independently of BvgAS. Subsequently, we identified an open reading frame (ORF), BB1771 (designated here bpsR), that is located upstream of and in the opposite orientation to the bpsA-D locus. BpsR is homologous to the MarR family of transcriptional regulators. Measurement of bpsA and bpsD transcripts and the Bps polysaccharide levels from the wild-type and the ΔbpsR strains suggested that BpsR functions as a repressor. Consistent with enhanced production of Bps, the bpsR mutant displayed considerably more structured biofilms. We mapped the bpsA-D promoter region and showed that purified BpsR protein specifically bound to the bpsA-D promoter. Our results provide mechanistic insights into the regulatory strategy employed by Bordetella for control of the production of the Bps polysaccharide and biofilm formation.

  9. A pleiotropic regulator, Frp, affects exopolysaccharide synthesis, biofilm formation, and competence development in Streptococcus mutans.

    Science.gov (United States)

    Wang, Bing; Kuramitsu, Howard K

    2006-08-01

    Exopolysaccharide synthesis, biofilm formation, and competence are important physiologic functions and virulence factors for Streptococcus mutans. In this study, we report the role of Frp, a transcriptional regulator, on the regulation of these traits crucial to pathogenesis. An Frp-deficient mutant showed decreased transcription of several genes important in virulence, including those encoding fructosyltransferase (Ftf), glucosyltransferase B (GtfB), and GtfC, by reverse transcription and quantitative real-time PCR. Expression of Ftf was decreased in the frp mutant, as assessed by Western blotting as well as by the activity assays. Frp deficiency also inhibited the production of GtfB in the presence of glucose and sucrose as well as the production of GtfC in the presence of glucose. As a consequence of the effects on GtfB and -C, sucrose-induced biofilm formation was decreased in the frp mutant. The expression of competence mediated by the competence-signaling peptide (CSP) system, as assessed by comC gene transcription, was attenuated in the frp mutant. As a result, the transformation efficiency was decreased in the frp mutant but was partially restored by adding synthetic CSP. Transcription of the frp gene was significantly increased in the frp mutant under all conditions tested, indicating that frp transcription is autoregulated. Furthermore, complementation of the frp gene in the frp mutant restored transcription of the affected genes to levels similar to those in the wild-type strain. These results suggest that Frp is a novel pleiotropic effector of multiple cellular functions and is involved in the modulation of exopolysaccharide synthesis, sucrose-dependent biofilm formation, and competence development.

  10. ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage.

    Science.gov (United States)

    McNees, Carolyn J; Conlan, Lindus A; Tenis, Nora; Heierhorst, Jörg

    2005-07-06

    Nuclear Rad51 focus formation is required for homology-directed repair of DNA double-strand breaks (DSBs), but its regulation in response to non-DSB lesions is poorly understood. Here we report a novel human SQ/TQ cluster domain-containing protein termed ASCIZ that forms Rad51-containing foci in response to base-modifying DNA methylating agents but not in response to DSB-inducing agents. ASCIZ foci seem to form prior to Rad51 recruitment, and an ASCIZ core domain can concentrate Rad51 in focus-like structures independently of DNA damage. ASCIZ depletion dramatically increases apoptosis after methylating DNA damage and impairs Rad51 focus formation in response to methylating agents but not after ionizing radiation. ASCIZ focus formation and increased apoptosis in ASCIZ-depleted cells depend on the mismatch repair protein MLH1. Interestingly, ASCIZ foci form efficiently during G1 phase, when sister chromatids are unavailable as recombination templates. We propose that ASCIZ acts as a lesion-specific focus scaffold in a Rad51-dependent pathway that resolves cytotoxic repair intermediates, most likely single-stranded DNA gaps, resulting from MLH1-dependent processing of base lesions.

  11. Chlorination or monochloramination: Balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters

    KAUST Repository

    Sanawar, Huma

    2017-08-15

    Disinfection methods like chlorination are increasingly used to sanitize the water, equipment, tools and surfaces in aquaculture facilities. This is to improve water quality, and to maintain a hygienic environment for the well-being of aquatic organisms. However, chlorination can result in formation of regulated disinfection byproducts (DBPs) that can be carcinogenic and toxic. This study aims to evaluate if an optimal balance can be achieved between minimal regulated DBP formation and effective microbial inactivation with either chlorination or monochloramination for application in the Red Sea aquaculture waters. Upon chlorination, the concentration of total trihalomethanes (THMs), primarily bromoform, exceeded the regulatory limit of 80μg/L even at the lowest tested concentration of chlorine (1mg/L) and contact time (1h). Comparatively, regulated THMs concentration was only detectable at 30μg/L level in one of the three sets of monochloraminated marine aquaculture waters. The average log reduction of antibiotic-resistant bacteria (ARB) by chlorine ranged from 2.3-log to 3.2-log with different contact time. The average log reduction of ARB by monochloramine was comparatively lower at 1.9 to 2.9-log. Although viable Staphylococcus aureus was recovered from monochloraminated samples as opposed to chlorinated samples, the abundance of S. aureus was not high enough to result in any significant microbial risks. Both chlorination and monochloramination did not provide any significant improvement in the reduction of antibiotic resistance genes (ARGs). This study demonstrates that a systematic evaluation is needed to determine the optimal disinfectant required to balance both microbial and chemical risks. Compared to chlorine, monochloramine may be a more appropriate disinfection strategy for the treatment of aquaculture effluents prior to discharge or for recirculatory use in the aquaculture facility.

  12. STAT3 regulates ABCA3 expression and influences lamellar body formation in alveolar type II cells.

    Science.gov (United States)

    Matsuzaki, Yohei; Besnard, Valérie; Clark, Jean C; Xu, Yan; Wert, Susan E; Ikegami, Machiko; Whitsett, Jeffrey A

    2008-05-01

    ATP-Binding Cassette A3 (ABCA3) is a lamellar body associated lipid transport protein required for normal synthesis and storage of pulmonary surfactant in type II cells in the alveoli. In this study, we demonstrate that STAT3, activated by IL-6, regulates ABCA3 expression in vivo and in vitro. ABCA3 mRNA and immunostaining were decreased in adult mouse lungs in which STAT3 was deleted from the respiratory epithelium (Stat3(Delta/Delta) mice). Consistent with the role of STAT3, intratracheal IL-6 induced ABCA3 expression in vivo. Decreased ABCA3 and abnormalities in the formation of lamellar bodies, the intracellular site of surfactant lipid storage, were observed in Stat3(Delta/Delta) mice. Expression of SREBP1a and 1c, SCAP, ABCA3, and AKT mRNAs was inhibited by deletion of Stat3 in type II cells isolated from Stat3(Delta/Delta) mice. The activities of PI3K and AKT were required for normal Abca3 gene expression in vitro. AKT activation induced SREBP expression and increased the activity of the Abca3 promoter in vitro, consistent with the role of STAT3 signaling, at least in part via SREBP, in the regulation of ABCA3. ABCA3 expression is regulated by IL-6 in a pathway that includes STAT3, PI3K, AKT, SCAP, and SREBP. Activation of STAT3 after exposure to IL-6 enhances ABCA3 expression, which, in turn, influences pulmonary surfactant homeostasis.

  13. Becoming popular: Interpersonal emotion regulation predicts relationship formation in real life social networks

    Directory of Open Access Journals (Sweden)

    Karen eNiven

    2015-09-01

    Full Text Available Building relationships is crucial for satisfaction and success, especially when entering new social contexts. In the present paper, we investigate whether attempting to improve others’ feelings helps people to make connections in new networks. In Study 1, a social network study following new networks of people for a twelve-week period indicated that use of interpersonal emotion regulation (IER strategies predicted growth in popularity, as indicated by other network members’ reports of spending time with the person, in work and non-work interactions. In Study 2, linguistic analysis of the tweets from over 8000 Twitter users from formation of their accounts revealed that use of IER predicted greater popularity in terms of the number of followers gained. However, not all types of IER had positive effects. Behavioral IER strategies (which use behavior to reassure or comfort in order to regulate affect were associated with greater popularity, while cognitive strategies (which change a person’s thoughts about his or her situation or feelings in order to regulate affect were negatively associated with popularity. Our findings have implications for our understanding of how new relationships are formed, highlighting the important the role played by intentional emotion regulatory processes.

  14. Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine mediated particle formation in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2012-09-01

    Full Text Available Iodine oxide particles are known to nucleate in the marine boundary layer where gas phase molecular iodine and organoiodine species are produced by macroalgae. These ultra-fine particles may then grow through the condensation of other materials to sizes where they may serve as cloud condensation nuclei. There has been some debate over the chemical identity of the initially nucleated particles. In laboratory simulations, hygroscopic measurements have been used to infer that they are composed of insoluble I2O4, while elemental analysis of laboratory generated particles suggests soluble I2O5 or its hydrated form iodic acid, HIO3 (I2O5·H2O. In this paper we explore the response of super-micron sized aqueous iodic acid solution droplets to varying humidity using both Raman microscopy and single particle electrodynamic traps. These measurements reveal that the propensity of an iodic acid solution droplet to crystallise is negligible on drying to ~0% relative humidity (RH. On applying mechanical pressure to these droplets they shatter in a manner consistent with an ultra-viscous liquid or a brittle glass. Water retention in amorphous material at low RH is important for understanding the hygroscopic growth of aerosol particles and uptake of other condensable material. Subsequent water uptake between 10 and 20% RH causes their viscosity to reduce sufficiently that the cracked droplets flow and merge. The persistence of iodic acid solution in an amorphous state, rather than a crystalline state, suggests they will more readily accommodate other condensable material and are therefore more likely to grow to sizes where they may serve as cloud condensation nuclei. On increasing the humidity to ~90% the mass of the droplets only increases by ~20% with a corresponding increase in radius of only 6%, which is remarkably small for a highly soluble material. We suggest that the

  15. The Cytoplasmic Domain of Varicella-Zoster Virus Glycoprotein H Regulates Syncytia Formation and Skin Pathogenesis

    Science.gov (United States)

    Yang, Edward

    2014-01-01

    The conserved herpesvirus fusion complex consists of glycoproteins gB, gH, and gL which is critical for virion envelope fusion with the cell membrane during entry. For Varicella Zoster Virus (VZV), the complex is necessary for cell-cell fusion and presumed to mediate entry. VZV causes syncytia formation via cell-cell fusion in skin and in sensory ganglia during VZV reactivation, leading to neuronal damage, a potential contributory factor for the debilitating condition of postherpetic neuralgia. The gH cytoplasmic domain (gHcyt) is linked to the regulation of gB/gH-gL-mediated cell fusion as demonstrated by increased cell fusion in vitro by an eight amino acid (aa834-841) truncation of the gHcyt. The gHcyt regulation was identified to be dependent on the physical presence of the domain, and not of specific motifs or biochemical properties as substitution of aa834-841 with V5, cMyc, and hydrophobic or hydrophilic sequences did not affect fusion. The importance of the gHcyt length was corroborated by stepwise deletions of aa834-841 causing incremental increases in cell fusion, independent of gH surface expression and endocytosis. Consistent with the fusion assay, truncating the gHcyt in the viral genome caused exaggerated syncytia formation and significant reduction in viral titers. Importantly, infection of human skin xenografts in SCID mice was severely impaired by the truncation while maintaining the gHcyt length with the V5 substitution preserved typical replication in vitro and in skin. A role for the gHcyt in modulating the functions of the gB cytoplasmic domain (gBcyt) is proposed as the gHcyt truncation substantially enhanced cell fusion in the presence of the gB[Y881F] mutation. The significant reduction in skin infection caused by hyperfusogenic mutations in either the gHcyt or gBcyt demonstrates that both domains are critical for regulating syncytia formation and failure to control cell fusion, rather than enhancing viral spread, is severely detrimental to

  16. Triennial Reproduction Symposium: the ovarian follicular reserve in cattle: what regulates its formation and size?

    Science.gov (United States)

    Fortune, J E; Yang, M Y; Allen, J J; Herrick, S L

    2013-07-01

    The ovarian follicular reserve has been linked to fertility in cattle. Young adult cattle with low vs. high numbers of antral follicles ≥ 3 mm in diameter in follicular waves also have fewer preantral follicles and decreased fertility. This underscores the importance of understanding the factors that regulate early follicular development and establish the ovarian follicular reserve, but little is known about how the follicular reserve is first established. In ruminants and humans, follicles form during fetal life, but there is a gap (about 50 d in cattle) between the appearance of the first primordial follicles and the first growing, primary follicles. In this review we present evidence that in cattle, fetal ovarian steroids (i.e., estradiol and progesterone) are negative regulators of both follicle formation and of the acquisition by newly formed follicles of the capacity to activate (i.e., initiate growth). The results indicate that capacity to activate is linked to the completion of meiotic prophase I by the oocyte. The inhibitory effects of estradiol on follicle activation were found to be reversible and correlated with inhibition of the progression of meiotic prophase I. Fetal bovine ovaries produce steroid hormones and production varies considerably during gestation and in a pattern consistent with the hypothesis that they inhibit follicle formation and capacity of newly formed follicles to activate in vivo. However, little was known about how steroid production is regulated. In our studies, both LH and FSH stimulated progesterone and estradiol production by ovarian pieces in vitro. The addition of testosterone to the culture medium enhanced estradiol production, especially when FSH was also present, but inhibited progesterone production, even in the presence of gonadotropins. Evidence is also presented for effects of maternal nutrition and health and for potential effects of estrogenic endocrine-disrupting chemicals on the size of the ovarian follicular

  17. A TNF-regulated recombinatorial macrophage immune receptor implicated in granuloma formation in tuberculosis.

    Science.gov (United States)

    Beham, Alexander W; Puellmann, Kerstin; Laird, Rebecca; Fuchs, Tina; Streich, Roswita; Breysach, Caroline; Raddatz, Dirk; Oniga, Septimia; Peccerella, Teresa; Findeisen, Peter; Kzhyshkowska, Julia; Gratchev, Alexei; Schweyer, Stefan; Saunders, Bernadette; Wessels, Johannes T; Möbius, Wiebke; Keane, Joseph; Becker, Heinz; Ganser, Arnold; Neumaier, Michael; Kaminski, Wolfgang E

    2011-11-01

    Macrophages play a central role in host defense against mycobacterial infection and anti- TNF therapy is associated with granuloma disorganization and reactivation of tuberculosis in humans. Here, we provide evidence for the presence of a T cell receptor (TCR) αβ based recombinatorial immune receptor in subpopulations of human and mouse monocytes and macrophages. In vitro, we find that the macrophage-TCRαβ induces the release of CCL2 and modulates phagocytosis. TNF blockade suppresses macrophage-TCRαβ expression. Infection of macrophages from healthy individuals with mycobacteria triggers formation of clusters that express restricted TCR Vβ repertoires. In vivo, TCRαβ bearing macrophages abundantly accumulate at the inner host-pathogen contact zone of caseous granulomas from patients with lung tuberculosis. In chimeric mouse models, deletion of the variable macrophage-TCRαβ or TNF is associated with structurally compromised granulomas of pulmonary tuberculosis even in the presence of intact T cells. These results uncover a TNF-regulated recombinatorial immune receptor in monocytes/macrophages and demonstrate its implication in granuloma formation in tuberculosis.

  18. A TNF-regulated recombinatorial macrophage immune receptor implicated in granuloma formation in tuberculosis.

    Directory of Open Access Journals (Sweden)

    Alexander W Beham

    2011-11-01

    Full Text Available Macrophages play a central role in host defense against mycobacterial infection and anti- TNF therapy is associated with granuloma disorganization and reactivation of tuberculosis in humans. Here, we provide evidence for the presence of a T cell receptor (TCR αβ based recombinatorial immune receptor in subpopulations of human and mouse monocytes and macrophages. In vitro, we find that the macrophage-TCRαβ induces the release of CCL2 and modulates phagocytosis. TNF blockade suppresses macrophage-TCRαβ expression. Infection of macrophages from healthy individuals with mycobacteria triggers formation of clusters that express restricted TCR Vβ repertoires. In vivo, TCRαβ bearing macrophages abundantly accumulate at the inner host-pathogen contact zone of caseous granulomas from patients with lung tuberculosis. In chimeric mouse models, deletion of the variable macrophage-TCRαβ or TNF is associated with structurally compromised granulomas of pulmonary tuberculosis even in the presence of intact T cells. These results uncover a TNF-regulated recombinatorial immune receptor in monocytes/macrophages and demonstrate its implication in granuloma formation in tuberculosis.

  19. Location, formation and biosynthetic regulation of cellulases in the gliding bacteria Cytophaga hutchinsonii

    Directory of Open Access Journals (Sweden)

    Elijah Johnson

    2006-01-01

    Full Text Available An analysis of the recently published genome sequence of Cytophagahutchinsonii revealed an unusual collection of genes for an organism that can attackcrystalline cellulose. Consequently, questions were being raised by cellulase scientists, as towhat mechanism this organism uses to degrade its insoluble substrates. Cellulose, being ahighly polymeric compound and insoluble in water, cannot enter the cell walls ofmicroorganisms. Cellulose-degrading enzymes have therefore to be located on the surface ofthe cell wall or released extracellularly. The location of most cellulase enzymes has beenstudied. However, basic information on C. hutchinsonii cellulases is almost non-existent. Inthe present study, the location, formation and biosynthetic regulation of cellulases in C.hutchinsonii were demonstrated on different substrates. Various fractions isolated from C.hutchinsonii after cell rupture were assayed for carboxymethyl-cellulase activity (CMC.The cellulases were found to be predominantly cell-free during active growth on solka-flok,although 30% of activity was recorded on cell-bound enzymes. Relatively little CM-cellulase was formed when cells were grown on glucose and cellobiose. Apparently glucoseor labile substrates such as cellobiose seem to repress the formation of CM-cellulase. Thesefindings should provide some insight into possible hydrolysis mechanisms by C.hutchinsonii.

  20. Cytoplasmic carboxypeptidase 5 regulates tubulin glutamylation and zebrafish cilia formation and function

    Science.gov (United States)

    Pathak, Narendra; Austin-Tse, Christina A.; Liu, Yan; Vasilyev, Aleksandr; Drummond, Iain A.

    2014-01-01

    Glutamylation is a functionally important tubulin posttranslational modification enriched on stable microtubules of neuronal axons, mitotic spindles, centrioles, and cilia. In vertebrates, balanced activities of tubulin glutamyl ligase and cytoplasmic carboxypeptidase deglutamylase enzymes maintain organelle- and cell type–specific tubulin glutamylation patterns. Tubulin glutamylation in cilia is regulated via restricted subcellular localization or expression of tubulin glutamyl ligases (ttlls) and nonenzymatic proteins, including the zebrafish TPR repeat protein Fleer/Ift70. Here we analyze the expression patterns of ccp deglutamylase genes during zebrafish development and the effects of ccp gene knockdown on cilia formation, morphology, and tubulin glutamylation. The deglutamylases ccp2, ccp5, and ccp6 are expressed in ciliated cells, whereas ccp1 expression is restricted to the nervous system. Only ccp5 knockdown increases cilia tubulin glutamylation, induces ciliopathy phenotypes, including axis curvature, hydrocephalus, and pronephric cysts, and disrupts multicilia motility, suggesting that Ccp5 is the principal tubulin deglutamylase that maintains functional levels of cilia tubulin glutamylation. The ability of ccp5 knockdown to restore cilia tubulin glutamylation in fleer/ift70 mutants and rescue pronephric multicilia formation in both fleer- and ift88-deficient zebrafish indicates that tubulin glutamylation is a key driver of ciliogenesis. PMID:24743595

  1. Regulation of the epithelial adhesion molecule CEACAM1 is important for palate formation.

    Directory of Open Access Journals (Sweden)

    Junko Mima

    Full Text Available Cleft palate results from a mixture of genetic and environmental factors and occurs when the bilateral palatal shelves fail to fuse. The objective of this study was to search for new genes involved in mouse palate formation. Gene expression of murine embryonic palatal tissue was analyzed at various developmental stages before, during, and after palate fusion using GeneChip® microarrays. Ceacam1 was one of the highly up-regulated genes during palate formation, and this was confirmed by quantitative real-time PCR. Immunohistochemical staining showed that CEACAM1 was present in prefusion palatal epithelium and was degraded during fusion. To investigate the developmental role of CEACAM1, function-blocking antibody was added to embryonic mouse palate in organ culture. Palatal fusion was inhibited by this function-blocking antibody. To investigate the subsequent developmental role of CEACAM1, we characterized Ceacam1-deficient (Ceacam1(-/- mice. Epithelial cells persisted abnormally at the midline of the embryonic palate even on day E16.0, and palatal fusion was delayed in Ceacam1(-/- mice. TGFβ3 expression, apoptosis, and cell proliferation in palatal epithelium were not affected in the palate of Ceacam1(-/-mice. However, CEACAM1 expression was retained in the remaining MEE of TGFβ-deficient mice. These results suggest that CEACAM1 has roles in the initiation of palatal fusion via epithelial cell adhesion.

  2. ZAP-70 kinase regulates HIV cell-to-cell spread and virological synapse formation.

    Science.gov (United States)

    Sol-Foulon, Nathalie; Sourisseau, Marion; Porrot, Françoise; Thoulouze, Maria-Isabel; Trouillet, Céline; Nobile, Cinzia; Blanchet, Fabien; di Bartolo, Vincenzo; Noraz, Nelly; Taylor, Naomi; Alcover, Andres; Hivroz, Claire; Schwartz, Olivier

    2007-01-24

    HIV efficiently spreads in lymphocytes, likely through virological synapses (VSs). These cell-cell junctions share some characteristics with immunological synapses, but cellular proteins required for their constitution remain poorly characterized. We have examined here the role of ZAP-70, a key kinase regulating T-cell activation and immunological synapse formation, in HIV replication. In lymphocytes deficient for ZAP-70, or expressing a kinase-dead mutant of the protein, HIV replication was strikingly delayed. We have characterized further this replication defect. ZAP-70 was dispensable for the early steps of viral cycle, from entry to expression of viral proteins. However, in the absence of ZAP-70, intracellular Gag localization was impaired. ZAP-70 was required in infected donor cells for efficient cell-to-cell HIV transmission to recipients and for formation of VSs. These results bring novel insights into the links that exist between T-cell activation and HIV spread, and suggest that HIV usurps components of the immunological synapse machinery to ensure its own spread through cell-to-cell contacts.

  3. A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity

    Science.gov (United States)

    Kumar, Vinod; Bouameur, Jamal-Eddine; Bär, Janina; Rice, Robert H.; Hornig-Do, Hue-Tran; Roop, Dennis R.; Schwarz, Nicole; Brodesser, Susanne; Thiering, Sören; Leube, Rudolf E.; Wiesner, Rudolf J.; Vijayaraj, Preethi; Brazel, Christina B.; Heller, Sandra; Binder, Hans; Löffler-Wirth, Henry; Seibel, Peter

    2015-01-01

    Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI−/− and KtyII−/−K8 mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation. PMID:26644517

  4. Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium

    Science.gov (United States)

    Heindl, Jason E.; Wang, Yi; Heckel, Brynn C.; Mohari, Bitan; Feirer, Nathan; Fuqua, Clay

    2014-01-01

    For many pathogenic bacteria surface attachment is a required first step during host interactions. Attachment can proceed to invasion of host tissue or cells or to establishment of a multicellular bacterial community known as a biofilm. The transition from a unicellular, often motile, state to a sessile, multicellular, biofilm-associated state is one of the most important developmental decisions for bacteria. Agrobacterium tumefaciens genetically transforms plant cells by transfer and integration of a segment of plasmid-encoded transferred DNA (T-DNA) into the host genome, and has also been a valuable tool for plant geneticists. A. tumefaciens attaches to and forms a complex biofilm on a variety of biotic and abiotic substrates in vitro. Although rarely studied in situ, it is hypothesized that the biofilm state plays an important functional role in the ecology of this organism. Surface attachment, motility, and cell division are coordinated through a complex regulatory network that imparts an unexpected asymmetry to the A. tumefaciens life cycle. In this review, we describe the mechanisms by which A. tumefaciens associates with surfaces, and regulation of this process. We focus on the transition between flagellar-based motility and surface attachment, and on the composition, production, and secretion of multiple extracellular components that contribute to the biofilm matrix. Biofilm formation by A. tumefaciens is linked with virulence both mechanistically and through shared regulatory molecules. We detail our current understanding of these and other regulatory schemes, as well as the internal and external (environmental) cues mediating development of the biofilm state, including the second messenger cyclic-di-GMP, nutrient levels, and the role of the plant host in influencing attachment and biofilm formation. A. tumefaciens is an important model system contributing to our understanding of developmental transitions, bacterial cell biology, and biofilm formation

  5. Mechanisms and Regulation of Surface Interactions and Biofilm Formation in Agrobacterium

    Directory of Open Access Journals (Sweden)

    Jason E. Heindl

    2014-05-01

    Full Text Available For many pathogenic bacteria surface attachment is a required first step during host interactions. Attachment can proceed to invasion of host tissue or cells or to establishment of a multicellular bacterial community known as a biofilm. The transition from a unicellular, often motile, state to a sessile, multicellular, biofilm-associated state is one of the most important developmental decisions for bacteria. Agrobacterium tumefaciens genetically transforms plant cells by transfer and integration of a segment of plasmid-encoded transferred DNA (T-DNA into the host genome, and has also been a valuable tool for plant geneticists. A. tumefaciens attaches to and forms a complex biofilm on a variety of biotic and abiotic substrates in vitro. Although rarely studied in situ, it is hypothesized that the biofilm state plays an important functional role in the ecology of this organism. Surface attachment, motility, and cell division are coordinated through a complex regulatory network that imparts an unexpected asymmetry to the A. tumefaciens life cycle. In this review we describe the mechanisms by which A. tumefaciens associates with surfaces, and regulation of this process. We focus on the transition between flagellar-based motility and surface attachment, and on the composition, production, and secretion of multiple extracellular components that contribute to the biofilm matrix. Biofilm formation by A. tumefaciens is linked with virulence both mechanistically and through shared regulatory molecules. We detail our current understanding of these and other regulatory schemes, as well as the internal and external (environmental cues mediating development of the biofilm state, including the second messenger cyclic-di-GMP, nutrient levels, and the role of the plant host in influencing attachment and biofilm formation. A. tumefaciens is an important model system contributing to our understanding of developmental transitions, bacterial cell biology, and

  6. Proximal visceral endoderm and extraembryonic ectoderm regulate the formation of primordial germ cell precursors

    Directory of Open Access Journals (Sweden)

    Hayashi Katsuhiko

    2007-12-01

    Full Text Available Abstract Background The extraembryonic tissues, visceral endoderm (VE and extraembryonic ectoderm (ExE are known to be important for the induction of primordial germ cells (PGCs in mice via activation of the bone morphogenetic protein (BMP signalling pathway. We investigated whether the VE and ExE have a direct role in the specification of PGCs, or in an earlier event, namely the induction of the PGC precursors in the proximal posterior epiblast cells. Results We cultured embryonic day (E 5.75 to E7.0 mouse embryos in an explant-assay with or without extraembryonic tissues. The reconstituted pieces of embryonic and extraembryonic tissues were assessed for the formation of both PGC precursors and specified PGCs. For this, Blimp1:gfp and Stella:gfp transgenic mouse lines were used to distinguish between PGC precursors and specified PGC, respectively. We observed that the VE regulates formation of an appropriate number of PGC precursors between E6.25–E7.25, but it is not essential for the subsequent specification of PGCs from the precursor cells. Furthermore, we show that the ExE has a different role from that of the VE, which is to restrict localization of PGC precursors to the posterior part of the embryo. Conclusion We show that the VE and ExE have distinct roles in the induction of PGC precursors, namely the formation of a normal number of PGC precursors, and their appropriate localization during early development. However, these tissues do not have a direct role during the final stages of specification of the founder population of PGCs.

  7. REGULATOR OF BULB BIOGENESIS1 (RBB1) Is Involved in Vacuole Bulb Formation in Arabidopsis.

    Science.gov (United States)

    Han, Sang Won; Alonso, Jose M; Rojas-Pierce, Marcela

    2015-01-01

    Vacuoles are dynamic compartments with constant fluctuations and transient structures such as trans-vacuolar strands and bulbs. Bulbs are highly dynamic spherical structures inside vacuoles that are formed by multiple layers of membranes and are continuous with the main tonoplast. We recently carried out a screen for mutants with abnormal trafficking to the vacuole or aberrant vacuole morphology. We characterized regulator of bulb biogenesis1-1 (rbb1-1), a mutant in Arabidopsis that contains increased numbers of bulbs when compared to the parental control. rbb1-1 mutants also contain fewer transvacuolar strands than the parental control, and we propose the hypothesis that the formation of transvacuolar strands and bulbs is functionally related. We propose that the bulbs may function transiently to accommodate membranes and proteins when transvacuolar strands fail to elongate. We show that RBB1 corresponds to a very large protein of unknown function that is specific to plants, is present in the cytosol, and may associate with cellular membranes. RBB1 is involved in the regulation of vacuole morphology and may be involved in the establishment or stability of trans-vacuolar strands and bulbs.

  8. Nod factors potentiate auxin signaling for transcriptional regulation and lateral root formation in Medicago truncatula.

    Science.gov (United States)

    Herrbach, Violaine; Chirinos, Ximena; Rengel, David; Agbevenou, Kokoévi; Vincent, Rémy; Pateyron, Stéphanie; Huguet, Stéphanie; Balzergue, Sandrine; Pasha, Asher; Provart, Nicholas; Gough, Clare; Bensmihen, Sandra

    2017-01-01

    Nodulation (Nod) factors (NFs) are symbiotic molecules produced by rhizobia that are essential for establishment of the rhizobium-legume endosymbiosis. Purified NFs can stimulate lateral root formation (LRF) in Medicago truncatula, but little is known about the molecular mechanisms involved. Using a combination of reporter constructs, pharmacological and genetic approaches, we show that NFs act on early steps of LRF in M. truncatula, independently of the ethylene signaling pathway and of the cytokinin receptor MtCRE1, but in interaction with auxin. We conducted a whole-genome transcriptomic study upon NF and/or auxin treatments, using a lateral root inducible system adapted for M. truncatula. This revealed a large overlap between NF and auxin signaling and, more interestingly, synergistic interactions between these molecules. Three groups showing interaction effects were defined: group 1 contained more than 1500 genes responding specifically to the combinatorial treatment of NFs and auxin; group 2 comprised auxin-regulated genes whose expression was enhanced or antagonized by NFs; and in group 3 the expression of NF regulated genes was antagonized by auxin. Groups 1 and 2 were enriched in signaling and metabolic functions, which highlights important crosstalk between NF and auxin signaling for both developmental and symbiotic processes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain

    Directory of Open Access Journals (Sweden)

    Michalina Respondek

    2015-12-01

    Full Text Available Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC, which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells.

  10. [Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain].

    Science.gov (United States)

    Respondek, Michalina; Buszman, Ewa

    2015-12-31

    Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC), which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells.

  11. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation

    Directory of Open Access Journals (Sweden)

    Mimi L. Phan

    2016-01-01

    Full Text Available Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded.

  12. TGFβ1a regulates zebrafish posterior lateral line formation via Smad5 mediated pathway.

    Science.gov (United States)

    Xing, Cencan; Gong, Bo; Xue, Yu; Han, Yanchao; Wang, Yixia; Meng, Anming; Jia, Shunji

    2015-02-01

    The zebrafish sensory posterior lateral line (pLL) has become an attractive model for studying collective cell migration and cell morphogenesis. Recent studies have indicated that chemokine, Wnt/β-catenin, Fgf, and Delta-Notch signaling pathways participate in regulating pLL development. However, it remains unclear whether TGFβ signaling pathway is involved in pLL development. Here we report a critical role of TGFβ1 in regulating morphogenesis of the pLL primordium (pLLP). The tgfβ1a gene is abundantly expressed in the lateral line primordium. Knockdown or knockout of tgfβ1a leads to a reduction of neuromast number, an increase of inter-neuromast distance, and a reduced number of hair cells. The aberrant morphogenesis in embryos depleted of tgfβ1a correlates with the reduced expression of atoh1a, deltaA, and n-cadherin/cdh2, which are known important regulators of the pLLP morphogenesis. Like tgfβ1a depletion, knockdown of smad5 that expresses in the pLLP, affects pLLP development whereas overexpression of a constitutive active Smad5 isoform rescues the defects in embryos depleted of tgfβ1a, indicating that Smad5 mediates tgfβ1a function in pLLP development. Therefore, TGFβ/Smad5 signaling plays an important role in the zebrafish lateral line formation. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  13. Wdr18 is required for Kupffer's vesicle formation and regulation of body asymmetry in zebrafish.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available Correct specification of the left-right (L-R axis is important for organ morphogenesis. Conserved mechanisms involving cilia rotation inside node-like structures and asymmetric Nodal signaling in the lateral plate mesoderm (LPM, which are important symmetry-breaking events, have been intensively studied. In zebrafish, the clustering and migration of dorsal forerunner cells (DFCs is critical for the formation of the Kuppfer's vesicle (KV. However, molecular events underlying DFC clustering and migration are less understood. The WD-repeat proteins function in a variety of biological processes, including cytoskeleton assembly, intracellular trafficking, mRNA splicing, transcriptional regulation and cell migration. However, little is known about the function of WD-repeat proteins in L-R asymmetry determination. Here, we report the identification and functional analyses of zebrafish wdr18, a novel gene that encodes a WD-repeat protein that is highly conserved among vertebrate species. wdr18 was identified from a Tol2 transposon-mediated enhancer trap screen. Follow-up analysis of wdr18 mRNA expression showed that it was detected in DFCs or the KV progenitor cells and later in the KV at early somitogenesis stages. Morpholino knockdown of wdr18 resulted in laterality defects in the visceral organs, which were preceded by the mis-expression of Nodal-related genes, including spaw and pitx2. Examination of morphants at earlier stages revealed that the KV had fewer and shorter cilia which are immotile and a smaller cavity. We further investigated the organization of DFCs in wdr18 morphant embryos using ntl and sox17 as specific markers and found that the clustering and migration of DFC was altered, leading to a disorganized KV. Finally, through a combination of wdr18 and itgb1b morpholino injections, we provided evidence that wdr18 and itgb1b genetically interact in the laterality determination process. Thus, we reveal a new and essential role for WD

  14. Endocrine regulation of carbonate precipitate formation in marine fish intestine by stanniocalcin and PTHrP.

    Science.gov (United States)

    Gregório, Sílvia F; Carvalho, Edison S M; Campinho, Marco A; Power, Deborah M; Canário, Adelino V M; Fuentes, Juan

    2014-05-01

    In marine fish, high epithelial bicarbonate secretion by the intestine generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. In vitro studies highlight the involvement of the calciotropic hormones PTHrP (parathyroid hormone-related protein) and stanniocalcin (STC) in the regulation of epithelial bicarbonate transport. The present study tested the hypothesis that calciotropic hormones have a regulatory role in carbonate precipitate formation in vivo. Sea bream (Sparus aurata) juveniles received single intraperitoneal injections of piscine PTHrP(1-34), the PTH/PTHrP receptor antagonist PTHrP(7-34) or purified sea bream STC, or were passively immunized with polyclonal rabbit antisera raised against sea bream STC (STC-Ab). Endocrine effects on the expression of the basolateral sodium bicarbonate co-transporter (Slc4a4.A), the apical anion exchangers Slc26a6.A and Slc26a3.B, and the V-type proton pump β-subunit (Atp6v1b) in the anterior intestine were evaluated. In keeping with their calciotropic nature, the hypocalcaemic factors PTHrP(7-34) and STC up-regulated gene expression of all transporters. In contrast, the hypercalcaemic factor PTHrP(1-34) and STC antibodies down-regulated transporters involved in the bicarbonate secretion cascade. Changes in intestine luminal precipitate contents provoked by calcaemic endocrine factors validated these results: 24 h post-injection either PTHrP(1-34) or immunization with STC-Ab reduced the carbonate precipitate content in the sea bream intestine. In contrast, the PTH/PTHrP receptor antagonist PTHrP(7-34) increased not only the precipitated fraction but also the concentration of HCO3(-) equivalents in the intestinal fluid. These results confirm the hypothesis that calciotropic hormones have a regulatory role in carbonate precipitate formation in vivo in the intestine of marine fish. Furthermore, they illustrate for the first time in fish the counteracting effect of PTHr

  15. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  16. A Genome-wide RNAi Screen for Microtubule Bundle Formation and Lysosome Motility Regulation in Drosophila S2 Cells

    Directory of Open Access Journals (Sweden)

    Amber L. Jolly

    2016-01-01

    Full Text Available Long-distance intracellular transport of organelles, mRNA, and proteins (“cargo” occurs along the microtubule cytoskeleton by the action of kinesin and dynein motor proteins, but the vast network of factors involved in regulating intracellular cargo transport are still unknown. We capitalize on the Drosophila melanogaster S2 model cell system to monitor lysosome transport along microtubule bundles, which require enzymatically active kinesin-1 motor protein for their formation. We use an automated tracking program and a naive Bayesian classifier for the multivariate motility data to analyze 15,683 gene phenotypes and find 98 proteins involved in regulating lysosome motility along microtubules and 48 involved in the formation of microtubule filled processes in S2 cells. We identify innate immunity genes, ion channels, and signaling proteins having a role in lysosome motility regulation and find an unexpected relationship between the dynein motor, Rab7a, and lysosome motility regulation.

  17. Staphylococcus aureus sarA Regulates Inflammation and Colonization during Central Nervous System Biofilm Formation

    Science.gov (United States)

    Snowden, Jessica N.; Beaver, Matt; Beenken, Karen; Smeltzer, Mark; Horswill, Alexander R.; Kielian, Tammy

    2013-01-01

    Infection is a frequent and serious complication following the treatment of hydrocephalus with CSF shunts, with limited therapeutic options because of biofilm formation along the catheter surface. Here we evaluated the possibility that the sarA regulatory locus engenders S. aureus more resistant to immune recognition in the central nervous system (CNS) based on its reported ability to regulate biofilm formation. We utilized our established model of CNS catheter-associated infection, similar to CSF shunt infections seen in humans, to compare the kinetics of bacterial titers, cytokine production and inflammatory cell influx elicited by wild type S. aureus versus an isogenic sarA mutant. The sarA mutant was more rapidly cleared from infected catheters compared to its isogenic wild type strain. Consistent with this finding, several pro-inflammatory cytokines and chemokines, including IL-17, CXCL1, and IL-1β were significantly increased in the brain following infection with the sarA mutant versus wild type S. aureus, in agreement with the fact that the sarA mutant displayed impaired biofilm growth and favored a planktonic state. Neutrophil influx into the infected hemisphere was also increased in the animals infected with the sarA mutant compared to wild type bacteria. These changes were not attributable to extracellular protease activity, which is increased in the context of SarA mutation, since similar responses were observed between sarA and a sarA/protease mutant. Overall, these results demonstrate that sarA plays an important role in attenuating the inflammatory response during staphylococcal biofilm infection in the CNS via a mechanism that remains to be determined. PMID:24386336

  18. Staphylococcus aureus sarA regulates inflammation and colonization during central nervous system biofilm formation.

    Directory of Open Access Journals (Sweden)

    Jessica N Snowden

    Full Text Available Infection is a frequent and serious complication following the treatment of hydrocephalus with CSF shunts, with limited therapeutic options because of biofilm formation along the catheter surface. Here we evaluated the possibility that the sarA regulatory locus engenders S. aureus more resistant to immune recognition in the central nervous system (CNS based on its reported ability to regulate biofilm formation. We utilized our established model of CNS catheter-associated infection, similar to CSF shunt infections seen in humans, to compare the kinetics of bacterial titers, cytokine production and inflammatory cell influx elicited by wild type S. aureus versus an isogenic sarA mutant. The sarA mutant was more rapidly cleared from infected catheters compared to its isogenic wild type strain. Consistent with this finding, several pro-inflammatory cytokines and chemokines, including IL-17, CXCL1, and IL-1β were significantly increased in the brain following infection with the sarA mutant versus wild type S. aureus, in agreement with the fact that the sarA mutant displayed impaired biofilm growth and favored a planktonic state. Neutrophil influx into the infected hemisphere was also increased in the animals infected with the sarA mutant compared to wild type bacteria. These changes were not attributable to extracellular protease activity, which is increased in the context of SarA mutation, since similar responses were observed between sarA and a sarA/protease mutant. Overall, these results demonstrate that sarA plays an important role in attenuating the inflammatory response during staphylococcal biofilm infection in the CNS via a mechanism that remains to be determined.

  19. Rho-kinase signalling regulates CXC chemokine formation and leukocyte recruitment in colonic ischemia-reperfusion.

    Science.gov (United States)

    Santen, Stefan; Wang, Yusheng; Laschke, Matthias W; Menger, Michael D; Jeppsson, Bengt; Thorlacius, Henrik

    2010-09-01

    Leukocyte recruitment is a key feature in ischemia-reperfusion (I/R)-induced tissue injury. The aim of the present study was to investigate the effect of Rho-kinase inhibition on I/R-provoked leukocyte recruitment in the colon. C57BL/6 mice were subjected to 30 min of ischemia by clamping of the superior mesenteric artery followed by 120 min of reperfusion. Intraperitoneal pretreatment with the selective Rho-kinase inhibitors fasudil (4-40 mg/kg) and Y-27632 (1-10 mg/kg) was administered prior to induction of colonic I/R. Leukocyte-endothelium interactions were analyzed by intravital fluorescence microscopy. Colonic content of tumour necrosis factor-alpha (TNF-alpha) and the CXC chemokines macrophage inflammatory protein-2 (MIP-2) and cytokine-induced neutrophil chemoattractant (KC) were determined by ELISA. Additionally, colonic activity of myeloperoxidase (MPO), a marker of leukocyte infiltration, and malondialdehyde (MDA), were quantified. Fasudil and Y-27632 pretreatment decreased I/R-induced leukocyte rolling and adhesion by 76% and 96%, respectively. Moreover, Rho-kinase interference reduced formation of TNF-alpha, MIP-2 and KC by more than 68% in the reperfused colon. Additionally, the reperfusion-provoked increase in the levels of MPO and MDA in the colon decreased after Rho-kinase inhibition by 69% and 42%, respectively. Our data demonstrate that inhibition of Rho-kinase activity decrease I/R-induced leukocyte rolling, adhesion and recruitment in the colon. Moreover, these findings show that Rho-kinase signalling regulates TNF-alpha and CXC chemokine formation as well as lipid peroxidation in the reperfused colon. Thus, targeting Rho-kinase signalling may be a useful strategy in order to protect against pathological inflammation in the colon.

  20. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Michael J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Teyssier, Romain; Nickerson, Sarah [Institute for Computational Science, University of Zurich, 8049 Zurich (Switzerland); Rosdahl, Joakim [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  1. Dynamin regulates metaphase furrow formation and plasma membrane compartmentalization in the syncytial Drosophila embryo

    Directory of Open Access Journals (Sweden)

    Richa Rikhy

    2015-02-01

    Full Text Available The successive nuclear division cycles in the syncytial Drosophila embryo are accompanied by ingression and regression of plasma membrane furrows, which surround individual nuclei at the embryo periphery, playing a central role in embryo compartmentalization prior to cellularization. Here, we demonstrate that cell cycle changes in dynamin localization and activity at the plasma membrane (PM regulate metaphase furrow formation and PM organization in the syncytial embryo. Dynamin was localized on short PM furrows during interphase, mediating endocytosis of PM components. Dynamin redistributed off ingressed PM furrows in metaphase, correlating with stabilized PM components and the associated actin regulatory machinery on long furrows. Acute inhibition of dynamin in the temperature sensitive shibire mutant embryo resulted in morphogenetic consequences in the syncytial division cycle. These included inhibition of metaphase furrow ingression, randomization of proteins normally polarized to intercap PM and disruption of the diffusion barrier separating PM domains above nuclei. Based on these findings, we propose that cell cycle changes in dynamin orchestrate recruitment of actin regulatory machinery for PM furrow dynamics during the early mitotic cycles in the Drosophila embryo.

  2. Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation.

    Science.gov (United States)

    Cuykendall, Tawny N; Houston, Douglas W

    2009-09-01

    Specification of the dorsoventral axis in Xenopus depends on rearrangements of the egg vegetal cortex following fertilization, concomitant with activation of Wnt/beta-catenin signaling. How these processes are tied together is not clear, but RNAs localized to the vegetal cortex during oogenesis are known to be essential. Despite their importance, few vegetally localized RNAs have been examined in detail. In this study, we describe the identification of a novel localized mRNA, trim36, and characterize its function through maternal loss-of-function experiments. We find that trim36 is expressed in the germ plasm and encodes a ubiquitin ligase of the Tripartite motif-containing (Trim) family. Depletion of maternal trim36 using antisense oligonucleotides results in ventralized embryos and reduced organizer gene expression. We show that injection of wnt11 mRNA rescues this effect, suggesting that Trim36 functions upstream of Wnt/beta-catenin activation. We further find that vegetal microtubule polymerization and cortical rotation are disrupted in trim36-depleted embryos, in a manner dependent on Trim36 ubiquitin ligase activity. Additionally, these embryos can be rescued by tipping the eggs 90 degrees relative to the animal-vegetal axis. Taken together, our results suggest a role for Trim36 in controlling the stability of proteins regulating microtubule polymerization during cortical rotation, and subsequently axis formation.

  3. CsrA regulates Helicobacter pylori J99 motility and adhesion by controlling flagella formation.

    Science.gov (United States)

    Kao, Cheng-Yen; Sheu, Bor-Shyang; Wu, Jiunn-Jong

    2014-12-01

    Motility mediated by the flagella of Helicobacter pylori has been shown to be required for normal colonization and is thought to be important for the bacteria to move toward the gastric mucus in niches adjacent to the epithelium. Barnard et al. showed that CsrA appears to be necessary for full motility and the ability to infect mice, but its mechanism of regulation is still unclear. Motility and cell adhesion ability were determined in wild-type, csrA mutant, and revertant J99 strains. The bacterial shape and flagellar structure were evaluated by transmission electron microscopy. The expression of two major flagellins, flaA/flaB, and the alternative sigma factor rpoN (σ(54)) were determined by real-time quantitative RT-PCR and Western blot. The csrA mutant showed loss of motility and lower adhesion ability compared with the wild-type and revertant J99 strains. The csrA mutant was not flagellated. Transcription of flaA and flaB mRNA decreased to only 40% and 16%, respectively, in the csrA mutant compared with the wild-type J99 (p = .006 and pylori J99 flagella formation and thereby affects bacterial motility. © 2014 John Wiley & Sons Ltd.

  4. Molecular Mechanisms Regulating Cell Fusion and Heterokaryon Formation in Filamentous Fungi.

    Science.gov (United States)

    Daskalov, Asen; Heller, Jens; Herzog, Stephanie; Fleißner, André; Glass, N Louise

    2017-03-01

    For the majority of fungal species, the somatic body of an individual is a network of interconnected cells sharing a common cytoplasm and organelles. This syncytial organization contributes to an efficient distribution of resources, energy, and biochemical signals. Cell fusion is a fundamental process for fungal development, colony establishment, and habitat exploitation and can occur between hyphal cells of an individual colony or between colonies of genetically distinct individuals. One outcome of cell fusion is the establishment of a stable heterokaryon, culminating in benefits for each individual via shared resources or being of critical importance for the sexual or parasexual cycle of many fungal species. However, a second outcome of cell fusion between genetically distinct strains is formation of unstable heterokaryons and the induction of a programmed cell death reaction in the heterokaryotic cells. This reaction of nonself rejection, which is termed heterokaryon (or vegetative) incompatibility, is widespread in the fungal kingdom and acts as a defense mechanism against genome exploitation and mycoparasitism. Here, we review the currently identified molecular players involved in the process of somatic cell fusion and its regulation in filamentous fungi. Thereafter, we summarize the knowledge of the molecular determinants and mechanism of heterokaryon incompatibility and place this phenomenon in the broader context of biotropic interactions and immunity.

  5. The Enterococcus faecium enterococcal biofilm regulator, EbrB, regulates the esp operon and is implicated in biofilm formation and intestinal colonization.

    Science.gov (United States)

    Top, Janetta; Paganelli, Fernanda L; Zhang, Xinglin; van Schaik, Willem; Leavis, Helen L; van Luit-Asbroek, Miranda; van der Poll, Tom; Leendertse, Masja; Bonten, Marc J M; Willems, Rob J L

    2013-01-01

    Nowadays, Enterococcus faecium is one of the leading nosocomial pathogens worldwide. Strains causing clinical infections or hospital outbreaks are enriched in the enterococcal surface protein (Esp) encoding ICEEfm1 mobile genetic element. Previous studies showed that Esp is involved in biofilm formation, endocarditis and urinary tract infections. In this study, we characterized the role of the putative AraC type of regulator (locus tag EfmE1162_2351), which we renamed ebrB and which is, based on the currently available whole genome sequences, always located upstream of the esp gene, and studied its role in Esp surface exposure during growth. A markerless deletion mutant of ebrB resulted in reduced esp expression and complete abolishment of Esp surface exposure, while Esp cell-surface exposure was restored when this mutant was complemented with an intact copy of ebrB. This demonstrates a role for EbrB in esp expression. However, during growth, ebrB expression levels did not change over time, while an increase in esp expression at both RNA and protein level was observed during mid-log and late-log phase. These results indicate the existence of a secondary regulation system for esp, which might be an unknown quorum sensing system as the enhanced esp expression seems to be cell density dependent. Furthermore, we determined that esp is part of an operon of at least 3 genes putatively involved in biofilm formation. A semi-static biofilm model revealed reduced biofilm formation for the EbrB deficient mutant, while dynamics of biofilm formation using a flow cell system revealed delayed biofilm formation in the ebrB mutant. In a mouse intestinal colonization model the ebrB mutant was less able to colonize the gut compared to wild-type strain, especially in the small intestine. These data indicate that EbrB positively regulates the esp operon and is implicated in biofilm formation and intestinal colonization.

  6. The Enterococcus faecium enterococcal biofilm regulator, EbrB, regulates the esp operon and is implicated in biofilm formation and intestinal colonization.

    Directory of Open Access Journals (Sweden)

    Janetta Top

    Full Text Available Nowadays, Enterococcus faecium is one of the leading nosocomial pathogens worldwide. Strains causing clinical infections or hospital outbreaks are enriched in the enterococcal surface protein (Esp encoding ICEEfm1 mobile genetic element. Previous studies showed that Esp is involved in biofilm formation, endocarditis and urinary tract infections. In this study, we characterized the role of the putative AraC type of regulator (locus tag EfmE1162_2351, which we renamed ebrB and which is, based on the currently available whole genome sequences, always located upstream of the esp gene, and studied its role in Esp surface exposure during growth. A markerless deletion mutant of ebrB resulted in reduced esp expression and complete abolishment of Esp surface exposure, while Esp cell-surface exposure was restored when this mutant was complemented with an intact copy of ebrB. This demonstrates a role for EbrB in esp expression. However, during growth, ebrB expression levels did not change over time, while an increase in esp expression at both RNA and protein level was observed during mid-log and late-log phase. These results indicate the existence of a secondary regulation system for esp, which might be an unknown quorum sensing system as the enhanced esp expression seems to be cell density dependent. Furthermore, we determined that esp is part of an operon of at least 3 genes putatively involved in biofilm formation. A semi-static biofilm model revealed reduced biofilm formation for the EbrB deficient mutant, while dynamics of biofilm formation using a flow cell system revealed delayed biofilm formation in the ebrB mutant. In a mouse intestinal colonization model the ebrB mutant was less able to colonize the gut compared to wild-type strain, especially in the small intestine. These data indicate that EbrB positively regulates the esp operon and is implicated in biofilm formation and intestinal colonization.

  7. PtdIns(3,4,5)P3 is a regulator of myosin-X localization and filopodia formation

    DEFF Research Database (Denmark)

    Plantard, Laure; Arjonen, Antti; Lock, John G

    2010-01-01

    Phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] is a key regulator of cell signaling that acts by recruiting proteins to the cell membrane, such as at the leading edge during cell migration. Here, we show that PtdIns (3,4,5)P3 plays a central role in filopodia formation via the bindi...

  8. Inactivation of a novel response regulator is necessary for biofilm formation and host colonization by Vibrio fischeri.

    Science.gov (United States)

    Morris, Andrew R; Darnell, Cynthia L; Visick, Karen L

    2011-10-01

    The marine bacterium Vibrio fischeri uses a biofilm to promote colonization of its eukaryotic host Euprymna scolopes. This biofilm depends on the symbiosis polysaccharide (syp) locus, which is transcriptionally regulated by the RscS-SypG two-component regulatory system. An additional response regulator (RR), SypE, exerts both positive and negative control over biofilm formation. SypE is a novel RR protein, with its three putative domains arranged in a unique configuration: a central phosphorylation receiver (REC) domain flanked by two effector domains with putative enzymatic activities (serine kinase and serine phosphatase). To determine how SypE regulates biofilm formation and host colonization, we generated a library of SypE domain mutants. Our results indicate that the N-terminus inhibits biofilm formation, while the C-terminus plays a positive role. The phosphorylation state of SypE appears to regulate these opposing activities, as disruption of the putative site of phosphorylation results in a protein that constitutively inhibits biofilm formation. Furthermore, SypE restricts host colonization: (i) sypE mutants with constitutive inhibitory activity fail to efficiently initiate host colonization and (ii) loss of sypE partially alleviates the colonization defect of an rscS mutant. We conclude that SypE must be inactivated to promote symbiotic colonization by V. fischeri. © 2011 Blackwell Publishing Ltd.

  9. Differential regulation of c-di-GMP metabolic enzymes by environmental signals modulates biofilm formation in Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Gai-Xian eRen

    2016-06-01

    Full Text Available Cyclic diguanylate (c-di-GMP is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs, HmsT and HmsD and one phosphodiesterase (PDE, HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD and HmsP in Y. pestis. Biofilm formation was higher in the presence of nonlethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfonate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulates their DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.

  10. NMDA Receptor- and ERK-Dependent Histone Methylation Changes in the Lateral Amygdala Bidirectionally Regulate Fear Memory Formation

    Science.gov (United States)

    Gupta-Agarwal, Swati; Jarome, Timothy J.; Fernandez, Jordan; Lubin, Farah D.

    2014-01-01

    It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory…

  11. The Ubiquitin-Specific Protease 14 (USP14) Is a Critical Regulator of Long-Term Memory Formation

    Science.gov (United States)

    Jarome, Timothy J.; Kwapis, Janine L.; Hallengren, Jada J.; Wilson, Scott M.; Helmstetter, Fred J.

    2014-01-01

    Numerous studies have suggested a role for ubiquitin-proteasome-mediated protein degradation in learning-dependent synaptic plasticity; however, very little is known about how protein degradation is regulated at the level of the proteasome during memory formation. The ubiquitin-specific protease 14 (USP14) is a proteasomal deubiquitinating enzyme…

  12. Ground boundaries

    Science.gov (United States)

    Balluffi, R. W.; Bristowe, P. D.

    The present document is a progress report describing the work accomplished on the study of grain boundaries in Ag, Au, Ni, Si, and Ge. Research was focused on the following four major efforts: study of the atomic structure of grain boundaries by means of x-ray diffraction, transmission electron microscopy and computer modeling; grain boundary migration; short-circuit diffusion along grain boundaries; and development of Thin-Film Deposition/Bonding Apparatus for the manufacture of high purity bicrystals.

  13. PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus.

    Science.gov (United States)

    Treuner-Lange, Anke; Aguiluz, Kryssia; van der Does, Chris; Gómez-Santos, Nuria; Harms, Andrea; Schumacher, Dominik; Lenz, Peter; Hoppert, Michael; Kahnt, Jörg; Muñoz-Dorado, José; Søgaard-Andersen, Lotte

    2013-01-01

    Accurate positioning of the division site is essential to generate appropriately sized daughter cells with the correct chromosome number. In bacteria, division generally depends on assembly of the tubulin homologue FtsZ into the Z-ring at the division site. Here, we show that lack of the ParA-like protein PomZ in Myxococcus xanthus resulted in division defects with the formation of chromosome-free minicells and filamentous cells. Lack of PomZ also caused reduced formation of Z-rings and incorrect positioning of the few Z-rings formed. PomZ localization is cell cycle regulated, and PomZ accumulates at the division site at midcell after chromosome segregation but prior to FtsZ as well as in the absence of FtsZ. FtsZ displayed cooperative GTP hydrolysis in vitro but did not form detectable filaments in vitro. PomZ interacted with FtsZ in M. xanthus cell extracts. These data show that PomZ is important for Z-ring formation and is a spatial regulator of Z-ring formation and cell division. The cell cycle-dependent localization of PomZ at midcell provides a mechanism for coupling cell cycle progression and Z-ring formation. Moreover, the data suggest that PomZ is part of a system that recruits FtsZ to midcell, thereby, restricting Z-ring formation to this position. © 2012 Blackwell Publishing Ltd.

  14. BDNF activates mTOR to regulate GluR1 expression required for memory formation.

    Directory of Open Access Journals (Sweden)

    Leandro Slipczuk

    Full Text Available BACKGROUND: The mammalian target of Rapamycin (mTOR kinase plays a key role in translational control of a subset of mRNAs through regulation of its initiation step. In neurons, mTOR is present at the synaptic region, where it modulates the activity-dependent expression of locally-translated proteins independently of mRNA synthesis. Indeed, mTOR is necessary for different forms of synaptic plasticity and long-term memory (LTM formation. However, little is known about the time course of mTOR activation and the extracellular signals governing this process or the identity of the proteins whose translation is regulated by this kinase, during mnemonic processing. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that consolidation of inhibitory avoidance (IA LTM entails mTOR activation in the dorsal hippocampus at the moment of and 3 h after training and is associated with a rapid and rapamycin-sensitive increase in AMPA receptor GluR1 subunit expression, which was also blocked by intra-hippocampal delivery of GluR1 antisense oligonucleotides (ASO. In addition, we found that pre- or post-training administration of function-blocking anti-BDNF antibodies into dorsal CA1 hampered IA LTM retention, abolished the learning-induced biphasic activation of mTOR and its readout, p70S6K and blocked GluR1 expression, indicating that BDNF is an upstream factor controlling mTOR signaling during fear-memory consolidation. Interestingly, BDNF ASO hindered LTM retention only when given into dorsal CA1 1 h after but not 2 h before training, suggesting that BDNF controls the biphasic requirement of mTOR during LTM consolidation through different mechanisms: an early one involving BDNF already available at the moment of training, and a late one, happening around 3 h post-training that needs de novo synthesis of this neurotrophin. CONCLUSIONS/SIGNIFICANCE: IN CONCLUSION, OUR FINDINGS DEMONSTRATE THAT: 1 mTOR-mediated mRNA translation is required for memory consolidation during

  15. Direct and indirect regulation of spinal cord Ia afferent terminal formation by the γ-Protocadherins

    Directory of Open Access Journals (Sweden)

    Tuhina ePrasad

    2011-12-01

    Full Text Available The Pcdh-γ gene cluster encodes 22 protocadherin adhesion molecules that interact as homophilic multimers and critically regulate synaptogenesis and apoptosis of interneurons in the developing spinal cord. Unlike interneurons, the two primary components of the monosynaptic stretch reflex circuit, dorsal root ganglion sensory neurons and ventral motor neurons, do not undergo excessive apoptosis in Pcdh-γdel/del null mutants, which die shortly after birth. However, as we show here, mutants exhibit severely disorganized Ia proprioceptive afferent terminals in the ventral horn. In contrast to the fine net-like pattern observed in wild-type mice, central Ia terminals in Pcdh-γ mutants are expanded, clumped, and fill the space between individual motor neurons; quantitative analysis shows a ~2.5 fold increase in the area of terminals. Concomitant with this, there is a 70% loss of the collaterals that Ia afferents extend to ventral interneurons, many of which undergo apoptosis in the mutants. The Ia afferent phenotype is ameliorated, though not entirely rescued, when apoptosis is blocked in Pcdh-γ null mice by introduction of a Bax null allele. This indicates that loss of ventral interneurons, which act as intermediate Ia afferent targets, contributes to the disorganization of terminals on motor pools. Restricted mutation of the Pcdh-γ cluster using conditional mutants and multiple Cre transgenic lines (Wnt1-Cre for sensory neurons; Pax2-Cre for ventral interneurons; Hb9-Cre for motor neurons also revealed a direct requirement for the γ-Pcdhs in Ia neurons and ventral interneurons, but not in motor neurons themselves. Together, these genetic manipulations indicate that the γ-Pcdhs are required for the formation of the Ia afferent circuit in two ways: First, they control the survival of ventral interneurons that act as intermediate Ia targets; and second, they provide a homophilic molecular cue between Ia afferents and target ventral interneurons.

  16. Silane-Acrylate Chemistry for Regulating Network Formation in Radical Photopolymerization.

    Science.gov (United States)

    Steindl, Johannes; Koch, Thomas; Moszner, Norbert; Gorsche, Christian

    2017-10-10

    Photoinitiated silane-ene chemistry has the potential to pave the way toward spatially resolved organosilicon compounds, which might find application in biomedicine, microelectronics, and other advanced fields. Moreover, this approach could serve as a viable alternative to the popular photoinitiated thiol-ene chemistry, which gives access to defined and functional photopolymer networks. A difunctional bis(trimethylsilyl)silane with abstractable hydrogens (DSiH) was successfully synthesized in a simple one-pot procedure. The radical reactivity of DSiH with various homopolymerizable monomers (i.e., (meth)acrylate, vinyl ester, acrylamide) was assessed via (1)H NMR spectroscopic studies. DSiH shows good reactivity with acrylates and vinyl esters. The most promising silane-acrylate system was further investigated in cross-linking formulations toward its reactivity (e.g., heat of polymerization, curing time, occurrence of gelation, double-bond conversion) and compared to state-of-the-art thiol-acrylate resins. The storage stability of prepared resin formulations is greatly improved for silane-acrylate systems vs thiol-ene resins. Double-bond conversion at the gel point (DBCgel) and overall DBC were increased, and polymerization-induced shrinkage stress has been significantly reduced with the introduction of silane-acrylate chemistry. Resulting photopolymer networks exhibit a homogeneous network architecture (indicated by a narrow glass transition) that can be tuned by varying silane concentration, and this confirms the postulated regulation of radical network formation. Similar to thiol-acrylate networks, this leads to more flexible photopolymer networks with increased elongation at break and improved impact resistance. Additionally, swelling tests indicate a high gel fraction for silane-acrylate photopolymers.

  17. Epiprofin Regulates Enamel Formation and Tooth Morphogenesis by Controlling Epithelial-Mesenchymal Interactions During Tooth Development.

    Science.gov (United States)

    Nakamura, Takashi; Jimenez-Rojo, Lucia; Koyama, Eiki; Pacifici, Maurizio; de Vega, Susana; Iwamoto, Masahiro; Fukumoto, Satoshi; Unda, Fernando; Yamada, Yoshihiko

    2017-03-01

    The synchronization of cell proliferation and cytodifferentiation between dental epithelial and mesenchymal cells is required for the morphogenesis of teeth with the correct functional shapes and optimum sizes. Epiprofin (Epfn), a transcription factor belonging to the Sp family, regulates dental epithelial cell proliferation and is essential for ameloblast and odontoblast differentiation. Epfn deficiency results in the lack of enamel and ironically the formation of extra teeth. We investigated the mechanism underlying the functions of Epfn in tooth development through the creation of transgenic mice expressing Epfn under the control of an epithelial cell-specific K5 promoter (K5-Epfn). We found that these K5-Epfn mice developed abnormally shaped incisors and molars and formed fewer molars in the mandible. Remarkably, ameloblasts differentiated ectopically and enamel was formed on the lingual side of the K5-Epfn incisors. By contrast, ameloblasts and enamel were found only on the labial side in wild-type mice, as Follistatin (Fst) expressed in the lingual side inhibits BMP4 signaling necessary for ameloblast differentiation. We showed that Epfn transfection into the dental epithelial cell line SF2 abrogated the inhibitory activity of Fst and promoted ameloblast differentiation of SF2 cells. We found that Epfn induced FGF9 in dental epithelial cells and this dental epithelial cell-derived FGF9 promoted dental mesenchymal cell proliferation via the FGF receptor 1c (FGFR1c). Taken together, these results suggest that Epfn preserves the balance between cell proliferation and cytodifferentiation in dental epithelial and mesenchymal cells during normal tooth development and morphogenesis. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  18. The Catabolite Repressor Protein-Cyclic AMP Complex Regulates csgD and Biofilm Formation in Uropathogenic Escherichia coli.

    Science.gov (United States)

    Hufnagel, David A; Evans, Margery L; Greene, Sarah E; Pinkner, Jerome S; Hultgren, Scott J; Chapman, Matthew R

    2016-12-15

    The extracellular matrix protects Escherichia coli from immune cells, oxidative stress, predation, and other environmental stresses. Production of the E. coli extracellular matrix is regulated by transcription factors that are tuned to environmental conditions. The biofilm master regulator protein CsgD upregulates curli and cellulose, the two major polymers in the extracellular matrix of uropathogenic E. coli (UPEC) biofilms. We found that cyclic AMP (cAMP) regulates curli, cellulose, and UPEC biofilms through csgD The alarmone cAMP is produced by adenylate cyclase (CyaA), and deletion of cyaA resulted in reduced extracellular matrix production and biofilm formation. The catabolite repressor protein (CRP) positively regulated csgD transcription, leading to curli and cellulose production in the UPEC isolate, UTI89. Glucose, a known inhibitor of CyaA activity, blocked extracellular matrix formation when added to the growth medium. The mutant strains ΔcyaA and Δcrp did not produce rugose biofilms, pellicles, curli, cellulose, or CsgD. Three putative CRP binding sites were identified within the csgD-csgB intergenic region, and purified CRP could gel shift the csgD-csgB intergenic region. Additionally, we found that CRP binded upstream of kpsMT, which encodes machinery for K1 capsule production. Together our work shows that cAMP and CRP influence E. coli biofilms through transcriptional regulation of csgD IMPORTANCE The catabolite repressor protein (CRP)-cyclic AMP (cAMP) complex influences the transcription of ∼7% of genes on the Escherichia coli chromosome (D. Zheng, C. Constantinidou, J. L. Hobman, and S. D. Minchin, Nucleic Acids Res 32:5874-5893, 2004, https://dx.doi.org/10.1093/nar/gkh908). Glucose inhibits E. coli biofilm formation, and ΔcyaA and Δcrp mutants show impaired biofilm formation (D. W. Jackson, J.W. Simecka, and T. Romeo, J Bacteriol 184:3406-3410, 2002, https://dx.doi.org/10.1128/JB.184.12.3406-3410.2002). We determined that the c

  19. Crossing boundaries: a comprehensive survey of medical licensing laws and guidelines regulating the interstate practice of pathology.

    Science.gov (United States)

    Hiemenz, Matthew C; Leung, Stanley T; Park, Jason Y

    2014-03-01

    In the United States, recent judicial interpretation of interstate licensure laws has found pathologists guilty of malpractice and, more importantly, the criminal practice of medicine without a license. These judgments against pathologists highlight the need for a timely and comprehensive survey of licensure requirements and laws regulating the interstate practice of pathology. For all 50 states, each state medical practice act and state medical board website was reviewed. In addition, each medical board was directly contacted by electronic mail, telephone, or US registered mail for information regarding specific legislation or guidelines related to the interstate practice of pathology. On the basis of this information, states were grouped according to similarities in legislation and medical board regulations. This comprehensive survey has determined that states define the practice of pathology on the basis of the geographic location of the patient at the time of surgery or phlebotomy. The majority of states (n=32) and the District of Columbia allow for a physician with an out-of-state license to perform limited consultation to a physician with the specific state license. Several states (n=5) prohibit physicians from consultation without a license for the specific state. Overall, these results reveal the heterogeneity of licensure requirements between states. Pathologists who either practice in multiple states, send cases to out-of-state consultants, or serve as consultants themselves should familiarize themselves with the medical licensure laws of the states from which they receive or send cases.

  20. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao

    2011-01-01

    Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or post-transcriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling regulator and an endogenous RNA silencing suppressor, mediates auxin response during lateral root formation in Arabidopsis. We proposed that FRY1 regulates lateral root development through its activity on adenosine 3,5-bisphosphate (PAP), a strong inhibitor of exoribonucleases (XRNs). Interestingly, some of the phenotypes of fry1, such as enhanced response to light in repressing hypocotyl elongation and hypersensitivity to ABA in lateral root growth, are opposite to those of another light- and ABA-signaling mutant, hy5. Here we analyzed the hy5 fry1 double mutant for root and hypocotyl growth. We found that the hy5 mutation can suppress the enhanced light sensitivity in fry1 hypocotyl elongation and restore the lateral root formation. The genetic interaction between HY5 and FRY1 indicates that HY5 and FRY1 may act in overlapping pathways that mediate light signaling and lateral root development. © 2011 Landes Bioscience.

  1. Phospholipase D is a central regulator of collagen I-induced cytoskeletal rearrangement and podosome formation in megakaryocytes.

    Science.gov (United States)

    Stritt, S; Thielmann, I; Dütting, S; Stegner, D; Nieswandt, B

    2014-08-01

    Blood platelets are small anucleated cell fragments generated from bone marrow megakaryocytes (MKs) by a cytoskeleton-driven process. Thereby, mature MKs form long cytoplasmic protrusions (pro-platelets), which extend into the sinusoids within the bone marrow and finally release platelets. Podosomes are F-actin rich matrix contacts that have been suggested to play an important role in cell migration, but also in pro-platelet formation by MKs. Phospholipase D (PLD) has been proposed to contribute to the regulation of actin dynamics through the local generation of phosphatidic acid but its role in platelet formation is unknown. We sought to investigate the significance of PLD in MK podosome formation and thrombocytopoiesis. Podosome formation, spreading and ultra-structure of PLD single- and double-deficient MKs were analyzed using confocal and transmission electron microscopy. Phospholipase D-deficient MKs displayed a highly altered ultra-structure in vivo and abnormal actin rearrangement, with almost abolished formation of podosomes upon spreading on collagen I in vitro. However, MK endomitosis and platelet production were not altered by PLD deficiency. Together, our findings point to a specific function of PLD in actin dynamics as well as podosome formation and size determination in MKs on a collagen I matrix. The normal platelet number in PLD-deficient mice, however, suggests the existence of compensatory mechanisms in vivo that overcome the defective podosome formation observed in vitro. © 2014 International Society on Thrombosis and Haemostasis.

  2. The metabolic regulation of sporulation and parasporal crystal formation in Bacillus thuringiensis revealed by transcriptomics and proteomics.

    Science.gov (United States)

    Wang, Jieping; Mei, Han; Zheng, Cao; Qian, Hongliang; Cui, Cui; Fu, Yang; Su, Jianmei; Liu, Ziduo; Yu, Ziniu; He, Jin

    2013-05-01

    Bacillus thuringiensis is a well-known entomopathogenic bacterium used worldwide as an environmentally compatible biopesticide. During sporulation, B. thuringiensis accumulates a large number of parasporal crystals consisting of insecticidal crystal proteins (ICPs) that can account for nearly 20-30% of the cell's dry weight. However, the metabolic regulation mechanisms of ICP synthesis remain to be elucidated. In this study, the combined efforts in transcriptomics and proteomics mainly uncovered the following 6 metabolic regulation mechanisms: (1) proteases and the amino acid metabolism (particularly, the branched-chain amino acids) became more active during sporulation; (2) stored poly-β-hydroxybutyrate and acetoin, together with some low-quality substances provided considerable carbon and energy sources for sporulation and parasporal crystal formation; (3) the pentose phosphate shunt demonstrated an interesting regulation mechanism involving gluconate when CT-43 cells were grown in GYS medium; (4) the tricarboxylic acid cycle was significantly modified during sporulation; (5) an obvious increase in the quantitative levels of enzymes and cytochromes involved in energy production via the electron transport system was observed; (6) most F0F1-ATPase subunits were remarkably up-regulated during sporulation. This study, for the first time, systematically reveals the metabolic regulation mechanisms involved in the supply of amino acids, carbon substances, and energy for B. thuringiensis spore and parasporal crystal formation at both the transcriptional and translational levels.

  3. The Metabolic Regulation of Sporulation and Parasporal Crystal Formation in Bacillus thuringiensis Revealed by Transcriptomics and Proteomics*

    Science.gov (United States)

    Wang, Jieping; Mei, Han; Zheng, Cao; Qian, Hongliang; Cui, Cui; Fu, Yang; Su, Jianmei; Liu, Ziduo; Yu, Ziniu; He, Jin

    2013-01-01

    Bacillus thuringiensis is a well-known entomopathogenic bacterium used worldwide as an environmentally compatible biopesticide. During sporulation, B. thuringiensis accumulates a large number of parasporal crystals consisting of insecticidal crystal proteins (ICPs) that can account for nearly 20–30% of the cell's dry weight. However, the metabolic regulation mechanisms of ICP synthesis remain to be elucidated. In this study, the combined efforts in transcriptomics and proteomics mainly uncovered the following 6 metabolic regulation mechanisms: (1) proteases and the amino acid metabolism (particularly, the branched-chain amino acids) became more active during sporulation; (2) stored poly-β-hydroxybutyrate and acetoin, together with some low-quality substances provided considerable carbon and energy sources for sporulation and parasporal crystal formation; (3) the pentose phosphate shunt demonstrated an interesting regulation mechanism involving gluconate when CT-43 cells were grown in GYS medium; (4) the tricarboxylic acid cycle was significantly modified during sporulation; (5) an obvious increase in the quantitative levels of enzymes and cytochromes involved in energy production via the electron transport system was observed; (6) most F0F1-ATPase subunits were remarkably up-regulated during sporulation. This study, for the first time, systematically reveals the metabolic regulation mechanisms involved in the supply of amino acids, carbon substances, and energy for B. thuringiensis spore and parasporal crystal formation at both the transcriptional and translational levels. PMID:23408684

  4. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida.

    Directory of Open Access Journals (Sweden)

    Amirhossein Ahkami

    Full Text Available To identify specific genes determining the initiation and formation of adventitious roots (AR, a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115 was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.

  5. The expression pattern and inhibitory influence of Tenascin-C on the growth of spiral ganglion neurons suggest a regulatory role as boundary formation molecule in the postnatal mouse inner ear.

    Science.gov (United States)

    Kwiatkowska, M; Reinhard, J; Roll, L; Kraft, N; Dazert, S; Faissner, A; Volkenstein, S

    2016-04-05

    Sensorineural hearing loss, as a consequence of acoustic trauma, aging, genetic defects or ototoxic drugs, is highly associated with irreversible damage of cochlear hair cells (HCs) and secondary degeneration of spiral ganglion (SG) cells. Cochlear implants (CIs), which bypass the lost HC function by direct electrical stimulation of the remaining auditory neurons, offer an effective therapy option. Several studies imply that components of the extracellular matrix (ECM) have a great impact on the adhesion and growth of spiral ganglion neurons (SGNs) during development. Based on these findings, ECM proteins might act as bioactive CI substrates to optimize the electrode-nerve interface and to improve efficacy of these implants. In the present study, we focused on the ECM glycoproteins Tenascin-C (TN-C), Laminin (LN), and Fibronectin (FN), which show a prominent expression along the growth route of SGNs and the niche around HCs during murine postnatal development in vivo. We compared their influence on adhesion, neurite length, and neurite number of SGNs in vitro. Moreover, we studied the expression of the chondroitin sulfate proteoglycan (CSPG) dermatan sulfate-dependent proteoglycan-1 (DSD-1-PG), an interaction partner of TN-C. In sum, our in vitro data suggest that TN-C acts as an anti-adhesive and inhibitory factor for the growth of SGNs. The DSD-1 carbohydrate epitope is specifically localized to HC stereocilia and SG fibers. Interestingly, TN-C and the DSD-1-PG exhibit a mutually exclusive expression pattern, with the exception of a very restricted region beneath the habenula perforata, where SG neurites grow through the basilar membrane (BM) toward the HCs. The complementary expression of TN-C, LN, FN, and the DSD-1 epitope suggests that TN-C may act as an important boundary formation molecule in the developing postnatal mouse inner ear, which makes it a promising candidate to regulate neurite outgrowth in the light of CIs. Copyright © 2016 IBRO. Published by

  6. The transcriptional regulator c2h2 acceleratesmushroom formation in Agaricus bisporus

    NARCIS (Netherlands)

    Pelkmans, Jordi F.; Vos, A.M.; Scholtmeijer, Karin; Hendrix, Ed; Baars, Johan J.P.; Gehrmann, T.; Reinders, M.J.T.; Lugones, Luis G.; Wösten, Han A.B.

    2016-01-01

    The Cys2His2 zinc finger protein gene c2h2 of Schizophyllum commune is involved in mushroom formation. Its inactivation results in a strain that is arrested at the stage of aggregate formation. In this study, the c2h2 orthologue of Agaricus bisporus was over-expressed in this white button mushroom

  7. The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus

    NARCIS (Netherlands)

    Pelkmans, J.F.; Vos, A.M.; Scholtmeijer, K; Hendrix, Eddy; Baars, Johan J; Gehrmann, Thies; Reinders, Marcel J; Lugones, L.G.; Wösten, HAB

    The Cys2His2 zinc finger protein gene c2h2 of Schizophyllum commune is involved in mushroom formation. Its inactivation results in a strain that is arrested at the stage of aggregate formation. In this study, the c2h2 orthologue of Agaricus bisporus was over-expressed in this white button mushroom

  8. The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus

    NARCIS (Netherlands)

    Pelkmans, Jordi F.; Vos, Aurin M.; Scholtmeijer, Karin; Hendrix, Ed; Baars, Johan J.P.; Gehrmann, Thies; Reinders, Marcel J.T.; Lugones, Luis G.; Wösten, Han A.B.

    2016-01-01

    The Cys2His2 zinc finger protein gene c2h2 of Schizophyllum commune is involved in mushroom formation. Its inactivation results in a strain that is arrested at the stage of aggregate formation. In this study, the c2h2 orthologue of Agaricus bisporus was over-expressed in this white button

  9. A putative ABC transporter is involved in negative regulation of biofilm formation by Listeria monocytogenes

    DEFF Research Database (Denmark)

    Zhu, Xinna; Long, Fei; Chen, Yonghui

    2008-01-01

    Listeria monocytogenes may persist for long periods in food processing environments. In some instances, this may be due to aggregation or biofilm formation. To investigate the mechanism controlling biofilm formation in the food-borne pathogen L. monocytogenes, we characterized LM-49, a mutant...

  10. Differential contributions of nitric oxide synthase isoforms at hippocampal formation to negative feedback regulation of penile erection in the rat

    OpenAIRE

    Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H

    2002-01-01

    We established previously that a novel negative feedback mechanism for the regulation of penile erection, which is triggered by ascending sensory inputs initiated by tumescence of the penis, exists in the hippocampal formation (HF). This study further evaluated the participation of nitric oxide (NO) and the contribution of nitric oxide synthase (NOS) isoforms at the HF in this process.Adult, male Sprague-Dawley rats that were anaesthetized and maintained with chloral hydrate were used, and in...

  11. Spatial and Temporal Regulation of Receptor Endocytosis in Neuronal Dendrites Revealed by Imaging of Single Vesicle Formation

    OpenAIRE

    Rosendale, Morgane; Jullié, Damien; Choquet, Daniel; Perrais, David

    2017-01-01

    Endocytosis in neuronal dendrites is known to play a critical role in synaptic transmission and plasticity such as long-term depression (LTD). However, the inability to detect endocytosis directly in living neurons has hampered studies of its dynamics and regulation. Here, we visualized the formation of individual endocytic vesicles containing pHluorin-tagged receptors with high temporal resolution in the dendrites of cultured hippocampal neurons. We show that transferrin receptors (TfRs) are...

  12. MADS-Box Transcription Factor VdMcm1 Regulates Conidiation, Microsclerotia Formation, Pathogenicity, and Secondary Metabolism of Verticillium dahliae

    OpenAIRE

    Xiong, Dianguang; Wang, Yonglin; Tian, Longyan; Tian, Chengming

    2016-01-01

    Verticillium dahliae, a notorious phytopathogenic fungus, causes vascular wilt diseases in many plant species resulting in devastating yield losses worldwide. Due to its ability to colonize plant xylem and form microsclerotia, V. dahliae is highly persistent and difficult to control. In this study, we show that the MADS-box transcription factor VdMcm1 is a key regulator of conidiation, microsclerotia formation, virulence, and secondary metabolism of V. dahliae. In addition, our findings sugge...

  13. Studies on the role of Cux1 in regulation of the onset of joint formation in the developing limb.

    Science.gov (United States)

    Lizarraga, Gail; Lichtler, Alexander; Upholt, William B; Kosher, Robert A

    2002-03-01

    Joint formation, the onset of which is characterized by the segmentation of continuous skeletal rudiments into two or more separate elements, is a fundamental aspect of limb pattern formation, playing a critical role in determining the size, shape, and number of individual skeletal elements. Joint formation is initiated by conversion of differentiated chondrocytes at sites of presumptive joints into densely packed nonchondrogenic cells of the joint interzone. This conversion is accompanied by loss of Alcian blue-staining cartilage matrix and downregulation of cartilage-specific gene expression. Here, we report that Cux1, which encodes a transcription factor containing a homeodomain and other DNA-binding motifs, is highly expressed at all of the discrete sites of incipient joint formation in the developing limb concomitant with conversion of differentiated chondrocytes into interzone tissue. Moreover, differentiated limb chondrocytes in micromass cultures infected with a Cux1 retroviral expression vector are converted into nonchondrogenic cells which exhibit loss of Alcian blue cartilage matrix and downregulation of cartilage-specific gene expression as occurs at the onset of normal joint formation. These results suggest that Cux1 is involved in regulating the onset of joint formation by facilitating conversion of chondrocytes into nonchondrogenic cells of the interzone. (C)2002 Elsevier Science (USA).

  14. GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lilly, Simon J.; Carollo, C. Marcella; Pipino, Antonio; Peng Yingjie [Institute for Astronomy, Department of Physics, ETH Zurich, CH-8093 Zurich (Switzerland); Renzini, Alvio [Department of Physics and Astronomy Galileo Galilei, Universita degli Studi di Padova, via Marzolo 8, I-35131 Padova (Italy)

    2013-08-01

    A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas consumption timescale ({epsilon}{sup -1}) and the mass loading {lambda} of the wind outflow {lambda}{center_dot}SFR. The simplest regulator, in which {epsilon} and {lambda} are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on {epsilon}, {lambda}, and sSFR, and the regulator system therefore naturally produces a Z(m{sub star}, SFR) relation if {epsilon} and {lambda} depend on the stellar mass m{sub star}. Furthermore, this relation will be the same at all epochs unless the parameters {epsilon} and {lambda} themselves change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The overall mass-metallicity relation Z(m{sub star}) directly provides the fraction f{sub star}(m{sub star}) of incoming baryons that are being transformed into stars. The observed Z(m{sub star}) relation of Sloan Digital Sky Survey (SDSS) galaxies implies a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and halo mass

  15. TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation.

    Science.gov (United States)

    Goswami, Rishov; Merth, Michael; Sharma, Shweta; Alharbi, Mazen O; Aranda-Espinoza, Helim; Zhu, Xiaoping; Rahaman, Shaik O

    2017-09-01

    Cardiovascular disease is the number one cause of death in United States, and atherosclerosis, a chronic inflammatory arterial disease, is the most dominant underlying pathology. Macrophages are thought to orchestrate atherosclerosis by generating lipid-laden foam cells and by secreting inflammatory mediators. Emerging data support a role for a mechanical factor, e.g., matrix stiffness, in regulation of macrophage function, vascular elasticity, and atherogenesis. However, the identity of the plasma membrane mechanosensor and the mechanisms by which pro-atherogenic signals are transduced/maintained are unknown. We have obtained evidence that TRPV4, an ion channel in the transient receptor potential vanilloid family and a known mechanosensor, is the likely mediator of oxidized low-density lipoprotein (oxLDL)-dependent macrophage foam cell formation, a critical process in atherogenesis. Specifically, we found that: i) genetic ablation of TRPV4 or pharmacologic inhibition of TRPV4 activity by a specific antagonist blocked oxLDL-induced macrophage foam cell formation, and ii) TRPV4 deficiency prevented pathophysiological range matrix stiffness or scratch-induced exacerbation of oxLDL-induced foam cell formation. Mechanistically, we found that: i) plasma membrane localization of TRPV4 was sensitized to the increasing level of matrix stiffness, ii) lack of foam cell formation in TRPV4 null cells was not due to lack of expression of CD36, a major receptor for oxLDL, and iii) TRPV4 channel activity regulated oxLDL uptake but not its binding on macrophages. Altogether, these findings identify a novel role for TRPV4 in regulating macrophage foam cell formation by modulating uptake of oxLDL. These findings suggest that therapeutic targeting of TRPV4 may provide a selective approach to the treatment of atherosclerosis. Copyright © 2017. Published by Elsevier Inc.

  16. Ground boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Balluffi, R.W.; Bristowe, P.D.

    1990-01-01

    The present document is a progress report describing the work accomplished on the study of grain boundaries in Ag, Au, Ni, Si, and Ge. Research was focused on the following four major efforts: study of the atomic structure of grain boundaries by means of x-ray diffraction, transmission electron microscopy and computer modeling; grain boundary migration; short-circuit diffusion along grain boundaries; and development of Thin-Film Deposition/Bonding Apparatus for the manufacture of high purity bicrystals. 10 refs., 1 fig.

  17. The response regulator SypE controls biofilm formation and colonization through phosphorylation of the syp-encoded regulator SypA in Vibrio fischeri.

    Science.gov (United States)

    Morris, Andrew R; Visick, Karen L

    2013-02-01

    Bacteria utilize multiple regulatory systems to modulate gene expression in response to environmental changes, including two-component signalling systems and partner-switching networks. We recently identified a novel regulatory protein, SypE, that combines features of both signalling systems. SypE contains a central response regulator receiver domain flanked by putative kinase and phosphatase effector domains with similarity to partner-switching proteins. SypE was previously shown to exert dual control over biofilm formation through the opposing activities of its terminal effector domains. Here, we demonstrate that SypE controls biofilms in Vibrio fischeri by regulating the activity of SypA, a STAS (sulphate transporter and anti-sigma antagonist) domain protein. Using biochemical and genetic approaches, we determined that SypE both phosphorylates and dephosphorylates SypA, and that phosphorylation inhibits SypA's activity. Furthermore, we found that biofilm formation and symbiotic colonization required active, unphosphorylated SypA, and thus SypA phosphorylation corresponded with a loss of biofilms and impaired host colonization. Finally, expression of a non-phosphorylatable mutant of SypA suppressed both the biofilm and symbiosis defects of a constitutively inhibitory SypE mutant strain. This study demonstrates that regulation of SypA activity by SypE is a critical mechanism by which V. fischeri controls biofilm development and symbiotic colonization. © 2012 Blackwell Publishing Ltd.

  18. The Theoretical Foundations of Formation of the System of Regulating the Social-Labor Relations on the Principles of Responsibility

    Directory of Open Access Journals (Sweden)

    Fomina Olena O.

    2017-03-01

    Full Text Available The article is aimed at analyzing the fundamental economic theories of regulating the social-labor relations, in particular, Marxism, post-capitalism, social action – considering responsibility in the inter-subjective relations, as well as in the assessment of adequacy of implementation of the above indicated theories into economic activities. On the basis of an analysis, it has been found that Marxism considers responsibility as freedom for the economic entities and in the aspect of regulation of social-labor relations allows conflict, which is the engine of the human progress. The post-capitalism represents the conception, which provides for adaptation of public relations towards the technological changes, arbitrary behavior of business entities and formation of organizations of the new formation, aimed at cooperation. The social action theory allows to take into account the objective circumstances impacting the parties of the social-labor relations, and to settle conflicts through the provision of individual responsibility of each party for the situation present. In the light of the foregoing, we believe that regulation of the social-labor relations should be based on use of these theories. Prospects for further research in this direction will be considering the evolution of contemporary theories of responsibility as well as formation of a conceptual schema to ensure the responsible behavior of subjects in the social-labor relations.

  19. The Sensor Kinase GacS Negatively Regulates Flagellar Formation and Motility in a Biocontrol Bacterium, Pseudomonas chlororaphis O6

    Directory of Open Access Journals (Sweden)

    Ji Soo Kim

    2014-06-01

    Full Text Available The GacS/GacA two component system regulates various traits related to the biocontrol potential of plant-associated pseudomonads. The role of the sensor kinase, GacS, differs between strains in regulation of motility. In this study, we determined how a gacS mutation changed cell morphology and motility in Pseudomonas chlororaphis O6. The gacS mutant cells were elongated in stationary-phase compared to the wild type and the complemented gacS mutant, but cells did not differ in length in logarithmic phase. The gacS mutant had a two-fold increase in the number of flagella compared with the wild type strain; flagella number was restored to that of the wild type in the complemented gacS mutant. The more highly flagellated gacS mutant cells had greater swimming motilities than that of the wild type strain. Enhanced flagella formation in the gacS mutant correlated with increased expression of three genes, fleQ, fliQ and flhF, involved in flagellar formation. Expression of these genes in the complemented gacS mutant was similar to that of the wild type. These findings show that this root-colonizing pseudomonad adjusts flagella formation and cell morphology in stationary-phase using GacS as a major regulator.

  20. Phosphorylation of K[superscript +] Channels at Single Residues Regulates Memory Formation

    Science.gov (United States)

    Vernon, Jeffrey; Irvine, Elaine E.; Peters, Marco; Jeyabalan, Jeshmi; Giese, K. Peter

    2016-01-01

    Phosphorylation is a ubiquitous post-translational modification of proteins, and a known physiological regulator of K[superscript +] channel function. Phosphorylation of K[superscript +] channels by kinases has long been presumed to regulate neuronal processing and behavior. Although circumstantial evidence has accumulated from behavioral studies…

  1. Galaxy Formation with Self-Consistently Modeled Stars and Massive Black Holes. I: Feedback-Regulated Star Formation and Black Hole Growth

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-hoon; Wise, John H.; /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Princeton U., Astrophys. Sci. Dept.; Alvarez, Marcelo A.; /Canadian Inst. Theor. Astrophys.; Abel, Tom; /KIPAC, Menlo Park /Stanford U., Phys. Dept.

    2011-11-04

    There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto an MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full three-dimensional adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2 x 10{sup 11} M {circle_dot} galactic halo and its 10{sup 5} {circle_dot} M embedded MBH at redshift 3 in a cosmological CDM simulation. The MBH feedback heats the surrounding interstellar medium (ISM) up to 10{sup 6} K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.

  2. SaeRS Is Responsive to Cellular Respiratory Status and Regulates Fermentative Biofilm Formation in Staphylococcus aureus.

    Science.gov (United States)

    Mashruwala, Ameya A; Gries, Casey M; Scherr, Tyler D; Kielian, Tammy; Boyd, Jeffrey M

    2017-08-01

    Biofilms are multicellular communities of microorganisms living as a quorum rather than as individual cells. The bacterial human pathogen Staphylococcus aureus uses oxygen as a terminal electron acceptor during respiration. Infected human tissues are hypoxic or anoxic. We recently reported that impaired respiration elicits a programmed cell lysis (PCL) phenomenon in S. aureus leading to the release of cellular polymers that are utilized to form biofilms. PCL is dependent upon the AtlA murein hydrolase and is regulated, in part, by the SrrAB two-component regulatory system (TCRS). In the current study, we report that the SaeRS TCRS also governs fermentative biofilm formation by positively influencing AtlA activity. The SaeRS-modulated factor fibronectin-binding protein A (FnBPA) also contributed to the fermentative biofilm formation phenotype. SaeRS-dependent biofilm formation occurred in response to changes in cellular respiratory status. Genetic evidence presented suggests that a high cellular titer of phosphorylated SaeR is required for biofilm formation. Epistasis analyses found that SaeRS and SrrAB influence biofilm formation independently of one another. Analyses using a mouse model of orthopedic implant-associated biofilm formation found that both SaeRS and SrrAB govern host colonization. Of these two TCRSs, SrrAB was the dominant system driving biofilm formation in vivo We propose a model wherein impaired cellular respiration stimulates SaeRS via an as yet undefined signal molecule(s), resulting in increasing expression of AtlA and FnBPA and biofilm formation. Copyright © 2017 American Society for Microbiology.

  3. TCPs, WUSs, and WINDs: Families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation

    Directory of Open Access Journals (Sweden)

    Miho eIkeda

    2014-09-01

    Full Text Available In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP, WUSCHEL (WUS, and WOUND INDUCED DEDIFFERENTIATION (WIND1 families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.

  4. Implementation of training programs in self-regulated learning strategies in Moodle format: results of a experience in higher education.

    Science.gov (United States)

    Núñez, José Carlos; Cerezo, Rebeca; Bernardo, Ana; Rosário, Pedro; Valle, Antonio; Fernández, Estrella; Suárez, Natalia

    2011-04-01

    This paper tests the efficacy of an intervention program in virtual format intended to train studying and self-regulation strategies in university students. The aim of this intervention is to promote a series of strategies which allow students to manage their learning processes in a more proficient and autonomous way. The program has been developed in Moodle format and hosted by the Virtual Campus of the University of Oviedo. The present study had a semi-experimental design, included an experimental group (n=167) and a control one (n=206), and used pretest and posttest measures (self-regulated learning strategies' declarative knowledge, self-regulated learning macro-strategy planning-execution-assessment, self-regulated learning strategies on text, surface and deep learning approaches, and academic achievement). Data suggest that the students enrolled in the training program, comparing with students in the control group, showed a significant improvement in their declarative knowledge, general and on text use of learning strategies, increased their deep approach to learning, decreased their use of a surface approach and, in what concerns to academic achievement, statistically significant differences have been found in favour of the experimental group.

  5. Supporting students in self-regulation: use of formative feedback and portfolios in a problem-based learning setting.

    Science.gov (United States)

    Dannefer, Elaine F; Prayson, Richard A

    2013-08-01

    The widely recognized need for students to self-regulate their behavior and learning extends to the multiple dimensions of professionalism. This study examines the extent to which students self-regulate professionalism behaviors related to work habits and interpersonal skills in a PBL setting. Formative feedback on works habits and interpersonal skills provided by peers and tutors to a Year 1 cohort (n = 32) over the course of a year-long PBL experience (5 blocks) was examined for comments on targeted areas for improvement (TAFIs) and observed improvements. We examined congruence between PBL feedback and students' self-reported TAFIs and behavioral improvements in their assessment portfolios. Both PBL peer and faculty feedback and portfolio self-assessments targeted Interpersonal Skills TAFIs more frequently than Work Habit-related issues. TAFIs were more frequently identified midway in PBL blocks versus the end. Students reported TAFIs in their portfolio essays, citing feedback from both peers and tutors, and provided evidence of improved performance over time. Students utilized external formative feedback to document their portfolio self-assessment in a system designed to support self-regulation of PBL professionalism-related behaviors. A decrease in TAFIs identified at the end of PBL blocks suggests students made use of mid-block feedback to self-regulate behaviors.

  6. SarA is a negative regulator of Staphylococcus epidermidis biofilm formation

    DEFF Research Database (Denmark)

    Martin, Christer; Heinze, C.; Busch, M.

    2012-01-01

    Biofilm formation is essential for Staphylococcus epidermidis pathogenicity in implant-associated infections. Nonetheless, large proportions of invasive S. epidermidis isolates fail to show accumulative biofilm growth in vitro. We here tested the hypothesis that this apparent paradox is related...

  7. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    National Research Council Canada - National Science Library

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai

    2015-01-01

    ... as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast...

  8. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis

    Science.gov (United States)

    Habib, Cameron; Yu, Yiyang; Gozzi, Kevin; Ching, Carly; Shemesh, Moshe

    2017-01-01

    The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB) in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR), which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA). Derepression can be triggered by the presence of the inducer β-1,4-galactobiose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded ß-galactosidase GanA (by ganA), which hydrolyzes ß-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms. PMID:28617843

  9. Methamphetamine-induced dopaminergic neurotoxicity is regulated by quinone formation-related molecules

    OpenAIRE

    宮﨑, 育子

    2006-01-01

    Recently, the neurotoxicity of dopamine (DA) quinone formation by auto-oxidation of DA has focused on dopaminergic neuron-specific oxidative stress. In the present study, we examined DA quinone formation in methamphetamine (METH)-induced dopaminergic neuronal cell death using METH-treated dopaminergic cultured CATH.a cells and METH-injected mouse brain. In CATH.a cells, METH treatment dose-dependently increased the levels of quinoprotein (protein-bound quinone) and the expression of quinone r...

  10. Negotiating boundaries

    DEFF Research Database (Denmark)

    Aarhus, Rikke; Ballegaard, Stinne Aaløkke

    2010-01-01

    to maintain the order of the home when managing disease and adopting new healthcare technology. In our analysis we relate this boundary work to two continuums of visibility-invisibility and integration-segmentation in disease management. We explore five factors that affect the boundary work: objects......To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work......, activities, places, character of disease, and collaboration. Furthermore, the processes are explored of how boundary objects move between social worlds pushing and shaping boundaries. From this we discuss design implications for future healthcare technologies for the home....

  11. Boundary Spanning

    DEFF Research Database (Denmark)

    Zølner, Mette

    The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors...... in the period of post-acquisition when their organization is being integrated into the acquiring MNC. The paper contributes to the literature on boundary spanning in three ways: First, by illustrating that boundary spanning is performed by numerous organizational actors in a variety of positions in MNCs......, inclusively by locals in subsidiaries. Second, by showing that boundary spanning is ‘situated’ in the sense that its result depends on the kind of knowledge to be transmitted and the attitude of the receivers. A third contribution is methodological. The study illustrates that combining bottom-up grounded...

  12. Molecular cloning, phylogenetic analysis, and expression patterns of LATERAL SUPPRESSOR-LIKE and REGULATOR OF AXILLARY MERISTEM FORMATION-LIKE genes in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Fambrini, Marco; Salvini, Mariangela; Pugliesi, Claudio

    2017-03-01

    The wild sunflower (Helianthus annuus) plants develop a highly branched form with numerous small flowering heads. The origin of a no branched sunflower, producing a single large head, has been a key event in the domestication process of this species. The interaction between hormonal factors and several genes organizes the initiation and outgrowth of axillary meristems (AMs). From sunflower, we have isolated two genes putatively involved in this process, LATERAL SUPPRESSOR (LS)-LIKE (Ha-LSL) and REGULATOR OF AXILLARY MERISTEM FORMATION (ROX)-LIKE (Ha-ROXL), encoding for a GRAS and a bHLH transcription factor (TF), respectively. Typical amino acid residues and phylogenetic analyses suggest that Ha-LSL and Ha-ROXL are the orthologs of the branching regulator LS and ROX/LAX1, involved in the growth habit of both dicot and monocot species. qRT-PCR analyses revealed a high accumulation of Ha-LSL transcripts in roots, vegetative shoots, and inflorescence shoots. By contrast, in internodal stems and young leaves, a lower amount of Ha-LSL transcripts was observed. A comparison of transcription patterns between Ha-LSL and Ha-ROXL revealed some analogies but also remarkable differences; in fact, the gene Ha-ROXL displayed a low expression level in all organs analyzed. In situ hybridization (ISH) analysis showed that Ha-ROXL transcription was strongly restricted to a small domain within the boundary zone separating the shoot apical meristem (SAM) and the leaf primordia and in restricted regions of the inflorescence meristem, beforehand the separation of floral bracts from disc flower primordia. These results suggested that Ha-ROXL may be involved to establish a cell niche for the initiation of AMs as well as flower primordia. The accumulation of Ha-LSL transcripts was not restricted to the boundary zones in vegetative and inflorescence shoots, but the mRNA activity was expanded in other cellular domains of primary shoot apical meristem as well as AMs. In addition, Ha

  13. Staphylococcus epidermidis SrrAB Regulates Bacterial Growth and Biofilm Formation Differently under Oxic and Microaerobic Conditions

    Science.gov (United States)

    Wu, Youcong; Wu, Yang; Zhu, Tao; Han, Haiyan; Liu, Huayong; Xu, Tao; Francois, Patrice; Fischer, Adrien; Bai, Li; Götz, Friedrich

    2014-01-01

    SrrAB expression in Staphylococcus epidermidis strain 1457 (SE1457) was upregulated during a shift from oxic to microaerobic conditions. An srrA deletion (ΔsrrA) mutant was constructed for studying the regulatory function of SrrAB. The deletion resulted in retarded growth and abolished biofilm formation both in vitro and in vivo and under both oxic and microaerobic conditions. Associated with the reduced biofilm formation, the ΔsrrA mutant produced much less polysaccharide intercellular adhesion (PIA) and showed decreased initial adherence capacity. Microarray analysis showed that the srrA mutation affected transcription of 230 genes under microaerobic conditions, and 51 genes under oxic conditions. Quantitative real-time PCR confirmed this observation and showed downregulation of genes involved in maintaining the electron transport chain by supporting cytochrome and quinol-oxidase assembly (e.g., qoxB and ctaA) and in anaerobic metabolism (e.g., pflBA and nrdD). In the ΔsrrA mutant, the expression of the biofilm formation-related gene icaR was upregulated under oxic conditions and downregulated under microaerobic conditions, whereas icaA was downregulated under both conditions. An electrophoretic mobility shift assay further revealed that phosphorylated SrrA bound to the promoter regions of icaR, icaA, qoxB, and pflBA, as well as its own promoter region. These findings demonstrate that in S. epidermidis SrrAB is an autoregulator and regulates biofilm formation in an ica-dependent manner. Under oxic conditions, SrrAB modulates electron transport chain activity by positively regulating qoxBACD transcription. Under microaerobic conditions, it regulates fermentation processes and DNA synthesis by modulating the expression of both the pfl operon and nrdDG. PMID:25404696

  14. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kiyomiya, Hiroyasu [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Ariyoshi, Wataru; Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Kaneuji, Takeshi [Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Mitsugi, Sho [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Sakurai, Takuma [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Habu, Manabu [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Yoshioka, Izumi [Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Tominaga, Kazuhiro [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); and others

    2015-05-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, including Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8.

  15. Regulation of Botulinum Neurotoxin Synthesis and Toxin Complex Formation by Arginine and Glucose in Clostridium botulinum ATCC 3502.

    Science.gov (United States)

    Fredrick, Chase M; Lin, Guangyun; Johnson, Eric A

    2017-07-01

    Botulinum neurotoxin (BoNT), produced by neurotoxigenic clostridia, is the most potent biological toxin known and the causative agent of the paralytic disease botulism. The nutritional, environmental, and genetic regulation of BoNT synthesis, activation, stability, and toxin complex (TC) formation is not well studied. Previous studies indicated that growth and BoNT formation were affected by arginine and glucose in Clostridium botulinum types A and B. In the present study, C. botulinum ATCC 3502 was grown in toxin production medium (TPM) with different levels of arginine and glucose and of three products of arginine metabolism, citrulline, proline, and ornithine. Cultures were analyzed for growth (optical density at 600 nm [OD 600 ]), spore formation, and BoNT and TC formation by Western blotting and immunoprecipitation and for BoNT activity by mouse bioassay. A high level of arginine (20 g/liter) repressed BoNT production approximately 1,000-fold, enhanced growth, slowed lysis, and reduced endospore production by greater than 1,000-fold. Similar effects on toxin production were seen with equivalent levels of citrulline but not ornithine or proline. In TPM lacking glucose, levels of formation of BoNT/A1 and TC were significantly decreased, and extracellular BoNT and TC proteins were partially inactivated after the first day of culture. An understanding of the regulation of C. botulinum growth and BoNT and TC formation should be valuable in defining requirements for BoNT formation in foods and clinical samples, improving the quality of BoNT for pharmaceutical preparations, and elucidating the biological functions of BoNTs for the bacterium. IMPORTANCE Botulinum neurotoxin (BoNT) is a major food safety and bioterrorism concern and is also an important pharmaceutical, and yet the regulation of its synthesis, activation, and stability in culture media, foods, and clinical samples is not well understood. This paper provides insights into the effects of critical

  16. Matrix rigidity regulates spatiotemporal dynamics of Cdc42 activity and vacuole formation kinetics of endothelial colony forming cells.

    Science.gov (United States)

    Kim, Seung Joon; Wan, Qiaoqiao; Cho, Eunhye; Han, Bumsoo; Yoder, Mervin C; Voytik-Harbin, Sherry L; Na, Sungsoo

    2014-01-24

    Recent evidence has shown that endothelial colony forming cells (ECFCs) may serve as a cell therapy for improving blood vessel formation in subjects with vascular injury, largely due to their robust vasculogenic potential. The Rho family GTPase Cdc42 is known to play a primary role in this vasculogenesis process, but little is known about how extracellular matrix (ECM) rigidity affects Cdc42 activity during the process. In this study, we addressed two questions: Does matrix rigidity affect Cdc42 activity in ECFC undergoing early vacuole formation? How is the spatiotemporal activation of Cdc42 related to ECFC vacuole formation? A fluorescence resonance energy transfer (FRET)-based Cdc42 biosensor was used to examine the effects of the rigidity of three-dimensional (3D) collagen matrices on spatiotemporal activity of Cdc42 in ECFCs. Collagen matrix stiffness was modulated by varying the collagen concentration and therefore fibril density. The results showed that soft (150 Pa) matrices induced an increased level of Cdc42 activity compared to stiff (1 kPa) matrices. Time-course imaging and colocalization analysis of Cdc42 activity and vacuole formation revealed that Cdc42 activity was colocalized to the periphery of cytoplasmic vacuoles. Moreover, soft matrices generated faster and larger vacuoles than stiff matrices. The matrix-driven vacuole formation was enhanced by a constitutively active Cdc42 mutant, but significantly inhibited by a dominant-negative Cdc42 mutant. Collectively, the results suggest that matrix rigidity is a strong regulator of Cdc42 activity and vacuole formation kinetics, and that enhanced activity of Cdc42 is an important step in early vacuole formation in ECFCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. INTU is essential for oncogenic Hh signaling through regulating primary cilia formation in basal cell carcinoma.

    Science.gov (United States)

    Yang, N; Leung, E L-H; Liu, C; Li, L; Eguether, T; Jun Yao, X-J; Jones, E C; Norris, D A; Liu, A; Clark, R A; Roop, D R; Pazour, G J; Shroyer, K R; Chen, J

    2017-08-31

    Inturned (INTU), a cilia and planar polarity effector, performs prominent ciliogenic functions during morphogenesis, such as in the skin. INTU is expressed in adult tissues but its role in tissue maintenance is unknown. Here, we report that the expression of the INTU gene is aberrantly elevated in human basal cell carcinoma (BCC), coinciding with increased primary cilia formation and activated hedgehog (Hh) signaling. Disrupting Intu in an oncogenic mutant Smo (SmoM2)-driven BCC mouse model prevented the formation of BCC through suppressing primary cilia formation and Hh signaling, suggesting that Intu performs a permissive role during BCC formation. INTU is essential for intraflagellar transport A complex assembly during ciliogenesis. To further determine whether Intu is directly involved in the activation of Hh signaling downstream of ciliogenesis, we examined the Hh signaling pathway in mouse embryonic fibroblasts, which readily responds to the Hh pathway activation. Depleting Intu blocked Smo agonist-induced Hh pathway activation, whereas the expression of Gli2ΔN, a constitutively active Gli2, restored Hh pathway activation in Intu-deficient cells, suggesting that INTU functions upstream of Gli2 activation. In contrast, overexpressing Intu did not promote ciliogenesis or Hh signaling. Taken together, data obtained from this study suggest that INTU is indispensable during BCC tumorigenesis and that its aberrant upregulation is likely a prerequisite for primary cilia formation during Hh-dependent tumorigenesis.

  18. CRP-Mediated Carbon Catabolite Regulation of Yersinia pestis Biofilm Formation Is Enhanced by the Carbon Storage Regulator Protein, CsrA.

    Directory of Open Access Journals (Sweden)

    Stephan P Willias

    Full Text Available The natural transmission of Yersinia pestis is reliant upon biofilm blockage of the flea vector. However, the environmentally-responsive adaptive regulators which facilitate Y. pestis biofilm production in accordance with the flea midgut milieu are not well understood. We seek to establish the impact of available carbon source metabolism and storage upon Y. pestis biofilm production. Our findings demonstrate that Y. pestis biofilm production is subject to carbon catabolite regulation in which the presence of glucose impairs biofilm production; whereas, the sole metabolism of alternate carbon sources promotes robust biofilm formation. This observation is facilitated by the cAMP receptor protein, CRP. In accordance with a stark growth defect, deletion of crp in both CO92 and KIM6+ Y. pestis strains significantly impaired biofilm production when solely utilizing alternate carbon sources. Media supplementation with cAMP, a small-molecule activator of CRP, did not significantly alter Y. pestis biofilm production. Furthermore, CRP did not alter mRNA abundance of previously-characterized hms biofilm synthesis and regulation factors. Therefore, our findings indicate CRP does not confer a direct stimulatory effect, but may indirectly promote Y. pestis biofilm production by facilitating the alternate carbon source expression profile. Additionally, we assessed the impact of the carbon storage regulator protein, CsrA, upon Y. pestis biofilm production. Contrary to what has been described for E. coli, Y. pestis biofilm formation was found to be enhanced by CsrA. Regardless of media composition and available carbon source, deletion of csrA significantly impaired Y. pestis biofilm production. CsrA was found to promote Y. pestis biofilm production independent of glycogen regulation. Loss of csrA did not significantly alter relative hmsH, hmsP, or hmsT mRNA abundance. However, deletion of hmsP in the csrA-deficient mutant enabled excessive biofilm production

  19. Sodium butyrate down-regulates tristetraprolin-mediated cyclin B1 expression independent of the formation of processing bodies.

    Science.gov (United States)

    Zheng, Xiang-Tao; Xiao, Xiao-Qiang; Dai, Ju-Ji

    2015-12-01

    Butyrate regulates multiple host cellular events including the cell cycle; however, little is known about the molecular mechanism by which butyrate induces a global down-regulation of the expression of genes associated with the cell cycle. Here, we demonstrate that treating HEK293T cells and the non-small-cell lung cancer cell line A549 with a high concentration of sodium butyrate reduces cyclin B1 expression. The underlying mechanism is related to the destabilization of its mRNA by tristetraprolin, which is up-regulated in response to sodium butyrate. Specifically, the sodium butyrate stimulation reduces the mRNA and protein expression of cyclin B1 and, conversely, upregulates tristetraprolin expression. Importantly, the overexpression of tristetraprolin in HEK293T decreases the mRNA and protein expression of cyclin B1; in contrast, knockdown of tristetraprolin mediated by small interfering RNA increases its expression in response to sodium butyrate treatment for both HEK293T and A549 cells. Furthermore, results from luciferase reporter assays and RNA immunoprecipitation indicate that sodium butyrate accelerates 3' UTR-dependent cyclin B1 decay by enhancing the binding of tristetraprolin to the 3' untranslated region of cyclin B1. Surprisingly, the overexpression of tristetraprolin prevents the formation of processing bodies, and the siRNA-mediated silencing of EDC4 does not restore the sodium butyrate-induced reduction of cyclin B1 expression. Thus, we confirm that NaBu regulates ZFP36-mediated cyclin B1 expression in a manner that is independent of the formation of P-bodies. The above findings disclose a novel mechanism of sodium butyrate-mediated gene expression regulation and might benefit its application in tumor treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ryan, Robert P.; Lucey, Jean; O'Donovan, Karen

    2009-01-01

    residues (YN-GYP). Here we have investigated the role of these proteins in biofilm formation, virulence factor synthesis and virulence of P. aeruginosa. Mutation of PA4108 and PA4781 led to an increase in the level of cyclic-di-GMP in P. aeruginosa, consistent with the predicted activity of the encoded......2572 had a negative influence on swarming that was cryptic and was revealed only after removal of an uncharacterized C-terminal domain. Mutation of PA4108, PA4781 and PA2572 had distinct effects on biofilm formation and architecture of P. aeruginosa. All three proteins contributed to virulence of P...

  1. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation*

    OpenAIRE

    Bate, Clive; Nolan, William; Williams, Alun Edward

    2015-01-01

    The prion diseases occur following the conversion of the cellular prion protein (PrPC) into disease-related isoforms (PrPSc). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrPC in prion formation was examined using a cell painting technique. PrPSc formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrPC. In contrast, PrPC containing a GPI ...

  2. JNK signaling regulates E-cadherin junctions in germline cysts and determines primordial follicle formation in mice.

    Science.gov (United States)

    Niu, Wanbao; Wang, Ye; Wang, Zhengpin; Xin, Qiliang; Wang, Yijing; Feng, Lizhao; Zhao, Lihua; Wen, Jia; Zhang, Hua; Wang, Chao; Xia, Guoliang

    2016-05-15

    Physiologically, the size of the primordial follicle pool determines the reproductive lifespan of female mammals, while its establishment largely depends on a process of germline cyst breakdown during the perinatal period. The mechanisms regulating this process are poorly understood. Here we demonstrate that c-Jun amino-terminal kinase (JNK) signaling is crucial for germline cyst breakdown and primordial follicle formation. JNK was specifically localized in oocytes and its activity increased as germline cyst breakdown progressed. Importantly, disruption of JNK signaling with a specific inhibitor (SP600125) or knockdown technology (Lenti-JNK-shRNAs) resulted in significantly suppressed cyst breakdown and primordial follicle formation in cultured mouse ovaries. Our results show that E-cadherin is intensely expressed in germline cysts, and that its decline is necessary for oocyte release from the cyst. However, inhibition of JNK signaling leads to aberrantly enhanced localization of E-cadherin at oocyte-oocyte contact sites. WNT4 expression is upregulated after SP600125 treatment. Additionally, similar to the effect of SP600125 treatment, WNT4 overexpression delays cyst breakdown and is accompanied by abnormal E-cadherin expression patterns. In conclusion, our results suggest that JNK signaling, which is inversely correlated with WNT4, plays an important role in perinatal germline cyst breakdown and primordial follicle formation by regulating E-cadherin junctions between oocytes in mouse ovaries. © 2016. Published by The Company of Biologists Ltd.

  3. Clathrin-Mediated Auxin Efflux and Maxima Regulate Hypocotyl Hook Formation and Light-Stimulated Hook Opening in Arabidopsis.

    Science.gov (United States)

    Yu, Qinqin; Zhang, Ying; Wang, Juan; Yan, Xu; Wang, Chao; Xu, Jian; Pan, Jianwei

    2016-01-04

    The establishment of auxin maxima by PIN-FORMED 3 (PIN3)- and AUXIN RESISTANT 1/LIKE AUX1 (LAX) 3 (AUX1/LAX3)-mediated auxin transport is essential for hook formation in Arabidopsis hypocotyls. Until now, however, the underlying regulatory mechanism has remained poorly understood. Here, we show that loss of function of clathrin light chain CLC2 and CLC3 genes enhanced auxin maxima and thereby hook curvature, alleviated the inhibitory effect of auxin overproduction on auxin maxima and hook curvature, and delayed blue light-stimulated auxin maxima reduction and hook opening. Moreover, pharmacological experiments revealed that auxin maxima formation and hook curvature in clc2 clc3 were sensitive to auxin efflux inhibitors 1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid but not to the auxin influx inhibitor 1-naphthoxyacetic acid. Live-cell imaging analysis further uncovered that loss of CLC2 and CLC3 function impaired PIN3 endocytosis and promoted its lateralization in the cortical cells but did not affect AUX1 localization. Taken together, these results suggest that clathrin regulates auxin maxima and thereby hook formation through modulating PIN3 localization and auxin efflux, providing a novel mechanism that integrates developmental signals and environmental cues to regulate plant skotomorphogenesis and photomorphogenesis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  4. Grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Balluffi, R.W.; Bristowe, P.D.

    1991-01-01

    The present document is a progress report describing the work accomplished to date during the second year of our four-year grant (February 15, 1990--February 14, 1994) to study grain boundaries. The research was focused on the following three major efforts: Study of the atomic structure of grain boundaries by means of x-ray diffraction, transmission electron microscopy and computer modeling; study of short-circuit diffusion along grain boundaries; and development of a Thin-film Deposition/Bonding Apparatus for the manufacture of high purity bicrystals.

  5. Grain boundaries

    Science.gov (United States)

    Balluffi, R. W.; Bristowe, P. D.

    The present document is a progress report describing the work accomplished to date during the second year of our four-year grant (February 15, 1990 to February 14, 1994) to study grain boundaries. The research was focused on the following three major efforts: study of the atomic structure of grain boundaries by means of x-ray diffraction, transmission electron microscopy and computer modeling; study of short-circuit diffusion along grain boundaries; and development of a Thin-film Deposition/Bonding Apparatus for the manufacture of high purity bicrystals.

  6. Involvement of Cyclin K Posttranscriptional Regulation in the Formation of Artemia Diapause Cysts

    Science.gov (United States)

    Zhao, Yang; Ding, Xia; Ye, Xiang; Dai, Zhong-Min; Yang, Jin-Shu; Yang, Wei-Jun

    2012-01-01

    Background Artemia eggs tend to develop ovoviviparously to yield nauplius larvae in good rearing conditions; while under adverse situations, they tend to develop oviparously and encysted diapause embryos are formed instead. However, the intrinsic mechanisms regulating this process are not well understood. Principal Finding This study has characterized the function of cyclin K, a regulatory subunit of the positive transcription elongation factor b (P-TEFb) in the two different developmental pathways of Artemia. In the diapause-destined embryo, Western blots showed that the cyclin K protein was down-regulated as the embryo entered dormancy and reverted to relatively high levels of expression once development resumed, consistent with the fluctuations in phosphorylation of position 2 serines (Ser2) in the C-terminal domain (CTD) of the largest subunit (Rpb1) of RNA polymerase II (RNAP II). Interestingly, the cyclin K transcript levels remained constant during this process. In vitro translation data indicated that the template activity of cyclin K mRNA stored in the postdiapause cyst was repressed. In addition, in vivo knockdown of cyclin K in developing embryos by RNA interference eliminated phosphorylation of the CTD Ser2 of RNAP II and induced apoptosis by inhibiting the extracellular signal-regulated kinase (ERK) survival signaling pathway. Conclusions/Significance Taken together, these findings reveal a role for cyclin K in regulating RNAP II activity during diapause embryo development, which involves the post-transcriptional regulation of cyclin K. In addition, a further role was identified for cyclin K in regulating the control of cell survival during embryogenesis through ERK signaling pathways. PMID:22363807

  7. Involvement of cyclin K posttranscriptional regulation in the formation of Artemia diapause cysts.

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    Full Text Available BACKGROUND: Artemia eggs tend to develop ovoviviparously to yield nauplius larvae in good rearing conditions; while under adverse situations, they tend to develop oviparously and encysted diapause embryos are formed instead. However, the intrinsic mechanisms regulating this process are not well understood. PRINCIPAL FINDING: This study has characterized the function of cyclin K, a regulatory subunit of the positive transcription elongation factor b (P-TEFb in the two different developmental pathways of Artemia. In the diapause-destined embryo, Western blots showed that the cyclin K protein was down-regulated as the embryo entered dormancy and reverted to relatively high levels of expression once development resumed, consistent with the fluctuations in phosphorylation of position 2 serines (Ser2 in the C-terminal domain (CTD of the largest subunit (Rpb1 of RNA polymerase II (RNAP II. Interestingly, the cyclin K transcript levels remained constant during this process. In vitro translation data indicated that the template activity of cyclin K mRNA stored in the postdiapause cyst was repressed. In addition, in vivo knockdown of cyclin K in developing embryos by RNA interference eliminated phosphorylation of the CTD Ser2 of RNAP II and induced apoptosis by inhibiting the extracellular signal-regulated kinase (ERK survival signaling pathway. CONCLUSIONS/SIGNIFICANCE: Taken together, these findings reveal a role for cyclin K in regulating RNAP II activity during diapause embryo development, which involves the post-transcriptional regulation of cyclin K. In addition, a further role was identified for cyclin K in regulating the control of cell survival during embryogenesis through ERK signaling pathways.

  8. Deoxyribonuclease Is a Potential Counter Regulator of Aberrant Neutrophil Extracellular Traps Formation after Major Trauma

    Directory of Open Access Journals (Sweden)

    Wei Meng

    2012-01-01

    Conclusions. DNase degrades NETs in a concentration-dependent manner and therefore could have a potential regulatory effect on NET formation in neutrophils. This may inhibit the antibacterial effects of NETs or protect the tissue from autodestruction in inadequate NETs release in septic patients.

  9. Delineation of the key aspects in the regulation of epithelial monolayer formation

    NARCIS (Netherlands)

    Aschauer, Lydia; Gruber, Leonhard N; Pfaller, Walter; Limonciel, Alice; Athersuch, Toby J; Cavill, Rachel; Khan, Abdulhameed; Gstraunthaler, Gerhard; Grillari, Johannes; Grillari-Voglauer, Regina; Hewitt, Philip; Leonard, Martin O; Wilmes, Anja; Jennings, Paul

    The formation, maintenance, and repair of epithelial barriers are of critical importance for whole-body homeostasis. However, the molecular events involved in epithelial tissue maturation are not fully established. To this end, we investigated the molecular processes involved in renal epithelial

  10. CRMP4 Inhibits Bone Formation by Negatively Regulating BMP and RhoA Signaling

    DEFF Research Database (Denmark)

    Abdallah, Basem M.; Figeac, Florence; Larsen, Kenneth H.

    2017-01-01

    % increase in bone mass, increased mineral apposition rate, and bone formation rate, compared to wild-type controls. Increased bone mass in Crmp4(-/-) mice was associated with enhanced BMP2 signaling and BMP2-induced osteoblast differentiation in Crmp4(-/-) osteoblasts (OBs). Furthermore, Crmp4(-/-) OBs...

  11. Regulation of Amidase Formation in Mutants from Pseudomonas aeruginosa PAO Lacking Glutamine Synthetase Activity

    NARCIS (Netherlands)

    Janssen, Dick B.; Herst, Patricia M.; Joosten, Han M.L.J.; Drift, Chris van der

    1982-01-01

    The formation of amidase was studied in mutants from Pseudomonas aeruginosa PAO lacking glutamine synthetase activity. It appeared that catabolite repression of amidase synthesis by succinate was partially relieved when cellular growth was limited by glutamine. Under these conditions, a correlation

  12. Regulation of Clostridium difficile Spore Formation by the SpoIIQ and SpoIIIA Proteins.

    Directory of Open Access Journals (Sweden)

    Kelly A Fimlaid

    2015-10-01

    Full Text Available Sporulation is an ancient developmental process that involves the formation of a highly resistant endospore within a larger mother cell. In the model organism Bacillus subtilis, sporulation-specific sigma factors activate compartment-specific transcriptional programs that drive spore morphogenesis. σG activity in the forespore depends on the formation of a secretion complex, known as the "feeding tube," that bridges the mother cell and forespore and maintains forespore integrity. Even though these channel components are conserved in all spore formers, recent studies in the major nosocomial pathogen Clostridium difficile suggested that these components are dispensable for σG activity. In this study, we investigated the requirements of the SpoIIQ and SpoIIIA proteins during C. difficile sporulation. C. difficile spoIIQ, spoIIIA, and spoIIIAH mutants exhibited defects in engulfment, tethering of coat to the forespore, and heat-resistant spore formation, even though they activate σG at wildtype levels. Although the spoIIQ, spoIIIA, and spoIIIAH mutants were defective in engulfment, metabolic labeling studies revealed that they nevertheless actively transformed the peptidoglycan at the leading edge of engulfment. In vitro pull-down assays further demonstrated that C. difficile SpoIIQ directly interacts with SpoIIIAH. Interestingly, mutation of the conserved Walker A ATP binding motif, but not the Walker B ATP hydrolysis motif, disrupted SpoIIIAA function during C. difficile spore formation. This finding contrasts with B. subtilis, which requires both Walker A and B motifs for SpoIIIAA function. Taken together, our findings suggest that inhibiting SpoIIQ, SpoIIIAA, or SpoIIIAH function could prevent the formation of infectious C. difficile spores and thus disease transmission.

  13. Flower-bud formation in explants of photoperiodic and day-neutral Nicotiana biotypes and its bearing on the regulation of flower formation

    Energy Technology Data Exchange (ETDEWEB)

    Rajeevan, M.S.; Lang, A. (Michigan State Univ., East Lansing (United States))

    1993-05-15

    The capacity to form flower buds in thin-layer explants was studied in Nicotiana of several species, cultivars, and lines of differing in their response to photoperiod. This capacity was found in all biotypes examined and could extend into sepals and corolla. It varied depending on genotype, source tissue and its developmental state, and composition of the culture medium, particularly the levels of glucose, auxin, and cytokinin. It was greatest in the two day-neutral plants examined, Samsun tobacco and Nicotiana rustica, where it extended from the inflorescence region down the vegetative stem, in a basipetally decreasing gradient; it was least in the two qualitative photoperiodic plants studied, the long-day plant Nicotiana silvestris and the short-day plant Maryland Mammoth tobacco, the quantitative long-day plant Nicotiana alata and the quantitative short-day plant Nicotiana otophora line 38-G-81, where it was limited to the pedicels (and, in some cases, the sepals). Regardless of the photoperiodic response of the source plants, the response was the same in explants cultured under long and short days. The capacity to form flow buds in explants is present in all Nicotiana biotypes studied supports the idea that it is regulated by the same mechanism(s), regardless of the plant's photoperiodic character. However, flower formation in the explants is not identical with de novo flower formation in a hitherto vegetative plant: it is rather the expression of a floral state already established in the plant, although it can vary widely in extent and spatial distribution. Culture conditions that permit flower-bud formation in an explant are conditions that maintain the floral state and encourage its expression; conditions under which no flower buds are formed reduce this state and/or prevent its expression. 14 refs., 5 figs., 3 tabs.

  14. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    Directory of Open Access Journals (Sweden)

    Uwe eDruege

    2014-09-01

    Full Text Available Adventitious root (AR formation in the stem base of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours after excision (hpe of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from stem base to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled

  15. ATX-LPA1 axis contributes to proliferation of chondrocytes by regulating fibronectin assembly leading to proper cartilage formation.

    Science.gov (United States)

    Nishioka, Tatsuji; Arima, Naoaki; Kano, Kuniyuki; Hama, Kotaro; Itai, Eriko; Yukiura, Hiroshi; Kise, Ryoji; Inoue, Asuka; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Moolenaar, Wouter H; Chun, Jerold; Aoki, Junken

    2016-03-23

    The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through β1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation.

  16. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Nyberg, Michael; Thaning, Pia

    2009-01-01

    Adenosine can induce vasodilation in skeletal muscle, but to what extent adenosine exerts its effect via formation of other vasodilators and whether there is redundancy between adenosine and other vasodilators remain unclear. We tested the hypothesis that adenosine, prostaglandins, and NO act...... in synergy to regulate skeletal muscle hyperemia by determining the following: (1) the effect of adenosine receptor blockade on skeletal muscle exercise hyperemia with and without simultaneous inhibition of prostaglandins (indomethacin; 0.8 to 1.8 mg/min) and NO (N(G)-mono-methyl-l-arginine; 29 to 52 mg....../min); (2) whether adenosine-induced vasodilation is mediated via formation of prostaglandins and/or NO; and (3) the femoral arterial and venous plasma adenosine concentrations during leg exercise with the microdialysis technique in a total of 24 healthy, male subjects. Inhibition of adenosine receptors...

  17. The redox-sensing regulator Rex modulates central carbon metabolism, stress tolerance response and biofilm formation by Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Jacob P Bitoun

    Full Text Available The Rex repressor has been implicated in regulation of central carbon and energy metabolism in gram-positive bacteria. We have previously shown that Streptococcus mutans, the primary causative agent of dental caries, alters its transcriptome upon Rex-deficiency and renders S. mutans to have increased susceptibility to oxidative stress, aberrations in glucan production, and poor biofilm formation. In this study, we showed that rex in S. mutans is co-transcribed as an operon with downstream guaA, encoding a putative glutamine amidotransferase. Electrophoretic mobility shift assays showed that recombinant Rex bound promoters of target genes avidly and specifically, including those down-regulated in response to Rex-deficiency, and that the ability of recombinant Rex to bind to selected promoters was modulated by NADH and NAD(+. Results suggest that Rex in S. mutans can function as an activator in response to intracellular NADH/NAD(+ level, although the exact binding site for activator Rex remains unclear. Consistent with a role in oxidative stress tolerance, hydrogen peroxide challenge assays showed that the Rex-deficient mutant, TW239, and the Rex/GuaA double mutant, JB314, were more susceptible to hydrogen peroxide killing than the wildtype, UA159. Relative to UA159, JB314 displayed major defects in biofilm formation, with a decrease of more than 50-fold in biomass after 48-hours. Collectively, these results further suggest that Rex in S. mutans regulates fermentation pathways, oxidative stress tolerance, and biofilm formation in response to intracellular NADH/NAD(+ level. Current effort is being directed to further investigation of the role of GuaA in S. mutans cellular physiology.

  18. HARMONIZATION OF CROATIAN LEGAL REGULATIONS WITH EU DIRECTIVES CONCERNING PETROLEUM INDUSTRY WASTE DISPOSAL INTO SUITABLE GEOLOGICAL FORMATIONS

    Directory of Open Access Journals (Sweden)

    Vladislav Brkić

    2010-12-01

    Full Text Available Exploration and production of mineral resources, especially hydrocarbons, are from ecological point of view, one of the most sensitive activities. Concerning global ecological standards, which have also been enforced into petroleum industry, exploration and production of mineral energy sources have to be based on compliance with introduced environmental and human health protection requirements. Since it is expected that Croatia will join European Union in the near future, it is necessary to develop institutional and legislative frameworks for enabling and regulating the harmonization of mineral resources exploration and production waste disposal with European Union directives and regulations. Petroleum industry waste disposal by injection into suitable geological formations is one of environmentally acceptable methods for petroleum industry waste management (the paper is published in Croatian.

  19. Effect of VN precipitates on formation of grain boundary and intragranular ferrite in a high N-V bearing steel; V-N tenkako no ryukai oyobi ryunai ferrite hentai ni oyobosu austenite chu no VN sekishutsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Omori, A.; Oi, K.; Kawabata, F.; Amano, K. [Kawasaki Steel Corp., Tokyo (Japan)

    1998-11-01

    The enhancement of ferrite nucleation owing to vanadium nitride (VN) precipitated in the austenite phase was studied for a 0.14%C- 1.45%Mn-0.06%V-0.009%N steel and the isothermal ferrite transformation behavior associated with VN precipitation was also quantitatively discussed. Vanadium nitrides precipitate on the austenite grain boundary in preference to the grain interior and increase the density of grain boundary ferrites. On the other hand, VN precipitates in austenite grain interior are less effective to intragranular ferrite nucleation. The calculation based on the classical nucleation theory shows that the activation energy of VN precipitates for a critical ferrite nucleus formation is one-fifth lower than that in case of no precipitate. The ferrite nucleation potency of VN precipitates is kept high even in higher temperature range above 700degreeC. (author)

  20. Combating chronic bacterial infections by manipulating cyclic nucleotide-regulated biofilm formation.

    Science.gov (United States)

    An, Shi-Qi; Ryan, Robert P

    2016-06-01

    Many pathogenic bacteria can form biofilms in clinical settings with major consequences for the progression of infections. Bacterial biofilm communities are typically much more resistant to both antibiotic treatment and clearance by the immune system in comparison to free-living cells. Therefore, drugs that specifically target the formation or maintenance of biofilms would be very valuable additions to current clinical options. Cyclic nucleotide second messengers, in particular cyclic-diguanosine-GMP (c-di-GMP), are now known to play a major role in biofilm formation, and maintenance, in many bacterial species. In this special report, we will review recent progress toward the development of drugs that interfere with c-di-GMP signaling as a route to control biofilm infections. We will focus on the chronic infections associated with the notorious opportunistic pathogen Pseudomonas aeruginosa, although the principles outlined here are also relevant to most bacterial pathogens.

  1. Topology regulates pattern formation capacity of binary cellular automata on graphs

    Science.gov (United States)

    Marr, Carsten; Hütt, Marc-Thorsten

    2005-08-01

    We study the effect of topology variation on the dynamic behavior of a system with local update rules. We implement one-dimensional binary cellular automata on graphs with various topologies by formulating two sets of degree-dependent rules, each containing a single parameter. We observe that changes in graph topology induce transitions between different dynamic domains (Wolfram classes) without a formal change in the update rule. Along with topological variations, we study the pattern formation capacities of regular, random, small-world and scale-free graphs. Pattern formation capacity is quantified in terms of two entropy measures, which for standard cellular automata allow a qualitative distinction between the four Wolfram classes. A mean-field model explains the dynamic behavior of random graphs. Implications for our understanding of information transport through complex, network-based systems are discussed.

  2. BpsR Modulates Bordetella Biofilm Formation by Negatively Regulating the Expression of the Bps Polysaccharide

    OpenAIRE

    Conover, Matt S.; Redfern, Crystal J.; Ganguly, Tridib; Sukumar, Neelima; Sloan, Gina; Mishra, Meenu; Deora, Rajendar

    2012-01-01

    Bordetella bacteria are Gram-negative respiratory pathogens of animals, birds, and humans. A hallmark feature of some Bordetella species is their ability to efficiently survive in the respiratory tract even after vaccination. Bordetella bronchiseptica and Bordetella pertussis form biofilms on abiotic surfaces and in the mouse respiratory tract. The Bps exopolysaccharide is one of the critical determinants for biofilm formation and the survival of Bordetella in the murine respiratory tract. In...

  3. Topology regulates pattern formation capacity of binary cellular automata on graphs

    OpenAIRE

    Marr, Carsten; Huett, Marc-Thorsten

    2005-01-01

    We study the effect of topology variation on the dynamic behavior of a system with local update rules. We implement one-dimensional binary cellular automata on graphs with various topologies by formulating two sets of degree-dependent rules, each containing a single parameter. We observe that changes in graph topology induce transitions between different dynamic domains (Wolfram classes) without a formal change in the update rule. Along with topological variations, we study the pattern format...

  4. The jaw of the worm: GTPase-activating protein EAT-17 regulates grinder formation in Caenorhabditis elegans.

    Science.gov (United States)

    Straud, Sarah; Lee, Inhwan; Song, Bomi; Avery, Leon; You, Young-Jai

    2013-09-01

    Constitutive transport of cellular materials is essential for cell survival. Although multiple small GTPase Rab proteins are required for the process, few regulators of Rabs are known. Here we report that EAT-17, a novel GTPase-activating protein (GAP), regulates RAB-6.2 function in grinder formation in Caenorhabditis elegans. We identified EAT-17 as a novel RabGAP that interacts with RAB-6.2, a protein that presumably regulates vesicle trafficking between Golgi, the endoplasmic reticulum, and plasma membrane to form a functional grinder. EAT-17 has a canonical GAP domain that is critical for its function. RNA interference against 25 confirmed and/or predicted RABs in C. elegans shows that RNAi against rab-6.2 produces a phenotype identical to eat-17. A directed yeast two-hybrid screen using EAT-17 as bait and each of the 25 RAB proteins as prey identifies RAB-6.2 as the interacting partner of EAT-17, confirming that RAB-6.2 is a specific substrate of EAT-17. Additionally, deletion mutants of rab-6.2 show grinder defects identical to those of eat-17 loss-of-function mutants, and both RAB-6.2 and EAT-17 are expressed in the terminal bulb of the pharynx where the grinder is located. Collectively, these results suggest that EAT-17 is a specific GTPase-activating protein for RAB-6.2. Based on the conserved function of Rab6 in vesicular transport, we propose that EAT-17 regulates the turnover rate of RAB-6.2 activity in cargo trafficking for grinder formation.

  5. TH2 cells and their cytokines regulate formation and function of lymphatic vessels.

    Science.gov (United States)

    Shin, Kihyuk; Kataru, Raghu P; Park, Hyeung Ju; Kwon, Bo-In; Kim, Tae Woo; Hong, Young Kwon; Lee, Seung-Hyo

    2015-02-04

    Lymphatic vessels (LVs) are critical for immune surveillance and involved in the pathogenesis of diverse diseases. LV density is increased during inflammation; however, little is known about how the resolution of LVs is controlled in different inflammatory conditions. Here we show the negative effects of T helper type 2 (TH2) cells and their cytokines on LV formation. IL-4 and IL-13 downregulate essential transcription factors of lymphatic endothelial cells (LECs) and inhibit tube formation. Co-culture of LECs with TH2 cells also inhibits tube formation, but this effect is fully reversed by interleukin (IL)-4 and/or IL-13 neutralization. Furthermore, the in vivo blockade of IL-4 and/or IL-13 in an asthma model not only increases the density but also enhances the function of lung LVs. These results demonstrate an anti-lymphangiogenic function of TH2 cells and their cytokines, suggesting a potential usefulness of IL-4 and/or IL-13 antagonist as therapeutic agents for allergic asthma through expanding LV mediated-enhanced antigen clearance from the inflammatory sites.

  6. Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Huang, Katherine H.; Arkin, Adam P.; Alm, Eric J.

    2005-04-12

    Although operons are often subject to horizontal gene transfer (HGT), non-HGT genes are particularly likely to be in operons. To resolve this apparent discrepancy and to determine whether HGT is involved in operon formation, we examined the evolutionary history of the genes and operons in Escherichia coli K12. We show that genes that have homologs in distantly related bacteria but not in close relatives of E. coli (indicating HGTi) form new operons at about the same rates as native genes. Furthermore, genes in new operons are no more likely than other genes to have phylogenetic trees that are inconsistent with the species tree. In contrast, essential genes and ubiquitous genes without paralogs (genes believed to undergo HGT rarely) often form new operons. We conclude that HGT is not associated with operon formation, but instead promotes the prevalence of pre-existing operons. To explain operon formation, we propose that new operons reduce the amount of regulatory information required to specify optimal expression patterns. Consistent with this hypothesis, operons have greater amounts of conserved regulatory sequences than do individually transcribed genes.

  7. Star cluster formation in a turbulent molecular cloud self-regulated by photoionization feedback

    Science.gov (United States)

    Gavagnin, Elena; Bleuler, Andreas; Rosdahl, Joakim; Teyssier, Romain

    2017-12-01

    Most stars in the Galaxy are believed to be formed within star clusters from collapsing molecular clouds. However, the complete process of star formation, from the parent cloud to a gas-free star cluster, is still poorly understood. We perform radiation-hydrodynamical simulations of the collapse of a turbulent molecular cloud using the RAMSES-RT code. Stars are modelled using sink particles, from which we self-consistently follow the propagation of the ionizing radiation. We study how different feedback models affect the gas expulsion from the cloud and how they shape the final properties of the emerging star cluster. We find that the star formation efficiency is lower for stronger feedback models. Feedback also changes the high-mass end of the stellar mass function. Stronger feedback also allows the establishment of a lower density star cluster, which can maintain a virial or sub-virial state. In the absence of feedback, the star formation efficiency is very high, as well as the final stellar density. As a result, high-energy close encounters make the cluster evaporate quickly. Other indicators, such as mass segregation, statistics of multiple systems and escaping stars confirm this picture. Observations of young star clusters are in best agreement with our strong feedback simulation.

  8. Habenular commissure formation in zebrafish is regulated by the pineal gland specific gene unc119c

    Science.gov (United States)

    Toyama, Reiko; Kim, Mi Ha; Rebbert, Martha L.; Gonzales, John; Burgess, Harold; Dawid, Igor B.

    2013-01-01

    Background The zebrafish pineal gland (epiphysis) is a site of melatonin production, contains photoreceptor cells, and functions as a circadian clock pacemaker. Since it is located on the surface of the forebrain, it is accessible for manipulation and therefore is a useful model system to analyze pineal gland function and development. We previously analyzed the pineal transcriptome during development and showed that many genes exhibit a highly dynamic expression pattern in the pineal gland. Results Among genes preferentially expressed in the zebrafish pineal gland, we identified a tissue-specific form of the unc119 gene family, unc119c, which is highly preferentially expressed in the pineal gland during day and night at all stages examined from embryo to adult. When expression of unc119c was inhibited, the formation of the habenular commissure (HC) was specifically compromised. The Unc119c interacting factors Arl3l1 and Arl3l2 as well as Wnt4a also proved indispensible for HC formation. Conclusions We suggest that Unc119c, together with Arl3l1/2, plays an important role in modulating Wnt4a production and secretion during HC formation in the forebrain of the zebrafish embryo. PMID:23749482

  9. Regulation of inducible BALT formation and contribution to immunity and pathology.

    Science.gov (United States)

    Foo, S Y; Phipps, S

    2010-11-01

    Inducible bronchus-associated lymphoid tissue (iBALT) is an organized tertiary lymphoid structure that is not pre-programmed but develops in response to infection or under chronic inflammatory conditions. Emerging research has shown that iBALT provides a niche for T-cell priming and B-cell education to assist in the clearance of infectious agents, highlighting the prospect that iBALT may be engineered and harnessed to enhance protective immunity against respiratory pathogens. Although iBALT formation is associated with several canonical factors of secondary lymphoid organogenesis such as lymphotoxin-α and the homeostatic chemokines, CXCL13, CCL19, and CCL21, these cytokines are not mandatory for its formation, even though they influence its organization and function. Similarly, lymphoid tissue-inducer cells are not a requisite of iBALT formation. In contrast, dendritic cells are emerging as pivotal players required to form and sustain the presence of iBALT. Regulatory T cells appear to be able to attenuate the development of iBALT, although the underlying mechanisms remain ill-defined. In this review, we discuss facets unique to iBALT induction, the cellular subsets, and molecular cues that govern this process, and the contribution of this ectopic structure toward the generation of immune responses in the pulmonary compartment.

  10. Blowing off steam: Tuffisite formation as a regulator for lava dome eruptions

    Directory of Open Access Journals (Sweden)

    Jackie Evan Kendrick

    2016-04-01

    Full Text Available Tuffisites are veins of variably sintered, pyroclastic particles that form in conduits and lava domes as a result of localized fragmentation events during gas-and-ash explosions. Those observed in-situ on the active 2012 lava dome of Volcán de Colima range from voids with intra-clasts showing little movement and interpreted to be failure-nuclei, to sub-parallel lenses of sintered granular aggregate interpreted as fragmentation horizons, through to infilled fractures with evidence of viscous remobilization. All tuffisites show evidence of sintering. Further examination of the complex fracture-and-channel patterns reveals viscous backfill by surrounding magma, suggesting that lava fragmentation was followed by stress relaxation and continued viscous deformation as the tuffisites formed. The natural tuffisites are more permeable than the host andesite, and have a wide range of porosity and permeability compared to a narrower window for the host rock, and gauging from their significant distribution across the dome, we posit that the tuffisite veins may act as important outgassing pathways. To investigate tuffisite formation we crushed and sieved andesite from the lava dome and sintered it at magmatic temperatures for different times. We then assessed the healing and sealing ability by measuring porosity and permeability, showing that sintering reduces both over time. During sintering the porosity-permeability reduction occurs due to the formation of viscous necks between adjacent grains, a process described by the neck-formation model of Frenkel (1945. This process leads the granular starting material to a porosity-permeability regime anticipated for effusive lavas, and which describes the natural host lava as well as the most impervious of natural tuffisites. This suggests that tuffisite formation at Volcán de Colima constructed a permeable network that enabled gas to bleed passively from the magma. We postulate that this progressively reduced

  11. Smooth muscle–endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation

    Science.gov (United States)

    Lutter, Sophie; Xie, Sherry; Tatin, Florence

    2012-01-01

    Active lymph transport relies on smooth muscle cell (SMC) contractions around collecting lymphatic vessels, yet regulation of lymphatic vessel wall assembly and lymphatic pumping are poorly understood. Here, we identify Reelin, an extracellular matrix glycoprotein previously implicated in central nervous system development, as an important regulator of lymphatic vascular development. Reelin-deficient mice showed abnormal collecting lymphatic vessels, characterized by a reduced number of SMCs, abnormal expression of lymphatic capillary marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and impaired function. Furthermore, we show that SMC recruitment to lymphatic vessels stimulated release and proteolytic processing of endothelium-derived Reelin. Lymphatic endothelial cells in turn responded to Reelin by up-regulating monocyte chemotactic protein 1 (MCP1) expression, which suggests an autocrine mechanism for Reelin-mediated control of endothelial factor expression upstream of SMC recruitment. These results uncover a mechanism by which Reelin signaling is activated by communication between the two cell types of the collecting lymphatic vessels—smooth muscle and endothelial cells—and highlight a hitherto unrecognized and important function for SMCs in lymphatic vessel morphogenesis and function. PMID:22665518

  12. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells.

    Science.gov (United States)

    Cortese-Krott, Miriam M; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D; Suschek, Christoph V

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.

  13. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Directory of Open Access Journals (Sweden)

    Miriam M. Cortese-Krott

    2014-01-01

    Full Text Available Aberrant production of nitric oxide (NO by inducible NO synthase (iNOS has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.

  14. Sodium Lactate Negatively Regulates Shewanella putrefaciens CN32 Biofilm Formation via a Three-Component Regulatory System (LrbS-LrbA-LrbR).

    Science.gov (United States)

    Liu, Cong; Yang, Jinshui; Liu, Liang; Li, Baozhen; Yuan, Hongli; Liu, Weijie

    2017-07-15

    The capability of biofilm formation has a major impact on the industrial and biotechnological applications of Shewanella putrefaciens CN32. However, the detailed regulatory mechanisms underlying biofilm formation in this strain remain largely unknown. In the present report, we describe a three-component regulatory system which negatively regulates the biofilm formation of S. putrefaciens CN32. This system consists of a histidine kinase LrbS (Sputcn32_0303) and two cognate response regulators, including a transcription factor, LrbA (Sputcn32_0304), and a phosphodiesterase, LrbR (Sputcn32_0305). LrbS responds to the signal of the carbon source sodium lactate and subsequently activates LrbA. The activated LrbA then promotes the expression of lrbR, the gene for the other response regulator. The bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) phosphodiesterase LrbR, containing an EAL domain, decreases the concentration of intracellular c-di-GMP, thereby negatively regulating biofilm formation. In summary, the carbon source sodium lactate acts as a signal molecule that regulates biofilm formation via a three-component regulatory system (LrbS-LrbA-LrbR) in S. putrefaciens CN32.IMPORTANCE Biofilm formation is a significant capability used by some bacteria to survive in adverse environments. Numerous environmental factors can affect biofilm formation through different signal transduction pathways. Carbon sources are critical nutrients for bacterial growth, and their concentrations and types significantly influence the biomass and structure of biofilms. However, knowledge about the underlying mechanism of biofilm formation regulation by carbon source is still limited. This work elucidates a modulation pattern of biofilm formation negatively regulated by sodium lactate as a carbon source via a three-component regulatory system in S. putrefaciens CN32, which may serve as a good example for studying how the carbon sources impact biofilm development in other bacteria. Copyright

  15. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation*

    Science.gov (United States)

    Bate, Clive; Nolan, William; Williams, Alun

    2016-01-01

    The prion diseases occur following the conversion of the cellular prion protein (PrPC) into disease-related isoforms (PrPSc). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrPC in prion formation was examined using a cell painting technique. PrPSc formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrPC. In contrast, PrPC containing a GPI anchor from which the sialic acid had been removed (desialylated PrPC) was not converted to PrPSc. Furthermore, the presence of desialylated PrPC inhibited the production of PrPSc within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrPC contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrPC. Desialylated PrPC was less sensitive to cholesterol depletion than PrPC and was not released from cells by treatment with glimepiride. The presence of desialylated PrPC in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrPC modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrPSc formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases. PMID:26553874

  16. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation.

    Science.gov (United States)

    Bate, Clive; Nolan, William; Williams, Alun

    2016-01-01

    The prion diseases occur following the conversion of the cellular prion protein (PrP(C)) into disease-related isoforms (PrP(Sc)). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrP(C) in prion formation was examined using a cell painting technique. PrP(Sc) formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrP(C). In contrast, PrP(C) containing a GPI anchor from which the sialic acid had been removed (desialylated PrP(C)) was not converted to PrP(Sc). Furthermore, the presence of desialylated PrP(C) inhibited the production of PrP(Sc) within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrP(C) contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrP(C). Desialylated PrP(C) was less sensitive to cholesterol depletion than PrP(C) and was not released from cells by treatment with glimepiride. The presence of desialylated PrP(C) in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. VEGF family members regulate myocardial tubulogenesis and coronary artery formation in the embryo.

    Science.gov (United States)

    Tomanek, Robert J; Ishii, Yasuo; Holifield, Jennifer S; Sjogren, Christina L; Hansen, Heidi K; Mikawa, Takashi

    2006-04-14

    This study tested the hypothesis that coronary tubulogenesis and coronary artery formation require VEGF family members. Quail embryos were injected with soluble vascular endothelial growth factor (VEGF) receptors R1 (Flt-1), R2 (Flk-1), R3 (Flt-4), VEGF-Trap (a chimera of R1 and R2), or neutralizing antibodies to VEGF-A, VEGF-B, or fibroblast growth factor (FGF)-2. Our data document that tubulogenesis is temporally dependent on multiple VEGF family members, because the early stage of tubulogenesis was markedly inhibited by VEGF-Trap and to a lesser extent by soluble VEGFR-1. Some inhibition of tubulogenesis was documented when anti-FGF-2, but not anti-VEGF-A, antibodies were injected at embryonic day 6 (E6). Most importantly, we found that VEGF-Trap injected at either E6 or E7 prevented the formation of coronary arteries. Soluble VEGFR-1 and soluble VEGFR-2 modified the formation of coronary arteries, whereas soluble VEGFR-3 was without effect. Antibodies to VEGF-B, but not VEGF-A, had a strong inhibitory effect on coronary artery development. The absence of coronary artery stems, and thus a functional coronary circulation, in the embryos injected with VEGF-Trap caused an accumulation of erythrocytes in the subepicardium and muscular interventricular septum. Using retroviral cell tagging, we showed that some of the erythrocytes in blood islands and small vascular tubes were progeny of the proepicardium. Thus, another salient finding of this study is the first definitive documentation of proepicardially derived hemangioblasts, which can differentiate into erythrocytes.

  18. Regulation of multiple tip formation by caffeine in cellular slime molds

    Directory of Open Access Journals (Sweden)

    Jaiswal Pundrik

    2012-08-01

    Full Text Available Abstract Background The multicellular slug in Dictyostelium has a single tip that acts as an organising centre patterning the rest of the slug. High adenosine levels at the tip are believed to be responsible for this tip dominance and the adenosine antagonist, caffeine overrides this dominance promoting multiple tip formation. Results Caffeine induced multiple tip effect is conserved in all the Dictyostelids tested. Two key components of cAMP relay namely, cAMP phosphodiesterase (Pde4 and adenyl cyclase-A (AcaA levels get reduced during secondary tip formation in Dictyostelium discoideum. Pharmacological inhibition of cAMP phosphodiesterase also resulted in multiple tips. Caffeine reduces cAMP levels by 16.4, 2.34, 4.71 and 6.30 folds, respectively in D. discoideum, D. aureostipes, D. minutum and Polysphondylium pallidum. We propose that altered cAMP levels, perturbed cAMP gradient and impaired signalling may be the critical factors for the origin of multiple tips in other Dictyostelids as well. In the presence of caffeine, slug cell movement gets impaired and restricted. The cell type specific markers, ecmA (prestalk and pspA (prespore cells are not equally contributing during additional tip formation. During additional tip emergence, prespore cells transdifferentiate to compensate the loss of prestalk cells. Conclusion Caffeine decreases adenyl cyclase–A (AcaA levels and as a consequence low cAMP is synthesised altering the gradient. Further if cAMP phosphodiesterase (Pde4 levels go down in the presence of caffeine, the cAMP gradient breaks down. When there is no cAMP gradient, directional movement is inhibited and might favour re-differentiation of prespore to prestalk cells.

  19. THE C-FLAME QUENCHING BY CONVECTIVE BOUNDARY MIXING IN SUPER-AGB STARS AND THE FORMATION OF HYBRID C/O/Ne WHITE DWARFS AND SN PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Denissenkov, P. A.; Herwig, F. [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada); Truran, J. W. [The Joint Institute for Nuclear Astrophysics, Notre Dame, IN 46556 (United States); Paxton, B., E-mail: pavelden@uvic.ca, E-mail: fherwig@uvic.ca [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States)

    2013-07-20

    After off-center C ignition in the cores of super asymptotic giant branch (SAGB) stars, the C flame propagates all the way down to the center, trailing behind it the C-shell convective zone, and thus building a degenerate ONe core. This standard picture is obtained in stellar evolution simulations if the bottom C-shell convection boundary is assumed to be a discontinuity associated with a strict interpretation of the Schwarzschild condition for convective instability. However, this boundary is prone to additional mixing processes, such as thermohaline convection and convective boundary mixing. Using hydrodynamic simulations, we show that contrary to previous results, thermohaline mixing is too inefficient to interfere with the C-flame propagation. However, even a small amount of convective boundary mixing removes the physical conditions required for the C-flame propagation all the way to the center. This result holds even if we allow for some turbulent heat transport in the CBM region. As a result, SAGB stars build in their interiors hybrid C-O-Ne degenerate cores composed of a relatively large CO core (M{sub CO} Almost-Equal-To 0.2 M{sub Sun }) surrounded by a thick ONe zone ({Delta}M{sub ONe} {approx}> 0.85 M{sub Sun }) with another thin CO layer above. If exposed by mass loss, these cores will become hybrid C-O-Ne white dwarfs. Otherwise, the ignition of C-rich material in the central core, surrounded by the thick ONe zone, may trigger a thermonuclear supernova (SN) explosion. The quenching of the C-flame may have implications for the ignition mechanism of SN Ia in the double-degenerate merger scenario.

  20. The human language and epilepsy associated gene SRPX2 regulates synapse formation and vocalization in mice

    OpenAIRE

    Sia, G.M.; Clem, R.L.; Huganir, R L

    2013-01-01

    Synapse formation in the developing brain depends on the coordinated activity of synaptogenic proteins, some which have been implicated in a number of neurodevelopmental disorders. Here, we show that the sushi repeat-containing domain protein X-linked 2 (SRPX2) gene encodes a protein that promotes synaptogenesis in the cerebral cortex. In humans, SRPX2 is an epilepsy- and language-associated gene that is a target of the foxhead box protein P2 (FoxP2) transcription factor. We also show that Fo...

  1. Galectin-3 Negatively Regulates Hippocampus-Dependent Memory Formation through Inhibition of Integrin Signaling and Galectin-3 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Yan-Chu Chen

    2017-07-01

    Full Text Available Galectin-3, a member of the galectin protein family, has been found to regulate cell proliferation, inhibit apoptosis and promote inflammatory responses. Galectin-3 is also expressed in the adult rat hippocampus, but its role in learning and memory function is not known. Here, we found that contextual fear-conditioning training, spatial training or injection of NMDA into the rat CA1 area each dramatically decreased the level of endogenous galectin-3 expression. Overexpression of galectin-3 impaired fear memory, whereas galectin-3 knockout (KO enhanced fear retention, spatial memory and hippocampal long-term potentiation. Galectin-3 was further found to associate with integrin α3, an association that was decreased after fear-conditioning training. Transfection of the rat CA1 area with small interfering RNA against galectin-3 facilitated fear memory and increased phosphorylated focal adhesion kinase (FAK levels, effects that were blocked by co-transfection of the FAK phosphorylation-defective mutant Flag-FAKY397F. Notably, levels of serine-phosphorylated galectin-3 were decreased by fear conditioning training. In addition, blockade of galectin-3 phosphorylation at Ser-6 facilitated fear memory, whereas constitutive activation of galectin-3 at Ser-6 impaired fear memory. Interestingly galectin-1 plays a role in fear-memory formation similar to that of galectin-3. Collectively, our data provide the first demonstration that galectin-3 is a novel negative regulator of memory formation that exerts its effects through both extracellular and intracellular mechanisms.

  2. pH-regulated antimony oxychloride nanoparticle formation on titanium oxide nanostructures: a photocatalytically active heterojunction

    KAUST Repository

    Buchholcz, Balázs

    2017-02-06

    Improving the catalytic activity of heterogeneous photocatalysts has become a hot topic recently. To this end, considerable progress has been made in the efficient separation of photogenerated charge carriers by e.g. the realization of heterojunction photocatalysts. V-VI-VII compound semiconductors, namely, bismuth oxyhalides, are popular photocatalysts. However, results on antimony oxyhalides [SbOX (X = Br, Cl, I)], the very promising alternatives to the well-known BiOX photomodifiers, are scarce. Here, we report the successful decoration of titanium oxide nanostructures with 8-11 nm diameter SbOX nanoparticles for the first time ever. The product size and stoichiometry could be controlled by the pH of the reactant mixture, while subsequent calcination could transform the structure of the titanate nanotube (TiONT) support and the prepared antimony oxychloride particles. In contrast to the ease of composite formation in the SbOX/TiONT case, anatase TiO could not facilitate the formation of antimony oxychloride nanoparticles on its surface. The titanate nanotube-based composites showed activity in a generally accepted quasi-standard photocatalytic test reaction (methyl orange dye decolorization). We found that the SbOCl/TiONT synthesized at pH = 1 is the most active sample in a broad temperature range.

  3. Self-regulation in flow-induced structure formation of polypropylene.

    Science.gov (United States)

    Roozemond, Peter C; van Drongelen, Martin; Ma, Zhe; Spoelstra, Anne B; Hermida-Merino, Daniel; Peters, Gerrit W M

    2015-02-01

    Flow-induced structure formation is investigated with in situ wide-angle X-ray diffraction with high acquisition rate (30 Hz) using isotactic polypropylene in a piston-driven slit flow with high wall shear rates (up to ≈900 s(-1) ). We focus on crystallization within the shear layers that form in the high shear rate regions near the walls. Remarkably, the kinetics of the crystallization process show no dependence on either flow rate or flow time; the crystallization progresses identically regardless. Stronger or longer flows only increase the thickness of the layers. A conceptual model is proposed to explain the phenomenon. Above a certain threshold, the number of shish-kebabs formed affects the rheology such that further structure formation is halted. The critical amount is reached already within 0.1 s under the current flow conditions. The change in rheology is hypothesized to be a consequence of the "hairy" nature of shish. Our results have large implications for process modelling, since they suggest that for injection molding type flows, crystallization kinetics can be considered independent of deformation history. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation

    Science.gov (United States)

    Goodwin, Alice F.; Tidyman, William E.; Jheon, Andrew H.; Sharir, Amnon; Zheng, Xu; Charles, Cyril; Fagin, James A.; McMahon, Martin; Diekwisch, Thomas G.H.; Ganss, Bernhard; Rauen, Katherine A.; Klein, Ophir D.

    2014-01-01

    RASopathies are syndromes caused by gain-of-function mutations in the Ras signaling pathway. One of these conditions, Costello syndrome (CS), is typically caused by an activating de novo germline mutation in HRAS and is characterized by a wide range of cardiac, musculoskeletal, dermatological and developmental abnormalities. We report that a majority of individuals with CS have hypo-mineralization of enamel, the outer covering of teeth, and that similar defects are present in a CS mouse model. Comprehensive analysis of the mouse model revealed that ameloblasts, the cells that generate enamel, lacked polarity, and the ameloblast progenitor cells were hyperproliferative. Ras signals through two main effector cascades, the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) pathways. To determine through which pathway Ras affects enamel formation, inhibitors targeting either PI3K or MEK 1 and 2 (MEK 1/2), kinases in the MAPK pathway, were utilized. MEK1/2 inhibition rescued the hypo-mineralized enamel, normalized the ameloblast polarity defect and restored normal progenitor cell proliferation. In contrast, PI3K inhibition only corrected the progenitor cell proliferation phenotype. We demonstrate for the first time the central role of Ras signaling in enamel formation in CS individuals and present the mouse incisor as a model system to dissect the roles of the Ras effector pathways in vivo. PMID:24057668

  5. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    This article builds on the results obtained in the so-called Blurring Boundaries project which was undertaken at the Law Department, Copenhagen Business School, in the period from 2007 to 2009. It looks at the sustainability of the Danish welfare state in an EU law context and on the integration...... of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects......; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...

  6. Regulation of Podosome Formation in Macrophages by a Splice Variant of the Sodium Channel SCN8A*S⃞

    Science.gov (United States)

    Carrithers, Michael D.; Chatterjee, Gouri; Carrithers, Lisette M.; Offoha, Roosevelt; Iheagwara, Uzoma; Rahner, Christoph; Graham, Morven; Waxman, Stephen G.

    2009-01-01

    Voltage-gated sodium channels initiate electrical signaling in excitable cells such as muscle and neurons. They also are expressed in non-excitable cells such as macrophages and neoplastic cells. Previously, in macrophages, we demonstrated expression of SCN8A, the gene that encodes the channel NaV1.6, and intracellular localization of NaV1.6 to regions near F-actin bundles, particularly at areas of cell attachment. Here we show that a splice variant of NaV1.6 regulates cellular invasion through its effects on podosome and invadopodia formation in macrophages and melanoma cells. cDNA sequence analysis of SCN8A from THP-1 cells, a human monocyte-macrophage cell line, confirmed the expression of a full-length splice variant that lacks exon 18. Immunoelectron microscopy demonstrated NaV1.6-positive staining within the electron dense podosome rosette structure. Pharmacologic antagonism with tetrodotoxin (TTX) in differentiated THP-1 cells or absence of functional NaV1.6 through a naturally occurring mutation (med) in mouse peritoneal macrophages inhibited podosome formation. Agonist-mediated activation of the channel with veratridine caused release of sodium from cationic vesicular compartments, uptake by mitochondria, and mitochondrial calcium release through the Na/Ca exchanger. Invasion by differentiated THP-1 and HTB-66 cells, an invasive melanoma cell line, through extracellular matrix was inhibited by TTX. THP-1 invasion also was inhibited by small hairpin RNA knockdown of SCN8A. These results demonstrate that a variant of NaV1.6 participates in the control of podosome and invadopodia formation and suggest that intracellular sodium release mediated by NaV1.6 may regulate cellular invasion of macrophages and melanoma cells. PMID:19136557

  7. Regulation of podosome formation in macrophages by a splice variant of the sodium channel SCN8A.

    Science.gov (United States)

    Carrithers, Michael D; Chatterjee, Gouri; Carrithers, Lisette M; Offoha, Roosevelt; Iheagwara, Uzoma; Rahner, Christoph; Graham, Morven; Waxman, Stephen G

    2009-03-20

    Voltage-gated sodium channels initiate electrical signaling in excitable cells such as muscle and neurons. They also are expressed in non-excitable cells such as macrophages and neoplastic cells. Previously, in macrophages, we demonstrated expression of SCN8A, the gene that encodes the channel NaV1.6, and intracellular localization of NaV1.6 to regions near F-actin bundles, particularly at areas of cell attachment. Here we show that a splice variant of NaV1.6 regulates cellular invasion through its effects on podosome and invadopodia formation in macrophages and melanoma cells. cDNA sequence analysis of SCN8A from THP-1 cells, a human monocyte-macrophage cell line, confirmed the expression of a full-length splice variant that lacks exon 18. Immunoelectron microscopy demonstrated NaV1.6-positive staining within the electron dense podosome rosette structure. Pharmacologic antagonism with tetrodotoxin (TTX) in differentiated THP-1 cells or absence of functional NaV1.6 through a naturally occurring mutation (med) in mouse peritoneal macrophages inhibited podosome formation. Agonist-mediated activation of the channel with veratridine caused release of sodium from cationic vesicular compartments, uptake by mitochondria, and mitochondrial calcium release through the Na/Ca exchanger. Invasion by differentiated THP-1 and HTB-66 cells, an invasive melanoma cell line, through extracellular matrix was inhibited by TTX. THP-1 invasion also was inhibited by small hairpin RNA knockdown of SCN8A. These results demonstrate that a variant of NaV1.6 participates in the control of podosome and invadopodia formation and suggest that intracellular sodium release mediated by NaV1.6 may regulate cellular invasion of macrophages and melanoma cells.

  8. A putative polypeptide N-acetylgalactosaminyltransferase/Williams-Beuren syndrome chromosome region 17 (WBSCR17) regulates lamellipodium formation and macropinocytosis.

    Science.gov (United States)

    Nakayama, Yoshiaki; Nakamura, Naosuke; Oki, Sayoko; Wakabayashi, Masaki; Ishihama, Yasushi; Miyake, Ayumi; Itoh, Nobuyuki; Kurosaka, Akira

    2012-09-14

    We previously identified a novel polypeptide N-acetylgalactosaminyltransferase (GalNAc-T) gene, which is designated Williams-Beuren syndrome chromosome region 17 (WBSCR17) because it is located in the chromosomal flanking region of the Williams-Beuren syndrome deletion. Recent genome-scale analysis of HEK293T cells treated with a high concentration of N-acetylglucosamine (GlcNAc) demonstrated that WBSCR17 was one of the up-regulated genes possibly involved in endocytosis (Lau, K. S., Khan, S., and Dennis, J. W. (2008) Genome-scale identification of UDP-GlcNAc-dependent pathways. Proteomics 8, 3294-3302). To assess its roles, we first expressed recombinant WBSCR17 in COS7 cells and demonstrated that it was N-glycosylated and localized mainly in the Golgi apparatus, as is the case for the other GalNAc-Ts. Assay of recombinant WBSCR17 expressed in insect cells showed very low activity toward typical mucin peptide substrates. We then suppressed the expression of endogenous WBSCR17 in HEK293T cells using siRNAs and observed phenotypic changes of the knockdown cells with reduced lamellipodium formation, altered O-glycan profiles, and unusual accumulation of glycoconjugates in the late endosomes/lysosomes. Analyses of endocytic pathways revealed that macropinocytosis, but neither clathrin- nor caveolin-dependent endocytosis, was elevated in the knockdown cells. This was further supported by the findings that the overexpression of recombinant WBSCR17 stimulated lamellipodium formation, altered O-glycosylation, and inhibited macropinocytosis. WBSCR17 therefore plays important roles in lamellipodium formation and the regulation of macropinocytosis as well as lysosomes. Our study suggests that a subset of O-glycosylation produced by WBSCR17 controls dynamic membrane trafficking, probably between the cell surface and the late endosomes through macropinocytosis, in response to the nutrient concentration as exemplified by environmental GlcNAc.

  9. Pathways Regulating Spheroid Formation of Human Follicular Thyroid Cancer Cells under Simulated Microgravity Conditions: A Genetic Approach.

    Science.gov (United States)

    Riwaldt, Stefan; Bauer, Johann; Wehland, Markus; Slumstrup, Lasse; Kopp, Sascha; Warnke, Elisabeth; Dittrich, Anita; Magnusson, Nils E; Pietsch, Jessica; Corydon, Thomas J; Infanger, Manfred; Grimm, Daniela

    2016-04-08

    Microgravity induces three-dimensional (3D) growth in numerous cell types. Despite substantial efforts to clarify the underlying mechanisms for spheroid formation, the precise molecular pathways are still not known. The principal aim of this paper is to compare static 1g-control cells with spheroid forming (MCS) and spheroid non-forming (AD) thyroid cancer cells cultured in the same flask under simulated microgravity conditions. We investigated the morphology and gene expression patterns in human follicular thyroid cancer cells (UCLA RO82-W-1 cell line) after a 24 h-exposure on the Random Positioning Machine (RPM) and focused on 3D growth signaling processes. After 24 h, spheroid formation was observed in RPM-cultures together with alterations in the F-actin cytoskeleton. qPCR indicated more changes in gene expression in MCS than in AD cells. Of the 24 genes analyzed VEGFA, VEGFD, MSN, and MMP3 were upregulated in MCS compared to 1g-controls, whereas ACTB, ACTA2, KRT8, TUBB, EZR, RDX, PRKCA, CAV1, MMP9, PAI1, CTGF, MCP1 were downregulated. A pathway analysis revealed that the upregulated genes code for proteins, which promote 3D growth (angiogenesis) and prevent excessive accumulation of extracellular proteins, while genes coding for structural proteins are downregulated. Pathways regulating the strength/rigidity of cytoskeletal proteins, the amount of extracellular proteins, and 3D growth may be involved in MCS formation.

  10. Role of a GntR-family response regulator LbrA in Listeria monocytogenes biofilm formation.

    Directory of Open Access Journals (Sweden)

    Andrew Wassinger

    Full Text Available The formation of Listeria monocytogenes biofilms contributes to persistent contamination in food processing facilities. A microarray comparison of L. monocytogenes between the transcriptome of the strong biofilm forming strain (Bfm(s Scott A and the weak biofilm forming (Bfm(w strain F2365 was conducted to identify genes potentially involved in biofilm formation. Among 951 genes with significant difference in expression between the two strains, a GntR-family response regulator encoding gene (LMOf2365_0414, designated lbrA, was found to be highly expressed in Scott A relative to F2365. A Scott A lbrA-deletion mutant, designated AW3, formed biofilm to a much lesser extent as compared to the parent strain by a rapid attachment assay and scanning electron microscopy. Complementation with lbrA from Scott A restored the Bfm(s phenotype in the AW3 derivative. A second microarray assessment using the lbrA deletion mutant AW3 and the wild type Scott A revealed a total of 304 genes with expression significantly different between the two strains, indicating the potential regulatory role of LbrA in L. monocytogenes. A cloned copy of Scott A lbrA was unable to confer enhanced biofilm forming potential in F2365, suggesting that additional factors contributed to weak biofilm formation by F2365.

  11. Niemann-Pick C2 protein expression regulates lithogenic diet-induced gallstone formation and dietary cholesterol metabolism in mice.

    Science.gov (United States)

    Balboa, Elisa; Morales, Gabriela; Aylwin, Paula; Carrasco, Gonzalo; Amigo, Ludwig; Castro, Juan; Rigotti, Attilio; Zanlungo, Silvana

    2012-01-01

    Niemann-Pick C2 protein (NPC2) is a lysosomal soluble protein that is highly expressed in the liver; it binds to cholesterol and is involved in intracellular cholesterol trafficking, allowing the exit of lysosomal cholesterol obtained via the lipoprotein endocytic pathway. Thus, this protein may play an important role in controlling hepatic cholesterol transport and metabolism. The aim of this work was to study the relevance of NPC2 protein expression in hepatic cholesterol metabolism, biliary lipid secretion and gallstone formation by comparing NPC2 hypomorph [NPC2 (h/h)] and wild-type mice fed control, 2% cholesterol, and lithogenic diets. NPC2 (h/h) mice exhibited resistance to a diet-induced increase in plasma cholesterol levels. When consuming the chow diet, we observed increased biliary cholesterol and phospholipid secretions in NPC2 (h/h) mice. When fed the 2% cholesterol diet, NPC2 (h/h) mice exhibited low and high gallbladder bile cholesterol and phospholipid concentrations, respectively. NPC2 (h/h) mice fed with the lithogenic diet showed reduced biliary cholesterol secretion, gallbladder bile cholesterol saturation, and cholesterol crystal and gallstone formation. This work indicates that hepatic NPC2 expression is an important factor in the regulation of diet-derived cholesterol metabolism and disposal as well as in diet-induced cholesterol gallstone formation in mice.

  12. Neural cell 3D microtissue formation is marked by cytokines' up-regulation.

    Directory of Open Access Journals (Sweden)

    Yinzhi Lai

    Full Text Available Cells cultured in three dimensional (3D scaffolds as opposed to traditional two-dimensional (2D substrates have been considered more physiologically relevant based on their superior ability to emulate the in vivo environment. Combined with stem cell technology, 3D cell cultures can provide a promising alternative for use in cell-based assays or biosensors in non-clinical drug discovery studies. To advance 3D culture technology, a case has been made for identifying and validating three-dimensionality biomarkers. With this goal in mind, we conducted a transcriptomic expression comparison among neural progenitor cells cultured on 2D substrates, 3D porous polystyrene scaffolds, and as 3D neurospheres (in vivo surrogate. Up-regulation of cytokines as a group in 3D and neurospheres was observed. A group of 13 cytokines were commonly up-regulated in cells cultured in polystyrene scaffolds and neurospheres, suggesting potential for any or a combination from this list to serve as three-dimensionality biomarkers. These results are supportive of further cytokine identification and validation studies with cells from non-neural tissue.

  13. Regulated Formation of an Amyloid-like Translational Repressor Governs Gametogenesis.

    Science.gov (United States)

    Berchowitz, Luke E; Kabachinski, Greg; Walker, Margaret R; Carlile, Thomas M; Gilbert, Wendy V; Schwartz, Thomas U; Amon, Angelika

    2015-10-08

    Message-specific translational control is required for gametogenesis. In yeast, the RNA-binding protein Rim4 mediates translational repression of numerous mRNAs, including the B-type cyclin CLB3, which is essential for establishing the meiotic chromosome segregation pattern. Here, we show that Rim4 forms amyloid-like aggregates and that it is the amyloid-like form of Rim4 that is the active, translationally repressive form of the protein. Our data further show that Rim4 aggregation is a developmentally regulated process. Starvation induces the conversion of monomeric Rim4 into amyloid-like aggregates, thereby activating the protein to bring about repression of translation. At the onset of meiosis II, Rim4 aggregates are abruptly degraded allowing translation to commence. Although amyloids are best known for their role in the etiology of diseases such as Alzheimer's, Parkinson's, and diabetes by forming toxic protein aggregates, our findings show that cells can utilize amyloid-like protein aggregates to function as central regulators of gametogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. LIGHT REGULATION OF GROWTH AND MELANIN FORMATION IN Inonotus оbliquus (Pers. Pilat

    Directory of Open Access Journals (Sweden)

    N. L. Poyedinok

    2013-04-01

    Full Text Available The study aims to investigate possibilities of using different sources of low-intensity light for the regulation of mycelium growth and melanin synthesis by medicinal mushroom Inonotus obliquus (Pers. Pilat. Studies of the light’s influence on the linear growth, biomass accumulation and melanin synthesis I. obliquus were performed using experimental installations that provide both lasing (coherent light with specified parameters, as well as sources of incoherent light. It has been demonstrated that the greatest stimulating effect took place during the irradiation of mycelium with blue light. It has been found that further realization of photobiological effect is largely dependent on the method of cultivation. Irradiation with laser light within all studied wavelength ranges was more conducive to growth, biomass and melanin accumulation in the mushroom mycelium than incoherent light irradiation within the same wavelength range. Light treatment made it possible to significantly reduce the duration of fermentation. The results of studies allow considering lowintensity light in the visible part of the spectrum as a perspective growth and biosynthetic activity regulator of I. obliquus in the biotechnology of its cultivation.

  15. PPARG Post-translational Modifications Regulate Bone Formation and Bone Resorption

    Directory of Open Access Journals (Sweden)

    L.A. Stechschulte

    2016-08-01

    Full Text Available The peroxisome proliferator-activated receptor gamma (PPARγ regulates osteoblast and osteoclast differentiation, and is the molecular target of thiazolidinediones (TZDs, insulin sensitizers that enhance glucose utilization and adipocyte differentiation. However, clinical use of TZDs has been limited by side effects including a higher risk of fractures and bone loss. Here we demonstrate that the same post-translational modifications at S112 and S273, which influence PPARγ pro-adipocytic and insulin sensitizing activities, also determine PPARγ osteoblastic (pS112 and osteoclastic (pS273 activities. Treatment of either hyperglycemic or normoglycemic animals with SR10171, an inverse agonist that blocks pS273 but not pS112, increased trabecular and cortical bone while normalizing metabolic parameters. Additionally, SR10171 treatment modulated osteocyte, osteoblast, and osteoclast activities, and decreased marrow adiposity. These data demonstrate that regulation of bone mass and energy metabolism shares similar mechanisms suggesting that one pharmacologic agent could be developed to treat both diabetes and metabolic bone disease.

  16. DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2.

    Science.gov (United States)

    Wang, Peipei; Guo, Qinggang; Ma, Yinan; Li, Shezeng; Lu, Xiuyun; Zhang, Xiaoyun; Ma, Ping

    2015-09-01

    Bacillus subtilis NCD-2 is an excellent biocontrol agent for tomato gray mold and cotton soil-borne diseases. The fengycin lipopeptides serve as a major role in its biocontrol ability. A previous study revealed that insertion of degQ with the mini-Tn10 transposon decreased the antifungal activity of strain NCD-2 against the growth of Botrytis cinerea. To clarify the regulation of degQ on the production of fengycin, we deleted degQ by in-frame mutagenesis. Compared with the wild-type strain NCD-2, the degQ-null mutant had decreased extracellular protease and cellulase activities as well as antifungal ability against the growth of B. cinerea in vitro. The lipopeptides from the degQ-null mutant also had significantly decreased antifungal activity against B. cinerea in vitro and in vivo. This result was confirmed by the decreased fengycin production in the degQ-null mutant that was detected by fast protein liquid chromatography analysis. Quantitative reverse transcription PCR further demonstrated that degQ positively regulated the expression of the fengycin synthetase gene. In addition, the degQ-null mutant also had a flatter colony phenotype and significantly decreased biofilm formation ability relative to the wild-type strain. All of those characteristics from degQ-null mutant could be restored to the strain NCD-2 wild-type level by complementation of intact degQ in the mutant. Therefore, DegQ may be an important regulator of fengycin production and biofilm formation in B. subtilis NCD-2. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Simulation of Cell Group Formation Regulated by Coordination Number, Cell Cycle and Duplication Frequency

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-08-01

    Full Text Available The effects of coordination number, a cell cycle and duplication frequency on cell-group formation have been investigated in a computer simulation. In the simulation, multiplication occurs in the last three steps of a cell cycle with a probability function to give variations in the interval. Each cell has a constant coordination number: four or six. When a cell gets surrounded by adjacent cells, its status changes from an active stage to a resting stage. Each cell repeats multiplication, and disappears when the times of multiplication reach to the limit. Variation was made in the coordination number, in the interval of multiplication and in the limited times of multiplication. The cells of the colony, which have the larger number of coordination, have reached the larger maximum population and disappeared earlier.

  18. Differential regulation of macropinocytosis in macrophages by cytokines: implications for foam cell formation and atherosclerosis.

    Science.gov (United States)

    Michael, Daryn R; Ashlin, Tim G; Davies, Charlotte S; Gallagher, Hayley; Stoneman, Thomas W; Buckley, Melanie L; Ramji, Dipak P

    2013-10-01

    A key event during the formation of lipid-rich foam cells during the progression of atherosclerosis is the uptake of modified low-density lipoproteins (LDL) by macrophages in response to atherogenic mediators in the arterial intima. In addition to scavenger receptor-dependent uptake of LDL, macropinocytosis is known to facilitate the uptake of LDL through the constitutive and passive internalization of large quantities of extracellular solute. In this study we confirm the ability of macropinocytosis to facilitate the uptake of modified LDL by human macrophages and show its modulation by TGF-β, IFN-γ, IL-17A and IL-33. Furthermore we show that the TGF-β-mediated inhibition of macropinocytosis is a Smad-2/-3-independent process. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Defect formation and electronic structure regulated by strain engineering in ReS2

    Science.gov (United States)

    Min, Y. M.; Wang, A. Q.; Ren, X. M.; Liu, L. Z.; Wu, X. L.

    2018-01-01

    By using first-principles calculations, we investigated the monolayer ReS2 with vacancies under strain engineering, specifically focusing on its energy of formation, band gap, electron density of states, effective mass and optical properties. The calculated results disclose that S4 defect is more likely to form than other kinds of vacancies. Asymmetric deformation induced by strain makes its band structure transformation from direct band gap to indirect band gap. The analysis of the partial density of states indicates that the Re-d and S-p orbitals are the major components of the defect states, being different from MoS2, the defect states locate both above and below the Fermi level. Moreover, the effective mass was sensitive and anisotropic under the external strain. The reflection spectrum can be greatly tuned by the external strains, which indicates that the ReS2 monolayer has promising applications in nanoscale strain sensor and conductance-switch FETs.

  20. The Monomeric GTPase Rab35 Regulates Phagocytic Cup Formation and Phagosomal Maturation in Entamoeba histolytica.

    Science.gov (United States)

    Verma, Kuldeep; Datta, Sunando

    2017-03-24

    One of the hallmarks of amoebic colitis is the detection of Entamoeba histolytica (Eh) trophozoites with ingested erythrocytes. Therefore, erythrophagocytosis is traditionally considered as one of the most important criteria to identify the pathogenic behavior of the amoebic trophozoites. Phagocytosis is an essential process for the proliferation and virulence of this parasite. Phagocytic cargo, upon internalization, follows a defined trafficking route to amoebic lysosomal degradation machinery. Here, we demonstrated the role of EhRab35 in the early and late phases of erythrophagocytosis by the amoeba. EhRab35 showed large vacuolar as well as punctate vesicular localization. The spatiotemporal dynamics of vacuolar EhRab35 and its exchange with soluble cytosolic pool were monitored by fluorescence recovery after photobleaching experiments. Using extensive microscopy and biochemical methods, we demonstrated that upon incubation with RBCs EhRab35 is recruited to the site of phagocytic cups as well as to the nascent phagosomes that harbor Gal/GalNAc lectin and actin. Overexpression of a dominant negative mutant of EhRab35 reduced phagocytic cup formation and thereby reduced RBC internalization, suggesting a potential role of the Rab GTPase in the cup formation. Furthermore, we also performed a phagosomal maturation assay and observed that the activated form of EhRab35 significantly increased the rate of RBC degradation. Interestingly, this mutant also significantly enhanced the number of acidic compartments in the trophozoites. Taken together, our results suggest that EhRab35 is involved in the initial stage of phagocytosis as well as in the phagolysosomal biogenesis in E. histolytica and thus contributes to the pathogenicity of the parasite. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. SETD4 Regulates Cell Quiescence and Catalyzes the Trimethylation of H4K20 during Diapause Formation in Artemia.

    Science.gov (United States)

    Dai, Li; Ye, Sen; Li, Hua-Wei; Chen, Dian-Fu; Wang, Hong-Liang; Jia, Sheng-Nan; Lin, Cheng; Yang, Jin-Shu; Yang, Fan; Nagasawa, Hiromichi; Yang, Wei-Jun

    2017-04-01

    As a prominent characteristic of cell life, the regulation of cell quiescence is important for proper development, regeneration, and stress resistance and may play a role in certain degenerative diseases. However, the mechanism underlying quiescence remains largely unknown. Encysted embryos of Artemia are useful for studying the regulation of this state because they remain quiescent for prolonged periods during diapause, a state of obligate dormancy. In the present study, SET domain-containing protein 4, a histone lysine methyltransferase from Artemia, was identified, characterized, and named Ar-SETD4. We found that Ar-SETD4 was expressed abundantly in Artemia diapause embryos, in which cells were in a quiescent state. Meanwhile, trimethylated histone H4K20 (H4K20me3) was enriched in diapause embryos. The knockdown of Ar-SETD4 reduced the level of H4K20me3 significantly and prevented the formation of diapause embryos in which neither the cell cycle nor embryogenesis ceased. The catalytic activity of Ar-SETD4 on H4K20me3 was confirmed by an in vitro histone methyltransferase (HMT) assay and overexpression in cell lines. This study provides insights into the function of SETD4 and the mechanism of cell quiescence regulation. Copyright © 2017 American Society for Microbiology.

  2. The Impact of Immune System in Regulating Bone Metastasis Formation by Osteotropic Tumors

    Directory of Open Access Journals (Sweden)

    Lucia D’Amico

    2015-01-01

    Full Text Available Bone metastases are frequent and debilitating consequence for many tumors, such as breast, lung, prostate, and kidney cancer. Many studies report the importance of the immune system in the pathogenesis of bone metastasis. Indeed, bone and immune system are strictly linked to each other because bone regulates the hematopoietic stem cells from which all cells of the immune system derive, and many immunoregulatory cytokines influence the fate of bone cells. Furthermore, both cytokines and factors produced by immune and bone cells promote the growth of tumor cells in bone, contributing to supporting the vicious cycle of bone metastasis. This review summarizes the current knowledge on the interactions among bone, immune, and tumor cells aiming to provide an overview of the osteoimmunology field in bone metastasis from solid tumors.

  3. DETECTING DOMAIN BOUNDARIES IN PROTEINS THROUGH PLOTTING OF THE ENERGY OF NON-BONDED INTERACTIONS (ENBI AS A FUNCTION OF PROGRESSIVE IN SILICO TRUNCATION OF CHAINS IN NATIVE STRUCTURAL FORMAT

    Directory of Open Access Journals (Sweden)

    Purnananda Guptasarma

    2012-12-01

    Full Text Available Several methods exist for the detection of domain boundaries in proteins. Different methods exploit different structural-biochemical characteristics distinguishing, and defining, protein domains. However, perhaps because ‘domains’ remain poorly defined, no single method has proved to be entirely satisfactory. Here, a new approach to defining and detecting domains is presented, along with some preliminary data from three proteins, in the form of a proof-of-concept. It is argued from first principles that protein domain boundaries may be identified through plotting of variations in the energy of non-bonded interactions of a naturally-occurring protein as a function of varying chain length (in native structural format. Such plots may be expected to show a broadly descending trend as a function of increasing chain length, marked by slope changes at domain boundaries. The approach is demonstrated with three multi-domain, single-subunit proteins, porcine pepsin (4PEP, thymidylate synthase (4TMS and aconitase (5ACN.

  4. Formation and evolution of the Lithosphere Asthenosphere Boundary and oceanic crustal Layer 2A across the Atlantic Ocean from 0 to 75 Ma using ultra-deep seismic reflection imaging technique

    Science.gov (United States)

    Singh, Satish; Mehouachi, Fares; Audhkhasi, Pranav; Marjanovic, Milena

    2017-04-01

    The plate tectonics theory is based on the existence of a rigid lithosphere plate moving over the underlying ductile asthenosphere, forming the most prevalent active plate boundary on earth, lithosphere asthenosphere boundary (LAB), but the nature of this plate boundary remain very elusive. Surface wave tomography has been used to define the LAB, with resolution >30 km vertically and hundreds of kilometre laterally. Recently, receiver function methods have been used to image the LAB, but the vertical resolution is about 10 km with a very limited sub-surface sampling. In order to image the LAB on metric scale, we acquired seismic reflection data in the equatorial Atlantic Ocean starting the Mid-Atlantic Ridge at zero age to near the continental margin of Nigeria corresponding to a lithosphere of 75 Ma and across the great equatorial fracture zones (Romanche, St Paul, and Chain). We used a 12 km long multi-sensor streamer towed at 30 m water depth and a 10170 cubic inch air gun source consisting of six sub-arrays each with 8 airguns. These data have allowed us to image the base of the LAB down to 90 km depth. We have also imaged the layer 2A continuously from 0-75 My over the oceanic crust. In this talk, we will present the above results in detail to provide the insight about the formation and evolution of the LAB and layer 2A with age.

  5. Is urea formation regulated primarily by acid-base balance in vivo?

    Science.gov (United States)

    Halperin, M L; Chen, C B; Cheema-Dhadli, S; West, M L; Jungas, R L

    1986-04-01

    Large quantities of ammonium and bicarbonate are produced each day from the metabolism of dietary protein. It has recently been proposed that urea synthesis is regulated by the need to remove this large load of bicarbonate. The purpose of these experiments was to test whether the primary function of ureagenesis in vivo is to remove ammonium or bicarbonate. The first series of rats were given a constant acid load as hydrochloric acid or ammonium chloride; individual rats received a constant nitrogen load at a time when their plasma acid-base status ranged from normal (pH 7.4, 28 mM HCO3) to severe metabolic acidosis (pH 6.9, 6 mM HCO3). Urea plus ammonium excretions and the blood urea, glutamine, and ammonium concentrations were monitored with time. Within the constraints of non-steady-state conditions, the rate of urea synthesis was constant and the plasma glutamine and ammonium concentrations also remained constant; thus it appears that the rate of urea synthesis was not primarily regulated by the acid-base status of the animal in vivo over a wide range of plasma ammonium concentrations. In quantitative terms, the vast bulk of the ammonium load was converted to urea over 80 min; only a small quantity of ammonium appeared as circulating glutamine or urinary ammonium. Urea synthesis was proportional to the nitrogen load. A second series of rats received sodium bicarbonate; urea synthesis was not augmented by a bicarbonate load. We conclude from these studies that the need to dispose of excess bicarbonate does not primarily determine the rate of ureagenesis in vivo. The data support the classical view that ureagenesis is controlled by the quantity of ammonium to be removed.

  6. Calcium regulation in long-term changes of neuronal excitability in the hippocampal formation

    Energy Technology Data Exchange (ETDEWEB)

    Mody, I.

    1985-01-01

    The regulation of calcium (Ca/sup 2 +/) was examined during long-term changes of neuronal excitability in the mammalian CNS. The preparations under investigation included the kindling model of epilepsy, a genetic form of epilepsy and long-term potentiation (LTP) of neuronal activity. The study also includes a discussion of the possible roles of a neuron-specific calcium-binding protein (CaBP). The findings are summarized as follows: (1) CaBP was found to have an unequal distribution in various cortical areas of the rat with higher levels in ventral structures. (2) The decline in CaBP was correlated to the number of evoked afterdischarges (AD's) during kindling-induced epilepsy. (3) Marked changes in CaBP levels were also found in the brains of the epileptic strain of mice (El). The induction of seizures further decreased the levels of CaBP in the El mice, indicating a possible genetic impairment of neuronal Ca/sup 2 +/ homeostasis in the El strain. (4) The levels of total hippocampal Ca/sup 2 +/ and Zn/sup 2 +/ were measured by atomic absorption spectrophotometry in control and commissural-kindled animals. (5) To measure Ca/sup 2 +/-homeostasis, the kinetic analysis of /sup 45/Ca uptake curves was undertaken in the in vitro hippocampus. (6) The kinetic analysis of /sup 45/Ca uptake curves revealed that Ca/sup 2 +/-regulation of the hippocampus is impaired following amygdala- and commissural kindling. (7). A novel form of long-term potentiation (LTP) of neuronal activity in the CA1 region of the hippocampus is described. The findings raise the possibility that the Ca/sup 2 +/ necessary for induction of LTP may be derived from an intraneuronal storage site.

  7. Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials.

    Science.gov (United States)

    Rao, Rameshwar R; Peterson, Alexis W; Ceccarelli, Jacob; Putnam, Andrew J; Stegemann, Jan P

    2012-06-01

    Co-cultures of endothelial cells (EC) and mesenchymal stem cells (MSC) in three-dimensional (3D) protein hydrogels can be used to recapitulate aspects of vasculogenesis in vitro. MSC provide paracrine signals that stimulate EC to form vessel-like structures, which mature as the MSC transition to the role of mural cells. In this study, vessel-like network formation was studied using 3D collagen/fibrin (COL/FIB) matrices seeded with embedded EC and MSC and cultured for 7 days. The EC:MSC ratio was varied from 5:1, 3:2, 1:1, 2:3 and 1:5. The matrix composition was varied at COL/FIB compositions of 100/0 (pure COL), 60/40, 50/50, 40/60 and 0/100 (pure FIB). Vasculogenesis was markedly decreased in the highest EC:MSC ratio, relative to the other cell ratios. Network formation increased with increasing fibrin content in composite materials, although the 40/60 COL/FIB and pure fibrin materials exhibited the same degree of vasculogenesis. EC and MSC were co-localized in vessel-like structures after 7 days and total cell number increased by approximately 70%. Mechanical property measurements showed an inverse correlation between matrix stiffness and network formation. The effect of matrix stiffness was further investigated using gels made with varying total protein content and by crosslinking the matrix using the dialdehyde glyoxal. This systematic series of studies demonstrates that matrix composition regulates vasculogenesis in 3D protein hydrogels, and further suggests that this effect may be caused by matrix mechanical properties. These findings have relevance to the study of neovessel formation and the development of strategies to promote vascularization in transplanted tissues.

  8. Impact of the Motor and Tail Domains of Class III Myosins on Regulating the Formation and Elongation of Actin Protrusions.

    Science.gov (United States)

    Raval, Manmeet H; Quintero, Omar A; Weck, Meredith L; Unrath, William C; Gallagher, James W; Cui, Runjia; Kachar, Bechara; Tyska, Matthew J; Yengo, Christopher M

    2016-10-21

    Class III myosins (MYO3A and MYO3B) are proposed to function as transporters as well as length and ultrastructure regulators within stable actin-based protrusions such as stereocilia and calycal processes. MYO3A differs from MYO3B in that it contains an extended tail domain with an additional actin-binding motif. We examined how the properties of the motor and tail domains of human class III myosins impact their ability to enhance the formation and elongation of actin protrusions. Direct examination of the motor and enzymatic properties of human MYO3A and MYO3B revealed that MYO3A is a 2-fold faster motor with enhanced ATPase activity and actin affinity. A chimera in which the MYO3A tail was fused to the MYO3B motor demonstrated that motor activity correlates with formation and elongation of actin protrusions. We demonstrate that removal of individual exons (30-34) in the MYO3A tail does not prevent filopodia tip localization but abolishes the ability to enhance actin protrusion formation and elongation in COS7 cells. Interestingly, our results demonstrate that MYO3A slows filopodia dynamics and enhances filopodia lifetime in COS7 cells. We also demonstrate that MYO3A is more efficient than MYO3B at increasing formation and elongation of stable microvilli on the surface of cultured epithelial cells. We propose that the unique features of MYO3A, enhanced motor activity, and an extended tail with tail actin-binding motif, allow it to play an important role in stable actin protrusion length and ultrastructure maintenance. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Positive-feedback regulation of subchondral H-type vessel formation by chondrocyte promotes osteoarthritis development in mice.

    Science.gov (United States)

    Lu, Jiansen; Zhang, Haiyan; Cai, Daozhang; Zeng, Chun; Lai, Pinglin; Shao, Yan; Fang, Hang; Li, Delong; Ouyang, Jiayao; Zhao, Chang; Xie, Denghui; Huang, Bin; Yang, Jian; Jiang, Yu; Bai, Xiaochun

    2018-01-12

    Vascular-invasion-mediated interactions between activated articular chondrocytes and subchondral bone are essential for osteoarthritis (OA) development. Here, we determined the role of nutrient sensing mechanistic target of rapamycin complex 1 (mTORC1) signaling in the crosstalk across the bone cartilage interface and its regulatory mechanisms. Then mice with chondrocyte-specific mTORC1 activation (Tsc1 CKO and Tsc1 CKOER ) or inhibition (Raptor CKOER ) and their littermate controls were subjected to OA induced by destabilization of the medial meniscus (DMM) or not. DMM or Tsc1 CKO mice were treated with bevacizumab, a vascular endothelial growth factor (VEGF)-A antibody that blocks angiogenesis. Articular cartilage degeneration was evaluated using the Osteoarthritis Research Society International score. Immunostaining and western blotting were conducted to detect H-type vessels and protein levels in mice. Primary chondrocytes from mutant mice and ADTC5 cells were treated with interleukin-1β to investigate the role of chondrocyte mTORC1 in VEGF-A secretion and in vitro vascular formation. Clearly, H-type vessels were increased in subchondral bone in DMM-induced OA and aged mice. Cartilage mTORC1 activation stimulated VEGF-A production in articular chondrocyte and H-type vessel formation in subchondral bone. Chondrocyte mTORC1 promoted OA partially through formation of VEGF-A-stimulated subchondral H-type vessels. In particular, vascular-derived nutrients activated chondrocyte mTORC1, and stimulated chondrocyte activation and production of VEGF, resulting in further angiogenesis in subchondral bone. Thus a positive-feedback regulation of H-type vessel formation in subchondral bone by articular chondrocyte nutrient-sensing mTORC1 signaling is essential for the pathogenesis and progression of OA. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Growth plate regulation and osteochondroma formation: insights from tracing proteoglycans in zebrafish models and human cartilage.

    Science.gov (United States)

    de Andrea, Carlos E; Prins, Frans A; Wiweger, Malgorzata I; Hogendoorn, Pancras C W

    2011-06-01

    Proteoglycans are secreted into the extracellular matrix of virtually all cell types and function in several cellular processes. They consist of a core protein onto which glycosaminoglycans (e.g., heparan or chondroitin sulphates), are attached. Proteoglycans are important modulators of gradient formation and signal transduction. Impaired biosynthesis of heparan sulphate glycosaminoglycans causes osteochondroma, the most common bone tumour to occur during adolescence. Cytochemical staining with positively charged dyes (e.g., polyethyleneimine-PEI) allows, visualisation of proteoglycans and provides a detailed description of how proteoglycans are distributed throughout the cartilage matrix. PEI staining was studied by electron and reflection contrast microscopy in human growth plates, osteochondromas and five different proteoglycan-deficient zebrafish mutants displaying one of the following skeletal phenotypes: dackel (dak/ext2), lacking heparan sulphate and identified as a model for human multiple osteochondromas; hi307 (β3gat3), deficient for most glycosaminoglycans; pinscher (pic/slc35b2), presenting with defective sulphation of glycosaminoglycans; hi954 (uxs1), lacking most glycosaminoglycans; and knypek (kny/gpc4), missing the protein core of the glypican-4 proteoglycan. The panel of genetically well-characterized proteoglycan-deficient zebrafish mutants serves as a convincing and comprehensive study model to investigate proteoglycan distribution and the relation of this distribution to the model mutation status. They also provide insight into the distributions and gradients that can be expected in the human homologue. Human growth plate, wild-type zebrafish and fish mutants with mild proteoglycan defects (hi307 and kny) displayed proteoglycans distributed in a gradient throughout the matrix. Although the mutants pic and hi954, which had severely impaired proteoglycan biosynthesis, showed no PEI staining, dak mutants demonstrated reduced PEI staining and no

  11. p53 Regulates Bone Differentiation and Osteosarcoma Formation | Center for Cancer Research

    Science.gov (United States)

    Osteosarcoma is an uncommon cancer that usually begins in the large bones of the arm or leg, but is the second leading cause of cancer-related death in children and young adults. The tumor suppressor protein, p53, appears to be an important player in osteosarcomagenesis in part because these cancers are one of the most common to develop in patients with Li-Fraumeni syndrome, which is caused by an inherited mutation in p53. However, the precise role of p53 in osteosarcoma development has not been established. To begin investigating its importance to the formation of normal bone and osteosarcomas, Jing Huang, Ph.D., of CCR’s Laboratory of Cancer Biology and Genetics, and his colleagues, isolated bone marrow-derived mesenchymal stem cells (BMSCs) from p53 wild type (WT) and knock out (KO) mice using a recently validated approach. Because BMSCs are one of the cells-of-origin of osteosarcoma, they serve as a useful model system. BMSCs contain a subset of multipotent stem cells that can differentiate into several cell types, including osteoblasts, and are important mediators of bone homeostasis.

  12. Notch signaling regulates formation of the three-dimensional architecture of intrahepatic bile ducts in mice.

    Science.gov (United States)

    Sparks, Erin E; Huppert, Kari A; Brown, Melanie A; Washington, M Kay; Huppert, Stacey S

    2010-04-01

    Alagille syndrome, a chronic hepatobiliary disease, is characterized by paucity of intrahepatic bile ducts (IHBDs). To determine the impact of Notch signaling specifically on IHBD arborization, we studied the influence of both chronic gain and loss of Notch function on the intact three-dimensional IHBD structure using a series of mutant mouse models and a resin casting method. Impaired Notch signaling in bipotential hepatoblast progenitor cells (BHPCs) dose-dependently decreased the density of peripheral IHBDs, whereas activation of Notch1 results in an increased density of peripheral IHBDs. Although Notch2 has a dominant role in IHBD formation, there is also a redundant role for other Notch receptors in determining the density of peripheral IHBDs. Because changes in IHBD density do not appear to be due to changes in cellular proliferation of bile duct progenitors, we suggest that Notch plays a permissive role in cooperation with other factors to influence lineage decisions of BHPCs and sustain peripheral IHBDs. There is a threshold requirement for Notch signaling at multiple steps, including IHBD tubulogenesis and maintenance, during hepatic development that determines the density of three-dimensional peripheral IHBD architecture.

  13. Active turnover regulates pattern formation and stress transmission in disordered acto-myosin networks

    Science.gov (United States)

    McCall, Patrick; Stam, Samantha; Kovar, David; Gardel, Margaret

    The shape and mechanics of animal cells are controlled by a dynamic, thin network of semiflexible actin filaments and myosin-II motor proteins called the actomyosin cortex. Motor-generated stresses in the cortex drive changes in cell shape during cell division and morphogenesis, while dynamic turnover of actin filaments dissipates stress. The relative effects that force generation, force dissipation, and disassembly and reassembly of material have on motion in these networks are unknown. We find that cross-linked actin networks in vitro contract under myosin-generated stresses, resulting in partial filament disassembly, the formation of asters, and clustering of myosin motors. We observe a rapid restoration of uniform polymer density in the presence of the assembly factors which catalyze network turnover through elongation of severed actin filaments. When severing is accelerated further by the addition of a severing protein, network contraction and motor clustering are dramatically suppressed. We test the relative effects of material regeneration and force transmission using image analysis, and conclude that the dominant mechanism for this effect is relatively short-lived stresses that do not propagate over considerable distance or push network deformation into the nonlinear contractile regime we have previously characterized. Our results present a framework to understand cytoskeletal active matter that are influenced by a complex interplay between stress generation, network reorganization, and polymer turnover.

  14. How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    Science.gov (United States)

    Chen, Ke-Jung; Whalen, Daniel J.; Wollenberg, Katharina M. J.; Glover, Simon C. O.; Klessen, Ralf S.

    2017-08-01

    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.

  15. Loop 2 in Saccharomyces cerevisiae Rad51 protein regulates filament formation and ATPase activity.

    Science.gov (United States)

    Zhang, Xiao-Ping; Galkin, Vitold E; Yu, Xiong; Egelman, Edward H; Heyer, Wolf-Dietrich

    2009-01-01

    Previous studies showed that the K342E substitution in the Saccharomyces cerevisiae Rad51 protein increases the interaction with Rad54 protein in the two-hybrid system, leads to increased sensitivity to the alkylating agent MMS and hyper-recombination in an oligonucleotide-mediated gene targeting assay. K342 localizes in loop 2, a region of Rad51 whose function is not well understood. Here, we show that Rad51-K342E displays DNA-independent and DNA-dependent ATPase activities, owing to its ability to form filaments in the absence of a DNA lattice. These filaments exhibit a compressed pitch of 81 A, whereas filaments of wild-type Rad51 and Rad51-K342E on DNA form extended filaments with a 97 A pitch. Rad51-K342E shows near normal binding to ssDNA, but displays a defect in dsDNA binding, resulting in less stable protein-dsDNA complexes. The mutant protein is capable of catalyzing the DNA strand exchange reaction and is insensitive to inhibition by the early addition of dsDNA. Wild-type Rad51 protein is inhibited under such conditions, because of its ability to bind dsDNA. No significant changes in the interaction between Rad51-K342E and Rad54 could be identified. These findings suggest that loop 2 contributes to the primary DNA-binding site in Rad51, controlling filament formation and ATPase activity.

  16. Hedgehog signaling regulates dental papilla formation and tooth size during zebrafish odontogenesis.

    Science.gov (United States)

    Yu, Jeffrey C; Fox, Zachary D; Crimp, James L; Littleford, Hana E; Jowdry, Andrea L; Jackman, William R

    2015-04-01

    Intercellular communication by the hedgehog cell signaling pathway is necessary for tooth development throughout the vertebrates, but it remains unclear which specific developmental signals control cell behavior at different stages of odontogenesis. To address this issue, we have manipulated hedgehog activity during zebrafish tooth development and visualized the results using confocal microscopy. We first established that reporter lines for dlx2b, fli1, NF-κB, and prdm1a are markers for specific subsets of tooth germ tissues. We then blocked hedgehog signaling with cyclopamine and observed a reduction or elimination of the cranial neural crest derived dental papilla, which normally contains the cells that later give rise to dentin-producing odontoblasts. Upon further investigation, we observed that the dental papilla begins to form and then regresses in the absence of hedgehog signaling, through a mechanism unrelated to cell proliferation or apoptosis. We also found evidence of an isometric reduction in tooth size that correlates with the time of earliest hedgehog inhibition. We hypothesize that these results reveal a previously uncharacterized function of hedgehog signaling during tooth morphogenesis, regulating the number of cells in the dental papilla and thereby controlling tooth size. © 2015 Wiley Periodicals, Inc.

  17. PPARγ negatively regulates T cell activation to prevent follicular helper T cells and germinal center formation.

    Science.gov (United States)

    Park, Hong-Jai; Kim, Do-Hyun; Choi, Jin-Young; Kim, Won-Ju; Kim, Ji Yun; Senejani, Alireza G; Hwang, Soo Seok; Kim, Lark Kyun; Tobiasova, Zuzana; Lee, Gap Ryol; Craft, Joseph; Bothwell, Alfred L M; Choi, Je-Min

    2014-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that regulates lipid and glucose metabolism. Although studies of PPARγ ligands have demonstrated its regulatory functions in inflammation and adaptive immunity, its intrinsic role in T cells and autoimmunity has yet to be fully elucidated. Here we used CD4-PPARγKO mice to investigate PPARγ-deficient T cells, which were hyper-reactive to produce higher levels of cytokines and exhibited greater proliferation than wild type T cells with increased ERK and AKT phosphorylation. Diminished expression of IκBα, Sirt1, and Foxo1, which are inhibitors of NF-κB, was observed in PPARγ-deficient T cells that were prone to produce all the signature cytokines under Th1, Th2, Th17, and Th9 skewing condition. Interestingly, 1-year-old CD4-PPARγKO mice spontaneously developed moderate autoimmune phenotype by increased activated T cells, follicular helper T cells (TFH cells) and germinal center B cells with glomerular inflammation and enhanced autoantibody production. Sheep red blood cell immunization more induced TFH cells and germinal centers in CD4-PPARγKO mice and the T cells showed increased of Bcl-6 and IL-21 expression suggesting its regulatory role in germinal center reaction. Collectively, these results suggest that PPARγ has a regulatory role for TFH cells and germinal center reaction to prevent autoimmunity.

  18. Mesenchymal fibroblast growth factor receptor signaling regulates palatal shelf elevation during secondary palate formation

    Science.gov (United States)

    Yu, Kai; Karuppaiah, Kannan; Ornitz, David M.

    2015-01-01

    Palatal shelf elevation is an essential morphogenetic process during secondary palate closure and failure or delay of palatal shelf elevation is a common cause of cleft palate, one of the most common birth defects in humans. Here, we studied the role of mesenchymal fibroblast growth factor receptor (FGFR) signaling during palate development by conditional inactivation of Fgfrs using a mesenchyme-specific Dermo1-Cre driver. We showed that Fgfr1 is expressed throughout the palatal mesenchyme and Fgfr2 is expressed in the medial aspect of the posterior palatal mesenchyme overlapping with Fgfr1. Mesenchyme-specific disruption of Fgfr1 and Fgfr2 affected palatal shelf elevation and resulted in cleft palate. We further showed that both Fgfr1 and Fgfr2 are expressed in mesenchymal tissues of the mandibular process but display distinct expression patterns. Loss of mesenchymal FGFR signaling reduced mandibular ossification and lower jaw growth resulting in abnormal tongue insertion in the oral-nasal cavity. We propose a model to explain how redundant Fgfr1 and Fgfr2 expression in the palatal and mandibular mesenchyme regulates shelf medial wall protrusion and growth of the mandible to coordinate the craniofacial tissue movements that are required for palatal shelf elevation. PMID:26250517

  19. Mechanical loading regulates organization of the actin cytoskeleton and column formation in postnatal growth plate.

    Science.gov (United States)

    Killion, Christy H; Mitchell, Elizabeth H; Duke, Corey G; Serra, Rosa

    2017-07-07

    Longitudinal growth of bones occurs at the growth plates where chondrocytes align into columns that allow directional growth. Little is known about the mechanisms controlling the ability of chondrocytes to form columns. We hypothesize that mechanical load and the resulting force on chondrocytes are necessary during active growth for proper growth plate development and limb length. To test this hypothesis, we created a mouse model in which a portion of the sciatic nerve from one hind limb was transected at postnatal day 8 to cause paralysis to that limb. At 6 and 12 wk postsurgery, the hind limb had significantly less bone mineral density than contralateral controls, confirming reduced load. At 8 and 14 wk postsurgery, tibiae were significantly shorter than controls. The paralyzed growth plate showed disruptions to column organization, with fewer and shorter columns. Polarized light microscopy indicated alterations in collagen fiber organization in the growth plate. Furthermore, organization of the actin cytoskeleton in growth plate chondrocytes was disrupted. We conclude that mechanical load and force on chondrocytes within the growth plate regulate postnatal development of the long bones. © 2017 Killion, Mitchell, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Snail/Slug-YAP/TAZ complexes cooperatively regulate mesenchymal stem cell function and bone formation.

    Science.gov (United States)

    Tang, Yi; Weiss, Stephen J

    2017-03-04

    Snail and Slug are zinc-finger transcription factors that play key roles in directing the epithelial-mesenchymal transition (EMT) programs associated with normal development as well as disease progression. More recent work suggests that these EMT-associated transcription factors also modulate the function of both embryonic and adult stem cells. Interestingly, YAP and TAZ, the co-transcriptional effectors of the Hippo pathway, likewise play an important role in stem cell self-renewal and lineage commitment. While direct intersections between the Snail/Slug and Hippo pathways have not been described previously, we recently described an unexpected cooperative interaction between Snail/Slug and YAP/TAZ that controls the self-renewal and differentiation properties of bone marrow-derived mesenchymal stem cells (MSCs), a cell population critical to bone development. Additional studies revealed that both Snail and Slug are able to form binary complexes with either YAP or TAZ that, together, control YAP/TAZ transcriptional activity and function throughout mouse development. Given the more recent observations that MSC-like cell populations are found in association throughout the vasculature where they participate in tissue regeneration, fibrosis and cancer, the Snail/Slug-YAP/TAZ axis is well-positioned to regulate global stem cell function in health and disease.

  1. CREB Regulates Experience-Dependent Spine Formation and Enlargement in Mouse Barrel Cortex

    Directory of Open Access Journals (Sweden)

    Annabella Pignataro

    2015-01-01

    Full Text Available Experience modifies synaptic connectivity through processes that involve dendritic spine rearrangements in neuronal circuits. Although cAMP response element binding protein (CREB has a key function in spines changes, its role in activity-dependent rearrangements in brain regions of rodents interacting with the surrounding environment has received little attention so far. Here we studied the effects of vibrissae trimming, a widely used model of sensory deprivation-induced cortical plasticity, on processes associated with dendritic spine rearrangements in the barrel cortex of a transgenic mouse model of CREB downregulation (mCREB mice. We found that sensory deprivation through prolonged whisker trimming leads to an increased number of thin spines in the layer V of related barrel cortex (Contra in wild type but not mCREB mice. In the barrel field controlling spared whiskers (Ipsi, the same trimming protocol results in a CREB-dependent enlargement of dendritic spines. Last, we demonstrated that CREB regulates structural rearrangements of synapses that associate with dynamic changes of dendritic spines. Our findings suggest that CREB plays a key role in dendritic spine dynamics and synaptic circuits rearrangements that account for new brain connectivity in response to changes in the environment.

  2. Transcriptional regulation of Aggregatibacter actinomycetemcomitans lsrACDBFG and lsrRK operons and their role in biofilm formation.

    Science.gov (United States)

    Torres-Escobar, Ascención; Juárez-Rodríguez, María Dolores; Lamont, Richard J; Demuth, Donald R

    2013-01-01

    Autoinducer-2 (AI-2) is required for biofilm formation and virulence of the oral pathogen Aggregatibacter actinomycetemcomitans, and we previously showed that lsrB codes for a receptor for AI-2. The lsrB gene is expressed as part of the lsrACDBFG operon, which is divergently transcribed from an adjacent lsrRK operon. In Escherichia coli, lsrRK encodes a repressor and AI-2 kinase that function to regulate lsrACDBFG. To determine if lsrRK controls lsrACDBFG expression and influences biofilm growth of A. actinomycetemcomitans, we first defined the promoters for each operon. Transcriptional reporter plasmids containing the 255-bp lsrACDBFG-lsrRK intergenic region (IGR) fused to lacZ showed that essential elements of lsrR promoter reside 89 to 255 bp upstream from the lsrR start codon. Two inverted repeat sequences that represent potential binding sites for LsrR and two sequences resembling the consensus cyclic AMP receptor protein (CRP) binding site were identified in this region. Using electrophoretic mobility shift assay (EMSA), purified LsrR and CRP proteins were shown to bind probes containing these sequences. Surprisingly, the 255-bp IGR did not contain the lsrA promoter. Instead, a fragment encompassing nucleotides +1 to +159 of lsrA together with the 255-bp IGR was required to promote lsrA transcription. This suggests that a region within the lsrA coding sequence influences transcription, or alternatively that the start codon of A. actinomycetemcomitans lsrA has been incorrectly annotated. Transformation of ΔlsrR, ΔlsrK, ΔlsrRK, and Δcrp deletion mutants with lacZ reporters containing the lsrA or lsrR promoter showed that LsrR negatively regulates and CRP positively regulates both lsrACDBFG and lsrRK. However, in contrast to what occurs in E. coli, deletion of lsrK had no effect on the transcriptional activity of the lsrA or lsrR promoters, suggesting that another kinase may be capable of phosphorylating AI-2 in A. actinomycetemcomitans. Finally, biofilm

  3. Triennial Reproduction Symposium: The ovarian follicular reserve in cattle: What regulates its formation and size?1,2

    Science.gov (United States)

    Fortune, J. E.; Yang, M. Y.; Allen, J. J.; Herrick, S. L.

    2017-01-01

    The ovarian follicular reserve has been linked to fertility in cattle. Young adult cattle with low vs. high numbers of antral follicles ≥ 3 mm in diameter in follicular waves also have fewer preantral follicles and decreased fertility. This underscores the importance of understanding the factors that regulate early follicular development and establish the ovarian follicular reserve, but little is known about how the follicular reserve is first established. In ruminants and humans, follicles form during fetal life, but there is a gap (about 50 d in cattle) between the appearance of the first primordial follicles and the first growing, primary follicles. In this review we present evidence that in cattle, fetal ovarian steroids (i.e., estradiol and progesterone) are negative regulators of both follicle formation and of the acquisition by newly formed follicles of the capacity to activate (i.e., initiate growth). The results indicate that capacity to activate is linked to the completion of meiotic prophase I by the oocyte. The inhibitory effects of estradiol on follicle activation were found to be reversible and correlated with inhibition of the progression of meiotic prophase I. Fetal bovine ovaries produce steroid hormones and production varies considerably during gestation and in a pattern consistent with the hypothesis that they inhibit follicle formation and capacity of newly formed follicles to activate in vivo. However, little was known about how steroid production is regulated. In our studies, both LH and FSH stimulated progesterone and estradiol production by ovarian pieces in vitro. The addition of testosterone to the culture medium enhanced estradiol production, especially when FSH was also present, but inhibited progesterone production, even in the presence of gonadotropins. Evidence is also presented for effects of maternal nutrition and health and for potential effects of estrogenic endocrine-disrupting chemicals on the size of the ovarian follicular

  4. Increased abscess formation and defective chemokine regulation in CREB transgenic mice.

    Directory of Open Access Journals (Sweden)

    Andy Y Wen

    Full Text Available Cyclic AMP-response element-binding protein (CREB is a transcription factor implicated in growth factor-dependent cell proliferation and survival, glucose homeostasis, spermatogenesis, circadian rhythms, and synaptic plasticity associated with memory. To study the phenotype of CREB overexpression in vivo, we generated CREB transgenic (TG mice in which a myeloid specific hMRP8 promoter drives CREB expression. CREB TG mice developed spontaneous skin abscesses more frequently than wild type (WT mice. To understand the role of CREB in myeloid function and innate immunity, chemokine expression in bone marrow derived macrophages (BMDMs from CREB TG mice were compared with BMDMs from WT mice. Our results demonstrated decreased Keratinocyte-derived cytokine (KC in CREB TG BMDMs but not TNFα protein production in response to lipid A (LPA. In addition, mRNA expression of KC and IL-1β (Interleukin-1β was decreased in CREB TG BMDMs; however, there was no difference in the mRNA expression of TNFα, MCP-1, IL-6 and IL-12p40. The mRNA expression of IL-1RA and IL-10 was decreased in response to LPA. Nuclear factor kappa B (NFκB expression and a subset of its target genes were upregulated in CREB TG mouse BMDMs. Although neutrophil migration was the same in both CREB TG and WT mice, Nicotinamide adenine dinucleotide phosphate (NADPH oxidase activity was significantly increased in neutrophils from CREB TG mice. Taken together, CREB overexpression in myeloid cells results in increased abscess formation in vivo and aberrant cytokine and chemokine response, and neutrophil function in vitro.

  5. Solvent Role in the Formation of Electric Double Layers with Surface Charge Regulation: A Bystander or a Key Participant?

    Science.gov (United States)

    Fleharty, Mark E.; van Swol, Frank; Petsev, Dimiter N.

    2016-01-01

    The charge formation at interfaces involving electrolyte solutions is due to the chemical equilibrium between the surface reactive groups and the potential determining ions in the solution (i.e., charge regulation). In this Letter we report our findings that this equilibrium is strongly coupled to the precise molecular structure of the solution near the charged interface. The neutral solvent molecules dominate this structure due to their overwhelmingly large number. Treating the solvent as a structureless continuum leads to a fundamentally inadequate physical picture of charged interfaces. We show that a proper account of the solvent effect leads to an unexpected and complex system behavior that is affected by the molecular and ionic excluded volumes and van der Waals interactions.

  6. Iron-Regulated Expression of Alginate Production, Mucoid Phenotype, and Biofilm Formation by Pseudomonas aeruginosa

    Science.gov (United States)

    Wiens, Jacinta R.; Vasil, Adriana I.; Schurr, Michael J.; Vasil, Michael L.

    2014-01-01

    ABSTRACT Pseudomonas aeruginosa strains of non-cystic fibrosis (non-CF) origin do not produce significant amounts of extracellular alginate and are nonmucoid. In CF, such isolates can become mucoid through mutation of one of the genes (mucA, mucB, mucC, or mucD) that produce regulatory factors that sequester AlgU, required for increased expression of alginate genes. Mutation of the muc genes in the nonmucoid PAO1, PA14, PAKS-1, and Ps388 strains led to increased levels of extracellular alginate and an obvious mucoid phenotype, but only under iron-limiting growth conditions (≤5 µM), not under iron-replete conditions (≥10 µM). In contrast, >50% of P. aeruginosa isolates from chronic CF pulmonary infections expressed increased levels of alginate and mucoidy both under iron-limiting and iron-replete conditions (i.e., iron-constitutive phenotype). No single iron regulatory factor (e.g., Fur, PvdS) was associated with this loss of iron-regulated alginate expression and mucoidy in these CF isolates. However, the loss of only pyoverdine production, or its uptake, abrogated the ability of P. aeruginosa to produce a robust biofilm that represents the Psl-type of biofilm. In contrast, we show that mutation of the pyoverdine and pyochelin biosynthesis genes and the pyoverdine receptor (FpvA) lead to iron-constitutive expression of the key alginate biosynthesis gene, algD, and an explicitly mucoid phenotype in both iron-limiting and iron-replete conditions. These data indicate that alginate production and mucoidy, in contrast to other types of biofilms produced by P. aeruginosa, are substantially enhanced under iron limitation. These results also have compelling implications in relation to the use of iron chelators in the treatment of P. aeruginosa CF infections. PMID:24496793

  7. pH regulates pore formation of a protease activated Vip3Aa from Bacillus thuringiensis.

    Science.gov (United States)

    Kunthic, Thittaya; Watanabe, Hirokazu; Kawano, Ryuji; Tanaka, Yoshikazu; Promdonkoy, Boonhiang; Yao, Min; Boonserm, Panadda

    2017-11-01

    Vip3Aa insecticidal protein is produced from Bacillus thuringiensis and exerts a broad spectrum of toxicity against lepidopteran insect species. Although Vip3Aa has been effectively used as part of integrated pest management strategies, the mechanism of the toxin remains unclear. Here, we investigated the effect of pH in a range from 5.0 to 10.0 on the pore-forming activity of the trypsin activated Vip3Aa (actVip3Aa) by in vitro pore-forming assays. Based on calcein release assay, actVip3Aa could permeabilize the artificial neutral liposomes under all the pH tested, except pH10.0. The maximum membrane permeability of actVip3Aa was detected at pH8.0 and the permeability decreased and abolished when exposing to acidic and alkaline conditions, respectively. The planar lipid bilayer experiment revealed that actVip3Aa formed ion channels at pH5.0-8.0 but no current signals were detected at pH10.0, consistent with the observation from calcein release assay. The toxin formed ion channels with a diameter of 1.4nm at pH8.0 and pore size was gradually decreased when reducing the pH. This study provided a view of the molecular mechanism of Vip3Aa by which the pore-forming activity is regulated by pH. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Deposition and alteration of carbonaceous series within a Neotethyan rift at the western boundary of the Arabian plate: The late Permian Um Irna Formation, NW Jordan, a petroleum system

    Energy Technology Data Exchange (ETDEWEB)

    Dill, H.G.; Kus, J. [Federal Institute for Geosciences and Natural Resources, P.O. Box 51 01 53 D-30631 Hannover (Germany); Bechtel, A.; Gratzer, R. [Department of Applied Geosciences and Geophysics, University of Leoben, Peter Tunner Strasse 5, A-8700 Leoben (Austria); Abu Hamad, A.M.B. [Geology Department, University of Jordan, Amman 11942 (Jordan)

    2010-01-07

    During the late Permian (Kungurian to Kazanian) a Neotethyan rift basin evolved at the western boundary of the Arabian Plate, in what is called today the Dead Sea Valley of western Jordan. The break-up of Pangaea was accompanied by low-sinuosity sandy braided- to meandering-fluvial drainage systems which were fed by the uplift of the Arabian Shield and by poorly aerated swamps and ponds that concentrated plant debris of the Cathaysian floral province in the Um Irna Formation. These proximal wet fan sediments are overlain by a dry fan characterized by extensive reddish floodplain deposits, anastomosing channel systems and paleosols. The wet fan is underlain by Cambrian sandstones. These units serve as the top and bottom seals of the OM-bearing system of the Um Irna Formation. The sedimentary rocks of the OM-bearing Um Irna Formation underwent supergene, diagenetic and epigenetic hydrothermal alteration under an elevated geothermal gradient. The temperature increased from the time of deposition of the wet to the time of deposition of the dry fan and caused remobilization of manganese already pre-concentrated in the Cambrian footwall rocks of the rift basin. The anomalous heat regime may be accounted for as a predecessor stage of the Dead Sea Rift which is still active today. Oil seeps are found along faults and fractures near this deep-seated lineamentary fault zone. The deposition and alteration of the organic matter in this late Permian rift are of great consequence for oil generation in the region. Organic petrographic investigations revealed that organic-rich terrestrial carbonaceous and coal rich sediments of mainly of type III kerogen are dominant in the Um Irna Formation. In addition, aquatic liptinite rich sedimentary input (fresh water lake and/or lacustrine swamp) of type I kerogen is also noted. Coal derived organic matter occurs in the form of coaly particles with ranks from subbituminous A to high volatile bituminous C. Higher plant-derived macerals as

  9. The effects of formative assessment on student self-regulation, motivational beliefs, and achievement in elementary science

    Science.gov (United States)

    King, Melissa Digennaro

    Goals 2000 set forth a bold vision for U.S. students: they would be "first in the world in science and mathematics" by the year 2000. Performance indicators such as the TIMSS-R (1999) and NAEP (2000) reports suggest that U.S. students have not yet reached that goal. This study intended to learn how specific assessment strategies might contribute to improved student performance in science. This quasi-experimental study investigated the effects of formative assessment with reflection on students' motivational beliefs, self-regulatory skills, and achievement in elementary science. The study aimed to find out whether and how classroom applications of formative assessment during science instruction might influence fifth-grade students' attitudes and self-perceptions about science learning, self-regulatory learning behaviors, and achievement. To explore the effects of the assessment intervention, the study utilized a mixed methods approach involving quantitative and qualitative investigations of treatment and control groups during a four-week intervention period. Quantitative measures included student self-report surveys administered pre- and post-treatment and an end-of-unit science test. Qualitative measures included classroom observations, student interviews (post-treatment), and a teacher interview (post-treatment). Findings indicated that the fifth-grade students in this study had positive attitudes toward science and high levels of self-efficacy for science. Results suggested that these elementary students employed a wide variety of cognitive and metacognitive strategies to support science learning. Findings revealed that these fifth graders believed formative assessment with reflection was beneficial for science learning outcomes. Research results did not show that the formative assessment intervention contributed to significant differences between treatment and control groups. However, the data revealed different levels of academic achievement and self-regulation

  10. Developing an ancient epithelial appendage: FGF signalling regulates early tail denticle formation in sharks

    Directory of Open Access Journals (Sweden)

    Rory L. Cooper

    2017-05-01

    Full Text Available Abstract Background Vertebrate epithelial appendages constitute a diverse group of organs that includes integumentary structures such as reptilian scales, avian feathers and mammalian hair. Recent studies have provided new evidence for the homology of integumentary organ development throughout amniotes, despite their disparate final morphologies. These structures develop from conserved molecular signalling centres, known as epithelial placodes. It is not yet certain whether this homology extends beyond the integumentary organs of amniotes, as there is a lack of knowledge regarding their development in basal vertebrates. As the ancient sister lineage of bony vertebrates, extant chondrichthyans are well suited to testing the phylogenetic depth of this homology. Elasmobranchs (sharks, skates and rays possess hard, mineralised epithelial appendages called odontodes, which include teeth and dermal denticles (placoid scales. Odontodes constitute some of the oldest known vertebrate integumentary appendages, predating the origin of gnathostomes. Here, we used an emerging model shark (Scyliorhinus canicula to test the hypothesis that denticles are homologous to other placode-derived amniote integumentary organs. To examine the conservation of putative gene regulatory network (GRN member function, we undertook small molecule inhibition of fibroblast growth factor (FGF signalling during caudal denticle formation. Results We show that during early caudal denticle morphogenesis, the shark expresses homologues of conserved developmental gene families, known to comprise a core GRN for early placode morphogenesis in amniotes. This includes conserved expression of FGFs, sonic hedgehog (shh and bone morphogenetic protein 4 (bmp4. Additionally, we reveal that denticle placodes possess columnar epithelial cells with a reduced rate of proliferation, a conserved characteristic of amniote skin appendage development. Small molecule inhibition of FGF signalling revealed

  11. The STAT3-miRNA-92-Wnt Signaling Pathway Regulates Spheroid Formation and Malignant Progression in Ovarian Cancer.

    Science.gov (United States)

    Chen, Min-Wei; Yang, Shu-Ting; Chien, Ming-Hsien; Hua, Kuo-Tai; Wu, Chin-Jui; Hsiao, S M; Lin, Hao; Hsiao, Michael; Su, Jen-Liang; Wei, Lin-Hung

    2017-04-15

    Ovarian cancer spheroids constitute a metastatic niche for transcoelomic spread that also engenders drug resistance. Spheroid-forming cells express active STAT3 signaling and display stem cell-like properties that may contribute to ovarian tumor progression. In this study, we show that STAT3 is hyperactivated in ovarian cancer spheroids and that STAT3 disruption in this setting is sufficient to relieve chemoresistance. In an NSG murine model of human ovarian cancer, STAT3 signaling regulated spheroid formation and self-renewal properties, whereas STAT3 attenuation reduced tumorigenicity. Mechanistic investigations revealed that Wnt signaling was required for STAT3-mediated spheroid formation. Notably, the Wnt antagonist DKK1 was the most strikingly upregulated gene in response to STAT3 attenuation in ovarian cancer cells. STAT3 signaling maintained stemness and interconnected Wnt/β-catenin signaling via the miR-92a/DKK1-regulatory pathways. Targeting STAT3 in combination with paclitaxel synergistically reduced peritoneal seeding and prolonged survival in a murine model of intraperitoneal ovarian cancer. Overall, our findings define a STAT3-miR-92a-DKK1 pathway in the generation of cancer stem-like cells in ovarian tumors, with potential therapeutic applications in blocking their progression. Cancer Res; 77(8); 1955-67. ©2017 AACR. ©2017 American Association for Cancer Research.

  12. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Yong; Tang, Chengchun, E-mail: tangchengchun@medmail.com.cn; Wang, Qingjie; Wang, Dong; Yan, Gaoliang; Zhu, Boqian

    2016-09-02

    Phenotype switching of vascular smooth muscle cells (VSMC) from the contractile type to the synthetic type is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Inward rectifier K{sup +} channel 2.1 (Kir2.1) has been identified in VSMC. However, whether it plays a functional role in regulating cellular transformation remains obscure. In this study, we evaluated the role of Kir2.1 on VSMC proliferation, migration, phenotype switching, and post-injury carotid neointimal formation. Kir2.1 knockdown significantly suppressed platelet-derived growth factor BB-stimulated rat vascular smooth muscle cells (rat-VSMC) proliferation and migration. Deficiency in Kir2.1 contributed to the restoration of smooth muscle α-actin, smooth muscle 22α, and calponin and to a reduction in osteopontin expression in rat-VSMC. Moreover, the in vivo study showed that rat-VSMC switched to proliferative phenotypes and that knockdown of Kir2.1 significantly inhibited neointimal formation after rat carotid injury. Kir2.1 may be a potential therapeutic target in the treatment of cardiovascular diseases, such as atherosclerosis and restenosis following percutaneous coronary intervention.

  13. Albedo Boundary

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-510, 11 October 2003The sharp, nearly straight line that runs diagonally across the center of this April 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an albedo boundary. Albedois a term that refers to reflectance of sunlight. A surface with a low albedo is one that appears dark because it reflects less light than a high albedo (bright) surface. On Mars, albedo boundaries occur between two materials of differing texture, particle size, or composition, or some combination of these three factors. The boundary shown here is remarkable because it is so sharp and straight. This is caused by wind. Most likely, the entire surface was once covered with the lower-albedo (darker) material that is now seen in the upper half of the image. At some later time, wind stripped away this darker material from the surfaces in the lower half of the image. The difference in albedo here might be related to composition, and possibly particle size. This picture is located near the southwest rim of Schiaparelli Basin at 5.5oS, 345.9oW. The picture covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  14. Transcription Factors Efg1 and Bcr1 Regulate Biofilm Formation and Virulence during Candida albicans-Associated Denture Stomatitis.

    Directory of Open Access Journals (Sweden)

    Junko Yano

    Full Text Available Denture stomatitis (DS is characterized by inflammation of the oral mucosa in direct contact with dentures and affects a significant number of otherwise healthy denture wearers. The disease is caused by Candida albicans, which readily colonizes and form biofilms on denture materials. While evidence for biofilms on abiotic and biotic surfaces initiating Candida infections is accumulating, a role for biofilms in DS remains unclear. Using an established model of DS in immunocompetent animals, the purpose of this study was to determine the role of biofilm formation in mucosal damage during pathogenesis using C. albicans or mutants defective in morphogenesis (efg1-/- or biofilm formation (bcr1-/-. For in vivo analyses, rats fitted with custom dentures, consisting of fixed and removable parts, were inoculated with wild-type C. albicans, mutants or reconstituted strains and monitored weekly for fungal burden (denture and palate, body weight and tissue damage (LDH for up to 8 weeks. C. albicans wild-type and reconstituted mutants formed biofilms on dentures and palatal tissues under in vitro, ex vivo and in vivo conditions as indicated by microscopy demonstrating robust biofilm architecture and extracellular matrix (ECM. In contrast, both efg1-/- and bcr1-/- mutants exhibited poor biofilm growth with little to no ECM. In addition, quantification of fungal burden showed reduced colonization throughout the infection period on dentures and palates of rats inoculated with efg1-/-, but not bcr1-/-, compared to controls. Finally, rats inoculated with efg1-/- and bcr1-/- mutants had minimal palatal tissue damage/weight loss while those inoculated with wild-type or reconstituted mutants showed evidence of tissue damage and exhibited stunted weight gain. These data suggest that biofilm formation is associated with tissue damage during DS and that Efg1 and Bcr1, both central regulators of virulence in C. albicans, have pivotal roles in pathogenesis of DS.

  15. Tryptophan-Dependent Control of Colony Formation After DNA Damage via Sea3-Regulated TORC1 Signaling in Saccharomyces cerevisiae.

    Science.gov (United States)

    Polleys, Erica J; Bertuch, Alison A

    2015-05-04

    The Saccharomyces cerevisiae Iml1 complex inhibits TORC1 signaling and SEACAT antagonizes the Iml1 complex. Conditions in which SEACAT functions to inhibit Iml1 and, hence, TORC1 signaling, remain largely unknown. The SEACAT member Sea3 was linked previously to telomere maintenance and DNA repair via genome-wide genetic and physical interaction studies. Therefore, we questioned whether Sea3 functioned through TORC1 to influence these pathways. Deletion of SEA3 delayed the emergence of telomerase-independent survivors that use break-induced replication (BIR) to maintain their telomeres. Similarly, sea3∆ mutants exhibited a delay in colony formation in a BIR assay strain after double-strand break (DSB) induction as well as on the DNA-damaging agent bleomycin. Deletion of IML1 rescued the impaired growth of sea3∆ mutants after DNA damage, consistent with Sea3 functioning as a regulator of TORC1 signaling. The delay was not attributable to slowed DSB repair or termination of the DNA damage checkpoint but to tryptophan auxotrophy. High levels of tryptophan in yeast peptone dextrose media did not rescue the delay in colony formation, suggesting a defect in tryptophan import, although levels of the high-affinity tryptophan permease Tat2 were not perturbed in the sea3Δ mutant. Addition of quinolinic acid, an intermediate of the de novo NAD+ biosynthetic pathway, however, rescued the delay in colony formation in the sea3Δ mutant. Together, these findings highlight the importance of enforcement of TORC1 signaling and suggest that internal tryptophan levels influence growth recovery post DNA damage through the role of tryptophan in NAD+ synthesis. Copyright © 2015 Polleys and Bertuch.

  16. Hairy Leaf 6, an AP2/ERF transcription factor, interacts with OsWOX3B and regulates trichome formation in rice.

    Science.gov (United States)

    Sun, Wenqiang; Gao, Dawei; Xiong, Yin; Tang, Xinxin; Xiao, Xiongfeng; Wang, Chongrong; Yu, Sibin

    2017-09-28

    Trichome formation has been extensively studied as a mechanistic model for epidermal cell differentiation and cell morphogenesis in plants. However, the genetic and molecular mechanisms underlying trichome formation (i.e. initiation and elongation) in rice remain largely unknown. Here, we report an AP2/ERF transcription factor, Hairy Leaf 6 (HL6), which controls trichome formation in rice. Functional characterization of HL6 revealed that HL6 transcriptionally regulates trichome elongation in rice. Furthermore, the regulation of HL6 in trichome elongation is dependent on functional OsWOX3B, which encodes a homeodomain-containing protein that acts as a key regulator in trichome initiation. Using yeast two-hybrid assays and bimolecular fluorescence complementation tests, we determined that HL6 interacts with OsWOX3B to regulate trichome formation and form a protein complex, enhancing the binding ability of HL6 with the auxin-related gene OsYUCCA5. Population genetic analysis indicated that HL6 was under negative selection during rice domestication. Our findings provide new insights in the molecular network of HL6 and OsWOX3B involved in the auxin-mediated pathway that regulates trichome formation in rice. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  17. Spatial and Temporal Regulation of Receptor Endocytosis in Neuronal Dendrites Revealed by Imaging of Single Vesicle Formation

    Directory of Open Access Journals (Sweden)

    Morgane Rosendale

    2017-02-01

    Full Text Available Endocytosis in neuronal dendrites is known to play a critical role in synaptic transmission and plasticity such as long-term depression (LTD. However, the inability to detect endocytosis directly in living neurons has hampered studies of its dynamics and regulation. Here, we visualized the formation of individual endocytic vesicles containing pHluorin-tagged receptors with high temporal resolution in the dendrites of cultured hippocampal neurons. We show that transferrin receptors (TfRs are constitutively internalized at optically static clathrin-coated structures. These structures are slightly enriched near synapses that represent preferential sites for the endocytosis of postsynaptic AMPA-type receptors (AMPARs, but not for non-synaptic TfRs. Moreover, the frequency of AMPAR endocytosis events increases after the induction of NMDAR-dependent chemical LTD, but the activity of perisynaptic endocytic zones is not differentially regulated. We conclude that endocytosis is a highly dynamic and stereotyped process that internalizes receptors in precisely localized endocytic zones.

  18. Cyclic AMP-dependent protein kinase A negatively regulates conidia formation by the tangerine pathotype of Alternaria alternata.

    Science.gov (United States)

    Tsai, Hsieh-Chin; Yang, Siwy Ling; Chung, Kuang-Ren

    2013-02-01

    The necrotrophic fungal pathogen Alternaria alternata causes brown spot diseases in many citrus cultivars. The FUS3 and SLT2 mitogen-activated protein kinases (MAPK)-mediated signaling pathways have been shown to be required for conidiation. Exogenous application of cAMP to this fungal pathogen decreased conidia formation considerably. This study determined whether a cAMP-activated protein kinase A (PKA) is required for conidiation. Using loss-of-function mutations in PKA catalytic and regulatory subunit-coding genes, we demonstrated that PKA negatively regulates conidiation. Fungal mutants lacking PKA catalytic subunit gene (PKA ( cat )) reduced growth, lacked detectable PKA activity, and produced higher amounts of conidia compared to wild-type. Introduction of a functional copy of PKA ( cat ) into a null mutant partially restored PKA activity and produced wild-type level of conidia. In contrast, fungi lacking PKA regulatory subunit gene (PKA ( reg )) produced detectable PKA activity, exhibited severe growth reduction, formed swelling hyphal segments, and produced no mature conidia. Introduction of the PKA ( reg ) gene to a regulatory subunit mutant restored all phenotypes to wild type. PKA ( reg )-null mutants induced fewer necrotic lesions on citrus compared to wild-type, whereas PKA ( cat ) mutant displayed wild-type virulence. Overall, our studies indicate that PKA and FUS3-mediated signaling pathways apparently have very different roles in the regulation of conidia production and A. alternata pathogenesis in citrus.

  19. Spatial and Temporal Regulation of Receptor Endocytosis in Neuronal Dendrites Revealed by Imaging of Single Vesicle Formation.

    Science.gov (United States)

    Rosendale, Morgane; Jullié, Damien; Choquet, Daniel; Perrais, David

    2017-02-21

    Endocytosis in neuronal dendrites is known to play a critical role in synaptic transmission and plasticity such as long-term depression (LTD). However, the inability to detect endocytosis directly in living neurons has hampered studies of its dynamics and regulation. Here, we visualized the formation of individual endocytic vesicles containing pHluorin-tagged receptors with high temporal resolution in the dendrites of cultured hippocampal neurons. We show that transferrin receptors (TfRs) are constitutively internalized at optically static clathrin-coated structures. These structures are slightly enriched near synapses that represent preferential sites for the endocytosis of postsynaptic AMPA-type receptors (AMPARs), but not for non-synaptic TfRs. Moreover, the frequency of AMPAR endocytosis events increases after the induction of NMDAR-dependent chemical LTD, but the activity of perisynaptic endocytic zones is not differentially regulated. We conclude that endocytosis is a highly dynamic and stereotyped process that internalizes receptors in precisely localized endocytic zones. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. A structural sketch of RcdA, a transcription factor controlling the master regulator of biofilm formation.

    Science.gov (United States)

    Sugino, Hirotaka; Usui, Takanori; Shimada, Tomohiro; Nakano, Masahiro; Ogasawara, Hiroshi; Ishihama, Akira; Hirata, Akira

    2017-07-01

    RcdA is a regulator of curlin subunit gene D, the master regulator of biofilm formation in Escherichia coli. Here, we determined the X-ray structure of RcdA at 2.55 Å resolution. RcdA consists of an N-terminal DNA-binding domain (DBD) containing a helix-turn-helix (HTH) motif and a C-terminal dimerization domain, and forms a homodimer in crystals. A computational docking model of the RcdA-DNA complex allowed prediction of the candidate residues responsible for DNA binding. Our structure-guided mutagenesis, in combination with gel shift assay, atomic force microscopic observation, and reporter assay, indicate that R32 in α2 of the HTH motif plays an essential role in the recognition and binding of target DNA while T46 in α3 influences the mode of oligomerization. These results provide insights into the DNA-binding mode of RcdA. © 2017 Federation of European Biochemical Societies.

  1. Effect of growth regulator Kelpak SL on the formation of aboveground biomass of Festulolium braunii (K. Richt. A. Camus

    Directory of Open Access Journals (Sweden)

    Jacek Sosnowski

    2013-07-01

    Full Text Available A study on the cultivation of Festulolium braunii cv. 'Felopa' was carried out using polyurethane rings with a diameter of 36 cm and a height of 40 cm, which were sunk into the ground to a depth of 30 cm and filled with soil material. In this experiment, Kelpak SL was used as a bioregulator. It consists of natural plant hormones such as auxins (11 mg in dm3 and cytokinins (0.03 mg in dm3. The experimental factors were as follows: A1-control; A2 – 20% solution of the growth regulator; A3 – 40% solution; and A4 – 60% solution. The preparation was applied to all three regrowths in the form of spray, at a rate of 3 cm3 ring-1, at the stem elongation stage. The full period of this experiment was in the years 2010–2011. During this time, detailed investigations were carried out on aboveground biomass yield (g DM ring-1, number of shoots (pcs ring-1, leaf blade length (cm, width of the leaf blade base (mm, leaf greenness index (SPAD. The study showed a significant effect of the growth regulator on the formation of Festulolium braunii biomass. However, its highest effectiveness was observed when the 60% solution was applied.

  2. The bifunctional abiotic stress signalling regulator and endogenous RNA silencing suppressor FIERY1 is required for lateral root formation

    KAUST Repository

    Chen, Hao

    2010-09-28

    The Arabidopsis FIERY1 (FRY1) locus was originally identified as a negative regulator of stress-responsive gene expression and later shown to be required for suppression of RNA silencing. In this study we discovered that the FRY1 locus also regulates lateral root formation. Compared with the wild type, fry1 mutant seedlings generated significantly fewer lateral roots under normal growth conditions and also exhibited a dramatically reduced sensitivity to auxin in inducing lateral root initiation. Using transgenic plants that overexpress a yeast homolog of FRY1 that possesses only the 3\\', 5\\'-bisphosphate nucleotidase activity but not the inositol 1-phosphatase activity, we demonstrated that the lateral root phenotypes in fry1 result from loss of the nucleotidase activity. Furthermore, a T-DNA insertion mutant of another RNA silencing suppressor, XRN4 (but not XRN2 or XRN3), which is an exoribonuclease that is inhibited by the substrate of the FRY1 3\\', 5\\'-bisphosphate nucleotidase, exhibits similar lateral root defects. Although fry1 and xrn4 exhibited reduced sensitivity to ethylene, our experiments demonstrated that restoration of ethylene sensitivity in the fry1 mutant is not sufficient to rescue the lateral root phenotypes of fry1. Our results indicate that RNA silencing modulated by FRY1 and XRN4 plays an important role in shaping root architecture. © 2010 Blackwell Publishing Ltd.

  3. Beta- lactam antibiotics stimulate biofilm formation in non-typeable haemophilus influenzae by up-regulating carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Siva Wu

    Full Text Available Non-typeable Haemophilus influenzae (NTHi is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended.

  4. Beta- Lactam Antibiotics Stimulate Biofilm Formation in Non-Typeable Haemophilus influenzae by Up-Regulating Carbohydrate Metabolism

    Science.gov (United States)

    Wu, Siva; Li, Xiaojin; Gunawardana, Manjula; Maguire, Kathleen; Guerrero-Given, Debbie; Schaudinn, Christoph; Wang, Charles; Baum, Marc M.; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended. PMID:25007395

  5. RsbU-Dependent Regulation of Staphylococcus epidermidis Biofilm Formation Is Mediated via the Alternative Sigma Factor σB by Repression of the Negative Regulator Gene icaR

    Science.gov (United States)

    Knobloch, Johannes K.-M.; Jäger, Sebastian; Horstkotte, Matthias A.; Rohde, Holger; Mack, Dietrich

    2004-01-01

    Transposon mutagenesis of rsbU leads to a biofilm-negative phenotype in Staphylococcus epidermidis. However, the pathway of this regulatory mechanism was unknown. To investigate the role of RsbU in the regulation of the alternative sigma factor σB and biofilm formation, we generated different mutants of the σB operon in S. epidermidis strains 1457 and 8400. The genes rsbU, rsbV, rsbW, and sigB, as well as the regulatory cascade rsbUVW and the entire σB operon, were deleted. Transcriptional analysis of sarA and the σB-dependent gene asp23 revealed the functions of RsbU and RsbV as positive regulators and of RsbW as a negative regulator of σB activity, indicating regulation of σB activity similar to that characterized for Bacillus subtilis and Staphylococcus aureus. Phenotypic characterization of the mutants revealed that the dramatic decrease of biofilm formation in rsbU mutants is mediated via σB, indicating a crucial role for σB in S. epidermidis pathogenesis. However, biofilm formation in mutants defective in σB or its function could be restored in the presence of subinhibitory ethanol concentrations. Transcriptional analysis revealed that icaR is up-regulated in mutants lacking σB function but that icaA transcription is down-regulated in these mutants, indicating a σB-dependent regulatory intermediate negatively regulating IcaR. Supplementation of growth media with ethanol decreased icaR transcription, leading to increased icaA transcription and a biofilm-positive phenotype, indicating that the ethanol-dependent induction of biofilm formation is mediated by IcaR. This icaR-dependent regulation under ethanol induction is mediated in a σB-independent manner, suggesting at least one additional regulatory intermediate in the biofilm formation of S. epidermidis. PMID:15213125

  6. RsbU-dependent regulation of Staphylococcus epidermidis biofilm formation is mediated via the alternative sigma factor sigmaB by repression of the negative regulator gene icaR.

    Science.gov (United States)

    Knobloch, Johannes K-M; Jäger, Sebastian; Horstkotte, Matthias A; Rohde, Holger; Mack, Dietrich

    2004-07-01

    Transposon mutagenesis of rsbU leads to a biofilm-negative phenotype in Staphylococcus epidermidis. However, the pathway of this regulatory mechanism was unknown. To investigate the role of RsbU in the regulation of the alternative sigma factor sigma(B) and biofilm formation, we generated different mutants of the sigma(B) operon in S. epidermidis strains 1457 and 8400. The genes rsbU, rsbV, rsbW, and sigB, as well as the regulatory cascade rsbUVW and the entire sigma(B) operon, were deleted. Transcriptional analysis of sarA and the sigma(B)-dependent gene asp23 revealed the functions of RsbU and RsbV as positive regulators and of RsbW as a negative regulator of sigma(B) activity, indicating regulation of sigma(B) activity similar to that characterized for Bacillus subtilis and Staphylococcus aureus. Phenotypic characterization of the mutants revealed that the dramatic decrease of biofilm formation in rsbU mutants is mediated via sigma(B), indicating a crucial role for sigma(B) in S. epidermidis pathogenesis. However, biofilm formation in mutants defective in sigma(B) or its function could be restored in the presence of subinhibitory ethanol concentrations. Transcriptional analysis revealed that icaR is up-regulated in mutants lacking sigma(B) function but that icaA transcription is down-regulated in these mutants, indicating a sigma(B)-dependent regulatory intermediate negatively regulating IcaR. Supplementation of growth media with ethanol decreased icaR transcription, leading to increased icaA transcription and a biofilm-positive phenotype, indicating that the ethanol-dependent induction of biofilm formation is mediated by IcaR. This icaR-dependent regulation under ethanol induction is mediated in a sigma(B)-independent manner, suggesting at least one additional regulatory intermediate in the biofilm formation of S. epidermidis.

  7. Cross-bedding related anisotropy and its interplay with various boundary conditions in the formation and orientation of joints in an aeolian sandstone

    Science.gov (United States)

    Deng, Shang; Cilona, Antonino; Morrow, Carolyn; Mapeli, Cesar; Liu, Chun; Lockner, David; Prasad, Manika; Aydin, Atilla

    2015-08-01

    Previous research revealed that the cross-bedding related anisotropy in Jurassic aeolian Aztec Sandstone cropping out in the Valley of Fire State Park, Nevada, affects the orientation of compaction bands, also known as anti-cracks or closing mode structures. We hypothesize that cross-bedding should have a similar influence on the orientation of the opening mode joints within the same rock at the same location. To test this hypothesis, we investigated the relationship between the orientation of cross-beds and the orientation of different categories of joint sets including cross-bed package confined joints and joint zones in the Aztec Sandstone. The field data show that the cross-bed package confined joints occur at high-angle to bedding and trend roughly parallel to the dip direction of the cross-beds. In comparison, the roughly N-S trending joint zones appear not to be influenced by the cross-beds in any significant way but frequently truncate against the dune boundaries. To characterize the anisotropy due to cross-bedding in the Aztec Sandstone, we measured the P-wave velocities parallel and perpendicular to bedding from 11 samples and determined an average P-wave anisotropy to be slightly larger than 13%. From these results, a model based on the generalized Hooke's law for anisotropic materials is used to analyze deformation of cross-bedded sandstone as a transversely isotropic material. In the analysis, the dip angle of cross-beds is assumed to be constant and the strike orientation varying from 0° to 359° in the east (x), north (y), and up (z) coordinate system. We find qualitative agreement between most of the model results and the observed field relations between cross-beds and the corresponding joint sets. The results also suggest that uniaxial extension (εzz > εxx = εyy = 0) and axisymmetric extension (εxx = εyy εzz) would amplify the influence of cross-bedding associated anisotropy on the joint orientation whereas a triaxial extension (εxx > εyy

  8. Boundary issues

    Science.gov (United States)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine

  9. boundary dissipation

    Directory of Open Access Journals (Sweden)

    Mehmet Camurdan

    1998-01-01

    are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.

  10. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa

    OpenAIRE

    Li Yang; Xin Zhao; Fan Yang; Di Fan; Yuanzhong Jiang; Keming Luo

    2016-01-01

    WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY...

  11. Npas4 Is a Critical Regulator of Learning-Induced Plasticity at Mossy Fiber-CA3 Synapses during Contextual Memory Formation

    DEFF Research Database (Denmark)

    Weng, Feng-Ju; Garcia, Rodrigo I; Lutzu, Stefano

    2018-01-01

    Synaptic connections between hippocampal mossy fibers (MFs) and CA3 pyramidal neurons are essential for contextual memory encoding, but the molecular mechanisms regulating MF-CA3 synapses during memory formation and the exact nature of this regulation are poorly understood. Here we report...... that the activity-dependent transcription factor Npas4 selectively regulates the structure and strength of MF-CA3 synapses by restricting the number of their functional synaptic contacts without affecting the other synaptic inputs onto CA3 pyramidal neurons. Using an activity-dependent reporter, we identified CA3...... pyramidal cells that were activated by contextual learning and found that MF inputs on these cells were selectively strengthened. Deletion of Npas4 prevented both contextual memory formation and this learning-induced synaptic modification. We further show that Npas4 regulates MF-CA3 synapses by controlling...

  12. Phosphatidylcholine formation by LPCAT1 is regulated by Ca2+ and the redox status of the cell

    Directory of Open Access Journals (Sweden)

    Soupene Eric

    2012-06-01

    Full Text Available Abstract Background Unsaturated fatty acids are susceptible to oxidation and damaged chains are removed from glycerophospholipids by phospholipase A2. De-acylated lipids are then re-acylated by lysophospholipid acyltransferase enzymes such as LPCAT1 which catalyses the formation of phosphatidylcholine (PC from lysoPC and long-chain acyl-CoA. Results Activity of LPCAT1 is inhibited by Ca2+, and a Ca2+-binding motif of the EF-hand type, EFh-1, was identified in the carboxyl-terminal domain of the protein. The residues Asp-392 and Glu-403 define the loop of the hairpin structure formed by EFh-1. Substitution of D392 and E403 to alanine rendered an enzyme insensitive to Ca2+, which established that Ca2+ binding to that region negatively regulates the activity of the acyltransferase amino-terminal domain. Residue Cys-211 of the conserved motif III is not essential for catalysis and not sufficient for sensitivity to treatment by sulfhydryl-modifier agents. Among the several active cysteine-substitution mutants of LPCAT1 generated, we identified one to be resistant to treatment by sulfhydryl-alkylating and sulfhydryl-oxidizer agents. Conclusion Mutant forms of LPCAT1 that are not inhibited by Ca2+ and sulfhydryl-alkylating and –oxidizing agents will provide a better understanding of the physiological function of a mechanism that places the formation of PC, and the disposal of the bioactive species lysoPC, under the control of the redox status and Ca2+ concentration of the cell.

  13. Small-conductance Ca2+-activated potassium type 2 channels regulate the formation of contextual fear memory.

    Directory of Open Access Journals (Sweden)

    Saravana R K Murthy

    Full Text Available Small-conductance, Ca2+ activated K+ channels (SK channels are expressed at high levels in brain regions responsible for learning and memory. In the current study we characterized the contribution of SK2 channels to synaptic plasticity and to different phases of hippocampal memory formation. Selective SK2 antisense-treatment facilitated basal synaptic transmission and theta-burst induced LTP in hippocampal brain slices. Using the selective SK2 antagonist Lei-Dab7 or SK2 antisense probes, we found that hippocampal SK2 channels are critical during two different time windows: 1 blockade of SK2 channels before the training impaired fear memory, whereas, 2 blockade of SK2 channels immediately after the training enhanced contextual fear memory. We provided the evidence that the post-training cleavage of the SK2 channels was responsible for the observed bidirectional effect of SK2 channel blockade on memory consolidation. Thus, Lei-Dab7-injection before training impaired the C-terminal cleavage of SK2 channels, while Lei-Dab7 given immediately after training facilitated the C-terminal cleavage. Application of the synthetic peptide comprising a leucine-zipper domain of the C-terminal fragment to Jurkat cells impaired SK2 channel-mediated currents, indicating that the endogenously cleaved fragment might exert its effects on memory formation by blocking SK2 channel-mediated currents. Our present findings suggest that SK2 channel proteins contribute to synaptic plasticity and memory not only as ion channels but also by additionally generating a SK2 C-terminal fragment, involved in both processes. The modulation of fear memory by down-regulating SK2 C-terminal cleavage might have applicability in the treatment of anxiety disorders in which fear conditioning is enhanced.

  14. Hints of the early Jehol Biota: important dinosaur footprint assemblages from the Jurassic-Cretaceous boundary Tuchengzi Formation in Beijing, China.

    Science.gov (United States)

    Xing, Lida; Zhang, Jianping; Lockley, Martin G; McCrea, Richard T; Klein, Hendrik; Alcalá, Luis; Buckley, Lisa G; Burns, Michael E; Kümmell, Susanna B; He, Qing

    2015-01-01

    New reports of dinosaur tracksites in the Tuchengzi Formation in the newly established Yanqing Global Geopark, Beijing, China, support previous inferences that the track assemblages from this formation are saurischian-dominated. More specifically, the assemblages appear theropod-dominated, with the majority of well-preserved tracks conforming to the Grallator type (sensus lato), thus representing relatively small trackmakers. Such ichnofaunas supplement the skeletal record from this unit that lacks theropods thus far, proving a larger diversity of dinosaur faunas in that region. Sauropods are represented by medium to large sized and narrow and wide-gauge groups, respectively. The latter correspond with earlier discoveries of titanosauriform skeletons in the same unit. Previous records of ornithischian tracks cannot be positively confirmed. Purported occurrences are re-evaluated here, the trackways and imprints, except of a single possible specimen, re-assigned to theropods. Palecologically the Tuchengzi ichnofauna is characteristic of semi-arid fluvio-lacustrine inland basins with Upper Jurassic-Lower Cretaceous deposits in northern China that all show assemblages with abundant theropod and sauropod tracks and minor components of ornithopod, pterosaur and bird tracks.

  15. Hints of the early Jehol Biota: important dinosaur footprint assemblages from the Jurassic-Cretaceous boundary Tuchengzi Formation in Beijing, China.

    Directory of Open Access Journals (Sweden)

    Lida Xing

    Full Text Available New reports of dinosaur tracksites in the Tuchengzi Formation in the newly established Yanqing Global Geopark, Beijing, China, support previous inferences that the track assemblages from this formation are saurischian-dominated. More specifically, the assemblages appear theropod-dominated, with the majority of well-preserved tracks conforming to the Grallator type (sensus lato, thus representing relatively small trackmakers. Such ichnofaunas supplement the skeletal record from this unit that lacks theropods thus far, proving a larger diversity of dinosaur faunas in that region. Sauropods are represented by medium to large sized and narrow and wide-gauge groups, respectively. The latter correspond with earlier discoveries of titanosauriform skeletons in the same unit. Previous records of ornithischian tracks cannot be positively confirmed. Purported occurrences are re-evaluated here, the trackways and imprints, except of a single possible specimen, re-assigned to theropods. Palecologically the Tuchengzi ichnofauna is characteristic of semi-arid fluvio-lacustrine inland basins with Upper Jurassic-Lower Cretaceous deposits in northern China that all show assemblages with abundant theropod and sauropod tracks and minor components of ornithopod, pterosaur and bird tracks.

  16. Involvement of noradrenergic innervation from locus coeruleus to hippocampal formation in negative feedback regulation of penile erection in the rat.

    Science.gov (United States)

    Chang, A Y; Huang, C M; Chan, J Y; Chan, S H

    2001-01-01

    We demonstrated previously that a novel negative feed back mechanism for the regulation of penile erection, which is triggered by ascending sensory inputs initiated by tumescence of the penis, exists in the hippocampal formation (HF). This study further elucidated the role of the locus coeruleus (LC), which is the largest aggregate of norepinephrine-containing neurons in the brain and provides the major noradrenergic innervation to the HF, in this process. Adult male Sprague-Dawley rats that were anesthetized and maintained with chloral hydrate were used. The intracavernous pressure (ICP) recorded from the corpus cavernosum of the penis was used as the experimental index for penile erection. Electrical activation of the LC elicited a significant reduction in baseline ICP. Similar observations were obtained on microinjection bilaterally into the hippocampal CA1 or CA3 subfield or dentate gyrus of equimolar doses (5 nmol) of norepinephrine (alpha1-, alpha2-agonist), phenylephrine (alpha1-agonist), or BHT 933 (alpha2-agonist). Bilateral electrolytic lesions of the LC discernibly enhanced the magnitude and/or duration of the elevation in ICP induced by intracavernous administration of papaverine (400 microgram). A potentiation of the papaverine-evoked ICP increase was also observed following pretreatment with bilateral hippocampal application of equimolar doses (250 pmol) of either prazosin (alpha1-, alpha2B-, alpha2C-antagonist), naftopidil (alpha1A/D-antagonist), yohimbine (alpha2-antagonst), or rauwolscine (alpha2B-, alpha2C-antagonist). None of these antagonists, however, affected baseline ICP. These results suggest that noradrenergic innervation of the HF that originates from the LC may play an active role in negative feedback regulation of penile erection, engaging at least alpha1A/D-, alpha2B-, and alpha2C-adrenoceptors in the HF.

  17. Differential contributions of nitric oxide synthase isoforms at hippocampal formation to negative feedback regulation of penile erection in the rat.

    Science.gov (United States)

    Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H

    2002-05-01

    We established previously that a novel negative feedback mechanism for the regulation of penile erection, which is triggered by ascending sensory inputs initiated by tumescence of the penis, exists in the hippocampal formation (HF). This study further evaluated the participation of nitric oxide (NO) and the contribution of nitric oxide synthase (NOS) isoforms at the HF in this process. Adult, male Sprague-Dawley rats that were anaesthetized and maintained with chloral hydrate were used, and intracavernous pressure (ICP) recorded from the corpus cavernosum of the penis was employed as our experimental index for penile erection. Microinjection bilaterally of a NO donor, S-nitroso-N-acetylpenicillamine (0.25 or 1 nmoles), or the NO precursor, L-arginine (1 or 5 nmoles), into the hippocampal CA1 or CA3 subfield or dentate gyrus elicited a significant reduction in baseline ICP. Bilateral hippocampal application of a NO trapping agent, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (10 nmoles), significantly potentiated the elevation in ICP induced by intracavernous administration of papaverine (400 microg). Microinjection bilaterally into the HF of equimolar doses (0.5 or 2.5 pmoles) of two selective neuronal NOS inhibitors, 7-nitroindazole or N(omega)-propyl-L-arginine; or equimolar doses (50 or 250 pmoles) of two selective inducible NOS inhibitors, aminoguanidine or S-methylisothiourea, significantly enhanced the magnitude and/or duration of the papaverine-induced elevation in ICP. In contrast, hippocampal application of a potent endothelial NOS inhibitor, N5-(1-iminoethyl)-L-ornithine (18 or 92 nmoles), was ineffective. Neither of these inhibitors, furthermore, affected baseline ICP. These results suggest that NO generated via both neuronal and inducible NOS at the HF may participate in negative feedback regulation of penile erection.

  18. Differential contributions of nitric oxide synthase isoforms at hippocampal formation to negative feedback regulation of penile erection in the rat

    Science.gov (United States)

    Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H

    2002-01-01

    We established previously that a novel negative feedback mechanism for the regulation of penile erection, which is triggered by ascending sensory inputs initiated by tumescence of the penis, exists in the hippocampal formation (HF). This study further evaluated the participation of nitric oxide (NO) and the contribution of nitric oxide synthase (NOS) isoforms at the HF in this process.Adult, male Sprague-Dawley rats that were anaesthetized and maintained with chloral hydrate were used, and intracavernous pressure (ICP) recorded from the corpus cavernosum of the penis was employed as our experimental index for penile erection.Microinjection bilaterally of a NO donor, S-nitroso-N-acetylpenicillamine (0.25 or 1 nmoles), or the NO precursor, L-arginine (1 or 5 nmoles), into the hippocampal CA1 or CA3 subfield or dentate gyrus elicited a significant reduction in baseline ICP.Bilateral hippocampal application of a NO trapping agent, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (10 nmoles), significantly potentiated the elevation in ICP induced by intracavernous administration of papaverine (400 μg).Microinjection bilaterally into the HF of equimolar doses (0.5 or 2.5 pmoles) of two selective neuronal NOS inhibitors, 7-nitroindazole or Nω-propyl-L-arginine; or equimolar doses (50 or 250 pmoles) of two selective inducible NOS inhibitors, aminoguanidine or S-methylisothiourea, significantly enhanced the magnitude and/or duration of the papaverine-induced elevation in ICP. In contrast, hippocampal application of a potent endothelial NOS inhibitor, N5-(1-iminoethyl)-L-ornithine (18 or 92 nmoles), was ineffective. Neither of these inhibitors, furthermore, affected baseline ICP.These results suggest that NO generated via both neuronal and inducible NOS at the HF may participate in negative feedback regulation of penile erection. PMID:11976262

  19. Dihydroaustrasulfone Alcohol (WA-25 Impedes Macrophage Foam Cell Formation by Regulating the Transforming Growth Factor-β1 Pathway

    Directory of Open Access Journals (Sweden)

    Yi-Chen Wang

    2015-05-01

    Full Text Available Atherosclerosis is considered an inflammatory disease. However, clinically used anti-atherosclerotic drugs, such as simvastatin, have many side effects. Recently, several unique marine compounds have been isolated that possess a variety of bioactivities. In a previous study, we found a synthetic precursor of the marine compound (austrasulfone, which is dihydroaustrasulfone alcohol (WA-25, has anti-atherosclerotic effects in vivo. However, the detailed mechanisms remain unclear. Therefore, to clarify the mechanisms through which WA-25 exerts anti-atherosclerotic activity, we used RAW 264.7 macrophages as an in vitro model to evaluate the effects of WA-25. In lipopolysaccharide (LPS-stimulated RAW 264.7 cells, WA-25 significantly inhibited expression of the pro-inflammatory proteins, inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2. In contrast, simvastatin increased the COX-2 expression compared to WA-25. In addition, WA-25 impedes foam cell formation and up-regulated the lysosomal and cyclic adenosine monophosphate (cAMP signaling pathway. We also observed that transforming growth factor β1 (TGF-β1 was up-regulated by WA-25 and simvastatin in LPS-induced RAW 264.7 cells, and the promising anti-atherosclerosis effects of WA-25 were disrupted by blockade of TGF-β1 signaling. Besides, WA-25 might act through increasing lipolysis than through alteration of lipid export. Taken together, these data demonstrate that WA-25 may have potential as an anti-atherosclerotic drug with anti-inflammatory effects.

  20. Breaking Boundaries

    DEFF Research Database (Denmark)

    produce desperate attempts to maintain old or create new differences. Political and sociological research into these complex processes has been mainly guided by structural and normative concerns. Faced with growing evidence about the instability of world order and domestic social structures alike, policy....... As a fundamental human experience, liminality transmits cultural practices, codes, rituals, and meanings in-between aggregate structures and uncertain outcomes. As a methodological tool it is well placed to overcome disciplinary boundaries, which often direct attention to specific structures or sectors of society....... Its capacity to provide explanatory accounts of seemingly unstructured situations provides an opportunity to link experience-based and culture-oriented approaches not only to contemporary problems but also to undertake comparisons across historical periods. From a perspective of liminality...

  1. Problems and Features of Legal Regulation of Public Institutions’ Activity and their Influence on Formation and Implementation of Accounting Tasks

    Directory of Open Access Journals (Sweden)

    Khorunzhak Nadiya M.

    2016-08-01

    Full Text Available The article is devoted to an actual problem of studying the features of public institutions’ activity that influence accounting tasks. On the basis of analysis of works by domestic scientists the article identifies features of public institutions as non-profit organizations engaged in financial and economic activity and presents a scheme of the formation and implementation by such institutions of new accounting tasks adapted to modern conditions. The estimation of the current and project legislation on the organization and record-keeping of public institutions’ activity has been performed. The accounting tasks in the context of bringing them into conformity with the needs of improving budget funds management have been defined. Prospects for further research in this direction are associated with providing a less painful reform of the public sector on the basis of development and improvement of the legislation, including that relating to clarification of concepts and categories. In addition, under conditions of the deficiency of financial support of public institutions’ activity there actualized issues of developing proposals aimed at improving the mechanisms for optimization of the use of financial resources and regulation of the budget process.

  2. Formation and differentiation of multiple mesenchymal lineages during lung development is regulated by beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Stijn P De Langhe

    2008-01-01

    Full Text Available The role of ss-catenin signaling in mesodermal lineage formation and differentiation has been elusive.To define the role of ss-catenin signaling in these processes, we used a Dermo1(Twist2(Cre/+ line to target a floxed beta-catenin allele, throughout the embryonic mesenchyme. Strikingly, the Dermo1(Cre/+; beta-catenin(f/- conditional Knock Out embryos largely phenocopy Pitx1(-/-/Pitx2(-/- double knockout embryos, suggesting that ss-catenin signaling in the mesenchyme depends mostly on the PITX family of transcription factors. We have dissected this relationship further in the developing lungs and find that mesenchymal deletion of beta-catenin differentially affects two major mesenchymal lineages. The amplification but not differentiation of Fgf10-expressing parabronchial smooth muscle progenitor cells is drastically reduced. In the angioblast-endothelial lineage, however, only differentiation into mature endothelial cells is impaired.Taken together these findings reveal a hierarchy of gene activity involving ss-catenin and PITX, as important regulators of mesenchymal cell proliferation and differentiation.

  3. Transcriptional repressor Rex is involved in regulation of oxidative stress response and biofilm formation by Streptococcus mutans.

    Science.gov (United States)

    Bitoun, Jacob P; Nguyen, Anne H; Fan, Yuwei; Burne, Robert A; Wen, Zezhang T

    2011-07-01

    The transcriptional repressor Rex has been implicated in the regulation of energy metabolism and fermentative growth in response to redox potential. Streptococcus mutans, the primary causative agent of human dental caries, possesses a gene that encodes a protein with high similarity to members of the Rex family of proteins. In this study, we showed that Rex-deficiency compromised the ability of S. mutans to cope with oxidative stress and to form biofilms. The Rex-deficient mutant also accumulated less biofilm after 3 days than the wild-type strain, especially when grown in sucrose-containing medium, but produced more extracellular glucans than the parental strain. Rex-deficiency caused substantial alterations in gene transcription, including those involved in heterofermentative metabolism, NAD(+) regeneration and oxidative stress. Among the upregulated genes was gtfC, which encodes glucosyltransferase C, an enzyme primarily responsible for synthesis of water-insoluble glucans. These results reveal that Rex plays an important role in oxidative stress responses and biofilm formation by S. mutans. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos.

    Directory of Open Access Journals (Sweden)

    Mary Y Wu

    2011-02-01

    Full Text Available Bone morphogenetic protein (BMP gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate

  5. Bacillus cereus ATCC 14579 RpoN (Sigma 54) is a Pleiotropic Regulator of Growth, Carbohydrate, Metabolism, Motility, Biofilm Formation and Toxin Production

    NARCIS (Netherlands)

    Hayrapetyan, H.; Tempelaars, M.H.; Nierop Groot, M.N.; Abee, T.

    2015-01-01

    Sigma 54 is a transcriptional regulator predicted to play a role in physical interaction of bacteria with their environment, including virulence and biofilm formation. In order to study the role of Sigma 54 in Bacillus cereus, a comparative transcriptome and phenotypic study was performed using B.

  6. The WD-Repeat Protein CsTTG1 Regulates Fruit Wart Formation through Interaction with the Homeodomain-Leucine Zipper I Protein Mict.

    Science.gov (United States)

    Chen, Chunhua; Yin, Shuai; Liu, Xingwang; Liu, Bin; Yang, Sen; Xue, Shudan; Cai, Yanling; Black, Kezia; Liu, Huiling; Dong, Mingming; Zhang, Yaqi; Zhao, Binyu; Ren, Huazhong

    2016-06-01

    The cucumber (Cucumis sativus) fruit is covered with bloom trichomes and warts (composed of spines and tubercules), which have an important impact on the commercial value of the crop. However, little is known about the regulatory mechanism underlying their formation. Here, we reported that the cucumber WD-repeat homolog CsTTG1, which is localized in the nucleus and cytomembrane, plays an important role in the formation of cucumber fruit bloom trichomes and warts. Functional characterization of CsTTG1 revealed that it is mainly expressed in the epidermis of cucumber ovary and that its overexpression in cucumber alters the density of fruit bloom trichomes and spines, thereby promoting the warty fruit trait. Conversely, silencing CsTTG1 expression inhibits the initiation of fruit spines. Molecular and genetic analyses showed that CsTTG1 acts in parallel to Mict/CsGL1, a key trichome formation factor, to regulate the initiation of fruit trichomes, including fruit bloom trichomes and spines, and that the further differentiation of fruit spines and formation of tubercules regulated by CsTTG1 is dependent on Mict Using yeast two-hybrid assay and bimolecular fluorescence complementation assay, we determined that CsTTG1 directly interacts with Mict. Collectively, our results indicate that CsTTG1 is an important component of the molecular network that regulates fruit bloom trichome and wart formation in cucumber. © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349

    DEFF Research Database (Denmark)

    Fazli, Mustafa; McCarthy, Yvonne; Givskov, Michael

    2013-01-01

    evidence that cellulose and type-I fimbriae are not involved in B. cenocepacia biofilm formation in flow chambers, and we identify a novel Bcam1349/c-di-GMP-regulated exopolysaccharide gene cluster which is essential for B. cenocepacia biofilm formation. Overproduction of Bcam1349 in trans promotes wrinkly...... matrix exopolysaccharide and to be essential for flow-chamber biofilm formation. We demonstrate that Bcam1349 binds to the promoter region of genes in the Bcam1330-Bcam1341 cluster and that this binding is enhanced by the presence of c-di-GMP. Furthermore, we demonstrate that overproduction of both c......-di-GMP and Bcam1349 leads to increased transcription of these genes, indicating that c-di-GMP and Bcam1349 functions together in regulating exopolysaccharide production from the Bcam1330-Bcam1341 gene cluster. Our results suggest that the product encoded by the Bcam1330-Bcam1341 gene cluster is a major...

  8. COMPARATIVE ANALYSIS OF THE COMPOSITION OF THE TERRESTRIAL FAUNA AND FLORA OF THE TETHYS DESERT-STEPPE REGION OF PALEARARTICS, BIOGEOGRAPHIC BOUNDARIES OF THE CAUCASUS. MESSAGE 3. MAIN POINTS OF FORMATION OF THE BIOTA OF THE CAUCASUS

    Directory of Open Access Journals (Sweden)

    G. M. Abdurakhmanov

    2017-01-01

    Full Text Available Aim. The aim is to analyze the main points of the formation of the biota of the Caucasus.Results. Discussed points: the boundaries of the Tethys desert-steppe belt of the Palaearctic and the place of the Caucasus in it, as well as the role of marine littoral complexes and the islands of the Tethys ocean, orogenetic ascent of the mountain biota in the process of formation. To cover the wide range of environmental parameters and at the same time, major taxonomic groups, in the research were used the materials on the biological diversity of families of Carabidae (328 genera, 7213 species, Tenebrionidae (378 genera, 4914 species, Scarabacidae (263 genera, 2227 species, Elateridae (112 genera, 1451 species; land snails (429 genera, 2614 species, soil mites (381 genera, 1506 species; 17487 species of 1242 plant genera were also examined.Conclusion. All the summarized, comparative materials and outgoing conclusions are original and unique. The biogeographical analysis of this vast material with completely different phylogenetics, bionomy, ecology, carried out according to monotypic method, shows that in the Tethys desert-steppe belt of the Palaearctic, the distribution of all studied model groups of animals and plants has a similar character subject to general patterns. 

  9. Type III methyltransferase M.NgoAX from Neisseria gonorrhoeae FA1090 regulates biofilm formation and human cell invasion

    Directory of Open Access Journals (Sweden)

    Agnieszka eKwiatek

    2015-12-01

    , but more easily penetrate inside the host cells. All these data suggest that the NgoAX methyltransferase, may be implicated in N. gonorrhoeae pathogenicity, involving regulation of biofilm formation, adhesion to host cells and epithelial cell invasion.

  10. The Role of the Regulated Sector in the UK Anti-Money Laundering Framework: Pushing the Boundaries of the Private Police

    Directory of Open Access Journals (Sweden)

    Mo Egan

    2010-06-01

    Full Text Available This article argues that the conceptualisation of private police in current academic literature requires expansion to accommodate the role of the regulated sector in the Anti- Money Laundering (AML framework. Firstly, it evaluates the literature on ‘private police’ and argues that its current parameters are too narrow to accommodate the ‘policing’ role of the regulated sector. Secondly, it lays out the legislative framework that has developed to deal with the problem of money laundering. Thirdly, it contextualises the role of the regulated sector, examining the domestic inter-agency policing relationships within the suspicious activity regime as operationalised in Scotland. Finally, it takes a closer look at how the courts have interpreted the ‘failure to report offence’ under s330 of the Proceeds of Crime Act (POCA 2002 and its consequential effect on the engagement of the regulated sector with the SARs regime.

  11. The cell division control protein 42-Src family kinase-neural Wiskott-Aldrich syndrome protein pathway regulates human proplatelet formation.

    Science.gov (United States)

    Palazzo, A; Bluteau, O; Messaoudi, K; Marangoni, F; Chang, Y; Souquere, S; Pierron, G; Lapierre, V; Zheng, Y; Vainchenker, W; Raslova, H; Debili, N

    2016-12-01

    Essentials The role of the cytoskeleton during megakaryocyte differentiation was examined. Human megakaryocytes are derived from in vitro cultured CD34(+) cells. Cell division control protein 42 (CDC42) positively regulates proplatelet formation (PPF). Neural Wiskott-Aldrich syndrome protein, the main effector of CDC42 with Src positively regulates PPF. Background Cytoskeletal rearrangements are essential for platelet release. The RHO small GTPase family, as regulators of the actin cytoskeleton, play an important role in proplatelet formation (PPF). In the neuronal system, CDC42 is involved in axon formation, a process that combines elongation and branching as for PPF. Objective To analyze the role of CDC42 and its effectors of the Wiskott-Aldrich syndrome protein (WASP) family in PPF. Methods Human megakaryocytes (MKs) were obtained from CD34(+) cells. Inhibition of CDC42 in MKs was performed with the chemical inhibitor CASIN or with an active or a dominant-negative form of CDC42. The knock-down of N-WASP was obtained with a small hairpin RNA strategy Results Herein, we show that CDC42 activity increased during MK differentiation. The use of the chemical inhibitor CASIN or of an active or a dominant-negative form of CDC42 demonstrated that CDC42 positively regulated PPF in vitro. We determined that N-WASP, but not WASP, regulated PPF. We found that N-WASP knockdown led to a marked decrease in PPF, owing to a defect in the demarcation membrane system (DMS). This was associated with RHOA activation, and a concomitant augmentation in the phosphorylation of mysosin light chain 2. Phosphorylation of N-WASP, creating a primed form of N-WASP, increased during MK differentiation. Phosphorylation inhibition by two Src family kinase inhibitors decreased PPF. Conclusions We conclude that N-WASP positively regulates DMS development and PPF, and that the Src family kinases in association with CDC42 regulate PPF through N-WASP. © 2016 International Society on Thrombosis and

  12. Regulation of Burkholderia cenocepacia biofilm formation by RpoN and the c-di-GMP effector BerB

    DEFF Research Database (Denmark)

    Fazli, Mustafa; Rybtke, Morten Levin; Steiner, Elisabeth

    2017-01-01

    Knowledge about the molecular mechanisms that are involved in the regulation of biofilm formation is essential for the development of biofilm-control measures. It is well established that the nucleotide second messenger cyclic diguanosine monophosphate (c-di-GMP) is a positive regulator of biofilm...... formation in many bacteria, but more knowledge about c-di-GMP effectors is needed. We provide evidence that c-di-GMP, the alternative sigma factor RpoN (σ54), and the enhancer-binding protein BerB play a role in biofilm formation of Burkholderia cenocepacia by regulating the production of a biofilm......-stabilizing exopolysaccharide. Our findings suggest that BerB binds c-di-GMP, and activates RpoN-dependent transcription of the berA gene coding for a c-di-GMP-responsive transcriptional regulator. An increased level of the BerA protein in turn induces the production of biofilm-stabilizing exopolysaccharide in response to high...

  13. Technology for Boundaries

    DEFF Research Database (Denmark)

    Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina

    2003-01-01

    This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries.......After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies...... seem a core issue when dealing with technology for boundaries....

  14. Live imaging of extracellular signal-regulated kinase and protein kinase A activities during thrombus formation in mice expressing biosensors based on Förster resonance energy transfer.

    Science.gov (United States)

    Hiratsuka, T; Sano, T; Kato, H; Komatsu, N; Imajo, M; Kamioka, Y; Sumiyama, K; Banno, F; Miyata, T; Matsuda, M

    2017-07-01

    Essentials Spatiotemporal regulation of protein kinases during thrombus formation remains elusive in vivo. Activities of protein kinases were live imaged in mouse platelets at laser-ablated arterioles. Protein kinase A was activated in the dislodging platelets at the downstream side of the thrombus. Extracellular signal-regulated kinase was activated at the core of contracting platelet aggregates. Background The dynamic features of thrombus formation have been visualized by conventional video widefield microscopy or confocal microscopy in live mice. However, owing to technical limitations, the precise spatiotemporal regulation of intracellular signaling molecule activities, which have been extensively studied in vitro, remains elusive in vivo. Objectives To visualize, by the use of two-photon excitation microscopy of transgenic mice expressing Förster resonance energy transfer (FRET) biosensors for extracellular signal-regulated kinase (ERK) and protein kinase A (PKA), ERK and PKA activities during thrombus formation in laser-injured subcutaneous arterioles. Results When a core of densely packed platelets had developed, ERK activity was increased from the basal region close to the injured arterioles. PKA was activated at the downstream side of an unstable shell overlaying the core of platelets. Intravenous administration of a MEK inhibitor, PD0325901, suppressed platelet tethering and dislodged platelet aggregates, indicating that ERK activity is indispensable for both initiation and maintenance of the thrombus. A cAMP analog, dbcAMP, inhibited platelet tethering but failed to dislodge the preformed platelet aggregates, suggesting that PKA can antagonize thrombus formation only in the early phase. Conclusion In vivo imaging of transgenic mice expressing FRET biosensors will open a new opportunity to visualize the spatiotemporal changes in signaling molecule activities not only during thrombus formation but also in other hematologic disorders. © 2017 International

  15. Genome-Wide Mutagenesis of Xanthomonas axonopodis pv. citri Reveals Novel Genetic Determinants and Regulation Mechanisms of Biofilm Formation

    OpenAIRE

    Li, Jinyun; Wang, Nian

    2011-01-01

    Xanthomonas axonopodis pv. citri (Xac) causes citrus canker disease, a major threat to citrus production worldwide. Accumulating evidence suggests that the formation of biofilms on citrus leaves plays an important role in the epiphytic survival of this pathogen prior to the development of canker disease. However, the process of Xac biofilm formation is poorly understood. Here, we report a genome-scale study of Xac biofilm formation in which we identified 92 genes, including 33 novel genes inv...

  16. Genome-wide mutagenesis of Xanthomonas axonopodis pv. citri reveals novel genetic determinants and regulation mechanisms of biofilm formation.

    Directory of Open Access Journals (Sweden)

    Jinyun Li

    Full Text Available Xanthomonas axonopodis pv. citri (Xac causes citrus canker disease, a major threat to citrus production worldwide. Accumulating evidence suggests that the formation of biofilms on citrus leaves plays an important role in the epiphytic survival of this pathogen prior to the development of canker disease. However, the process of Xac biofilm formation is poorly understood. Here, we report a genome-scale study of Xac biofilm formation in which we identified 92 genes, including 33 novel genes involved in biofilm formation and 7 previously characterized genes, colR, fhaB, fliC, galU, gumD, wxacO, and rbfC, known to be important for Xac biofilm formation. In addition, 52 other genes with defined or putative functions in biofilm formation were identified, even though they had not previously reported been to be associated with biofilm formation. The 92 genes were isolated from 292 biofilm-defective mutants following a screen of a transposon insertion library containing 22,000 Xac strain 306 mutants. Further analyses indicated that 16 of the novel genes are involved in the production of extracellular polysaccharide (EPS and/or lipopolysaccharide (LPS, 7 genes are involved in signaling and regulatory pathways, and 5 genes have unknown roles in biofilm formation. Furthermore, two novel genes, XAC0482, encoding a haloacid dehalogenase-like phosphatase, and XAC0494 (designated as rbfS, encoding a two-component sensor protein, were confirmed to be biofilm-related genes through complementation assays. Our data demonstrate that the formation of mature biofilm requires EPS, LPS, both flagellum-dependent and flagellum-independent cell motility, secreted proteins and extracellular DNA. Additionally, multiple signaling pathways are involved in Xac biofilm formation. This work is the first report on a genome-wide scale of the genetic processes of biofilm formation in plant pathogenic bacteria. The report provides significant new information about the genetic

  17. Continental Shelf Boundary - Alaska NAD83

    Data.gov (United States)

    Bureau of Ocean Energy Management, Department of the Interior — This data set contains Continental Shelf Boundaries (CSB) lines in ESRI shapefile format for the BOEM Alaska Region. The CSB defines the seaward limit of federally...

  18. Atlantic NAD 83 Continental Shelf Boundary (CSB)

    Data.gov (United States)

    Bureau of Ocean Energy Management, Department of the Interior — This data set contains Continental Shelf Boundary (CSB) lines in ESRI shapefile format for the BOEM Atlantic Region. The CSB defines the seaward limit of federally...

  19. Outer Continental Shelf Submerged Lands Act Boundary - Atlantic Region NAD83

    Data.gov (United States)

    Bureau of Ocean Energy Management, Department of the Interior — This data set contains the Submerged Lands Act (SLA) boundary line (also known as State Seaward Boundary (SSB), or Fed State Boundary) in ESRI shapefile formats for...

  20. Outer Continental Shelf Submerged Lands Act Boundary - Alaska Region NAD83

    Data.gov (United States)

    Bureau of Ocean Energy Management, Department of the Interior — This data set contains the Submerged Lands Act (SLA) boundary (also known as State Seaward Boundary (SSB), or Fed State Boundary) in ESRI shapefile format for the...

  1. Outer Continental Shelf Submerged Lands Act Boundary - Gulf of Mexico Region NAD27

    Data.gov (United States)

    Bureau of Ocean Energy Management, Department of the Interior — This data set contains the Submerged Lands Act (SLA) boundary line (also known as State Seaward Boundary (SSB), or Fed State Boundary)in ESRI shapefile formats for...

  2. Live imaging of Drosophila gonad formation reveals roles for Six4 in regulating germline and somatic cell migration

    Directory of Open Access Journals (Sweden)

    Jarman Andrew P

    2007-05-01

    Full Text Available Abstract Background Movement of cells, either as amoeboid individuals or in organised groups, is a key feature of organ formation. Both modes of migration occur during Drosophila embryonic gonad development, which therefore provides a paradigm for understanding the contribution of these processes to organ morphogenesis. Gonads of Drosophila are formed from three distinct cell types: primordial germ cells (PGCs, somatic gonadal precursors (SGPs, and in males, male-specific somatic gonadal precursors (msSGPs. These originate in distinct locations and migrate to associate in two intermingled clusters which then compact to form the spherical primitive gonads. PGC movements are well studied, but much less is known of the migratory events and other interactions undergone by their somatic partners. These appear to move in organised groups like, for example, lateral line cells in zebra fish or Drosophila ovarian border cells. Results We have used time-lapse fluorescence imaging to characterise gonadal cell behaviour in wild type and mutant embryos. We show that the homeodomain transcription factor Six4 is required for the migration of the PGCs and the msSGPs towards the SGPs. We have identified a likely cause of this in the case of PGCs as we have found that Six4 is required for expression of Hmgcr which codes for HMGCoA reductase and is necessary for attraction of PGCs by SGPs. Six4 affects msSGP migration by a different pathway as these move normally in Hmgcr mutant embryos. Additionally, embryos lacking fully functional Six4 show a novel phenotype in which the SGPs, which originate in distinct clusters, fail to coalesce to form unified gonads. Conclusion Our work establishes the Drosophila gonad as a model system for the analysis of coordinated cell migrations and morphogenesis using live imaging and demonstrates that Six4 is a key regulator of somatic cell function during gonadogenesis. Our data suggest that the initial association of SGP clusters

  3. The Two-Component Signal Transduction System ArlRS Regulates Staphylococcus epidermidis Biofilm Formation in an ica-Dependent Manner

    Science.gov (United States)

    Wu, Yang; Liu, Jingran; Yu, Wenqi; Lou, Qiang; Zhu, Tao; He, Nianan; Ben, Haijing; Hu, Jian; Götz, Friedrich; Qu, Di

    2012-01-01

    Due to its ability to form biofilms on medical devices, Staphylococcus epidermidis has emerged as a major pathogen of nosocomial infections. In this study, we investigated the role of the two-component signal transduction system ArlRS in regulating S. epidermidis biofilm formation. An ArlRS-deficient mutant, WW06, was constructed using S. epidermidis strain 1457 as a parental strain. Although the growth curve of WW06 was similar to that of SE1457, the mutant strain was unable to form biofilms in vitro. In a rabbit subcutaneous infection model, sterile disks made of polymeric materials were implanted subcutaneously followed with inoculation of WW06 or SE1457. The viable bacteria cells of WW06 recovered from biofilms on the embedded disks were much lower than that of SE1457. Complementation of arlRS genes expression from plasmid in WW06 restored biofilm-forming phenotype both in vivo and in vitro. WW06 maintained the ability to undergo initial attachment. Transcription levels of several genes involved in biofilm formation, including icaADBC, sigB, and sarA, were decreased in WW06, compared to SE1457; and icaR expression was increased in WW06, detected by real-time reverse-transcription PCR. The biofilm-forming phenotype was restored by overexpressing icaADBC in WW06 but not by overexpressing sigB, indicating that ArlRS regulates biofilm formation through the regulation of icaADBC. Gel shift assay showed that ArlR can bind to the promoter region of the ica operon. In conclusion, ArlRS regulates S. epidermidis biofilm formation in an ica-dependent manner, distinct from its role in S. aureus. PMID:22848368

  4. Differential role of SNAP-25 phosphorylation by protein kinases A and C in the regulation of SNARE complex formation and exocytosis in PC12 cells.

    Science.gov (United States)

    Gao, Jing; Hirata, Makiko; Mizokami, Akiko; Zhao, Jin; Takahashi, Ichiro; Takeuchi, Hiroshi; Hirata, Masato

    2016-05-01

    The final step of regulated exocytosis, membrane fusion, is mediated by formation of the SNARE complex by syntaxin, SNAP-25 (synaptosomal-associated protein of 25 kDa), and VAMP (vesicle-associated membrane protein). Phosphorylation of SNARE and accessory proteins contributes to regulation of exocytosis. We previously identified residues of SNAP-25 phosphorylated by protein kinase A (PKA) and PKC. However, the physiological role of SNAP-25 phosphorylation in exocytosis, in particular with regard to SNARE complex formation, has remained elusive. SNARE complex formation by purified recombinant SNAP-25, syntaxin-1, and VAMP-2 in vitro was inhibited or promoted as a result of the phosphorylation at Thr(138) by PKA or at Ser(187) by PKC, respectively. SNARE complex formation in intact PC12 cells was similarly inhibited by forskolin (activator of PKA) and promoted by phorbol 12-myristate 13-acetate (PMA, activator of PKC). Noradrenaline secretion from PC12 cells induced by a high K(+) concentration was enhanced by forskolin or PMA. Stable depletion of SNAP-25 inhibited high-K(+)-induced noradrenaline secretion. Forced expression of WT SNAP-25 restored the secretory response of the SNAP-25-depleted cells to high-K(+), and this response was enhanced by forskolin or PMA. Expression of the nonphosphorylatable T138A or S187A mutants of SNAP-25 similarly rescued the secretory response to high-K(+), but the augmentation of this response by forskolin was more pronounced in the cells expressing SNAP-25 (T138A) than in those expressing SNAP-25 (WT), whereas that by PMA was less pronounced in those expressing SNAP-25 (S187A). Our results thus suggest that SNAP-25 phosphorylation by PKA or PKC contributes differentially to the control of exocytosis in PC12 cells by regulating SNARE complex formation. Copyright © 2015. Published by Elsevier Inc.

  5. Vocational Teachers' Identity Formation through Boundary Crossing

    Science.gov (United States)

    Fejes, Andreas; Köpsén, Susanne

    2014-01-01

    Vocational teachers' prior occupational experiences are construed as those that will guarantee high-quality teaching in vocational education, although individuals are no longer required to have formal teaching qualifications to be employed as teachers in Sweden. This lack of strict requirements raises the issue of the preparedness of vocational…

  6. ClpP affects biofilm formation of Streptococcus mutans differently in the presence of cariogenic carbohydrates through regulating gtfBC and ftf.

    Science.gov (United States)

    Zhang, Jia-Qin; Hou, Xiang-Hua; Song, Xiu-Yu; Ma, Xiao-Bo; Zhao, Yuan-Xun; Zhang, Shi-Yang

    2015-05-01

    The abilities to form biofilms on teeth surface and to metabolize a wide range of carbohydrates are key virulence attributes of Streptococcus mutans. ClpP has been proved to play an important role in biofilm development in streptococci. Here we demonstrated that ClpP was involved in biofilm formation of S. mutans. ClpP inactivation resulted in enhanced biofilm formation or initial cell adherence in broth supplemented with sucrose, while reduced in broth supplemented with glucose or fructose. Our results also indicated that the enhanced capacities of biofilm formation and initial cell adherence were achieved through regulating the expression of a number of extracellular sucrose-metabolizing enzymes, such as glucosyltransferases (GTFB and GTFC) at early-exponential growth phase and fructosyltransferase at late-exponential growth phase in the presence of sucrose.

  7. Ferroelectric domain continuity over grain boundaries

    DEFF Research Database (Denmark)

    Mantri, Sukriti; Oddershede, Jette; Damjanovic, Dragan

    2017-01-01

    Formation and mobility of domain walls in ferroelectric materials is responsible for many of their electrical and mechanical properties. Domain wall continuity across grain boundaries has been observed since the 1950's and is speculated to affect the grain boundary-domain interactions, thereby...... orientation. We have also incorporated the effect of grain boundary ferroelectric polarization charge created when any two domains meet at the grain boundary plane. The probability of domain wall continuity for three specific grain misorientations is studied. Use of this knowledge to optimize processing...

  8. Cdc42 interaction with N-WASP and Toca-1 regulates membrane tubulation, vesicle formation and vesicle motility: implications for endocytosis.

    Directory of Open Access Journals (Sweden)

    Wenyu Bu

    Full Text Available Transducer of Cdc42-dependent actin assembly (Toca-1 consists of an F-BAR domain, a Cdc42 binding site and an SH3 domain. Toca-1 interacts with N-WASP, an activator of actin nucleation that binds Cdc42. Cdc42 may play an important role in regulating Toca-1 and N-WASP functions. We report here that the cellular expression of Toca-1 and N-WASP induces membrane tubulation and the formation of motile vesicles. Marker and uptake analysis suggests that the tubules and vesicles are associated with clathrin-mediated endocytosis. Forster resonance energy transfer (FRET and Fluorescence Lifetime Imaging Microscopy (FLIM analysis shows that Cdc42, N-WASP and Toca-1 form a trimer complex on the membrane tubules and vesicles and that Cdc42 interaction with N-WASP is critical for complex formation. Modulation of Cdc42 interaction with Toca-1 and/or N-WASP affects membrane tubulation, vesicle formation and vesicle motility. Thus Cdc42 may influence endocytic membrane trafficking by regulating the formation and activity of the Toca-1/N-WASP complex.

  9. Lrp4 regulates initiation of ureteric budding and is crucial for kidney formation--a mouse model for Cenani-Lenz syndrome.

    Science.gov (United States)

    Karner, Courtney M; Dietrich, Martin F; Johnson, Eric B; Kappesser, Natalie; Tennert, Christian; Percin, Ferda; Wollnik, Bernd; Carroll, Thomas J; Herz, Joachim

    2010-04-29

    Development of the kidney is initiated when the ureteric bud (UB) branches from the Wolffian duct and invades the overlying metanephric mesenchyme (MM) triggering the mesenchymal/epithelial interactions that are the basis of organ formation. Multiple signaling pathways must be integrated to ensure proper timing and location of the ureteric bud formation. We have used gene targeting to create an Lrp4 null mouse line. The mutation results in early embryonic lethality with a subpenetrant phenotype of kidney agenesis. Ureteric budding is delayed with a failure to stimulate the metanephric mesenchyme in a timely manner, resulting in failure of cellular differentiation and resulting absence of kidney formation in the mouse as well as comparable malformations in humans with Cenani-Lenz syndrome. Lrp4 is a multi-functional receptor implicated in the regulation of several molecular pathways, including Wnt and Bmp signaling. Lrp4(-/-) mice show a delay in ureteric bud formation that results in unilateral or bilateral kidney agenesis. These data indicate that Lrp4 is a critical regulator of UB branching and lack of Lrp4 results in congenital kidney malformations in humans and mice.

  10. Lrp4 Regulates Initiation of Ureteric Budding and Is Crucial for Kidney Formation – A Mouse Model for Cenani-Lenz Syndrome

    Science.gov (United States)

    Kappesser, Natalie; Tennert, Christian; Percin, Ferda; Wollnik, Bernd; Carroll, Thomas J.; Herz, Joachim

    2010-01-01

    Background Development of the kidney is initiated when the ureteric bud (UB) branches from the Wolffian duct and invades the overlying metanephric mesenchyme (MM) triggering the mesenchymal/epithelial interactions that are the basis of organ formation. Multiple signaling pathways must be integrated to ensure proper timing and location of the ureteric bud formation. Methods and Principal Findings We have used gene targeting to create an Lrp4 null mouse line. The mutation results in early embryonic lethality with a subpenetrant phenotype of kidney agenesis. Ureteric budding is delayed with a failure to stimulate the metanephric mesenchyme in a timely manner, resulting in failure of cellular differentiation and resulting absence of kidney formation in the mouse as well as comparable malformations in humans with Cenani-Lenz syndrome. Conclusion Lrp4 is a multi-functional receptor implicated in the regulation of several molecular pathways, including Wnt and Bmp signaling. Lrp4−/− mice show a delay in ureteric bud formation that results in unilateral or bilateral kidney agenesis. These data indicate that Lrp4 is a critical regulator of UB branching and lack of Lrp4 results in congenital kidney malformations in humans and mice. PMID:20454682

  11. Lrp4 regulates initiation of ureteric budding and is crucial for kidney formation--a mouse model for Cenani-Lenz syndrome.

    Directory of Open Access Journals (Sweden)

    Courtney M Karner

    2010-04-01

    Full Text Available Development of the kidney is initiated when the ureteric bud (UB branches from the Wolffian duct and invades the overlying metanephric mesenchyme (MM triggering the mesenchymal/epithelial interactions that are the basis of organ formation. Multiple signaling pathways must be integrated to ensure proper timing and location of the ureteric bud formation.We have used gene targeting to create an Lrp4 null mouse line. The mutation results in early embryonic lethality with a subpenetrant phenotype of kidney agenesis. Ureteric budding is delayed with a failure to stimulate the metanephric mesenchyme in a timely manner, resulting in failure of cellular differentiation and resulting absence of kidney formation in the mouse as well as comparable malformations in humans with Cenani-Lenz syndrome.Lrp4 is a multi-functional receptor implicated in the regulation of several molecular pathways, including Wnt and Bmp signaling. Lrp4(-/- mice show a delay in ureteric bud formation that results in unilateral or bilateral kidney agenesis. These data indicate that Lrp4 is a critical regulator of UB branching and lack of Lrp4 results in congenital kidney malformations in humans and mice.

  12. Expression of E-cadherin and N-cadherin in perinatal hamster ovary: possible involvement in primordial follicle formation and regulation by follicle-stimulating hormone.

    Science.gov (United States)

    Wang, Cheng; Roy, Shyamal K

    2010-05-01

    We examined the expression and hormonal regulation of E-cadherin (CDH1) and N-cadherin (CDH2) with respect to primordial follicle formation. Hamster Cdh1 and Cdh2 cDNA and amino acid sequences were more than 90% similar to those of the mouse, rat, and human. Although CDH1 expression remained exclusively in the oocytes during neonatal ovary development, CDH2 expression shifted from the oocytes to granulosa cells of primordial follicles on postnatal day (P)8. Subsequently, strong CDH2 expression was restricted to granulosa cells of growing follicles. Cdh2 mRNA levels in the ovary decreased from embryonic d 13 through P10 with a transient increase on P7, which was the day before the appearance of primordial follicles. Cdh1 mRNA levels decreased from embryonic d 13 through P3 and then showed a transient increase on P8, coinciding with the formation of primordial follicles. CDH1 and CDH2 expression were consistent with that of mRNA. Neutralization of FSH in utero impaired primordial follicle formation with an associated decrease in Cdh2 mRNA and CDH2, but an increase in Cdh1 mRNA and CDH1 expression. The altered expression was reversed by equine chorionic gonadotropin treatment on P1. Whereas a CDH2 antibody significantly reduced the formation of primordial and primary follicles in vitro, a CDH1 antibody had the opposite effect. This is the first evidence to suggest that primordial follicle formation requires a differential spatiotemporal expression and action of CDH1 and CDH2. Further, FSH regulation of primordial follicle formation may involve the action of CDH1 and CDH2.

  13. Regulation of Biofilm Formation by Hfq is Influenced by Presence of Plasmid pCD1 in Yersinia Pestis Biovar Microtus

    Directory of Open Access Journals (Sweden)

    Huiying Yang

    2017-10-01

    Full Text Available Yersinia pestis synthesizes the attached biofilms in the flea gut to promotethe flea-borne transmission of this deadly pathogen. Bellows et al. reported that the posttranscriptional regulator Hfq inhibites biofilm formation in apCD1− derivative of Y. pestis CO92, however, we found that Hfq stimulates biofilm production in a microtus strain of Y. pestis with the typical plasmids, including pCD1. When we cured pCD1 from this strain, the biofilm phenotype was in accordance with that reported by Bellows et al., indicating that the unknown pCD1-associated factors modulating the regulatory pathways of Y. pestis biofilm formation. Further gene regulation experiments using relevant pCD1+ Y. pestis strains disclose that Hfq positively regulates the expression of hmsHFRS and hmsT encoding a diguanylate cyclase while negatively regulates the expression of hmsP encoding the sole phosphodiesterase. However, Hfq has no regulatory effect on the expression of hmsCDE at the mRNA and protein levels. Our results suggest that we should be cautious to make conclusion from results based on the pCD1-cured Y. pestis.

  14. Function and evolution of a MicroRNA that regulates a Ca2+-ATPase and triggers the formation of phased small interfering RNAs in tomato reproductive growth.

    Science.gov (United States)

    Wang, Ying; Itaya, Asuka; Zhong, Xuehua; Wu, Yang; Zhang, Jianfeng; van der Knaap, Esther; Olmstead, Richard; Qi, Yijun; Ding, Biao

    2011-09-01

    MicroRNAs (miRNAs) regulate a wide variety of biological processes in most eukaryotes. We investigated the function and evolution of miR4376 in the family Solanaceae. We report that the 22-nucleotide miR4376 regulates the expression of an autoinhibited Ca(2+)-ATPase, tomato (Solanum lycopersicum) ACA10, which plays a critical role in tomato reproductive growth. Deep phylogenetic mapping suggested (1) an evolution course of MIR4376 loci and posttranscriptional processing of pre-miR4376 as a likely limiting step for the evolution of miR4376, (2) an independent phylogenetic origin of the miR4376 target site in ACA10 homologs, and (3) alternative splicing as a possible mechanism of eliminating such a target in some ACA10 homologs. Furthermore, miR4376 triggers the formation of phased small interfering RNAs (siRNAs) from Sl ACA10 and its Solanum tuberosum homolog. Together, our data provide experimental evidence of miRNA-regulated expression of universally important Ca(2+)-ATPases. The miR4376-regulated expression of ACA10 itself, and possibly also the associated formation of phased siRNAs, may function as a novel layer of molecular mechanisms underlying tomato reproductive growth. Finally, our data suggest that the stochastic emergence of a miRNA-target gene combination involves multiple molecular events at the genomic, transcriptional, and posttranscriptional levels that may vary drastically in even closely related species.

  15. Streptococcus suis small RNA rss04 contributes to the induction of meningitis by regulating capsule synthesis and by inducing biofilm formation in a mouse infection model.

    Science.gov (United States)

    Xiao, Genhui; Tang, Huanyu; Zhang, Shouming; Ren, Haiyan; Dai, Jiao; Lai, Liying; Lu, Chengping; Yao, Huochun; Fan, Hongjie; Wu, Zongfu

    2017-02-01

    Streptococcus suis (SS) is an important pathogen for pigs, and it is also considered as a zoonotic agent for humans. Meningitis is one of the most common features of the infection caused by SS, but little is known about the mechanisms of SS meningitis. Recent studies have revealed that small RNAs (sRNAs) have emerged as key regulators of the virulence in several bacteria. In the previous study, we reported that SS sRNA rss04 was up-regulated in pig cerebrospinal fluid and contributes to SS virulence in a zebrafish infection model. Here, we show that rss04 facilitates SS invasion of mouse brain and lung in vivo. Label-free quantitation mass spectrometry analysis revealed that rss04 regulates transcriptional regulator CcpA and several virulence factors including LuxS. Transmission electron microscope and Dot-blot analyses indicated that rss04 represses capsular polysaccharide (CPS) production, which in turn facilitates SS adherence and invasion of mouse brain microvascular endothelial cells bEnd.3 in vitro and activates the mRNA expression of TLR2, CCL2, IL-6 and TNF-α in mouse brain in vivo at 12h post-infection. In addition, rss04 positively regulates SS biofilm formation. Survival analysis of infected mice showed that biofilm state in brain contributes to SS virulence by intracranial subarachnoidal route of infection. Together, our data reveal that SS sRNA rss04 contributes to the induction of meningitis by regulating the CPS synthesis and by inducing biofilm formation, thereby increasing the virulence in a mouse infection model. To our knowledge, rss04 represents the first bacterial sRNA that plays definitive roles in bacterial meningitis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Boundary definition of a multiverse measure

    OpenAIRE

    Bousso, Raphael; Freivogel, Ben; Leichenauer, Stefan; Rosenhaus, Vladimir

    2010-01-01

    We propose to regulate the infinities of eternal inflation by relating a late time cut-off in the bulk to a short distance cut-off on the future boundary. The light-cone time of an event is defined in terms of the volume of its future light-cone on the boundary. We seek an intrinsic definition of boundary volumes that makes no reference to bulk structures. This requires taming the fractal geometry of the future boundary, and lifting the ambiguity of the conformal factor. We propose to work in...

  17. The K/T-boundary carbonate breccia succession at the Cantarell Field, Campeche Bay area: a representative example of the influence of the Chicxulub meteorite-impact event on the formation of extraordinary petroleum reservoirs

    Science.gov (United States)

    Murillo-Muñeton, G.; Grajales-Nishimura, J. M.; Velasquillo-Martínez, L. G.; García-Hernández, J.

    2013-05-01

    Over the last decade, intense petroleum exploration and exploitation activities have been conducted in the Campeche Bay area. Detailed stratigraphic studies in this region based on seismic, well logs, and core data have allowed the documentation of numerous deep-water carbonate breccia deposits throughout the Cretaceous stratigraphic column. However, the uppermost carbonate breccia succession is very distinctive in terms of its sedimentological properties compared to the underlying and older calcareous breccia layers. The unique characteristics of this deposit include: its unusual thickness, stratigraphic position, distribution, and content of impact-metamorphic constituents. At the Cantarell field, this carbonate breccia sedimentary package is a representative example of how the Chuxulub meteorite-impact event influenced the formation of a remarkable carbonate reservoir. This deposit was the most important oil-producing stratigraphic horizon for long time in that field. Nevertheless, this reservoir is still important not only in that field but also in other fields in offshore Campeche. The K/T boundary carbonate breccia succession is a typical fining-upward deposit made up, from base to top, of three units. The 50 to 300-m thick, basal Unit 1 consists of a coarse-grained carbonate breccia. Unit 2 is a 10 to 20 m-thick, fine-grained carbonate breccia. The 25 to 30 m-thick, uppermost Unit 3 is a greenish interval of friable sand, silt and clay-sized constituents with abundant ejecta material. In some wells, a 10 to 20 m-thick, non-oil producing fine-grained calcareous breccia occurs interbedded within Unit 3. The K/T boundary carbonate sedimentary package is underlain and overlain by deep-water shaly calcareous facies of Upper Maastrichtian and Lower Paleocene age, respectively. Studies of cronostratigraphic-equivalent outcrop analogs of this K/T boundary carbonate reservoir carried out by the authors in the Sierra de Chiapas (El Guayal, Tabasco and Bochil, Chiapas

  18. Grain boundaries: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Balluffi, R.W.; Bristowe, P.D.

    1988-02-01

    Quantitative measurements of grain boundary structure factors using x-ray diffraction have been performed on low angle (001) twist boundaries in gold. Also, a computer atomistic simulation program is being implemented to examine the equilibrium properties of a series of boundaries in gold. Simulation of boundaries at room temperature have been performed. Electron microscopy of grain boundary melting in aluminum was also performed. Results indicated an absence of melting. (CBS)

  19. VGF and Its C-Terminal Peptide TLQP-62 Regulate Memory Formation in Hippocampus via a BDNF-TrkB-Dependent Mechanism

    Science.gov (United States)

    Lin, Wei-Jye; Jiang, Cheng; Sadahiro, Masato; Bozdagi, Ozlem; Vulchanova, Lucy; Alberini, Cristina M.

    2015-01-01

    Regulated expression and secretion of BDNF, which activates TrkB receptor signaling, is known to play a critical role in cognition. Identification of additional modulators of cognitive behavior that regulate activity-dependent BDNF secretion and/or potentiate TrkB receptor signaling would therefore be of considerable interest. In this study, we show in the adult mouse hippocampus that expression of the granin family gene Vgf and secretion of its C-terminal VGF-derived peptide TLQP-62 are required for fear memory formation. We found that hippocampal VGF expression and TLQP-62 levels were transiently induced after fear memory training and that sequestering secreted TLQP-62 peptide in the hippocampus immediately after training impaired memory formation. Reduced VGF expression was found to impair learning-evoked Rac1 induction and phosphorylation of the synaptic plasticity markers cofilin and synapsin in the adult mouse hippocampus. Moreover, TLQP-62 induced acute, transient activation of the TrkB receptor and subsequent CREB phosphorylation in hippocampal slice preparations and its administration immediately after training enhanced long-term memory formation. A critical role of BDNF-TrkB signaling as a downstream effector in VGF/TLQP-62-mediated memory consolidation was further revealed by posttraining activation of BDNF-TrkB signaling, which rescued impaired fear memory resulting from hippocampal administration of anti-VGF antibodies or germline VGF ablation in mice. We propose that VGF is a critical component of a positive BDNF-TrkB regulatory loop and, upon its induced expression by memory training, the TLQP-62 peptide rapidly reinforces BDNF-TrkB signaling, regulating hippocampal memory consolidation. SIGNIFICANCE STATEMENT Identification of the cellular and molecular mechanisms that regulate long-term memory formation and storage may provide alternative treatment modalities for degenerative and neuropsychiatric memory disorders. The neurotrophin BDNF plays a

  20. Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis

    Science.gov (United States)

    Lionakis, Michail S.; Nickerson, Kenneth W.

    2016-01-01

    Formation of chlamydospores by Candida albicans was an established medical diagnostic test to confirm candidiasis before the molecular era. However, the functional role and pathological relevance of this in vitro morphological transition to pathogenesis in vivo remain unclear. We compared the physical properties of in vitro-induced chlamydospores with those of large C. albicans cells purified by density gradient centrifugation from Candida-infected mouse kidneys. The morphological and physical properties of these cells in kidneys of mice infected intravenously with wild type C. albicans confirmed that chlamydospores can form in infected kidneys. A previously reported chlamydospore-null Δisw2/Δisw2 mutant was used to investigate its role in virulence and chlamydospore induction. Virulence of the Δisw2/Δisw2 mutant strain was reduced 3.4-fold compared to wild type C. albicans or the ISW2 reconstituted strain. Altered host inflammatory reactions to the null mutant further indicate that ISW2 is a virulence factor in C. albicans. ISW2 deletion abolished chlamydospore formation within infected mouse kidneys, whereas the reconstituted strain restored chlamydospore formation in kidneys. Under chlamydospore inducing conditions in vitro, deletion of ISW2 significantly delayed chlamydospore formation, and those late induced chlamydospores lacked associated suspensor cells while attaching laterally to hyphae via novel spore-hypha septa. Our findings establish the induction of chlamydospores by C. albicans during mouse kidney colonization. Our results indicate that ISW2 is not strictly required for chlamydospores formation but is necessary for suspensor cell formation. The importance of ISW2 in chlamydospore morphogenesis and virulence may lead to additional insights into morphological differentiation and pathogenesis of C. albicans in the host microenvironment. PMID:27727302

  1. Platelet rich plasma promotes skeletal muscle cell migration in association with up-regulation of FAK, paxillin, and F-Actin formation.

    Science.gov (United States)

    Tsai, Wen-Chung; Yu, Tung-Yang; Lin, Li-Ping; Lin, Mioa-Sui; Tsai, Ting-Ta; Pang, Jong-Hwei S

    2017-11-01

    Platelet rich plasma (PRP) contains various cytokines and growth factors which may be beneficial to the healing process of injured muscle. The aim of this study was to investigate the effect and molecular mechanism of PRP on migration of skeletal muscle cells. Skeletal muscle cells intrinsic to Sprague-Dawley rats were treated with PRP. The cell migration was evaluated by transwell filter migration assay and electric cell-substrate impedance sensing. The spreading of cells was evaluated microscopically. The formation of filamentous actin (F-actin) cytoskeleton was assessed by immunofluorescence staining. The protein expressions of paxillin and focal adhesion kinase (FAK) were assessed by Western blot analysis. Transfection of paxillin small-interfering RNA (siRNAs) to muscle cells was performed to validate the role of paxillin in PRP-mediated promotion of cell migration. Dose-dependently PRP promotes migration of and spreading and muscle cells. Protein expressions of paxillin and FAK were up-regulated dose-dependently. F-actin formation was also enhanced by PRP treatment. Furthermore, the knockdown of paxillin expression impaired the effect of PRP to promote cell migration. It was concluded that PRP promoting migration of muscle cells is associated with up-regulation of proteins expression of paxillin and FAK as well as increasing F-actin formation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2506-2512, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. The Formation of Streptococcus mutans Persisters Induced by the Quorum-Sensing Peptide Pheromone Is Affected by the LexA Regulator

    Science.gov (United States)

    Leung, Vincent; Ajdic, Dragana; Koyanagi, Stephanie

    2015-01-01

    The presence of multidrug-tolerant persister cells within microbial populations has been implicated in the resiliency of bacterial survival against antibiotic treatments and is a major contributing factor in chronic infections. The mechanisms by which these phenotypic variants are formed have been linked to stress response pathways in various bacterial species, but many of these mechanisms remain unclear. We have previously shown that in the cariogenic organism Streptococcus mutans, the quorum-sensing peptide CSP (competence-stimulating peptide) pheromone was a stress-inducible alarmone that triggered an increased formation of multidrug-tolerant persisters. In this study, we characterized SMU.2027, a CSP-inducible gene encoding a LexA ortholog. We showed that in addition to exogenous CSP exposure, stressors, including heat shock, oxidative stress, and ofloxacin antibiotic, were capable of triggering expression of lexA in an autoregulatory manner akin to that of LexA-like transcriptional regulators. We demonstrated the role of LexA and its importance in regulating tolerance toward DNA damage in a noncanonical SOS mechanism. We showed its involvement and regulatory role in the formation of persisters induced by the CSP-ComDE quorum-sensing regulatory system. We further identified key genes involved in sugar and amino acid metabolism, the clustered regularly interspaced short palindromic repeat (CRISPR) system, and autolysin from transcriptomic analyses that contribute to the formation of quorum-sensing-induced persister cells. PMID:25583974

  3. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa.

    Science.gov (United States)

    Yang, Li; Zhao, Xin; Yang, Fan; Fan, Di; Jiang, Yuanzhong; Luo, Keming

    2016-01-28

    WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY19 was expressed in all tissues tested, with highest expression in stems, especially in pith. PtrWRKY19 was located in the nucleus and functioned as a transcriptional repressor. Ectopic expression of PtrWRKY19 in an atwrky12 mutant successfully rescued the phenotype in pith cell walls caused by the defect of AtWRKY12, suggesting that PtrWRKY19 had conserved functions for homologous AtWRKY12. Overexpression of PtrWRKY19 in poplar plants led to a significant increase in the number of pith parenchyma cells. qRT-PCR analysis showed that lignin biosynthesis-related genes were repressed in transgenic plants. In transcient reporter assays, PtrWRKY19 was identified to repress transcription from the PtoC4H2 promoter containing the conserved W-box elements. These results indicated that PtrWRKY19 may function as a negative regulator of pith secondary wall formation in poplar.

  4. Effect of Negative Pressure on Proliferation, Virulence Factor Secretion, Biofilm Formation, and Virulence-Regulated Gene Expression of Pseudomonas aeruginosa In Vitro

    Directory of Open Access Journals (Sweden)

    Guo-Qi Wang

    2016-01-01

    Full Text Available Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A. Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p<0.01. Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes.

  5. Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas.

    Directory of Open Access Journals (Sweden)

    Francisco Martínez-Granero

    Full Text Available Diguanylate cyclase and phosphodiesterase enzymatic activities control c-di-GMP levels modulating planktonic versus sessile lifestyle behavior in bacteria. The PilZ domain is described as a sensor of c-di-GMP intracellular levels and the proteins containing a PilZ domain represent the best studied class of c-di-GMP receptors forming part of the c-di-GMP signaling cascade. In P. fluorescens F113 we have found two diguanylate cyclases (WspR, SadC and one phosphodiesterase (BifA implicated in regulation of swimming motility and biofilm formation. Here we identify a flgZ gene located in a flagellar operon encoding a protein that contains a PilZ domain. Moreover, we show that FlgZ subcellular localization depends on the c-di-GMP intracellular levels. The overexpression analysis of flgZ in P. fluorescens F113 and P. putida KT2440 backgrounds reveal a participation of FlgZ in Pseudomonas swimming motility regulation. Besides, the epistasis of flgZ over wspR and bifA clearly shows that c-di-GMP intracellular levels produced by the enzymatic activity of the diguanylate cyclase WspR and the phosphodiesterase BifA regulates biofilm formation through FlgZ.

  6. Identification of a chemical inhibitor for nuclear speckle formation: Implications for the function of nuclear speckles in regulation of alternative pre-mRNA splicing

    Energy Technology Data Exchange (ETDEWEB)

    Kurogi, Yutaro; Matsuo, Yota; Mihara, Yuki; Yagi, Hiroaki; Shigaki-Miyamoto, Kaya; Toyota, Syukichi; Azuma, Yuko [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan); Igarashi, Masayuki [Laboratory of Disease Biology, Institute of Microbial Chemistry, Shinagawa-ku, Tokyo 141-0021 (Japan); Tani, Tokio, E-mail: ttani@sci.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan)

    2014-03-28

    Highlights: • We identified tubercidin as a compound inducing aberrant formation of the speckles. • Tubercidin causes delocalization of poly (A){sup +}RNAs from nuclear speckles. • Tubercidin induces dispersion of splicing factors from nuclear speckles. • Tubercidin affects alternative pre-mRNA splicing. • Nuclear speckles play a role in regulation of alternative pre-mRNA splicing. - Abstract: Nuclear speckles are subnuclear structures enriched with RNA processing factors and poly (A){sup +} RNAs comprising mRNAs and poly (A){sup +} non-coding RNAs (ncRNAs). Nuclear speckles are thought to be involved in post-transcriptional regulation of gene expression, such as pre-mRNA splicing. By screening 3585 culture extracts of actinomycetes with in situ hybridization using an oligo dT probe, we identified tubercidin, an analogue of adenosine, as an inhibitor of speckle formation, which induces the delocalization of poly (A){sup +} RNA and dispersion of splicing factor SRSF1/SF2 from nuclear speckles in HeLa cells. Treatment with tubercidin also decreased steady-state MALAT1 long ncRNA, thought to be involved in the retention of SRSF1/SF2 in nuclear speckles. In addition, we found that tubercidin treatment promoted exon skipping in the alternative splicing of Clk1 pre-mRNA. These results suggest that nuclear speckles play a role in modulating the concentration of splicing factors in the nucleoplasm to regulate alternative pre-mRNA splicing.

  7. Comprehension of texts in Digital Format versus Printed Texts and Self-Regulated Learning in University Students

    Directory of Open Access Journals (Sweden)

    Paula Gabriela Flores-Carrasco

    2016-12-01

    Full Text Available This article aims (1 to describe the levels of self-regulation and reading comprehension of scientific expository texts; (2 to establish the relationship between self-regulation and reading comprehension; and (3 to compare the performance in comprehension when the printed media (paper or digital media (computer is used. A quasi-experimental, quantitative, descriptive and correlative design was implemented. The sample was composed of 55 university students from four careers of Education; they were in 1st and 3rd year of study at a regional university of the Council of Rectors of Chilean Universities. Three measuring instruments were used: a questionnaire of self-regulated learning and two comprehension tests based on the understanding of Parodi’s (2005 assessment model. The implementation was made in two consecutive moments; first, the self-questionnaire; then, the tests for reading comprehension in both media. With the data obtained, statistical tests of variance, one-way ANOVA, Pearson’s correlation, and means comparison with Bruner and Munzel and U-Mann Whitney’s tests were calculated. In conclusion, and different from the initial statement, it was obtained that university students have an adequate level of self-regulation and low reading comprehension in both data, even the scores are relatively lower in digital data. In both data the output is inverse to the complexity of the questions. Between 1st and 3rd year, there is no increase either in the self-regulation or in reading comprehension; but, exceptionally, the career of Primary General Education specialist on Language and History did. There is a strong relationship between reading comprehension in printed media and self-regulation (ARATEX. The support does not affect reading comprehension, but individual reading skills of the subjects do. A competent reader will have similar performance in both reading supports.

  8. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation

    NARCIS (Netherlands)

    Ganzevles, R.A.; Kosters, H.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2007-01-01

    Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different

  9. The SNX-PX-BAR family in macropinocytosis: the regulation of macropinosome formation by SNX-PX-BAR proteins.

    Directory of Open Access Journals (Sweden)

    Jack T H Wang

    Full Text Available BACKGROUND: Macropinocytosis is an actin-driven endocytic process, whereby membrane ruffles fold back onto the plasma membrane to form large (>0.2 µm in diameter endocytic organelles called macropinosomes. Relative to other endocytic pathways, little is known about the molecular mechanisms involved in macropinocytosis. Recently, members of the Sorting Nexin (SNX family have been localized to the cell surface and early macropinosomes, and implicated in macropinosome formation. SNX-PX-BAR proteins form a subset of the SNX family and their lipid-binding (PX and membrane-curvature sensing (BAR domain architecture further implicates their functional involvement in macropinosome formation. METHODOLOGY/PRINCIPAL FINDINGS: We exploited the tractability of macropinosomes through image-based screening and systematic overexpression of SNX-PX-BAR proteins to quantitate their effect on macropinosome formation. SNX1 (40.9+/-3.19 macropinosomes, SNX5 (36.99+/-4.48 macropinosomes, SNX9 (37.55+/-2.4 macropinosomes, SNX18 (88.2+/-8 macropinosomes, SNX33 (65.25+/-6.95 macropinosomes all exhibited statistically significant (p<0.05 increases in average macropinosome numbers per 100 transfected cells as compared to control cells (24.44+/-1.81 macropinosomes. SNX1, SNX5, SNX9, and SNX18 were also found to associate with early-stage macropinosomes within 5 minutes following organelle formation. The modulation of intracellular PI(3,4,5P(3 levels through overexpression of PTEN or a lipid phosphatase-deficient mutant PTEN(G129E was also observed to significantly reduce or elevate macropinosome formation respectively; coexpression of PTEN(G129E with SNX9 or SNX18 synergistically elevated macropinosome formation to 119.4+/-7.13 and 91.4+/-6.37 macropinosomes respectively (p<0.05. CONCLUSIONS/SIGNIFICANCE: SNX1, SNX5, SNX9, SNX18, and SNX33 were all found to elevate macropinosome formation and (with the exception of SNX33 associate with early-stage macropinosomes. Moreover

  10. Feedback-regulated star formation and escape of LyC photons from mini-haloes during reionization

    Science.gov (United States)

    Kimm, Taysun; Katz, Harley; Haehnelt, Martin; Rosdahl, Joakim; Devriendt, Julien; Slyz, Adrianne

    2017-04-01

    Reionization in the early Universe is likely driven by dwarf galaxies. Using cosmological radiation-hydrodynamic simulations, we study star formation and the escape of Lyman continuum (LyC) photons from mini-haloes with {M_halo}≲ 10^8 {M_{⊙}}. Our simulations include a new thermo-turbulent star formation model, non-equilibrium chemistry and relevant stellar feedback processes (photoionization by young massive stars, radiation pressure and mechanical supernova explosions). We find that feedback reduces star formation very efficiently in mini-haloes, resulting in the stellar mass consistent with the slope and normalization reported in Kimm & Cen and the empirical stellar mass-to-halo mass relation derived in the local Universe. Because star formation is stochastic and dominated by a few gas clumps, the escape fraction in mini-haloes is generally determined by radiation feedback (heating due to photoionization), rather than supernova explosions. We also find that the photon number-weighted mean escape fraction in mini-haloes is higher (˜20-40 per cent) than that in atomic-cooling haloes, although the instantaneous fraction in individual haloes varies significantly. The escape fraction from Pop III stars is found to be significant ( ≳ 10 per cent) only when the mass is greater than ˜100 M⊙. Based on simple analytic calculations, we show that LyC photons from mini-haloes are, despite their high escape fractions, of minor importance for reionization due to inefficient star formation. We confirm previous claims that stars in atomic-cooling haloes with masses 10^8 {M_{⊙}}≲ {M_halo}≲ 10^{11} {M_{⊙}} are likely to be the most important source of reionization.

  11. Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions.

    Science.gov (United States)

    Kunda, Patricia; Craig, Gavin; Dominguez, Veronica; Baum, Buzz

    2003-10-28

    In animal cells, GTPase signaling pathways are thought to generate cellular protrusions by modulating the activity of downstream actin-regulatory proteins. Although the molecular events linking activation of a GTPase to the formation of an actin-based process with a characteristic morphology are incompletely understood, Rac-GTP is thought to promote the activation of SCAR/WAVE, whereas Cdc42 is thought to initiate the formation of filopodia through WASP. SCAR and WASP then activate the Arp2/3 complex to nucleate the formation of new actin filaments, which through polymerization exert a protrusive force on the membrane. Using RNAi to screen for genes regulating cell form in an adherent Drosophila cell line, we identified a set of genes, including Abi/E3B1, that are absolutely required for the formation of dynamic protrusions. These genes delineate a pathway from Cdc42 and Rac to SCAR and the Arp2/3 complex. Efforts to place Abi in this signaling hierarchy revealed that Abi and two components of a recently identified SCAR complex, Sra1 (p140/PIR121/CYFIP) and Kette (Nap1/Hem), protect SCAR from proteasome-mediated degradation and are critical for SCAR localization and for the generation of Arp2/3-dependent protrusions. In Drosophila cells, SCAR is regulated by Abi, Kette, and Sra1, components of a conserved regulatory SCAR complex. By controlling the stability, localization, and function of SCAR, these proteins may help to ensure that Arp2/3 activation and the generation of actin-based protrusions remain strictly dependant on local GTPase signaling.

  12. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Yuta; Katayama, Chisako [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Shinohara, Miki; Shinohara, Akira [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Maekawa, Shohei [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Miyamoto, Masaaki, E-mail: miya@kobe-u.ac.jp [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Center for Supports to Research and Education Activities, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan)

    2013-11-29

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our data strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.

  13. Flow stress anisotropy caused by geometrically necessary boundaries

    DEFF Research Database (Denmark)

    Hansen, N.; Juul Jensen, D.

    1992-01-01

    The microstructural anisotropy of deformed metal is related to the formation of geometrically necessary boundaries such as dense dislocation walls and microbands. These boundaries have a macroscopic orientation with respect to the sample axes and they can resist slip due to a high concentration o...... necessary boundaries. For different macroscopic arrangements of such boundaries, the model predictions are in good qualitative and quantitative agreement with experiments....

  14. Formation, Location, and Regulation of Endo-1,4-β-Glucanases and β-Glucosidases from Cellulomonas uda

    Science.gov (United States)

    Stoppok, Waltraud; Rapp, Peter; Wagner, Fritz

    1982-01-01

    The formation and location of endo-1,4-β-glucanases and β-glucosidases were studied in cultures of Cellulomonas uda grown on microcrystalline cellulose, carboxymethyl cellulose, printed newspaper, and some mono- or disaccharides. Endo-1,4-Glucanases were found to be extracellular, but a very small amount of cell-bound endo-1,4-β-glucanase was considered to be the basal endoglucanase level of the cells. The formation of extracellular endo-1,4-β-glucanases was induced by cellobiose and repressed by glucose. Extracellular endoglucanase activity was inhibited by cellobiose but not by glucose. β-Glucosidases, on the other hand, were formed constitutively and found to be cell bound. β-Glucosidase activity was inhibited noncompetitively by glucose. Some characteristics such as the optimal pH for and the thermostability of the endoglucanases and β-glucosidases and the end products of cellulose degradation were determined. PMID:16346067

  15. The specific effect of gallic acid on Escherichia coli biofilm formation by regulating pgaABCD genes expression.

    Science.gov (United States)

    Kang, Jiamu; Li, Qianqian; Liu, Liu; Jin, Wenyuan; Wang, Jingfan; Sun, Yuyang

    2018-02-01

    Escherichia coli (E. coli) is associated with an array of health-threatening contaminations, some of which are related to biofilm states. The pgaABCD-encoded poly-beta-1,6-N-acetyl-D-glucosamine (PGA) polymer plays an important role in biofilm formation. This study was conducted to determine the inhibitory effect of gallic acid (GA) against E. coli biofilm formation. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of GA against planktonic E. coli were 0.5 and 4 mg/mL, and minimal biofilm inhibitory concentration and minimal biofilm eradication concentration values of GA against E. coli in biofilms were 2 and 8 mg/mL, respectively. Quantitative crystal violet staining of biofilms and ESEM images clearly indicate that GA effectively, dose-dependently inhibited biofilm formation. CFU counting and confocal laser scanning microscopy measurements showed that GA significantly reduced viable bacteria in the biofilm. The contents of polysaccharide slime, protein, and DNA in the E. coli biofilm also decreased. qRT-PCR data showed that at the sub-MIC level of GA (0.25 mg/mL) and expression of pgaABC genes was downregulated, while pgaD gene expression was upregulated. The sub-MBC level of GA (2 mg/mL) significantly suppressed the pgaABCD genes. Our results altogether demonstrate that GA inhibited viable bacteria and E. coli biofilm formation, marking a novel approach to the prevention and treatment of biofilm-related infections in the food industry.

  16. Temporal and Spatial Regulation of Epsin Abundance and VEGFR3 Signaling are Required for Lymphatic Valve Formation and Function

    OpenAIRE

    Liu, Xiaolei; Pasula, Satish; Song, Hoogeun; Tessneer, Kandice L.; Dong, Yunzhou; Hahn, Scott; Yago, Tadayuki; Brophy, Megan; Chang, Baojun; Cai, Xiaofeng; Wu, Hao; McManus, John; Ichise, Hirotake; Georgescu, Constantin; Wren, Jonathan D

    2014-01-01

    Lymphatic valves prevent the backflow of the lymph fluid and ensure proper lymphatic drainage throughout the body. Local accumulation of lymphatic fluid in tissues, a condition called lymphedema, is common in individuals with malformed lymphatic valves. The vascular endothelial growth factor receptor 3 (VEGFR3) is required for the development of lymphatic vascular system. The abundance of VEGFR3 in collecting lymphatic trunks is high before valve formation and, except at valve regions, decrea...

  17. Induction of Pulmonary Granuloma Formation by Propionibacterium acnes Is Regulated by MyD88 and Nox2.

    Science.gov (United States)

    Werner, Jessica L; Escolero, Sylvia G; Hewlett, Jeff T; Mak, Tim N; Williams, Brian P; Eishi, Yoshinobu; Núñez, Gabriel

    2017-01-01

    Sarcoidosis is characterized by noncaseating granulomas with an unknown cause that present primarily in the lung. Propionibacterium acnes, an immunogenic commensal skin bacterium involved in acne vulgaris, has been implicated as a possible causative agent of sarcoidosis. Here, we demonstrate that a viable strain of P. acnes isolated from a patient with sarcoidosis and instilled intratracheally into wild-type mice can generate pulmonary granulomas similar to those observed in patients with sarcoidosis. The formation of these granulomas is dependent on the administration of viable P. acnes. We also found that mice deficient in the innate immunity adapter protein MyD88 had a greater number and a larger area of granuloma lesions compared with wild-type mice administered P. acnes. Early after P. acnes administration, wild-type mice produced proinflammatory mediators and recruited neutrophils into the lung, a response that is dependent on MyD88. In addition, there was an increase in granuloma number and size after instillation with P. acnes in mice deficient in CybB, a critical component of nicotinamide adenine dinucleotide phosphate oxidase required for the production of reactive oxygen species in the phagosome. Myd88 -/- or Cybb -/- mice both had increased persistence of P. acnes in the lung, together with enhanced granuloma formation. In conclusion, we have generated a mouse model of early granuloma formation induced by a clinically relevant strain of P. acnes isolated from a patient with sarcoidosis, and, using this model, we have shown that a deficiency in MyD88 or CybB is associated with impaired bacterial clearance and increased granuloma formation in the lung.

  18. Transcriptome-wide analysis of jasmonate-treated BY-2 cells reveals new transcriptional regulators associated with alkaloid formation in tobacco.

    Science.gov (United States)

    Yang, Yuping; Yan, Pengcheng; Yi, Che; Li, Wenzheng; Chai, Yuhui; Fei, Lingling; Gao, Ping; Zhao, Heping; Wang, Yingdian; Timko, Michael P; Wang, Bingwu; Han, Shengcheng

    2017-08-01

    Jasmonates (JAs) are well-known regulators of stress, defence, and secondary metabolism in plants, with JA perception triggering extensive transcriptional reprogramming, including both activation and/or repression of entire metabolic pathways. We performed RNA sequencing based transcriptomic profiling of tobacco BY-2 cells before and after treatment with methyl jasmonate (MeJA) to identify novel transcriptional regulators associated with alkaloid formation. A total of 107,140 unigenes were obtained through de novo assembly, and at least 33,213 transcripts (31%) encode proteins, in which 3419 transcription factors (TFs) were identified, representing 72 gene families, as well as 840 transcriptional regulators (TRs) distributed among 19 gene families. After MeJA treatment BY-2 cells, 7260 differentially expressed transcripts were characterised, which include 4443 MeJA-upregulated and 2817 MeJA-downregulated genes. Of these, 227 TFs/TRs in 36 families were specifically upregulated, and 102 TFs/TRs in 38 families were downregulated in MeJA-treated BY-2 cells. We further showed that the expression of 12 ethylene response factors and four basic helix-loop-helix factors increased at the transcriptional level after MeJA treatment in BY-2 cells and displayed specific expression patterns in nic mutants with or without MeJA treatments. Our data provide a catalogue of transcripts of tobacco BY-2 cells and benefit future study of JA-modulated regulation of secondary metabolism in tobacco. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication.

    Science.gov (United States)

    Wu, Rentian; Wang, Zhiquan; Zhang, Honglian; Gan, Haiyun; Zhang, Zhiguo

    2017-01-09

    DNA replication is tightly regulated to occur once and only once per cell cycle. How chromatin, the physiological substrate of DNA replication machinery, regulates DNA replication remains largely unknown. Here we show that histone H3 lysine 9 demethylase Kdm4d regulates DNA replication in eukaryotic cells. Depletion of Kdm4d results in defects in DNA replication, which can be rescued by the expression of H3K9M, a histone H3 mutant transgene that reverses the effect of Kdm4d on H3K9 methylation. Kdm4d interacts with replication proteins, and its recruitment to DNA replication origins depends on the two pre-replicative complex components (origin recognition complex [ORC] and minichromosome maintenance [MCM] complex). Depletion of Kdm4d impairs the recruitment of Cdc45, proliferating cell nuclear antigen (PCNA), and polymerase δ, but not ORC and MCM proteins. These results demonstrate a novel mechanism by which Kdm4d regulates DNA replication by reducing the H3K9me3 level to facilitate formation of pre-initiative complex. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Habenular commissure formation in zebrafish is regulated by the pineal gland-specific gene unc119c.

    Science.gov (United States)

    Toyama, Reiko; Kim, Mi Ha; Rebbert, Martha L; Gonzales, John; Burgess, Harold; Dawid, Igor B

    2013-09-01

    The zebrafish pineal gland (epiphysis) is a site of melatonin production, contains photoreceptor cells, and functions as a circadian clock pacemaker. Since it is located on the surface of the forebrain, it is accessible for manipulation and, therefore, is a useful model system to analyze pineal gland function and development. We previously analyzed the pineal transcriptome during development and showed that many genes exhibit a highly dynamic expression pattern in the pineal gland. Among genes preferentially expressed in the zebrafish pineal gland, we identified a tissue-specific form of the unc119 gene family, unc119c, which is highly preferentially expressed in the pineal gland during day and night at all stages examined from embryo to adult. When expression of unc119c was inhibited, the formation of the habenular commissure (HC) was specifically compromised. The Unc119c interacting factors Arl3l1 and Arl3l2 as well as Wnt4a also proved indispensible for HC formation. We suggest that Unc119c, together with Arl3l1/2, plays an important role in modulating Wnt4a production and secretion during HC formation in the forebrain of the zebrafish embryo. Copyright © 2013 Wiley Periodicals, Inc.

  1. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  2. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere.

    Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  3. State Agency Administrative Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This database comprises 28 State agency boundaries and point of contact. The Kansas Geological Survey collected legal descriptions of the boundaries for various...

  4. Allegheny County Municipal Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...

  5. HUD GIS Boundary Files

    Data.gov (United States)

    Department of Housing and Urban Development — The HUD GIS Boundary Files are intended to supplement boundary files available from the U.S. Census Bureau. The files are for community planners interested in...

  6. Political State Boundary (National)

    Data.gov (United States)

    Department of Transportation — State boundaries with political limit - boundaries extending into the ocean (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an...

  7. A role for the retinoblastoma protein as a regulator of mouse osteoblast cell adhesion: implications for osteogenesis and osteosarcoma formation.

    Directory of Open Access Journals (Sweden)

    Bernadette Sosa-García

    2010-11-01

    Full Text Available The retinoblastoma protein (pRb is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb regulates the expression of a wide repertoire of cell adhesion genes and regulates the assembly of the adherens junctions required for cell adhesion. We conducted our studies in osteoblasts, which depend on both pRb and on cell-to-cell contacts for their differentiation and function. We generated knockout mice in which the RB gene was excised specifically in osteoblasts using the cre-lox P system and found that osteoblasts from pRb knockout mice did not assemble adherens junction at their membranes. pRb depletion in wild type osteoblasts using RNAi also disrupted adherens junctions. Microarrays comparing pRb-expressing and pRb-deficient osteoblasts showed that pRb controls the expression of a number of cell adhesion genes, including cadherins. Furthermore, pRb knockout mice showed bone abnormalities consistent with osteoblast adhesion defects. We also found that pRb controls the function of merlin, a well-known regulator of adherens junction assembly, by repressing Rac1 and its effector Pak1. Using qRT-PCR, immunoblots, co-immunoprecipitation assays, and immunofluorescent labeling, we observed that pRb loss resulted in Rac1 and Pak1 overexpression concomitant with merlin inactivation by Pak1, merlin detachment from the membrane, and adherens junction loss. Our data support a pRb function in cell adhesion while elucidating the mechanism for this function. Our work suggests that in some tumor types pRb inactivation results in both a loss of cell cycle control that promotes initial tumor growth as well as in a loss of cell-to-cell contacts, which contributes to later stages of metastasis.

  8. Regulation of Pattern Formation and Gene Amplification During Drosophila Oogenesis by the miR-318 microRNA

    DEFF Research Database (Denmark)

    Ge, Wanzhong; Deng, Qiannan; Guo, Ting

    2015-01-01

    Pattern formation during epithelial development requires the coordination of multiple signaling pathways. Here, we investigate the functions of an ovary-enriched miRNA, miR-318, in epithelial development during Drosophila oogenesis. miR-318 maternal loss-of-function mutants were female sterile...... signaling pathway activates expression of miR-318 and that miR-318 cooperates with Tramtrack69 (Ttk69) to control the switch from endocycling to chorion gene amplification during differentiation of the follicular epithelium. The multiple functions of miR-318 in oogenesis illustrate the importance of mi...

  9. Down-regulation of lactate dehydrogenase-A by siRNAs for reduced lactic acid formation of Chinese hamster ovary cells producing thrombopoietin.

    Science.gov (United States)

    Kim, Sung Hyun; Lee, Gyun Min

    2007-02-01

    Lactate, one of the major waste products in mammalian cell culture, can inhibit cell growth and affect cellular metabolism at high concentrations. To reduce lactate formation, lactate dehydrogenase-A (LDH-A), an enzyme catalyzing the conversion of glucose-derived pyruvate to lactate, was down-regulated by an expression vector of small interfering RNAs (siRNA) in recombinant Chinese hamster ovary (rCHO) cells producing human thrombopoietin (hTPO). Three clones expressing low levels of LDH-A, determined by reverse transcription-PCR and an enzyme activity test, were established in addition to a negative control cell line. LDH-A activities in the three clones were decreased by 75-89%, compared with that of the control CHO cell line, demonstrating that the effect of siRNA is more significant than that of other traditional methods such as homologous recombination (30%) and antisense mRNA (29%). The specific glucose consumption rates of the three clones were reduced to 54-87% when compared to the control cell line. Similarly, the specific lactate production rates were reduced to 45-79% of the control cell line level. In addition, reduction of LDH-A did not impair either cell proliferation or hTPO productivity. Taken together, these results show that the lactate formation rate in rCHO cell culture can be efficiently reduced through the down-regulation of LDH via siRNA.

  10. The master regulator for biofilm formation in Bacillus subtilis governs the expression of an operon encoding secreted proteins required for the assembly of complex multicellular communities.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven S. (Harvard Medical School, Cambridge, MA); Losick, Richard (Harvard University, Cambridge, MA); Kolter, Roberto (Harvard Medical School, Cambridge, MA); Kearns, Daniel B. (Harvard University, Cambridge, MA); Chu, Frances (Harvard University, Cambridge, MA)

    2005-08-01

    Wild strains of Bacillus subtilis are capable of forming architecturally complex communities of cells known as biofilms. Critical to biofilm formation is the eps operon, which is believed to be responsible for the biosynthesis of an exopolysaccharide that binds chains of cells together in bundles. We report that transcription of eps is under the negative regulation of SinR, a repressor that was found to bind to multiple sites in the regulatory region of the operon. Mutations in sinR bypassed the requirement in biofilm formation of two genes of unknown function, ylbF and ymcA, and sinI, which is known to encode an antagonist of SinR. We propose that these genes are members of a pathway that is responsible for counteracting SinR-mediated repression. We further propose that SinR is a master regulator that governs the transition between a planktonic state in which the bacteria swim as single cells in liquid or swarm in small groups over surfaces, and a sessile state in which the bacteria adhere to each other to form bundled chains and assemble into multicellular communities.

  11. An unexpected intriguing effect of Toll-like receptor regulator RP105 (CD180) on atherosclerosis formation with alterations on B-cell activation.

    Science.gov (United States)

    Karper, J C; de Jager, S C A; Ewing, M M; de Vries, M R; Bot, I; van Santbrink, P J; Redeker, A; Mallat, Z; Binder, C J; Arens, R; Jukema, J W; Kuiper, J; Quax, P H A

    2013-12-01

    In atherosclerosis, Toll-like receptors (TLRs) are traditionally linked to effects on tissue macrophages or foam cells. RP105, a structural TLR4 homolog, is an important regulator of TLR signaling. The effects of RP105 on TLR signaling vary for different leukocyte subsets known to be involved in atherosclerosis, making it unique in its role of either suppressing (in myeloid cells) or enhancing (in B cells) TLR-regulated inflammation in different cell types. We aimed to identify a role of TLR accessory molecule RP105 on circulating cells in atherosclerotic plaque formation. Irradiated low density lipoprotein receptor deficient mice received RP105(-/-) or wild-type bone marrow. RP105(-/-) chimeras displayed a 57% reduced plaque burden. Interestingly, total and activated B-cell numbers were significantly reduced in RP105(-/-) chimeras. Activation of B1 B cells was unaltered, suggesting that RP105 deficiency only affected inflammatory B2 B cells. IgM levels were unaltered, but anti-oxidized low-density lipoprotein and anti-malondialdehyde-modified low-density lipoprotein IgG2c antibody levels were significantly lower in RP105(-/-) chimeras, confirming effects on B2 B cells rather than B1 B cells. Moreover, B-cell activating factor expression was reduced in spleens of RP105(-/-) chimeras. RP105 deficiency on circulating cells results in an intriguing unexpected TLR-associated mechanisms that decrease atherosclerotic lesion formation with alterations on proinflammatory B2 B cells.

  12. Bacillus cereus ATCC 14579 RpoN (Sigma 54 Is a Pleiotropic Regulator of Growth, Carbohydrate Metabolism, Motility, Biofilm Formation and Toxin Production.

    Directory of Open Access Journals (Sweden)

    Hasmik Hayrapetyan

    Full Text Available Sigma 54 is a transcriptional regulator predicted to play a role in physical interaction of bacteria with their environment, including virulence and biofilm formation. In order to study the role of Sigma 54 in Bacillus cereus, a comparative transcriptome and phenotypic study was performed using B. cereus ATCC 14579 WT, a markerless rpoN deletion mutant, and its complemented strain. The mutant was impaired in many different cellular functions including low temperature and anaerobic growth, carbohydrate metabolism, sporulation and toxin production. Additionally, the mutant showed lack of motility and biofilm formation at air-liquid interphase, and this correlated with absence of flagella, as flagella staining showed only WT and complemented strain to be highly flagellated. Comparative transcriptome analysis of cells harvested at selected time points during growth in aerated and static conditions in BHI revealed large differences in gene expression associated with loss of phenotypes, including significant down regulation of genes in the mutant encoding enzymes involved in degradation of branched chain amino acids, carbohydrate transport and metabolism, flagella synthesis and virulence factors. Our study provides evidence for a pleiotropic role of Sigma 54 in B. cereus supporting its adaptive response and survival in a range of conditions and environments.

  13. Bacillus cereus ATCC 14579 RpoN (Sigma 54) Is a Pleiotropic Regulator of Growth, Carbohydrate Metabolism, Motility, Biofilm Formation and Toxin Production.

    Science.gov (United States)

    Hayrapetyan, Hasmik; Tempelaars, Marcel; Nierop Groot, Masja; Abee, Tjakko

    2015-01-01

    Sigma 54 is a transcriptional regulator predicted to play a role in physical interaction of bacteria with their environment, including virulence and biofilm formation. In order to study the role of Sigma 54 in Bacillus cereus, a comparative transcriptome and phenotypic study was performed using B. cereus ATCC 14579 WT, a markerless rpoN deletion mutant, and its complemented strain. The mutant was impaired in many different cellular functions including low temperature and anaerobic growth, carbohydrate metabolism, sporulation and toxin production. Additionally, the mutant showed lack of motility and biofilm formation at air-liquid interphase, and this correlated with absence of flagella, as flagella staining showed only WT and complemented strain to be highly flagellated. Comparative transcriptome analysis of cells harvested at selected time points during growth in aerated and static conditions in BHI revealed large differences in gene expression associated with loss of phenotypes, including significant down regulation of genes in the mutant encoding enzymes involved in degradation of branched chain amino acids, carbohydrate transport and metabolism, flagella synthesis and virulence factors. Our study provides evidence for a pleiotropic role of Sigma 54 in B. cereus supporting its adaptive response and survival in a range of conditions and environments.

  14. XbmR, a new transcription factor involved in the regulation of chemotaxis, biofilm formation and virulence in Xanthomonas citri subsp. citri.

    Science.gov (United States)

    Yaryura, Pablo M; Conforte, Valeria P; Malamud, Florencia; Roeschlin, Roxana; de Pino, Verónica; Castagnaro, Atilio P; McCarthy, Yvonne; Dow, J Maxwell; Marano, María R; Vojnov, Adrián A

    2015-11-01

    Xanthomonas citri subsp. citri (Xcc) is the causal agent of citrus canker. Biofilm formation on citrus leaves plays an important role in epiphytic survival of Xcc. Biofilm formation is affected by transposon insertion in XAC3733, which encodes a transcriptional activator of the NtrC family, not linked to a gene encoding a sensor protein, thus could be considered as an 'orphan' regulator whose function is poorly understood in Xanthomonas spp. Here we show that mutation of XAC3733 (named xbmR) resulted in impaired structural development of the Xcc biofilm, loss of chemotaxis and reduced virulence in grapefruit plants. All defective phenotypes were restored to wild-type levels by the introduction of PA2567 from Pseudomonas aeruginosa, which encodes a phosphodiesterase active in the degradation of cyclic diguanosine monophosphate (c-di-GMP). A knockout of xbmR led to a substantial downregulation of fliA that encodes a σ(28) transcription factor, as well as fliC and XAC0350 which are potential member of the σ(28) regulon. XAC0350 encodes an HD-GYP domain c-di-GMP phosphodiesterase. These findings suggest that XbmR is a key regulator of flagellar-dependent motility and chemotaxis exerting its action through a regulatory pathway that involves FliA and c-di-GMP. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Ubiquitination of HTLV-I Tax in response to DNA damage regulates nuclear complex formation and nuclear export

    Directory of Open Access Journals (Sweden)

    Marriott Susan J

    2007-12-01

    Full Text Available Abstract Background The HTLV-I oncoprotein, Tax, is a pleiotropic protein whose activity is partially regulated by its ability to interact with, and perturb the functions of, numerous cellular proteins. Tax is predominantly a nuclear protein that localizes to nuclear foci known as Tax Speckled Structures (TSS. We recently reported that the localization of Tax and its interactions with cellular proteins are altered in response to various forms of genotoxic and cellular stress. The level of cytoplasmic Tax increases in response to stress and this relocalization depends upon the interaction of Tax with CRM1. Cellular pathways and signals that regulate the subcellular localization of Tax remain to be determined. However, post-translational modifications including sumoylation and ubiquitination are known to influence the subcellular localization of Tax and its interactions with cellular proteins. The sumoylated form of Tax exists predominantly in the nucleus while ubiquitinated Tax exists predominantly in the cytoplasm. Therefore, we hypothesized that post-translational modifications of Tax that occur in response to DNA damage regulate the localization of Tax and its interactions with cellular proteins. Results We found a significant increase in mono-ubiquitination of Tax in response to UV irradiation. Mutation of specific lysine residues (K280 and K284 within Tax inhibited DNA damage-induced ubiquitination. In contrast to wild-type Tax, which undergoes transient nucleocytoplasmic shuttling in response to DNA damage, the K280 and K284 mutants were retained in nuclear foci following UV irradiation and remained co-localized with the cellular TSS protein, sc35. Conclusion This study demonstrates that the localization of Tax, and its interactions with cellular proteins, are dynamic following DNA damage and depend on the post-translational modification status of Tax. Specifically, DNA damage induces the ubiquitination of Tax at K280 and K284

  16. Insights into Interspecific Hybridization Events in Allotetraploid Cotton Formation from Characterization of a Gene-Regulating Leaf Shape.

    Science.gov (United States)

    Chang, Lijing; Fang, Lei; Zhu, Yajuan; Wu, Huaitong; Zhang, Zhiyuan; Liu, Chunxiao; Li, Xinghe; Zhang, Tianzhen

    2016-10-01

    The morphology of cotton leaves varies considerably. Phenotypes, including okra, sea-island, super-okra, and broad leaf, are controlled by a multiple allele locus, L2 Okra leaf (L2°) is an incomplete mutation that alters leaf shape by increasing the length of lobes with deeper sinuses. Using a map-based cloning strategy, we cloned the L2 locus gene, which encodes a LATE MERISTEM IDENTITY 1 (LMI1)-like transcription factor (GhOKRA). Silencing GhOKRA leads to a change in phenotype from okra to broad leaf. Overexpression of GhOKRA in Arabidopsis thaliana greatly increases the degree of the leaf lobes and changes the leaf shape. Premature termination of translation in GhOKRA results in the production of broad leaves. The sequences of OKRA from diploid progenitor D-genome species, and wild races and domesticated allotetraploid cottons in Gossypium hirsutum show that a premature termination mutation occurred before and after the formation of tetraploid cotton, respectively. This study provides genomic insights into the two interspecific hybridization events: one produced the present broad leaf and another formed okra leaf phenotype with complete OKRA, that occurred during allotetraploid cotton formation. Copyright © 2016 by the Genetics Society of America.

  17. Positive regulation of corneal type V collagen mRNA: analysis by chicken-human heterokaryon formation.

    Science.gov (United States)

    Linsenmayer, T F; Igoe, F; Gibney, E; Gordon, M K; Birk, D E

    1996-10-10

    Our previous studies have suggested that type V collagen is at least one factor responsible for the characteristically small, uniform diameter of striated collagen fibrils of the corneal stroma. These fibrils, which are heterotypic combinations of collagen types I and V, contain four- to fivefold more type V collagen than those of tendon and sclera. The latter are much larger and more heterodisperse. This high content of type V collagen in cornea is reflected by an equally elevated content of alpha1(V) chain mRNA in corneal fibroblasts. Thus, the increased production of the molecule in cornea appears to be regulated at the level of transcription and/or mRNA stability. One possible explanation for this is that corneal fibroblasts contain positive regulatory factors that specifically upregulate transcription of the type V collagen genes and/or increase their mRNA stability. To test this possibility, we have produced transient heterokaryons by fusing chicken corneal fibroblasts with two human noncorneal cell lines selected as containing little if any alpha1(V) mRNA. If the chicken corneal cells contain positive regulators that can act across species, these regulators should result in increased levels of the human alpha1(V) transcript. The results were evaluated by reverse transcript-polymerase chain reaction employing a primer pair selected for its ability specifically to amplify part of the human alpha1(V) mRNA. In fusions between chicken corneal fibroblasts and the human cell lines, after a lag of 10-14 h the heterokaryon-containing cultures showed de novo appearance or upregulation of human alpha1(V) chain mRNA, compared with that of the parental cell lines. Cultures of the mixed cell types that had not been fused showed no such upregulation, so the effect was not mediated by diffusible substances acting between the cells. Chicken tendon fibroblasts, a low producer of type V collagen, when tested in the same assay, evoked no detectible increase in the human

  18. Biotic and abiotic regulation of resting spore formation in vivo of obligate aphid pathogen Pandora nouryi: modeling analysis and biological implication.

    Science.gov (United States)

    Zhou, Xiang; Feng, Ming-Guang

    2010-02-01

    Entomophthoralean fungus Pandora nouryi is an obligate aphid pathogen that enables to produce resting spores (azygospores) for surviving host absence. To explore possible mechanisms involved in the regulation of resting spore formation in vivo, host cohorts consisting of 40-60 nymphs of green peach aphid Myzus persicae produced within 24h on cabbage leaf discs in petri dishes were exposed to spore showers of P. nouryi at the concentrations (C) from a very few to nearly 2000 conidia/mm(2) and then reared for 7-11 days at the regimes of 10-25 degrees C (T) and 8-16 h daylight (H(L)) or ambient (17.5+/-3.1 degrees C, 13:11 L:D). Aphid mortalities observed from 35-83 cohorts (showered separately) at each regime showed typical sigmoid trend and fit well a general logistic equation (0.79formation on the spore concentration. The effects of T and H(L) on P over C were well elucidated by the fitted modified logistic equations P=0.578/{1+exp[1.710-(0.136-0.0053T)C]} and P=0.534/{1+exp[1.639+(0.034-0.0053H(L))C]} (both r(2)=0.79). Our results highlight that the resting spore formation in vivo of P. nouryi is regulated primarily by the concentration of host-infecting conidia discharged from cadavers and facilitated by lower temperature and longer daylight. (c) 2009 Elsevier Inc. All rights reserved.

  19. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?

    Science.gov (United States)

    Fusconi, Anna

    2014-01-01

    Arbuscular mycorrhizae (AMs) form a widespread root-fungus symbiosis that improves plant phosphate (Pi) acquisition and modifies the physiology and development of host plants. Increased branching is recognized as a general feature of AM roots, and has been interpreted as a means of increasing suitable sites for colonization. Fungal exudates, which are involved in the dialogue between AM fungi and their host during the pre-colonization phase, play a well-documented role in lateral root (LR) formation. In addition, the increased Pi content of AM plants, in relation to Pi-starved controls, as well as changes in the delivery of carbohydrates to the roots and modulation of phytohormone concentration, transport and sensitivity, are probably involved in increasing root system branching. This review discusses the possible causes of increased branching in AM plants. The differential root responses to Pi, sugars and hormones of potential AM host species are also highlighted and discussed in comparison with those of the non-host Arabidopsis thaliana. Fungal exudates are probably the main compounds regulating AM root morphogenesis during the first colonization steps, while a complex network of interactions governs root development in established AMs. Colonization and high Pi act synergistically to increase root branching, and sugar transport towards the arbusculated cells may contribute to LR formation. In addition, AM colonization and high Pi generally increase auxin and cytokinin and decrease ethylene and strigolactone levels. With the exception of cytokinins, which seem to regulate mainly the root:shoot biomass ratio, these hormones play a leading role in governing root morphogenesis, with strigolactones and ethylene blocking LR formation in the non-colonized, Pi-starved plants, and auxin inducing them in colonized plants, or in plants grown under high Pi conditions.

  20. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?

    Science.gov (United States)

    Fusconi, Anna

    2014-01-01

    Background Arbuscular mycorrhizae (AMs) form a widespread root–fungus symbiosis that improves plant phosphate (Pi) acquisition and modifies the physiology and development of host plants. Increased branching is recognized as a general feature of AM roots, and has been interpreted as a means of increasing suitable sites for colonization. Fungal exudates, which are involved in the dialogue between AM fungi and their host during the pre-colonization phase, play a well-documented role in lateral root (LR) formation. In addition, the increased Pi content of AM plants, in relation to Pi-starved controls, as well as changes in the delivery of carbohydrates to the roots and modulation of phytohormone concentration, transport and sensitivity, are probably involved in increasing root system branching. Scope This review discusses the possible causes of increased branching in AM plants. The differential root responses to Pi, sugars and hormones of potential AM host species are also highlighted and discussed in comparison with those of the non-host Arabidopsis thaliana. Conclusions Fungal exudates are probably the main compounds regulating AM root morphogenesis during the first colonization steps, while a complex network of interactions governs root development in established AMs. Colonization and high Pi act synergistically to increase root branching, and sugar transport towards the arbusculated cells may contribute to LR formation. In addition, AM colonization and high Pi generally increase auxin and cytokinin and decrease ethylene and strigolactone levels. With the exception of cytokinins, which seem to regulate mainly the root:shoot biomass ratio, these hormones play a leading role in governing root morphogenesis, with strigolactones and ethylene blocking LR formation in the non-colonized, Pi-starved plants, and auxin inducing them in colonized plants, or in plants grown under high Pi conditions. PMID:24227446

  1. The Formation of Accounting Policies for Processing Enterprises in the Context of Adaptation of National Regulations to the International Standards of Accounting and Reporting

    Directory of Open Access Journals (Sweden)

    Rozheliuk Viktoriia M.

    2017-04-01

    Full Text Available The article defines principles for preparation of accounting policies using both domestic and foreign experience, generalizes scientific and theoretical approaches, and improves the wordings of the concept of «accounting policy». The feasibility of conducting a preliminary assessment of efficiency of organizational activities through the use of the criteria generalized in the accounting policy has been substantiated, the legal and regulatory levels have been highlighted, taking into consideration the existing legislation. The procedure for determining the accounting policy parameters and directions has been disclosed, requirements to the formation of accounting policy have been defined, influencing of factors on its formation in market conditions has been researched. Recommendations for the main sections of the accounting policy order in the processing enterprise have been formulated, a list of parts of the accounting policy order has been determined, taking into consideration the organization and technology of the working process of processing enterprises in the circumstances of market economy. A comparison of international and national regulations on the formation of accounting policies for the market-based enterprises has been carried out.

  2. ARX regulates cortical intermediate progenitor cell expansion and upper layer neuron formation through repression of Cdkn1c.

    Science.gov (United States)

    Colasante, Gaia; Simonet, Jacqueline C; Calogero, Raffaele; Crispi, Stefania; Sessa, Alessandro; Cho, Ginam; Golden, Jeffrey A; Broccoli, Vania

    2015-02-01

    Mutations in the Aristaless-related homeobox (ARX) gene are found in a spectrum of epilepsy and X-linked intellectual disability disorders. During development Arx is expressed in pallial ventricular zone (VZ) progenitor cells where the excitatory projection neurons of the cortex are born. Arx(-/Y) mice were shown to have decreased proliferation in the cortical VZ resulting in smaller brains; however, the basis for this reduced proliferation was not established. To determine the role of ARX on cell cycle dynamics in cortical progenitor cells, we generated cerebral cortex-specific Arx mouse mutants (cKO). The loss of pallial Arx resulted in the reduction of cortical progenitor cells, particularly the proliferation of intermediate progenitor cells (IPCs) was affected. Later in development and postnatally cKO brains showed a reduction of upper layer but not deeper layer neurons consistent with the IPC defect. Transcriptional profile analysis of E14.5 Arx-ablated cortices compared with control revealed that CDKN1C, an inhibitor of cell cycle progression, is overexpressed in the cortical VZ and SVZ of Arx KOs throughout corticogenesis. We also identified ARX as a direct regulator of Cdkn1c transcription. Together these data support a model where ARX regulates the expansion of cortical progenitor cells through repression of Cdkn1c. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Defining an EPOR- regulated transcriptome for primary progenitors, including Tnfr-sf13c as a novel mediator of EPO- dependent erythroblast formation.

    Directory of Open Access Journals (Sweden)

    Seema Singh

    Full Text Available Certain concepts concerning EPO/EPOR action modes have been challenged by in vivo studies: Bcl-x levels are elevated in maturing erythroblasts, but not in their progenitors; truncated EPOR alleles that lack a major p85/PI3K recruitment site nonetheless promote polycythemia; and Erk1 disruption unexpectedly bolsters erythropoiesis. To discover novel EPO/EPOR action routes, global transcriptome analyses presently are applied to interrogate EPO/EPOR effects on primary bone marrow-derived CFUe-like progenitors. Overall, 160 EPO/EPOR target transcripts were significantly modulated 2-to 21.8-fold. A unique set of EPO-regulated survival factors included Lyl1, Gas5, Pim3, Pim1, Bim, Trib3 and Serpina 3g. EPO/EPOR-modulated cell cycle mediators included Cdc25a, Btg3, Cyclin-d2, p27-kip1, Cyclin-g2 and CyclinB1-IP-1. EPO regulation of signal transduction factors was also interestingly complex. For example, not only Socs3 plus Socs2 but also Spred2, Spred1 and Eaf1 were EPO-induced as negative-feedback components. Socs2, plus five additional targets, further proved to comprise new EPOR/Jak2/Stat5 response genes (which are important for erythropoiesis during anemia. Among receptors, an atypical TNF-receptor Tnfr-sf13c was up-modulated >5-fold by EPO. Functionally, Tnfr-sf13c ligation proved to both promote proerythroblast survival, and substantially enhance erythroblast formation. The EPOR therefore engages a sophisticated set of transcriptome response circuits, with Tnfr-sf13c deployed as one novel positive regulator of proerythroblast formation.

  4. Proper actin ring formation and septum constriction requires coordinated regulation of SIN and MOR pathways through the germinal centre kinase MST-1.

    Science.gov (United States)

    Heilig, Yvonne; Dettmann, Anne; Mouriño-Pérez, Rosa R; Schmitt, Kerstin; Valerius, Oliver; Seiler, Stephan

    2014-04-01

    Nuclear DBF2p-related (NDR) kinases constitute a functionally conserved protein family of eukaryotic regulators that control cell division and polarity. In fungi, they function as effector kinases of the morphogenesis (MOR) and septation initiation (SIN) networks and are activated by pathway-specific germinal centre (GC) kinases. We characterized a third GC kinase, MST-1, that connects both kinase cascades. Genetic and biochemical interactions with SIN components and life cell imaging identify MST-1 as SIN-associated kinase that functions in parallel with the GC kinase SID-1 to activate the SIN-effector kinase DBF-2. SID-1 and MST-1 are both regulated by the upstream SIN kinase CDC-7, yet in an opposite manner. Aberrant cortical actomyosin rings are formed in Δmst-1, which resulted in mis-positioned septa and irregular spirals, indicating that MST-1-dependent regulation of the SIN is required for proper formation and constriction of the septal actomyosin ring. However, MST-1 also interacts with several components of the MOR network and modulates MOR activity at multiple levels. MST-1 functions as promiscuous enzyme and also activates the MOR effector kinase COT-1 through hydrophobic motif phosphorylation. In addition, MST-1 physically interacts with the MOR kinase POD-6, and dimerization of both proteins inactivates the GC kinase hetero-complex. These data specify an antagonistic relationship between the SIN and MOR during septum formation in the filamentous ascomycete model Neurospora crassa that is, at least in part, coordinated through the GC kinase MST-1. The similarity of the SIN and MOR pathways to the animal Hippo and Ndr pathways, respectively, suggests that intensive cross-communication between distinct NDR kinase modules may also be relevant for the homologous NDR kinases of higher eukaryotes.

  5. Pancreatic amylase is an environmental signal for regulation of biofilm formation and host interaction in Campylobacter jejuni.

    Science.gov (United States)

    Jowiya, Waheed; Brunner, Katja; Abouelhadid, Sherif; Hussain, Haitham A; Nair, Sean P; Sadiq, Sohaib; Williams, Lisa K; Trantham, Emma K; Stephenson, Holly; Wren, Brendan W; Bajaj-Elliott, Mona; Cogan, Tristan A; Laws, Andrew P; Wade, Jim; Dorrell, Nick; Allan, Elaine

    2015-12-01

    Campylobacter jejuni is a commensal bacterium in the intestines of animals and birds and a major cause of food-borne gastroenteritis in humans worldwide. Here we show that exposure to pancreatic amylase leads to secretion of an α-dextran by C. jejuni and that a secreted protease, Cj0511, is required. Exposure of C. jejuni to pancreatic amylase promotes biofilm formation in vitro, increases interaction with human epithelial cell lines, increases virulence in the Galleria mellonella infection model, and promotes colonization of the chicken ileum. We also show that exposure to pancreatic amylase protects C. jejuni from stress conditions in vitro, suggesting that the induced α-dextran may be important during transmission between hosts. This is the first evidence that pancreatic amylase functions as an interkingdom signal in an enteric microorganism. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. The cAMP-PKA Signaling Pathway Regulates Pathogenicity, Hyphal Growth, Appressorial Formation, Conidiation, and Stress Tolerance in Colletotrichum higginsianum

    Directory of Open Access Journals (Sweden)

    Wenjun Zhu

    2017-07-01

    Full Text Available Colletotrichum higginsianum is an economically important pathogen that causes anthracnose disease in a wide range of cruciferous crops. Understanding the mechanisms of the cruciferous plant–C. higginsianum interactions will be important in facilitating efficient control of anthracnose diseases. The cAMP-PKA signaling pathway plays important roles in diverse physiological processes of multiple pathogens. C. higginsianum contains two genes, ChPKA1 and ChPKA2, that encode the catalytic subunits of cyclic AMP (cAMP-dependent protein kinase A (PKA. To analyze the role of cAMP signaling pathway in pathogenicity and development in C. higginsianum, we characterized ChPKA1 and ChPKA2 genes, and adenylate cyclase (ChAC gene. The ChPKA1 and ChAC deletion mutants were unable to cause disease and significantly reduced in hyphal growth, tolerance to cell wall inhibitors, conidiation, and appressorial formation with abnormal germ tubes, but they had an increased tolerance to elevated temperatures and exogenous H2O2. In contrast, the ChPKA2 mutant had no detectable alteration of phenotypes, suggesting that ChPKA1 contributes mainly to PKA activities in C. higginsianum. Moreover, we failed to generate ΔChPKA1ChPKA2 double mutant, indicating that deletion of both PKA catalytic subunits is lethal in C. higginsianum and the two catalytic subunits possibly have overlapping functions. These results indicated that ChPKA1 is the major PKA catalytic subunit in cAMP-PKA signaling pathway and plays significant roles in hyphal growth, pathogenicity, appressorial formation, conidiation, and stress tolerance in C. higginsianum.

  7. Cellular control of abscess formation: role of T cells in the regulation of abscesses formed in response to Bacteroides fragilis.

    Science.gov (United States)

    Shapiro, M E; Kasper, D L; Zaleznik, D F; Spriggs, S; Onderdonk, A B; Finberg, R W

    1986-07-01

    Although abscesses are a major sequela of infection, little is known about which cellular events initiate and which prevent this pathologic response. These studies are the first to indicate a role for T cells in the important pathogenic process of abscess development and also in immunity to abscesses induced by Bacteroides fragilis. We have shown that T cells initiate the formation of abscesses in mice after i.p. challenge with B. fragilis. These T cells bear both Ly-1 and Ly-2 surface markers. Nude mice (which have been shown by others to have T cell or T cell precursors) are also able to form abscesses. Cyclophosphamide-treated mice (with depressed T cell function) were not capable of developing abscesses. Reconstitution with normal or nude mouse spleen cells restored this ability. However, reconstitution with anti-Thy-1.2-treated, anti-Ly-1, or anti-Ly-2-treated spleen cells (or a mixture of the two cell populations) failed to allow abscess formation after bacterial challenge. Immunity to abscesses caused by B. fragilis requires two T cells. The first Ly-1-2+ T cell has an IJ surface marker and has been shown to release a small m.w. soluble factor (ITF) that is antigen specific. Immunity to abscesses, however, depends on the interaction of ITF with a second Ly-1-2+ T cell, demonstrated in reconstitution experiments with nude mice. The data presented document a critical role for T cells in abscess induction and suggest the existence of a suppressor-like T cell circuit in immunity to abscesses.

  8. The histone H3K9 methylation and RNAi pathways regulate normalnucleolar and repeated DNA organization by inhibiting formation ofextrachromosomal DNAs

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C.; Karpen, Gary H.

    2006-06-15

    In order to identify regulators of nuclear organization, Drosophila mutants in the Su(var)3-9 histone H3K9 methyltransferase, RNAi pathway components, and other regulators of heterochromatin-mediated gene silencing were examined for altered nucleoli and positioning of repeated DNAs. Animals lacking components of the H3K9 methylation and RNAi pathways contained disorganized nucleoli, ribosomal DNA (rDNA) and satellite DNAs. The levels of H3K9 dimethylation (H3K9me2) in chromatin associated with repeated DNAs decreased dramatically in Su(var)3-9 and dcr-2 (dicer-2) mutant tissues compared to wild type. We also observed a substantial increase in extrachromosomal repeated DNAs in mutant tissues. The disorganized nucleolus phenotype depends on the presence of Ligase 4 (Lig4), and ecc DNA formation is not induced by removal of cohesin. We conclude that H3K9 methylation of rDNA and satellites, maintained by Su(var)3-9, HP1, and the RNAi pathway, is necessary for the structural stability of repeated DNAs, which is mediated through suppression of non-homologous end joining (NHEJ). These results suggest a mechanism for how local chromatin structure can regulate genome stability, and the organization of chromosomal elements and nuclear organelles.

  9. Bordetella pertussis fim3 gene regulation by BvgA: phosphorylation controls the formation of inactive vs. active transcription complexes.

    Science.gov (United States)

    Boulanger, Alice; Moon, Kyung; Decker, Kimberly B; Chen, Qing; Knipling, Leslie; Stibitz, Scott; Hinton, Deborah M

    2015-02-10

    Two-component systems [sensor kinase/response regulator (RR)] are major tools used by microorganisms to adapt to environmental conditions. RR phosphorylation is typically required for gene activation, but few studies have addressed how and if phosphorylation affects specific steps during transcription initiation. We characterized transcription complexes made with RNA polymerase and the Bordetella pertussis RR, BvgA, in its nonphosphorylated or phosphorylated (BvgA∼P) state at P(fim3), the promoter for the virulence gene fim3 (fimbrial subunit), using gel retardation, potassium permanganate and DNase I footprinting, cleavage reactions with protein conjugated with iron bromoacetamidobenzyl-EDTA, and in vitro transcription. Previous work has shown that the level of nonphosphorylated BvgA remains high in vivo under conditions in which BvgA is phosphorylated. Our results here indicate that surprisingly both BvgA and BvgA∼P form open and initiating complexes with RNA polymerase at P(fim3). However, phosphorylation of BvgA is needed to generate the correct conformation that can transition to competent elongation. Footprints obtained with the complexes made with nonphosphorylated BvgA are atypical; while the initiating complex with BvgA synthesizes short RNA, it does not generate full-length transcripts. Extended incubation of the BvgA/RNA polymerase initiated complex in the presence of heparin generates a stable, but defective species that depends on the initial transcribed sequence of fim3. We suggest that the presence of nonphosphorylated BvgA down-regulates P(fim3) activity when phosphorylated BvgA is present and may allow the bacterium to quickly adapt to the loss of inducing conditions by rapidly eliminating P(fim3) activation once the signal for BvgA phosphorylation is removed.

  10. Campylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation

    Directory of Open Access Journals (Sweden)

    Fields Joshua A

    2012-10-01

    Full Text Available Abstract Background Although Campylobacter jejuni is consistently ranked as one of the leading causes of bacterial diarrhea worldwide, the mechanisms by which C. jejuni causes disease and how they are regulated have yet to be clearly defined. The global regulator, CsrA, has been well characterized in several bacterial genera and is known to regulate a number of independent pathways via a post transcriptional mechanism, but remains relatively uncharacterized in the genus Campylobacter. Previously, we reported data illustrating the requirement for CsrA in several virulence related phenotypes of C. jejuni strain 81–176, indicating that the Csr pathway is important for Campylobacter pathogenesis. Results We compared the Escherichia coli and C. jejuni orthologs of CsrA and characterized the ability of the C. jejuni CsrA protein to functionally complement an E. coli csrA mutant. Phylogenetic comparison of E. coli CsrA to orthologs from several pathogenic bacteria demonstrated variability in C. jejuni CsrA relative to the known RNA binding domains of E. coli CsrA and in several amino acids reported to be involved in E. coli CsrA-mediated gene regulation. When expressed in an E. coli csrA mutant, C. jejuni CsrA succeeded in recovering defects in motility, bi