WorldWideScience

Sample records for boundaries regulates formation

  1. Regulating health: transcending disciplinary boundaries.

    Science.gov (United States)

    Seddon, Toby

    2013-03-01

    Health and health care problems can be addressed from multiple disciplinary perspectives. This raises challenges for how to do cross-disciplinary scholarship in ways that are still robust, rigorous and coherent. This paper sets out one particular approach to cross-cutting research--regulation--which has proved extremely fertile for scholars working in diverse fields, from coal mine safety to tax compliance. The first part of the paper considers how regulatory ideas might be applied to health and health care research in general. The second part goes on to sketch out how a regulation perspective on one specific area, illicit drug policy, can open up new directions for research. In conclusion, a future research agenda is outlined for regulatory scholarship on health and health care.

  2. Spark formation as a moving boundary process

    Science.gov (United States)

    Ebert, Ute

    2006-03-01

    The growth process of spark channels recently becomes accessible through complementary methods. First, I will review experiments with nanosecond photographic resolution and with fast and well defined power supplies that appropriately resolve the dynamics of electric breakdown [1]. Second, I will discuss the elementary physical processes as well as present computations of spark growth and branching with adaptive grid refinement [2]. These computations resolve three well separated scales of the process that emerge dynamically. Third, this scale separation motivates a hierarchy of models on different length scales. In particular, I will discuss a moving boundary approximation for the ionization fronts that generate the conducting channel. The resulting moving boundary problem shows strong similarities with classical viscous fingering. For viscous fingering, it is known that the simplest model forms unphysical cusps within finite time that are suppressed by a regularizing condition on the moving boundary. For ionization fronts, we derive a new condition on the moving boundary of mixed Dirichlet-Neumann type (φ=ɛnφ) that indeed regularizes all structures investigated so far. In particular, we present compact analytical solutions with regularization, both for uniformly translating shapes and for their linear perturbations [3]. These solutions are so simple that they may acquire a paradigmatic role in the future. Within linear perturbation theory, they explicitly show the convective stabilization of a curved front while planar fronts are linearly unstable against perturbations of arbitrary wave length. [1] T.M.P. Briels, E.M. van Veldhuizen, U. Ebert, TU Eindhoven. [2] C. Montijn, J. Wackers, W. Hundsdorfer, U. Ebert, CWI Amsterdam. [3] B. Meulenbroek, U. Ebert, L. Schäfer, Phys. Rev. Lett. 95, 195004 (2005).

  3. Notch-dependent epithelial fold determines boundary formation between developmental fields in the Drosophila antenna.

    Science.gov (United States)

    Ku, Hui-Yu; Sun, Y Henry

    2017-07-01

    Compartment boundary formation plays an important role in development by separating adjacent developmental fields. Drosophila imaginal discs have proven valuable for studying the mechanisms of boundary formation. We studied the boundary separating the proximal A1 segment and the distal segments, defined respectively by Lim1 and Dll expression in the eye-antenna disc. Sharp segregation of the Lim1 and Dll expression domains precedes activation of Notch at the Dll/Lim1 interface. By repressing bantam miRNA and elevating the actin regulator Enable, Notch signaling then induces actomyosin-dependent apical constriction and epithelial fold. Disruption of Notch signaling or the actomyosin network reduces apical constriction and epithelial fold, so that Dll and Lim1 cells become intermingled. Our results demonstrate a new mechanism of boundary formation by actomyosin-dependent tissue folding, which provides a physical barrier to prevent mixing of cells from adjacent developmental fields.

  4. Boundary-induced pattern formation from uniform temporal oscillation

    Science.gov (United States)

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2018-04-01

    Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.

  5. Vortex Formation During Unsteady Boundary-Layer Separation

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    Unsteady laminar boundary-layer separation is invariably accompanied by the formation of vortices. The aim of the present work is to study the vortex formation mechanism(s). An adverse pressure gradient causing a separation can be decomposed into a spatial component ( spatial variation of the velocity external to the boundary layer ) and a temporal component ( temporal variation of the external velocity ). Experiments were conducted in a piston driven 2-D water channel, where the spatial component could be be contolled by geometry and the temporal component by the piston motion. We present results for three divergent channel geometries. The piston motion consists of three phases: constant acceleration from start, contant velocity, and constant deceleration to stop. Depending on the geometry and piston motion we observe different types of unsteady separation and vortex formation.

  6. ON A PARABOLIC FREE BOUNDARY EQUATION MODELING PRICE FORMATION

    KAUST Repository

    MARKOWICH, P. A.

    2009-10-01

    We discuss existence and uniqueness of solutions for a one-dimensional parabolic evolution equation with a free boundary. This problem was introduced by Lasry and Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in-time-extension of the local solution which is closely related to the regularity of the free boundary. We also present numerical results. © 2009 World Scientific Publishing Company.

  7. ON A PARABOLIC FREE BOUNDARY EQUATION MODELING PRICE FORMATION

    KAUST Repository

    MARKOWICH, P. A.; MATEVOSYAN, N.; PIETSCHMANN, J.-F.; WOLFRAM, M.-T.

    2009-01-01

    We discuss existence and uniqueness of solutions for a one-dimensional parabolic evolution equation with a free boundary. This problem was introduced by Lasry and Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in-time-extension of the local solution which is closely related to the regularity of the free boundary. We also present numerical results. © 2009 World Scientific Publishing Company.

  8. Formation of intra-island grain boundaries in pentacene monolayers.

    Science.gov (United States)

    Zhang, Jian; Wu, Yu; Duhm, Steffen; Rabe, Jürgen P; Rudolf, Petra; Koch, Norbert

    2011-12-21

    To assess the formation of intra-island grain boundaries during the early stages of pentacene film growth, we studied sub-monolayers of pentacene on pristine silicon oxide and silicon oxide with high pinning centre density (induced by UV/O(3) treatment). We investigated the influence of the kinetic energy of the impinging molecules on the sub-monolayer growth by comparing organic molecular beam deposition (OMBD) and supersonic molecular beam deposition (SuMBD). For pentacene films fabricated by OMBD, higher pentacene island-density and higher polycrystalline island density were observed on UV/O(3)-treated silicon oxide as compared to pristine silicon oxide. Pentacene films deposited by SuMBD exhibited about one order of magnitude lower island- and polycrystalline island densities compared to OMBD, on both types of substrates. Our results suggest that polycrystalline growth of single islands on amorphous silicon oxide is facilitated by structural/chemical surface pinning centres, which act as nucleation centres for multiple grain formation in a single island. Furthermore, the overall lower intra-island grain boundary density in pentacene films fabricated by SuMBD reduces the number of charge carrier trapping sites specific to grain boundaries and should thus help achieving higher charge carrier mobilities, which are advantageous for their use in organic thin-film transistors.

  9. Regulation of Reactionary Dentine Formation.

    Science.gov (United States)

    Neves, V C M; Sharpe, P T

    2018-04-01

    During the treatment of dental caries that has not penetrated the tooth pulp, maintenance of as much unaffected dentine as possible is a major goal during the physical removal of decayed mineral. Damage to dentine leads to release of fossilized factors (transforming growth factor-β [TGF-β] and bone morphogenic protein [BMP]) in the dentine that are believed to stimulate odontoblasts to secrete new "tertiary" dentine (reactionary dentine). This is formed on the pulpal surface of existing dentine and rethickens the dentine. We have previously shown that activation of Wnt/β-catenin signaling is pivotal for tooth repair in exposed pulp injury, and the pathway can be activated by small-molecule GSK-3 antagonists, resulting in enhanced reparative dentine formation. Here, we use a nonexposed pulp injury model to investigate the mechanisms of reactionary dentine formation in vivo, using small molecules to modulate the Wnt/β-catenin, TGF-β, and BMP pathways. We found that a local increase of Wnt activation at the injury site enhances reactionary dentine secretion. In addition, inhibition of TGF-β, BMP, or Wnt pathways does not impede reactionary dentine formation, although inhibition of TGF-β and/or BMP signaling does result in more disorganized, nontubular reactionary dentine. This suggests that Wnt/β-catenin signaling plays no major role in the formation of reactionary dentine, but in common with reparative dentine formation, exogenous elevation of Wnt/β-catenin signaling can enhance tertiary dentine formation. Release of latent TGF-β or BMPs from dentine is not required for the deposition of mineral to form reactionary dentine but does play a role in its organization.

  10. New Theories on Boundary Layer Transition and Turbulence Formation

    Directory of Open Access Journals (Sweden)

    Chaoqun Liu

    2012-01-01

    Full Text Available This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.

  11. Swan Queen, shipping, and boundary regulation in fandom

    Directory of Open Access Journals (Sweden)

    Victoria M. Gonzalez

    2016-09-01

    Full Text Available There are a number of fan activities and practices that are subject to regulation. The mechanisms of regulation in shipping, however, are not always clear. Shipping, the fan activity of romantically pairing two fictional characters, has become a popular and contentious facet of fan interaction. The case that will be examined in this article is that of the Swan Queen ship, which pairs two female characters from Once Upon a Time (2011–. The lengths that fans have gone to support and promote this ship led to rather intense discussion and infighting among members of the Once Upon a Time fandom. I utilize comments and posts made on Tumblr to examine the mechanisms that dictate inclusion and exclusion in shipper communities. In doing so, I hope to identify the kinds of shipper activities that are subject to regulation and the kinds of boundaries that this regulation establishes. Shipping is dictated not only by fans' imaginations but also by boundaries that are performed and regulated on digital forums.

  12. HOW GALACTIC ENVIRONMENT REGULATES STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Meidt, Sharon E. [Max-Planck-Institut für Astronomie/Königstuhl 17 D-69117 Heidelberg (Germany)

    2016-02-10

    In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itself inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.

  13. Formation of the wave compressional boundary in the earth's foreshock

    Science.gov (United States)

    Skadron, George; Holdaway, Robert D.; Lee, Martin A.

    1988-01-01

    Using an evolutionary model and allowing for nonuniform proton injection and wave growth rates, the compressional wave boundaries corresponding to IMF inclinations to the solar wind of theta(BV) equal to 45 and 25 deg were located. The compressional boundaries deduced from this model were found to support the results of Greenstadt and Baum (1986) who have concluded that the observed compressional boundaries are incompatible with wave growth at a fixed growth rate, due to the interaction of a uniform beam with the solar wind. The results indicate, however, that the compressional boundaries are quite compatible with nonuniform beams and growth rates which result from the coupled evolution of the energetic protons and the waves with which they interact. It was found that, in the solar wind frame, the dominant wave-particle interaction in the outer foreshock is the damping of inward propagating (toward the shock) left-polarized waves, producing a magnetically quiet region immediately downstream of the foreshock boundary.

  14. Formation of the wave compressional boundary in the earth's foreshock

    International Nuclear Information System (INIS)

    Skadron, G.; Holdaway, R.D.; Lee, M.A.

    1988-01-01

    The authors analyze the interaction between energetic protons and hydromagnetic waves in the Earth's ion foreshock and locate compressional wave boundaries corresponding to interplanetary magnetic field (IMF) inclinations to the solar wind of θ BV equal to 45 degree and 25 degree. Protons injected into the solar wind at the bow shock interact with MHD waves traveling along the IMF lines intersecting the shock. Starting with the quasi-linear pitch angle diffusion equation, they obtain fluid equations for the densities and mean velocities of outward and inward streaming energetic protons. The excitation and damping of waves by these protons are described by linear growth rates for parallel propagation and evaluated using a model proton distribution function controlled by the local fluid variables. The coupled equations for the evolution of the wave intensities, proton densities, and mean velocities are solved numerically assuming a prescribed proton injection rate at the shock. They find that in the solar wind frame, (1) the dominant wave-particle interaction in the outer foreshock is the damping of inward propagating (toward the shock) left-polarized waves, producing a magnetically quiet region immediately downstream of the foreshock boundary; (2) excitation of outward propagating right-polarized waves farther downstream leads to the recovery of δ|B| and to an upstream boundary for enhanced compressional wave activity; (3) at θ BV = 45 degree, the calculated compressional boundary has a mean inclination of 78 degree from the Earth-Sun axis, compared with the observed range of 85 degree ± 3 degree

  15. Maori intellectual property rights and the formation of ethnic boundaries

    NARCIS (Netherlands)

    Meijl, A.H.M. van

    2009-01-01

    This article questions and contextualizes the emergence of a discourse of intellectual property rights in Māori society. It is argued that Māori claims regarding intellectual property function primarily to demarcate ethnic boundaries between Māori and non-Māori. Māori consider the reinforcement of

  16. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    DEFF Research Database (Denmark)

    Lauros, J.; Sogachev, Andrey; Smolander, S.

    2011-01-01

    the atmospheric boundary layer during nucleation event days shows a highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated the suitability of our turbulent mixing scheme in reproducing the most important characteristics of particle dynamics...... within the boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles...

  17. Mushroom bodies regulate habit formation in Drosophila.

    Science.gov (United States)

    Brembs, Björn

    2009-08-25

    To make good decisions, we evaluate past choices to guide later decisions. In most situations, we have the opportunity to simultaneously learn about both the consequences of our choice (i.e., operantly) and the stimuli associated with correct or incorrect choices (i.e., classically). Interestingly, in many species, including humans, these learning processes occasionally lead to irrational decisions. An extreme case is the habitual drug user consistently administering the drug despite the negative consequences, but we all have experience with our own, less severe habits. The standard animal model employs a combination of operant and classical learning components to bring about habit formation in rodents. After extended training, these animals will press a lever even if the outcome associated with lever-pressing is no longer desired. In this study, experiments with wild-type and transgenic flies revealed that a prominent insect neuropil, the mushroom bodies (MBs), regulates habit formation in flies by inhibiting the operant learning system when a predictive stimulus is present. This inhibition enables generalization of the classical memory and prevents premature habit formation. Extended training in wild-type flies produced a phenocopy of MB-impaired flies, such that generalization was abolished and goal-directed actions were transformed into habitual responses.

  18. Parabolic Free Boundary Price Formation Models Under Market Size Fluctuations

    KAUST Repository

    Markowich, Peter A.

    2016-10-04

    In this paper we propose an extension of the Lasry-Lions price formation model which includes uctuations of the numbers of buyers and vendors. We analyze the model in the case of deterministic and stochastic market size uctuations and present results on the long time asymptotic behavior and numerical evidence and conjectures on periodic, almost periodic, and stochastic uctuations. The numerical simulations extend the theoretical statements and give further insights into price formation dynamics.

  19. Stacking fault tetrahedra formation in the neighbourhood of grain boundaries

    CERN Document Server

    Samaras, M; Van Swygenhoven, H; Victoria, M

    2003-01-01

    Large scale molecular dynamics computer simulations are performed to study the role of the grain boundary (GB) during the cascade evolution in irradiated nanocrystalline Ni. At all primary knock-on atom (PKA) energies in cascades near GBs, the damage produced after cooling down is vacancy dominated. Truncated stacking fault tetrahedra (TSFTs) are easily formed at 10 keV and higher PKA energies. At the higher energies a complex partial dislocation network forms, consisting of TSFTs. The GB acts as an interstitial sink without undergoing major structural changes.

  20. Boundary conditions for the formation of the Moon

    NARCIS (Netherlands)

    Reuver, Maarten; de Meijer, R. J.; ten Kate, I. L.; van Westrenen, W.

    Recent measurements of the chemical and isotopic composition of lunar samples indicate that the Moon's bulk composition shows great similarities with the composition of the silicate Earth. Moon formation models that attempt to explain these similarities make a wide variety of assumptions about the

  1. Parabolic Free Boundary Price Formation Models Under Market Size Fluctuations

    KAUST Repository

    Markowich, Peter A.; Teichmann, Josef; Wolfram, Marie Therese

    2016-01-01

    In this paper we propose an extension of the Lasry-Lions price formation model which includes uctuations of the numbers of buyers and vendors. We analyze the model in the case of deterministic and stochastic market size uctuations and present

  2. Trickle-down boundary conditions in aeolian dune-field pattern formation

    Science.gov (United States)

    Ewing, R. C.; Kocurek, G.

    2015-12-01

    One the one hand, wind-blown dune-field patterns emerge within the overarching boundary conditions of climate, tectonics and eustasy implying the presence of these signals in the aeolian geomorphic and stratigraphic record. On the other hand, dune-field patterns are a poster-child of self-organization, in which autogenic processes give rise to patterned landscapes despite remarkable differences in the geologic setting (i.e., Earth, Mars and Titan). How important are climate, tectonics and eustasy in aeolian dune field pattern formation? Here we develop the hypothesis that, in terms of pattern development, dune fields evolve largely independent of the direct influence of 'system-scale' boundary conditions, such as climate, tectonics and eustasy. Rather, these boundary conditions set the stage for smaller-scale, faster-evolving 'event-scale' boundary conditions. This 'trickle-down' effect, in which system-scale boundary conditions indirectly influence the event scale boundary conditions provides the uniqueness and richness of dune-field patterned landscapes. The trickle-down effect means that the architecture of the stratigraphic record of dune-field pattern formation archives boundary conditions, which are spatially and temporally removed from the overarching geologic setting. In contrast, the presence of an aeolian stratigraphic record itself, reflects changes in system-scale boundary conditions that drive accumulation and preservation of aeolian strata.

  3. On a price formation free boundary model by Lasry and Lions

    KAUST Repository

    Caffarelli, Luis A.

    2011-06-01

    We discuss global existence and asymptotic behaviour of a price formation free boundary model introduced by Lasry and Lions in 2007. Our results are based on a construction which transforms the problem into the heat equation with specially prepared initial datum. The key point is that the free boundary present in the original problem becomes the zero level set of this solution. Using the properties of the heat operator we can show global existence, regularity and asymptotic results of the free boundary. 2011 Académie des sciences.

  4. On a price formation free boundary model by Lasry and Lions

    KAUST Repository

    Caffarelli, Luis A.; Markowich, Peter A.; Pietschmann, Jan-F.

    2011-01-01

    We discuss global existence and asymptotic behaviour of a price formation free boundary model introduced by Lasry and Lions in 2007. Our results are based on a construction which transforms the problem into the heat equation with specially prepared initial datum. The key point is that the free boundary present in the original problem becomes the zero level set of this solution. Using the properties of the heat operator we can show global existence, regularity and asymptotic results of the free boundary. 2011 Académie des sciences.

  5. Nanocomposites with thermosetting matrix: structure formation at the interphase boundary

    Directory of Open Access Journals (Sweden)

    KOROLEV Evgenij Valerjevich

    2014-06-01

    Full Text Available Composites with thermosetting matrix are often characterized by elevated values of operational properties – flexural and compressive strength, resistance to aggressive environments, etc. At the same time the cost of most thermosets (particularly – epoxy resins is quite high. Because of this the area of application of polymer composites in construction is limited. One of such application is the creation of multifunctional coatings. The high cost of resin dictates the need to improve the operational properties to ensure economic efficiency. So far, the known way to improve the operational properties is to produce nanoscale interfacial layer between fine filler and matrix in block. This way proved to be effective, but mechanism of the improvement is still uncertain. There areat least two different theories – so-called «adhesion theory» and «theory of deformable layer». The investigation is complicated by the variety of oligomers, hardeners (crosslinking agents and precursors of nanomodifiers. It is becoming more common lately to use adducts of aliphatic amines and epoxy oligomers as hardeners. As precursors of nanomodifiers the organosilicon compounds with siloxane bond in the main chain can be successfully used. In this paper we present results of investigation of a model system comprised of oligomer, crosslinking agent and precursor. The analysis of structure is carried out by means of Raman spectroscopy and atomic force microscopy. It is shown that at gelation point modifier has no significant effect on the chemical composition of the curing products; nevertheless, the admixture of modifier reduces the regularity of the emerging three-dimensional spatial net of thermoset. After completion of curing process the irregular spatial grid is still present. This indicates that in composites admixture of organosilicon precursors may lead to the formation of transition layer with reduced modulus of elasticity. Such layer, in turn, causes stress

  6. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    Science.gov (United States)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  7. Numerical Simulation on a Possible Formation Mechanism of Interplanetary Magnetic Cloud Boundaries

    Science.gov (United States)

    Fan, Quan-Lin; Wei, Feng-Si; Feng, Xue-Shang

    2003-08-01

    The formation mechanism of the interplanetary magnetic cloud (MC) boundaries is numerically investigated by simulating the interactions between an MC of some initial momentum and a local interplanetary current sheet. The compressible 2.5D MHD equations are solved. Results show that the magnetic reconnection process is a possible formation mechanism when an MC interacts with a surrounding current sheet. A number of interesting features are found. For instance, the front boundary of the MCs is a magnetic reconnection boundary that could be caused by a driven reconnection ahead of the cloud, and the tail boundary might be caused by the driving of the entrained flow as a result of the Bernoulli principle. Analysis of the magnetic field and plasma data demonstrates that at these two boundaries appear large value of the plasma parameter β, clear increase of plasma temperature and density, distinct decrease of magnetic magnitude, and a transition of magnetic field direction of about 180 degrees. The outcome of the present simulation agrees qualitatively with the observational results on MC boundary inferred from IMP-8, etc. The project supported by National Natural Science Foundation of China under Grant Nos. 40104006, 49925412, and 49990450

  8. MHD flow layer formation at boundaries of magnetic islands in tokamak plasmas

    International Nuclear Information System (INIS)

    Jiaqi Dong; Yongxing Long; Zongze Mou; Jinhua Zhang

    2005-01-01

    Non-linear development of double tearing modes induced by electron viscosity is numerically simulated. MHD flow layers are demonstrated to merge in the development of the modes. The sheared flows are shown to lie just at the boundaries of the magnetic islands, and to have sufficient levels required for internal transport barrier (ITB) formation. Possible correlation between the layer formation and triggering of experimentally observed ITBs, preferentially formed in proximities of rational flux surfaces of low safety factors, is discussed. (author)

  9. Formation of incoherent deformation twin boundaries in a coarse-grained Al-7Mg alloy

    Science.gov (United States)

    Jin, S. B.; Zhang, K.; Bjørge, R.; Tao, N. R.; Marthinsen, K.; Lu, K.; Li, Y. J.

    2015-08-01

    Deformation twinning has rarely been observed in coarse grained Al and its alloys except under some extreme conditions such as ultrahigh deformation strain or strain rates. Here, we report that a significant amount of Σ3 deformation twins could be generated in a coarse-grained Al-7 Mg alloy by dynamic plastic deformation (DPD). A systematic investigation of the Σ3 boundaries shows that they are Σ3{112} type incoherent twin boundaries (ITBs). These ITBs have formed by gradual evolution from copious low-angle deformation bands through -twist Σ boundaries by lattice rotation. These findings provide an approach to generate deformation twin boundaries in high stacking fault energy metallic alloys. It is suggested that high solution content of Mg in the alloy and the special deformation mode of DPD played an important role in formation of the Σ and ITBs.

  10. New-particle formation events in a continental boundary layer: first results from the SATURN experiment

    Directory of Open Access Journals (Sweden)

    F. Stratmann

    2003-01-01

    Full Text Available During the SATURN experiment, which took place from 27 May to 14 June 2002, new particle formation in the continental boundary layer was investigated. Simultaneous ground-based and tethered-balloon-borne measurements were performed, including meteorological parameters, particle number concentrations and size distributions, gaseous precursor concentrations and SODAR and LIDAR observations. Newly formed particles were observed inside the residual layer, before the break-up process of the nocturnal inversion, and inside the mixing layer throughout the break-up of the nocturnal inversion and during the evolution of the planetary boundary layer.

  11. Formative Justice: The Regulative Principle of Education

    Science.gov (United States)

    McClintock, Robert

    2016-01-01

    Background/Context: Concepts of justice relevant to making personal and public decisions about education. Purpose: To clarify a concept of formative justice that persons and the public often ignore in making decisions about educational effort. Setting: "The windmills of your mind" Research Design: Reflective essay.…

  12. Transcriptional regulation of Drosophila gonad formation.

    Science.gov (United States)

    Tripathy, Ratna; Kunwar, Prabhat S; Sano, Hiroko; Renault, Andrew D

    2014-08-15

    The formation of the Drosophila embryonic gonad, involving the fusion of clusters of somatic gonadal precursor cells (SGPs) and their ensheathment of germ cells, provides a simple and genetically tractable model for the interplay between cells during organ formation. In a screen for mutants affecting gonad formation we identified a SGP cell autonomous role for Midline (Mid) and Longitudinals lacking (Lola). These transcriptional factors are required for multiple aspects of SGP behaviour including SGP cluster fusion, germ cell ensheathment and gonad compaction. The lola locus encodes more than 25 differentially spliced isoforms and we have identified an isoform specific requirement for lola in the gonad which is distinct from that in nervous system development. Mid and Lola work in parallel in gonad formation and surprisingly Mid overexpression in a lola background leads to additional SGPs at the expense of fat body cells. Our findings support the idea that although the transcription factors required by SGPs can ostensibly be assigned to those being required for either SGP specification or behaviour, they can also interact to impinge on both processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Epigenetic Regulation of Memory Formation and Maintenance

    Science.gov (United States)

    Zovkic, Iva B.; Guzman-Karlsson, Mikael C.; Sweatt, J. David

    2013-01-01

    Understanding the cellular and molecular mechanisms underlying the formation and maintenance of memories is a central goal of the neuroscience community. It is well regarded that an organism's ability to lastingly adapt its behavior in response to a transient environmental stimulus relies on the central nervous system's capability for structural…

  14. An experimental study of low Re cavity vortex formation embedded in a laminar boundary layer

    Science.gov (United States)

    Gautam, Sashank; Lang, Amy; Wilroy, Jacob

    2016-11-01

    Laminar boundary layer flow across a grooved surface leads to the formation of vortices inside rectangular cavities. The nature and stability of the vortex inside any single cavity is determined by the Re and cavity geometry. According to the hypothesis, under low Re and stable vortex conditions a single cavity vortex leads to a roller-bearing effect which results in a decrease in drag as quantified by velocity profiles measured within the boundary layer. At higher Re once the vortex becomes unstable, drag should increase due to the mixing of low-momentum fluid within the cavity and the outer boundary layer flow. The primary objective of this experiment is to document the phenomenon using DPIV in a tow tank facility. This study focuses on the transition of the cavity flow from a steady to an unsteady state as the Re is increased above a critical value. The change in boundary layer momentum and cavity vortex characteristics are documented as a function of Re and boundary layer thickness. Funding from NSF CBET fluid dynamics Grant 1335848 is gratefully acknowledged.

  15. Breaking boundaries in academic publishing: launching a new format for scholarly research

    Directory of Open Access Journals (Sweden)

    Hazel Newton

    2013-03-01

    Full Text Available As technology in publishing moves forward, the boundaries of scholarly content are changing. The community has already seen changing business models and now traditional formats such as the monograph and the journal article are being evaluated. Talk of a renewed demand for the mid-form output has been growing in recent years and 2012 saw the launch of Palgrave Pivot, an innovative format for scholarly research. This initiative was conceived after a programme of research carried out by Palgrave Macmillan, which identified the unmet needs of researchers in scholarly publishing.

  16. Formation and Regulation of Mitochondrial Membranes

    Directory of Open Access Journals (Sweden)

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  17. The Role of Boundary Spanners in the Formation of Customer Attractiveness

    DEFF Research Database (Denmark)

    Hald, Kim Sundtoft

    2012-01-01

    This paper examines the question of how to understand the formation of suppliers perceived customer attractiveness. It argues that existing conceptualization of buyer–supplier relationships are too simplistic to understand the full complexity involved in the formation of such perceptions......, and models the buyer–supplier relationship as a set of micro-dyads and intra-, inter-organizational exchange relationships. In exploring these micro-dyads this research apply an embedded case study approach and explores three buyer–supplier relationships. Following Bacharach et al. [Bacharach, S...... of action” is deployed. The analysis demonstrates how suppliers' formation of perceptions related to customer attractiveness can be understood as constituted through a set of discrete historical means/ends alignments and misalignments between boundary spanning roles in the involved organizations....

  18. Dynamics of ordering processes in annealed dilute systems: Island formation, vacancies at domain boundaries, and compactification

    DEFF Research Database (Denmark)

    Shah, Peter Jivan; Mouritsen, Ole G.

    1990-01-01

    The dynamics of the ordering processes in two-dimensional lattice models with annealed vacancies and nonconserved order parameter is studied as a function of temperature and vacancy concentration by means of Monte Carlo temperature-quenching simulations. The models are Ising antiferromagnets...... with couplings leading to twofold-degenerate as well as fourfold-degenerate ordering. The models are quenched into a phase-separation region, which makes it possible for both types of ordering to observe the following scenario of ordering processes: (i) early-time nucleation and growth of ordered domains, (ii......) intermediate-time trapping of the mobile vacancies at the domain boundaries, and (iii) late-time diffusion of vacancies along the domain-boundary network towards the surface. In the case of high dilution, the ordering processes correspond to early-time island formation and late-time coarsening...

  19. Boundaries and opportunities: comparing slave family formation in the antebellum South.

    Science.gov (United States)

    Pargas, Damian Alan

    2008-07-01

    Our understanding of the marriage strategies and family formation of enslaved people remains clouded by disagreement among contemporary scholars. A perusal of the historical literature suggests that two issues lay at the root of this disagreement: First, scholars disagree over the extent to which slave family life was shaped by the external factors of slavery, or rather slave agency; and second, scholars appear reluctant to abandon their singular views of the slave family. This article addresses both of these gaps by formulating a middle ground in the slave agency debate and by redefining the slave family in plural form. An analysis of the boundaries and opportunities for family formation in northern Virginia and lowcountry South Carolina, this study shows that while the establishment of co-residential two-parent households was the ideal for slaves, not all were able to realize that ideal, and those that could not adapted their marriage strategies and family lives accordingly.

  20. PKCalpha regulates platelet granule secretion and thrombus formation in mice.

    Science.gov (United States)

    Konopatskaya, Olga; Gilio, Karen; Harper, Matthew T; Zhao, Yan; Cosemans, Judith M E M; Karim, Zubair A; Whiteheart, Sidney W; Molkentin, Jeffery D; Verkade, Paul; Watson, Steve P; Heemskerk, Johan W M; Poole, Alastair W

    2009-02-01

    Platelets are central players in atherothrombosis development in coronary artery disease. The PKC family provides important intracellular mechanisms for regulating platelet activity, and platelets express several members of this family, including the classical isoforms PKCalpha and PKCbeta and novel isoforms PKCdelta and PKCtheta. Here, we used a genetic approach to definitively demonstrate the role played by PKCalpha in regulating thrombus formation and platelet function. Thrombus formation in vivo was attenuated in Prkca-/- mice, and PKCalpha was required for thrombus formation in vitro, although this PKC isoform did not regulate platelet adhesion to collagen. The ablation of in vitro thrombus formation in Prkca-/- platelets was rescued by the addition of ADP, consistent with the key mechanistic finding that dense-granule biogenesis and secretion depend upon PKCalpha expression. Furthermore, defective platelet aggregation in response to either collagen-related peptide or thrombin could be overcome by an increase in agonist concentration. Evidence of overt bleeding, including gastrointestinal and tail bleeding, was not seen in Prkca-/- mice. In summary, the effects of PKCalpha ablation on thrombus formation and granule secretion may implicate PKCalpha as a drug target for antithrombotic therapy.

  1. Leptin regulates bone formation via the sympathetic nervous system

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  2. INSIDE-OUT PLANET FORMATION. III. PLANET–DISK INTERACTION AT THE DEAD ZONE INNER BOUNDARY

    International Nuclear Information System (INIS)

    Hu, Xiao; Tan, Jonathan C.; Chatterjee, Sourav; Zhu, Zhaohuan

    2016-01-01

    The Kepler mission has discovered more than 4000 exoplanet candidates. Many of them are in systems with tightly packed inner planets. Inside-out planet formation (IOPF) has been proposed as a scenario to explain these systems. It involves sequential in situ planet formation at the local pressure maximum of a retreating dead zone inner boundary (DZIB). Pebbles accumulate at this pressure trap, which builds up a pebble ring and then a planet. The planet is expected to grow in mass until it opens a gap, which helps to both truncate pebble accretion and also induce DZIB retreat that sets the location of formation of the next planet. This simple scenario may be modified if the planet undergoes significant migration from its formation location. Thus, planet–disk interactions play a crucial role in the IOPF scenario. Here we present numerical simulations that first assess the degree of migration for planets of various masses that are forming at the DZIB of an active accretion disk, where the effective viscosity is undergoing a rapid increase in the radially inward direction. We find that torques exerted on the planet by the disk tend to trap the planet at a location very close to the initial pressure maximum where it formed. We then study gap opening by these planets to assess at what mass a significant gap is created. Finally, we present a simple model for DZIB retreat due to penetration of X-rays from the star to the disk midplane. Overall, these simulations help to quantify both the mass scale of first (“Vulcan”) planet formation and the orbital separation to the location of second planet formation

  3. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Floss, Daniela S; Levy, Julien G; Lévesque-Tremblay, Véronique; Pumplin, Nathan; Harrison, Maria J

    2013-12-17

    Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.

  4. Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells

    Directory of Open Access Journals (Sweden)

    Guillaume van Niel

    2015-10-01

    Full Text Available Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms.

  5. Nogo receptor 1 regulates formation of lasting memories

    Science.gov (United States)

    Karlén, Alexandra; Karlsson, Tobias E.; Mattsson, Anna; Lundströmer, Karin; Codeluppi, Simone; Pham, Therese M.; Bäckman, Cristina M.; Ögren, Sven Ove; Åberg, Elin; Hoffman, Alexander F.; Sherling, Michael A.; Lupica, Carl R.; Hoffer, Barry J.; Spenger, Christian; Josephson, Anna; Brené, Stefan; Olson, Lars

    2009-01-01

    Formation of lasting memories is believed to rely on structural alterations at the synaptic level. We had found that increased neuronal activity down-regulates Nogo receptor-1 (NgR1) in brain regions linked to memory formation and storage, and postulated this to be required for formation of lasting memories. We now show that mice with inducible overexpression of NgR1 in forebrain neurons have normal long-term potentiation and normal 24-h memory, but severely impaired month-long memory in both passive avoidance and swim maze tests. Blocking transgene expression normalizes these memory impairments. Nogo, Lingo-1, Troy, endogenous NgR1, and BDNF mRNA expression levels were not altered by transgene expression, suggesting that the impaired ability to form lasting memories is directly coupled to inability to down-regulate NgR1. Regulation of NgR1 may therefore serve as a key regulator of memory consolidation. Understanding the molecular underpinnings of synaptic rearrangements that carry lasting memories may facilitate development of treatments for memory dysfunction. PMID:19915139

  6. New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events.

    Science.gov (United States)

    Liu, Quan; Jia, Xingcan; Quan, Jiannong; Li, Jiayun; Li, Xia; Wu, Yongxue; Chen, Dan; Wang, Zifa; Liu, Yangang

    2018-04-17

    Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. Here, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; the increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.

  7. Formation of magnetic filaments at the boundaries of the magnetospheres of solar system planets

    International Nuclear Information System (INIS)

    Zelenyj, L.M.; Kuznetsova, M.M.

    1988-01-01

    The theory of localized spontaneous reconnection at the boundaries of the magnetospheres of solar-system planets with strong intrinsic magnetic field is given in the paper. Such forms of reconnection (flux transfer events - FTE) resulting in formation of magnetic filaments are observed by sattelites near the magnetosphgeres of Mercury, Earth and Jupiter. The physical factors controlling the temporal and spatial scales of this phenomenon in dependence on the distance from the Sun (the parameters of the solar wind) and the planetary magnetic dipole moment are discussed. the theoretical estimates of characteristic diameters of magnetic filaments λE ∼ 5000 km, λM ∼ 500 km, λJ ∼ 13000 km for the Earth, Mercury and Jupiter agree satisfactorily with the experimental data. In conclusion, the typical FTE parameters for Saturn and some other astrophysical objects are evaluated

  8. Black-hole-regulated star formation in massive galaxies.

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  9. Black-hole-regulated star formation in massive galaxies

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  10. GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Tan, Jonathan C. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Christie, Duncan [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Collins, David, E-mail: ben.wu@nao.ac.jp [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2017-06-01

    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three-dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation subgrid models. Two such models are explored: (1) “Density-Regulated,” i.e., fixed efficiency per free-fall time above a set density threshold and (2) “Magnetically Regulated,” i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMC collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between the non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial substructure and more disturbed kinematics.

  11. Self-regulating star formation and disk structure

    International Nuclear Information System (INIS)

    Dopita, M.A.

    1987-01-01

    Star formation processes determine the disk structure of galaxies. Stars heavier than about 1 solar mass determine the chemical evolution of the system and are produced at a rate which maintains (by the momentum input of the stars) the phase structure, pressure, and vertical velocity dispersion of the gas. Low mass stars are produced quiescently within molecular clouds, and their associated T-Tauri winds maintain the support of molecular clouds and regulate the star formation rate. Inefficient cooling suppresses this mode of star formation at low metallicity. Applied to the solar neighborhood, such a model can account for age/metallicity relationships, the increase in the O/Fe ratio at low metallicity, the paucity of metal-poor G and K dwarf stars, the missing mass in the disk and, possibly, the existence of a metal-poor thick disk. For other galaxies, it accounts for constant w-velocity dispersion of the gas, the relationship between gas content and specific rates of star formation, the surface brightness/metallicity relationship and for the shallow radial gradients in both star formation rates and HI content. 71 references

  12. Boundary layer new particle formation over East Antarctic sea ice – possible Hg-driven nucleation?

    Directory of Open Access Journals (Sweden)

    R. S. Humphries

    2015-12-01

    Full Text Available Aerosol observations above the Southern Ocean and Antarctic sea ice are scarce. Measurements of aerosols and atmospheric composition were made in East Antarctic pack ice on board the Australian icebreaker Aurora Australis during the spring of 2012. One particle formation event was observed during the 32 days of observations. This event occurred on the only day to exhibit extended periods of global irradiance in excess of 600 W m−2. Within the single air mass influencing the measurements, number concentrations of particles larger than 3 nm (CN3 reached almost 7700 cm−3 within a few hours of clouds clearing, and grew at rates of 5.6 nm h−1. Formation rates of 3 nm particles were in the range of those measured at other Antarctic locations at 0.2–1.1 ± 0.1 cm−3 s−1. Our investigations into the nucleation chemistry found that there were insufficient precursor concentrations for known halogen or organic chemistry to explain the nucleation event. Modelling studies utilising known sulfuric acid nucleation schemes could not simultaneously reproduce both particle formation or growth rates. Surprising correlations with total gaseous mercury (TGM were found that, together with other data, suggest a mercury-driven photochemical nucleation mechanism may be responsible for aerosol nucleation. Given the very low vapour pressures of the mercury species involved, this nucleation chemistry is likely only possible where pre-existing aerosol concentrations are low and both TGM concentrations and solar radiation levels are relatively high (∼ 1.5 ng m−3 and ≥ 600 W m−2, respectively, such as those observed in the Antarctic sea ice boundary layer in this study or in the global free troposphere, particularly in the Northern Hemisphere.

  13. Homeostatic regulation of meiotic DSB formation by ATM/ATR

    International Nuclear Information System (INIS)

    Cooper, Tim J.; Wardell, Kayleigh; Garcia, Valerie; Neale, Matthew J.

    2014-01-01

    Ataxia–telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed

  14. Homeostatic regulation of meiotic DSB formation by ATM/ATR

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Tim J.; Wardell, Kayleigh; Garcia, Valerie; Neale, Matthew J., E-mail: m.neale@sussex.ac.uk

    2014-11-15

    Ataxia–telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.

  15. Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern US pine plantations.

    Science.gov (United States)

    Manoli, Gabriele; Domec, Jean-Christophe; Novick, Kimberly; Oishi, Andrew Christopher; Noormets, Asko; Marani, Marco; Katul, Gabriel

    2016-06-01

    Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m-2 per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the southern United States will alter key aspects of the hydrologic cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible (Hs) and latent heat (LE) and large-scale, slowly evolving free atmospheric temperature and water vapor content are known to be first-order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero-order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem Hs and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudy-cloudless regimes at the land surface are regulated by a nonlinear relation between the Bowen ratio Bo=Hs/LE and root-zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such nonlinearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the

  16. Von Willebrand factor regulation of blood vessel formation.

    Science.gov (United States)

    Randi, Anna M; Smith, Koval E; Castaman, Giancarlo

    2018-06-04

    Several important physiological processes, from permeability to inflammation to haemostasis, take place at the vessel wall and are regulated by endothelial cells (EC). Thus, proteins that have been identified as regulators of one process are increasingly found to be involved in other vascular functions. Such is the case for Von Willebrand Factor (VWF), a large glycoprotein best known for its critical role in haemostasis. In vitro and in vivo studies have shown that lack of VWF causes enhanced vascularisation, both constitutively and following ischemia. This evidence is supported by studies on blood outgrowth endothelial cells (BOEC) from patients with lack of VWF synthesis (type 3 von Willebrand disease [VWD]). The molecular pathways are likely to involve VWF binding partners, such as integrin αvβ3, and components of Weibel Palade bodies (WPB), such as Angiopoietin-2 and Galectin-3, whose storage is regulated by VWF; these converge on the master regulator of angiogenesis and endothelial homeostasis, vascular endothelial growth factor (VEGF) signalling. Recent studies suggest that the roles of VWF may be tissue-specific. The ability of VWF to regulate angiogenesis has clinical implications for a subset of VWD patients with severe, intractable gastrointestinal bleeding due to vascular malformations. In this article, we review the evidence showing that VWF is involved in blood vessel formation, discuss the role of VWF high molecular weight multimers in regulating angiogenesis, and the value of studies on BOEC in developing a precision medicine approach to validate novel treatments for angiodysplasia in congenital VWD and acquired von Willebrand syndrome. Copyright © 2018 American Society of Hematology.

  17. A Test of the Interstellar Boundary EXplorer Ribbon Formation in the Outer Heliosheath

    Energy Technology Data Exchange (ETDEWEB)

    Gamayunov, Konstantin V.; Rassoul, Hamid [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Heerikhuisen, Jacob, E-mail: kgamayunov@fit.edu [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-08-10

    NASA’s Interstellar Boundary EXplorer ( IBEX ) mission is imaging energetic neutral atoms (ENAs) propagating to Earth from the outer heliosphere and local interstellar medium (LISM). A dominant feature in all ENA maps is a ribbon of enhanced fluxes that was not predicted before IBEX . While more than a dozen models of the ribbon formation have been proposed, consensus has gathered around the so-called secondary ENA model. Two classes of secondary ENA models have been proposed; the first class assumes weak scattering of the energetic pickup protons in the LISM, and the second class assumes strong but spatially localized scattering. Here we present a numerical test of the “weak scattering” version of the secondary ENA model using our gyro-averaged kinetic model for the evolution of the phase-space distribution of protons in the outer heliosheath. As input for our test, we use distributions of the primary ENAs from our MHD-plasma/kinetic-neutral model of the heliosphere-LISM interaction. The magnetic field spectrum for the large-scale interstellar turbulence and an upper limit for the amplitude of small-scale local turbulence (SSLT) generated by protons are taken from observations by Voyager 1 in the LISM. The hybrid simulations of energetic protons are also used to set the bounding wavenumbers for the spectrum of SSLT. Our test supports the “weak scattering” version. This makes an additional solid step on the way to understanding the origin and formation of the IBEX ribbon and thus to improving our understanding of the interaction between the heliosphere and the LISM.

  18. Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation

    Science.gov (United States)

    Li, Mingming; Zhong, Shijie; Olson, Peter

    2018-04-01

    The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.

  19. Regulation of Memory Formation by the Transcription Factor XBP1

    Directory of Open Access Journals (Sweden)

    Gabriela Martínez

    2016-02-01

    Full Text Available Contextual memory formation relies on the induction of new genes in the hippocampus. A polymorphism in the promoter of the transcription factor XBP1 was identified as a risk factor for Alzheimer’s disease and bipolar disorders. XBP1 is a major regulator of the unfolded protein response (UPR, mediating adaptation to endoplasmic reticulum (ER stress. Using a phenotypic screen, we uncovered an unexpected function of XBP1 in cognition and behavior. Mice lacking XBP1 in the nervous system showed specific impairment of contextual memory formation and long-term potentiation (LTP, whereas neuronal XBP1s overexpression improved performance in memory tasks. Gene expression analysis revealed that XBP1 regulates a group of memory-related genes, highlighting brain-derived neurotrophic factor (BDNF, a key component in memory consolidation. Overexpression of BDNF in the hippocampus reversed the XBP1-deficient phenotype. Our study revealed an unanticipated function of XBP1 in cognitive processes that is apparently unrelated to its role in ER stress.

  20. Phosphoenolpyruvate phosphotransferase system components positively regulate Klebsiella biofilm formation

    Directory of Open Access Journals (Sweden)

    Yu-Tze Horng

    2018-04-01

    Full Text Available Background/Purpose: Klebsiella pneumoniae is one of the leading causes of device-related infections (DRIs, which are associated with attachment of bacteria to these devices to form a biofilm. The latter is composed of not only bacteria but also extracellular polymeric substances (EPSes consisting of extracellular DNAs, polysaccharides, and other macromolecules. The phosphoenolpyruvate (PEP:carbohydrate phosphotransferase system (PTS regulates diverse processes of bacterial physiology. In the genome of K. pneumoniae MGH 78578, we found an uncharacterized enzyme II complex homolog of PTS: KPN00353 (EIIA homolog, KPN00352 (EIIB homolog, and KPN00351 (EIIC homolog. The aim of this study was to characterize the potential physiological role of KPN00353, KPN00352, and KPN00351 in biofilm formation by K. pneumoniae. Methods/Results: We constructed the PTS mutants and recombinant strains carrying the gene(s of PTS. The recombinant K. pneumoniae strain overexpressing KPN00353–KPN00352–KPN00351 produced more extracellular matrix than did the vector control according to transmission and scanning electron microscopy. Judging by quantification of biofilm formation, of extracellular DNA (eDNA, and of capsular polysaccharide, the recombinant strain overexpressing KPN00353-KPN00352-KPN00351 produced more biofilm and capsular polysaccharide after overnight culture and more eDNA in the log phase as compared to the vector control. Conclusion: The genes, KPN00353–KPN00352–KPN00351, encode a putative enzyme II complex in PTS and positively regulate biofilm formation by enhancing production of eDNA and capsular polysaccharide in K. pneumoniae. Five proteins related to chaperones, to the citric acid cycle, and to quorum sensing are upregulated by the KPN00353–KPN00352–KPN00351 system. Keywords: Klebsiella, PTS, Biofilm, eDNA, Polysaccharide

  1. Regulation of invadopodia formation and activity by CD147

    Science.gov (United States)

    Grass, G. Daniel; Bratoeva, Momka; Toole, Bryan P.

    2012-01-01

    A defining feature of malignant tumor progression is cellular penetration through the basement membrane and interstitial matrices that separate various cellular compartments. Accumulating evidence supports the notion that invasive cells employ specialized structures termed invadopodia to breach these structural barriers. Invadopodia are actin-based, lipid-raft-enriched membrane protrusions containing membrane-type-1 matrix metalloproteinase (MT1-MMP; also known as matrix metalloproteinase 14; MMP14) and several signaling proteins. CD147 (emmprin, basigin), an immunoglobulin superfamily protein that is associated with tumor invasion and metastasis, induces the synthesis of various matrix metalloproteinases in many systems. In this study we show that upregulation of CD147 is sufficient to induce MT1-MMP expression, invasiveness and formation of invadopodia-like structures in non-transformed, non-invasive, breast epithelial cells. We also demonstrate that CD147 and MT1-MMP are in close proximity within these invadopodia-like structures and co-fractionate in membrane compartments with the properties of lipid rafts. Moreover, manipulation of CD147 levels in invasive breast carcinoma cells causes corresponding changes in MT1-MMP expression, invasiveness and invadopodia formation and activity. These findings indicate that CD147 regulates invadopodia formation and activity, probably through assembly of MT1-MMP-containing complexes within lipid-raft domains of the invadopodia. PMID:22389410

  2. Formation of a Boundary-Free Dust Cluster in a Low-Pressure Gas-Discharge Plasma

    International Nuclear Information System (INIS)

    Usachev, A. D.; Zobnin, A. V.; Petrov, O. F.; Fortov, V. E.; Annaratone, B. M.; Thoma, M. H.; Hoefner, H.; Kretschmer, M.; Fink, M.; Morfill, G. E.

    2009-01-01

    An attraction between negatively charged micron-sized plastic particles was observed in the bulk of a low-pressure gas-discharge plasma under microgravity conditions. This attraction had led to the formation of a boundary-free dust cluster, containing one big central particle with a radius of about 6 μm and about 30 1 μm-sized particles situated on a sphere with a radius of 190 μm and with the big particle in the center. The stability of this boundary-free dust cluster was possible due to its confinement by the plasma flux on the central dust particle

  3. One out of many? Boundary negotiation and identity formation in postmerger integration

    NARCIS (Netherlands)

    Drori, Israel; Wrzesniewski, Amy; Ellis, Shmuel

    2013-01-01

    This research investigates how boundaries are utilized during the postmerger integration process to influence the postmerger identity of the firm. We suggest that the boundaries that define the structures, practices, and values of firms prior to a merger become reinforced, contested, or revised in

  4. DNA methylation regulates neurophysiological spatial representation in memory formation

    Directory of Open Access Journals (Sweden)

    Eric D. Roth

    2015-04-01

    Full Text Available Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here, we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single-unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together, our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation.

  5. DNA methylation regulates neurophysiological spatial representation in memory formation.

    Science.gov (United States)

    Roth, Eric D; Roth, Tania L; Money, Kelli M; SenGupta, Sonda; Eason, Dawn E; Sweatt, J David

    2015-04-01

    Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation.

  6. A cytokine axis regulates elastin formation and degradation

    Science.gov (United States)

    Sproul, Erin P.; Argraves, W. Scott

    2013-01-01

    Underlying the dynamic regulation of tropoelastin expression and elastin formation in development and disease are transcriptional and post-transcriptional mechanisms that have been the focus of much research. Of particular importance is the cytokine–governed elastin regulatory axis in which the pro-elastogenic activities of transforming growth factor β-1 (TGFβ1) and insulin-like growth factor-I (IGF-I) are opposed by anti-elastogenic activities of basic fibroblast growth factor (bFGF/FGF-2), heparin-binding epidermal growth factor-like growth factor (HB-EGF), EGF, PDGF-BB, TGFα, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and noncanonical TGFβ1 signaling. A key mechanistic feature of the regulatory axis is that cytokines influence elastin formation through effects on the cell cycle involving control of cyclin–cyclin dependent kinase complexes and activation of the Ras/MEK/ERK signaling pathway. In this article we provide an overview of the major cytokines/growth factors that modulate elastogenesis and describe the underlying molecular mechanisms for their action on elastin production. PMID:23160093

  7. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing.

    Science.gov (United States)

    Hesketh, Mark; Sahin, Katherine B; West, Zoe E; Murray, Rachael Z

    2017-07-17

    Macrophages and inflammation play a beneficial role during wound repair with macrophages regulating a wide range of processes, such as removal of dead cells, debris and pathogens, through to extracellular matrix deposition re-vascularisation and wound re-epithelialisation. To perform this range of functions, these cells develop distinct phenotypes over the course of wound healing. They can present with a pro-inflammatory M1 phenotype, more often found in the early stages of repair, through to anti-inflammatory M2 phenotypes that are pro-repair in the latter stages of wound healing. There is a continuum of phenotypes between these ranges with some cells sharing phenotypes of both M1 and M2 macrophages. One of the less pleasant consequences of quick closure, namely the replacement with scar tissue, is also regulated by macrophages, through their promotion of fibroblast proliferation, myofibroblast differentiation and collagen deposition. Alterations in macrophage number and phenotype disrupt this process and can dictate the level of scar formation. It is also clear that dysregulated inflammation and altered macrophage phenotypes are responsible for hindering closure of chronic wounds. The review will discuss our current knowledge of macrophage phenotype on the repair process and how alterations in the phenotypes might alter wound closure and the final repair quality.

  8. RGM regulates BMP-mediated secondary axis formation in the sea anemone Nematostella vectensis.

    Science.gov (United States)

    Leclère, Lucas; Rentzsch, Fabian

    2014-12-11

    Patterning of the metazoan dorsoventral axis is mediated by a complex interplay of BMP signaling regulators. Repulsive guidance molecule (RGM) is a conserved BMP coreceptor that has not been implicated in axis specification. We show that NvRGM is a key positive regulator of BMP signaling during secondary axis establishment in the cnidarian Nematostella vectensis. NvRGM regulates first the generation and later the shape of a BMP-dependent Smad1/5/8 gradient with peak activity on the side opposite the NvBMP/NvRGM/NvChordin expression domain. Full knockdown of Smad1/5/8 signaling blocks the formation of endodermal structures, the mesenteries, and the establishment of bilateral symmetry, while altering the gradient through partial NvRGM or NvBMP knockdown shifts the boundaries of asymmetric gene expression and the positioning of the mesenteries along the secondary axis. These findings provide insight into the diversification of axis specification mechanisms and identify a previously unrecognized role for RGM in BMP-mediated axial patterning. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Effects of soot formation on shape of a nonpremixed laminar flame established in a shear boundary layer in microgravity

    International Nuclear Information System (INIS)

    Wang, H Y; Merino, J L Florenciano; Dagaut, P

    2011-01-01

    A numerical study was performed to give a quantitative description of a heavily sooting, nonpremixed laminar flame established in a shear boundary layer in microgravity. Controlling mechanisms of three dimensional flow, combustion, soot and radiation are coupled. Soot volume fraction were predicted by using three approaches, referred respectively to as the fuel, acetylene and PAH inception models. It is found that the PAH inception model, which is based on the formation of two and three-ringed aromatic species, reproduces correctly the experimental data from a laminar ethylene diffusion flame. The PAH inception model serves later to better understand flame quenching, flame stand-off distance and soot formation as a function of the dimensionless volume coefficient, defined as C q = V F /V ox where V F is the fuel injection velocity, and V ox air stream velocity. The present experiments showed that a blue unstable flame, negligible radiative feedback, may change to a yellow stable flame, significant radiative loss with an increase of C q ; this experimental trend was numerically reproduced. The flame quenching occurs at the trailing edge due to radiative heat loss which is significantly amplified by increasing V F or decreasing V ox , favouring soot formation. Along a semi-infinite fuel zone, the ratio, d f /d b , where d f is the flame standoff distance, and d b the boundary layer thickness, converges towards a constant value of 1.2, while soot resides always within the boundary layer far away from the flame sheet.

  10. Exploring bainite formation kinetics distinguishing grain-boundary and autocatalytic nucleation in high and low-Si steels

    International Nuclear Information System (INIS)

    Ravi, Ashwath M.; Sietsma, Jilt; Santofimia, Maria J.

    2016-01-01

    Bainite formation in steels begins with nucleation of bainitic ferrite at austenite grain boundaries (γ/γ interfaces). This leads to creation of bainitic ferrite/austenite interfaces (α/γ interfaces). Bainite formation continues through autocatalysis with nucleation of bainitic ferrite at these newly created α/γ interfaces. The displacive theory of bainite formation suggests that the formation of bainitic ferrite is accompanied by carbon enrichment of surrounding austenite. This carbon enrichment generally leads to carbide precipitation unless such a reaction is thermodynamically or kinetically unfavourable. Each bainitic ferrite nucleation event is governed by an activation energy. Depending upon the interface at which nucleation occurs, a specific activation energy would be related to a specific nucleation mechanism. On the basis of this concept, a model has been developed to understand the kinetics of bainite formation during isothermal treatments. This model is derived under the assumptions of displacive mechanism of bainite formation. The fitting parameters used in this model are physical entities related to nucleation and microstructural dimensions. The model is designed in such a way that the carbon redistribution during bainite formation is accounted for, leading to prediction of transformation kinetics both with and without of carbide precipitation during bainite formation. Furthermore, the model is validated using two different sets of kinetic data published in the literature.

  11. A statistical study of ionopause perturbation and associated boundary wave formation at Venus.

    Science.gov (United States)

    Chong, G. S.; Pope, S. A.; Walker, S. N.; Zhang, T.; Balikhin, M. A.

    2017-12-01

    In contrast to Earth, Venus does not possess an intrinsic magnetic field. Hence the interaction between solar wind and Venus is significantly different when compared to Earth, even though these two planets were once considered similar. Within the induced magnetosphere and ionosphere of Venus, previous studies have shown the existence of ionospheric boundary waves. These structures may play an important role in the atmospheric evolution of Venus. By using Venus Express data, the crossings of the ionopause boundary are determined based on the observations of photoelectrons during 2011. Pulses of dropouts in the electron energy spectrometer were observed in 92 events, which suggests potential perturbations of the boundary. Minimum variance analysis of the 1Hz magnetic field data for the perturbations is conducted and used to confirm the occurrence of the boundary waves. Statistical analysis shows that they were propagating mainly in the ±VSO-Y direction in the polar north terminator region. The generation mechanisms of boundary waves and their evolution into the potential nonlinear regime are discussed and analysed.

  12. Grain boundary corrosion and alteration phase formation during the oxidative dissolution of UO2 pellets

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Buck, E.C.; Bates, J.K.

    1996-01-01

    Alteration behavior of UO 2 pellets following reaction under unsaturated drip-test conditions at 90 C for up to 10 years was examined by solid phase and leachate analyses. Sample reactions were characterized by preferential dissolution of grain boundaries between the original press-sintered UO 2 granules comprising the samples, development of a polygonal network of open channels along the intergrain boundaries, and spallation of surface granules that had undergone severe grain boundary corrosion. The development of a dense mat of alteration phases after 2 years of reaction trapped loose granules, resulting in reduced rates of particulate U release. The paragenetic sequence of alteration phases that formed on the present samples was similar to that observed in surficial weathering zones of natural uraninite (UO 2 ) deposits, with alkali and alkaline earth uranyl silicates representing the long-term solubility-limiting phases for U in both systems

  13. Mechanical confinement regulates cartilage matrix formation by chondrocytes

    Science.gov (United States)

    Lee, Hong-Pyo; Gu, Luo; Mooney, David J.; Levenston, Marc E.; Chaudhuri, Ovijit

    2017-12-01

    Cartilage tissue equivalents formed from hydrogels containing chondrocytes could provide a solution for replacing damaged cartilage. Previous approaches have often utilized elastic hydrogels. However, elastic stresses may restrict cartilage matrix formation and alter the chondrocyte phenotype. Here we investigated the use of viscoelastic hydrogels, in which stresses are relaxed over time and which exhibit creep, for three-dimensional (3D) culture of chondrocytes. We found that faster relaxation promoted a striking increase in the volume of interconnected cartilage matrix formed by chondrocytes. In slower relaxing gels, restriction of cell volume expansion by elastic stresses led to increased secretion of IL-1β, which in turn drove strong up-regulation of genes associated with cartilage degradation and cell death. As no cell-adhesion ligands are presented by the hydrogels, these results reveal cell sensing of cell volume confinement as an adhesion-independent mechanism of mechanotransduction in 3D culture, and highlight stress relaxation as a key design parameter for cartilage tissue engineering.

  14. Formation of a three-dimensional plasma boundary after decay of the plasma response to resonant magnetic perturbation fields

    Science.gov (United States)

    Schmitz, O.; Evans, T. E.; Fenstermacher, M. E.; Lanctot, M. J.; Lasnier, C. L.; Mordijck, S.; Moyer, R. A.; Reimerdes, H.; the DIII-D Team

    2014-01-01

    First time experimental evidence is presented for a direct link between the decay of a n = 3 plasma response and the formation of a three-dimensional (3D) plasma boundary. We inspect a lower single-null L-mode plasma which first reacts at sufficiently high rotation with an ideal resonant screening response to an external toroidal mode number n = 3 resonant magnetic perturbation field. Decay of this response due to reduced bulk plasma rotation changes the plasma state considerably. Signatures such as density pump out and a spin up of the edge rotation—which are usually connected to formation of a stochastic boundary—are detected. Coincident, striation of the divertor single ionized carbon emission and a 3D emission structure in double ionized carbon at the separatrix is seen. The striated C II pattern follows in this stage the perturbed magnetic footprint modelled without a plasma response (vacuum approach). This provides for the first time substantial experimental evidence, that a 3D plasma boundary with direct impact on the divertor particle flux pattern is formed as soon as the internal plasma response decays. The resulting divertor structure follows the vacuum modelled magnetic field topology. However, the inward extension of the perturbed boundary layer can still not directly be determined from these measurements.

  15. LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes.

    Science.gov (United States)

    Takano, Tetsuya; Urushibara, Tomoki; Yoshioka, Nozomu; Saito, Taro; Fukuda, Mitsunori; Tomomura, Mineko; Hisanaga, Shin-Ichi

    2014-06-01

    Neurons extend two types of neurites-axons and dendrites-that differ in structure and function. Although it is well understood that the cytoskeleton plays a pivotal role in neurite differentiation and extension, the mechanisms by which membrane components are supplied to growing axons or dendrites is largely unknown. We previously reported that the membrane supply to axons is regulated by lemur kinase 1 (LMTK1) through Rab11A-positive endosomes. Here we investigate the role of LMTK1 in dendrite formation. Down-regulation of LMTK1 increases dendrite growth and branching of cerebral cortical neurons in vitro and in vivo. LMTK1 knockout significantly enhances the prevalence, velocity, and run length of anterograde movement of Rab11A-positive endosomes to levels similar to those expressing constitutively active Rab11A-Q70L. Rab11A-positive endosome dynamics also increases in the cell body and growth cone of LMTK1-deficient neurons. Moreover, a nonphosphorylatable LMTK1 mutant (Ser34Ala, a Cdk5 phosphorylation site) dramatically promotes dendrite growth. Thus LMTK1 negatively controls dendritic formation by regulating Rab11A-positive endosomal trafficking in a Cdk5-dependent manner, indicating the Cdk5-LMTK1-Rab11A pathway as a regulatory mechanism of dendrite development as well as axon outgrowth. © 2014 Takano et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Transition layers formation on the boundaries carbon fiber-copper dependence on the active additions

    International Nuclear Information System (INIS)

    Wlosinski, W.; Pietrzak, K.

    1993-01-01

    The basic problem connected with fabrication of carbon fiber-copper composites is to overcome the problem of low wettability of carbon fiber by copper. One of the possible solutions of that problem is to use the copper doped with active metals. The investigation results of transition layer forming on the phase boundary in the system have been discussed in respect of the kind and content of active elements added to the copper. 5 refs, 5 figs, 5 tabs

  17. Regulation of Neurospora Catalase-3 by global heterochromatin formation and its proximal heterochromatin region.

    Science.gov (United States)

    Wang, Yajun; Dong, Qing; Ding, Zhaolan; Gai, Kexin; Han, Xiaoyun; Kaleri, Farah Naz; He, Qun; Wang, Ying

    2016-10-01

    Catalase-3 (CAT-3) constitutes the main catalase activity in growing hyphae of Neurospora crassa, and its activity increases during exponential growth or is induced under different stress conditions. Although extensive progress has been made to identify catalase regulators, the regulation mechanism of CAT-3 at the chromatin level still remains unclear. Here, we aim at investigating the molecular regulation mechanisms of cat-3 at the chromatin level. We found that CAT-3 protein levels increased in mutants defective in proper global heterochromatin formation. Bioinformatics analysis identified a 5-kb AT-rich sequence adjacent to the cat-3 promoter as a heterochromatin region because of its enrichment of H3K9me3 and HP1. Expression of CAT-3 was induced by H 2 O 2 treatment in wild-type and such change occurred along with the accumulation of histone H3 acetylation at 5-kb heterochromatin boundaries and cat-3 locus, but without alteration of its H3K9me3 repressive modification. Moreover, disruption of 5-kb heterochromatin region results in elevated cat-3 expression, and higher levels of cat-3 expression were promoted by the combination with global heterochromatin defective mutants. Interestingly, the molecular weight and activity bands of CAT-3 protein are different in heterochromatin defective mutants compared with those in wild-type, suggesting that its N-terminal processing and modification may be altered. Our study indicates that the local chromatin structure creates a heterochromatin repressive environment to repress nearby gene expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. 20 CFR 626.2 - Format of the Job Training Partnership Act regulations.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Format of the Job Training Partnership Act regulations. 626.2 Section 626.2 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR INTRODUCTION TO THE REGULATIONS UNDER THE JOB TRAINING PARTNERSHIP ACT § 626.2 Format of the Job...

  19. Grain boundary characteristics and texture formation in a medium carbon steel during its austenitic decomposition in a high magnetic field

    International Nuclear Information System (INIS)

    Zhang, Y.D.; Esling, C.; Lecomte, J.S.; He, C.S.; Zhao, X.; Zuo, L.

    2005-01-01

    A 12-T magnetic field has been applied to a medium plain carbon steel during the diffusional decomposition of austenite and the effect of a high magnetic field on the distribution of misorientation angles, grain boundary characteristics and texture formation in the ferrite produced has been investigated. The results show that a high magnetic field can cause a considerable decrease in the frequency of low-angle misorientations and an increase in the occurrence of low Σ coincidence boundaries, in particular the Σ3 of ferrite. This may be attributed to the elevation in the transformation temperature caused by the magnetic field and, therefore, the reduction of the transformation stress. The wider temperature range for grain growth offers longer time to the less mobile Σ boundaries to enlarge their areas. Moreover, the magnetic field can enhance the transverse field-direction fiber ( parallel TFD). It can be assumed that the effects of the field were caused by the dipolar interaction between the magnetic moments of Fe atoms

  20. Interfacial wave theory of pattern formation in solidification dendrites, fingers, cells and free boundaries

    CERN Document Server

    Xu, Jian-Jun

    2017-01-01

    This comprehensive work explores interfacial instability and pattern formation in dynamic systems away from the equilibrium state in solidification and crystal growth. Further, this significantly expanded 2nd edition introduces and reviews the progress made during the last two decades. In particular, it describes the most prominent pattern formation phenomena commonly observed in material processing and crystal growth in the framework of the previously established interfacial wave theory, including free dendritic growth from undercooled melt, cellular growth and eutectic growth in directional solidification, as well as viscous fingering in Hele-Shaw flow. It elucidates the key problems, systematically derives their mathematical solutions by pursuing a unified, asymptotic approach, and finally carefully examines these results by comparing them with the available experimental results. The asymptotic approach described here will be useful for the investigation of pattern formation phenomena occurring in a much b...

  1. Formation of solid solutions on the boundary of zinc oxidezinc telluride heterojunction

    International Nuclear Information System (INIS)

    Tsurkan, A.E.; Buzhor, L.V.

    1987-01-01

    Distribution of ZnO x Te 1-x alloy composition on the interface of zinc oxide-zinc telluride heterojunction depending on the production conditions is investigated. A regularity in the formation of an extended area with constant alloy composition is detected. The regularity is explained by the fact that electric Peltier field conditioned by contact of two heterogeneous semiconductors participates in the solid solution formation process. Peltier field levels off the composition at the end length section. So, a possibility of creating a section with the assigned minor thickness alloy constant composition controlled in the interface of heterojunction occurs

  2. Operando formation of an ultra-low friction boundary film from synthetic magnesium silicon hydroxide additive

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Qiuying; Rudenko, Pavlo; Miller, Dean J.; Wen, Jianguo; Berman, Diana; Zhang, Yuepeng; Arey, Bruce; Zhu, Zihua; Erdemir, Ali

    2017-06-01

    The paper reports the operando and self-healing formation of DLC films at sliding contact surfaces by the addition of synthetic magnesium silicon hydroxide (MSH) nanoparticles to base oil. The formation of such films leads to a reduction of the coefficient of friction by nearly an order of magnitude and substantially reduces wear losses. The ultralow friction layer characterized by transmission electron microscope (TEM), electron energy loss spectroscopy (EELS), and Raman spectroscopy consists of amorphous DLC containing SiOx that forms in a continuous and self-repairing manner during operation. This environmentally benign and simple approach offers promise for significant advances in lubrication and reduced energy losses in engines and other mechanical systems.

  3. Contributions of the wall boundary layer to the formation of the counter-rotating vortex pair in transverse jets

    KAUST Repository

    SCHLEGEL, FABRICE; WEE, DAEHYUN; MARZOUK, YOUSSEF M.; GHONIEM, AHMED F.

    2011-01-01

    generation along the channel wall, captures unsteady interactions between the wall boundary layer and the jet - in particular, the separation of the wall boundary layer and its transport into the interior. For comparison, we also implement a reduced boundary

  4. Environmental conditions regulate the impact of plants on cloud formation.

    Science.gov (United States)

    Zhao, D F; Buchholz, A; Tillmann, R; Kleist, E; Wu, C; Rubach, F; Kiendler-Scharr, A; Rudich, Y; Wildt, J; Mentel, Th F

    2017-02-20

    The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate.

  5. Links Between the Deep Western Boundary Current, Labrador Sea Water Formation and Export, and the Meridional Overturning Circulation

    Science.gov (United States)

    Myers, Paul G.; Kulan, Nilgun

    2010-05-01

    Based on an isopyncal analysis of historical data, 3-year overlapping triad fields of objectively analysed temperature and salinity are produced for the Labrador Sea, covering 1949-1999. These fields are then used to spectrally nudge an eddy-permitting ocean general circulation model of the sub-polar gyre, otherwise forced by inter annually varying surface forcing based upon the Coordinated Ocean Reference Experiment (CORE). High frequency output from the reanalysis is used to examine Labrador Sea Water formation and its export. A number of different apprpoaches are used to estimate Labrador Sea Water formation, including an instanteous kinematic approach to calculate the annual rate of water mass subduction at a given density range. Historical transports are computed along sections at 53 and 56N for several different water masses for comparison with recent observations, showing a decline in the stength of the deep western boundary current with time. The variability of the strength of the meridional overturning circulation (MOC) from the reanalysis is also examined in both depth and density space. Linkages between MOC variability and water mass formation variability is considered.

  6. Magnetostratigraphy of the Willwood Formation, Bighorn Basin, Wyoming: new constraints on the location of Paleocene/Eocene boundary

    Science.gov (United States)

    Tauxe, L.; Gee, J.; Gallet, Y.; Pick, T.; Bown, T.

    1994-01-01

    The lower Eocene Willwood Formation in the Bighorn Basin of Wyoming preserves a rich and diverse mammalian and floral record. The paleomagnetic behavior of the sequence of floodplain paleosols of varying degrees of maturation ranges from excellent to poor. We present a magnetostratigraphic section for a composite section near Worland, Wyoming, by using a set of strict criteria for interpreting the step-wise alternating field and thermal demagnetization data of 266 samples from 90 sites throughout the composite section. Correlation to the geomagnetic reversal time scale was achieved by combining magnetostratigraphic and biostratigraphic data from this section, from a section in the Clark's Fork Basin in northern Wyoming, and from DSDP Site 550, with the isotopic data determined on a tuff near the top of our section. Our correlation suggests that the Bighorn Basin composite section in the Worland area spans from within Chron C24r to near the top of Chron C24n, or from approximately 55 to 52 Ma. This correlation places the Paleocene/Eocene boundary within the vicinity of the base of the section. Cryptochron C24r.6 of Cande and Kent is tentatively identified some 100 m above the base of the section. The temporal framework provided here enables correlation of the mammalian biostratigraphy of the Bighorn Basin to other continental sequences as well as to marine records. It also provides independent chronological information for the calculation of sediment accumulation rates to constrain soil maturation rates. We exclude an age as young as 53 Ma for the Paleocene/Eocene boundary and support older ages, as recommended in recent time scales. The location of a tuff dated at 52.8 ?? 0.3 Ma at the older boundary C24n.1 is consistent with the age of 52.5 Ma estimated by Cande and Kent and inconsistent with that of 53.7 Ma, from Harland et al. ?? 1994.

  7. vox homeobox gene: a novel regulator of midbrain-hindbrain boundary development in medaka fish?

    Czech Academy of Sciences Publication Activity Database

    Fabian, Peter; Pantzartzi, Chrysoula; Kozmiková, Iryna; Kozmik, Zbyněk

    2016-01-01

    Roč. 226, č. 2 (2016), s. 99-107 ISSN 0949-944X R&D Projects: GA MŠk LO1419 Institutional support: RVO:68378050 Keywords : Midbrain-hindbrain boundary * vox * medaka * Heat shock element * fgf8 * Gene regulatory network Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.422, year: 2016

  8. Photoionization-regulated star formation and the structure of molecular clouds

    Science.gov (United States)

    Mckee, Christopher F.

    1989-01-01

    A model for the rate of low-mass star formation in Galactic molecular clouds and for the influence of this star formation on the structure and evolution of the clouds is presented. The rate of energy injection by newly formed stars is estimated, and the effect of this energy injection on the size of the cloud is determined. It is shown that the observed rate of star formation appears adequate to support the observed clouds against gravitational collapse. The rate of photoionization-regulated star formation is estimated and it is shown to be in agreement with estimates of the observed rate of star formation if the observed molecular cloud parameters are used. The mean cloud extinction and the Galactic star formation rate per unit mass of molecular gas are predicted theoretically from the condition that photionization-regulated star formation be in equilibrium. A simple model for the evolution of isolated molecular clouds is developed.

  9. The Role of Grain Orientation and Grain Boundary Characteristics in the Mechanical Twinning Formation in a High Manganese Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Shterner, Vadim; Timokhina, Ilana B.; Rollett, Anthony D.; Beladi, Hossein

    2018-04-01

    In the current study, the dependence of mechanical twinning on grain orientation and grain boundary characteristics was investigated using quasi in-situ tensile testing. The grains of three main orientations (i.e., , , and parallel to the tensile axis (TA)) and certain characteristics of grain boundaries (i.e., the misorientation angle and the inclination angle between the grain boundary plane normal and the TA) were examined. Among the different orientations, and were the most and the least favored orientations for the formation of mechanical twins, respectively. The orientation was intermediate for twinning. The annealing twin boundaries appeared to be the most favorable grain boundaries for the nucleation of mechanical twinning. No dependence was found for the inclination angle of annealing twin boundaries, but the orientation of grains on either side of the annealing twin boundary exhibited a pronounced effect on the propensity for mechanical twinning. Annealing twin boundaries adjacent to high Taylor factor grains exhibited a pronounced tendency for twinning regardless of their inclination angle. In general, grain orientation has a significant influence on twinning on a specific grain boundary.

  10. Line tension at lipid phase boundaries regulates formation of membrane vesicles in living cells

    DEFF Research Database (Denmark)

    Vind-Kezunovic, Dina; Helix Nielsen, Claus; Wojewodzka, Urszula

    2008-01-01

    of the plasma membrane were predominantly labelled with L-d markers 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, 1,1'-dilinoleyl-3.3.3',3'-tetramethylindocarbocyanine perchlorate, 1,1'-didodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate and weakly stained by L-o marker fluorescein...

  11. Line tension at lipid phase boundaries regulates formation of membrane vesicles in living cells

    DEFF Research Database (Denmark)

    Vind-Kezunovic, D.; Nielsen, C.H.; Wojewodzka, U.

    2008-01-01

    of the plasma membrane were predominantly labelled with L(d) markers 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, 1,1'-dilinoleyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, 1,1'-didodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate and weakly stained by L(o) marker...

  12. Coal ball formation and a soil extinction near the P-Tr boundary

    Science.gov (United States)

    Breecker, D.; Royer, D. L.

    2017-12-01

    Coal balls are calcium carbonate accumulations that commonly permineralize paleotropical PermoCarboniferous coal deposits and preserve exceptional specimens of the coal swamp flora. A widely applicable model for the origin of coal balls is lacking despite the study of these deposits for over a century. Two characteristics of coal balls have been particularly challenging to explain: 1) their temporal range is restricted to the PermoCarboniferous and 2) their typical oxygen isotope and elemental compositions paradoxically indicate freshwater and marine origins, respectively. We propose a new model for coal ball formation. The first step in our model is the episodic delivery of seawater and marine carbonate sediment to coastal mires. Next, these waters are diluted by freshwater and the carbonates dissolve at the elevated pCO2 of the mire subsurface. Finally, as waters flow laterally through stands of arborescent lycopsids, aqueous CO2 in the pore spaces of the peat escapes by diffusion through the air-filled lycopsid rootlets into the overlying water column, where some rootlets are thought to have extended. The CO2 escape drives calcite precipitation in the soil zone. This model explains the narrow temporal occurrence of coal balls, which coincides with the peak diversity of arborescent lycopsids. It also resolves the geochemical conundrum; dilution by freshwater can result in relatively low pore water δ18O values without preventing high-Mg calcite formation. Furthermore, we show mathematically that for published densities of arborescent lycopsid root mats and for reasonable rates of lateral water flow and vertical peat accumulation, CO2 could escape rapidly enough through the rootlets to fill >35% of the porosity with calcite before substantial burial (top several decimeters of peat), explaining the exceptional preservation of coal swamp flora. Therefore, we suggest that coal balls are pedogenic in origin and that their disappearance from the rock record represents

  13. Influence of boundary effects on electron beam dose distribution formation in multilayer targets

    International Nuclear Information System (INIS)

    Kaluska, I.; Zimek, Z.; Lazurik, V.T.; Lazurik, V.M.; Popov, G.F.; Rogov, Y.V.

    2010-01-01

    Computational dosimetry play a significant role in an industrial radiation processing at dose measurements in the product irradiated with electron beams (EB), X-ray and gamma ray from radionuclide sources. Accurate and validated programs for absorbed dose calculations are required for computational dosimetry. The program ModeStEB (modelling of EB processing in a three-dimensional (3D) multilayer flat targets) was designed specially for simulation and optimization of industrial radiation processing, calculation of the 3D absorbed dose distribution within multilayer packages. The package is irradiated with scanned EB on an industrial radiation facility that is based on the pulsed or continuous type of electron accelerators in the electron energy range from 0.1 to 25 MeV. Simulation of EB dose distributions in the multilayer targets was accomplished using the Monte Carlo (MC) method. Experimental verification of MC simulation prediction for EB dose distribution formation in a stack of plates interleaved with polyvinylchloride (PVC) dosimetric films (DF), within a packing box, and irradiated with a scanned 10 MeV EB on a moving conveyer is discussed. (authors)

  14. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.

    Science.gov (United States)

    Zeng, Zhirui; Tice, Michael M

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.

  15. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation

    Science.gov (United States)

    Zeng, Zhirui; Tice, Michael M.

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms.

  16. Vitamin C: A Novel Regulator of Neutrophil Extracellular Trap Formation

    Directory of Open Access Journals (Sweden)

    Ramesh Natarajan

    2013-08-01

    Full Text Available Introduction: Neutrophil extracellular trap (NET formation was recently identified as a novel mechanism to kill pathogens. However, excessive NET formation in sepsis can injure host tissues. We have recently shown that parenteral vitamin C (VitC is protective in sepsis. Whether VitC alters NETosis is unknown. Methods: We used Gulo−/− mice as they lack the ability to synthesize VitC. Sepsis was induced by intraperitoneal infusion of a fecal stem solution (abdominal peritonitis, FIP. Some VitC deficient Gulo−/− mice received an infusion of ascorbic acid (AscA, 200 mg/kg 30 min after induction of FIP. NETosis was assessed histologically and by quantification for circulating free DNA (cf-DNA in serum. Autophagy, histone citrullination, endoplasmic reticulum (ER stress, NFκB activation and apoptosis were investigated in peritoneal PMNs. Results: Sepsis produced significant NETs in the lungs of VitC deficient Gulo−/− mice and increased circulating cf-DNA. This was attenuated in the VitC sufficient Gulo−/− mice and in VitC deficient Gulo−/− mice infused with AscA. Polymorphonuclear neutrophils (PMNs from VitC deficient Gulo−/− mice demonstrated increased activation of ER stress, autophagy, histone citrullination, and NFκB activation, while apoptosis was inhibited. VitC also significantly attenuated PMA induced NETosis in PMNs from healthy human volunteers.

  17. Effects of light and growth regulators on adventitious bud formation in horseradish (Armoracia rusticana).

    Science.gov (United States)

    Kamada, H; Tachikawa, Y; Saitou, T; Harada, H

    1995-07-01

    To clarify that the presence of Ri T-DNA genes are not prerequisite for the light-induced bud formation in horseradish (Armoracia rusticana) hairy roots, leaf and root segments of nontransformed horseradish plants were used as explants. Bud formation from nontransformed tissues was observed in hormone-free medium under 16 h daylight conditions, but not under continuous darkness. To investigate the effects of growth regulators on bud formation, leaf and root explants were treated with auxin (1-naphthaleneacetic acid; NAA) and / or cytokinin (6-benzyl-aminopurine; BA). The most effective treatment in the dark to stimulate bud formation was BA at 1 mg·1(-1). These results show that adventitious bud formation in horseradish can be induced by light and growth regulators, and especially cytokinin, may be involved in bud formation, irrespective of whether the tissues were transformed with Ri T-DNA.

  18. Effects of plant growth regulators on callus, shoot and root formation ...

    African Journals Online (AJOL)

    Root and stem explants of fluted pumpkin were cultured in medium containing different types and concentrations of plant growth regulators (PGRs). The explants were observed for callus, root and shoot formation parameters after four months. Differences among explants, plant growth regulators and their interaction were ...

  19. The effect of regulation feedback in a computer-based formative assessment on information problem solving

    NARCIS (Netherlands)

    Timmers, Caroline; Walraven, Amber; Veldkamp, Bernard P.

    2015-01-01

    This study examines the effect of regulation feedback in a computer-based formative assessment in the context of searching for information online. Fifty 13-year-old students completed two randomly selected assessment tasks, receiving automated regulation feedback between them. Student performance

  20. Relationship between Protein Accumulation Regulation and Yield Formation in Soybean

    Institute of Scientific and Technical Information of China (English)

    CHEN Lihua; LI Jie; LIU Lijun; ZU Wei

    2006-01-01

    Three different genotypes soybeans were adopted in this experiment under three fertilizer levels.The object of this study was to investigate protein accumulation regulation of soybean cultivars under the condition of different nutrient levels, and their effects on soybean yield and quality, and to provide theoretical evidence for breed, cultivation and agricultural production, also man-powered controllable locations. The concentration of N in the leaves declined after seedling stage, then increased again at stage of early flowering, and started to decrease up to leaf senescence, declined rapidly from seed-filling season to stage of yellow ripeness. The concentration of N in the stems and pod walls declined with growth stage. High seed protein genotypes exhibited higher N assimilating and partitioning during whole growth stages. Pod walls were media of N partitioning. Protein was accumulated mainly during the later period of reproductive growth stage up to harvest, so plant growth after stage of yellow ripeness could not be neglected.

  1. Factor H C-Terminal Domains Are Critical for Regulation of Platelet/Granulocyte Aggregate Formation

    Directory of Open Access Journals (Sweden)

    Adam Z. Blatt

    2017-11-01

    Full Text Available Platelet/granulocyte aggregates (PGAs increase thromboinflammation in the vasculature, and PGA formation is tightly controlled by the complement alternative pathway (AP negative regulator, Factor H (FH. Mutations in FH are associated with the prothrombotic disease atypical hemolytic uremic syndrome (aHUS, yet it is unknown whether increased PGA formation contributes to the thrombosis seen in patients with aHUS. Here, flow cytometry assays were used to evaluate the effects of aHUS-related mutations on FH regulation of PGA formation and characterize the mechanism. Utilizing recombinant fragments of FH spanning the entire length of the protein, we mapped the regions of FH most critical for limiting AP activity on the surface of isolated human platelets and neutrophils, as well as the regions most critical for regulating PGA formation in human whole blood stimulated with thrombin receptor-activating peptide (TRAP. FH domains 19–20 were the most critical for limiting AP activity on platelets, neutrophils, and at the platelet/granulocyte interface. The role of FH in PGA formation was attributed to its ability to regulate AP-mediated C5a generation. AHUS-related mutations in domains 19–20 caused differential effects on control of PGA formation and AP activity on platelets and neutrophils. Our data indicate FH C-terminal domains are key for regulating PGA formation, thus increased FH protection may have a beneficial impact on diseases characterized by increased PGA formation, such as cardiovascular disease. Additionally, aHUS-related mutations in domains 19–20 have varying effects on control of TRAP-mediated PGA formation, suggesting that some, but not all, aHUS-related mutations may cause increased PGA formation that contributes to excessive thrombosis in patients with aHUS.

  2. Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries

    Directory of Open Access Journals (Sweden)

    Meritxell Reverter

    2014-05-01

    Full Text Available Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN. Here, using Chinese hamster ovary (CHO Niemann-Pick type C1 (NPC1 mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6 accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs. This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.

  3. Formation of modern theoretical regulations about organization concerning management development

    Directory of Open Access Journals (Sweden)

    Zhalinska I.V.

    2017-03-01

    Full Text Available The article deals with the scientific concepts about an organization as the entity of management concerning management development. The author studies the principal theoretical regulations about an organization within the most spread schools of management and context of development of other managerial concepts in particular, strategic management. It is found out that an organization and its development had not considered as the factor of an effective activity before. Researches paid their attention to single aspects of organization activity where the aspects allowed to increase economic efficiency. However, the objective complication of conditions of enterprises’ activities caused the necessity of scientific research of adequate models of functioning and development of organizations, which currently cannot be provided by traditional management concepts. Thus, theoretical and practical prerequisites arise for a separate scientific set of researches within the science of management such as the theory of an organization. The article describes the main classified approaches to the models of an organization. The paper researches the challenges in present management, and those ones, which have caused the crisis in modern management. It is singled out the following actual aspects of modern organizational processes as the all-round use of modern information and computer systems, the development of integration and in cooperation in management, the appearance of new management technologies, the use of new assessment criteria for organization activity, striving for organizational shifts and innovations. Due to the generalization of the study results, the authors single out such key aspects in the development of the science of management, as the crisis of traditional management influences upon practical activity of modern organizations; the achievements of traditional management schools are becoming necessary, but not determinant factors of organization

  4. Collaborative jurisdiction in the regulation of electric utilities: A new look at jurisdictional boundaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    This conference is one of several activities initiated by FERC, DOE and NARUC to improve the dialogue between Federal and State regulators and policymakers. I am pleased to be here to participate in this conference and to address, with you, electricity issues of truly national significance. I would like to commend Ashley Brown and the NARUC Electricity Committee for its foresight in devising a conference on these issues at this critical juncture in the regulation of the electric utility industry. I also would like to commend Chairman Allday and the FERC for their efforts to improve communication between Federal and State electricity regulators; both through FERC`s Public Conference on Electricity Issues that was held last June, and through the FERC/NARUC workshops that are scheduled to follow this conference. These collaborative efforts are important and necessary steps in addressing successfully the many issues facing the electric utility industry those who regulate it, and those who depend upon it - in other words, about everyone.

  5. Genetic evidence suggests that GIS functions downstream of TCL1 to regulate trichome formation in Arabidopsis.

    Science.gov (United States)

    Zhang, Na; Yang, Li; Luo, Sha; Wang, Xutong; Wang, Wei; Cheng, Yuxin; Tian, Hainan; Zheng, Kaijie; Cai, Ling; Wang, Shucai

    2018-04-13

    Trichome formation in Arabidopsis is regulated by a MBW complex formed by MYB, bHLH and WD40 transcriptional factors, which can activate GLABRA2 (GL2) and the R3 MYB transcription factor genes. GL2 promotes trichome formation, whereas R3 MYBs are able to block the formation of the MBW complex. It has been reported that the C2H2 transcription factor GIS (GLABROUS INFLORESCENCE STEMS) functions upstream of the MBW activator complex to regulate trichome formation, and that the expression of TCL1 is not regulated by the MBW complex. However, gis and the R3 MYB gene mutant tcl1 (trichomeless 1) have opposite inflorescence trichome phenotypes, but their relationship in regulating trichome formation remained unknown. By generating and characterization of the gis tcl1 double mutant, we found that trichome formation in the gis tcl1double and the tcl1 single mutants were largely indistinguishable, but the trichome formation in the 35S:TCL1/gis transgenic plant was similar to that in the gis mutant. By using quantitative RT-PCR analysis, we showed that expression level of GIS was increased in the triple mutant tcl1 try cpc, but the expression level of TCL1 was not affected in the gis mutant. On the other hand, trichome morphology in both gis tcl1 and 35S:TCL1/gis plants was similar to that in the gis mutant. In summary, our results indicate that GIS may work downstream of TCL1 to regulate trichome formation, and GIS has a dominant role in controlling trichome morphology.

  6. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells.

    Science.gov (United States)

    Xia, Heng; Chen, Dong; Wu, Qijia; Wu, Gang; Zhou, Yanhong; Zhang, Yi; Zhang, Libin

    2017-09-01

    The current RIP-seq approach has been developed for the identification of genome-wide interaction between RNA binding protein (RBP) and the bound RNA transcripts, but still rarely for identifying its binding sites. In this study, we performed RIP-seq experiments in HeLa cells using a monoclonal antibody against CELF1. Mapping of the RIP-seq reads showed a biased distribution at the 3'UTR and intronic regions. A total of 15,285 and 1384 CELF1-specific sense and antisense peaks were identified using the ABLIRC software tool. Our bioinformatics analyses revealed that 5' and 3' splice site motifs and GU-rich motifs were highly enriched in the CELF1-bound peaks. Furthermore, transcriptome analyses revealed that alternative splicing was globally regulated by CELF1 in HeLa cells. For example, the inclusion of exon 16 of LMO7 gene, a marker gene of breast cancer, is positively regulated by CELF1. Taken together, we have shown that RIP-seq data can be used to decipher RBP binding sites and reveal an unexpected landscape of the genome-wide CELF1-RNA interactions in HeLa cells. In addition, we found that CELF1 globally regulates the alternative splicing by binding the exon-intron boundary in HeLa cells, which will deepen our understanding of the regulatory roles of CELF1 in the pre-mRNA splicing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress

    OpenAIRE

    Gao, Jing; Feng, Zhihui; Wang, Xueqiang; Zeng, Mengqi; Liu, Jing; Han, Shujun; Xu, Jie; Chen, Lei; Cao, Ke; Long, Jiangang; Li, Zongfang; Shen, Weili; Liu, Jiankang

    2017-01-01

    Recent studies have revealed robust metabolic changes during cell differentiation. Mitochondria, the organelles where many vital metabolic reactions occur, may play an important role. Here, we report the involvement of SIRT3-regulated mitochondrial stress in osteoblast differentiation and bone formation. In both the osteoblast cell line MC3T3-E1 and primary calvarial osteoblasts, robust mitochondrial biogenesis and supercomplex formation were observed during differentiation, accompanied by in...

  8. On a simple model for self-regulating star formation in the galactic disk

    International Nuclear Information System (INIS)

    Meusinger, H.

    1989-01-01

    Star formation in galaxies is a process with feedback to the interstellar medium (ISM) and possibly it is part of a self-regulating cycle. Dopita (1985) proposed a model in which star formation in spiral and irregular galaxies is self-regulated by the pressure in the ISM. In the present paper it is shown that available data for radial distributions of gas, total mass and the flux of Lyman continuum photons in the disk of our galaxy do not support such a simple model. Several possible causes are discussed. (author)

  9. Somite-Derived Retinoic Acid Regulates Zebrafish Hematopoietic Stem Cell Formation.

    Directory of Open Access Journals (Sweden)

    Laura M Pillay

    Full Text Available Hematopoietic stem cells (HSCs are multipotent progenitors that generate all vertebrate adult blood lineages. Recent analyses have highlighted the importance of somite-derived signaling factors in regulating HSC specification and emergence from dorsal aorta hemogenic endothelium. However, these factors remain largely uncharacterized. We provide evidence that the vitamin A derivative retinoic acid (RA functions as an essential regulator of zebrafish HSC formation. Temporal analyses indicate that RA is required for HSC gene expression prior to dorsal aorta formation, at a time when the predominant RA synthesis enzyme, aldh1a2, is strongly expressed within the paraxial mesoderm and somites. Previous research implicated the Cxcl12 chemokine and Notch signaling pathways in HSC formation. Consequently, to understand how RA regulates HSC gene expression, we surveyed the expression of components of these pathways in RA-depleted zebrafish embryos. During somitogenesis, RA-depleted embryos exhibit altered expression of jam1a and jam2a, which potentiate Notch signaling within nascent endothelial cells. RA-depleted embryos also exhibit a severe reduction in the expression of cxcr4a, the predominant Cxcl12b receptor. Furthermore, pharmacological inhibitors of RA synthesis and Cxcr4 signaling act in concert to reduce HSC formation. Our analyses demonstrate that somite-derived RA functions to regulate components of the Notch and Cxcl12 chemokine signaling pathways during HSC formation.

  10. Notch1-Dll4 signaling and mechanical force regulate leader cell formation during collective cell migration

    OpenAIRE

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D.; Wong, Pak Kin

    2015-01-01

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct “leader” phenotype with characteristic morphology and motility. However, the factors driving leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here, we use single cell gene expression analysis and computational modeling to show that leader cell identity is dynamically regulated by Dll4 sign...

  11. Developing young adolescents’ self-regulation by means of formative assessment: A theoretical perspective

    Directory of Open Access Journals (Sweden)

    Kelly D. Meusen-Beekman

    2015-12-01

    Full Text Available Fostering self-regulated learning (SRL has become increasingly important at various educational levels. Most studies on SRL have been conducted in higher education. The present literature study aims toward understanding self-regulation processes of students in primary and secondary education. We explored the development of young students’ self-regulation from a theoretical perspective. In addition, effective characteristics for an intervention to develop young students’ self-regulation were examined, as well as the possibilities of implementing formative assessments in primary education to develop self-regulation. The results show that SRL can be supported in both primary and secondary education. However, at both school levels, differences were found, regarding the theoretical background of the training and the type of instructed strategy. Studies so far suggest avenues toward formative assessment, which seems to be a unifying theory of instruction that improves the learning process by developing self-regulation among students. But gaps in knowledge about the impact of formative assessments on the development of SRL strategies among primary school students require further exploration.

  12. Association between catastrophic paleovegetation changes during Devonian-Carboniferous boundary and the formation of giant massive sulfide deposits

    Science.gov (United States)

    Menor-Salván, Cesar; Tornos, Fernando; Fernández-Remolar, David; Amils, Ricardo

    2010-11-01

    The Iberian Pyrite Belt (SW Iberia) is one of the largest sulfur anomalies in the Earth's crust. In the southern Iberian Pyrite Belt, more than 820 Mt of exhalative massive sulfides were deposited in less than one million years at the Devonian-Carboniferous boundary. The shale of the ore-bearing horizon contains biomarkers indicating major biogenic activity in a methanogenic setting, including a five-fold increase in typical vascular plant biomarkers and a significant anomaly in those probably indicating the presence of thermophilic Archaea. This contrasts with signatures in the average sedimentary rocks of the basin that indicate the sediments settled in oxic to sub-oxic environments, and that they have only minor biomarkers derived from continental paleoflora. These data show that the formation of the mineralization was not only related to major hydrothermal activity synchronous with volcanism but may also have been controlled by the input of large amounts of organic matter, mostly derived from the degradation of woodland detritus sourced in the nearby continent. This massive influx of organic matter could have accelerated extremophilic microbial activity that used short-chain hydrocarbons as electron donors for seawater sulfate reduction, resulting in concomitant massive sulfide precipitation. We propose that the giant massive sulfide deposits resulted from overlapping of geological and biological processes that occurred at the Devonian to Carboniferous transition, including: (1) continent collision during the onset of the Variscan orogeny leading to major paleogeographic changes and volcanism; (2) dramatic stress of continental ecosystems due to the combination of climatic change, volcanism, variations in the sea level and erosion on a regional scale; (3) major biomass destruction and increase of organic supply to marine environments; and, (4) generation of anoxic conditions and the thriving of sulfate reducing microorganisms. Under these conditions, massive

  13. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis

    DEFF Research Database (Denmark)

    Vroemen, Casper W; Mordhorst, Andreas P; Albrecht, Cathy

    2003-01-01

    From an enhancer trap screen for genes expressed in Arabidopsis embryos, we identified a gene expressed from the octant stage onward in the boundary between the two presumptive cotyledons and in a variety of postembryonic organ and meristem boundaries. This gene, CUP-SHAPED COTYLEDON3 (CUC3...

  14. Regulation of photosynthetic electron flow in isolated chloroplasts by bicarbonate, formate and herbicides

    NARCIS (Netherlands)

    Snel, J.F.H.

    1985-01-01

    This thesis describes some efforts that were made to gain a better understanding of the processes involved in the regulation of photosynthetic electron flow by bicarbonate, formate and herbicides in chloroplasts. In the past decade a large amount of research has been devoted to get insight into the

  15. THE CONTRADICTIONS OF THE FORMATION OF FUNCTIONAL AND TARGET REGULATION OF THE STOCK MARKET OF UKRAINE

    Directory of Open Access Journals (Sweden)

    A. Kalach

    2013-07-01

    Full Text Available The characteristics of formation of the inversion type of the stock market and its contradictions were investigated, the necessity of transition to a functional-target regulation of the stock market was proved the ways of optimization of the institutional system by integrating the functions of regulatory authorities were proposed.

  16. Nephrin regulates lamellipodia formation by assembling a protein complex that includes Ship2, filamin and lamellipodin.

    Directory of Open Access Journals (Sweden)

    Madhusudan Venkatareddy

    Full Text Available Actin dynamics has emerged at the forefront of podocyte biology. Slit diaphragm junctional adhesion protein Nephrin is necessary for development of the podocyte morphology and transduces phosphorylation-dependent signals that regulate cytoskeletal dynamics. The present study extends our understanding of Nephrin function by showing in cultured podocytes that Nephrin activation induced actin dynamics is necessary for lamellipodia formation. Upon activation Nephrin recruits and regulates a protein complex that includes Ship2 (SH2 domain containing 5' inositol phosphatase, Filamin and Lamellipodin, proteins important in regulation of actin and focal adhesion dynamics, as well as lamellipodia formation. Using the previously described CD16-Nephrin clustering system, Nephrin ligation or activation resulted in phosphorylation of the actin crosslinking protein Filamin in a p21 activated kinase dependent manner. Nephrin activation in cell culture results in formation of lamellipodia, a process that requires specialized actin dynamics at the leading edge of the cell along with focal adhesion turnover. In the CD16-Nephrin clustering model, Nephrin ligation resulted in abnormal morphology of actin tails in human podocytes when Ship2, Filamin or Lamellipodin were individually knocked down. We also observed decreased lamellipodia formation and cell migration in these knock down cells. These data provide evidence that Nephrin not only initiates actin polymerization but also assembles a protein complex that is necessary to regulate the architecture of the generated actin filament network and focal adhesion dynamics.

  17. The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes.

    Science.gov (United States)

    Lemon, Katherine P; Freitag, Nancy E; Kolter, Roberto

    2010-08-01

    Listeria monocytogenes is a food-borne facultative intracellular pathogen. It is widespread in the environment and has several distinct life-styles. The key transcriptional activator PrfA positively regulates L. monocytogenes virulence genes to mediate the transition from extracellular, flagellum-propelled cell to intracellular pathogen. Here we report the first evidence that PrfA also has a significant positive impact on extracellular biofilm formation. Mutants lacking prfA were defective in surface-adhered biofilm formation. The DeltaprfA mutant exhibited wild-type flagellar motility, and its biofilm defect occurred after initial surface adhesion. We also observed that mutations that led to the constitutive expression of PrfA-dependent virulence genes had a minimal impact on biofilm formation. Furthermore, biofilm development was enhanced in a mutant encoding a PrfA protein variant unable to fully transition from the extracellular form to the virulent, intracellular activity conformation. These results indicate that PrfA positively regulates biofilm formation and suggest that PrfA has a global role in modulating the life-style of L. monocytogenes. The requirement of PrfA for optimal biofilm formation may provide selective pressure to maintain this critical virulence regulator when L. monocytogenes is outside host cells in the environment.

  18. Tetraspanin 7 regulates sealing zone formation and the bone-resorbing activity of osteoclasts

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jun-Oh; Lee, Yong Deok; Kim, Haemin; Kim, Min Kyung; Song, Min-Kyoung; Lee, Zang Hee; Kim, Hong-Hee, E-mail: hhbkim@snu.ac.kr

    2016-09-02

    Tetraspanin family proteins regulate morphology, motility, fusion, and signaling in various cell types. We investigated the role of the tetraspanin 7 (Tspan7) isoform in the differentiation and function of osteoclasts. Tspan7 was up-regulated during osteoclastogenesis. When Tspan7 expression was reduced in primary precursor cells by siRNA-mediated gene knock-down, the generation of multinuclear osteoclasts was not affected. However, a striking cytoskeletal abnormality was observed: the formation of the podosome belt structure was inhibited and the microtubular network were disrupted by Tspan7 knock-down. Decreases in acetylated microtubules and levels of phosphorylated Src and Pyk2 in Tspan7 knock-down cells supported the involvement of Tspan7 in cytoskeletal rearrangement signaling in osteoclasts. This cytoskeletal defect interfered with sealing zone formation and subsequently the bone-resorbing activity of mature osteoclasts on dentin surfaces. Our results suggest that Tspan7 plays an important role in cytoskeletal organization required for the bone-resorbing function of osteoclasts by regulating signaling to Src, Pyk2, and microtubules. - Highlights: • Tspan7 expression is up-regulated during osteoclastogenesis. • Tspan7 regulates podosome belt organization in osteoclasts. • Tspan7 is crucial for sealing zone formation and bone-resorption by osteoclasts. • Src and Pyk2 phosphorylation and microtubule acetylation mediate Tspan7 function.

  19. Essential roles and regulation of the Legionella pneumophila collagen-like adhesin during biofilm formation.

    Directory of Open Access Journals (Sweden)

    Julia Mallegol

    Full Text Available Legionellosis is mostly caused by Legionella pneumophila (Lp and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In a previous study, we showed that a glycosaminoglycan (GAG-binding adhesin of Lp, named Lcl, is produced during legionellosis and is unique to the L. pneumophila species. Importantly, a mutant depleted in Lcl (Δlpg2644 is impaired in adhesion to GAGs and epithelial cells and in biofilm formation. Here, we examine the molecular function(s of Lcl and the transcriptional regulation of its encoding gene during different stages of the biofilm development. We show that the collagen repeats and the C-terminal domains of Lcl are crucial for the production of biofilm. We present evidence that Lcl is involved in the early step of surface attachment but also in intercellular interactions. Furthermore, we address the relationship between Lcl gene regulation during biofilm formation and quorum sensing (QS. In a static biofilm assay, we show that Lcl is differentially regulated during growth phases and biofilm formation. Moreover, we show that the transcriptional regulation of lpg2644, mediated by a prototype of QS signaling homoserine lactone (3OC12-HSL, may play a role during the biofilm development. Thus, transcriptional down-regulation of lpg2644 may facilitate the dispersion of Lp to reinitiate biofilm colonization on a distal surface.

  20. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    Science.gov (United States)

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-03-17

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.

  1. Focus on Formative Feedback communication and self-regulated learning – a study in compulsory schools

    DEFF Research Database (Denmark)

    Kirkegaard, Preben Olund

    This study addresses the conceptual challenge of providing students in compulsory schools with good quality formative feedback to enhance self-regulated learning in social interactions. Resent educational research indicates that social communicative interactions in the classroom, with a focus...... qualitative data from video recorded teaching sessions and student group interviews. Methodologically we are inspired by the ethnographical classroom research method. The empirical basis for studying these aspects is data from two compulsory schools in Denmark. This study is a work in progress. Our findings...... on formative feedback, hold the potential to enhance students learning. Self-regulated learning is highly pertinent and can be seen as one of the most import skills for the 21st century learner. We argue that formative feedbackcommunication in interactions is crucial for students to develop self...

  2. Contributions of the wall boundary layer to the formation of the counter-rotating vortex pair in transverse jets

    KAUST Repository

    SCHLEGEL, FABRICE

    2011-04-08

    Using high-resolution 3-D vortex simulations, this study seeks a mechanistic understanding of vorticity dynamics in transverse jets at a finite Reynolds number. A full no-slip boundary condition, rigorously formulated in terms of vorticity generation along the channel wall, captures unsteady interactions between the wall boundary layer and the jet - in particular, the separation of the wall boundary layer and its transport into the interior. For comparison, we also implement a reduced boundary condition that suppresses the separation of the wall boundary layer away from the jet nozzle. By contrasting results obtained with these two boundary conditions, we characterize near-field vortical structures formed as the wall boundary layer separates on the backside of the jet. Using various Eulerian and Lagrangian diagnostics, it is demonstrated that several near-wall vortical structures are formed as the wall boundary layer separates. The counter-rotating vortex pair, manifested by the presence of vortices aligned with the jet trajectory, is initiated closer to the jet exit. Moreover tornado-like wall-normal vortices originate from the separation of spanwise vorticity in the wall boundary layer at the side of the jet and from the entrainment of streamwise wall vortices in the recirculation zone on the lee side. These tornado-like vortices are absent in the case where separation is suppressed. Tornado-like vortices merge with counter-rotating vorticity originating in the jet shear layer, significantly increasing wall-normal circulation and causing deeper jet penetration into the crossflow stream. © 2011 Cambridge University Press.

  3. Sonic hedgehog signaling regulates actin cytoskeleton via Tiam1-Rac1 cascade during spine formation.

    Science.gov (United States)

    Sasaki, Nobunari; Kurisu, Junko; Kengaku, Mineko

    2010-12-01

    The sonic hedgehog (Shh) pathway has essential roles in several processes during development of the vertebrate central nervous system (CNS). Here, we report that Shh regulates dendritic spine formation in hippocampal pyramidal neurons via a novel pathway that directly regulates the actin cytoskeleton. Shh signaling molecules Patched (Ptc) and Smoothened (Smo) are expressed in several types of postmitotic neurons, including cerebellar Purkinje cells and hippocampal pyramidal neurons. Knockdown of Smo induces dendritic spine formation in cultured hippocampal neurons independently of Gli-mediated transcriptional activity. Smo interacts with Tiam1, a guanine nucleotide exchange factor for Rac1, via its cytoplasmic C-terminal region. Inhibition of Tiam1 or Rac1 activity suppresses spine induction by Smo knockdown. Shh induces remodeling of the actin cytoskeleton independently of transcriptional activation in mouse embryonic fibroblasts. These findings demonstrate a novel Shh pathway that regulates the actin cytoskeleton via Tiam1-Rac1 activation. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Relative contributions of norspermidine synthesis and signaling pathways to the regulation of Vibrio cholerae biofilm formation.

    Directory of Open Access Journals (Sweden)

    Caitlin K Wotanis

    Full Text Available The polyamine norspermidine is one of the major polyamines synthesized by Vibrionales and has also been found in various aquatic organisms. Norspermidine is among the environmental signals that positively regulate Vibrio cholerae biofilm formation. The NspS/MbaA signaling complex detects extracellular norspermidine and mediates the response to this polyamine. Norspermidine binding to the NspS periplasmic binding protein is thought to inhibit the phosphodiesterase activity of MbaA, increasing levels of the biofilm-promoting second messenger cyclic diguanylate monophosphate, thus enhancing biofilm formation. V. cholerae can also synthesize norspermidine using the enzyme NspC as well as import it from the environment. Deletion of the nspC gene was shown to reduce accumulation of bacteria in biofilms, leading to the conclusion that intracellular norspermidine is also a positive regulator of biofilm formation. Because V. cholerae uses norspermidine to synthesize the siderophore vibriobactin it is possible that intracellular norspermidine is required to obtain sufficient amounts of iron, which is also necessary for robust biofilm formation. The objective of this study was to assess the relative contributions of intracellular and extracellular norspermidine to the regulation of biofilm formation in V. cholerae. We show the biofilm defect of norspermidine synthesis mutants does not result from an inability to produce vibriobactin as vibriobactin synthesis mutants do not have diminished biofilm forming abilities. Furthermore, our work shows that extracellular, but not intracellular norspermidine, is mainly responsible for promoting biofilm formation. We establish that the NspS/MbaA signaling complex is the dominant mediator of biofilm formation in response to extracellular norspermidine, rather than norspermidine synthesized by NspC or imported into the cell.

  5. Precambrian-Cambrian boundary in the Tal formation of Garhwal Lesser Himalaya : Rb-Sr age evidence from black shales underlying phosphorites

    International Nuclear Information System (INIS)

    Sharma, K.K.; Rameshwar Rao, D.; Azmi, R.J.; Gopalan, K.; Pantulu, G.V.C.

    1991-01-01

    The recently reported faunal evidence for placing the Precambrian-Cambrian boundary within the main phosphorite unit of the Chert-Phosphorite Member of the Tal Formation, Garhwal Lesser Himalaya, is supported by the present report of 626 ± 13 myr for the whole-rock Rb-Sr isochron age of the black shales directly underlying the phosphorite band. (author). 15 refs., 2 figs., 1 tab

  6. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal

    DEFF Research Database (Denmark)

    Gjermansen, Morten; Ragas, Paula Cornelia; Tolker-Nielsen, Tim

    2006-01-01

    Microbial biofilm formation often causes problems in medical and industrial settings, and knowledge about the factors that are involved in biofilm development and dispersion is useful for creating strategies to control the processes. In this report, we present evidence that proteins with GGDEF...... and EAL domains are involved in the regulation of biofilm formation and biofilm dispersion in Pseudomonas putida. Overexpression in P. putida of the Escherichia coli YedQ protein, which contains a GGDEF domain, resulted in increased biofilm formation. Overexpression in P. putida of the E. coli Yhj......H protein, which contains an EAL domain, strongly inhibited biofilm formation. Induction of YhjH expression in P. putida cells situated in established biofilms led to rapid dispersion of the biofilms. These results support the emerging theme that GGDEF-domain and EAL-domain proteins are involved...

  7. SMU.940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans.

    Science.gov (United States)

    Senpuku, Hidenobu; Yonezawa, Hideo; Yoneda, Saori; Suzuki, Itaru; Nagasawa, Ryo; Narisawa, Naoki

    2018-02-01

    The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence-stimulating peptide. Eight competence-stimulating peptide-dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran-dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild-type. GbpC is known to be involved in the dextran-dependent aggregation of S. mutans. An SMU.940-gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran-dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran-dependent aggregation and biofilm formation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Spermidine promotes Bacillus subtilis biofilm formation by activating expression of the matrix regulator slrR.

    Science.gov (United States)

    Hobley, Laura; Li, Bin; Wood, Jennifer L; Kim, Sok Ho; Naidoo, Jacinth; Ferreira, Ana Sofia; Khomutov, Maxim; Khomutov, Alexey; Stanley-Wall, Nicola R; Michael, Anthony J

    2017-07-21

    Ubiquitous polyamine spermidine is not required for normal planktonic growth of Bacillus subtilis but is essential for robust biofilm formation. However, the structural features of spermidine required for B. subtilis biofilm formation are unknown and so are the molecular mechanisms of spermidine-stimulated biofilm development. We report here that in a spermidine-deficient B. subtilis mutant, the structural analogue norspermidine, but not homospermidine, restored biofilm formation. Intracellular biosynthesis of another spermidine analogue, aminopropylcadaverine, from exogenously supplied homoagmatine also restored biofilm formation. The differential ability of C-methylated spermidine analogues to functionally replace spermidine in biofilm formation indicated that the aminopropyl moiety of spermidine is more sensitive to C -methylation, which it is essential for biofilm formation, but that the length and symmetry of the molecule is not critical. Transcriptomic analysis of a spermidine-depleted B. subtilis speD mutant uncovered a nitrogen-, methionine-, and S -adenosylmethionine-sufficiency response, resulting in repression of gene expression related to purine catabolism, methionine and S -adenosylmethionine biosynthesis and methionine salvage, and signs of altered membrane status. Consistent with the spermidine requirement in biofilm formation, single-cell analysis of this mutant indicated reduced expression of the operons for production of the exopolysaccharide and TasA protein biofilm matrix components and SinR antagonist slrR Deletion of sinR or ectopic expression of slrR in the spermidine-deficient Δ speD background restored biofilm formation, indicating that spermidine is required for expression of the biofilm regulator slrR Our results indicate that spermidine functions in biofilm development by activating transcription of the biofilm matrix exopolysaccharide and TasA operons through the regulator slrR . © 2017 by The American Society for Biochemistry and

  9. Aggresome formation is regulated by RanBPM through an interaction with HDAC6

    Directory of Open Access Journals (Sweden)

    Louisa M. Salemi

    2014-05-01

    Full Text Available In conditions of proteasomal impairment, the build-up of damaged or misfolded proteins activates a cellular response leading to the recruitment of damaged proteins into perinuclear aggregates called aggresomes. Aggresome formation involves the retrograde transport of cargo proteins along the microtubule network and is dependent on the histone deacetylase HDAC6. Here we show that ionizing radiation (IR promotes Ran-Binding Protein M (RanBPM relocalization into discrete perinuclear foci where it co-localizes with aggresome components ubiquitin, dynein and HDAC6, suggesting that the RanBPM perinuclear clusters correspond to aggresomes. RanBPM was also recruited to aggresomes following treatment with the proteasome inhibitor MG132 and the DNA-damaging agent etoposide. Strikingly, aggresome formation by HDAC6 was markedly impaired in RanBPM shRNA cells, but was restored by re-expression of RanBPM. RanBPM was found to interact with HDAC6 and to inhibit its deacetylase activity. This interaction was abrogated by a RanBPM deletion of its LisH/CTLH domain, which also prevented aggresome formation, suggesting that RanBPM promotes aggresome formation through an association with HDAC6. Our results suggest that RanBPM regulates HDAC6 activity and is a central regulator of aggresome formation.

  10. Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and a(w).

    Science.gov (United States)

    Baril, Eugénie; Coroller, Louis; Couvert, Olivier; El Jabri, Mohammed; Leguerinel, Ivan; Postollec, Florence; Boulais, Christophe; Carlin, Frédéric; Mafart, Pierre

    2012-10-01

    Sporulation niches in the food chain are considered as a source of hazard and are not clearly identified. Determining the sporulation environmental boundaries could contribute to identify potential sporulation niches. Spore formation was determined in a Sporulation Mineral Buffer. The effect of incubation temperature, pH and water activity on time to one spore per mL, maximum sporulation rate and final spore concentration was investigated for a Bacillus weihenstephanensis and a Bacillus licheniformis strain. Sporulation boundaries of B. weihenstephanensis and of B. licheniformis were similar to, or included within, the range of temperatures, pH and water activities supporting growth. For instance, sporulation boundaries of B. weihenstephanensis were evaluated at 5°C, 35°C, pH 5.2 and a(w) 0.960 while growth boundaries were observed at 5°C, 37°C, pH 4.9 and a(w) 0.950. Optimum spore formation was determined at 30°C pH 7.2 for B. weihenstephanensis and at 45°C pH 7.2 for B. licheniformis. Lower temperatures and pH delayed the sporulation process. For instance, the time to one spore per mL was tenfold longer when sporulation occurred at 10°C and 20°C, for each strain respectively, than at optimum sporulation temperature. The relative effect of temperature and pH on sporulation rates and on growth rates is similar. This work suggests that the influence of environmental factors on the quantitative changes in sporulation boundaries and rates was similar to their influence on changes in growth rate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A Model Formative Assessment Strategy to Promote Student-Centered Self-Regulated Learning in Higher Education

    Science.gov (United States)

    Bose, Jayakumar; Rengel, Zed

    2009-01-01

    Adult learners are already involved in the process of self-regulation; hence, higher education institutions should focus on strengthening students' self-regulatory skills. Self-regulation can be facilitated through formative assessment. This paper proposes a model formative assessment strategy that would complement existing university teaching,…

  12. Grain boundary corrosion and alteration phase formation during the oxidative dissolution of UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Buck, E.C.; Bates, J.K.

    1996-12-31

    Alteration behavior of UO{sub 2} pellets following reaction under unsaturated drip-test conditions at 90 C for up to 10 years was examined by solid phase and leachate analyses. Sample reactions were characterized by preferential dissolution of grain boundaries between the original press-sintered UO{sub 2} granules comprising the samples, development of a polygonal network of open channels along the intergrain boundaries, and spallation of surface granules that had undergone severe grain boundary corrosion. The development of a dense mat of alteration phases after 2 years of reaction trapped loose granules, resulting in reduced rates of particulate U release. The paragenetic sequence of alteration phases that formed on the present samples was similar to that observed in surficial weathering zones of natural uraninite (UO{sub 2}) deposits, with alkali and alkaline earth uranyl silicates representing the long-term solubility-limiting phases for U in both systems.

  13. Mosaic and Regulation Phenomena during the Early Formation of the Chick Blastoderm

    Directory of Open Access Journals (Sweden)

    Marc Callebaut

    2010-01-01

    Full Text Available After culturing symmetrically hemisectioned unincubated chicken blastoderms, asymmetric hemiembryos developed (indicating mosaic development. In the present study, we observed that after prolonged culture, the further asymmetric development (way with no possible return becomes profoundly disturbed, more particularly the Rauber's sickle-dependent phenomena: gastrulation and the formation of the coelomo-cardiovascular complex with absence of heart and pericard development. By contrast, the neural plate develops symmetrically. Asymmetrical ablation of Rauber's sickle and the neighboring upper layer results in the development of an apparently normal symmetrical embryo. Indeed, at the unoperated side, a normal half coelomo-cardiovascular system develops with a unilateral or bilateral heart tube and pericard formation (indicating regulation. Both regulation and mosaicism indicate that during normal early development, the interaction between the left and right sides of the caudal area centralis of the blastoderm is indispensable, depending on the spatial relationship between the elementary tissues (upper layer, Rauber's sickle, endophyll.

  14. Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa

    Science.gov (United States)

    Pusic, Petra; Tata, Muralidhar; Wolfinger, Michael T.; Sonnleitner, Elisabeth; Häussler, Susanne; Bläsi, Udo

    2016-12-01

    Pseudomonas aeruginosa (PA) can thrive in anaerobic biofilms in the lungs of cystic fibrosis (CF) patients. Here, we show that CrcZ is the most abundant PA14 RNA bound to the global regulator Hfq in anoxic biofilms grown in cystic fibrosis sputum medium. Hfq was crucial for anoxic biofilm formation. This observation complied with an RNAseq based transcriptome analysis and follow up studies that implicated Hfq in regulation of a central step preceding denitrification. CrcZ is known to act as a decoy that sequesters Hfq during relief of carbon catabolite repression, which in turn alleviates Hfq-mediated translational repression of catabolic genes. We therefore inferred that CrcZ indirectly impacts on biofilm formation by competing for Hfq. This hypothesis was supported by the findings that over-production of CrcZ mirrored the biofilm phenotype of the hfq deletion mutant, and that deletion of the crcZ gene augmented biofilm formation. To our knowledge, this is the first example where competition for Hfq by CrcZ cross-regulates an Hfq-dependent physiological process unrelated to carbon metabolism.

  15. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida

    2013-10-01

    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  16. SarA is a negative regulator of Staphylococcus epidermidis biofilm formation

    DEFF Research Database (Denmark)

    Martin, Christer; Heinze, C.; Busch, M.

    2012-01-01

    Biofilm formation is essential for Staphylococcus epidermidis pathogenicity in implant-associated infections. Nonetheless, large proportions of invasive S. epidermidis isolates fail to show accumulative biofilm growth in vitro. We here tested the hypothesis that this apparent paradox is related...... virulence. Genetic analysis revealed that inactivation of sarA induced biofilm formation via over-expression of the giant 1 MDa extracellular matrix binding protein (Embp), serving as an intercellular adhesin. In addition to Embp, increased extracellular DNA (eDNA) release significantly contributed...... to biofilm formation in mutant 1585ΔsarA. Increased eDNA amounts indirectly resulted from up-regulation of metalloprotease SepA, leading to boosted processing of major autolysin AtlE, in turn inducing augmented autolysis and release of chromosomal DNA. Hence, this study identifies sarA as a negative...

  17. Nucleotide synthesis is regulated by cytoophidium formation during neurodevelopment and adaptive metabolism

    Directory of Open Access Journals (Sweden)

    Gabriel N. Aughey

    2014-10-01

    Full Text Available The essential metabolic enzyme CTP synthase (CTPsyn can be compartmentalised to form an evolutionarily-conserved intracellular structure termed the cytoophidium. Recently, it has been demonstrated that the enzymatic activity of CTPsyn is attenuated by incorporation into cytoophidia in bacteria and yeast cells. Here we demonstrate that CTPsyn is regulated in a similar manner in Drosophila tissues in vivo. We show that cytoophidium formation occurs during nutrient deprivation in cultured cells, as well as in quiescent and starved neuroblasts of the Drosophila larval central nervous system. We also show that cytoophidia formation is reversible during neurogenesis, indicating that filament formation regulates pyrimidine synthesis in a normal developmental context. Furthermore, our global metabolic profiling demonstrates that CTPsyn overexpression does not significantly alter CTPsyn-related enzymatic activity, suggesting that cytoophidium formation facilitates metabolic stabilisation. In addition, we show that overexpression of CTPsyn only results in moderate increase of CTP pool in human stable cell lines. Together, our study provides experimental evidence, and a mathematical model, for the hypothesis that inactive CTPsyn is incorporated into cytoophidia.

  18. Effects of formative assessments to develop self-regulation among sixth grade students: Results from a randomized controlled intervention

    NARCIS (Netherlands)

    Meusen-Beekman, Kelly; Joosten-ten Brinke, Desirée; Boshuizen, Els

    2018-01-01

    This article presents the results of a formative assessment intervention in writing assignments in sixth grade. We examined whether formative assessments would improve self-regulation, motivation and self-efficacy among sixth graders, and whether differential effects exist between formative

  19. Formation of multiple stoichiometric phases in binary systems by combined bulk and grain boundary diffusion: Experiments and model

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Schillinger, W.

    2013-01-01

    The thermodynamic extremal principle has been used by the authors to treat the evolution of binary and multicomponent systems under the assumption that all phases are nearly stoichiometric. Up to now only bulk diffusion has been taken into account. The concept is now extended to combined bulk and grain boundary diffusion possible in each newly formed phase. The grains are approximated by cylinders allowing interface diffusion along the top and bottom of the grains and grain boundary diffusion along the mantle with different interface/grain boundary diffusion coefficients. A consistent analysis yields an effective diffusion coefficient taking into account the combined interface/grain boundary and bulk diffusion of each individual component. The current concept is applied to the Cu–Sn couple which has been studied by a number of researchers. The results of simulations are compared with experiments at 200 °C on solid systems reported in the literature as well as with our experiments at 250 °C with liquid Sn.

  20. Dynamics of ordering in highly degenerate models with anisotropic grain-boundary potential: Effects of temperature and vortex formation

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Flyvbjerg, Henrik; Mouritsen, Ole G.

    1989-01-01

    -temperature Potts-ordered phase to an intermediate phase which lacks conventional long-range order, and another transition which takes the system to the high-temperature disordered phase. The linear nature of the sine potential used makes it a marginal case in the sense that it favors neither hard domain boundaries...

  1. Factors for Formation and Regulation of the Ukrainian Population’s Incomes in the Context of the Middle Class Formation

    Directory of Open Access Journals (Sweden)

    Т. S.

    2017-12-01

    Full Text Available A key criterion for identification of the middle class is income level enabling for the households’ consumption by the socialy acceptable standards. The share of middle class can grow only in parallel with the increasing polulation incomes. The article’s objective is to study incomes of the Ukrainian population in the context of the middle class formation and analyze regulatory mechanisms pertaining to the populations’ incomes and wages in Ukraine. The study is based on the official statistical data for 2012–2016 (population’s incomes and employment, nominal sages in hryvnya and dollar equivelant. The Kaitz index is calculated for Ukraine by data for 2015–2017. An extendive review of the data obtained from the sample survey of householdes on self-assessment of their incomes, conducted in January 2017, is given. The analysis of factors behind the formation of population’s incomes in Ukraine gives evidence of the low life standards in Ukraine, the wide income gap and the threatening scales of poverty. The main source of the population incomes in Ukraine is salary, with the insignificant share of income from property. While the nominal wage was growing year-to-year in 2012–2016, its dollar equivalent reduced twofold. According to the data of the abovemenationed sample survey, only 0.7% of city households and 0.3% of rural ones classified themselves in the middle class. Ukrainian still lacks appropriate mechanisms for regulation of incomes and wages through differentiated taxation of various population strata; the domestic stock market needs to be built in as way to ensure the increasing incomes from property; the rate of minimal wage should be better justified.

  2. β-Adrenergic Receptors Regulate the Acquisition and Consolidation Phases of Aversive Memory Formation Through Distinct, Temporally Regulated Signaling Pathways.

    Science.gov (United States)

    Schiff, Hillary C; Johansen, Joshua P; Hou, Mian; Bush, David E A; Smith, Emily K; Klein, JoAnna E; LeDoux, Joseph E; Sears, Robert M

    2017-03-01

    Memory formation requires the temporal coordination of molecular events and cellular processes following a learned event. During Pavlovian threat (fear) conditioning (PTC), sensory and neuromodulatory inputs converge on post-synaptic neurons within the lateral nucleus of the amygdala (LA). By activating an intracellular cascade of signaling molecules, these G-protein-coupled neuromodulatory receptors are capable of recruiting a diverse profile of plasticity-related proteins. Here we report that norepinephrine, through its actions on β-adrenergic receptors (βARs), modulates aversive memory formation following PTC through two molecularly and temporally distinct signaling mechanisms. Specifically, using behavioral pharmacology and biochemistry in adult rats, we determined that βAR activity during, but not after PTC training initiates the activation of two plasticity-related targets: AMPA receptors (AMPARs) for memory acquisition and short-term memory and extracellular regulated kinase (ERK) for consolidating the learned association into a long-term memory. These findings reveal that βAR activity during, but not following PTC sets in motion cascading molecular events for the acquisition (AMPARs) and subsequent consolidation (ERK) of learned associations.

  3. Centriolar SAS-7 acts upstream of SPD-2 to regulate centriole assembly and pericentriolar material formation

    Science.gov (United States)

    Sugioka, Kenji; Hamill, Danielle R; Lowry, Joshua B; McNeely, Marie E; Enrick, Molly; Richter, Alyssa C; Kiebler, Lauren E; Priess, James R; Bowerman, Bruce

    2017-01-01

    The centriole/basal body is a eukaryotic organelle that plays essential roles in cell division and signaling. Among five known core centriole proteins, SPD-2/Cep192 is the first recruited to the site of daughter centriole formation and regulates the centriolar localization of the other components in C. elegans and in humans. However, the molecular basis for SPD-2 centriolar localization remains unknown. Here, we describe a new centriole component, the coiled-coil protein SAS-7, as a regulator of centriole duplication, assembly and elongation. Intriguingly, our genetic data suggest that SAS-7 is required for daughter centrioles to become competent for duplication, and for mother centrioles to maintain this competence. We also show that SAS-7 binds SPD-2 and regulates SPD-2 centriolar recruitment, while SAS-7 centriolar localization is SPD-2-independent. Furthermore, pericentriolar material (PCM) formation is abnormal in sas-7 mutants, and the PCM-dependent induction of cell polarity that defines the anterior-posterior body axis frequently fails. We conclude that SAS-7 functions at the earliest step in centriole duplication yet identified and plays important roles in the orchestration of centriole and PCM assembly. DOI: http://dx.doi.org/10.7554/eLife.20353.001 PMID:28092264

  4. Electrostatic Interactions Positively Regulate K-Ras Nanocluster Formation and Function▿

    Science.gov (United States)

    Plowman, Sarah J.; Ariotti, Nicholas; Goodall, Andrew; Parton, Robert G.; Hancock, John F.

    2008-01-01

    The organization of Ras proteins into plasma membrane nanoclusters is essential for high-fidelity signal transmission, but whether the nanoscale enviroments of different Ras nanoclusters regulate effector interactions is unknown. We show using high-resolution spatial mapping that Raf-1 is recruited to and retained in K-Ras-GTP nanoclusters. In contrast, Raf-1 recruited to the plasma membrane by H-Ras is not retained in H-Ras-GTP nanoclusters. Similarly, upon epidermal growth factor receptor activation, Raf-1 is preferentially recruited to K-Ras-GTP and not H-Ras-GTP nanoclusters. The formation of K-Ras-GTP nanoclusters is inhibited by phosphorylation of S181 in the C-terminal polybasic domain or enhanced by blocking S181 phosphorylation, with a concomitant reduction or increase in Raf-1 plasma membrane recruitment, respectively. Phosphorylation of S181 does not, however, regulate in vivo interactions with the nanocluster scaffold galectin-3 (Gal3), indicating separate roles for the polybasic domain and Gal3 in driving K-Ras nanocluster formation. Together, these data illustrate that Ras nanocluster composition regulates effector recruitment and highlight the importance of lipid/protein nanoscale environments to the activation of signaling cascades. PMID:18458061

  5. Proteomic Analysis of Fetal Ovaries Reveals That Primordial Follicle Formation and Transition Are Differentially Regulated

    Directory of Open Access Journals (Sweden)

    Mengmeng Xu

    2017-01-01

    Full Text Available Primordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90. The identified proteins at the g55 time-point are mainly involved in the development of anatomical structures [reticulocalbin-1 (RCN1, reticulocalbin-3 (RCN3], cell differentiation (actin, and stress response [heterogeneous nuclear ribonucleoprotein K (HNRNPK]. Meanwhile, at the g90 stage, the isolated proteins with altered expression levels were mainly associated with cell proliferation [major vault protein (MVP] and stress response [heat shock-related 70 kDa protein 2 (HSPA2]. In conclusion, our work revealed that primordial follicle formation is regulated by RCN1, RCN3, actin, and HNRNPK, while the primordial follicle transformation to primary follicle is regulated by MVP and HSPA2. Therefore, our results provide further information for the prospective understanding of the molecular mechanism(s involved in the regulation of the ovarian follicle development.

  6. Shp2 in Forebrain Neurons Regulates Synaptic Plasticity, Locomotion, and Memory Formation in Mice

    Science.gov (United States)

    Kusakari, Shinya; Saitow, Fumihito; Ago, Yukio; Shibasaki, Koji; Sato-Hashimoto, Miho; Matsuzaki, Yasunori; Kotani, Takenori; Murata, Yoji; Hirai, Hirokazu; Matsuda, Toshio; Suzuki, Hidenori

    2015-01-01

    Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K+-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation. PMID:25713104

  7. Synapse Formation in Monosynaptic Sensory–Motor Connections Is Regulated by Presynaptic Rho GTPase Cdc42

    Science.gov (United States)

    Imai, Fumiyasu; Ladle, David R.; Leslie, Jennifer R.; Duan, Xin; Rizvi, Tilat A.; Ciraolo, Georgianne M.; Zheng, Yi

    2016-01-01

    Spinal reflex circuit development requires the precise regulation of axon trajectories, synaptic specificity, and synapse formation. Of these three crucial steps, the molecular mechanisms underlying synapse formation between group Ia proprioceptive sensory neurons and motor neurons is the least understood. Here, we show that the Rho GTPase Cdc42 controls synapse formation in monosynaptic sensory–motor connections in presynaptic, but not postsynaptic, neurons. In mice lacking Cdc42 in presynaptic sensory neurons, proprioceptive sensory axons appropriately reach the ventral spinal cord, but significantly fewer synapses are formed with motor neurons compared with wild-type mice. Concordantly, electrophysiological analyses show diminished EPSP amplitudes in monosynaptic sensory–motor circuits in these mutants. Temporally targeted deletion of Cdc42 in sensory neurons after sensory–motor circuit establishment reveals that Cdc42 does not affect synaptic transmission. Furthermore, addition of the synaptic organizers, neuroligins, induces presynaptic differentiation of wild-type, but not Cdc42-deficient, proprioceptive sensory neurons in vitro. Together, our findings demonstrate that Cdc42 in presynaptic neurons is required for synapse formation in monosynaptic sensory–motor circuits. SIGNIFICANCE STATEMENT Group Ia proprioceptive sensory neurons form direct synapses with motor neurons, but the molecular mechanisms underlying synapse formation in these monosynaptic sensory–motor connections are unknown. We show that deleting Cdc42 in sensory neurons does not affect proprioceptive sensory axon targeting because axons reach the ventral spinal cord appropriately, but these neurons form significantly fewer presynaptic terminals on motor neurons. Electrophysiological analysis further shows that EPSPs are decreased in these mice. Finally, we demonstrate that Cdc42 is involved in neuroligin-dependent presynaptic differentiation of proprioceptive sensory neurons in vitro

  8. Artificial induction of Sox21 regulates sensory cell formation in the embryonic chicken inner ear.

    Directory of Open Access Journals (Sweden)

    Stephen D Freeman

    Full Text Available During embryonic development, hair cells and support cells in the sensory epithelia of the inner ear derive from progenitors that express Sox2, a member of the SoxB1 family of transcription factors. Sox2 is essential for sensory specification, but high levels of Sox2 expression appear to inhibit hair cell differentiation, suggesting that factors regulating Sox2 activity could be critical for both processes. Antagonistic interactions between SoxB1 and SoxB2 factors are known to regulate cell differentiation in neural tissue, which led us to investigate the potential roles of the SoxB2 member Sox21 during chicken inner ear development. Sox21 is normally expressed by sensory progenitors within vestibular and auditory regions of the early embryonic chicken inner ear. At later stages, Sox21 is differentially expressed in the vestibular and auditory organs. Sox21 is restricted to the support cell layer of the auditory epithelium, while it is enriched in the hair cell layer of the vestibular organs. To test Sox21 function, we used two temporally distinct gain-of-function approaches. Sustained over-expression of Sox21 from early developmental stages prevented prosensory specification, and abolished the formation of both hair cells and support cells. However, later induction of Sox21 expression at the time of hair cell formation in organotypic cultures of vestibular epithelia inhibited endogenous Sox2 expression and Notch activity, and biased progenitor cells towards a hair cell fate. Interestingly, Sox21 did not promote hair cell differentiation in the immature auditory epithelium, which fits with the expression of endogenous Sox21 within mature support cells in this tissue. These results suggest that interactions among endogenous SoxB family transcription factors may regulate sensory cell formation in the inner ear, but in a context-dependent manner.

  9. Postgraduate education and research in Brazil: regulation and reconfiguration processes of academic work formation and production

    Directory of Open Access Journals (Sweden)

    João Ferreira de Oliveira

    2015-07-01

    Full Text Available This text analyses some of the processes of formation and production regulation and reconfiguration of the scholarly work in Brazil. Initially we examine the context and meaning of knowledge production in times of flexible accumulation, as well as the current landscape of Postgraduate education in the country. We seek to understand how public policies in the area, particularly the actions of evaluation and promotion, and the new modus operandi of the Postgraduate study and research organization have been reconfiguring the work production of teaching and students within the programs, especially in education. Above all, we seek to highlight the role of promotion and evaluation agencies, increasingly committed to a vision of expansion that drives the production of knowledge associated with demands of economic-productivity, rather than a consistent formative project that would result in a significant advancement in the production and dissemination of knowledge in the different areas.

  10. CLUMPY DISKS AS A TESTBED FOR FEEDBACK-REGULATED GALAXY FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Lucio; Tamburello, Valentina [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Lupi, Alessandro; Madau, Piero [Institut d’Astrophysique de Paris, Sorbonne Universités, UPMC Univ Paris 6 et CNRS, UMR 7095, 98 bis bd Arago, F-75014 Paris (France); Keller, Ben; Wadsley, James [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2016-10-10

    We study the dependence of fragmentation in massive gas-rich galaxy disks at z >1 on stellar feedback schemes and hydrodynamical solvers, employing the GASOLINE2 SPH code and the lagrangian mesh-less code GIZMO in finite mass mode. Non-cosmological galaxy disk runs with the standard delayed-cooling blastwave feedback are compared with runs adopting a new superbubble feedback, which produces winds by modeling the detailed physics of supernova-driven bubbles and leads to efficient self-regulation of star formation. We find that, with blastwave feedback, massive star-forming clumps form in comparable number and with very similar masses in GASOLINE2 and GIZMO. Typical clump masses are in the range 10{sup 7}–10{sup 8} M {sub ⊙}, lower than in most previous works, while giant clumps with masses above 10{sup 9} M {sub ⊙} are exceedingly rare. By contrast, superbubble feedback does not produce massive star-forming bound clumps as galaxies never undergo a phase of violent disk instability. In this scheme, only sporadic, unbound star-forming overdensities lasting a few tens of Myr can arise, triggered by non-linear perturbations from massive satellite companions. We conclude that there is severe tension between explaining massive star-forming clumps observed at z >1 primarily as the result of disk fragmentation driven by gravitational instability and the prevailing view of feedback-regulated galaxy formation. The link between disk stability and star formation efficiency should thus be regarded as a key testing ground for galaxy formation theory.

  11. Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hua eCassan-Wang

    2013-06-01

    Full Text Available The presence of lignin in secondary cell walls (SCW is a major factor preventing hydrolytic enzymes from gaining access to cellulose, thereby limiting the saccharification potential of plant biomass. To understand how lignification is regulated is a prerequisite for selecting plant biomass better adapted to bioethanol production. Because transcriptional regulation is a major mechanism controlling the expression of genes involved in lignin biosynthesis, our aim was to identify novel transcription factors dictating lignin profiles in the model plant Arabidopsis. To this end, we have developed a post-genomic approach by combining four independent in-house SCW-related transcriptome datasets obtained from (i the fiber cell wall-deficient wat1 Arabidopsis mutant, (ii Arabidopsis lines over-expressing either the master regulatory activator EgMYB2 or (iii the repressor EgMYB1 and finally (iv Arabidopsis orthologs of Eucalyptus xylem-expressed genes. This allowed us to identify 502 up- or down-regulated transcription factors. We preferentially selected those present in more than one dataset and further analyzed their in silico expression patterns as an additional selection criteria. This selection process led to 80 candidates. Notably, 16 of them were already proven to regulate SCW formation, thereby validating the overall strategy. Then, we phenotyped 43 corresponding mutant lines focusing on histological observations of xylem and interfascicular fibers. This phenotypic screen revealed six mutant lines exhibiting altered lignification patterns. Two of them (blh6 and a zinc finger transcription factor presented hypolignified SCW. Three others (myb52, myb-like TF, hb5 showed hyperlignified SCW whereas the last one (hb15 showed ectopic lignification. In addition, our meta-analyses highlighted a reservoir of new potential regulators adding to the gene network regulating SCW but also opening new avenues to ultimately improve SCW composition for biofuel

  12. HDAC3 Is a Critical Negative Regulator of Long-Term Memory Formation

    Science.gov (United States)

    McQuown, Susan C.; Barrett, Ruth M.; Matheos, Dina P.; Post, Rebecca J.; Rogge, George A.; Alenghat, Theresa; Mullican, Shannon E.; Jones, Steven; Rusche, James R.; Lazar, Mitchell A.; Wood, Marcelo A.

    2011-01-01

    Gene expression is dynamically regulated by chromatin modifications on histone tails, such as acetylation. In general, histone acetylation promotes transcription, whereas histone deacetylation negatively regulates transcription. The interplay between histone acetyl-transerases and histone deacetylases (HDACs) is pivotal for the regulation of gene expression required for long-term memory processes. Currently, very little is known about the role of individual HDACs in learning and memory. We examined the role of HDAC3 in long-term memory using a combined genetic and pharmacologic approach. We used HDAC3–FLOX genetically modified mice in combination with adeno-associated virus-expressing Cre recombinase to generate focal homozygous deletions of Hdac3 in area CA1 of the dorsal hippocampus. To complement this approach, we also used a selective inhibitor of HDAC3, RGFP136 [N-(6-(2-amino-4-fluorophenylamino)-6-oxohexyl)-4-methylbenzamide]. Immunohistochemistry showed that focal deletion or intrahippocampal delivery of RGFP136 resulted in increased histone acetylation. Both the focal deletion of HDAC3 as well as HDAC3 inhibition via RGFP136 significantly enhanced long-term memory in a persistent manner. Next we examined expression of genes implicated in long-term memory from dorsal hippocampal punches using quantitative reverse transcription-PCR. Expression of nuclear receptor subfamily 4 group A, member 2 (Nr4a2) and c-fos was significantly increased in the hippocampus of HDAC3–FLOX mice compared with wild-type controls. Memory enhancements observed in HDAC3–FLOX mice were abolished by intrahippocampal delivery of Nr4a2 small interfering RNA, suggesting a mechanism by which HDAC3 negatively regulates memory formation. Together, these findings demonstrate a critical role for HDAC3 in the molecular mechanisms underlying long-term memory formation. PMID:21228185

  13. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao; Xiong, Liming

    2011-01-01

    has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling

  14. BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation

    OpenAIRE

    Moreira, Ricardo N.; Dressaire, Clémentine; Barahona, Susana; Galego, Lisete; Kaever, Volkhard; Jenal, Urs; Arraiano, Cecília M.

    2017-01-01

    The bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a nearly ubiquitous intracellular signaling molecule involved in the transition from the motile to the sessile/biofilm state in bacteria. C-di-GMP regulates various cellular processes, including biofilm formation, motility, and virulence. BolA is a transcription factor that promotes survival in different stresses and is also involved in biofilm formation. Both BolA and c-di-GMP participate in the regulation of motility mechanisms...

  15. Regulation of mitotic spindle formation by the RhoA guanine nucleotide exchange factor ARHGEF10

    Directory of Open Access Journals (Sweden)

    Satoh Takaya

    2009-07-01

    Full Text Available Abstract Background The Dbl family guanine nucleotide exchange factor ARHGEF10 was originally identified as the product of the gene associated with slowed nerve-conduction velocities of peripheral nerves. However, the function of ARHGEF10 in mammalian cells is totally unknown at a molecular level. ARHGEF10 contains no distinctive functional domains except for tandem Dbl homology-pleckstrin homology and putative transmembrane domains. Results Here we show that RhoA is a substrate for ARHGEF10. In both G1/S and M phases, ARHGEF10 was localized in the centrosome in adenocarcinoma HeLa cells. Furthermore, RNA interference-based knockdown of ARHGEF10 resulted in multipolar spindle formation in M phase. Each spindle pole seems to contain a centrosome consisting of two centrioles and the pericentriolar material. Downregulation of RhoA elicited similar phenotypes, and aberrant mitotic spindle formation following ARHGEF10 knockdown was rescued by ectopic expression of constitutively activated RhoA. Multinucleated cells were not increased upon ARHGEF10 knockdown in contrast to treatment with Y-27632, a specific pharmacological inhibitor for the RhoA effector kinase ROCK, which induced not only multipolar spindle formation, but also multinucleation. Therefore, unregulated centrosome duplication rather than aberration in cytokinesis may be responsible for ARHGEF10 knockdown-dependent multipolar spindle formation. We further isolated the kinesin-like motor protein KIF3B as a binding partner of ARHGEF10. Knockdown of KIF3B again caused multipolar spindle phenotypes. The supernumerary centrosome phenotype was also observed in S phase-arrested osteosarcoma U2OS cells when the expression of ARHGEF10, RhoA or KIF3B was abrogated by RNA interference. Conclusion Collectively, our results suggest that a novel RhoA-dependent signaling pathway under the control of ARHGEF10 has a pivotal role in the regulation of the cell division cycle. This pathway is not involved in

  16. Formative Self-Assessment College Classes Improves Self-Regulation and Retention in First/Second Year Community College Students

    Science.gov (United States)

    Mahlberg, Jamie

    2015-01-01

    This research examined the influence formative self-assessment had on first/second year community college student self-regulatory practices. Previous research has shown that the ability to regulate one's learning activities can improve performance in college classes, and it has long been known that the use of formative assessment improves…

  17. An Exploration of the Relationship between Students' Preferences for Formative Feedback and Self-Regulated Learning Skills

    Science.gov (United States)

    Çakir, Recep; Korkmaz, Özgen; Bacanak, Ahmet; Arslan, Ömer

    2016-01-01

    The purpose of this study is to explore students' preferences for formative feedback and its relationship with their self-regulated learning skills. The study used a mixed methods approach in which quantitative data collection and analysis was followed by qualitative data collection and analysis. "Preferences toward Formative Feedback"…

  18. Chlorination or monochloramination: Balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters

    KAUST Repository

    Sanawar, Huma

    2017-08-15

    Disinfection methods like chlorination are increasingly used to sanitize the water, equipment, tools and surfaces in aquaculture facilities. This is to improve water quality, and to maintain a hygienic environment for the well-being of aquatic organisms. However, chlorination can result in formation of regulated disinfection byproducts (DBPs) that can be carcinogenic and toxic. This study aims to evaluate if an optimal balance can be achieved between minimal regulated DBP formation and effective microbial inactivation with either chlorination or monochloramination for application in the Red Sea aquaculture waters. Upon chlorination, the concentration of total trihalomethanes (THMs), primarily bromoform, exceeded the regulatory limit of 80μg/L even at the lowest tested concentration of chlorine (1mg/L) and contact time (1h). Comparatively, regulated THMs concentration was only detectable at 30μg/L level in one of the three sets of monochloraminated marine aquaculture waters. The average log reduction of antibiotic-resistant bacteria (ARB) by chlorine ranged from 2.3-log to 3.2-log with different contact time. The average log reduction of ARB by monochloramine was comparatively lower at 1.9 to 2.9-log. Although viable Staphylococcus aureus was recovered from monochloraminated samples as opposed to chlorinated samples, the abundance of S. aureus was not high enough to result in any significant microbial risks. Both chlorination and monochloramination did not provide any significant improvement in the reduction of antibiotic resistance genes (ARGs). This study demonstrates that a systematic evaluation is needed to determine the optimal disinfectant required to balance both microbial and chemical risks. Compared to chlorine, monochloramine may be a more appropriate disinfection strategy for the treatment of aquaculture effluents prior to discharge or for recirculatory use in the aquaculture facility.

  19. Becoming popular: interpersonal emotion regulation predicts relationship formation in real life social networks

    Science.gov (United States)

    Niven, Karen; Garcia, David; van der Löwe, Ilmo; Holman, David; Mansell, Warren

    2015-01-01

    Building relationships is crucial for satisfaction and success, especially when entering new social contexts. In the present paper, we investigate whether attempting to improve others’ feelings helps people to make connections in new networks. In Study 1, a social network study following new networks of people for a 12-week period indicated that use of interpersonal emotion regulation (IER) strategies predicted growth in popularity, as indicated by other network members’ reports of spending time with the person, in work and non-work interactions. In Study 2, linguistic analysis of the tweets from over 8000 Twitter users from formation of their accounts revealed that use of IER predicted greater popularity in terms of the number of followers gained. However, not all types of IER had positive effects. Behavioral IER strategies (which use behavior to reassure or comfort in order to regulate affect) were associated with greater popularity, while cognitive strategies (which change a person’s thoughts about his or her situation or feelings in order to regulate affect) were negatively associated with popularity. Our findings have implications for our understanding of how new relationships are formed, highlighting the important the role played by intentional emotion regulatory processes. PMID:26483718

  20. Becoming popular: Interpersonal emotion regulation predicts relationship formation in real life social networks

    Directory of Open Access Journals (Sweden)

    Karen eNiven

    2015-09-01

    Full Text Available Building relationships is crucial for satisfaction and success, especially when entering new social contexts. In the present paper, we investigate whether attempting to improve others’ feelings helps people to make connections in new networks. In Study 1, a social network study following new networks of people for a twelve-week period indicated that use of interpersonal emotion regulation (IER strategies predicted growth in popularity, as indicated by other network members’ reports of spending time with the person, in work and non-work interactions. In Study 2, linguistic analysis of the tweets from over 8000 Twitter users from formation of their accounts revealed that use of IER predicted greater popularity in terms of the number of followers gained. However, not all types of IER had positive effects. Behavioral IER strategies (which use behavior to reassure or comfort in order to regulate affect were associated with greater popularity, while cognitive strategies (which change a person’s thoughts about his or her situation or feelings in order to regulate affect were negatively associated with popularity. Our findings have implications for our understanding of how new relationships are formed, highlighting the important the role played by intentional emotion regulatory processes.

  1. Iodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe Roscoff coastal study

    Directory of Open Access Journals (Sweden)

    G. McFiggans

    2010-03-01

    Full Text Available This paper presents a summary of the measurements made during the heavily-instrumented Reactive Halogens in the Marine Boundary Layer (RHaMBLe coastal study in Roscoff on the North West coast of France throughout September 2006. It was clearly demonstrated that iodine-mediated coastal particle formation occurs, driven by daytime low tide emission of molecular iodine, I2, by macroalgal species fully or partially exposed by the receding waterline. Ultrafine particle concentrations strongly correlate with the rapidly recycled reactive iodine species, IO, produced at high concentrations following photolysis of I2. The heterogeneous macroalgal I2 sources lead to variable relative concentrations of iodine species observed by path-integrated and in situ measurement techniques.

    Apparent particle emission fluxes were associated with an enhanced apparent depositional flux of ozone, consistent with both a direct O3 deposition to macroalgae and involvement of O3 in iodine photochemistry and subsequent particle formation below the measurement height. The magnitude of the particle formation events was observed to be greatest at the lowest tides with the highest concentrations of ultrafine particles growing to the largest sizes, probably by the condensation of anthropogenically-formed condensable material. At such sizes the particles should be able to act as cloud condensation nuclei at reasonable atmospheric supersaturations.

  2. Electroless formation of conductive polymer-metal nanostructured composites at boundary of two immiscible solvents. Morphology and properties

    International Nuclear Information System (INIS)

    Gniadek, Marianna; Donten, Mikolaj; Stojek, Zbigniew

    2010-01-01

    Formation of polypyrrole (PPy) with metallic inclusions was carried out at the interface between the aqueous phase containing an oxidizer and an organic solution of the monomer. A variety of the polymer-metal composites were obtained in the system. When the oxidizers were silver- and gold salts the obtained material contained from 4 to 9 at.% of metal. In the case of Ag + oxidant the structure of the metallic silver objects varied and included beads and ultra thin wires covered by polymer film, nanocrystals, micrometer cuboid monocrystals and microplates. Metallic gold practically appeared only in one structure-granules. The granules of Au incorporated into PPy were porous and made of very fine flat crystals of thickness in the nanometer range. The use of copper salts never led to the formation of metallic species in the composite. The influence of selected process parameters such as temperature and concentration of the reactants on the polymerization reaction was investigated. The composites with metallic nanoobjects were found to be better catalysts for the electrooxidation of ascorbic acids compared to pure polypyrrole. SEM, X-ray diffractometry, Raman spectroscopy and voltammetry were used in the investigation.

  3. Electroless formation of conductive polymer-metal nanostructured composites at boundary of two immiscible solvents. Morphology and properties

    Energy Technology Data Exchange (ETDEWEB)

    Gniadek, Marianna [Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Donten, Mikolaj, E-mail: donten@chem.uw.edu.p [Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Stojek, Zbigniew, E-mail: stojek@chem.uw.edu.p [Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland)

    2010-11-01

    Formation of polypyrrole (PPy) with metallic inclusions was carried out at the interface between the aqueous phase containing an oxidizer and an organic solution of the monomer. A variety of the polymer-metal composites were obtained in the system. When the oxidizers were silver- and gold salts the obtained material contained from 4 to 9 at.% of metal. In the case of Ag{sup +} oxidant the structure of the metallic silver objects varied and included beads and ultra thin wires covered by polymer film, nanocrystals, micrometer cuboid monocrystals and microplates. Metallic gold practically appeared only in one structure-granules. The granules of Au incorporated into PPy were porous and made of very fine flat crystals of thickness in the nanometer range. The use of copper salts never led to the formation of metallic species in the composite. The influence of selected process parameters such as temperature and concentration of the reactants on the polymerization reaction was investigated. The composites with metallic nanoobjects were found to be better catalysts for the electrooxidation of ascorbic acids compared to pure polypyrrole. SEM, X-ray diffractometry, Raman spectroscopy and voltammetry were used in the investigation.

  4. Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine mediated particle formation in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2012-09-01

    Full Text Available Iodine oxide particles are known to nucleate in the marine boundary layer where gas phase molecular iodine and organoiodine species are produced by macroalgae. These ultra-fine particles may then grow through the condensation of other materials to sizes where they may serve as cloud condensation nuclei. There has been some debate over the chemical identity of the initially nucleated particles. In laboratory simulations, hygroscopic measurements have been used to infer that they are composed of insoluble I2O4, while elemental analysis of laboratory generated particles suggests soluble I2O5 or its hydrated form iodic acid, HIO3 (I2O5·H2O. In this paper we explore the response of super-micron sized aqueous iodic acid solution droplets to varying humidity using both Raman microscopy and single particle electrodynamic traps. These measurements reveal that the propensity of an iodic acid solution droplet to crystallise is negligible on drying to ~0% relative humidity (RH. On applying mechanical pressure to these droplets they shatter in a manner consistent with an ultra-viscous liquid or a brittle glass. Water retention in amorphous material at low RH is important for understanding the hygroscopic growth of aerosol particles and uptake of other condensable material. Subsequent water uptake between 10 and 20% RH causes their viscosity to reduce sufficiently that the cracked droplets flow and merge. The persistence of iodic acid solution in an amorphous state, rather than a crystalline state, suggests they will more readily accommodate other condensable material and are therefore more likely to grow to sizes where they may serve as cloud condensation nuclei. On increasing the humidity to ~90% the mass of the droplets only increases by ~20% with a corresponding increase in radius of only 6%, which is remarkably small for a highly soluble material. We suggest that the

  5. Response regulator heterodimer formation controls a key stage in Streptomyces development.

    Directory of Open Access Journals (Sweden)

    Mahmoud M Al-Bassam

    2014-08-01

    Full Text Available The orphan, atypical response regulators BldM and WhiI each play critical roles in Streptomyces differentiation. BldM is required for the formation of aerial hyphae, and WhiI is required for the differentiation of these reproductive structures into mature spores. To gain insight into BldM function, we defined the genome-wide BldM regulon using ChIP-Seq and transcriptional profiling. BldM target genes clustered into two groups based on their whi gene dependency. Expression of Group I genes depended on bldM but was independent of all the whi genes, and biochemical experiments showed that Group I promoters were controlled by a BldM homodimer. In contrast, Group II genes were expressed later than Group I genes and their expression depended not only on bldM but also on whiI and whiG (encoding the sigma factor that activates whiI. Additional ChIP-Seq analysis showed that BldM Group II genes were also direct targets of WhiI and that in vivo binding of WhiI to these promoters depended on BldM and vice versa. We go on to demonstrate that BldM and WhiI form a functional heterodimer that controls Group II promoters, serving to integrate signals from two distinct developmental pathways. The BldM-WhiI system thus exemplifies the potential of response regulator heterodimer formation as a mechanism to expand the signaling capabilities of bacterial cells.

  6. The part of the solar spectrum with the highest influence on the formation of SOA in the continental boundary layer

    Directory of Open Access Journals (Sweden)

    M. Boy

    2002-01-01

    Full Text Available The relationship between nucleation events and spectral solar irradiance was analysed using two years of data collected at the Station for Measuring Forest Ecosystem-Atmosphere Relations (SMEAR II in Hyytiälä, Finland. We analysed the data in two different ways. In the first step we calculated ten nanometer average values from the irradiance measurements between 280 and 580 nm and explored if any special wavelengths groups showed higher values on event days compared to a spectral reference curve for all the days for 2 years or to reference curves for every month. The results indicated that short wavelength irradiance between 300 and 340 nm is higher on event days in winter (February and March compared to the monthly reference graph but quantitative much smaller than in spring or summer. By building the ratio between the average values of different event classes and the yearly reference graph we obtained peaks between 1.17 and 1.6 in the short wavelength range (300--340 nm. In the next step we included number concentrations of particles between 3 and 10 nm and calculated correlation coefficients between the different wavelengths groups and the particles. The results were quite similar to those obtained previously; the highest correlation coefficients were reached for the spectral irradiance groups 3--5 (300--330 nm with average values for the single event classes around 0.6 and a nearly linear decrease towards higher wavelengths groups by 30%. Both analyses indicate quite clearly that short wavelength irradiance between 300 and 330 or 340 nm is the most important solar spectral radiation for the formation of newly formed aerosols. In the end we introduce a photochemical mechanism as one possible pathway how short wavelength irradiance can influence the formation of SOA by calculating the production rate of excited oxygen. This mechanism shows in which way short wavelength irradiance can influence the formation of new particles even though the

  7. Regulating temporospatial dynamics of morphogen for structure formation of the lacrimal gland by chitosan biomaterials.

    Science.gov (United States)

    Hsiao, Ya-Chuan; Yang, Tsung-Lin

    2017-01-01

    The lacrimal gland is an important organ responsible for regulating tear synthesis and secretion. The major work of lacrimal gland (LG) is to lubricate the ocular surface and maintain the health of eyes. Functional deterioration of the lacrimal gland happens because of aging, diseases, or therapeutic complications, but without effective treatments till now. The LG originates from the epithelium of ocular surface and develops by branching morphogenesis. To regenerate functional LGs, it is required to explore the way of recapitulating and facilitating the organ to establish the intricate and ramified structure. In this study, we proposed an approach using chitosan biomaterials to create a biomimetic environment beneficial to the branching structure formation of developing LG. The morphogenetic effect of chitosan was specific and optimized to promote LG branching. With chitosan, increase in temporal expression and local concentration of endogenous HGF-related molecules creates an environment around the emerging tip of LG epithelia. By efficiently enhancing downstream signaling of HGF pathways, the cellular activities and behaviors were activated to contribute to LG branching morphogenesis. The morphogenetic effect of chitosan was abolished by either ligand or receptor deprivation, or inhibition of downstream signaling transduction. Our results elucidated the underlying mechanism accounting for chitosan morphogenetic effects on LG, and also proposed promising approaches with chitosan to assist tissue structure formation of the LG. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. DNA Methylation Dynamics Regulate the Formation of a Regenerative Wound Epithelium during Axolotl Limb Regeneration.

    Directory of Open Access Journals (Sweden)

    Cristian Aguilar

    Full Text Available The formation of a blastema during regeneration of an axolotl limb involves important changes in the behavior and function of cells at the site of injury. One of the earliest events is the formation of the wound epithelium and subsequently the apical epidermal cap, which involves in vivo dedifferentiation that is controlled by signaling from the nerve. We have investigated the role of epigenetic modifications to the genome as a possible mechanism for regulating changes in gene expression patterns of keratinocytes of the wound and blastema epithelium that are involved in regeneration. We report a modulation of the expression DNMT3a, a de novo DNA methyltransferase, within the first 72 hours post injury that is dependent on nerve signaling. Treatment of skin wounds on the upper forelimb with decitabine, a DNA methyltransferase inhibitor, induced changes in gene expression and cellular behavior associated with a regenerative response. Furthermore, decitabine-treated wounds were able to participate in regeneration while untreated wounds inhibited a regenerative response. Elucidation of the specific epigenetic modifications that mediate cellular dedifferentiation likely will lead to insights for initiating a regenerative response in organisms that lack this ability.

  9. Location, formation and biosynthetic regulation of cellulases in the gliding bacteria Cytophaga hutchinsonii

    Directory of Open Access Journals (Sweden)

    Elijah Johnson

    2006-01-01

    Full Text Available An analysis of the recently published genome sequence of Cytophagahutchinsonii revealed an unusual collection of genes for an organism that can attackcrystalline cellulose. Consequently, questions were being raised by cellulase scientists, as towhat mechanism this organism uses to degrade its insoluble substrates. Cellulose, being ahighly polymeric compound and insoluble in water, cannot enter the cell walls ofmicroorganisms. Cellulose-degrading enzymes have therefore to be located on the surface ofthe cell wall or released extracellularly. The location of most cellulase enzymes has beenstudied. However, basic information on C. hutchinsonii cellulases is almost non-existent. Inthe present study, the location, formation and biosynthetic regulation of cellulases in C.hutchinsonii were demonstrated on different substrates. Various fractions isolated from C.hutchinsonii after cell rupture were assayed for carboxymethyl-cellulase activity (CMC.The cellulases were found to be predominantly cell-free during active growth on solka-flok,although 30% of activity was recorded on cell-bound enzymes. Relatively little CM-cellulase was formed when cells were grown on glucose and cellobiose. Apparently glucoseor labile substrates such as cellobiose seem to repress the formation of CM-cellulase. Thesefindings should provide some insight into possible hydrolysis mechanisms by C.hutchinsonii.

  10. A TNF-Regulated Recombinatorial Macrophage Immune Receptor Implicated in Granuloma Formation in Tuberculosis

    Science.gov (United States)

    Streich, Roswita; Breysach, Caroline; Raddatz, Dirk; Oniga, Septimia; Peccerella, Teresa; Findeisen, Peter; Kzhyshkowska, Julia; Gratchev, Alexei; Schweyer, Stefan; Saunders, Bernadette; Wessels, Johannes T.; Möbius, Wiebke; Keane, Joseph; Becker, Heinz; Ganser, Arnold; Neumaier, Michael; Kaminski, Wolfgang E.

    2011-01-01

    Macrophages play a central role in host defense against mycobacterial infection and anti- TNF therapy is associated with granuloma disorganization and reactivation of tuberculosis in humans. Here, we provide evidence for the presence of a T cell receptor (TCR) αβ based recombinatorial immune receptor in subpopulations of human and mouse monocytes and macrophages. In vitro, we find that the macrophage-TCRαβ induces the release of CCL2 and modulates phagocytosis. TNF blockade suppresses macrophage-TCRαβ expression. Infection of macrophages from healthy individuals with mycobacteria triggers formation of clusters that express restricted TCR Vβ repertoires. In vivo, TCRαβ bearing macrophages abundantly accumulate at the inner host-pathogen contact zone of caseous granulomas from patients with lung tuberculosis. In chimeric mouse models, deletion of the variable macrophage-TCRαβ or TNF is associated with structurally compromised granulomas of pulmonary tuberculosis even in the presence of intact T cells. These results uncover a TNF-regulated recombinatorial immune receptor in monocytes/macrophages and demonstrate its implication in granuloma formation in tuberculosis. PMID:22114556

  11. A TNF-regulated recombinatorial macrophage immune receptor implicated in granuloma formation in tuberculosis.

    Directory of Open Access Journals (Sweden)

    Alexander W Beham

    2011-11-01

    Full Text Available Macrophages play a central role in host defense against mycobacterial infection and anti- TNF therapy is associated with granuloma disorganization and reactivation of tuberculosis in humans. Here, we provide evidence for the presence of a T cell receptor (TCR αβ based recombinatorial immune receptor in subpopulations of human and mouse monocytes and macrophages. In vitro, we find that the macrophage-TCRαβ induces the release of CCL2 and modulates phagocytosis. TNF blockade suppresses macrophage-TCRαβ expression. Infection of macrophages from healthy individuals with mycobacteria triggers formation of clusters that express restricted TCR Vβ repertoires. In vivo, TCRαβ bearing macrophages abundantly accumulate at the inner host-pathogen contact zone of caseous granulomas from patients with lung tuberculosis. In chimeric mouse models, deletion of the variable macrophage-TCRαβ or TNF is associated with structurally compromised granulomas of pulmonary tuberculosis even in the presence of intact T cells. These results uncover a TNF-regulated recombinatorial immune receptor in monocytes/macrophages and demonstrate its implication in granuloma formation in tuberculosis.

  12. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation

    Science.gov (United States)

    Phan, Mimi L.; Bieszczad, Kasia M.

    2016-01-01

    Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded. PMID:26881129

  13. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation.

    Science.gov (United States)

    Phan, Mimi L; Bieszczad, Kasia M

    2016-01-01

    Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded.

  14. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation

    Directory of Open Access Journals (Sweden)

    Mimi L. Phan

    2016-01-01

    Full Text Available Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded.

  15. Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain

    Directory of Open Access Journals (Sweden)

    Michalina Respondek

    2015-12-01

    Full Text Available Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC, which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells.

  16. The Role of Programmed Cell Death Regulator LSD1 in Nematode-Induced Syncytium Formation

    Science.gov (United States)

    Matuszkiewicz, Mateusz; Sobczak, Miroslaw; Cabrera, Javier; Escobar, Carolina; Karpiński, Stanislaw; Filipecki, Marcin

    2018-01-01

    Cyst-forming plant-parasitic nematodes are common pests of many crops. They inject secretions into host cells to induce the developmental and metabolic reprogramming that leads to the formation of a syncytium, which is the sole food source for growing nematodes. As in other host-parasite models, avirulence leads to rapid and local programmed cell death (PCD) known as the hypersensitive response (HR), whereas in the case of virulence, PCD is still observed but is limited to only some cells. Several regulators of PCD were analyzed to understand the role of PCD in compatible plant–nematode interactions. Thus, Arabidopsis plants carrying recessive mutations in LESION SIMULATING DISEASE1 (LSD1) family genes were subjected to nematode infection assays with juveniles of Heterodera schachtii. LSD1 is a negative and conditional regulator of PCD, and fewer and smaller syncytia were induced in the roots of lsd1 mutants than in wild-type Col-0 plants. Mutation in LSD ONE LIKE2 (LOL2) revealed a pattern of susceptibility to H. schachtii antagonistic to lsd1. Syncytia induced on lsd1 roots compared to Col0 showed significantly retarded growth, modified cell wall structure, increased vesiculation, and some myelin-like bodies present at 7 and 12 days post-infection. To place these data in a wider context, RNA-sequencing analysis of infected and uninfected roots was conducted. During nematode infection, the number of transcripts with changed expression in lsd1 was approximately three times smaller than in wild-type plants (1440 vs. 4206 differentially expressed genes, respectively). LSD1-dependent PCD in roots is thus a highly regulated process in compatible plant–nematode interactions. Two genes identified in this analysis, coding for AUTOPHAGY-RELATED PROTEIN 8F and 8H were down-regulated in syncytia in the presence of LSD1 and showed an increased susceptibility to nematode infection contrasting with lsd1 phenotype. Our data indicate that molecular regulators belonging to the

  17. The Role of Programmed Cell Death Regulator LSD1 in Nematode-Induced Syncytium Formation

    Directory of Open Access Journals (Sweden)

    Mateusz Matuszkiewicz

    2018-03-01

    Full Text Available Cyst-forming plant-parasitic nematodes are common pests of many crops. They inject secretions into host cells to induce the developmental and metabolic reprogramming that leads to the formation of a syncytium, which is the sole food source for growing nematodes. As in other host-parasite models, avirulence leads to rapid and local programmed cell death (PCD known as the hypersensitive response (HR, whereas in the case of virulence, PCD is still observed but is limited to only some cells. Several regulators of PCD were analyzed to understand the role of PCD in compatible plant–nematode interactions. Thus, Arabidopsis plants carrying recessive mutations in LESION SIMULATING DISEASE1 (LSD1 family genes were subjected to nematode infection assays with juveniles of Heterodera schachtii. LSD1 is a negative and conditional regulator of PCD, and fewer and smaller syncytia were induced in the roots of lsd1 mutants than in wild-type Col-0 plants. Mutation in LSD ONE LIKE2 (LOL2 revealed a pattern of susceptibility to H. schachtii antagonistic to lsd1. Syncytia induced on lsd1 roots compared to Col0 showed significantly retarded growth, modified cell wall structure, increased vesiculation, and some myelin-like bodies present at 7 and 12 days post-infection. To place these data in a wider context, RNA-sequencing analysis of infected and uninfected roots was conducted. During nematode infection, the number of transcripts with changed expression in lsd1 was approximately three times smaller than in wild-type plants (1440 vs. 4206 differentially expressed genes, respectively. LSD1-dependent PCD in roots is thus a highly regulated process in compatible plant–nematode interactions. Two genes identified in this analysis, coding for AUTOPHAGY-RELATED PROTEIN 8F and 8H were down-regulated in syncytia in the presence of LSD1 and showed an increased susceptibility to nematode infection contrasting with lsd1 phenotype. Our data indicate that molecular regulators

  18. Wdr18 is required for Kupffer's vesicle formation and regulation of body asymmetry in zebrafish.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available Correct specification of the left-right (L-R axis is important for organ morphogenesis. Conserved mechanisms involving cilia rotation inside node-like structures and asymmetric Nodal signaling in the lateral plate mesoderm (LPM, which are important symmetry-breaking events, have been intensively studied. In zebrafish, the clustering and migration of dorsal forerunner cells (DFCs is critical for the formation of the Kuppfer's vesicle (KV. However, molecular events underlying DFC clustering and migration are less understood. The WD-repeat proteins function in a variety of biological processes, including cytoskeleton assembly, intracellular trafficking, mRNA splicing, transcriptional regulation and cell migration. However, little is known about the function of WD-repeat proteins in L-R asymmetry determination. Here, we report the identification and functional analyses of zebrafish wdr18, a novel gene that encodes a WD-repeat protein that is highly conserved among vertebrate species. wdr18 was identified from a Tol2 transposon-mediated enhancer trap screen. Follow-up analysis of wdr18 mRNA expression showed that it was detected in DFCs or the KV progenitor cells and later in the KV at early somitogenesis stages. Morpholino knockdown of wdr18 resulted in laterality defects in the visceral organs, which were preceded by the mis-expression of Nodal-related genes, including spaw and pitx2. Examination of morphants at earlier stages revealed that the KV had fewer and shorter cilia which are immotile and a smaller cavity. We further investigated the organization of DFCs in wdr18 morphant embryos using ntl and sox17 as specific markers and found that the clustering and migration of DFC was altered, leading to a disorganized KV. Finally, through a combination of wdr18 and itgb1b morpholino injections, we provided evidence that wdr18 and itgb1b genetically interact in the laterality determination process. Thus, we reveal a new and essential role for WD

  19. Tc-knirps plays different roles in the specification of antennal and mandibular parasegment boundaries and is regulated by a pair-rule gene in the beetle Tribolium castaneum

    Science.gov (United States)

    2013-01-01

    Background The Drosophila larval head is evolutionarily derived at the genetic and morphological level. In the beetle Tribolium castaneum, development of the larval head more closely resembles the ancestral arthropod condition. Unlike in Drosophila, a knirps homologue (Tc-kni) is required for development of the antennae and mandibles. However, published Tc-kni data are restricted to cuticle phenotypes and Tc-even-skipped and Tc-wingless stainings in knockdown embryos. Hence, it has remained unclear whether the entire antennal and mandibular segments depend on Tc-kni function, and whether the intervening intercalary segment is formed completely. We address these questions with a detailed examination of Tc-kni function. Results By examining the expression of marker genes in RNAi embryos, we show that Tc-kni is required only for the formation of the posterior parts of the antennal and mandibular segments (i.e. the parasegmental boundaries). Moreover, we find that the role of Tc-kni is distinct in these segments: Tc-kni is required for the initiation of the antennal parasegment boundary, but only for the maintenance of the mandibular parasegmental boundary. Surprisingly, Tc-kni controls the timing of expression of the Hox gene Tc-labial in the intercalary segment, although this segment does form in the absence of Tc-kni function. Unexpectedly, we find that the pair-rule gene Tc-even-skipped helps set the posterior boundary of Tc-kni expression in the mandible. Using the mutant antennaless, a likely regulatory Null mutation at the Tc-kni locus, we provide evidence that our RNAi studies represent a Null situation. Conclusions Tc-kni is required for the initiation of the antennal and the maintenance of the mandibular parasegmental boundaries. Tc-kni is not required for specification of the anterior regions of these segments, nor the intervening intercalary segment, confirming that Tc-kni is not a canonical ‘gap-gene’. Our finding that a gap gene orthologue is

  20. A Genome-wide RNAi Screen for Microtubule Bundle Formation and Lysosome Motility Regulation in Drosophila S2 Cells

    Directory of Open Access Journals (Sweden)

    Amber L. Jolly

    2016-01-01

    Full Text Available Long-distance intracellular transport of organelles, mRNA, and proteins (“cargo” occurs along the microtubule cytoskeleton by the action of kinesin and dynein motor proteins, but the vast network of factors involved in regulating intracellular cargo transport are still unknown. We capitalize on the Drosophila melanogaster S2 model cell system to monitor lysosome transport along microtubule bundles, which require enzymatically active kinesin-1 motor protein for their formation. We use an automated tracking program and a naive Bayesian classifier for the multivariate motility data to analyze 15,683 gene phenotypes and find 98 proteins involved in regulating lysosome motility along microtubules and 48 involved in the formation of microtubule filled processes in S2 cells. We identify innate immunity genes, ion channels, and signaling proteins having a role in lysosome motility regulation and find an unexpected relationship between the dynein motor, Rab7a, and lysosome motility regulation.

  1. Podoplanin promotes progression of malignant pleural mesothelioma by regulating motility and focus formation.

    Science.gov (United States)

    Takeuchi, Shinji; Fukuda, Koji; Yamada, Tadaaki; Arai, Sachiko; Takagi, Satoshi; Ishii, Genichiro; Ochiai, Atsushi; Iwakiri, Shotaro; Itoi, Kazumi; Uehara, Hisanori; Nishihara, Hiroshi; Fujita, Naoya; Yano, Seiji

    2017-04-01

    Malignant pleural mesothelioma (MPM) is characterized by dissemination and aggressive growth in the thoracic cavity. Podoplanin (PDPN) is an established diagnostic marker for MPM, but the function of PDPN in MPM is not fully understood. The purpose of this study was to determine the pathogenetic function of PDPN in MPM. Forty-seven of 52 tumors (90%) from Japanese patients with MPM and 3/6 (50%) MPM cell lines tested positive for PDPN. Knocking down PDPN in PDPN-high expressing MPM cells resulted in decreased cell motility. In contrast, overexpression of PDPN in PDPN-low expressing MPM cells enhanced cell motility. PDPN stimulated motility was mediated by activation of the RhoA/ROCK pathway. Moreover, knocking down PDPN with short hairpin (sh) RNA in PDPN-high expressing MPM cells resulted in decreased development of a thoracic tumor in mice with severe combined immune deficiency (SCID). In sharp contrast, transfection of PDPN in PDPN-low expressing MPM cells resulted in an increase in the number of Ki-67-positive proliferating tumor cells and it promoted progression of a thoracic tumor in SCID mice. Interestingly, PDPN promoted focus formation in vitro, and a low level of E-cadherin expression and YAP1 activation was observed in PDPN-high MPM tumors. These findings indicate that PDPN is a diagnostic marker as well as a pathogenetic regulator that promotes MPM progression by increasing cell motility and inducing focus formation. Therefore, PDPN might be a pathogenetic determinant of MPM dissemination and aggressive growth and may thus be an ideal therapeutic target. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  2. Staphylococcus aureus sarA regulates inflammation and colonization during central nervous system biofilm formation.

    Directory of Open Access Journals (Sweden)

    Jessica N Snowden

    Full Text Available Infection is a frequent and serious complication following the treatment of hydrocephalus with CSF shunts, with limited therapeutic options because of biofilm formation along the catheter surface. Here we evaluated the possibility that the sarA regulatory locus engenders S. aureus more resistant to immune recognition in the central nervous system (CNS based on its reported ability to regulate biofilm formation. We utilized our established model of CNS catheter-associated infection, similar to CSF shunt infections seen in humans, to compare the kinetics of bacterial titers, cytokine production and inflammatory cell influx elicited by wild type S. aureus versus an isogenic sarA mutant. The sarA mutant was more rapidly cleared from infected catheters compared to its isogenic wild type strain. Consistent with this finding, several pro-inflammatory cytokines and chemokines, including IL-17, CXCL1, and IL-1β were significantly increased in the brain following infection with the sarA mutant versus wild type S. aureus, in agreement with the fact that the sarA mutant displayed impaired biofilm growth and favored a planktonic state. Neutrophil influx into the infected hemisphere was also increased in the animals infected with the sarA mutant compared to wild type bacteria. These changes were not attributable to extracellular protease activity, which is increased in the context of SarA mutation, since similar responses were observed between sarA and a sarA/protease mutant. Overall, these results demonstrate that sarA plays an important role in attenuating the inflammatory response during staphylococcal biofilm infection in the CNS via a mechanism that remains to be determined.

  3. C. elegans serine-threonine kinase KIN-29 modulates TGFβ signaling and regulates body size formation

    Directory of Open Access Journals (Sweden)

    Cohen Stephen

    2005-04-01

    Full Text Available Background In C. elegans there are two well-defined TGFβ-like signaling pathways. The Sma/Mab pathway affects body size morphogenesis, male tail development and spicule formation while the Daf pathway regulates entry into and exit out of the dauer state. To identify additional factors that modulate TGFβ signaling in the Sma/Mab pathway, we have undertaken a genetic screen for small animals and have identified kin-29. Results kin-29 encodes a protein with a cytoplasmic serine-threonine kinase and a novel C-terminal domain. The kinase domain is a distantly related member of the EMK (ELKL motif kinase family, which interacts with microtubules. We show that the serine-threonine kinase domain has in vitro activity. kin-29 mutations result in small animals, but do not affect male tail morphology as do several of the Sma/Mab signal transducers. Adult worms are smaller than the wild-type, but also develop more slowly. Rescue by kin-29 is achieved by expression in neurons or in the hypodermis. Interaction with the dauer pathway is observed in double mutant combinations, which have been seen with Sma/Mab pathway mutants. We show that kin-29 is epistatic to the ligand dbl-1, and lies upstream of the Sma/Mab pathway target gene, lon-1. Conclusion kin-29 is a new modulator of the Sma/Mab pathway. It functions in neurons and in the hypodermis to regulate body size, but does not affect all TGFβ outputs, such as tail morphogenesis.

  4. Natural mutations in a Staphylococcus aureus virulence regulator attenuate cytotoxicity but permit bacteremia and abscess formation

    Science.gov (United States)

    Das, Sudip; Lindemann, Claudia; Young, Bernadette C.; Muller, Julius; Österreich, Babett; Ternette, Nicola; Winkler, Ann-Cathrin; Paprotka, Kerstin; Reinhardt, Richard; Allen, Elizabeth; Flaxman, Amy; Yamaguchi, Yuko; Rollier, Christine S.; van Diemen, Pauline; Blättner, Sebastian; Remmele, Christian W.; Selle, Martina; Dittrich, Marcus; Müller, Tobias; Vogel, Jörg; Ohlsen, Knut; Crook, Derrick W.; Massey, Ruth; Wilson, Daniel J.; Rudel, Thomas; Wyllie, David H.; Fraunholz, Martin J.

    2016-01-01

    Staphylococcus aureus is a major bacterial pathogen, which causes severe blood and tissue infections that frequently emerge by autoinfection with asymptomatically carried nose and skin populations. However, recent studies report that bloodstream isolates differ systematically from those found in the nose and skin, exhibiting reduced toxicity toward leukocytes. In two patients, an attenuated toxicity bloodstream infection evolved from an asymptomatically carried high-toxicity nasal strain by loss-of-function mutations in the gene encoding the transcription factor repressor of surface proteins (rsp). Here, we report that rsp knockout mutants lead to global transcriptional and proteomic reprofiling, and they exhibit the greatest signal in a genome-wide screen for genes influencing S. aureus survival in human cells. This effect is likely to be mediated in part via SSR42, a long-noncoding RNA. We show that rsp controls SSR42 expression, is induced by hydrogen peroxide, and is required for normal cytotoxicity and hemolytic activity. Rsp inactivation in laboratory- and bacteremia-derived mutants attenuates toxin production, but up-regulates other immune subversion proteins and reduces lethality during experimental infection. Crucially, inactivation of rsp preserves bacterial dissemination, because it affects neither formation of deep abscesses in mice nor survival in human blood. Thus, we have identified a spontaneously evolving, attenuated-cytotoxicity, nonhemolytic S. aureus phenotype, controlled by a pleiotropic transcriptional regulator/noncoding RNA virulence regulatory system, capable of causing S. aureus bloodstream infections. Such a phenotype could promote deep infection with limited early clinical manifestations, raising concerns that bacterial evolution within the human body may contribute to severe infection. PMID:27185949

  5. Importance of dimer formation of myocardin family members in the regulation of their nuclear export.

    Science.gov (United States)

    Hayashi, Ken'ichiro; Morita, Tsuyoshi

    2013-01-01

    Myocardin (Mycd) family members function as a transcriptional cofactor for serum response factor (SRF). Dimer formation is necessary to exhibit their function, and the coiled-coil domain (CC) plays a critical role in their dimerization. We have recently revealed a detailed molecular mechanism for their Crm1 (exportin1)-mediated nuclear export. Here, we found other unique significances of the dimerization of Mycd family members. Introduction of mutations in the CC of myocardin-related transcription factor A (MRTF-A) and truncated Mycd resulted in significant decreases in their cytoplasmic localization and increases in their nuclear localization. In accordance with such subcellular localization changes, their binding to Crm1 were reduced. These results indicate that the dimerization of Mycd family members is necessary for their Crm1-mediated nuclear export. We have recently found that the N-terminal region of Mycd consisting of 128 amino acids (Mycd N128) self-associates to Mycd via the central basic domain (CB), resulting in masking the Crm1-binding site. Such self-association of MRTF-A would be unlikely. In this study, we also revealed that the dimerization of Mycd was also necessary for this self-association. Wild-type Mycd activated SRF-mediated transcription more potently than Mycd lacking the Mycd N128 (Mycd ΔN128) did. These results suggest two possible functions of the Mycd N128: 1) stabilization of Mycd dimer to enhance SRF-mediated transcription and 2) positive regulation of the transactivation ability of Mycd. These findings provide a new insight into the functional regulation of Mycd family members.

  6. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition.

    Science.gov (United States)

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Qing, Hua; Heywood, Elizabeth B; Jones, Karrie L; Cohn, Dianne; Bruemmer, Dennis

    2011-04-01

    Proliferation of smooth muscle cells (SMC) in response to vascular injury is central to neointimal vascular remodeling. There is accumulating evidence that histone acetylation constitutes a major epigenetic modification for the transcriptional control of proliferative gene expression; however, the physiological role of histone acetylation for proliferative vascular disease remains elusive. In the present study, we investigated the role of histone deacetylase (HDAC) inhibition in SMC proliferation and neointimal remodeling. We demonstrate that mitogens induce transcription of HDAC 1, 2, and 3 in SMC. Short interfering RNA-mediated knockdown of either HDAC 1, 2, or 3 and pharmacological inhibition of HDAC prevented mitogen-induced SMC proliferation. The mechanisms underlying this reduction of SMC proliferation by HDAC inhibition involve a growth arrest in the G(1) phase of the cell cycle that is due to an inhibition of retinoblastoma protein phosphorylation. HDAC inhibition resulted in a transcriptional and posttranscriptional regulation of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip). Furthermore, HDAC inhibition repressed mitogen-induced cyclin D1 mRNA expression and cyclin D1 promoter activity. As a result of this differential cell cycle-regulatory gene expression by HDAC inhibition, the retinoblastoma protein retains a transcriptional repression of its downstream target genes required for S phase entry. Finally, we provide evidence that these observations are applicable in vivo by demonstrating that HDAC inhibition decreased neointima formation and expression of cyclin D1 in a murine model of vascular injury. These findings identify HDAC as a critical component of a transcriptional cascade regulating SMC proliferation and suggest that HDAC might play a pivotal role in the development of proliferative vascular diseases, including atherosclerosis and in-stent restenosis.

  7. The Agr Quorum Sensing System Represses Persister Formation through Regulation of Phenol Soluble Modulins in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Tao Xu

    2017-11-01

    Full Text Available The opportunistic pathogen Staphylococcus aureus has become an increasing threat to public health. While the Agr quorum sensing (QS system is a master regulator of S. aureus virulence, its dysfunction has been frequently reported to promote bacteremia and mortality in clinical infections. Here we show that the Agr system is involved in persister formation in S. aureus. Mutation of either agrCA or agrD but not RNAIII resulted in increased persister formation of stationary phase cultures. RNA-seq analysis showed that in stationary phase AgrCA/AgrD and RNAIII mutants showed consistent up-regulation of virulence associated genes (lip and splE, etc. and down-regulation of metabolism genes (bioA and nanK, etc.. Meanwhile, though knockout of agrCA or agrD strongly repressed expression of phenol soluble modulin encoding genes psmα1-4, psmβ1-2 and phenol soluble modulins (PSM transporter encoding genes in the pmt operon, mutation of RNAIII enhanced expression of the genes. We further found that knockout of psmα1-4 or psmβ1-2 augmented persister formation and that co-overexpression of PSMαs and PSMβs reversed the effects of AgrCA mutation on persister formation. We also detected the effects on persister formation by mutations of metabolism genes (arcA, hutU, narG, nanK, etc. that are potentially regulated by Agr system. It was found that deletion of the ManNAc kinase encoding gene nanK decreased persister formation. Taken together, these results shed new light on the PSM dependent regulatory role of Agr system in persister formation and may have implications for clinical treatment of MRSA persistent infections.

  8. Regulation of extracellular matrix vesicles via rapid responses to steroid hormones during endochondral bone formation.

    Science.gov (United States)

    Asmussen, Niels; Lin, Zhao; McClure, Michael J; Schwartz, Zvi; Boyan, Barbara D

    2017-12-09

    Endochondral bone formation is a precise and highly ordered process whose exact regulatory framework is still being elucidated. Multiple regulatory pathways are known to be involved. In some cases, regulation impacts gene expression, resulting in changes in chondrocyte phenotypic expression and extracellular matrix synthesis. Rapid regulatory mechanisms are also involved, resulting in release of enzymes, factors and micro RNAs stored in extracellular matrisomes called matrix vesicles. Vitamin D metabolites modulate endochondral development via both genomic and rapid membrane-associated signaling pathways. 1α,25-dihydroxyvitamin D3 [1α,25(OH) 2 D 3 ] acts through the vitamin D receptor (VDR) and a membrane associated receptor, protein disulfide isomerase A3 (PDIA3). 24R,25-dihydroxyvitamin D3 [24R,25(OH) 2 D 3 ] affects primarily chondrocytes in the resting zone (RC) of the growth plate, whereas 1α,25(OH) 2 D 3 affects cells in the prehypertrophic and upper hypertrophic cell zones (GC). This includes genomically directing the cells to produce matrix vesicles with zone specific characteristics. In addition, vitamin D metabolites produced by the cells interact directly with the matrix vesicle membrane via rapid signal transduction pathways, modulating their activity in the matrix. The matrix vesicle payload is able to rapidly impact the extracellular matrix via matrix processing enzymes as well as providing a feedback mechanism to the cells themselves via the contained micro RNAs. Copyright © 2017. Published by Elsevier Inc.

  9. The Hippo-YAP Pathway Regulates 3D Organ Formation and Homeostasis.

    Science.gov (United States)

    Ishihara, Erika; Nishina, Hiroshi

    2018-04-17

    The vertebrate body shape is formed by the specific sizes and shapes of its resident tissues and organs, whose alignments are essential for proper functioning. To maintain tissue and organ shape, and thereby function, it is necessary to remove senescent, transformed, and/or damaged cells, which impair function and can lead to tumorigenesis. However, the molecular mechanisms underlying three-dimensional (3D) organ formation and homeostasis are not fully clear. Yes-associated protein (YAP) is a transcriptional co-activator that is involved in organ size control and tumorigenesis. Recently, we reported that YAP is essential for proper 3D body shape through regulation of cell tension by using a unique medaka fish mutant, hirame ( hir ). In Madin–Darby canine kidney (MDCK) epithelial cells, active YAP-transformed cells are eliminated apically when surrounded by normal cells. Furthermore, in a mosaic mouse model, active YAP-expressing damaged hepatocytes undergo apoptosis and are eliminated from the liver. Thus, YAP functions in quantitative and quality control in organogenesis. In this review, we describe the various roles of YAP in vertebrates, including in the initiation of liver cancer.

  10. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    International Nuclear Information System (INIS)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain; Nickerson, Sarah; Rosdahl, Joakim; Van Loo, Sven

    2017-01-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H 2 -dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H 2 -dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  11. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Michael J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Teyssier, Romain; Nickerson, Sarah [Institute for Computational Science, University of Zurich, 8049 Zurich (Switzerland); Rosdahl, Joakim [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  12. Influence of zinc dialkyldithiophosphate tribofilm formation on the tribological performance of self-mated diamond-like carbon contacts under boundary lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah Tasdemir, H., E-mail: habdullah46@gmail.com [Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Tokoroyama, Takayuki; Kousaka, Hiroyuki; Umehara, Noritsugu [Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Mabuchi, Yutaka [Nissan Motor Co. (Japan)

    2014-07-01

    Diamond-like carbon (DLC) coatings offer excellent mechanical and tribological properties that make them suitable protective coatings for various industrial applications. In recent years, several engine and power train components in passenger cars, which work under boundary lubricated conditions, have been coated with DLC coatings. Since conventional lubricants and lubricant additives are formulated for metal surfaces, there are still controversial questions concerning chemical reactivity between DLC surfaces and common lubricant additives owing to the chemical inertness of DLC coatings. In this work, we present the influence of zinc dialkyldithiophosphate (ZnDTP) anti-wear additives on the tribological performance of various self-mated DLC coatings under boundary lubrication conditions. The effects of hydrogen, doping elements, and surface morphology on the reactivity of DLC coatings to form a ZnDTP-derived tribofilm were investigated by atomic force microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirmed that ZnDTP-derived pad-like or patchy tribofilm forms on the surfaces depending on the DLC coating. It is seen that hydrogen content and doping elements increase pad-like tribofilm formation. Doped DLC coatings are found to give better wear resistance than non-doped DLC coatings. Furthermore, the addition of ZnDTP additives to the base oil significantly improves the wear resistance of hydrogenated DLC, silicon-doped hydrogenated DLC, and chromium-doped hydrogenated DLC. Hydrogen-free tetrahedral amorphous DLC coatings provide the lowest friction coefficient both in PAO (poly-alpha-olefin) and PAO + ZnDTP oils. - Highlights: • Zinc dialkyldithiophosphate (DTP) tribofilm formation on various DLC surfaces was evidenced. • Pad-like tribofilm was found on a-C:H, a-C, Si-DLC and Cr-DLC. • Pad-like tribofilm on DLC surfaces greatly increased the wear resistance. • Hydrogenated and doped DLC coatings are

  13. Influence of zinc dialkyldithiophosphate tribofilm formation on the tribological performance of self-mated diamond-like carbon contacts under boundary lubrication

    International Nuclear Information System (INIS)

    Abdullah Tasdemir, H.; Tokoroyama, Takayuki; Kousaka, Hiroyuki; Umehara, Noritsugu; Mabuchi, Yutaka

    2014-01-01

    Diamond-like carbon (DLC) coatings offer excellent mechanical and tribological properties that make them suitable protective coatings for various industrial applications. In recent years, several engine and power train components in passenger cars, which work under boundary lubricated conditions, have been coated with DLC coatings. Since conventional lubricants and lubricant additives are formulated for metal surfaces, there are still controversial questions concerning chemical reactivity between DLC surfaces and common lubricant additives owing to the chemical inertness of DLC coatings. In this work, we present the influence of zinc dialkyldithiophosphate (ZnDTP) anti-wear additives on the tribological performance of various self-mated DLC coatings under boundary lubrication conditions. The effects of hydrogen, doping elements, and surface morphology on the reactivity of DLC coatings to form a ZnDTP-derived tribofilm were investigated by atomic force microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirmed that ZnDTP-derived pad-like or patchy tribofilm forms on the surfaces depending on the DLC coating. It is seen that hydrogen content and doping elements increase pad-like tribofilm formation. Doped DLC coatings are found to give better wear resistance than non-doped DLC coatings. Furthermore, the addition of ZnDTP additives to the base oil significantly improves the wear resistance of hydrogenated DLC, silicon-doped hydrogenated DLC, and chromium-doped hydrogenated DLC. Hydrogen-free tetrahedral amorphous DLC coatings provide the lowest friction coefficient both in PAO (poly-alpha-olefin) and PAO + ZnDTP oils. - Highlights: • Zinc dialkyldithiophosphate (DTP) tribofilm formation on various DLC surfaces was evidenced. • Pad-like tribofilm was found on a-C:H, a-C, Si-DLC and Cr-DLC. • Pad-like tribofilm on DLC surfaces greatly increased the wear resistance. • Hydrogenated and doped DLC coatings are

  14. The transcriptional regulator, CosR, controls compatible solute biosynthesis and transport, motility and biofilm formation in Vibrio cholerae.

    Science.gov (United States)

    Shikuma, Nicholas J; Davis, Kimberly R; Fong, Jiunn N C; Yildiz, Fitnat H

    2013-05-01

    Vibrio cholerae inhabits aquatic environments and colonizes the human digestive tract to cause the disease cholera. In these environments, V. cholerae copes with fluctuations in salinity and osmolarity by producing and transporting small, organic, highly soluble molecules called compatible solutes, which counteract extracellular osmotic pressure. Currently, it is unclear how V. cholerae regulates the expression of genes important for the biosynthesis or transport of compatible solutes in response to changing salinity or osmolarity conditions. Through a genome-wide transcriptional analysis of the salinity response of V. cholerae, we identified a transcriptional regulator we name CosR for compatible solute regulator. The expression of cosR is regulated by ionic strength and not osmolarity. A transcriptome analysis of a ΔcosR mutant revealed that CosR represses genes involved in ectoine biosynthesis and compatible solute transport in a salinity-dependent manner. When grown in salinities similar to estuarine environments, CosR activates biofilm formation and represses motility independently of its function as an ectoine regulator. This is the first study to characterize a compatible solute regulator in V. cholerae and couples the regulation of osmotic tolerance with biofilm formation and motility. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Differential regulation of c-di-GMP metabolic enzymes by environmental signals modulates biofilm formation in Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Gai-Xian eRen

    2016-06-01

    Full Text Available Cyclic diguanylate (c-di-GMP is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs, HmsT and HmsD and one phosphodiesterase (PDE, HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD and HmsP in Y. pestis. Biofilm formation was higher in the presence of nonlethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfonate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulates their DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.

  16. The Ubiquitin-Specific Protease 14 (USP14) Is a Critical Regulator of Long-Term Memory Formation

    Science.gov (United States)

    Jarome, Timothy J.; Kwapis, Janine L.; Hallengren, Jada J.; Wilson, Scott M.; Helmstetter, Fred J.

    2014-01-01

    Numerous studies have suggested a role for ubiquitin-proteasome-mediated protein degradation in learning-dependent synaptic plasticity; however, very little is known about how protein degradation is regulated at the level of the proteasome during memory formation. The ubiquitin-specific protease 14 (USP14) is a proteasomal deubiquitinating enzyme…

  17. The Effects of Formative Assessment on Academic Achievement, Attitudes toward the Lesson, and Self-Regulation Skills

    Science.gov (United States)

    Ozan, Ceyhun; Kincal, Remzi Y.

    2018-01-01

    The purpose of this research is to examine the effects of formative assessment practices on students' academic achievement, attitudes toward lessons, and self-regulation skills in the fifth-grade social studies class. Mixed method research was used to conduct the study. The research group consisted of 45 students in the fifth grade of a secondary…

  18. NMDA Receptor- and ERK-Dependent Histone Methylation Changes in the Lateral Amygdala Bidirectionally Regulate Fear Memory Formation

    Science.gov (United States)

    Gupta-Agarwal, Swati; Jarome, Timothy J.; Fernandez, Jordan; Lubin, Farah D.

    2014-01-01

    It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory…

  19. Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars

    Science.gov (United States)

    Burns, Roger G.

    1992-01-01

    During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.

  20. Xenopus msx-1 regulates dorso-ventral axis formation by suppressing the expression of organizer genes.

    Science.gov (United States)

    Takeda, M; Saito, Y; Sekine, R; Onitsuka, I; Maeda, R; Maéno, M

    2000-06-01

    We demonstrated previously that Xmsx-1 is involved in mesoderm patterning along the dorso-ventral axis, under the regulation of BMP-4 signaling. When Xmsx-1 RNA was injected into the dorsal blastomeres, a mass of muscle tissue formed instead of notochord. This activity was similar to that of Xwnt-8 reported previously. In this study, we investigated whether the activity of Xmsx-1 is related to the ventralizing signal and myogenesis promoting factor, Xwnt-8. Whole-mount in situ hybridization showed that Xmsx-1, Xwnt-8, and XmyoD were expressed in overlapping areas, including the ventro-lateral marginal zone at mid-gastrula stage. The expression of XmyoD was induced by the ectopic expression of either Xmsx-1 or Xwnt-8 in dorsal blastomeres, and Xwnt-8 was induced by the ectopic expression of Xmsx-1. On the other hand, the expression of Xmsx-1 was not affected by the loading of pCSKA-Xwnt-8 or dominant-negative Xwnt-8 (DN-Xwnt-8) RNA. In addition, Xmsx-1 RNA did not abrogate the formation of notochord if coinjected with DN-Xwnt-8 RNA. These results suggest that Xmsx-1 functions upstream of the Xwnt-8 signal. Furthermore, the antagonistic function of Xmsx-1 to the expression of organizer genes, such as Xlim-1 and goosecoid, was shown by in situ hybridization analysis and luciferase reporter assay using the goosecoid promoter construct. Finally if Xmsx-1/VP-16 fusion RNA, which was expected to function as a dominant-negative Xmsx-1, was injected into ventral blastomeres, a partial secondary axis formed in a significant number of embryos. In such embryos, the activity of luciferase, under the control of goosecoid promoter sequence, was significantly elevated at gastrula stage. These results led us to conclude that Xmsx-1 plays a central role in establishing dorso-ventral axis in gastrulating embryo, by suppressing the expression of organizer genes.

  1. Bacillus subtilis δ Factor Functions as a Transcriptional Regulator by Facilitating the Open Complex Formation.

    Science.gov (United States)

    Prajapati, Ranjit Kumar; Sengupta, Shreya; Rudra, Paulami; Mukhopadhyay, Jayanta

    2016-01-15

    Most bacterial RNA polymerases (RNAP) contain five conserved subunits, viz. 2α, β, β', and ω. However, in many Gram-positive bacteria, especially in fermicutes, RNAP is associated with an additional factor, called δ. For over three decades since its identification, it had been thought that δ functioned as a subunit of RNAP to enhance the level of transcripts by recycling RNAP. In support of the previous observations, we also find that δ is involved in recycling of RNAP by releasing the RNA from the ternary complex. We further show that δ binds to RNA and is able to recycle RNAP when the length of the nascent RNA reaches a critical length. However, in this work we decipher a new function of δ. Performing biochemical and mutational analysis, we show that Bacillus subtilis δ binds to DNA immediately upstream of the promoter element at A-rich sequences on the abrB and rrnB1 promoters and facilitates open complex formation. As a result, δ facilitates RNAP to initiate transcription in the second scale, compared with minute scale in the absence of δ. Using transcription assay, we show that δ-mediated recycling of RNAP cannot be the sole reason for the enhancement of transcript yield. Our observation that δ does not bind to RNAP holo enzyme but is required to bind to DNA upstream of the -35 promoter element for transcription activation suggests that δ functions as a transcriptional regulator. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Investigations of the role of nonlinear couplings in structure formation and transport regulation in plasma turbulence

    Science.gov (United States)

    Holland, Christopher George

    Studies of nonlinear couplings and dynamics in plasma turbulence are presented. Particular areas of focus are analytic studies of coherent structure formation in electron temperature gradient turbulence, measurement of nonlinear energy transfer in simulations of plasma turbulence, and bispectral analysis of experimental and computational data. The motivation for these works has been to develop and expand the existing theories of plasma transport, and verify the nonlinear predictions of those theories in simulation and experiment. In Chapter II, we study electromagnetic secondary instabilities of electron temperature gradient turbulence. The growth rate for zonal flow generation via modulational instability of electromagnetic ETG turbulence is calculated, as well as that for zonal (magnetic) field generation. In Chapter III, the stability and saturation of streamers in ETG turbulence is considered, and shown to depend sensitively upon geometry and the damping rates of the Kelvin-Helmholtz mode. Requirements for a credible theory of streamer transport are presented. In addition, a self-consistent model for interactions between ETG and ITG (ion temperature gradient) turbulence is presented. In Chapter IV, the nonlinear transfer of kinetic and internal energy is measured in simulations of plasma turbulence. The regulation of turbulence by radial decorrelation due to zonal flows and generation of zonal flows via the Reynolds stress are explicitly demonstrated, and shown to be symmetric facets of a single nonlinear process. Novel nonlinear saturation mechanisms for zonal flows are discussed. In Chapter V, measurements of fluctuation bicoherence in the edge of the DIII-D tokamak are presented. It is shown that the bicoherence increases transiently before a L-H transition, and decays to its initial value after the barrier has formed. The increase in bicoherence is localized to the region where the transport barrier forms, and shows strong coupling between well

  3. Developing young adolescents’ self-regulation by means of formative assessment: A theoretical perspective

    OpenAIRE

    Meusen-Beekman, Kelly; Joosten-ten Brinke, Desirée; Boshuizen, Els

    2018-01-01

    Fostering self-regulated learning (SRL) has become increasingly important at various educational levels. Most studies on SRL have been conducted in higher education. The present literature study aims toward understanding self-regulation processes of students in primary and secondary education. We explored the development of young students’ self-regulation from a theoretical perspective. In addition, effective characteristics for an intervention to develop young students’ self-regulation were ...

  4. Measuring and modeling polymer concentration profiles near spindle boundaries argues that spindle microtubules regulate their own nucleation

    Science.gov (United States)

    Kaye, Bryan; Stiehl, Olivia; Foster, Peter J.; Shelley, Michael J.; Needleman, Daniel J.; Fürthauer, Sebastian

    2018-05-01

    Spindles are self-organized microtubule-based structures that segregate chromosomes during cell division. The mass of the spindle is controlled by the balance between microtubule turnover and nucleation. The mechanisms that control the spatial regulation of microtubule nucleation remain poorly understood. While previous work found that microtubule nucleators bind to pre-existing microtubules in the spindle, it is still unclear whether this binding regulates the activity of those nucleators. Here we use a combination of experiments and mathematical modeling to investigate this issue. We measured the concentration of microtubules and soluble tubulin in and around the spindle. We found a very sharp decay in the concentration of microtubules at the spindle interface. This is inconsistent with a model in which the activity of nucleators is independent of their association with microtubules but consistent with a model in which microtubule nucleators are only active when bound to pre-existing microtubules. This argues that the activity of microtubule nucleators is greatly enhanced when bound to pre-existing microtubules. Thus, microtubule nucleators are both localized and activated by the microtubules they generate.

  5. Crossing boundaries: a comprehensive survey of medical licensing laws and guidelines regulating the interstate practice of pathology.

    Science.gov (United States)

    Hiemenz, Matthew C; Leung, Stanley T; Park, Jason Y

    2014-03-01

    In the United States, recent judicial interpretation of interstate licensure laws has found pathologists guilty of malpractice and, more importantly, the criminal practice of medicine without a license. These judgments against pathologists highlight the need for a timely and comprehensive survey of licensure requirements and laws regulating the interstate practice of pathology. For all 50 states, each state medical practice act and state medical board website was reviewed. In addition, each medical board was directly contacted by electronic mail, telephone, or US registered mail for information regarding specific legislation or guidelines related to the interstate practice of pathology. On the basis of this information, states were grouped according to similarities in legislation and medical board regulations. This comprehensive survey has determined that states define the practice of pathology on the basis of the geographic location of the patient at the time of surgery or phlebotomy. The majority of states (n=32) and the District of Columbia allow for a physician with an out-of-state license to perform limited consultation to a physician with the specific state license. Several states (n=5) prohibit physicians from consultation without a license for the specific state. Overall, these results reveal the heterogeneity of licensure requirements between states. Pathologists who either practice in multiple states, send cases to out-of-state consultants, or serve as consultants themselves should familiarize themselves with the medical licensure laws of the states from which they receive or send cases.

  6. Lrit1, a Retinal Transmembrane Protein, Regulates Selective Synapse Formation in Cone Photoreceptor Cells and Visual Acuity

    Directory of Open Access Journals (Sweden)

    Akiko Ueno

    2018-03-01

    Full Text Available Summary: In the vertebrate retina, cone photoreceptors play crucial roles in photopic vision by transmitting light-evoked signals to ON- and/or OFF-bipolar cells. However, the mechanisms underlying selective synapse formation in the cone photoreceptor pathway remain poorly understood. Here, we found that Lrit1, a leucine-rich transmembrane protein, localizes to the photoreceptor synaptic terminal and regulates the synaptic connection between cone photoreceptors and cone ON-bipolar cells. Lrit1-deficient retinas exhibit an aberrant morphology of cone photoreceptor pedicles, as well as an impairment of signal transmission from cone photoreceptors to cone ON-bipolar cells. Furthermore, we demonstrated that Lrit1 interacts with Frmpd2, a photoreceptor scaffold protein, and with mGluR6, an ON-bipolar cell-specific glutamate receptor. Additionally, Lrit1-null mice showed visual acuity impairments in their optokinetic responses. These results suggest that the Frmpd2-Lrit1-mGluR6 axis regulates selective synapse formation in cone photoreceptors and is essential for normal visual function. : Ueno et al. finds that Lrit1 plays an important role in regulating the synaptic connection between cone photoreceptors and cone ON-bipolar cells. The Frmpd2-Lrit1-mGluR6 axis is crucial for selective synapse formation in cone photoreceptors and for development of normal visual function. Keywords: retina, circuit, synapse formation, cone photoreceptor cell, ON-bipolar cell, visual acuity

  7. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao

    2011-01-01

    Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or post-transcriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling regulator and an endogenous RNA silencing suppressor, mediates auxin response during lateral root formation in Arabidopsis. We proposed that FRY1 regulates lateral root development through its activity on adenosine 3,5-bisphosphate (PAP), a strong inhibitor of exoribonucleases (XRNs). Interestingly, some of the phenotypes of fry1, such as enhanced response to light in repressing hypocotyl elongation and hypersensitivity to ABA in lateral root growth, are opposite to those of another light- and ABA-signaling mutant, hy5. Here we analyzed the hy5 fry1 double mutant for root and hypocotyl growth. We found that the hy5 mutation can suppress the enhanced light sensitivity in fry1 hypocotyl elongation and restore the lateral root formation. The genetic interaction between HY5 and FRY1 indicates that HY5 and FRY1 may act in overlapping pathways that mediate light signaling and lateral root development. © 2011 Landes Bioscience.

  8. FtsEX-CwlO regulates biofilm formation by a plant-beneficial rhizobacterium Bacillus velezensis SQR9.

    Science.gov (United States)

    Li, Qing; Li, Zunfeng; Li, Xingxing; Xia, Liming; Zhou, Xuan; Xu, Zhihui; Shao, Jiahui; Shen, Qirong; Zhang, Ruifu

    2018-04-01

    Bacillus velezensis strain SQR9 is a well-investigated rhizobacterium with an outstanding ability to colonize roots, enhance plant growth and suppress soil-borne diseases. The recognition that biofilm formation by plant-beneficial bacteria is crucial for their root colonization and function has resulted in increased interest in understanding molecular mechanisms related to biofilm formation. Here, we report that the gene ftsE, encoding the ATP-binding protein of an FtsEX ABC transporter, is required for efficient SQR9 biofilm formation. FtsEX has been reported to regulate the atolysin CwlO. We provided evidence that FtsEX-CwlO was involved in the regulation of SQR9 biofilm formation; however, this effect has little to do with CwlO autolysin activity. We propose that regulation of biofilm formation by CwlO was exerted through the spo0A pathway, since transcription of spo0A cascade genes was altered and their downstream extracellular matrix genes were downregulated in SQR9 ftsE/cwlO deletion mutants. CwlO was also shown to interact physically with KinB/KinD. CwlO may therefore interact with KinB/KinD to interfere with the spo0A pathway. This study revealed that FtsEX-CwlO plays a previously undiscovered regulatory role in biofilm formation by SQR9 that may enhance root colonization and plant-beneficial functions of SQR9 and other beneficial rhizobacteria as well. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation.

    Science.gov (United States)

    Moreira, Ricardo N; Dressaire, Clémentine; Barahona, Susana; Galego, Lisete; Kaever, Volkhard; Jenal, Urs; Arraiano, Cecília M

    2017-09-19

    The bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a nearly ubiquitous intracellular signaling molecule involved in the transition from the motile to the sessile/biofilm state in bacteria. C-di-GMP regulates various cellular processes, including biofilm formation, motility, and virulence. BolA is a transcription factor that promotes survival in different stresses and is also involved in biofilm formation. Both BolA and c-di-GMP participate in the regulation of motility mechanisms leading to similar phenotypes. Here, we establish the importance of the balance between these two factors for accurate regulation of the transition between the planktonic and sessile lifestyles. This balance is achieved by negative-feedback regulation of BolA and c-di-GMP. BolA not only contributes directly to the motility of bacteria but also regulates the expression of diguanylate cyclases and phosphodiesterases. This expression modulation influences the synthesis and degradation of c-di-GMP, while this signaling metabolite has a negative influence in bolA mRNA transcription. Finally, we present evidence of the dominant role of BolA in biofilm, showing that, even in the presence of elevated c-di-GMP levels, biofilm formation is reduced in the absence of BolA. C-di-GMP is one of the most important bacterial second messengers involved in several cellular processes, including virulence, cell cycle regulation, biofilm formation, and flagellar synthesis. In this study, we unravelled a direct connection between the bolA morphogene and the c-di-GMP signaling molecule. We show the important cross-talk that occurs between these two molecular regulators during the transition between the motile/planktonic and adhesive/sessile lifestyles in Escherichia coli This work provides important clues that can be helpful in the development of new strategies, and the results can be applied to other organisms with relevance for human health. IMPORTANCE Bacterial cells have evolved several

  10. Comprehensive Transcriptome Analysis Unravels the Existence of Crucial Genes Regulating Primary Metabolism during Adventitious Root Formation in Petunia hybrida

    Science.gov (United States)

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase. PMID:24978694

  11. Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse.

    Science.gov (United States)

    Engert, Silvia; Burtscher, Ingo; Liao, W Perry; Dulev, Stanimir; Schotta, Gunnar; Lickert, Heiko

    2013-08-01

    Several signalling cascades are implicated in the formation and patterning of the three principal germ layers, but their precise temporal-spatial mode of action in progenitor populations remains undefined. We have used conditional gene deletion of mouse β-catenin in Sox17-positive embryonic and extra-embryonic endoderm as well as vascular endothelial progenitors to address the function of canonical Wnt signalling in cell lineage formation and patterning. Conditional mutants fail to form anterior brain structures and exhibit posterior body axis truncations, whereas initial blood vessel formation appears normal. Tetraploid rescue experiments reveal that lack of β-catenin in the anterior visceral endoderm results in defects in head organizer formation. Sox17 lineage tracing in the definitive endoderm (DE) shows a cell-autonomous requirement for β-catenin in midgut and hindgut formation. Surprisingly, wild-type posterior visceral endoderm (PVE) in midgut- and hindgut-deficient tetraploid chimera rescues the posterior body axis truncation, indicating that the PVE is important for tail organizer formation. Upon loss of β-catenin in the visceral endoderm and DE lineages, but not in the vascular endothelial lineage, Sox17 expression is not maintained, suggesting downstream regulation by canonical Wnt signalling. Strikingly, Tcf4/β-catenin transactivation complexes accumulated on Sox17 cis-regulatory elements specifically upon endoderm induction in an embryonic stem cell differentiation system. Together, these results indicate that the Wnt/β-catenin signalling pathway regulates Sox17 expression for visceral endoderm pattering and DE formation and provide the first functional evidence that the PVE is necessary for gastrula organizer gene induction and posterior axis development.

  12. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida.

    Science.gov (United States)

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.

  13. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida.

    Directory of Open Access Journals (Sweden)

    Amirhossein Ahkami

    Full Text Available To identify specific genes determining the initiation and formation of adventitious roots (AR, a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115 was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.

  14. Development of boundary layers

    International Nuclear Information System (INIS)

    Herbst, R.

    1980-01-01

    Boundary layers develop along the blade surfaces on both the pressure and the suction side in a non-stationary flow field. This is due to the fact that there is a strongly fluctuating flow on the downstream blade row, especially as a result of the wakes of the upstream blade row. The author investigates the formation of boundary layers under non-stationary flow conditions and tries to establish a model describing the non-stationary boundary layer. For this purpose, plate boundary layers are measured, at constant flow rates but different interferent frequency and variable pressure gradients. By introducing the sample technique, measurements of the non-stationary boundary layer become possible, and the flow rate fluctuation can be divided in its components, i.e. stochastic turbulence and periodical fluctuation. (GL) [de

  15. Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae.

    Science.gov (United States)

    Johnson, Jeremiah G; Murphy, Caitlin N; Sippy, Jean; Johnson, Tylor J; Clegg, Steven

    2011-07-01

    Klebsiella pneumoniae is an opportunistic pathogen which frequently causes hospital-acquired urinary and respiratory tract infections. K. pneumoniae may establish these infections in vivo following adherence, using the type 3 fimbriae, to indwelling devices coated with extracellular matrix components. Using a colony immunoblot screen, we identified transposon insertion mutants which were deficient for type 3 fimbrial surface production. One of these mutants possessed a transposon insertion within a gene, designated mrkI, encoding a putative transcriptional regulator. A site-directed mutant of this gene was constructed and shown to be deficient for fimbrial surface expression under aerobic conditions. MrkI mutants have a significantly decreased ability to form biofilms on both abiotic and extracellular matrix-coated surfaces. This gene was found to be cotranscribed with a gene predicted to encode a PilZ domain-containing protein, designated MrkH. This protein was found to bind cyclic-di-GMP (c-di-GMP) and regulate type 3 fimbrial expression.

  16. Type 3 Fimbriae and Biofilm Formation Are Regulated by the Transcriptional Regulators MrkHI in Klebsiella pneumoniae▿

    Science.gov (United States)

    Johnson, Jeremiah G.; Murphy, Caitlin N.; Sippy, Jean; Johnson, Tylor J.; Clegg, Steven

    2011-01-01

    Klebsiella pneumoniae is an opportunistic pathogen which frequently causes hospital-acquired urinary and respiratory tract infections. K. pneumoniae may establish these infections in vivo following adherence, using the type 3 fimbriae, to indwelling devices coated with extracellular matrix components. Using a colony immunoblot screen, we identified transposon insertion mutants which were deficient for type 3 fimbrial surface production. One of these mutants possessed a transposon insertion within a gene, designated mrkI, encoding a putative transcriptional regulator. A site-directed mutant of this gene was constructed and shown to be deficient for fimbrial surface expression under aerobic conditions. MrkI mutants have a significantly decreased ability to form biofilms on both abiotic and extracellular matrix-coated surfaces. This gene was found to be cotranscribed with a gene predicted to encode a PilZ domain-containing protein, designated MrkH. This protein was found to bind cyclic-di-GMP (c-di-GMP) and regulate type 3 fimbrial expression. PMID:21571997

  17. Wnt signaling regulates atrioventricular canal formation upstream of BMP and Tbx2

    NARCIS (Netherlands)

    Verhoeven, Manon C.; Haase, Christa; Christoffels, Vincent M.; Weidinger, Gilbert; Bakkers, Jeroen

    2011-01-01

    In the developing heart, the atrioventricular canal (AVC) is essential for separation and alignment of the cardiac chambers, for valve formation, and serves to delay the electrical impulse from the atria to the ventricles. Defects in various aspects of its formation are the most common form of

  18. Adaptive Fuzzy Output Regulation for Formation Control of Unmanned Surface Vehicles

    DEFF Research Database (Denmark)

    Li, Shaobao; Er, Meng Joo; Wang, Ning

    2017-01-01

    In this paper, the formation control problem of unmanned surface vehicles (USVs) is investigated. Unlike the classical formation control problem where the reference signal is required to be second-order differentiable with respect to time, we consider a more general autonomous dynamic system...

  19. TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation.

    Science.gov (United States)

    Goswami, Rishov; Merth, Michael; Sharma, Shweta; Alharbi, Mazen O; Aranda-Espinoza, Helim; Zhu, Xiaoping; Rahaman, Shaik O

    2017-09-01

    Cardiovascular disease is the number one cause of death in United States, and atherosclerosis, a chronic inflammatory arterial disease, is the most dominant underlying pathology. Macrophages are thought to orchestrate atherosclerosis by generating lipid-laden foam cells and by secreting inflammatory mediators. Emerging data support a role for a mechanical factor, e.g., matrix stiffness, in regulation of macrophage function, vascular elasticity, and atherogenesis. However, the identity of the plasma membrane mechanosensor and the mechanisms by which pro-atherogenic signals are transduced/maintained are unknown. We have obtained evidence that TRPV4, an ion channel in the transient receptor potential vanilloid family and a known mechanosensor, is the likely mediator of oxidized low-density lipoprotein (oxLDL)-dependent macrophage foam cell formation, a critical process in atherogenesis. Specifically, we found that: i) genetic ablation of TRPV4 or pharmacologic inhibition of TRPV4 activity by a specific antagonist blocked oxLDL-induced macrophage foam cell formation, and ii) TRPV4 deficiency prevented pathophysiological range matrix stiffness or scratch-induced exacerbation of oxLDL-induced foam cell formation. Mechanistically, we found that: i) plasma membrane localization of TRPV4 was sensitized to the increasing level of matrix stiffness, ii) lack of foam cell formation in TRPV4 null cells was not due to lack of expression of CD36, a major receptor for oxLDL, and iii) TRPV4 channel activity regulated oxLDL uptake but not its binding on macrophages. Altogether, these findings identify a novel role for TRPV4 in regulating macrophage foam cell formation by modulating uptake of oxLDL. These findings suggest that therapeutic targeting of TRPV4 may provide a selective approach to the treatment of atherosclerosis. Copyright © 2017. Published by Elsevier Inc.

  20. GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lilly, Simon J.; Carollo, C. Marcella; Pipino, Antonio; Peng Yingjie [Institute for Astronomy, Department of Physics, ETH Zurich, CH-8093 Zurich (Switzerland); Renzini, Alvio [Department of Physics and Astronomy Galileo Galilei, Universita degli Studi di Padova, via Marzolo 8, I-35131 Padova (Italy)

    2013-08-01

    A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas consumption timescale ({epsilon}{sup -1}) and the mass loading {lambda} of the wind outflow {lambda}{center_dot}SFR. The simplest regulator, in which {epsilon} and {lambda} are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on {epsilon}, {lambda}, and sSFR, and the regulator system therefore naturally produces a Z(m{sub star}, SFR) relation if {epsilon} and {lambda} depend on the stellar mass m{sub star}. Furthermore, this relation will be the same at all epochs unless the parameters {epsilon} and {lambda} themselves change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The overall mass-metallicity relation Z(m{sub star}) directly provides the fraction f{sub star}(m{sub star}) of incoming baryons that are being transformed into stars. The observed Z(m{sub star}) relation of Sloan Digital Sky Survey (SDSS) galaxies implies a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and halo mass

  1. The Sensor Kinase GacS Negatively Regulates Flagellar Formation and Motility in a Biocontrol Bacterium, Pseudomonas chlororaphis O6

    Directory of Open Access Journals (Sweden)

    Ji Soo Kim

    2014-06-01

    Full Text Available The GacS/GacA two component system regulates various traits related to the biocontrol potential of plant-associated pseudomonads. The role of the sensor kinase, GacS, differs between strains in regulation of motility. In this study, we determined how a gacS mutation changed cell morphology and motility in Pseudomonas chlororaphis O6. The gacS mutant cells were elongated in stationary-phase compared to the wild type and the complemented gacS mutant, but cells did not differ in length in logarithmic phase. The gacS mutant had a two-fold increase in the number of flagella compared with the wild type strain; flagella number was restored to that of the wild type in the complemented gacS mutant. The more highly flagellated gacS mutant cells had greater swimming motilities than that of the wild type strain. Enhanced flagella formation in the gacS mutant correlated with increased expression of three genes, fleQ, fliQ and flhF, involved in flagellar formation. Expression of these genes in the complemented gacS mutant was similar to that of the wild type. These findings show that this root-colonizing pseudomonad adjusts flagella formation and cell morphology in stationary-phase using GacS as a major regulator.

  2. The Theoretical Foundations of Formation of the System of Regulating the Social-Labor Relations on the Principles of Responsibility

    Directory of Open Access Journals (Sweden)

    Fomina Olena O.

    2017-03-01

    Full Text Available The article is aimed at analyzing the fundamental economic theories of regulating the social-labor relations, in particular, Marxism, post-capitalism, social action – considering responsibility in the inter-subjective relations, as well as in the assessment of adequacy of implementation of the above indicated theories into economic activities. On the basis of an analysis, it has been found that Marxism considers responsibility as freedom for the economic entities and in the aspect of regulation of social-labor relations allows conflict, which is the engine of the human progress. The post-capitalism represents the conception, which provides for adaptation of public relations towards the technological changes, arbitrary behavior of business entities and formation of organizations of the new formation, aimed at cooperation. The social action theory allows to take into account the objective circumstances impacting the parties of the social-labor relations, and to settle conflicts through the provision of individual responsibility of each party for the situation present. In the light of the foregoing, we believe that regulation of the social-labor relations should be based on use of these theories. Prospects for further research in this direction will be considering the evolution of contemporary theories of responsibility as well as formation of a conceptual schema to ensure the responsible behavior of subjects in the social-labor relations.

  3. NTL8 Regulates Trichome Formation in Arabidopsis by Directly Activating R3 MYB Genes TRY and TCL1.

    Science.gov (United States)

    Tian, Hainan; Wang, Xianling; Guo, Hongyan; Cheng, Yuxin; Hou, Chunjiang; Chen, Jin-Gui; Wang, Shucai

    2017-08-01

    The NAM, ATAF1/2, and CUC (NAC) are plant-specific transcription factors that regulate multiple aspects of plant growth and development and plant response to environmental stimuli. We report here the identification of NTM1-LIKE8 (NTL8), a membrane-associated NAC transcription factor, as a novel regulator of trichome formation in Arabidopsis ( Arabidopsis thaliana ). From an activation-tagged Arabidopsis population, we identified a dominant, gain-of-function mutant with glabrous inflorescence stem. By using plasmid rescue and RT-PCR analyses, we found that NTL8 was tagged; thus, the mutant was named ntl8-1 Dominant ( ntl8-1D ). Recapitulation experiment further confirmed that the phenotype observed in the ntl8-1D mutant was caused by elevated expression of NTL8 Quantitative RT-PCR results showed that the expression level of the single-repeat R3 MYB genes TRIPTYCHON ( TRY ) and TRICHOMELESS1 ( TCL1 ) was elevated in the ntl8-1D mutant. Genetic analyses demonstrated that NTL8 acts upstream of TRY and TCL1 in the regulation of trichome formation. When recruited to the promoter region of the reporter gene Gal4:GUS by a fused GAL4 DNA-binding domain, NTL8 activated the expression of the reporter gene. Chromatin immunoprecipitation results indicated that TRY and TCL1 are direct targets of NTL8. However, NTL8 did not interact with SQUAMOSA PROMOTER BINDING PROTEIN LIKE9, another transcription factor that regulates the expression of TRY and TCL1 , in yeast and plant cells. Taken together, our results suggest that NTL8 negatively regulates trichome formation in Arabidopsis by directly activating the expression of TRY and TCL1 . © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. Developing Young Adolescents' Self-Regulation by Means of Formative Assessment: A Theoretical Perspective

    Science.gov (United States)

    Meusen-Beekman, Kelly D.; Joosten-ten Brinke, Desirée; Boshuizen, Henny P. A.

    2015-01-01

    Fostering self-regulated learning (SRL) has become increasingly important at various educational levels. Most studies on SRL have been conducted in higher education. The present literature study aims toward understanding self-regulation processes of students in primary and secondary education. We explored the development of young students'…

  5. Developing young adolescents’ self-regulation by means of formative assessment: A theoretical perspective

    NARCIS (Netherlands)

    Meusen-Beekman, Kelly; Joosten-ten Brinke, Desirée; Boshuizen, Els

    2018-01-01

    Fostering self-regulated learning (SRL) has become increasingly important at various educational levels. Most studies on SRL have been conducted in higher education. The present literature study aims toward understanding self-regulation processes of students in primary and secondary education. We

  6. Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS

    International Nuclear Information System (INIS)

    Kim, Shi-Mun; Kim, Rockki; Ryu, Jae-Hyun; Jho, Eek-Hoon; Song, Ki-Joon; Jang, Shyh-Ing; Kee, Sun-Ho

    2005-01-01

    AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear β-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear β-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3β activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death

  7. Implementation of training programs in self-regulated learning strategies in Moodle format: results of a experience in higher education.

    Science.gov (United States)

    Núñez, José Carlos; Cerezo, Rebeca; Bernardo, Ana; Rosário, Pedro; Valle, Antonio; Fernández, Estrella; Suárez, Natalia

    2011-04-01

    This paper tests the efficacy of an intervention program in virtual format intended to train studying and self-regulation strategies in university students. The aim of this intervention is to promote a series of strategies which allow students to manage their learning processes in a more proficient and autonomous way. The program has been developed in Moodle format and hosted by the Virtual Campus of the University of Oviedo. The present study had a semi-experimental design, included an experimental group (n=167) and a control one (n=206), and used pretest and posttest measures (self-regulated learning strategies' declarative knowledge, self-regulated learning macro-strategy planning-execution-assessment, self-regulated learning strategies on text, surface and deep learning approaches, and academic achievement). Data suggest that the students enrolled in the training program, comparing with students in the control group, showed a significant improvement in their declarative knowledge, general and on text use of learning strategies, increased their deep approach to learning, decreased their use of a surface approach and, in what concerns to academic achievement, statistically significant differences have been found in favour of the experimental group.

  8. Galaxy Formation with Self-Consistently Modeled Stars and Massive Black Holes. I: Feedback-Regulated Star Formation and Black Hole Growth

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-hoon; Wise, John H.; /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Princeton U., Astrophys. Sci. Dept.; Alvarez, Marcelo A.; /Canadian Inst. Theor. Astrophys.; Abel, Tom; /KIPAC, Menlo Park /Stanford U., Phys. Dept.

    2011-11-04

    There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto an MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full three-dimensional adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2 x 10{sup 11} M {circle_dot} galactic halo and its 10{sup 5} {circle_dot} M embedded MBH at redshift 3 in a cosmological CDM simulation. The MBH feedback heats the surrounding interstellar medium (ISM) up to 10{sup 6} K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.

  9. GALAXY FORMATION WITH SELF-CONSISTENTLY MODELED STARS AND MASSIVE BLACK HOLES. I. FEEDBACK-REGULATED STAR FORMATION AND BLACK HOLE GROWTH

    International Nuclear Information System (INIS)

    Kim, Ji-hoon; Abel, Tom; Wise, John H.; Alvarez, Marcelo A.

    2011-01-01

    There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto an MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full three-dimensional adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2 x 10 11 M sun galactic halo and its 10 5 M sun embedded MBH at redshift 3 in a cosmological ΛCDM simulation. The MBH feedback heats the surrounding interstellar medium (ISM) up to 10 6 K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.

  10. SaeRS Is Responsive to Cellular Respiratory Status and Regulates Fermentative Biofilm Formation in Staphylococcus aureus.

    Science.gov (United States)

    Mashruwala, Ameya A; Gries, Casey M; Scherr, Tyler D; Kielian, Tammy; Boyd, Jeffrey M

    2017-08-01

    Biofilms are multicellular communities of microorganisms living as a quorum rather than as individual cells. The bacterial human pathogen Staphylococcus aureus uses oxygen as a terminal electron acceptor during respiration. Infected human tissues are hypoxic or anoxic. We recently reported that impaired respiration elicits a p rogrammed c ell l ysis (PCL) phenomenon in S. aureus leading to the release of cellular polymers that are utilized to form biofilms. PCL is dependent upon the AtlA murein hydrolase and is regulated, in part, by the SrrAB two-component regulatory system (TCRS). In the current study, we report that the SaeRS TCRS also governs fermentative biofilm formation by positively influencing AtlA activity. The SaeRS-modulated factor fibronectin-binding protein A (FnBPA) also contributed to the fermentative biofilm formation phenotype. SaeRS-dependent biofilm formation occurred in response to changes in cellular respiratory status. Genetic evidence presented suggests that a high cellular titer of phosphorylated SaeR is required for biofilm formation. Epistasis analyses found that SaeRS and SrrAB influence biofilm formation independently of one another. Analyses using a mouse model of orthopedic implant-associated biofilm formation found that both SaeRS and SrrAB govern host colonization. Of these two TCRSs, SrrAB was the dominant system driving biofilm formation in vivo We propose a model wherein impaired cellular respiration stimulates SaeRS via an as yet undefined signal molecule(s), resulting in increasing expression of AtlA and FnBPA and biofilm formation. Copyright © 2017 American Society for Microbiology.

  11. Guanine nucleotide regulation of muscarinic receptor-mediated inositol phosphate formation in permeabilized 1321N1 cells

    International Nuclear Information System (INIS)

    Orellana, S.A.; Trilivas, I.; Brown, J.H.

    1986-01-01

    Carbachol and guanine nucleotides stimulate formation of the ( 3 H)inositol phosphates IP, IP2, and IP3 in saponin-permeabilized monolayers labelled with ( 3 H) inositol. Carbachol alone has little effect on formation of the ( 3 H) inositol phosphates (IPs), but GTPγS causes synergistic accumulation of ( 3 H)IPs to levels similar to those seen in intact cells. GTP, GppNHp, and GTPγS all support formation of the ( 3 H)IPs, with or without hormone, but GTPγS is the most effective. In the presence of GTPγS, the effect of carbachol is dose-dependent. Half-maximal and maximal accumulation of the ( 3 H)IPs occur at ∼ 5 μM and ∼ 100 μM carbachol, respectively; values close to those seen in intact cells. GTPγS alone stimulates formation of the ( 3 H)IPs after a brief lag time. The combination of GTPγS and carbachol both increases the rate of, and decreases the lag in, formation of the ( 3 H)IPs. LiCl increases ( 3 H)IP and IP2, but not IP3, accumulation; while 2,3-diphosphoglycerate substantially increases that of ( 3 H)IP3. GTPγS and carbachol cause formation of ( 3 H)IPs in the absence of Ca ++ , but formation induced by GTPγS with or without carbachol is Ca ++ -sensitive over a range of physiological concentrations. Although carbachol, Ca ++ , and GTPγS all have effects on formation of ( 3 H)IPs, GTPγS appears to be a primary and obligatory regulator of phosphoinositide hydrolysis in the permeabilized 1321N1 astrocytoma cell

  12. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis

    Science.gov (United States)

    Habib, Cameron; Yu, Yiyang; Gozzi, Kevin; Ching, Carly; Shemesh, Moshe

    2017-01-01

    The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB) in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR), which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA). Derepression can be triggered by the presence of the inducer β-1,4-galactobiose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded ß-galactosidase GanA (by ganA), which hydrolyzes ß-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms. PMID:28617843

  13. Shoot bending promotes flower bud formation by miRNA-mediated regulation in apple (Malus domestica Borkh.).

    Science.gov (United States)

    Xing, Libo; Zhang, Dong; Zhao, Caiping; Li, Youmei; Ma, Juanjuan; An, Na; Han, Mingyu

    2016-02-01

    Flower induction in apple (Malus domestica Borkh.) trees plays an important life cycle role, but young trees produce fewer and inferior quality flower buds. Therefore, shoot bending has become an important cultural practice, significantly promoting the capacity to develop more flower buds during the growing seasons. Additionally, microRNAs (miRNAs) play essential roles in plant growth, flower induction and stress responses. In this study, we identified miRNAs potentially involved in the regulation of bud growth, and flower induction and development, as well as in the response to shoot bending. Of the 195 miRNAs identified, 137 were novel miRNAs. The miRNA expression profiles revealed that the expression levels of 68 and 27 known miRNAs were down-regulated and up-regulated, respectively, in response to shoot bending, and that the 31 differentially expressed novel miRNAs between them formed five major clusters. Additionally, a complex regulatory network associated with auxin, cytokinin, abscisic acid (ABA) and gibberellic acid (GA) plays important roles in cell division, bud growth and flower induction, in which related miRNAs and targets mediated regulation. Among them, miR396, 160, 393, and their targets associated with AUX, miR159, 319, 164, and their targets associated with ABA and GA, and flowering-related miRNAs and genes, regulate bud growth and flower bud formation in response to shoot bending. Meanwhile, the flowering genes had significantly higher expression levels during shoot bending, suggesting that they are involved in this regulatory process. This study provides a framework for the future analysis of miRNAs associated with multiple hormones and their roles in the regulation of bud growth, and flower induction and formation in response to shoot bending in apple trees. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis.

    Science.gov (United States)

    Habib, Cameron; Yu, Yiyang; Gozzi, Kevin; Ching, Carly; Shemesh, Moshe; Chai, Yunrong

    2017-01-01

    The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB) in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR), which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA). Derepression can be triggered by the presence of the inducer β-1,4-galactobiose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded ß-galactosidase GanA (by ganA), which hydrolyzes ß-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms.

  15. A putative ABC transporter is involved in negative regulation of biofilm formation by Listeria monocytogenes

    DEFF Research Database (Denmark)

    Zhu, Xinna; Long, Fei; Chen, Yonghui

    2008-01-01

    Listeria monocytogenes may persist for long periods in food processing environments. In some instances, this may be due to aggregation or biofilm formation. To investigate the mechanism controlling biofilm formation in the food-borne pathogen L. monocytogenes, we characterized LM-49, a mutant...... with enhanced ability of biofilm-formation generated via transposon Tn917 mutagenesis of L. monocytogenes 4b G. In this mutant, a Tn917 insertion has disrupted the coding region of the gene encoding a putative ATP binding cassette (ABC) transporter permease identical to Lmof2365_1771 (a putative ABC...... the same amount of biofilm biomass as the wild-type strain. Furthermore, transcription of the downstream lm.G_1770 was not influenced by the upstream Tn917 insertion, and the presence of Tn917 has no effect on biofilm formation. These results suggest that lm.G_1771 was solely responsible for the negative...

  16. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kiyomiya, Hiroyasu [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Ariyoshi, Wataru; Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Kaneuji, Takeshi [Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Mitsugi, Sho [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Sakurai, Takuma [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Habu, Manabu [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Yoshioka, Izumi [Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Tominaga, Kazuhiro [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); and others

    2015-05-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, including Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8.

  17. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    International Nuclear Information System (INIS)

    Kiyomiya, Hiroyasu; Ariyoshi, Wataru; Okinaga, Toshinori; Kaneuji, Takeshi; Mitsugi, Sho; Sakurai, Takuma; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro

    2015-01-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, including Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8

  18. Regulation of Botulinum Neurotoxin Synthesis and Toxin Complex Formation by Arginine and Glucose in Clostridium botulinum ATCC 3502.

    Science.gov (United States)

    Fredrick, Chase M; Lin, Guangyun; Johnson, Eric A

    2017-07-01

    Botulinum neurotoxin (BoNT), produced by neurotoxigenic clostridia, is the most potent biological toxin known and the causative agent of the paralytic disease botulism. The nutritional, environmental, and genetic regulation of BoNT synthesis, activation, stability, and toxin complex (TC) formation is not well studied. Previous studies indicated that growth and BoNT formation were affected by arginine and glucose in Clostridium botulinum types A and B. In the present study, C. botulinum ATCC 3502 was grown in toxin production medium (TPM) with different levels of arginine and glucose and of three products of arginine metabolism, citrulline, proline, and ornithine. Cultures were analyzed for growth (optical density at 600 nm [OD 600 ]), spore formation, and BoNT and TC formation by Western blotting and immunoprecipitation and for BoNT activity by mouse bioassay. A high level of arginine (20 g/liter) repressed BoNT production approximately 1,000-fold, enhanced growth, slowed lysis, and reduced endospore production by greater than 1,000-fold. Similar effects on toxin production were seen with equivalent levels of citrulline but not ornithine or proline. In TPM lacking glucose, levels of formation of BoNT/A1 and TC were significantly decreased, and extracellular BoNT and TC proteins were partially inactivated after the first day of culture. An understanding of the regulation of C. botulinum growth and BoNT and TC formation should be valuable in defining requirements for BoNT formation in foods and clinical samples, improving the quality of BoNT for pharmaceutical preparations, and elucidating the biological functions of BoNTs for the bacterium. IMPORTANCE Botulinum neurotoxin (BoNT) is a major food safety and bioterrorism concern and is also an important pharmaceutical, and yet the regulation of its synthesis, activation, and stability in culture media, foods, and clinical samples is not well understood. This paper provides insights into the effects of critical

  19. CRP-Mediated Carbon Catabolite Regulation of Yersinia pestis Biofilm Formation Is Enhanced by the Carbon Storage Regulator Protein, CsrA.

    Directory of Open Access Journals (Sweden)

    Stephan P Willias

    Full Text Available The natural transmission of Yersinia pestis is reliant upon biofilm blockage of the flea vector. However, the environmentally-responsive adaptive regulators which facilitate Y. pestis biofilm production in accordance with the flea midgut milieu are not well understood. We seek to establish the impact of available carbon source metabolism and storage upon Y. pestis biofilm production. Our findings demonstrate that Y. pestis biofilm production is subject to carbon catabolite regulation in which the presence of glucose impairs biofilm production; whereas, the sole metabolism of alternate carbon sources promotes robust biofilm formation. This observation is facilitated by the cAMP receptor protein, CRP. In accordance with a stark growth defect, deletion of crp in both CO92 and KIM6+ Y. pestis strains significantly impaired biofilm production when solely utilizing alternate carbon sources. Media supplementation with cAMP, a small-molecule activator of CRP, did not significantly alter Y. pestis biofilm production. Furthermore, CRP did not alter mRNA abundance of previously-characterized hms biofilm synthesis and regulation factors. Therefore, our findings indicate CRP does not confer a direct stimulatory effect, but may indirectly promote Y. pestis biofilm production by facilitating the alternate carbon source expression profile. Additionally, we assessed the impact of the carbon storage regulator protein, CsrA, upon Y. pestis biofilm production. Contrary to what has been described for E. coli, Y. pestis biofilm formation was found to be enhanced by CsrA. Regardless of media composition and available carbon source, deletion of csrA significantly impaired Y. pestis biofilm production. CsrA was found to promote Y. pestis biofilm production independent of glycogen regulation. Loss of csrA did not significantly alter relative hmsH, hmsP, or hmsT mRNA abundance. However, deletion of hmsP in the csrA-deficient mutant enabled excessive biofilm production

  20. Molecular cloning, phylogenetic analysis, and expression patterns of LATERAL SUPPRESSOR-LIKE and REGULATOR OF AXILLARY MERISTEM FORMATION-LIKE genes in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Fambrini, Marco; Salvini, Mariangela; Pugliesi, Claudio

    2017-03-01

    The wild sunflower (Helianthus annuus) plants develop a highly branched form with numerous small flowering heads. The origin of a no branched sunflower, producing a single large head, has been a key event in the domestication process of this species. The interaction between hormonal factors and several genes organizes the initiation and outgrowth of axillary meristems (AMs). From sunflower, we have isolated two genes putatively involved in this process, LATERAL SUPPRESSOR (LS)-LIKE (Ha-LSL) and REGULATOR OF AXILLARY MERISTEM FORMATION (ROX)-LIKE (Ha-ROXL), encoding for a GRAS and a bHLH transcription factor (TF), respectively. Typical amino acid residues and phylogenetic analyses suggest that Ha-LSL and Ha-ROXL are the orthologs of the branching regulator LS and ROX/LAX1, involved in the growth habit of both dicot and monocot species. qRT-PCR analyses revealed a high accumulation of Ha-LSL transcripts in roots, vegetative shoots, and inflorescence shoots. By contrast, in internodal stems and young leaves, a lower amount of Ha-LSL transcripts was observed. A comparison of transcription patterns between Ha-LSL and Ha-ROXL revealed some analogies but also remarkable differences; in fact, the gene Ha-ROXL displayed a low expression level in all organs analyzed. In situ hybridization (ISH) analysis showed that Ha-ROXL transcription was strongly restricted to a small domain within the boundary zone separating the shoot apical meristem (SAM) and the leaf primordia and in restricted regions of the inflorescence meristem, beforehand the separation of floral bracts from disc flower primordia. These results suggested that Ha-ROXL may be involved to establish a cell niche for the initiation of AMs as well as flower primordia. The accumulation of Ha-LSL transcripts was not restricted to the boundary zones in vegetative and inflorescence shoots, but the mRNA activity was expanded in other cellular domains of primary shoot apical meristem as well as AMs. In addition, Ha

  1. Regulation

    International Nuclear Information System (INIS)

    Ballereau, P.

    1999-01-01

    The different regulations relative to nuclear energy since the first of January 1999 are given here. Two points deserve to be noticed: the decree of the third august 1999 authorizing the national Agency for the radioactive waste management to install and exploit on the commune of Bures (Meuse) an underground laboratory destined to study the deep geological formations where could be stored the radioactive waste. The second point is about the uranium residues and the waste notion. The judgment of the administrative tribunal of Limoges ( 9. july 1998) forbidding the exploitation of a storage installation of depleted uranium considered as final waste and qualifying it as an industrial waste storage facility has been annulled bu the Court of Appeal. It stipulated that, according to the law number 75663 of the 15. july 1965, no criteria below can be applied to depleted uranium: production residue (possibility of an ulterior enrichment), abandonment of a personal property or simple intention to do it ( future use aimed in the authorization request made in the Prefecture). This judgment has devoted the primacy of the waste notion on this one of final waste. (N.C.)

  2. Regulative feedback in pattern formation: towards a general relativistic theory of positional information.

    Science.gov (United States)

    Jaeger, Johannes; Irons, David; Monk, Nick

    2008-10-01

    Positional specification by morphogen gradients is traditionally viewed as a two-step process. A gradient is formed and then interpreted, providing a spatial metric independent of the target tissue, similar to the concept of space in classical mechanics. However, the formation and interpretation of gradients are coupled, dynamic processes. We introduce a conceptual framework for positional specification in which cellular activity feeds back on positional information encoded by gradients, analogous to the feedback between mass-energy distribution and the geometry of space-time in Einstein's general theory of relativity. We discuss how such general relativistic positional information (GRPI) can guide systems-level approaches to pattern formation.

  3. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ryan, Robert P.; Lucey, Jean; O'Donovan, Karen

    2009-01-01

    residues (YN-GYP). Here we have investigated the role of these proteins in biofilm formation, virulence factor synthesis and virulence of P. aeruginosa. Mutation of PA4108 and PA4781 led to an increase in the level of cyclic-di-GMP in P. aeruginosa, consistent with the predicted activity of the encoded......2572 had a negative influence on swarming that was cryptic and was revealed only after removal of an uncharacterized C-terminal domain. Mutation of PA4108, PA4781 and PA2572 had distinct effects on biofilm formation and architecture of P. aeruginosa. All three proteins contributed to virulence of P...

  4. Regulation of biofilm formation in Shewanella oneidensis by BpfA, BpfG, and BpfD

    Directory of Open Access Journals (Sweden)

    Guangqi eZhou

    2015-08-01

    Full Text Available Bacteria switch between two distinct life styles -- planktonic (free living and biofilm forming -- in keeping with their ever-changing environment. Such switch involves sophisticated signaling and tight regulation, which provides a fascinating portal for studying gene function and orchestrated protein interactions. In this work, we investigated the molecular mechanism underlying biofilm formation in S. oneidensis MR-1, an environmentally important model bacterium renowned for respiratory diversities, and uncovered a gene cluster coding for seven proteins involved in this process. The three key proteins, BpfA, BpfG, and BpfD, were studied in detail for the first time. BpfA directly participates in biofilm formation as extracellular glue; BpfG is not only indispensable for BpfA export during biofilm forming but also functions to turn BpfA into active form for biofilm dispersing. BpfD regulates biofilm development by interacting with both BpfA and BpfG, likely in response to signal molecule c-di-GMP. In addition, we found that 1:1 stoichiometry between BpfD and BpfG is critical for biofilm formation. Furthermore, we demonstrated that a biofilm over-producing phenotype can be induced by C116S mutation but not loss of BpfG.

  5. Clathrin-Mediated Auxin Efflux and Maxima Regulate Hypocotyl Hook Formation and Light-Stimulated Hook Opening in Arabidopsis.

    Science.gov (United States)

    Yu, Qinqin; Zhang, Ying; Wang, Juan; Yan, Xu; Wang, Chao; Xu, Jian; Pan, Jianwei

    2016-01-04

    The establishment of auxin maxima by PIN-FORMED 3 (PIN3)- and AUXIN RESISTANT 1/LIKE AUX1 (LAX) 3 (AUX1/LAX3)-mediated auxin transport is essential for hook formation in Arabidopsis hypocotyls. Until now, however, the underlying regulatory mechanism has remained poorly understood. Here, we show that loss of function of clathrin light chain CLC2 and CLC3 genes enhanced auxin maxima and thereby hook curvature, alleviated the inhibitory effect of auxin overproduction on auxin maxima and hook curvature, and delayed blue light-stimulated auxin maxima reduction and hook opening. Moreover, pharmacological experiments revealed that auxin maxima formation and hook curvature in clc2 clc3 were sensitive to auxin efflux inhibitors 1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid but not to the auxin influx inhibitor 1-naphthoxyacetic acid. Live-cell imaging analysis further uncovered that loss of CLC2 and CLC3 function impaired PIN3 endocytosis and promoted its lateralization in the cortical cells but did not affect AUX1 localization. Taken together, these results suggest that clathrin regulates auxin maxima and thereby hook formation through modulating PIN3 localization and auxin efflux, providing a novel mechanism that integrates developmental signals and environmental cues to regulate plant skotomorphogenesis and photomorphogenesis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  6. Biofilm formation in Escherichia coli cra mutants is impaired due to down-regulation of curli biosynthesis.

    Science.gov (United States)

    Reshamwala, Shamlan M S; Noronha, Santosh B

    2011-10-01

    Cra is a pleiotropic regulatory protein that controls carbon and energy flux in enteric bacteria. Recent studies have shown that Cra also regulates other cell processes and influences biofilm formation. The purpose of the present study was to investigate the role of Cra in biofilm formation in Escherichia coli. Congo red-binding studies suggested that curli biosynthesis is impaired in cra mutants. Microarray analysis of wild-type and mutant E. coli cultivated in conditions promoting biofilm formation revealed that the curli biosynthesis genes, csgBAC and csgDEFG, are poorly expressed in the mutant, suggesting that transcription of genes required for curli production is regulated by Cra. Four putative Cra-binding sites were identified in the curli intergenic region, which were experimentally validated by performing electromobility shift assays. Site-directed mutagenesis of three Cra-binding sites in the promoter region of the csgDEFG operon suggests that Cra activates transcription of this operon upon binding to operator regions both downstream and upstream of the transcription start site. Based on the Cra-binding sites identified in this and other studies, the Cra consensus sequence is refined.

  7. Phosphorylation of the Bacillus subtilis Replication Controller YabA Plays a Role in Regulation of Sporulation and Biofilm Formation.

    Science.gov (United States)

    García García, Tránsito; Ventroux, Magali; Derouiche, Abderahmane; Bidnenko, Vladimir; Correia Santos, Sara; Henry, Céline; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise; Poncet, Sandrine

    2018-01-01

    Bacillus subtilis cells can adopt different life-styles in response to various environmental cues, including planktonic cells during vegetative growth, sessile cells during biofilm formation and sporulation. While switching life-styles, bacteria must coordinate the progression of their cell cycle with their physiological status. Our current understanding of the regulatory pathways controlling the decision-making processes and triggering developmental switches highlights a key role of protein phosphorylation. The regulatory mechanisms that integrate the bacterial chromosome replication status with sporulation involve checkpoint proteins that target the replication initiator DnaA or the kinase phosphorelay controlling the master regulator Spo0A. B. subtilis YabA is known to interact with DnaA to prevent over-initiation of replication during vegetative growth. Here, we report that YabA is phosphorylated by YabT, a Ser/Thr kinase expressed during sporulation and biofilm formation. The phosphorylation of YabA has no effect on replication initiation control but hyper-phosphorylation of YabA leads to an increase in sporulation efficiency and a strong inhibition of biofilm formation. We also provide evidence that YabA phosphorylation affects the level of Spo0A-P in cells. These results indicate that YabA is a multifunctional protein with a dual role in regulating replication initiation and life-style switching, thereby providing a potential mechanism for cross-talk and coordination of cellular processes during adaptation to environmental change.

  8. Phosphorylation of the Bacillus subtilis Replication Controller YabA Plays a Role in Regulation of Sporulation and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Tránsito García García

    2018-03-01

    Full Text Available Bacillus subtilis cells can adopt different life-styles in response to various environmental cues, including planktonic cells during vegetative growth, sessile cells during biofilm formation and sporulation. While switching life-styles, bacteria must coordinate the progression of their cell cycle with their physiological status. Our current understanding of the regulatory pathways controlling the decision-making processes and triggering developmental switches highlights a key role of protein phosphorylation. The regulatory mechanisms that integrate the bacterial chromosome replication status with sporulation involve checkpoint proteins that target the replication initiator DnaA or the kinase phosphorelay controlling the master regulator Spo0A. B. subtilis YabA is known to interact with DnaA to prevent over-initiation of replication during vegetative growth. Here, we report that YabA is phosphorylated by YabT, a Ser/Thr kinase expressed during sporulation and biofilm formation. The phosphorylation of YabA has no effect on replication initiation control but hyper-phosphorylation of YabA leads to an increase in sporulation efficiency and a strong inhibition of biofilm formation. We also provide evidence that YabA phosphorylation affects the level of Spo0A-P in cells. These results indicate that YabA is a multifunctional protein with a dual role in regulating replication initiation and life-style switching, thereby providing a potential mechanism for cross-talk and coordination of cellular processes during adaptation to environmental change.

  9. Involvement of cyclin K posttranscriptional regulation in the formation of Artemia diapause cysts.

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    Full Text Available BACKGROUND: Artemia eggs tend to develop ovoviviparously to yield nauplius larvae in good rearing conditions; while under adverse situations, they tend to develop oviparously and encysted diapause embryos are formed instead. However, the intrinsic mechanisms regulating this process are not well understood. PRINCIPAL FINDING: This study has characterized the function of cyclin K, a regulatory subunit of the positive transcription elongation factor b (P-TEFb in the two different developmental pathways of Artemia. In the diapause-destined embryo, Western blots showed that the cyclin K protein was down-regulated as the embryo entered dormancy and reverted to relatively high levels of expression once development resumed, consistent with the fluctuations in phosphorylation of position 2 serines (Ser2 in the C-terminal domain (CTD of the largest subunit (Rpb1 of RNA polymerase II (RNAP II. Interestingly, the cyclin K transcript levels remained constant during this process. In vitro translation data indicated that the template activity of cyclin K mRNA stored in the postdiapause cyst was repressed. In addition, in vivo knockdown of cyclin K in developing embryos by RNA interference eliminated phosphorylation of the CTD Ser2 of RNAP II and induced apoptosis by inhibiting the extracellular signal-regulated kinase (ERK survival signaling pathway. CONCLUSIONS/SIGNIFICANCE: Taken together, these findings reveal a role for cyclin K in regulating RNAP II activity during diapause embryo development, which involves the post-transcriptional regulation of cyclin K. In addition, a further role was identified for cyclin K in regulating the control of cell survival during embryogenesis through ERK signaling pathways.

  10. Emerging boundaries

    DEFF Research Database (Denmark)

    Løvschal, Mette

    2014-01-01

    of temporal and material variables have been applied as a means of exploring the processes leading to their socioconceptual anchorage. The outcome of this analysis is a series of interrelated, generative boundary principles, including boundaries as markers, articulations, process-related devices, and fixation...

  11. Changing Boundaries

    DEFF Research Database (Denmark)

    Brodkin, Evelyn; Larsen, Flemming

    2013-01-01

    project that is altering the boundary between the democratic welfare state and the market economy. We see workfare policies as boundary-changing with potentially profound implications both for individuals disadvantaged by market arrangements and for societies seeking to grapple with the increasing...

  12. State regulation and teaching staff formation during the last military dictatorship in Buenos Aires Province

    Directory of Open Access Journals (Sweden)

    Myriam Southwell

    2009-06-01

    Full Text Available The last Argentine military dictatorship (1976-1983 has left deep marks in different spheres of the social, and education has not been the exception. A group of educational policies were carried out in the province of Buenos Aires that strongly transformed the senses of teaching. One of those policies has been the teacher education reform and the new course of studies for the Higher Teaching in 1977. From the advances of an ongoing research and the work on historical sources –programs, plans, regulations, government decrees, acts- we will analyse this teacher education policy as part of the teachers' work regulation and as a process of practice production.

  13. Galactic evolution with self-regulated star formation - Stability of a simple one-zone model

    International Nuclear Information System (INIS)

    Parravano, A.; Rosenzweig, P.; Teran, M.

    1990-01-01

    In a simple one-zone model of mass exchange between three components (stars, clouds, and diffused gas), a self-regulating mechanism based on the sensitivity of the condensation of small cool clouds upon the radiation density in the 912-1100 A band is presently included. This mechanism is capable of affecting the large-scale structure of the galaxies due to the fact that it acts at a large scale in a very short time. Even in the most favorable models for the production of nonlinear oscillations, the inclusion of this mechanism of self-regulation leads, in many cases, to the progressive damping of the oscillations. 26 refs

  14. Supermassive Black Holes as the Regulators of Star Formation in Central Galaxies

    International Nuclear Information System (INIS)

    Terrazas, Bryan A.; Bell, Eric F.; Woo, Joanna; Henriques, Bruno M. B.

    2017-01-01

    We present the relationship between the black hole mass, stellar mass, and star formation rate (SFR) of a diverse group of 91 galaxies with dynamically measured black hole masses. For our sample of galaxies with a variety of morphologies and other galactic properties, we find that the specific SFR is a smoothly decreasing function of the ratio between black hole mass and stellar mass, or what we call the specific black hole mass. In order to explain this relation, we propose a physical framework where the gradual suppression of a galaxy’s star formation activity results from the adjustment to an increase in specific black hole mass, and accordingly, an increase in the amount of heating. From this framework, it follows that at least some galaxies with intermediate specific black hole masses are in a steady state of partial quiescence with intermediate specific SFRs, implying that both transitioning and steady-state galaxies live within this region that is known as the “green valley.” With respect to galaxy formation models, our results present an important diagnostic with which to test various prescriptions of black hole feedback and its effects on star formation activity.

  15. Supermassive Black Holes as the Regulators of Star Formation in Central Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Terrazas, Bryan A.; Bell, Eric F. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Woo, Joanna; Henriques, Bruno M. B. [Department of Physics, Institute for Astronomy, ETH Zurich, 8093 Zurich (Switzerland)

    2017-08-01

    We present the relationship between the black hole mass, stellar mass, and star formation rate (SFR) of a diverse group of 91 galaxies with dynamically measured black hole masses. For our sample of galaxies with a variety of morphologies and other galactic properties, we find that the specific SFR is a smoothly decreasing function of the ratio between black hole mass and stellar mass, or what we call the specific black hole mass. In order to explain this relation, we propose a physical framework where the gradual suppression of a galaxy’s star formation activity results from the adjustment to an increase in specific black hole mass, and accordingly, an increase in the amount of heating. From this framework, it follows that at least some galaxies with intermediate specific black hole masses are in a steady state of partial quiescence with intermediate specific SFRs, implying that both transitioning and steady-state galaxies live within this region that is known as the “green valley.” With respect to galaxy formation models, our results present an important diagnostic with which to test various prescriptions of black hole feedback and its effects on star formation activity.

  16. Negotiating boundaries

    DEFF Research Database (Denmark)

    Aarhus, Rikke; Ballegaard, Stinne Aaløkke

    2010-01-01

    to maintain the order of the home when managing disease and adopting new healthcare technology. In our analysis we relate this boundary work to two continuums of visibility-invisibility and integration-segmentation in disease management. We explore five factors that affect the boundary work: objects......, activities, places, character of disease, and collaboration. Furthermore, the processes are explored of how boundary objects move between social worlds pushing and shaping boundaries. From this we discuss design implications for future healthcare technologies for the home.......To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work...

  17. 78 FR 15883 - Standard Time Zone Boundaries

    Science.gov (United States)

    2013-03-13

    ...] RIN 2105-AE20 Standard Time Zone Boundaries AGENCY: Office of the Secretary (OST), Department of... time zone boundaries regulations to reflect changes that Congress made to the Uniform Time Act. The... regulations on standard time zone boundaries, 49 CFR Part 71, need to be updated in order to ensure their...

  18. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin. PMID

  19. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings.

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin.

  20. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    Directory of Open Access Journals (Sweden)

    Uwe eDruege

    2014-09-01

    Full Text Available Adventitious root (AR formation in the stem base of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours after excision (hpe of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from stem base to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled

  1. Chlorination or monochloramination: Balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters

    KAUST Repository

    Sanawar, Huma; Xiong, Yanghui; Alam, Aftab; Croue, Jean-Philippe; Hong, Pei-Ying

    2017-01-01

    at the lowest tested concentration of chlorine (1mg/L) and contact time (1h). Comparatively, regulated THMs concentration was only detectable at 30μg/L level in one of the three sets of monochloraminated marine aquaculture waters. The average log reduction

  2. ATX-LPA1 axis contributes to proliferation of chondrocytes by regulating fibronectin assembly leading to proper cartilage formation.

    Science.gov (United States)

    Nishioka, Tatsuji; Arima, Naoaki; Kano, Kuniyuki; Hama, Kotaro; Itai, Eriko; Yukiura, Hiroshi; Kise, Ryoji; Inoue, Asuka; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Moolenaar, Wouter H; Chun, Jerold; Aoki, Junken

    2016-03-23

    The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through β1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation.

  3. PtdIns(3,4,5)P3 is a regulator of myosin-X localization and filopodia formation

    DEFF Research Database (Denmark)

    Plantard, Laure; Arjonen, Antti; Lock, John G

    2010-01-01

    Phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] is a key regulator of cell signaling that acts by recruiting proteins to the cell membrane, such as at the leading edge during cell migration. Here, we show that PtdIns (3,4,5)P3 plays a central role in filopodia formation via the bindi...... endosomal vesicles. Given that the localization of Myo10 was dynamically restored to filopodia upon reinstatement of PtdIns(3,4,5)P3-binding, our results indicate that PtdIns(3,4,5)P3 binding to the Myo10-PH2 domain is involved in Myo10 trafficking and regulation of filopodia dynamics....

  4. Nonequilibrium transition and pattern formation in a linear reaction-diffusion system with self-regulated kinetics

    Science.gov (United States)

    Paul, Shibashis; Ghosh, Shyamolina; Ray, Deb Shankar

    2018-02-01

    We consider a reaction-diffusion system with linear, stochastic activator-inhibitor kinetics where the time evolution of concentration of a species at any spatial location depends on the relative average concentration of its neighbors. This self-regulating nature of kinetics brings in spatial correlation between the activator and the inhibitor. An interplay of this correlation in kinetics and disparity of diffusivities of the two species leads to symmetry breaking non-equilibrium transition resulting in stationary pattern formation. The role of initial noise strength and the linear reaction terms has been analyzed for pattern selection.

  5. Regulation of CCR7-dependent cell migration through?CCR7 homodimer formation

    OpenAIRE

    Kobayashi, Daichi; Endo, Masataka; Ochi, Hirotaka; Hojo, Hironobu; Miyasaka, Masayuki; Hayasaka, Haruko

    2017-01-01

    The chemokine receptor CCR7 contributes to various physiological and pathological processes including T cell maturation, T cell migration from the blood into secondary lymphoid tissues, and tumor cell metastasis to lymph nodes. Although a previous study suggested that the efficacy of CCR7 ligand-dependent T cell migration correlates with CCR7 homo- and heterodimer formation, the exact extent of contribution of the CCR7 dimerization remains unclear. Here, by inducing or disrupting CCR7 dimers,...

  6. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation

    OpenAIRE

    Mimi L. Phan; Kasia M. Bieszczad

    2016-01-01

    Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the ...

  7. Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Huang, Katherine H.; Arkin, Adam P.; Alm, Eric J.

    2005-04-12

    Although operons are often subject to horizontal gene transfer (HGT), non-HGT genes are particularly likely to be in operons. To resolve this apparent discrepancy and to determine whether HGT is involved in operon formation, we examined the evolutionary history of the genes and operons in Escherichia coli K12. We show that genes that have homologs in distantly related bacteria but not in close relatives of E. coli (indicating HGTi) form new operons at about the same rates as native genes. Furthermore, genes in new operons are no more likely than other genes to have phylogenetic trees that are inconsistent with the species tree. In contrast, essential genes and ubiquitous genes without paralogs (genes believed to undergo HGT rarely) often form new operons. We conclude that HGT is not associated with operon formation, but instead promotes the prevalence of pre-existing operons. To explain operon formation, we propose that new operons reduce the amount of regulatory information required to specify optimal expression patterns. Consistent with this hypothesis, operons have greater amounts of conserved regulatory sequences than do individually transcribed genes.

  8. Star cluster formation in a turbulent molecular cloud self-regulated by photoionization feedback

    Science.gov (United States)

    Gavagnin, Elena; Bleuler, Andreas; Rosdahl, Joakim; Teyssier, Romain

    2017-12-01

    Most stars in the Galaxy are believed to be formed within star clusters from collapsing molecular clouds. However, the complete process of star formation, from the parent cloud to a gas-free star cluster, is still poorly understood. We perform radiation-hydrodynamical simulations of the collapse of a turbulent molecular cloud using the RAMSES-RT code. Stars are modelled using sink particles, from which we self-consistently follow the propagation of the ionizing radiation. We study how different feedback models affect the gas expulsion from the cloud and how they shape the final properties of the emerging star cluster. We find that the star formation efficiency is lower for stronger feedback models. Feedback also changes the high-mass end of the stellar mass function. Stronger feedback also allows the establishment of a lower density star cluster, which can maintain a virial or sub-virial state. In the absence of feedback, the star formation efficiency is very high, as well as the final stellar density. As a result, high-energy close encounters make the cluster evaporate quickly. Other indicators, such as mass segregation, statistics of multiple systems and escaping stars confirm this picture. Observations of young star clusters are in best agreement with our strong feedback simulation.

  9. Blowing off steam: Tuffisite formation as a regulator for lava dome eruptions

    Directory of Open Access Journals (Sweden)

    Jackie Evan Kendrick

    2016-04-01

    Full Text Available Tuffisites are veins of variably sintered, pyroclastic particles that form in conduits and lava domes as a result of localized fragmentation events during gas-and-ash explosions. Those observed in-situ on the active 2012 lava dome of Volcán de Colima range from voids with intra-clasts showing little movement and interpreted to be failure-nuclei, to sub-parallel lenses of sintered granular aggregate interpreted as fragmentation horizons, through to infilled fractures with evidence of viscous remobilization. All tuffisites show evidence of sintering. Further examination of the complex fracture-and-channel patterns reveals viscous backfill by surrounding magma, suggesting that lava fragmentation was followed by stress relaxation and continued viscous deformation as the tuffisites formed. The natural tuffisites are more permeable than the host andesite, and have a wide range of porosity and permeability compared to a narrower window for the host rock, and gauging from their significant distribution across the dome, we posit that the tuffisite veins may act as important outgassing pathways. To investigate tuffisite formation we crushed and sieved andesite from the lava dome and sintered it at magmatic temperatures for different times. We then assessed the healing and sealing ability by measuring porosity and permeability, showing that sintering reduces both over time. During sintering the porosity-permeability reduction occurs due to the formation of viscous necks between adjacent grains, a process described by the neck-formation model of Frenkel (1945. This process leads the granular starting material to a porosity-permeability regime anticipated for effusive lavas, and which describes the natural host lava as well as the most impervious of natural tuffisites. This suggests that tuffisite formation at Volcán de Colima constructed a permeable network that enabled gas to bleed passively from the magma. We postulate that this progressively reduced

  10. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Directory of Open Access Journals (Sweden)

    Miriam M. Cortese-Krott

    2014-01-01

    Full Text Available Aberrant production of nitric oxide (NO by inducible NO synthase (iNOS has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.

  11. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Science.gov (United States)

    Cortese-Krott, Miriam M.; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D.; Suschek, Christoph V.

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation. PMID:25180171

  12. Evolution‐development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures

    Science.gov (United States)

    Kohsokabe, Takahiro

    2016-01-01

    ABSTRACT Search for possible relationships between phylogeny and ontogeny is important in evolutionary‐developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell‐to‐cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi‐stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical‐systems theory, which lead to the evolution‐development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. J. Exp. Zool. (Mol. Dev. Evol.) 326B:61–84, 2016. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution

  13. Evolution-development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures.

    Science.gov (United States)

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2016-01-01

    Search for possible relationships between phylogeny and ontogeny is important in evolutionary-developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell-to-cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi-stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical-systems theory, which lead to the evolution-development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc.

  14. Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration.

    Science.gov (United States)

    Moraes, Juliana O; Cruz, Ellen A; Souza, Enio G F; Oliveira, Tereza C M; Alvarenga, Verônica O; Peña, Wilmer E L; Sant'Ana, Anderson S; Magnani, Marciane

    2018-05-26

    This study aimed to assess the capability of 97 epidemic S. enterica strains belonging to 18 serovars to form biofilm. Five strains characterized as strong biofilm-producers, belonging to distinct serovars (S. Enteritidis 132, S. Infantis 176, S. Typhimurium 177, S. Heidelberg 281 and S. Corvallis 297) were assayed for adhesion/biofilm formation on stainless steel surfaces. The experiments were conducted in different combinations of NaCl (0, 2, 4, 5, 6, 8 and 10% w/v), pH (4, 5, 6 and 7) and temperatures (8 °C, 12 °C, 20 °C and 35 °C). Only adhesion was assumed to occur when S. enterica counts were ≥3 and biofilm formation was defined as when the counts were ≥5 log CFU/cm 2 . The binary responses were used to develop models to predict the probability of adhesion/biofilm formation on stainless steel surfaces by five strains belonging to different S. enterica serovars. A total of 99% (96/97) of the tested S. enterica strains were characterized as biofilm-producers in the microtiter plate assays. The ability to form biofilm varied (P biofilm-producers, 21% (20/96), 45% (43/96), and 35% (34/96) were weak, moderate and strong biofilm-producers, respectively. The capability for adhesion/biofilm formation on stainless steel surfaces under the experimental conditions studied varied among the strains studied, and distinct secondary models were obtained to describe the behavior of the five S. enterica tested. All strains showed adhesion at pH 4 up to 4% of NaCl and at 20 °C and 35 °C. The probability of adhesion decreased when NaCl concentrations were >8% and at 8 °C, as well as in pH values ≤ 5 and NaCl concentrations > 6%, for all tested strains. At pH 7 and 6, biofilm formation for S. Enteritidis, S. Infantis, S. Typhimurium, S. Heidelberg was observed up to 6% of NaCl at 35 °C and 20 °C. The predicted boundaries for adhesion were pH values biofilm formation, the predicted boundaries were pH values biofilm formation

  15. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation.

    Science.gov (United States)

    Bate, Clive; Nolan, William; Williams, Alun

    2016-01-01

    The prion diseases occur following the conversion of the cellular prion protein (PrP(C)) into disease-related isoforms (PrP(Sc)). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrP(C) in prion formation was examined using a cell painting technique. PrP(Sc) formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrP(C). In contrast, PrP(C) containing a GPI anchor from which the sialic acid had been removed (desialylated PrP(C)) was not converted to PrP(Sc). Furthermore, the presence of desialylated PrP(C) inhibited the production of PrP(Sc) within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrP(C) contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrP(C). Desialylated PrP(C) was less sensitive to cholesterol depletion than PrP(C) and was not released from cells by treatment with glimepiride. The presence of desialylated PrP(C) in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Lrit1, a Retinal Transmembrane Protein, Regulates Selective Synapse Formation in Cone Photoreceptor Cells and Visual Acuity.

    Science.gov (United States)

    Ueno, Akiko; Omori, Yoshihiro; Sugita, Yuko; Watanabe, Satoshi; Chaya, Taro; Kozuka, Takashi; Kon, Tetsuo; Yoshida, Satoyo; Matsushita, Kenji; Kuwahara, Ryusuke; Kajimura, Naoko; Okada, Yasushi; Furukawa, Takahisa

    2018-03-27

    In the vertebrate retina, cone photoreceptors play crucial roles in photopic vision by transmitting light-evoked signals to ON- and/or OFF-bipolar cells. However, the mechanisms underlying selective synapse formation in the cone photoreceptor pathway remain poorly understood. Here, we found that Lrit1, a leucine-rich transmembrane protein, localizes to the photoreceptor synaptic terminal and regulates the synaptic connection between cone photoreceptors and cone ON-bipolar cells. Lrit1-deficient retinas exhibit an aberrant morphology of cone photoreceptor pedicles, as well as an impairment of signal transmission from cone photoreceptors to cone ON-bipolar cells. Furthermore, we demonstrated that Lrit1 interacts with Frmpd2, a photoreceptor scaffold protein, and with mGluR6, an ON-bipolar cell-specific glutamate receptor. Additionally, Lrit1-null mice showed visual acuity impairments in their optokinetic responses. These results suggest that the Frmpd2-Lrit1-mGluR6 axis regulates selective synapse formation in cone photoreceptors and is essential for normal visual function. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Boundary Spanning

    DEFF Research Database (Denmark)

    Zølner, Mette

    The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors in...... approach with pattern matching is a way to shed light on the tacit local knowledge that organizational actors cannot articulate and that an exclusively inductive research is not likely to unveil....

  18. pH-regulated antimony oxychloride nanoparticle formation on titanium oxide nanostructures: a photocatalytically active heterojunction

    KAUST Repository

    Buchholcz, Balázs

    2017-02-06

    Improving the catalytic activity of heterogeneous photocatalysts has become a hot topic recently. To this end, considerable progress has been made in the efficient separation of photogenerated charge carriers by e.g. the realization of heterojunction photocatalysts. V-VI-VII compound semiconductors, namely, bismuth oxyhalides, are popular photocatalysts. However, results on antimony oxyhalides [SbOX (X = Br, Cl, I)], the very promising alternatives to the well-known BiOX photomodifiers, are scarce. Here, we report the successful decoration of titanium oxide nanostructures with 8-11 nm diameter SbOX nanoparticles for the first time ever. The product size and stoichiometry could be controlled by the pH of the reactant mixture, while subsequent calcination could transform the structure of the titanate nanotube (TiONT) support and the prepared antimony oxychloride particles. In contrast to the ease of composite formation in the SbOX/TiONT case, anatase TiO could not facilitate the formation of antimony oxychloride nanoparticles on its surface. The titanate nanotube-based composites showed activity in a generally accepted quasi-standard photocatalytic test reaction (methyl orange dye decolorization). We found that the SbOCl/TiONT synthesized at pH = 1 is the most active sample in a broad temperature range.

  19. Using Formative Assessment to Facilitate Learner Self-Regulation: A Case Study of Assessment Practices and Student Perceptions in Hong Kong

    Science.gov (United States)

    Jing Jing, Ma

    2017-01-01

    One of the key aims of formative assessment in higher education is to enable students to become self-regulated learners (Nicol & Macfarlane-Dick, 2006). Based on Nicol and Macfarlane-Dick's (2006) framework, this exploratory study investigates which formative assessment practices proposed by them were used by one college EFL writing teacher to…

  20. LIGHT REGULATION OF GROWTH AND MELANIN FORMATION IN Inonotus оbliquus (Pers. Pilat

    Directory of Open Access Journals (Sweden)

    N. L. Poyedinok

    2013-04-01

    Full Text Available The study aims to investigate possibilities of using different sources of low-intensity light for the regulation of mycelium growth and melanin synthesis by medicinal mushroom Inonotus obliquus (Pers. Pilat. Studies of the light’s influence on the linear growth, biomass accumulation and melanin synthesis I. obliquus were performed using experimental installations that provide both lasing (coherent light with specified parameters, as well as sources of incoherent light. It has been demonstrated that the greatest stimulating effect took place during the irradiation of mycelium with blue light. It has been found that further realization of photobiological effect is largely dependent on the method of cultivation. Irradiation with laser light within all studied wavelength ranges was more conducive to growth, biomass and melanin accumulation in the mushroom mycelium than incoherent light irradiation within the same wavelength range. Light treatment made it possible to significantly reduce the duration of fermentation. The results of studies allow considering lowintensity light in the visible part of the spectrum as a perspective growth and biosynthetic activity regulator of I. obliquus in the biotechnology of its cultivation.

  1. Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling

    Directory of Open Access Journals (Sweden)

    Qishan Chen

    2013-01-01

    Full Text Available Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs, and vascular smooth muscle cells (VSMCs and its interaction with extracellular matrix (ECM play a critical role in the processes. Matrix metalloproteinases (MMPs, well-known inflammatory mediators are a family of zinc-dependent proteolytic enzymes that degrade various components of ECM and non-ECM molecules mediating tissue remodeling in both physiological and pathological processes. MMPs including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, and MT1-MMP, are stimulated and activated by various stimuli in vascular tissues. Once activated, MMPs degrade ECM proteins or other related signal molecules to promote recruitment of stem/progenitor cells and facilitate migration and invasion of ECs and VSMCs. Moreover, vascular cell proliferation and apoptosis can also be regulated by MMPs via proteolytically cleaving and modulating bioactive molecules and relevant signaling pathways. Regarding the importance of vascular cells in abnormal angiogenesis and vascular remodeling, regulation of vascular cell behaviors through modulating expression and activation of MMPs shows therapeutic potential.

  2. Dimer formation and transcription activation in the sporulation response regulator Spo0A.

    Science.gov (United States)

    Lewis, Richard J; Scott, David J; Brannigan, James A; Ladds, Joanne C; Cervin, Marguerite A; Spiegelman, George B; Hoggett, James G; Barák, Imrich; Wilkinson, Anthony J

    2002-02-15

    The response regulator Spo0A is the master control element in the initiation of sporulation in Bacillus subtilis. Like many other multi-domain response regulators, the latent activity of the effector, C-terminal domain is stimulated by phosphorylation on a conserved aspartic acid residue in the regulatory, N-terminal domain. If a threshold concentration of phosphorylated Spo0A is achieved, the transcription of genes required for sporulation is activated, whereas the genes encoding stationary phase sentinels are repressed, and sporulation proceeds. Despite detailed genetic, biochemical and structural characterisation, it is not understood how the phosphorylation signal in the receiver domain is transduced into DNA binding and transcription activation in the distal effector domain. An obstacle to our understanding of Spo0A function is the uncertainty concerning changes in quaternary structure that accompany phosphorylation. Here we have revisited this question and shown unequivocally that Spo0A forms dimers upon phosphorylation and that the subunit interactions in the dimer are mediated principally by the receiver domain. Purified dimers of two mutants of Spo0A, in which the phosphorylatable aspartic acid residue has been substituted, activate transcription from the spoIIG promoter in vitro, whereas monomers do not. This suggests that dimers represent the activated form of Spo0A. Copyright 2002 Elsevier Science Ltd.

  3. Neural cell 3D microtissue formation is marked by cytokines' up-regulation.

    Directory of Open Access Journals (Sweden)

    Yinzhi Lai

    Full Text Available Cells cultured in three dimensional (3D scaffolds as opposed to traditional two-dimensional (2D substrates have been considered more physiologically relevant based on their superior ability to emulate the in vivo environment. Combined with stem cell technology, 3D cell cultures can provide a promising alternative for use in cell-based assays or biosensors in non-clinical drug discovery studies. To advance 3D culture technology, a case has been made for identifying and validating three-dimensionality biomarkers. With this goal in mind, we conducted a transcriptomic expression comparison among neural progenitor cells cultured on 2D substrates, 3D porous polystyrene scaffolds, and as 3D neurospheres (in vivo surrogate. Up-regulation of cytokines as a group in 3D and neurospheres was observed. A group of 13 cytokines were commonly up-regulated in cells cultured in polystyrene scaffolds and neurospheres, suggesting potential for any or a combination from this list to serve as three-dimensionality biomarkers. These results are supportive of further cytokine identification and validation studies with cells from non-neural tissue.

  4. WIP regulates persistence of cell migration and ruffle formation in both mesenchymal and amoeboid modes of motility.

    Directory of Open Access Journals (Sweden)

    Inmaculada Banon-Rodriguez

    Full Text Available The spatial distribution of signals downstream from receptor tyrosine kinases (RTKs or G-protein coupled receptors (GPCR regulates fundamental cellular processes that control cell migration and growth. Both pathways rely significantly on actin cytoskeleton reorganization mediated by nucleation-promoting factors such as the WASP-(Wiskott-Aldrich Syndrome Protein family. WIP (WASP Interacting Protein is essential for the formation of a class of polarised actin microdomain, namely dorsal ruffles, downstream of the RTK for PDGF (platelet-derived growth factor but the underlying mechanism is poorly understood. Using lentivirally-reconstituted WIP-deficient murine fibroblasts we define the requirement for WIP interaction with N-WASP (neural WASP and Nck for efficient dorsal ruffle formation and of WIP-Nck binding for fibroblast chemotaxis towards PDGF-AA. The formation of both circular dorsal ruffles in PDGF-AA-stimulated primary fibroblasts and lamellipodia in CXCL13-treated B lymphocytes are also compromised by WIP-deficiency. We provide data to show that a WIP-Nck signalling complex interacts with RTK to promote polarised actin remodelling in fibroblasts and provide the first evidence for WIP involvement in the control of migratory persistence in both mesenchymal (fibroblast and amoeboid (B lymphocytes motility.

  5. Pathways Regulating Spheroid Formation of Human Follicular Thyroid Cancer Cells under Simulated Microgravity Conditions: A Genetic Approach

    Directory of Open Access Journals (Sweden)

    Stefan Riwaldt

    2016-04-01

    Full Text Available Microgravity induces three-dimensional (3D growth in numerous cell types. Despite substantial efforts to clarify the underlying mechanisms for spheroid formation, the precise molecular pathways are still not known. The principal aim of this paper is to compare static 1g-control cells with spheroid forming (MCS and spheroid non-forming (AD thyroid cancer cells cultured in the same flask under simulated microgravity conditions. We investigated the morphology and gene expression patterns in human follicular thyroid cancer cells (UCLA RO82-W-1 cell line after a 24 h-exposure on the Random Positioning Machine (RPM and focused on 3D growth signaling processes. After 24 h, spheroid formation was observed in RPM-cultures together with alterations in the F-actin cytoskeleton. qPCR indicated more changes in gene expression in MCS than in AD cells. Of the 24 genes analyzed VEGFA, VEGFD, MSN, and MMP3 were upregulated in MCS compared to 1g-controls, whereas ACTB, ACTA2, KRT8, TUBB, EZR, RDX, PRKCA, CAV1, MMP9, PAI1, CTGF, MCP1 were downregulated. A pathway analysis revealed that the upregulated genes code for proteins, which promote 3D growth (angiogenesis and prevent excessive accumulation of extracellular proteins, while genes coding for structural proteins are downregulated. Pathways regulating the strength/rigidity of cytoskeletal proteins, the amount of extracellular proteins, and 3D growth may be involved in MCS formation.

  6. The Conditions of Formation and the Regulation Levers of the «New Economy» as a Modern Phenomenon

    Directory of Open Access Journals (Sweden)

    Goncharova Svitlana Yu.

    2017-03-01

    Full Text Available The article is concerned with studying the stages of formation and development of phenomenon of the «new economy». Interpretation of the concept of «new economy» by foreign and by domestic scholars has been considered, the historical origin of the term of «new economy» has been defined, principles of its formation have been explored. The authors used reports by the World Bank on the level of development of the knowledge-based economy. Two combined index – the Knowledge Economy Index and the Knowledge Index have been provided, together with the accompanying rating of the world countries. The factors, determining the development of innovation process: economic, technological, political, legal, socio-psychological, cultural, organizational, and managerial, have been identified. Problems of establishing the national innovation system in Ukraine have been defined and ways of overcoming them have been suggested. The authors have developed and graphically presented the scheme of the conditions of formation and the regulation levers of the «new economy».

  7. Spiromastixones Inhibit Foam Cell Formation via Regulation of Cholesterol Efflux and Uptake in RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Chongming Wu

    2015-10-01

    Full Text Available Bioassay-guided evaluation shows that a deep sea-derived fungus, Spiromastix sp. MCCC 3A00308, possesses lipid-lowering activity. Chromatographic separation of a culture broth resulted in the isolation of 15 known depsidone-based analogues, labeled spiromastixones A–O (1–15. Each of these compounds was tested for its ability to inhibit oxidized low-density lipoprotein (oxLDL-induced foam cell formation in RAW264.7 macrophages. Spiromastixones 6–8 and 12–14 significantly decreased oxLDL-induced lipid over-accumulation, reduced cell surface area, and reduced intracellular cholesterol concentration. Of these compounds, spiromastixones 6 and 14 exerted the strongest inhibitory effects. Spiromastixones 6 and 14 dramatically inhibited cholesterol uptake and stimulated cholesterol efflux to apolipoprotein A1 (ApoA1 and high-density lipoprotein (HDL in RAW264.7 macrophages. Mechanistic investigation indicated that spiromastixones 6, 7, 12 and 14 significantly up-regulated the mRNA levels of ATP-binding cassette sub-family A1 (ABCA1 and down-regulated those of scavenger receptor CD36, while the transcription of ATP-binding cassette sub-family A1 (ABCG1 and proliferator-activated receptor gamma (PPARγ were selectively up-regulated by 6 and 14. A transactivation reporter assay revealed that spiromastixones 6 and 14 remarkably enhanced the transcriptional activity of PPARγ. These results suggest that spiromastixones inhibit foam cell formation through upregulation of PPARγ and ABCA1/G1 and downregulation of CD36, indicating that spiromastixones 6 and 14 are promising lead compounds for further development as anti-atherogenic agents.

  8. Calcium controls the formation of vacuoles from mitochondria to regulate microspore development in wheat.

    Science.gov (United States)

    Li, Dong Xiao; Hu, Hai Yan; Li, Gan; Ru, Zhen Gang; Tian, Hui Qiao

    2017-09-01

    Potassium antimonite was used to investigate the localisation of calcium in developing wheat anthers to examine the relationship between Ca 2+ and pollen development. During anther development, calcium precipitate formation increased in anther wall cells prior to microspore mother cell meiosis and appeared in microspores, suggesting the presence of a calcium influx from anther wall cells into the locule. Initially, the precipitates in microspore cytoplasm primarily accumulated in the mitochondria and destroyed their inner membranes (cisterns) to become small vacuoles, which expanded and fused, ultimately becoming a large vacuole during microspore vacuolisation. After microspore division and large vacuole decomposition, many calcium precipitates again accumulated in the small vacuoles, indicating that calcium from the large vacuole moved back into the cytoplasm of bicellular pollen.

  9. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation*

    Science.gov (United States)

    Ramírez, Valerie T.; Ramos-Fernández, Eva; Henríquez, Juan Pablo; Lorenzo, Alfredo; Inestrosa, Nibaldo C.

    2016-01-01

    Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons. PMID:27402827

  10. Differential Regulation of Elastic Fiber Formation by Fibulin-4 and -5*

    Science.gov (United States)

    Choudhury, Rawshan; McGovern, Amanda; Ridley, Caroline; Cain, Stuart A.; Baldwin, Andrew; Wang, Ming-Chuan; Guo, Chun; Mironov, Aleksandr; Drymoussi, Zoe; Trump, Dorothy; Shuttleworth, Adrian; Baldock, Clair; Kielty, Cay M.

    2009-01-01

    Fibulin-4 and -5 are extracellular glycoproteins with essential non-compensatory roles in elastic fiber assembly. We have determined how they interact with tropoelastin, lysyl oxidase, and fibrillin-1, thereby revealing how they differentially regulate assembly. Strong binding between fibulin-4 and lysyl oxidase enhanced the interaction of fibulin-4 with tropoelastin, forming ternary complexes that may direct elastin cross-linking. In contrast, fibulin-5 did not bind lysyl oxidase strongly but bound tropoelastin in terminal and central regions and could concurrently bind fibulin-4. Both fibulins differentially bound N-terminal fibrillin-1, which strongly inhibited their binding to lysyl oxidase and tropoelastin. Knockdown experiments revealed that fibulin-5 controlled elastin deposition on microfibrils, although fibulin-4 can also bind fibrillin-1. These experiments provide a molecular account of the distinct roles of fibulin-4 and -5 in elastic fiber assembly and how they act in concert to chaperone cross-linked elastin onto microfibrils. PMID:19570982

  11. Calcium regulation in long-term changes of neuronal excitability in the hippocampal formation

    Energy Technology Data Exchange (ETDEWEB)

    Mody, I.

    1985-01-01

    The regulation of calcium (Ca/sup 2 +/) was examined during long-term changes of neuronal excitability in the mammalian CNS. The preparations under investigation included the kindling model of epilepsy, a genetic form of epilepsy and long-term potentiation (LTP) of neuronal activity. The study also includes a discussion of the possible roles of a neuron-specific calcium-binding protein (CaBP). The findings are summarized as follows: (1) CaBP was found to have an unequal distribution in various cortical areas of the rat with higher levels in ventral structures. (2) The decline in CaBP was correlated to the number of evoked afterdischarges (AD's) during kindling-induced epilepsy. (3) Marked changes in CaBP levels were also found in the brains of the epileptic strain of mice (El). The induction of seizures further decreased the levels of CaBP in the El mice, indicating a possible genetic impairment of neuronal Ca/sup 2 +/ homeostasis in the El strain. (4) The levels of total hippocampal Ca/sup 2 +/ and Zn/sup 2 +/ were measured by atomic absorption spectrophotometry in control and commissural-kindled animals. (5) To measure Ca/sup 2 +/-homeostasis, the kinetic analysis of /sup 45/Ca uptake curves was undertaken in the in vitro hippocampus. (6) The kinetic analysis of /sup 45/Ca uptake curves revealed that Ca/sup 2 +/-regulation of the hippocampus is impaired following amygdala- and commissural kindling. (7). A novel form of long-term potentiation (LTP) of neuronal activity in the CA1 region of the hippocampus is described. The findings raise the possibility that the Ca/sup 2 +/ necessary for induction of LTP may be derived from an intraneuronal storage site.

  12. The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349

    DEFF Research Database (Denmark)

    Fazli, Mustafa; McCarthy, Yvonne; Givskov, Michael

    2013-01-01

    In Burkholderia cenocepacia, the second messenger cyclic diguanosine monophosphate (c-di-GMP) has previously been shown to positively regulate biofilm formation and the expression of cellulose and type-I fimbriae genes through binding to the transcriptional regulator Bcam1349. Here, we provide...... evidence that cellulose and type-I fimbriae are not involved in B. cenocepacia biofilm formation in flow chambers, and we identify a novel Bcam1349/c-di-GMP-regulated exopolysaccharide gene cluster which is essential for B. cenocepacia biofilm formation. Overproduction of Bcam1349 in trans promotes wrinkly...... matrix exopolysaccharide and to be essential for flow-chamber biofilm formation. We demonstrate that Bcam1349 binds to the promoter region of genes in the Bcam1330-Bcam1341 cluster and that this binding is enhanced by the presence of c-di-GMP. Furthermore, we demonstrate that overproduction of both c-di-GMP...

  13. Transglutaminase-2 differently regulates cartilage destruction and osteophyte formation in a surgical model of osteoarthritis.

    Science.gov (United States)

    Orlandi, A; Oliva, F; Taurisano, G; Candi, E; Di Lascio, A; Melino, G; Spagnoli, L G; Tarantino, U

    2009-04-01

    Osteoarthritis is a progressive joint disease characterized by cartilage degradation and bone remodeling. Transglutaminases catalyze a calcium-dependent transamidation reaction that produces covalent cross-linking of available substrate glutamine residues and modifies the extracellular matrix. Increased transglutaminases-mediated activity is reported in osteoarthritis, but the relative contribution of transglutaminases-2 (TG2) is uncertain. We describe TG2 expression in human femoral osteoarthritis and in wild-type and homozygous TG2 knockout mice after surgically-induced knee joint instability. Increased TG2 levels were observed in human and wild-type murine osteoarthritic cartilage compared to the respective controls. Histomorphometrical but not X-ray investigation documented in osteoarthritic TG2 knockout mice reduced cartilage destruction and an increased osteophyte formation compared to wild-type mice. These differences were associated with increased TGFbeta-1 expression. In addition to confirming its important role in osteoarthritis development, our results demonstrated that TG2 expression differently influences cartilage destruction and bone remodeling, suggesting new targeted TG2-related therapeutic strategies.

  14. How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Whalen, Daniel J. [Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth (United Kingdom); Wollenberg, Katharina M. J.; Glover, Simon C. O.; Klessen, Ralf S., E-mail: ken.chen@nao.ac.jp [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg (Germany)

    2017-08-01

    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.

  15. Eph regulates dorsoventral asymmetry of the notochord plate and convergent extension-mediated notochord formation.

    Science.gov (United States)

    Oda-Ishii, Izumi; Ishii, Yasuo; Mikawa, Takashi

    2010-10-29

    The notochord is a signaling center required for the patterning of the vertebrate embryonic midline, however, the molecular and cellular mechanisms involved in the formation of this essential embryonic tissue remain unclear. The urochordate Ciona intestinalis develops a simple notochord from 40 specific postmitotic mesodermal cells. The precursors intercalate mediolaterally and establish a single array of disk-shaped notochord cells along the midline. However, the role that notochord precursor polarization, particularly along the dorsoventral axis, plays in this morphogenetic process remains poorly understood. Here we show that the notochord preferentially accumulates an apical cell polarity marker, aPKC, ventrally and a basement membrane marker, laminin, dorsally. This asymmetric accumulation of apicobasal cell polarity markers along the embryonic dorsoventral axis was sustained in notochord precursors during convergence and extension. Further, of several members of the Eph gene family implicated in cellular and tissue morphogenesis, only Ci-Eph4 was predominantly expressed in the notochord throughout cell intercalation. Introduction of a dominant-negative Ci-Eph4 to notochord precursors diminished asymmetric accumulation of apicobasal cell polarity markers, leading to defective intercalation. In contrast, misexpression of a dominant-negative mutant of a planar cell polarity gene Dishevelled preserved asymmetric accumulation of aPKC and laminin in notochord precursors, although their intercalation was incomplete. Our data support a model in which in ascidian embryos Eph-dependent dorsoventral polarity of notochord precursors plays a crucial role in mediolateral cell intercalation and is required for proper notochord morphogenesis.

  16. RhoG protein regulates platelet granule secretion and thrombus formation in mice.

    Science.gov (United States)

    Goggs, Robert; Harper, Matthew T; Pope, Robert J; Savage, Joshua S; Williams, Christopher M; Mundell, Stuart J; Heesom, Kate J; Bass, Mark; Mellor, Harry; Poole, Alastair W

    2013-11-22

    Rho GTPases such as Rac, RhoA, and Cdc42 are vital for normal platelet function, but the role of RhoG in platelets has not been studied. In other cells, RhoG orchestrates processes integral to platelet function, including actin cytoskeletal rearrangement and membrane trafficking. We therefore hypothesized that RhoG would play a critical role in platelets. Here, we show that RhoG is expressed in human and mouse platelets and is activated by both collagen-related peptide (CRP) and thrombin stimulation. We used RhoG(-/-) mice to study the function of RhoG in platelets. Integrin activation and aggregation were reduced in RhoG(-/-) platelets stimulated by CRP, but responses to thrombin were normal. The central defect in RhoG(-/-) platelets was reduced secretion from α-granules, dense granules, and lysosomes following CRP stimulation. The integrin activation and aggregation defects could be rescued by ADP co-stimulation, indicating that they are a consequence of diminished dense granule secretion. Defective dense granule secretion in RhoG(-/-) platelets limited recruitment of additional platelets to growing thrombi in flowing blood in vitro and translated into reduced thrombus formation in vivo. Interestingly, tail bleeding times were normal in RhoG(-/-) mice, suggesting that the functions of RhoG in platelets are particularly relevant to thrombotic disorders.

  17. BAG3 regulates formation of the SNARE complex and insulin secretion

    Science.gov (United States)

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  18. Npas4 Is a Critical Regulator of Learning-Induced Plasticity at Mossy Fiber-CA3 Synapses during Contextual Memory Formation

    DEFF Research Database (Denmark)

    Weng, Feng-Ju; Garcia, Rodrigo I; Lutzu, Stefano

    2018-01-01

    Synaptic connections between hippocampal mossy fibers (MFs) and CA3 pyramidal neurons are essential for contextual memory encoding, but the molecular mechanisms regulating MF-CA3 synapses during memory formation and the exact nature of this regulation are poorly understood. Here we report...... pyramidal cells that were activated by contextual learning and found that MF inputs on these cells were selectively strengthened. Deletion of Npas4 prevented both contextual memory formation and this learning-induced synaptic modification. We further show that Npas4 regulates MF-CA3 synapses by controlling...... the expression of the polo-like kinase Plk2. Thus, Npas4 is a critical regulator of experience-dependent, structural, and functional plasticity at MF-CA3 synapses during contextual memory formation....

  19. Evidence of stratabound liquefaction in the formation of fractured topographic margins, cone chains and pit catenas along the Martian Dichotomy Boundary and in Isidis Planitia, Mars.

    Science.gov (United States)

    Gallagher, C.; Balme, M. R.

    2012-04-01

    On the low-lying plains along much of the Martian Dichotomy Boundary (MDB) and in the Isidis impact basin, cones and curving chains of cones, referred to as thumbprint terrain (TPT), are common. In the same settings, pit chains (catenas) occur in orthogonal to curving and conchoidal fracture sets between mesa-like crustal blocks, generally at or near topographic margins. Many of the fractures consist of linked pits rather than simple propagated cracks. These assemblages are often associated with the more disaggregated populations of blocks comprising chaos terrain. We show that the local planimetric arrangement of the cone chains, fractures and pit catenas is strikingly similar in both shape and scale, including lateral separation, length, longitudinal slope and radius of curvature. The summits of cones tend to be closely accordant along individual cone chains. Neighbouring cone chains tend to be mutually accordant on low gradient basin surfaces but generally stepped en echelon closer to the fractured basin margins. Similarly, the crustal blocks (including very isolated block sets) are often mutually stepped, and fractures between these en echelon blocks tend to be very close to horizontal. Hence, many cone chains, fractures and pit catenas in fractures share the property of being arranged along strike. They diverge morphologically by the cone chains being positive forms separated by narrow gulfs but the pit catenas being negative forms separated by planar blocks. All of these characteristics point to the possibility that the arcuate cone chains and the arcuate pit catenas have a common origin. In particular, we hypothesise that the cone chains characteristic of TPT along the MDB and in Isidis are filled, indurated and then exhumed pit catenas revealed by the stripping-away of intervening blocks [cf. 1]. Many other surfaces on Mars are pervaded by pits and pit catenas, with evidence of former water flow through the catenas suggesting that ground-ice thaw played a

  20. CREB Regulates Experience-Dependent Spine Formation and Enlargement in Mouse Barrel Cortex

    Directory of Open Access Journals (Sweden)

    Annabella Pignataro

    2015-01-01

    Full Text Available Experience modifies synaptic connectivity through processes that involve dendritic spine rearrangements in neuronal circuits. Although cAMP response element binding protein (CREB has a key function in spines changes, its role in activity-dependent rearrangements in brain regions of rodents interacting with the surrounding environment has received little attention so far. Here we studied the effects of vibrissae trimming, a widely used model of sensory deprivation-induced cortical plasticity, on processes associated with dendritic spine rearrangements in the barrel cortex of a transgenic mouse model of CREB downregulation (mCREB mice. We found that sensory deprivation through prolonged whisker trimming leads to an increased number of thin spines in the layer V of related barrel cortex (Contra in wild type but not mCREB mice. In the barrel field controlling spared whiskers (Ipsi, the same trimming protocol results in a CREB-dependent enlargement of dendritic spines. Last, we demonstrated that CREB regulates structural rearrangements of synapses that associate with dynamic changes of dendritic spines. Our findings suggest that CREB plays a key role in dendritic spine dynamics and synaptic circuits rearrangements that account for new brain connectivity in response to changes in the environment.

  1. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects......; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... and distributive justice at national level....

  2. Solvent Role in the Formation of Electric Double Layers with Surface Charge Regulation: A Bystander or a Key Participant?

    Science.gov (United States)

    Fleharty, Mark E.; van Swol, Frank; Petsev, Dimiter N.

    2016-01-01

    The charge formation at interfaces involving electrolyte solutions is due to the chemical equilibrium between the surface reactive groups and the potential determining ions in the solution (i.e., charge regulation). In this Letter we report our findings that this equilibrium is strongly coupled to the precise molecular structure of the solution near the charged interface. The neutral solvent molecules dominate this structure due to their overwhelmingly large number. Treating the solvent as a structureless continuum leads to a fundamentally inadequate physical picture of charged interfaces. We show that a proper account of the solvent effect leads to an unexpected and complex system behavior that is affected by the molecular and ionic excluded volumes and van der Waals interactions.

  3. The effects of formative assessment on student self-regulation, motivational beliefs, and achievement in elementary science

    Science.gov (United States)

    King, Melissa Digennaro

    Goals 2000 set forth a bold vision for U.S. students: they would be "first in the world in science and mathematics" by the year 2000. Performance indicators such as the TIMSS-R (1999) and NAEP (2000) reports suggest that U.S. students have not yet reached that goal. This study intended to learn how specific assessment strategies might contribute to improved student performance in science. This quasi-experimental study investigated the effects of formative assessment with reflection on students' motivational beliefs, self-regulatory skills, and achievement in elementary science. The study aimed to find out whether and how classroom applications of formative assessment during science instruction might influence fifth-grade students' attitudes and self-perceptions about science learning, self-regulatory learning behaviors, and achievement. To explore the effects of the assessment intervention, the study utilized a mixed methods approach involving quantitative and qualitative investigations of treatment and control groups during a four-week intervention period. Quantitative measures included student self-report surveys administered pre- and post-treatment and an end-of-unit science test. Qualitative measures included classroom observations, student interviews (post-treatment), and a teacher interview (post-treatment). Findings indicated that the fifth-grade students in this study had positive attitudes toward science and high levels of self-efficacy for science. Results suggested that these elementary students employed a wide variety of cognitive and metacognitive strategies to support science learning. Findings revealed that these fifth graders believed formative assessment with reflection was beneficial for science learning outcomes. Research results did not show that the formative assessment intervention contributed to significant differences between treatment and control groups. However, the data revealed different levels of academic achievement and self-regulation

  4. Auto Poisoning of the Respiratory Chain by a Quorum Sensing Regulated Molecule Favors Biofilm Formation and Antibiotic Tolerance

    Science.gov (United States)

    Hazan, Ronen; Que, Yok Ai; Maura, Damien; Strobel, Benjamin; Majcherczyk, Paul Anthony; Hopper, Laura Rose; Wilbur, David J.; Hreha, Teri N.; Barquera, Blanca; Rahme, Laurence G.

    2015-01-01

    Summary Bacterial programmed cell death and quorum sensing are direct examples of prokaryote group behaviors, wherein cells coordinate their actions to function cooperatively like one organism for the benefit of the whole culture. We demonstrate here that 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO), a Pseudomonas aeruginosa quorum sensing -regulated low-molecular-weight excreted molecule, and triggers autolysis by self-perturbing the electron transfer reactions of the cytochrome bc1 complex. HQNO induces specific self-poisoning by disrupting the flow of electrons through the respiratory chain at the cytochrome bc1 complex, causing a leak of reducing equivalents to O2 whereby electrons that would normally be passed to cytochrome c are donated directly to O2. The subsequent mass production of reactive oxygen species (ROS) reduces membrane potential and disrupts membrane integrity, causing bacterial cell autolysis and DNA release. DNA subsequently promotes biofilm formation and increases antibiotic tolerance to beta-lactams, suggesting that HQNO-dependent cell autolysis is advantageous to the bacterial populations. These data both identify a new programmed cell death system, and a novel role for HQNO as a critical-inducer of biofilm formation and antibiotic tolerance. This newly identified pathway suggests intriguing mechanistic similarities with the initial mitochondrial-mediated steps of eukaryotic apoptosis. PMID:26776731

  5. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation

    International Nuclear Information System (INIS)

    Qiao, Yong; Tang, Chengchun; Wang, Qingjie; Wang, Dong; Yan, Gaoliang; Zhu, Boqian

    2016-01-01

    Phenotype switching of vascular smooth muscle cells (VSMC) from the contractile type to the synthetic type is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Inward rectifier K"+ channel 2.1 (Kir2.1) has been identified in VSMC. However, whether it plays a functional role in regulating cellular transformation remains obscure. In this study, we evaluated the role of Kir2.1 on VSMC proliferation, migration, phenotype switching, and post-injury carotid neointimal formation. Kir2.1 knockdown significantly suppressed platelet-derived growth factor BB-stimulated rat vascular smooth muscle cells (rat-VSMC) proliferation and migration. Deficiency in Kir2.1 contributed to the restoration of smooth muscle α-actin, smooth muscle 22α, and calponin and to a reduction in osteopontin expression in rat-VSMC. Moreover, the in vivo study showed that rat-VSMC switched to proliferative phenotypes and that knockdown of Kir2.1 significantly inhibited neointimal formation after rat carotid injury. Kir2.1 may be a potential therapeutic target in the treatment of cardiovascular diseases, such as atherosclerosis and restenosis following percutaneous coronary intervention.

  6. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Yong; Tang, Chengchun, E-mail: tangchengchun@medmail.com.cn; Wang, Qingjie; Wang, Dong; Yan, Gaoliang; Zhu, Boqian

    2016-09-02

    Phenotype switching of vascular smooth muscle cells (VSMC) from the contractile type to the synthetic type is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Inward rectifier K{sup +} channel 2.1 (Kir2.1) has been identified in VSMC. However, whether it plays a functional role in regulating cellular transformation remains obscure. In this study, we evaluated the role of Kir2.1 on VSMC proliferation, migration, phenotype switching, and post-injury carotid neointimal formation. Kir2.1 knockdown significantly suppressed platelet-derived growth factor BB-stimulated rat vascular smooth muscle cells (rat-VSMC) proliferation and migration. Deficiency in Kir2.1 contributed to the restoration of smooth muscle α-actin, smooth muscle 22α, and calponin and to a reduction in osteopontin expression in rat-VSMC. Moreover, the in vivo study showed that rat-VSMC switched to proliferative phenotypes and that knockdown of Kir2.1 significantly inhibited neointimal formation after rat carotid injury. Kir2.1 may be a potential therapeutic target in the treatment of cardiovascular diseases, such as atherosclerosis and restenosis following percutaneous coronary intervention.

  7. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes.

    Science.gov (United States)

    Kuga, Takahisa; Sasaki, Mitsuho; Mikami, Toshinari; Miake, Yasuo; Adachi, Jun; Shimizu, Maiko; Saito, Youhei; Koura, Minako; Takeda, Yasunori; Matsuda, Junichiro; Tomonaga, Takeshi; Nakayama, Yuji

    2016-05-25

    FAM83H is essential for the formation of dental enamel because a mutation in the FAM83H gene causes amelogenesis imperfecta (AI). We previously reported that the overexpression of FAM83H often occurs and disorganizes the keratin cytoskeleton in colorectal cancer cells. We herein show that FAM83H regulates the organization of the keratin cytoskeleton and maintains the formation of desmosomes in ameloblastoma cells. FAM83H is expressed and localized on keratin filaments in human ameloblastoma cell lines and in mouse ameloblasts and epidermal germinative cells in vivo. FAM83H shows preferential localization to keratin filaments around the nucleus that often extend to cell-cell junctions. Alterations in the function of FAM83H by its overexpression, knockdown, or an AI-causing truncated mutant prevent the proper organization of the keratin cytoskeleton in ameloblastoma cells. Furthermore, the AI-causing mutant prevents desmosomal proteins from being localized to cell-cell junctions. The effects of the AI-causing mutant depend on its binding to and possible inhibition of casein kinase I (CK-1). The suppression of CK-1 by its inhibitor, D4476, disorganizes the keratin cytoskeleton. Our results suggest that AI caused by the FAM83H mutation is mediated by the disorganization of the keratin cytoskeleton and subsequent disruption of desmosomes in ameloblasts.

  8. Effect of growth regulator Kelpak SL on the formation of aboveground biomass of Festulolium braunii (K. Richt. A. Camus

    Directory of Open Access Journals (Sweden)

    Jacek Sosnowski

    2013-07-01

    Full Text Available A study on the cultivation of Festulolium braunii cv. 'Felopa' was carried out using polyurethane rings with a diameter of 36 cm and a height of 40 cm, which were sunk into the ground to a depth of 30 cm and filled with soil material. In this experiment, Kelpak SL was used as a bioregulator. It consists of natural plant hormones such as auxins (11 mg in dm3 and cytokinins (0.03 mg in dm3. The experimental factors were as follows: A1-control; A2 – 20% solution of the growth regulator; A3 – 40% solution; and A4 – 60% solution. The preparation was applied to all three regrowths in the form of spray, at a rate of 3 cm3 ring-1, at the stem elongation stage. The full period of this experiment was in the years 2010–2011. During this time, detailed investigations were carried out on aboveground biomass yield (g DM ring-1, number of shoots (pcs ring-1, leaf blade length (cm, width of the leaf blade base (mm, leaf greenness index (SPAD. The study showed a significant effect of the growth regulator on the formation of Festulolium braunii biomass. However, its highest effectiveness was observed when the 60% solution was applied.

  9. The bifunctional abiotic stress signalling regulator and endogenous RNA silencing suppressor FIERY1 is required for lateral root formation

    KAUST Repository

    Chen, Hao

    2010-09-28

    The Arabidopsis FIERY1 (FRY1) locus was originally identified as a negative regulator of stress-responsive gene expression and later shown to be required for suppression of RNA silencing. In this study we discovered that the FRY1 locus also regulates lateral root formation. Compared with the wild type, fry1 mutant seedlings generated significantly fewer lateral roots under normal growth conditions and also exhibited a dramatically reduced sensitivity to auxin in inducing lateral root initiation. Using transgenic plants that overexpress a yeast homolog of FRY1 that possesses only the 3\\', 5\\'-bisphosphate nucleotidase activity but not the inositol 1-phosphatase activity, we demonstrated that the lateral root phenotypes in fry1 result from loss of the nucleotidase activity. Furthermore, a T-DNA insertion mutant of another RNA silencing suppressor, XRN4 (but not XRN2 or XRN3), which is an exoribonuclease that is inhibited by the substrate of the FRY1 3\\', 5\\'-bisphosphate nucleotidase, exhibits similar lateral root defects. Although fry1 and xrn4 exhibited reduced sensitivity to ethylene, our experiments demonstrated that restoration of ethylene sensitivity in the fry1 mutant is not sufficient to rescue the lateral root phenotypes of fry1. Our results indicate that RNA silencing modulated by FRY1 and XRN4 plays an important role in shaping root architecture. © 2010 Blackwell Publishing Ltd.

  10. Formation of the reflected and refracted s-polarized electromagnetic waves in the Fresnel problem for the boundary vacuum-metamaterial from the viewpoint of molecular optics

    Science.gov (United States)

    Averbukh, B. B.; Averbukh, I. B.

    2016-11-01

    The refraction of a plane s-polarized electromagnetic wave on the vacuum-metamaterial interface is considered. Point particles with electric and magnetic dipole polarizabilities are scattering elements of a medium. The medium consists of plane-parallel monolayers of electric or magnetic dipoles or Huygens elements influencing one another. Dipole fields are completely taken into account. The fields inside the medium and the reflected fields are calculated. The extinction theorem is analyzed in detail. The mechanism of rotation of the magnetic field vector during refraction is elucidated. A reason for the absence of the fourth wave propagating from the medium toward the boundary in the conventionally employed boundary conditions is elucidated. It is shown that, under certain conditions, this medium can behave as possessing a unity refractive index or zero refractive index at a preset frequency. In the case of a metamaterial layer of finite thickness shows the output region of the existence of backward waves outside metamaterial layer. It is shown that the refraction of the field in a homogeneous medium after the dielectric corresponds to Fermat's principle, and the interference nature of Fermat's principle is justified.

  11. Beta- Lactam Antibiotics Stimulate Biofilm Formation in Non-Typeable Haemophilus influenzae by Up-Regulating Carbohydrate Metabolism

    Science.gov (United States)

    Wu, Siva; Li, Xiaojin; Gunawardana, Manjula; Maguire, Kathleen; Guerrero-Given, Debbie; Schaudinn, Christoph; Wang, Charles; Baum, Marc M.; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended. PMID:25007395

  12. Beta- lactam antibiotics stimulate biofilm formation in non-typeable haemophilus influenzae by up-regulating carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Siva Wu

    Full Text Available Non-typeable Haemophilus influenzae (NTHi is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended.

  13. The p27 Pathway Modulates the Regulation of Skeletal Growth and Osteoblastic Bone Formation by Parathyroid Hormone-Related Peptide.

    Science.gov (United States)

    Zhu, Min; Zhang, Jing; Dong, Zhan; Zhang, Ying; Wang, Rong; Karaplis, Andrew; Goltzman, David; Miao, Dengshun

    2015-11-01

    Parathyroid hormone-related peptide (PTHrP) 1-84 knock-in mice (Pthrp KI) develop skeletal growth retardation and defective osteoblastic bone formation. To further examine the mechanisms underlying this phenotype, microarray analyses of differential gene expression profiles were performed in long bone extracts from Pthrp KI mice and their wild-type (WT) littermates. We found that the expression levels of p27, p16, and p53 were significantly upregulated in Pthrp KI mice relative to WT littermates. To determine whether p27 was involved in the regulation by PTHrP of skeletal growth and development in vivo, we generated compound mutant mice, which were homozygous for both p27 deletion and the Pthrp KI mutation (p27(-/-) Pthrp KI). We then compared p27(-/-) Pthrp KI mice with p27(-/-), Pthrp KI, and WT littermates. Deletion of p27 in Pthrp KI mice resulted in a longer lifespan, increased body weight, and improvement in skeletal growth. At 2 weeks of age, skeletal parameters, including length of long bones, size of epiphyses, numbers of proliferating cell nuclear antigen (PCNA)-positive chondrocytes, bone mineral density, trabecular bone volume, osteoblast numbers, and alkaline phosphatase (ALP)-, type I collagen-, and osteocalcin-positive bone areas were increased in p27(-/-) mice and reduced in both Pthrp KI and p27(-/-) Pthrp KI mice compared with WT mice; however, these parameters were increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. As well, protein expression levels of PTHR, IGF-1, and Bmi-1, and the numbers of total colony-forming unit fibroblastic (CFU-f) and ALP-positive CFU-f were similarly increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. Our results demonstrate that deletion of p27 in Pthrp KI mice can partially rescue defects in skeletal growth and osteoblastic bone formation by enhancing endochondral bone formation and osteogenesis. These studies, therefore, indicate that the p27 pathway may function downstream in the action

  14. Deposition and alteration of carbonaceous series within a Neotethyan rift at the western boundary of the Arabian plate: The late Permian Um Irna Formation, NW Jordan, a petroleum system

    Energy Technology Data Exchange (ETDEWEB)

    Dill, H.G.; Kus, J. [Federal Institute for Geosciences and Natural Resources, P.O. Box 51 01 53 D-30631 Hannover (Germany); Bechtel, A.; Gratzer, R. [Department of Applied Geosciences and Geophysics, University of Leoben, Peter Tunner Strasse 5, A-8700 Leoben (Austria); Abu Hamad, A.M.B. [Geology Department, University of Jordan, Amman 11942 (Jordan)

    2010-01-07

    During the late Permian (Kungurian to Kazanian) a Neotethyan rift basin evolved at the western boundary of the Arabian Plate, in what is called today the Dead Sea Valley of western Jordan. The break-up of Pangaea was accompanied by low-sinuosity sandy braided- to meandering-fluvial drainage systems which were fed by the uplift of the Arabian Shield and by poorly aerated swamps and ponds that concentrated plant debris of the Cathaysian floral province in the Um Irna Formation. These proximal wet fan sediments are overlain by a dry fan characterized by extensive reddish floodplain deposits, anastomosing channel systems and paleosols. The wet fan is underlain by Cambrian sandstones. These units serve as the top and bottom seals of the OM-bearing system of the Um Irna Formation. The sedimentary rocks of the OM-bearing Um Irna Formation underwent supergene, diagenetic and epigenetic hydrothermal alteration under an elevated geothermal gradient. The temperature increased from the time of deposition of the wet to the time of deposition of the dry fan and caused remobilization of manganese already pre-concentrated in the Cambrian footwall rocks of the rift basin. The anomalous heat regime may be accounted for as a predecessor stage of the Dead Sea Rift which is still active today. Oil seeps are found along faults and fractures near this deep-seated lineamentary fault zone. The deposition and alteration of the organic matter in this late Permian rift are of great consequence for oil generation in the region. Organic petrographic investigations revealed that organic-rich terrestrial carbonaceous and coal rich sediments of mainly of type III kerogen are dominant in the Um Irna Formation. In addition, aquatic liptinite rich sedimentary input (fresh water lake and/or lacustrine swamp) of type I kerogen is also noted. Coal derived organic matter occurs in the form of coaly particles with ranks from subbituminous A to high volatile bituminous C. Higher plant-derived macerals as

  15. Chaotic oscillations of the Klein-Gordon equation with distributed energy pumping and van der Pol boundary regulation and distributed time-varying coefficients

    Directory of Open Access Journals (Sweden)

    Bo Sun

    2014-09-01

    Full Text Available Consider the Klein-Gordon equation with variable coefficients, a van der Pol cubic nonlinearity in one of the boundary conditions and a spatially distributed antidamping term, we use a variable-substitution technique together with the analogy with the 1-dimensional wave equation to prove that for the Klein-Gordon equation chaos occurs for a class of equations and boundary conditions when system parameters enter a certain regime. Chaotic and nonchaotic profiles of solutions are illustrated by computer graphics.

  16. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa

    OpenAIRE

    Li Yang; Xin Zhao; Fan Yang; Di Fan; Yuanzhong Jiang; Keming Luo

    2016-01-01

    WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY...

  17. Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial epithelial-mesenchymal transition via Bmp2.

    Science.gov (United States)

    Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M; Cai, Chen-Leng

    2011-12-15

    During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is expressed predominantly in the AVC of early heart tube. It was shown that Tbx20 activates Nmyc1 and suppresses Tbx2 expression to promote proliferation and specification of the atrial and ventricular chambers, yet it is not known if Tbx20 is involved in early AVC development. Here, we report that mice lacking Tbx20 in the AVC myocardium fail to form the AVC constriction, and the endocardial epithelial-mesenchymal transition (EMT) is severely perturbed. Tbx20 maintains expression of a variety of genes, including Bmp2, Tbx3 and Hand1 in the AVC myocardium. Intriguingly, we found Bmp2 downstream genes involved in the EMT initiation are also downregulated. In addition, re-expression of Bmp2 in the AVC myocardium substantially rescues the EMT defects resulting from the lack of Tbx20, suggesting Bmp2 is one of the key downstream targets of Tbx20 in AVC development. Our data support a complex signaling network with Tbx20 suppressing Tbx2 in the AVC myocardium but also indirectly promoting Tbx2 expression through Bmp2. The spatiotemporal expression of Tbx2 in the AVC appears to be balanced between these two opposing signals. Overall, our study provides genetic evidence that Tbx20 has essential roles in regulating AVC development that coordinate early cardiac chamber formation. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Small-conductance Ca2+-activated potassium type 2 channels regulate the formation of contextual fear memory.

    Directory of Open Access Journals (Sweden)

    Saravana R K Murthy

    Full Text Available Small-conductance, Ca2+ activated K+ channels (SK channels are expressed at high levels in brain regions responsible for learning and memory. In the current study we characterized the contribution of SK2 channels to synaptic plasticity and to different phases of hippocampal memory formation. Selective SK2 antisense-treatment facilitated basal synaptic transmission and theta-burst induced LTP in hippocampal brain slices. Using the selective SK2 antagonist Lei-Dab7 or SK2 antisense probes, we found that hippocampal SK2 channels are critical during two different time windows: 1 blockade of SK2 channels before the training impaired fear memory, whereas, 2 blockade of SK2 channels immediately after the training enhanced contextual fear memory. We provided the evidence that the post-training cleavage of the SK2 channels was responsible for the observed bidirectional effect of SK2 channel blockade on memory consolidation. Thus, Lei-Dab7-injection before training impaired the C-terminal cleavage of SK2 channels, while Lei-Dab7 given immediately after training facilitated the C-terminal cleavage. Application of the synthetic peptide comprising a leucine-zipper domain of the C-terminal fragment to Jurkat cells impaired SK2 channel-mediated currents, indicating that the endogenously cleaved fragment might exert its effects on memory formation by blocking SK2 channel-mediated currents. Our present findings suggest that SK2 channel proteins contribute to synaptic plasticity and memory not only as ion channels but also by additionally generating a SK2 C-terminal fragment, involved in both processes. The modulation of fear memory by down-regulating SK2 C-terminal cleavage might have applicability in the treatment of anxiety disorders in which fear conditioning is enhanced.

  19. Phosphatidylcholine formation by LPCAT1 is regulated by Ca2+ and the redox status of the cell

    Directory of Open Access Journals (Sweden)

    Soupene Eric

    2012-06-01

    Full Text Available Abstract Background Unsaturated fatty acids are susceptible to oxidation and damaged chains are removed from glycerophospholipids by phospholipase A2. De-acylated lipids are then re-acylated by lysophospholipid acyltransferase enzymes such as LPCAT1 which catalyses the formation of phosphatidylcholine (PC from lysoPC and long-chain acyl-CoA. Results Activity of LPCAT1 is inhibited by Ca2+, and a Ca2+-binding motif of the EF-hand type, EFh-1, was identified in the carboxyl-terminal domain of the protein. The residues Asp-392 and Glu-403 define the loop of the hairpin structure formed by EFh-1. Substitution of D392 and E403 to alanine rendered an enzyme insensitive to Ca2+, which established that Ca2+ binding to that region negatively regulates the activity of the acyltransferase amino-terminal domain. Residue Cys-211 of the conserved motif III is not essential for catalysis and not sufficient for sensitivity to treatment by sulfhydryl-modifier agents. Among the several active cysteine-substitution mutants of LPCAT1 generated, we identified one to be resistant to treatment by sulfhydryl-alkylating and sulfhydryl-oxidizer agents. Conclusion Mutant forms of LPCAT1 that are not inhibited by Ca2+ and sulfhydryl-alkylating and –oxidizing agents will provide a better understanding of the physiological function of a mechanism that places the formation of PC, and the disposal of the bioactive species lysoPC, under the control of the redox status and Ca2+ concentration of the cell.

  20. Selective effect of hydroxyapatite nanoparticles on osteoporotic and healthy bone formation correlates with intracellular calcium homeostasis regulation.

    Science.gov (United States)

    Zhao, Rui; Xie, Pengfei; Zhang, Kun; Tang, Zhurong; Chen, Xuening; Zhu, Xiangdong; Fan, Yujiang; Yang, Xiao; Zhang, Xingdong

    2017-09-01

    Adequate bone substitutes osseointegration has been difficult to achieve in osteoporosis. Hydroxyapatite of the osteoporotic bone, secreted by pathologic osteoblasts, had a smaller crystal size and lower crystallinity than that of the normal. To date, little is known regarding the interaction of synthetic hydroxyapatite nanoparticles (HANPs) with osteoblasts born in bone rarefaction. The present study investigated the biological effects of HANPs on osteoblastic cells derived from osteoporotic rat bone (OVX-OB), in comparison with the healthy ones (SHM-OB). A selective effect of different concentrations of HANPs on the two cell lines was observed that the osteoporotic osteoblasts had a higher tolerance. Reductions in cell proliferation, ALP activity, collagen secretion and osteoblastic gene expressions were found in the SHM-OB when administered with HANPs concentration higher than 25µg/ml. In contrast, those of the OVX-OB suffered no depression but benefited from 25 to 250µg/ml HANPs in a dose-dependent manner. We demonstrated that the different effects of HANPs on osteoblasts were associated with the intracellular calcium influx into the endoplasmic reticulum. The in vivo bone defect model further confirmed that, with a critical HANPs concentration administration, the osteoporotic rats had more and mechanically matured new bone formation than the non-treated ones, whilst the sham rats healed no better than the natural healing control. Collectively, the observed epigenetic regulation of osteoblastic cell function by HANPs has significant implication on defining design parameters for a potential therapeutic use of nanomaterials. In this study, we investigated the biological effects of hydroxyapatite nanoparticles (HANPs) on osteoporotic rat bone and the derived osteoblast. Our findings revealed a previously unrecognized phenomenon that the osteoporotic individuals could benefit from higher concentrations of HANPs, as compared with the healthy individuals. The in

  1. EXPANSINA17 up-regulated by LBD18/ASL20 promotes lateral root formation during the auxin response.

    Science.gov (United States)

    Lee, Han Woo; Kim, Jungmook

    2013-10-01

    Expansins are non-hydrolytic cell wall-loosening proteins involved in a variety of plant developmental processes during which cell wall modification occurs. Cell wall remodeling proteins including expansins have been suggested to be involved in cell separation to facilitate the emergence of lateral roots (LRs) through the overlaying tissues of the primary root. LBD18/ASL20 activates EXPANSINA14 (EXPA14) expression by directly binding to the EXPA14 promoter to enhance LR emergence in Arabidopsis thaliana. Here we show that EXPA17 is another target gene regulated by LBD18 to promote LR formation in Arabidopsis. We showed that nuclear translocation of the LBD18:GR fusion protein expressed under the Cauliflower mosaic virus (CaMV) 35S promoter or under the LBD18 promoter by dexamethasone treatment results in an increase in EXPA17 transcript levels. β-Glucuronidase (GUS) expression under the EXPA17 promoter, which is detected only in the roots of the wild type, was reduced in the LR primordium and overlaying tissues in an lbd18 mutant background. The number of emerged LRs of the EXPA17 RNAi (RNA interference) Arabidopsis lines was significantly lower than that of the wild type. Overexpression of EXPA17 in Arabidopsis increased the density of emerged LRs in the presence of auxin compared with the wild type. LR induction experiments with a gravitropic stimulus showed that LR emergence is delayed in the EXPA17 RNAi plants compared with the wild type. In addition, EXPA4 expression was also detected in overlaying tissues of the LR primordium and was inducible by LBD18. Taken together, these results support the notion that LBD18 up-regulates a subset of EXP genes to enhance cell separation to promote LR emergence in Arabidopsis.

  2. Pseudo steady states of HONO measured in the nocturnal marine boundary layer: a conceptual model for HONO formation on aqueous surfaces

    Directory of Open Access Journals (Sweden)

    P. Wojtal

    2011-04-01

    Full Text Available A complete understanding of the formation mechanism of nitrous acid (HONO in the ambient atmosphere is complicated by a lack of understanding of processes occurring when aqueous water is present. We report nocturnal measurements of HONO, SO2 and NO2 by differential optical absorption spectroscopy over the ocean surface in a polluted marine environment. In this aqueous environment, we observed reproducible pseudo steady states (PSS of HONO every night, that are fully formed shortly after sunset, much faster than seen in urban environments. During the PSS period, HONO is constant with time, independent of air mass source and independent of the concentration of NO2. The independence of HONO on the concentration of NO2 implies a 0° order formation process, likely on a saturated surface, with reversible partitioning of HONO to the gas phase, through vaporization and deposition to the surface. We observed median HONO/NO2 ratios starting at 0.13 at the beginning of the PSS period (with an apparent lower bound of 0.03, rising to median levels of ~0.30 at the end of the PSS period (with an upper bound >1.0. The implication of these numbers is that they suggest a common surface mechanism of HONO formation on terrestrial and aqueous surfaces, with an increase in the HONO/NO2 ratio with the amount of water available at the surface. The levels of HONO during the nocturnal PSS period are positively correlated with temperature, consistent with a partitioning of HONO from the surface to the gas phase with an apparent enthalpy of vaporization of ΔHSNL (HONO=55.5±5.4 kJ mol−1. The formation mechanism on aqueous surfaces is independent of relative humidity (RH, despite observation of a negative HONO-RH correlation. A conceptual model for HONO formation on ambient aqueous surfaces is presented, with the main elements being the presence of a surface nanolayer (SNL

  3. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 1: evaporation of water microdroplets assessed using boundary-layer and acoustic levitation theories.

    Science.gov (United States)

    Schiffter, Heiko; Lee, Geoffrey

    2007-09-01

    The suitability of a single droplet drying acoustic levitator as a model for the spray drying of aqueous, pharmaceutically-relevant solutes used to produce protein-loaded particles has been examined. The acoustic levitator was initially evaluated by measuring the drying rates of droplets of pure water in dependence of drying-air temperature and flow rate. The measured drying rates were higher than those predicted by boundary layer theory because of the effects of primary acoustic streaming. Sherwood numbers of 2.6, 3.6, and 4.4 at drying-air temperatures of 25 degrees C, 40 degrees C, and 60 degrees C were determined, respectively. Acoustic levitation theory could predict the measured drying rates and Sherwood numbers only when a forced-convection drying-air stream was used to neuralize the retarding effect of secondary acoustic streaming on evaporation rate. At still higher drying-air flow rates, the Ranz-Marshall correlation accurately predicts Sherwood number, provided a stable droplet position in the standing acoustic wave is maintained. The measured Sherwood numbers and droplet Reynolds numbers show that experiments performed in the levitator in still air are taking place effectively under conditions of substantial forced convection. The similitude of these values to those occurring in spray dryers is fortuitous for the suitability of the acoustic levitator as a droplet evaporation model for spray drying. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  4. The pattern of a specimen of Pycnogonum litorale (Arthropoda, Pycnogonida) with a supernumerary leg can be explained with the "boundary model" of appendage formation

    Science.gov (United States)

    Scholtz, Gerhard; Brenneis, Georg

    2016-02-01

    A malformed adult female specimen of Pycnogonum litorale (Pycnogonida) with a supernumerary leg in the right body half is described concerning external and internal structures. The specimen was maintained in our laboratory culture after an injury in the right trunk region during a late postembryonic stage. The supernumerary leg is located between the second and third walking legs. The lateral processes connecting to these walking legs are fused to one large structure. Likewise, the coxae 1 of the second and third walking legs and of the supernumerary leg are fused to different degrees. The supernumerary leg is a complete walking leg with mirror image symmetry as evidenced by the position of joints and muscles. It is slightly smaller than the normal legs, but internally, it contains a branch of the ovary and a gut diverticulum as the other legs. The causes for this malformation pattern found in the Pycnogonum individual are reconstructed in the light of extirpation experiments in insects, which led to supernumerary mirror image legs, and the "boundary model" for appendage differentiation.

  5. [Involvement of the global regulators GrrS, RpoS, and SplIR in formation of biofilms in Serratia plymuthica].

    Science.gov (United States)

    Zaĭtseva, Iu V; Voloshina, P V; Liu, X; Ovadis, M I; Berg, G; Chernin, L S; Khmel', I A

    2010-05-01

    Most bacteria exist in the natural environment as biofilms, multicellular communities attached to hard surfaces. Biofilms have a characteristic architecture and are enclosed in the exopolymer matrix. Bacterial cells in biofilms are extremely resistant to antibacterial factors. It was shown in this work that the GrrA/GrrS system of global regulators of gene expression and the sigma S subunit of RNA polymerase (RpoS) play a significant role in positive regulation of biofilm formation in the rhizospheric bacterium Serratia plymuthica IC1270. Inactivation of grrS and rpoS genes resulted in an up to six-to-sevenfold and four-to-fivefold reduction in biofilm formation, respectively. Mutations in the grrS gene decreased the capacity of the bacterium for swarming motility. The splIR Quorum Sensing (QS) system was shown to negatively influence the biofilm formation. Transfer of the recombinant plasmid containing cloned genes splI/splR of S. plymuthica HRO-C48 into S. plymuthica IC1270 cells led to a twofold decrease of their ability to form biofilms. Inactivation of the splI gene coding for the synthase of N-acyl-homoserine lactones in S. plymuthica HRO-C48 resulted in a 2-2.5-fold increase in the level of biofilm formation, whereas the inclusion of plasmid carrying the cloned splI/splR genes into these mutant cells restored the biofilm formation to the normal level. The results obtained demonstrate that the formation of biofilms in S. plymuthica is positively regulated by the GrrA/GrrS and RpoS global regulators and is negatively regulated by the SplIR QS system.

  6. Boundary issues

    Science.gov (United States)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine

  7. boundary dissipation

    Directory of Open Access Journals (Sweden)

    Mehmet Camurdan

    1998-01-01

    are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.

  8. Resistance to Cultural Intervention: Formation of Inhibitory Collective and children's Self-Defensive Regulation in a Chinese School.

    Science.gov (United States)

    Wu, Aruna; Li, Xiao-Wen; Zhou, Lihua; Zhang, Qian

    2017-09-01

    A sequel to the previous article "Roots of Excellence: The Releasing Effect of Individual Potentials through Educational Cultural Intervention in a Chinese School" (in press), the present study is on the unexpected reversal phenomena in the process of cultural intervention. The goal of the intervention is to construct the dynamics of Jiti (well-organized collective in Chinese) through creative activities to promote students' development. In the intervention, the releasing effect (Wu et al. 2016) emerged as well, but the teacher's concern about worsening discipline and academic performance evoked and reinforced his habitual notions and practices of education, turning the joint activities into a way of strengthening discipline. The energy that had been discharging at the beginning of the intervention was inhibited, so that many more problematic behaviors took shape. The whole class formed an inhibitory atmosphere, within which pupils formed self-defensive regulation strategies. By comparing with the productive collective in which intervention was effective and analyzing this unexpected reversal process, we can not only see pupils' self-construction status in the inhibitory culture but illuminate the formation of the teacher's resistance to educational and cultural transformation as well. Resistance is originated from teachers not being able to interpret pupils' inner developmental needs but instead anxious about the ongoing problems.

  9. ANGUSTIFOLIA, a Plant Homolog of CtBP/BARS Localizes to Stress Granules and Regulates Their Formation

    Directory of Open Access Journals (Sweden)

    Hemal Bhasin

    2017-06-01

    Full Text Available The ANGUSTIFOLIA (AN gene in Arabidopsis is important for a plethora of morphological phenotypes. Recently, AN was also reported to be involved in responses to biotic and abiotic stresses. It encodes a homolog of the animal C-terminal binding proteins (CtBPs. In contrast to animal CtBPs, AN does not appear to function as a transcriptional co-repressor and instead functions outside nucleus where it might be involved in Golgi-associated membrane trafficking. In this study, we report a novel and unexplored role of AN as a component of stress granules (SGs. Interaction studies identified several RNA binding proteins that are associated with AN. AN co-localizes with several messenger ribonucleoprotein granule markers to SGs in a stress dependent manner. an mutants exhibit an altered SG formation. We provide evidence that the NAD(H binding domain of AN is relevant in this context as proteins carrying mutations in this domain localize to a much higher degree to SGs and strongly reduce AN dimerization and its interaction with one interactor but not the others. Finally, we show that AN is a negative regulator of salt and osmotic stress responses in Arabidopsis suggesting a functional relevance in SGs.

  10. Definitive Endoderm Formation from Plucked Human Hair-Derived Induced Pluripotent Stem Cells and SK Channel Regulation

    Directory of Open Access Journals (Sweden)

    Anett Illing

    2013-01-01

    Full Text Available Pluripotent stem cells present an extraordinary powerful tool to investigate embryonic development in humans. Essentially, they provide a unique platform for dissecting the distinct mechanisms underlying pluripotency and subsequent lineage commitment. Modest information currently exists about the expression and the role of ion channels during human embryogenesis, organ development, and cell fate determination. Of note, small and intermediate conductance, calcium-activated potassium channels have been reported to modify stem cell behaviour and differentiation. These channels are broadly expressed throughout human tissues and are involved in various cellular processes, such as the after-hyperpolarization in excitable cells, and also in differentiation processes. To this end, human induced pluripotent stem cells (hiPSCs generated from plucked human hair keratinocytes have been exploited in vitro to recapitulate endoderm formation and, concomitantly, used to map the expression of the SK channel (SKCa subtypes over time. Thus, we report the successful generation of definitive endoderm from hiPSCs of ectodermal origin using a highly reproducible and robust differentiation system. Furthermore, we provide the first evidence that SKCas subtypes are dynamically regulated in the transition from a pluripotent stem cell to a more lineage restricted, endodermal progeny.

  11. Dissection of Molecular Mechanisms Regulating Protein Body Formation in Maize Endosperm - DE-FG03-95-ER20183

    International Nuclear Information System (INIS)

    Larkins, Brian A.

    2003-01-01

    Dissection of Molecular Mechanisms Regulating Protein Body Formation in Maize Endosperm - DE-FG03-95-ER20183 Final Technical Report and Patent Summary Dr. Brian A. Larkins, Department of Plant Sciences, University of Arizona, Tucson, AZ 85721 Endosperm texture is an important quality trait in maize, as it influences the shipping characteristics of the grain, its susceptibility to insects, the yield of grits from dry milling, energy costs during wet milling, and the baking and digestibility properties of the flour. There appears to be a causal relationship between kernel hardness and the formation of zein-containing protein bodies, as mutations affecting protein body number and structure are associated with a soft, starchy kernel. In this project we used a variety of approaches to better understand this relationship and investigate the molecular and biochemical changes associated with starchy endosperm mutants. We characterized the distribution of zein mRNAs on endosperm rough endoplasmic reticulum (RER) membranes and the interactions between zein proteins, as each of these could influence the structure of protein bodies. Based on in situ hybridization, mRNAs encoding the 22-kD alpha- and 27-kD gamma-zeins are randomly distributed on RER; hence, mRNA targeting does not appear to influence the formation of protein bodies. Investigation of the interactions between zein proteins (alpha, beta, gamma, delta) with the yeast two-hybrid system showed that interactions between the 19- and 22-alpha-zeins are relatively weak, although each of them interacted strongly with the 10-kD delta-zein. Strong interactions were detected between the alpha- and delta-zeins and the 16-kD gamma- and 15-kD beta-zeins; however, the 50-kD and 27-kD gamma-zeins did not interact detectably with the alpha- and delta-zein proteins. The NH2- and COOH-terminal domains of the 22-kD alpha-zein were found to interact most strongly with the 15-kD beta- and 16-kD gamma-zeins, suggesting the 16-kD and 15

  12. Hints of the Early Jehol Biota: Important Dinosaur Footprint Assemblages from the Jurassic-Cretaceous Boundary Tuchengzi Formation in Beijing, China

    Science.gov (United States)

    Xing, Lida; Zhang, Jianping; Lockley, Martin G.; McCrea, Richard T.; Klein, Hendrik; Alcalá, Luis; Buckley, Lisa G.; Burns, Michael E.; Kümmell, Susanna B.; He, Qing

    2015-01-01

    New reports of dinosaur tracksites in the Tuchengzi Formation in the newly established Yanqing Global Geopark, Beijing, China, support previous inferences that the track assemblages from this formation are saurischian-dominated. More specifically, the assemblages appear theropod-dominated, with the majority of well-preserved tracks conforming to the Grallator type (sensus lato), thus representing relatively small trackmakers. Such ichnofaunas supplement the skeletal record from this unit that lacks theropods thus far, proving a larger diversity of dinosaur faunas in that region. Sauropods are represented by medium to large sized and narrow and wide-gauge groups, respectively. The latter correspond with earlier discoveries of titanosauriform skeletons in the same unit. Previous records of ornithischian tracks cannot be positively confirmed. Purported occurrences are re-evaluated here, the trackways and imprints, except of a single possible specimen, re-assigned to theropods. Palecologically the Tuchengzi ichnofauna is characteristic of semi-arid fluvio-lacustrine inland basins with Upper Jurassic-Lower Cretaceous deposits in northern China that all show assemblages with abundant theropod and sauropod tracks and minor components of ornithopod, pterosaur and bird tracks. PMID:25901363

  13. sarA negatively regulates Staphylococcus epidermidis biofilm formation by modulating expression of 1 MDa extracellular matrix binding protein and autolysis‐dependent release of eDNA

    DEFF Research Database (Denmark)

    Christner, Martin; Heinze, Constanze; Busch, Michael

    2012-01-01

    to biofilm formation in mutant 1585ΔsarA. Increased eDNA amounts indirectly resulted from upregulation of metalloprotease SepA, leading to boosted processing of autolysin AtlE, in turn inducing augmented autolysis and release of eDNA. Hence, this study identifies sarA as a negative regulator of Embp‐ and e...

  14. Characterization of Bc1-2, Bc1-xL, and Bax Pore Formation and Their Role in Apoptosis Regulation

    Science.gov (United States)

    2002-01-01

    Bcl-2, Bcl-xL, and Bax Pore Formation and Their Role in Apoptosis Regulation PRINCIPAL INVESTIGATOR: Frank Stenner -Liewen, Ph.D. Sharon Schendel, Ph.D...AUTHOR(S) Frank Stenner -Liewen, Ph.D. Sharon Schendel, Ph.D. John C. Reed, M.D., Ph.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

  15. Fusing Self-Regulated Learning and Formative Assessment: A Roadmap of Where We Are, How We Got Here, and Where We Are Going

    Science.gov (United States)

    Panadero, Ernesto; Andrade, Heidi; Brookhart, Susan

    2018-01-01

    We have known for a long time that a relationship exists between how learning is assessed and the learning processes and strategies students employ when engaged in those assessments. Black and Wiliam pointed out in 1998 that self-regulated learning should be a primary goal of formative assessment (FA). Since then, a growing body of research on…

  16. Npas4 Is a Critical Regulator of Learning-Induced Plasticity at Mossy Fiber-CA3 Synapses during Contextual Memory Formation.

    Science.gov (United States)

    Weng, Feng-Ju; Garcia, Rodrigo I; Lutzu, Stefano; Alviña, Karina; Zhang, Yuxiang; Dushko, Margaret; Ku, Taeyun; Zemoura, Khaled; Rich, David; Garcia-Dominguez, Dario; Hung, Matthew; Yelhekar, Tushar D; Sørensen, Andreas Toft; Xu, Weifeng; Chung, Kwanghun; Castillo, Pablo E; Lin, Yingxi

    2018-03-07

    Synaptic connections between hippocampal mossy fibers (MFs) and CA3 pyramidal neurons are essential for contextual memory encoding, but the molecular mechanisms regulating MF-CA3 synapses during memory formation and the exact nature of this regulation are poorly understood. Here we report that the activity-dependent transcription factor Npas4 selectively regulates the structure and strength of MF-CA3 synapses by restricting the number of their functional synaptic contacts without affecting the other synaptic inputs onto CA3 pyramidal neurons. Using an activity-dependent reporter, we identified CA3 pyramidal cells that were activated by contextual learning and found that MF inputs on these cells were selectively strengthened. Deletion of Npas4 prevented both contextual memory formation and this learning-induced synaptic modification. We further show that Npas4 regulates MF-CA3 synapses by controlling the expression of the polo-like kinase Plk2. Thus, Npas4 is a critical regulator of experience-dependent, structural, and functional plasticity at MF-CA3 synapses during contextual memory formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Type III methyltransferase M.NgoAX from Neisseria gonorrhoeae FA1090 regulates biofilm formation and human cell invasion

    Directory of Open Access Journals (Sweden)

    Agnieszka eKwiatek

    2015-12-01

    , but more easily penetrate inside the host cells. All these data suggest that the NgoAX methyltransferase, may be implicated in N. gonorrhoeae pathogenicity, involving regulation of biofilm formation, adhesion to host cells and epithelial cell invasion.

  18. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation

    Science.gov (United States)

    Barchinger, Sarah E.; Pirbadian, Sahand; Baker, Carol S.; Leung, Kar Man; Burroughs, Nigel J.; El-Naggar, Mohamed Y.

    2016-01-01

    ABSTRACT In limiting oxygen as an electron acceptor, the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 rapidly forms nanowires, extensions of its outer membrane containing the cytochromes MtrC and OmcA needed for extracellular electron transfer. RNA sequencing (RNA-Seq) analysis was employed to determine differential gene expression over time from triplicate chemostat cultures that were limited for oxygen. We identified 465 genes with decreased expression and 677 genes with increased expression. The coordinated increased expression of heme biosynthesis, cytochrome maturation, and transport pathways indicates that S. oneidensis MR-1 increases cytochrome production, including the transcription of genes encoding MtrA, MtrC, and OmcA, and transports these decaheme cytochromes across the cytoplasmic membrane during electron acceptor limitation and nanowire formation. In contrast, the expression of the mtrA and mtrC homologs mtrF and mtrD either remains unaffected or decreases under these conditions. The ompW gene, encoding a small outer membrane porin, has 40-fold higher expression during oxygen limitation, and it is proposed that OmpW plays a role in cation transport to maintain electrical neutrality during electron transfer. The genes encoding the anaerobic respiration regulator cyclic AMP receptor protein (CRP) and the extracytoplasmic function sigma factor RpoE are among the transcription factor genes with increased expression. RpoE might function by signaling the initial response to oxygen limitation. Our results show that RpoE activates transcription from promoters upstream of mtrC and omcA. The transcriptome and mutant analyses of S. oneidensis MR-1 nanowire production are consistent with independent regulatory mechanisms for extending the outer membrane into tubular structures and for ensuring the electron transfer function of the nanowires. IMPORTANCE Shewanella oneidensis MR-1 has the capacity to transfer electrons to its external surface

  19. The Role of the Regulated Sector in the UK Anti-Money Laundering Framework: Pushing the Boundaries of the Private Police

    Directory of Open Access Journals (Sweden)

    Mo Egan

    2010-06-01

    Full Text Available This article argues that the conceptualisation of private police in current academic literature requires expansion to accommodate the role of the regulated sector in the Anti- Money Laundering (AML framework. Firstly, it evaluates the literature on ‘private police’ and argues that its current parameters are too narrow to accommodate the ‘policing’ role of the regulated sector. Secondly, it lays out the legislative framework that has developed to deal with the problem of money laundering. Thirdly, it contextualises the role of the regulated sector, examining the domestic inter-agency policing relationships within the suspicious activity regime as operationalised in Scotland. Finally, it takes a closer look at how the courts have interpreted the ‘failure to report offence’ under s330 of the Proceeds of Crime Act (POCA 2002 and its consequential effect on the engagement of the regulated sector with the SARs regime.

  20. Investigations of the role of nonlinear couplings in structure formation and transport regulation: Experiment, simulation, and theory

    International Nuclear Information System (INIS)

    Holland, C.; Kim, E.J.; Champeaux, S.; Gurcan, O.; Rosenbluth, M.N.; Diamond, P.H.; Tynan, G.R.; Nevins, W.; Candy, J.

    2003-01-01

    Understanding the physics of shear flow and structure formation in plasmas is a central problem for the advancement of magnetic fusion because of the roles such flows are believed to play in regulating turbulence and transport levels. In this paper, we report on integrated experimental, computational, and theoretical studies of sheared zonal flows and radially extended convective cells, with the aim of assessing the results of theory experiment and theory-simulation comparisons. In particular, simulations are used as test beds for verifying analytical predictions and demonstrating the suitability of techniques such as bispectral analysis for isolating nonlinear couplings in data. Based on intriguing initial results suggesting increased levels of nonlinear coupling occur during L-H transitions, we have undertaken a comprehensive study of bispectral quantities in fluid and gyrokinetic simulations, and compared these results with theoretical expectations. Topics of study include locality and directionality of energy transfer, amplitude scaling, and parameter dependences. Techniques for inferring nonlinear coupling coefficients from data are discussed, and initial results from experimental data are presented. Future experimental studies are motivated. We also present work investigating the role of structures in transport. Analysis of simulation data indicates that the turbulent heat flux can be represented as an ensemble of 'heat pulses' of varying sizes, with a power law distribution. The slope of the power law is shown to determine global transport scaling (i.e. Bohm or gyro-Bohm). Theoretical work studying the dynamics of the largest cells (termed 'streamers') is presented, as well as results from ongoing analysis studying connections between heat pulse distribution and bispectral quantities. (author)

  1. HIF-2α Expression Regulates Sprout Formation into 3D Fibrin Matrices in Prolonged Hypoxia in Human Microvascular Endothelial Cells.

    Science.gov (United States)

    Nauta, Tessa D; Duyndam, Monique C A; Weijers, Ester M; van Hinsbergh, Victor M W; Koolwijk, Pieter

    2016-01-01

    During short-term hypoxia, Hypoxia Inducible Factors (particular their subunits HIF-1α and HIF-2α) regulate the expression of many genes including the potent angiogenesis stimulator VEGF. However, in some pathological conditions chronic hypoxia occurs and is accompanied by reduced angiogenesis. We investigated the effect of prolonged hypoxia on the proliferation and sprouting ability of human microvascular endothelial cells and the involvement of the HIFs and Dll4/Notch signaling. Human microvascular endothelial cells (hMVECs), cultured at 20% oxygen for 14 days and seeded on top of 3D fibrin matrices, formed sprouts when stimulated with VEGF-A/TNFα. In contrast, hMVECs precultured at 1% oxygen for 14 days were viable and proliferative, but did not form sprouts into fibrin upon VEGF-A/TNFα stimulation at 1% oxygen. Silencing of HIF-2α with si-RNA partially restored the inhibition of endothelial sprouting, whereas HIF-1α or HIF-3α by si-RNA had no effect. No involvement of Dll4/Notch pathway in the inhibitory effect on endothelial sprouting by prolonged hypoxia was found. In addition, hypoxia decreased the production of urokinase-type plasminogen activator (uPA), needed for migration and invasion, without a significant effect on its inhibitor PAI-1. This was independent of HIF-2α, as si-HIF-2α did not counteract uPA reduction. Prolonged culturing of hMVECs at 1% oxygen inhibited endothelial sprouting into fibrin. Two independent mechanisms contribute. Silencing of HIF-2α with si-RNA partially restored the inhibition of endothelial sprouting pointing to a HIF-2α-dependent mechanism. In addition, reduction of uPA contributed to reduced endothelial tube formation in a fibrin matrix during prolonged hypoxia.

  2. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila

    Directory of Open Access Journals (Sweden)

    Mili Jeon

    2012-04-01

    The respiratory (tracheal system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs, Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr tyrosine kinase (TK. Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways.

  3. Quasi-adiabatic particle acceleration in a magnetic field reversals and the formation of the plasma sheet boundary layer in the earth's magnetotail

    International Nuclear Information System (INIS)

    Zelenyi, L.M.; Vogin, D.V.; Buechner, J.

    1989-01-01

    Two types of regularity exist for the particle motion in the two-dimensional magnetic field reversals (MFR) with the strongly curves magnetic field lines - the usual adiabatic and another one which we called 'quasiadiabatic'. Here we consider the acceleration of MFR particles in stationary and homogeneous electric field induced by the motion of MFR through the ambient plasma (i.e. solar wind). Assuming that the time scale of acceleration is slow in comparison with the period of orbital motion we introduce the new longitudinal invariant I κ . This enables to describe the process of acceleration in a closed form and to obtain for the first time the laws governing the quasiadiabatic ion acceleration in the Earth's mangetotail. The similarities and differences in adiabatic and quasiadiabatic acceleration mechanisms are discussed. The obtained results give and important insights to the problem of the particle heating in hte Earth's magnetotail and to the formation of accelerated plasma streams along the edges of the plasma sheet. (author). 17 refs.; 7 figs

  4. Direct Determination Of γ′ / γ′+γ / γ Phase Boundaries In Ni-Al-Cr System Based On Enthalpy Of Formation Results Obtained By Calorimetric Solution Method

    Directory of Open Access Journals (Sweden)

    Maciąg T.

    2015-09-01

    Full Text Available The work is a continuation of the research carried out on a high-temperature calorimeter solution type on alloys from Ni-Al-Cr system. Thanks to the construction innovation introduced by authors the device allows the determination of the formation enthalpy of alloys at ambient and elevated temperatures. Experiments described in this article were carried out at three temperatures: 873K, 996K and 1150K on the alloys of the chemical compositions from the Ni75Al25 ÷ Ni87Cr13 section of the Ni-Al-Cr system. On the basis of changes in the enthalpy of formation with increasing chromium content of the alloys, points corresponding to places of phase boundaries γ′ / γ′+γ / γ in Ni-Al-Cr system were determined. A similar relationship was observed in previous studies of alloys from Ni75Al25÷Ni75Cr25 section. For precise determination of these characteristic points a statistical model was applied

  5. Regulation of Burkholderia cenocepacia biofilm formation by RpoN and the c-di-GMP effector BerB

    DEFF Research Database (Denmark)

    Fazli, Mustafa; Rybtke, Morten Levin; Steiner, Elisabeth

    2017-01-01

    Knowledge about the molecular mechanisms that are involved in the regulation of biofilm formation is essential for the development of biofilm-control measures. It is well established that the nucleotide second messenger cyclic diguanosine monophosphate (c-di-GMP) is a positive regulator of biofilm...... formation in many bacteria, but more knowledge about c-di-GMP effectors is needed. We provide evidence that c-di-GMP, the alternative sigma factor RpoN (σ54), and the enhancer-binding protein BerB play a role in biofilm formation of Burkholderia cenocepacia by regulating the production of a biofilm......-stabilizing exopolysaccharide. Our findings suggest that BerB binds c-di-GMP, and activates RpoN-dependent transcription of the berA gene coding for a c-di-GMP-responsive transcriptional regulator. An increased level of the BerA protein in turn induces the production of biofilm-stabilizing exopolysaccharide in response to high...

  6. Distribution of cocaine- and amphetamine-regulated transcript in the hippocampal formation of the guinea pig and domestic pig.

    Science.gov (United States)

    Kolenkiewicz, M; Robak, A; Równiak, M; Bogus-Nowakowska, K; Całka, J; Majewski, M

    2009-02-01

    This study provides a detailed description concerning the distribution of cocaineand amphetamine-regulated transcript (CART) subunits - CART(61-102) and rhCART(28-116) - in the hippocampal formation (HF) of the guinea pig and domestic pig, focussing on the dentate gyrus (DG) and hippocampus proper (HP). Although in both studied species CART-immunoreactive (CART-IR) neuronal somata and processes were present generally in the same layers, some species-specific differences were still found. In the granular layer (GL) of both species, the ovalshaped neurons and some thick varicose fibres were encountered. In the guinea pig there was an immunoreactive "band of dots", probably representing crosssectioned terminals within the DG molecular layer (MOL), whereas in the domestic pig, some varicose fibres were detected, thus suggesting a different orientation of, at least, some nerve terminals. Furthermore, some CART-positive cells and fibres were observed in the hilus (HL) of the guinea pig, whereas in the analogical part of the domestic pig only nerve terminals were labelled. In both species, in the pyramidal layer (PL) of the hippocampus proper, CART-IR triangular somata were observed in the CA3 sector, as well as some positive processes in MOL; however, a few immunoreactive perikarya were found only in the CA1 sector of the guinea pig. As regards the localization patterns of two isoforms of CART in the guinea pig, both peptide fragments were present simultaneously in each of the labelled neurons or fibres, whereas in the domestic pig three types of fibres may be distinguished within the area of the DG. In the hilus and MOL of the dentate gyrus, there were fibres expressing both isoforms of CART in their whole length (fibres of the first type). Fibres of the second type (in GL) coexpressed both peptides only on their short segments, and the last ones (in MOL) expressed solely rhCART(28-116). These results indicate that the distribution of the two CART isoforms are

  7. The Nesprin family member ANC-1 regulates synapse formation and axon termination by functioning in a pathway with RPM-1 and β-Catenin.

    Science.gov (United States)

    Tulgren, Erik D; Turgeon, Shane M; Opperman, Karla J; Grill, Brock

    2014-07-01

    Mutations in Nesprin-1 and 2 (also called Syne-1 and 2) are associated with numerous diseases including autism, cerebellar ataxia, cancer, and Emery-Dreifuss muscular dystrophy. Nesprin-1 and 2 have conserved orthologs in flies and worms called MSP-300 and abnormal nuclear Anchorage 1 (ANC-1), respectively. The Nesprin protein family mediates nuclear and organelle anchorage and positioning. In the nervous system, the only known function of Nesprin-1 and 2 is in regulation of neurogenesis and neural migration. It remains unclear if Nesprin-1 and 2 regulate other functions in neurons. Using a proteomic approach in C. elegans, we have found that ANC-1 binds to the Regulator of Presynaptic Morphology 1 (RPM-1). RPM-1 is part of a conserved family of signaling molecules called Pam/Highwire/RPM-1 (PHR) proteins that are important regulators of neuronal development. We have found that ANC-1, like RPM-1, regulates axon termination and synapse formation. Our genetic analysis indicates that ANC-1 functions via the β-catenin BAR-1, and the ANC-1/BAR-1 pathway functions cell autonomously, downstream of RPM-1 to regulate neuronal development. Further, ANC-1 binding to the nucleus is required for its function in axon termination and synapse formation. We identify variable roles for four different Wnts (LIN-44, EGL-20, CWN-1 and CWN-2) that function through BAR-1 to regulate axon termination. Our study highlights an emerging, broad role for ANC-1 in neuronal development, and unveils a new and unexpected mechanism by which RPM-1 functions.

  8. [Nitrogen oxide is involved in the regulation of the Fe-S cluster assembly in proteins and the formation of biofilms by Escherichia coli cells].

    Science.gov (United States)

    Vasil'eva, S V; Streltsova, D A; Starostina, I A; Sanina, N A

    2013-01-01

    The functions of nitrogen oxide (NO) in the regulation of the reversible processes of Fe-S cluster assembly in proteins and the formation of Escherichia coli biofilms have been investigated. S-nitrosoglutathione (GSNO) and crystalline nitrosyl complexes of iron with sulfur-containing aliphatic ligands cisaconite (CisA) and penaconite have been used as NO donors for the first time. Wild-type E. coli cells of the strain MC4100, mutants deltaiscA and deltasufA, and the double paralog mutant deltaiscA/sufA with deletions in the alternative pathways of Fe2+ supply for cluster assembly (all derived from the above-named strain) were used in this study. Plankton growth of bacterial cultures, the mass of mature biofilms, and the expression of the SoxRS[2Fe-2S] regulon have been investigated and shown to depend on strain genotype, the process of Fe-S cluster assembly in iron-sulfur proteins, NO donor structure, and the presence of Fe2+ chelator ferene in the incubation medium. The antibiotic ciprofloxacine (CF) was used as an inhibitor of E. coli biofilm formation in the positive control. NO donors regulating Fe-S cluster assembly in E. coli have been shown to control plankton growth of the cultures and the process of mature biofilm formation; toxic doses of NO caused a dramatic (3- to 4-fold) stimulation of cell entry into biofilms as a response to nitrosative stress; NO donors CisA and GSNO in physiological concentrations suppressed the formation of mature biofilms, and the activity of these compounds was comparable to that of CE Regulation of both Fe-S cluster assembly in iron-sulfur proteins and biofilm formation by NO is indicative of the connection between these processes in E. coli.

  9. Technology for Boundaries

    DEFF Research Database (Denmark)

    Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina

    2003-01-01

    .After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies......This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries...... seem a core issue when dealing with technology for boundaries....

  10. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia

    DEFF Research Database (Denmark)

    Fazli, Mustafa; O'Connell, Aileen; Nilsson, Martin

    2011-01-01

    Burkholderia cenocepacia is an opportunistic respiratory pathogen that can cause severe infections in immune-compromised individuals and is associated with poor prognosis for patients suffering from cystic fibrosis. The second messenger cyclic diguanosine monophosphate (c-di-GMP) has been shown...... to control a wide range of functions in bacteria, but little is known about these regulatory mechanisms in B. cenocepacia. Here we investigated the role that c-di-GMP plays in the regulation of biofilm formation and virulence in B. cenocepacia. Elevated intracellular levels of c-di-GMP promoted wrinkly...... colony, pellicle and biofilm formation in B. cenocepacia. A screen for transposon mutants unable to respond to elevated levels of c-di-GMP led to the identification of the mutant bcam1349 that did not display increased biofilm and pellicle formation with excessive c-di-GMP levels, and displayed a biofilm...

  11. Chromoproteinoids and their ability to form boundary

    International Nuclear Information System (INIS)

    Heinz, B.

    1992-01-01

    Model systems for boundary structures and cellular systems, particularly when they are a result of natural simulation experiments, are always valuable for the study of the ''Origins of Life''. Lyophilization of chromoproteinoids - peptide like molecules containing prosthetic groups - leads to the formation of boundary structures

  12. Regulation of Biofilm Formation by Hfq is Influenced by Presence of Plasmid pCD1 in Yersinia Pestis Biovar Microtus

    Directory of Open Access Journals (Sweden)

    Huiying Yang

    2017-10-01

    Full Text Available Yersinia pestis synthesizes the attached biofilms in the flea gut to promotethe flea-borne transmission of this deadly pathogen. Bellows et al. reported that the posttranscriptional regulator Hfq inhibites biofilm formation in apCD1− derivative of Y. pestis CO92, however, we found that Hfq stimulates biofilm production in a microtus strain of Y. pestis with the typical plasmids, including pCD1. When we cured pCD1 from this strain, the biofilm phenotype was in accordance with that reported by Bellows et al., indicating that the unknown pCD1-associated factors modulating the regulatory pathways of Y. pestis biofilm formation. Further gene regulation experiments using relevant pCD1+ Y. pestis strains disclose that Hfq positively regulates the expression of hmsHFRS and hmsT encoding a diguanylate cyclase while negatively regulates the expression of hmsP encoding the sole phosphodiesterase. However, Hfq has no regulatory effect on the expression of hmsCDE at the mRNA and protein levels. Our results suggest that we should be cautious to make conclusion from results based on the pCD1-cured Y. pestis.

  13. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    OpenAIRE

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours after excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from stem base to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the cate...

  14. 15 CFR 922.150 - Boundary.

    Science.gov (United States)

    2010-01-01

    ... cutting across the heads of Nitnat, Juan de Fuca and Quinault Canyons. The coastal boundary of the Sanctuary is the mean higher high water line when adjacent to Federally managed lands cutting across the... from the Sanctuary boundary shoreward of the International Collision at Sea regulation (Colreg...

  15. 15 CFR 922.70 - Boundary.

    Science.gov (United States)

    2010-01-01

    ... a distance of approximately six nmi from the following islands and offshore rocks: San Miguel Island... Rock (the Islands). The seaward boundary coordinates are listed in Appendix A to this subpart. [74 FR... MARINE SANCTUARY PROGRAM REGULATIONS Channel Islands National Marine Sanctuary § 922.70 Boundary. The...

  16. 15 CFR 922.80 - Boundary.

    Science.gov (United States)

    2010-01-01

    ..., surrounding the Farallon Islands (and Noonday Rock) off the northern coast of California. The northernmost... MARINE SANCTUARY PROGRAM REGULATIONS Gulf of the Farallones National Marine Sanctuary § 922.80 Boundary. The Gulf of the Farallones National Marine Sanctuary (Sanctuary) boundary encompasses a total area of...

  17. The ATP-Dependent Protease ClpP Inhibits Biofilm Formation by Regulating Agr and Cell Wall Hydrolase Sle1 in Staphylococcus aureus

    Science.gov (United States)

    Liu, Qian; Wang, Xing; Qin, Juanxiu; Cheng, Sen; Yeo, Won-Sik; He, Lei; Ma, Xiaowei; Liu, Xiaoyun; Li, Min; Bae, Taeok

    2017-01-01

    Biofilm causes hospital-associated infections on indwelling medical devices. In Staphylococcus aureus, Biofilm formation is controlled by intricately coordinated network of regulating systems, of which the ATP-dependent protease ClpP shows an inhibitory effect. Here, we demonstrate that the inhibitory effect of ClpP on biofilm formation is through Agr and the cell wall hydrolase Sle1. Biofilm formed by clpP mutant consists of proteins and extracellular DNA (eDNA). The increase of the protein was, at least in part, due to the reduced protease activity of the mutant, which was caused by the decreased activity of agr. On the other hand, the increase of eDNA was due to increased cell lysis caused by the higher level of Sle1. Indeed, as compared with wild type, the clpP mutant excreted an increased level of eDNA, and showed higher sensitivity to Triton-induced autolysis. The deletion of sle1 in the clpP mutant decreased the biofilm formation, the level of eDNA, and the Triton-induced autolysis to wild-type levels. Despite the increased biofilm formation capability, however, the clpP mutant showed significantly reduced virulence in a murine model of subcutaneous foreign body infection, indicating that the increased biofilm formation capability cannot compensate for the intrinsic functions of ClpP during infection. PMID:28555174

  18. The ATP-Dependent Protease ClpP Inhibits Biofilm Formation by Regulating Agr and Cell Wall Hydrolase Sle1 in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2017-05-01

    Full Text Available Biofilm causes hospital-associated infections on indwelling medical devices. In Staphylococcus aureus, Biofilm formation is controlled by intricately coordinated network of regulating systems, of which the ATP-dependent protease ClpP shows an inhibitory effect. Here, we demonstrate that the inhibitory effect of ClpP on biofilm formation is through Agr and the cell wall hydrolase Sle1. Biofilm formed by clpP mutant consists of proteins and extracellular DNA (eDNA. The increase of the protein was, at least in part, due to the reduced protease activity of the mutant, which was caused by the decreased activity of agr. On the other hand, the increase of eDNA was due to increased cell lysis caused by the higher level of Sle1. Indeed, as compared with wild type, the clpP mutant excreted an increased level of eDNA, and showed higher sensitivity to Triton-induced autolysis. The deletion of sle1 in the clpP mutant decreased the biofilm formation, the level of eDNA, and the Triton-induced autolysis to wild-type levels. Despite the increased biofilm formation capability, however, the clpP mutant showed significantly reduced virulence in a murine model of subcutaneous foreign body infection, indicating that the increased biofilm formation capability cannot compensate for the intrinsic functions of ClpP during infection.

  19. Long Non-coding RNA LINC00339 Stimulates Glioma Vasculogenic Mimicry Formation by Regulating the miR-539-5p/TWIST1/MMPs Axis

    Directory of Open Access Journals (Sweden)

    Junqing Guo

    2018-03-01

    Full Text Available Glioma is recognized as a highly angiogenic malignant brain tumor. Vasculogenic mimicry (VM greatly restricts the therapeutic effect of anti-angiogenic tumor therapy for glioma patients. However, the molecular mechanisms of VM formation in glioma remain unclear. Here, we demonstrated that LINC00339 was upregulated in glioma tissue as well as in glioma cell lines. The expression of LINC00339 in glioma tissues was positively correlated with glioma VM formation. Knockdown of LINC00339 inhibited glioma cell proliferation, migration, invasion, and tube formation, meanwhile downregulating the expression of VM-related molecular MMP-2 and MMP-14. Furthermore, knockdown of LINC00339 significantly increased the expression of miR-539-5p. Both bioinformatics and luciferase reporter assay revealed that LINC00339 regulated the above effects via binding to miR-539-5p. Besides, overexpression of miR-539-5p resulted in decreased expression of TWIST1, a transcription factor known to play an oncogenic role in glioma and identified as a direct target of miR-539-5p. TWIST1 upregulated the promoter activities of MMP-2 and MMP-14. The in vivo study showed that nude mice carrying tumors with knockdown of LINC00339 and overexpression of miR-539-5p exhibited the smallest tumor volume through inhibiting VM formation. In conclusion, LINC00339 may be used as a novel therapeutic target for VM formation in glioma.

  20. The Yin and Yang of SagS: Distinct Residues in the HmsP Domain of SagS Independently Regulate Biofilm Formation and Biofilm Drug Tolerance

    Science.gov (United States)

    Dingemans, Jozef; Poudyal, Bandita

    2018-01-01

    ABSTRACT The formation of inherently drug-tolerant biofilms by the opportunistic pathogen Pseudomonas aeruginosa requires the sensor-regulator hybrid SagS, with ΔsagS biofilms being unstructured and exhibiting increased antimicrobial susceptibility. Recent findings indicated SagS to function as a switch to control biofilm formation and drug tolerance independently. Moreover, findings suggested the periplasmic sensory HmsP domain of SagS is likely to be the control point in the regulation of biofilm formation and biofilm cells transitioning to a drug-tolerant state. We thus asked whether specific amino acid residues present in the HmsP domain contribute to the switch function of SagS. HmsP domain residues were therefore subjected to alanine replacement mutagenesis to identify substitutions that block the sensory function(s) of SagS, which is apparent by attached cells being unable to develop mature biofilms and/or prevent transition to an antimicrobial-resistant state. Mutant analyses revealed 32 residues that only contribute to blocking one sensory function. Moreover, amino acid residues affecting attachment and subsequent biofilm formation but not biofilm tolerance also impaired histidine kinase signaling via BfiS. In contrast, residues affecting biofilm drug tolerance but not attachment and subsequent biofilm formation negatively impacted BrlR transcription factor levels. Structure prediction suggested the two sets of residues affecting sensory functions are located in distinct areas that were previously described as being involved in ligand binding interactions. Taken together, these studies identify the molecular basis for the dual regulatory function of SagS. IMPORTANCE The membrane-bound sensory protein SagS plays a pivotal role in P. aeruginosa biofilm formation and biofilm cells gaining their heightened resistance to antimicrobial agents, with SagS being the control point at which both pathways diverge. Here, we demonstrate for the first time that the two

  1. Platelet rich plasma promotes skeletal muscle cell migration in association with up-regulation of FAK, paxillin, and F-Actin formation.

    Science.gov (United States)

    Tsai, Wen-Chung; Yu, Tung-Yang; Lin, Li-Ping; Lin, Mioa-Sui; Tsai, Ting-Ta; Pang, Jong-Hwei S

    2017-11-01

    Platelet rich plasma (PRP) contains various cytokines and growth factors which may be beneficial to the healing process of injured muscle. The aim of this study was to investigate the effect and molecular mechanism of PRP on migration of skeletal muscle cells. Skeletal muscle cells intrinsic to Sprague-Dawley rats were treated with PRP. The cell migration was evaluated by transwell filter migration assay and electric cell-substrate impedance sensing. The spreading of cells was evaluated microscopically. The formation of filamentous actin (F-actin) cytoskeleton was assessed by immunofluorescence staining. The protein expressions of paxillin and focal adhesion kinase (FAK) were assessed by Western blot analysis. Transfection of paxillin small-interfering RNA (siRNAs) to muscle cells was performed to validate the role of paxillin in PRP-mediated promotion of cell migration. Dose-dependently PRP promotes migration of and spreading and muscle cells. Protein expressions of paxillin and FAK were up-regulated dose-dependently. F-actin formation was also enhanced by PRP treatment. Furthermore, the knockdown of paxillin expression impaired the effect of PRP to promote cell migration. It was concluded that PRP promoting migration of muscle cells is associated with up-regulation of proteins expression of paxillin and FAK as well as increasing F-actin formation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2506-2512, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Effect of Negative Pressure on Proliferation, Virulence Factor Secretion, Biofilm Formation, and Virulence-Regulated Gene Expression of Pseudomonas aeruginosa In Vitro

    Directory of Open Access Journals (Sweden)

    Guo-Qi Wang

    2016-01-01

    Full Text Available Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A. Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p<0.01. Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes.

  3. Identification of a chemical inhibitor for nuclear speckle formation: Implications for the function of nuclear speckles in regulation of alternative pre-mRNA splicing

    Energy Technology Data Exchange (ETDEWEB)

    Kurogi, Yutaro; Matsuo, Yota; Mihara, Yuki; Yagi, Hiroaki; Shigaki-Miyamoto, Kaya; Toyota, Syukichi; Azuma, Yuko [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan); Igarashi, Masayuki [Laboratory of Disease Biology, Institute of Microbial Chemistry, Shinagawa-ku, Tokyo 141-0021 (Japan); Tani, Tokio, E-mail: ttani@sci.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan)

    2014-03-28

    Highlights: • We identified tubercidin as a compound inducing aberrant formation of the speckles. • Tubercidin causes delocalization of poly (A){sup +}RNAs from nuclear speckles. • Tubercidin induces dispersion of splicing factors from nuclear speckles. • Tubercidin affects alternative pre-mRNA splicing. • Nuclear speckles play a role in regulation of alternative pre-mRNA splicing. - Abstract: Nuclear speckles are subnuclear structures enriched with RNA processing factors and poly (A){sup +} RNAs comprising mRNAs and poly (A){sup +} non-coding RNAs (ncRNAs). Nuclear speckles are thought to be involved in post-transcriptional regulation of gene expression, such as pre-mRNA splicing. By screening 3585 culture extracts of actinomycetes with in situ hybridization using an oligo dT probe, we identified tubercidin, an analogue of adenosine, as an inhibitor of speckle formation, which induces the delocalization of poly (A){sup +} RNA and dispersion of splicing factor SRSF1/SF2 from nuclear speckles in HeLa cells. Treatment with tubercidin also decreased steady-state MALAT1 long ncRNA, thought to be involved in the retention of SRSF1/SF2 in nuclear speckles. In addition, we found that tubercidin treatment promoted exon skipping in the alternative splicing of Clk1 pre-mRNA. These results suggest that nuclear speckles play a role in modulating the concentration of splicing factors in the nucleoplasm to regulate alternative pre-mRNA splicing.

  4. Comprehension of texts in Digital Format versus Printed Texts and Self-Regulated Learning in University Students

    Directory of Open Access Journals (Sweden)

    Paula Gabriela Flores-Carrasco

    2016-12-01

    Full Text Available This article aims (1 to describe the levels of self-regulation and reading comprehension of scientific expository texts; (2 to establish the relationship between self-regulation and reading comprehension; and (3 to compare the performance in comprehension when the printed media (paper or digital media (computer is used. A quasi-experimental, quantitative, descriptive and correlative design was implemented. The sample was composed of 55 university students from four careers of Education; they were in 1st and 3rd year of study at a regional university of the Council of Rectors of Chilean Universities. Three measuring instruments were used: a questionnaire of self-regulated learning and two comprehension tests based on the understanding of Parodi’s (2005 assessment model. The implementation was made in two consecutive moments; first, the self-questionnaire; then, the tests for reading comprehension in both media. With the data obtained, statistical tests of variance, one-way ANOVA, Pearson’s correlation, and means comparison with Bruner and Munzel and U-Mann Whitney’s tests were calculated. In conclusion, and different from the initial statement, it was obtained that university students have an adequate level of self-regulation and low reading comprehension in both data, even the scores are relatively lower in digital data. In both data the output is inverse to the complexity of the questions. Between 1st and 3rd year, there is no increase either in the self-regulation or in reading comprehension; but, exceptionally, the career of Primary General Education specialist on Language and History did. There is a strong relationship between reading comprehension in printed media and self-regulation (ARATEX. The support does not affect reading comprehension, but individual reading skills of the subjects do. A competent reader will have similar performance in both reading supports.

  5. A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus.

    Science.gov (United States)

    Barutcu, A Rasim; Maass, Philipp G; Lewandowski, Jordan P; Weiner, Catherine L; Rinn, John L

    2018-04-13

    The binding of the transcriptional regulator CTCF to the genome has been implicated in the formation of topologically associated domains (TADs). However, the general mechanisms of folding the genome into TADs are not fully understood. Here we test the effects of deleting a CTCF-rich locus on TAD boundary formation. Using genome-wide chromosome conformation capture (Hi-C), we focus on one TAD boundary on chromosome X harboring ~ 15 CTCF binding sites and located at the long non-coding RNA (lncRNA) locus Firre. Specifically, this TAD boundary is invariant across evolution, tissues, and temporal dynamics of X-chromosome inactivation. We demonstrate that neither the deletion of this locus nor the ectopic insertion of Firre cDNA or its ectopic expression are sufficient to alter TADs in a sex-specific or allele-specific manner. In contrast, Firre's deletion disrupts the chromatin super-loop formation of the inactive X-chromosome. Collectively, our findings suggest that apart from CTCF binding, additional mechanisms may play roles in establishing TAD boundary formation.

  6. Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial epithelial-mesenchymal transition via Bmp2

    NARCIS (Netherlands)

    Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M.; Cai, Chen-Leng

    2011-01-01

    During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is

  7. Locked chromophore analogs reveal that photoactive yellow protein regulates biofilm formation in the deep sea bacterium Idiomarina loihiensis

    NARCIS (Netherlands)

    van der Horst, M.A.; Stalcup, T.P.; Kaledhonkar, S.; Kumauchi, M.; Hara, M.; Xie, A.; Hellingwerf, K.J.; Hoff, W.D.

    2009-01-01

    Idiomarina loihiensis is a heterotrophic deep sea bacterium with no known photobiology. We show that light suppresses biofilm formation in this organism. The genome of I. loihiensis encodes a single photoreceptor protein: a homologue of photoactive yellow protein (PYP), a blue light receptor with

  8. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation

    NARCIS (Netherlands)

    Ganzevles, R.A.; Kosters, H.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2007-01-01

    Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different

  9. iTRAQ-Based Proteomic Analysis Reveals Potential Regulation Networks of IBA-Induced Adventitious Root Formation in Apple

    Directory of Open Access Journals (Sweden)

    Chao Lei

    2018-02-01

    Full Text Available Adventitious root (AR formation, which is controlled by endogenous and environmental factors, is indispensable for vegetative asexual propagation. However, comprehensive proteomic data on AR formation are still lacking. The aim of this work was to study indole-3-butyric acid (IBA-induced AR formation in the dwarf apple rootstock ‘T337’. In this study, the effect of IBA on AR formation was analysed. Subsequent to treatment with IBA, both the rooting rate and root length of ‘T337’ increased significantly. An assessment of hormone levels in basal stem cuttings suggested that auxin, abscisic acid, and brassinolide were higher in basal stem cuttings that received the exogenous IBA application; while zeatin riboside, gibberellins, and jasmonic acid were lower than non-treated basal stem cuttings. To explore the underlying molecular mechanism, an isobaric tags for relative and absolute quantification (iTRAQ-based proteomic technique was employed to identify the expression profiles of proteins at a key period of adventitious root induction (three days after IBA treatment. In total, 3355 differentially expressed proteins (DEPs were identified. Many DEPs were closely related to carbohydrate metabolism and energy production, protein homeostasis, reactive oxygen and nitric oxide signaling, and cell wall remodeling biological processes; as well as the phytohormone signaling, which was the most critical process in response to IBA treatment. Further, RT-qPCR analysis was used to evaluate the expression level of nine genes that are involved in phytohormone signaling and their transcriptional levels were mostly in accordance with the protein patterns. Finally, a putative work model was proposed. Our study establishes a foundation for further research and sheds light on IBA-mediated AR formation in apple as well as other fruit rootstock cuttings.

  10. Ferroelectric domain continuity over grain boundaries

    DEFF Research Database (Denmark)

    Mantri, Sukriti; Oddershede, Jette; Damjanovic, Dragan

    2017-01-01

    Formation and mobility of domain walls in ferroelectric materials is responsible for many of their electrical and mechanical properties. Domain wall continuity across grain boundaries has been observed since the 1950's and is speculated to affect the grain boundary-domain interactions, thereby...... impacting macroscopic ferroelectric properties in polycrystalline systems. However detailed studies of such correlated domain structures across grain boundaries are limited. In this work, we have developed the mathematical requirements for domain wall plane matching at grain boundaries of any given...... orientation. We have also incorporated the effect of grain boundary ferroelectric polarization charge created when any two domains meet at the grain boundary plane. The probability of domain wall continuity for three specific grain misorientations is studied. Use of this knowledge to optimize processing...

  11. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Yuta; Katayama, Chisako [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Shinohara, Miki; Shinohara, Akira [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Maekawa, Shohei [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Miyamoto, Masaaki, E-mail: miya@kobe-u.ac.jp [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Center for Supports to Research and Education Activities, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan)

    2013-11-29

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our data strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.

  12. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    International Nuclear Information System (INIS)

    Tsukamoto, Yuta; Katayama, Chisako; Shinohara, Miki; Shinohara, Akira; Maekawa, Shohei; Miyamoto, Masaaki

    2013-01-01

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our data strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions

  13. Rigid supersymmetry with boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics

    2008-01-15

    We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)

  14. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice.

    Science.gov (United States)

    Li, Meijuan; Ashraf, Umair; Tian, Hua; Mo, Zhaowen; Pan, Shenggang; Anjum, Shakeel Ahmad; Duan, Meiyang; Tang, Xiangru

    2016-06-01

    Micro-nutrient application is essential for normal plant growth while a little is known about manganese (Mn)-induced regulations in morpho-physiological attributes, aroma formation and enzyme involved in 2-acetyl-1-pyrroline (2-AP) biosynthesis in aromatic rice. Present study aimed to examine the influence of four levels of Mn i.e., Mn1 (100 mg MnSO4 pot(-1)), Mn2 (150 mg MnSO4 pot(-1)), Mn3 (200 mg MnSO4 pot(-1)), and Mn4 (250 mg MnSO4 pot(-1)) on the growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in two fragrant rice cultivars i.e., Meixiangzhan and Nongxiang 18. Pots without Mn application were served as control (Ck). Each pot contained 15 kg of soil. Effects on agronomic characters, quality attributes, 2-AP contents and enzymes involved in 2-AP biosynthesis have been studied in early and late season rice. Results depicted that Mn improved rice growth, yield and related characters, and some quality attributes significantly. It further up-regulated proline, pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP), soluble proteins and activities of proline dehydrogenase (ProDH), Δ(1) pyrroline-5-carboxylic acid synthetase (P5CS) ornithine aminotransferase (OAT) that led to enhanced 2-AP production in rice grains. Moreover, higher Mn levels resulted in increased grain Mn contents in both rice cultivars. Along with growth and yield improvement, Mn application significantly improved rice aromatic contents. Overall, Nongxiang 18 accumulated more 2-AP contents than Meixiangzhan in both seasons under Mn application. This study further explored the importance of Mn in rice aroma formation and signifies that micro-nutrients can play significant roles in rice aroma synthesis; however, intensive studies at molecular levels are still needed to understand the exact mechanisms of Mn to improve rice aroma formation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Transcriptome-wide analysis of jasmonate-treated BY-2 cells reveals new transcriptional regulators associated with alkaloid formation in tobacco.

    Science.gov (United States)

    Yang, Yuping; Yan, Pengcheng; Yi, Che; Li, Wenzheng; Chai, Yuhui; Fei, Lingling; Gao, Ping; Zhao, Heping; Wang, Yingdian; Timko, Michael P; Wang, Bingwu; Han, Shengcheng

    2017-08-01

    Jasmonates (JAs) are well-known regulators of stress, defence, and secondary metabolism in plants, with JA perception triggering extensive transcriptional reprogramming, including both activation and/or repression of entire metabolic pathways. We performed RNA sequencing based transcriptomic profiling of tobacco BY-2 cells before and after treatment with methyl jasmonate (MeJA) to identify novel transcriptional regulators associated with alkaloid formation. A total of 107,140 unigenes were obtained through de novo assembly, and at least 33,213 transcripts (31%) encode proteins, in which 3419 transcription factors (TFs) were identified, representing 72 gene families, as well as 840 transcriptional regulators (TRs) distributed among 19 gene families. After MeJA treatment BY-2 cells, 7260 differentially expressed transcripts were characterised, which include 4443 MeJA-upregulated and 2817 MeJA-downregulated genes. Of these, 227 TFs/TRs in 36 families were specifically upregulated, and 102 TFs/TRs in 38 families were downregulated in MeJA-treated BY-2 cells. We further showed that the expression of 12 ethylene response factors and four basic helix-loop-helix factors increased at the transcriptional level after MeJA treatment in BY-2 cells and displayed specific expression patterns in nic mutants with or without MeJA treatments. Our data provide a catalogue of transcripts of tobacco BY-2 cells and benefit future study of JA-modulated regulation of secondary metabolism in tobacco. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication.

    Science.gov (United States)

    Wu, Rentian; Wang, Zhiquan; Zhang, Honglian; Gan, Haiyun; Zhang, Zhiguo

    2017-01-09

    DNA replication is tightly regulated to occur once and only once per cell cycle. How chromatin, the physiological substrate of DNA replication machinery, regulates DNA replication remains largely unknown. Here we show that histone H3 lysine 9 demethylase Kdm4d regulates DNA replication in eukaryotic cells. Depletion of Kdm4d results in defects in DNA replication, which can be rescued by the expression of H3K9M, a histone H3 mutant transgene that reverses the effect of Kdm4d on H3K9 methylation. Kdm4d interacts with replication proteins, and its recruitment to DNA replication origins depends on the two pre-replicative complex components (origin recognition complex [ORC] and minichromosome maintenance [MCM] complex). Depletion of Kdm4d impairs the recruitment of Cdc45, proliferating cell nuclear antigen (PCNA), and polymerase δ, but not ORC and MCM proteins. These results demonstrate a novel mechanism by which Kdm4d regulates DNA replication by reducing the H3K9me3 level to facilitate formation of pre-initiative complex. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Physiological Function of Rac Prophage During Biofilm Formation and Regulation of Rac Excision in Escherichia coli K-12

    Science.gov (United States)

    including Escherichia coli, Salmonella spp. and Shigellaspp. Here, we found that rac excision is induced during biofilm formation, and the isogenic...stain without rac is more motile and forms more biofilms in nutrient-rich medium at early stages in E.coli K-12. Additionally, the presence of rac...genes increases cell lysis during biofilm development. In most E. coli strains, rac is integrated into the ttcA gene which encodes a tRNA-thioltransferase

  18. Regulation of hemoglobin AIc formation in human erythrocytes in vitro. Effects of physiologic factors other than glucose.

    OpenAIRE

    Smith, R J; Koenig, R J; Binnerts, A; Soeldner, J S; Aoki, T T

    1982-01-01

    The formation of hemoglobin AIc was studied in intact human erythrocytes in vitro. Satisfactory methods were developed for maintaining erythrocytes under physiologic conditions for greater than 8 d with less than 10% hemolysis. Hemoglobin AIc levels were determined chromatographically on erythrocyte hemolysates after removal of reversible components by incubation for 6 h at 37 degree C. Hemoglobin AIc concentration was found to increase linearly with time during 8 d of incubation. The rate of...

  19. Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Szepesi

    Full Text Available Dendritic spines are are small membranous protrusions that extend from neuronal dendrites and harbor the majority of excitatory synapses. Increasing evidence has shown that matrix metalloproteinases (MMPs, a family of extracellularly acting and Zn(2+-dependent endopeptidases, are able to rapidly modulate dendritic spine morphology. Spine head protrusions (SHPs are filopodia-like processes that extend from the dendritic spine head, representing a form of postsynaptic structural remodeling in response to altered neuronal activity. Herein, we show that chemically induced long-term potentiation (cLTP in dissociated hippocampal cultures upregulates MMP-9 activity that controls the formation of SHPs. Blocking of MMPs activity or microtubule dynamics abolishes the emergence of SHPs. In addition, autoactive recombinant MMP-9, promotes the formation of SHPs in organotypic hippocampal slices. Furthermore, spines with SHPs gained postsynaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA receptors upon cLTP and the synaptic delivery of AMPA receptors was controlled by MMPs. The present results strongly imply that MMP-9 is functionally involved in the formation of SHPs and the control of postsynaptic receptor distribution upon cLTP.

  20. Epimorphin regulates bile duct formation via effects on mitosis orientation in rat liver epithelial stem-like cells.

    Directory of Open Access Journals (Sweden)

    Junnian Zhou

    Full Text Available Understanding how hepatic precursor cells can generate differentiated bile ducts is crucial for studies on epithelial morphogenesis and for development of cell therapies for hepatobiliary diseases. Epimorphin (EPM is a key morphogen for duct morphogenesis in various epithelial organs. The role of EPM in bile duct formation (DF from hepatic precursor cells, however, is not known. To address this issue, we used WB-F344 rat epithelial stem-like cells as model for bile duct formation. A micropattern and a uniaxial static stretch device was used to investigate the effects of EPM and stress fiber bundles on the mitosis orientation (MO of WB cells. Immunohistochemistry of liver tissue sections demonstrated high EPM expression around bile ducts in vivo. In vitro, recombinant EPM selectively induced DF through upregulation of CK19 expression and suppression of HNF3alpha and HNF6, with no effects on other hepatocytic genes investigated. Our data provide evidence that EPM guides MO of WB-F344 cells via effects on stress fiber bundles and focal adhesion assembly, as supported by blockade EPM, beta1 integrin, and F-actin assembly. These blockers can also inhibit EPM-induced DF. These results demonstrate a new biophysical action of EPM in bile duct formation, during which determination of MO plays a crucial role.

  1. Formation of benzo[f]-1-indanone frameworks by regulable intramolecular annulations of gem-dialkylthio trienynes.

    Science.gov (United States)

    Fang, Zhongxue; Liu, Ying; Barry, Badru-Deen; Liao, Peiqiu; Bi, Xihe

    2015-02-20

    An atom-economic route to benzo[f]-1-indanone frameworks has been developed starting from the readily available gem-dialkylthio trienynes by intramolecular annulations. The chemoselectivity of the intramolecular cyclizations can be regulated by both the base and the type of gas atmosphere used in the reaction, thus allowing the divergent synthesis of the corresponding functionalized benzo[f]-1-indanones in good to excellent yields.

  2. A role for the retinoblastoma protein as a regulator of mouse osteoblast cell adhesion: implications for osteogenesis and osteosarcoma formation.

    Directory of Open Access Journals (Sweden)

    Bernadette Sosa-García

    2010-11-01

    Full Text Available The retinoblastoma protein (pRb is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb regulates the expression of a wide repertoire of cell adhesion genes and regulates the assembly of the adherens junctions required for cell adhesion. We conducted our studies in osteoblasts, which depend on both pRb and on cell-to-cell contacts for their differentiation and function. We generated knockout mice in which the RB gene was excised specifically in osteoblasts using the cre-lox P system and found that osteoblasts from pRb knockout mice did not assemble adherens junction at their membranes. pRb depletion in wild type osteoblasts using RNAi also disrupted adherens junctions. Microarrays comparing pRb-expressing and pRb-deficient osteoblasts showed that pRb controls the expression of a number of cell adhesion genes, including cadherins. Furthermore, pRb knockout mice showed bone abnormalities consistent with osteoblast adhesion defects. We also found that pRb controls the function of merlin, a well-known regulator of adherens junction assembly, by repressing Rac1 and its effector Pak1. Using qRT-PCR, immunoblots, co-immunoprecipitation assays, and immunofluorescent labeling, we observed that pRb loss resulted in Rac1 and Pak1 overexpression concomitant with merlin inactivation by Pak1, merlin detachment from the membrane, and adherens junction loss. Our data support a pRb function in cell adhesion while elucidating the mechanism for this function. Our work suggests that in some tumor types pRb inactivation results in both a loss of cell cycle control that promotes initial tumor growth as well as in a loss of cell-to-cell contacts, which contributes to later stages of metastasis.

  3. Zearalenone exposure impairs ovarian primordial follicle formation via down-regulation of Lhx8 expression in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guo-Liang [College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100 (China); Sun, Xiao-Feng [Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109 (China); Feng, Yan-Zhong [Institute of Animal Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086 (China); Li, Bo [Chengguo Station of Animal Husbandry and Veterinary, Laizhou 261437 (China); Li, Ya-Peng; Yang, Fan [Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109 (China); Nyachoti, Charles Martin [Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Shen, Wei [Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109 (China); Sun, Shi-Duo, E-mail: ssdsm@tom.com [College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100 (China); Li, Lan, E-mail: lilan9600@126.com [Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109 (China)

    2017-02-15

    Zearalenone (ZEA) is an estrogenic mycotoxin mainly produced as a secondary metabolite by numerous species of Fusarium. Previous work showed that ZEA had a negative impact on domestic animals with regard to reproduction. The adverse effects and the mechanisms of ZEA on mammalian ovarian folliculogenesis remain largely unknown, particularly its effect on primordial follicle formation. Thus, we investigated the biological effects of ZEA exposure on murine ovarian germ cell cyst breakdown and primordial follicle assembly. Our results demonstrated that newborn mouse ovaries exposed to 10 or 30 μM ZEA in vitro had significantly less germ cell numbers compared to the control group. Moreover, the presence of ZEA in vitro increased the numbers of TUNEL and γH2AX positive cells within mouse ovaries and the ratio of mRNA levels of the apoptotic genes Bax/Bcl-2. Furthermore, ZEA exposure reduced the mRNA of oocyte specific genes such as LIM homeobox 8 (Lhx8), newborn ovary homeobox (Nobox), spermatogenesis and oogenesis helix-loop-helix (Sohlh2), and factor in the germline alpha (Figlα) in a dose dependent manner. Exposure to ZEA led to remarkable changes in the Lhx8 3′-UTR DNA methylation dynamics in oocytes and severely impaired folliculogenesis in ovaries after transplantation under the kidney capsules of immunodeficient mice. In conclusion, ZEA exposure impairs mouse primordial follicle formation in vitro. - Highlights: • First time to evaluate the impact of ZEA on primordial follicle formation • ZEA exposure increases oocyte apoptosis and delays germ cell cyst breakdown. • ZEA exposure impairs the expression of LHX8 by affecting its DNA methylation.

  4. From neurodevelopment to neurodegeneration: the interaction of neurofibromin and valosin-containing protein/p97 in regulation of dendritic spine formation

    Directory of Open Access Journals (Sweden)

    Hsueh Yi-Ping

    2012-03-01

    Full Text Available Abstract Both Neurofibromatosis type I (NF1 and inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD are autosomal dominant genetic disorders. These two diseases are fully penetrant but with high heterogeneity in phenotypes, suggesting the involvement of genetic modifiers in modulating patients' phenotypes. Although NF1 is recognized as a developmental disorder and IBMPFD is associated with degeneration of multiple tissues, a recent study discovered the direct protein interaction between neurofibromin, the protein product of the NF1 gene, and VCP/p97, encoded by the causative gene of IBMPFD. Both NF1 and VCP/p97 are critical for dendritic spine formation, which provides the cellular mechanism explaining the cognitive deficits and dementia found in patients. Moreover, disruption of the interaction between neurofibromin and VCP impairs dendritic spinogenesis. Neurofibromin likely influences multiple downstream pathways to control dendritic spinogenesis. One is to activate the protein kinase A pathway to initiate dendritic spine formation; another is to regulate the synaptic distribution of VCP and control the activity of VCP in dendritic spinogenesis. Since neurofibromin and VCP/p97 also regulate cell growth and bone metabolism, the understanding of neurofibromin and VCP/p97 in neurons may be applied to study of cancer and bone. Statin treatment rescues the spine defects caused by VCP deficiency, suggesting the potential role of statin in clinical treatment for these two diseases.

  5. From neurodevelopment to neurodegeneration: the interaction of neurofibromin and valosin-containing protein/p97 in regulation of dendritic spine formation.

    Science.gov (United States)

    Hsueh, Yi-Ping

    2012-03-26

    Both Neurofibromatosis type I (NF1) and inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) are autosomal dominant genetic disorders. These two diseases are fully penetrant but with high heterogeneity in phenotypes, suggesting the involvement of genetic modifiers in modulating patients' phenotypes. Although NF1 is recognized as a developmental disorder and IBMPFD is associated with degeneration of multiple tissues, a recent study discovered the direct protein interaction between neurofibromin, the protein product of the NF1 gene, and VCP/p97, encoded by the causative gene of IBMPFD. Both NF1 and VCP/p97 are critical for dendritic spine formation, which provides the cellular mechanism explaining the cognitive deficits and dementia found in patients. Moreover, disruption of the interaction between neurofibromin and VCP impairs dendritic spinogenesis. Neurofibromin likely influences multiple downstream pathways to control dendritic spinogenesis. One is to activate the protein kinase A pathway to initiate dendritic spine formation; another is to regulate the synaptic distribution of VCP and control the activity of VCP in dendritic spinogenesis. Since neurofibromin and VCP/p97 also regulate cell growth and bone metabolism, the understanding of neurofibromin and VCP/p97 in neurons may be applied to study of cancer and bone. Statin treatment rescues the spine defects caused by VCP deficiency, suggesting the potential role of statin in clinical treatment for these two diseases.

  6. Ubiquitination of HTLV-I Tax in response to DNA damage regulates nuclear complex formation and nuclear export

    Directory of Open Access Journals (Sweden)

    Marriott Susan J

    2007-12-01

    Full Text Available Abstract Background The HTLV-I oncoprotein, Tax, is a pleiotropic protein whose activity is partially regulated by its ability to interact with, and perturb the functions of, numerous cellular proteins. Tax is predominantly a nuclear protein that localizes to nuclear foci known as Tax Speckled Structures (TSS. We recently reported that the localization of Tax and its interactions with cellular proteins are altered in response to various forms of genotoxic and cellular stress. The level of cytoplasmic Tax increases in response to stress and this relocalization depends upon the interaction of Tax with CRM1. Cellular pathways and signals that regulate the subcellular localization of Tax remain to be determined. However, post-translational modifications including sumoylation and ubiquitination are known to influence the subcellular localization of Tax and its interactions with cellular proteins. The sumoylated form of Tax exists predominantly in the nucleus while ubiquitinated Tax exists predominantly in the cytoplasm. Therefore, we hypothesized that post-translational modifications of Tax that occur in response to DNA damage regulate the localization of Tax and its interactions with cellular proteins. Results We found a significant increase in mono-ubiquitination of Tax in response to UV irradiation. Mutation of specific lysine residues (K280 and K284 within Tax inhibited DNA damage-induced ubiquitination. In contrast to wild-type Tax, which undergoes transient nucleocytoplasmic shuttling in response to DNA damage, the K280 and K284 mutants were retained in nuclear foci following UV irradiation and remained co-localized with the cellular TSS protein, sc35. Conclusion This study demonstrates that the localization of Tax, and its interactions with cellular proteins, are dynamic following DNA damage and depend on the post-translational modification status of Tax. Specifically, DNA damage induces the ubiquitination of Tax at K280 and K284

  7. Response of Vibrio cholerae to Low-Temperature Shifts: CspV Regulation of Type VI Secretion, Biofilm Formation, and Association with Zooplankton.

    Science.gov (United States)

    Townsley, Loni; Sison Mangus, Marilou P; Mehic, Sanjin; Yildiz, Fitnat H

    2016-07-15

    The ability to sense and adapt to temperature fluctuation is critical to the aquatic survival, transmission, and infectivity of Vibrio cholerae, the causative agent of the disease cholera. Little information is available on the physiological changes that occur when V. cholerae experiences temperature shifts. The genome-wide transcriptional profile of V. cholerae upon a shift in human body temperature (37°C) to lower temperatures, 15°C and 25°C, which mimic those found in the aquatic environment, was determined. Differentially expressed genes included those involved in the cold shock response, biofilm formation, type VI secretion, and virulence. Analysis of a mutant lacking the cold shock gene cspV, which was upregulated >50-fold upon a low-temperature shift, revealed that it regulates genes involved in biofilm formation and type VI secretion. CspV controls biofilm formation through modulation of the second messenger cyclic diguanylate and regulates type VI-mediated interspecies killing in a temperature-dependent manner. Furthermore, a strain lacking cspV had significant defects for attachment and type VI-mediated killing on the surface of the aquatic crustacean Daphnia magna Collectively, these studies reveal that cspV is a major regulator of the temperature downshift response and plays an important role in controlling cellular processes crucial to the infectious cycle of V. cholerae Little is known about how human pathogens respond and adapt to ever-changing parameters of natural habitats outside the human host and how environmental adaptation alters dissemination. Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, experiences fluctuations in temperature in its natural aquatic habitats and during the infection process. Furthermore, temperature is a critical environmental signal governing the occurrence of V. cholerae and cholera outbreaks. In this study, we showed that V. cholerae reprograms its transcriptome in response to

  8. Study of some properties of point defects in grain boundaries

    International Nuclear Information System (INIS)

    Martin, Georges

    1973-01-01

    With the aim of deducing simple informations on the grain boundary core structure, we investigated self diffusion under hydrostatic pressure, impurity diffusion (In and Au), electromigration (Sb) along certain types of grain boundaries in Ag bicrystals, and the Moessbauer effect of 57 Co located in the grain boundaries of polycrystalline Be. Our results lead to the following conclusions: the formation of a vacancy like defects is necessary to grain boundary diffusion; solute atoms may release most of their elastic energy of dissolution as they segregate at the boundary; in an electrical field, the drift of Sb ions parallel to the boundary takes place toward the anode as in the bulk. The force on the grain boundary ions is larger than in the bulk; Moessbauer spectroscopy revealed the formation of Co-rich aggregates, which may proves important in the study of early stages of grain boundary precipitation. (author) [fr

  9. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.

    Science.gov (United States)

    Qi, Jing; Lan, Huachun; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-06-15

    The coagulation/flocculation/flotation (C/F/F) process is becoming a popular method for algae-laden water treatment. However, the efficiency of flotation is highly dependent on the ability of the preceding coagulation/flocculation process to form flocculated algae flocs. This study aims to improve the Microcystis aeruginosa flotation efficiency from algae cell and organic matter aspects by applying Fe(II)-regulated pretreatment enhanced Al coagulation process. The ability of the C/F/F process to remove cyanobacterial cells can be enhanced from 8% to 99% at a Fe(II) dose of 30 μM. The Al dose needed can be reduced by more than half while achieving successful flotation. The introduced Fe(II) after KMnO 4 can not only realize moderate pre-oxidation of cyanobacterial cells, but also form in-situ Fe(III). The DOC value can also be decreased significantly due to the formation of in-situ Fe(III), which is more efficient in dissolved organic matter (DOM) removal compared with pre-formed Fe(III). In addition, the gradually hydrolyzed in-situ Fe(III) can facilitate the hydrolysis of Al as a dual-coagulant and promote the clustering and cross-linking of Al hydrolyzates, which can enhance the formation of size-controlled algae flocs. Finally, the size-controlled algae flocs can be effectively floated by the bubbles released in the flotation process due to the efficient collision and attachment between flocs and bubbles. Therefore, the efficient flotation of algae cell and organic matter can be realized by the Fe(II) regulated moderate pre-oxidation of M. aeruginosa and formation of size-controlled algae flocs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?

    Science.gov (United States)

    Fusconi, Anna

    2014-01-01

    Background Arbuscular mycorrhizae (AMs) form a widespread root–fungus symbiosis that improves plant phosphate (Pi) acquisition and modifies the physiology and development of host plants. Increased branching is recognized as a general feature of AM roots, and has been interpreted as a means of increasing suitable sites for colonization. Fungal exudates, which are involved in the dialogue between AM fungi and their host during the pre-colonization phase, play a well-documented role in lateral root (LR) formation. In addition, the increased Pi content of AM plants, in relation to Pi-starved controls, as well as changes in the delivery of carbohydrates to the roots and modulation of phytohormone concentration, transport and sensitivity, are probably involved in increasing root system branching. Scope This review discusses the possible causes of increased branching in AM plants. The differential root responses to Pi, sugars and hormones of potential AM host species are also highlighted and discussed in comparison with those of the non-host Arabidopsis thaliana. Conclusions Fungal exudates are probably the main compounds regulating AM root morphogenesis during the first colonization steps, while a complex network of interactions governs root development in established AMs. Colonization and high Pi act synergistically to increase root branching, and sugar transport towards the arbusculated cells may contribute to LR formation. In addition, AM colonization and high Pi generally increase auxin and cytokinin and decrease ethylene and strigolactone levels. With the exception of cytokinins, which seem to regulate mainly the root:shoot biomass ratio, these hormones play a leading role in governing root morphogenesis, with strigolactones and ethylene blocking LR formation in the non-colonized, Pi-starved plants, and auxin inducing them in colonized plants, or in plants grown under high Pi conditions. PMID:24227446

  11. Understanding the acquisition and regulation mechanisms of the water chemistry in a clay formation: the CEC/ANDRA Archimede-argile project

    International Nuclear Information System (INIS)

    Merceron, T.; Mossmann, J.R.; Neerdael, B.; Canniere, P. de; Beaucaire, C.; Toulhoat, P.; Daumas, S.; Bianchi, A.; Christen, R.

    1993-01-01

    Clay formations are candidate host environments to high level radioactive waste repository. The radioelements could be partially released from the waste into the host geological formation after a very long time. Understanding behaviour of the natural chemical species is considered as a fundamental prerequisite before the disturbed system will be studied. Additional laboratory studies are also essential in order to forecast, by analogy, the behaviour of radioelements released from the radioactive waste repository. The ARCHIMEDE-ARGILE project has two main goals. The first is to gain an understanding of the mechanisms of acquisition and regulation of the water chemistry in a clay environment. This step is essential to predict both the behaviour and the migration in solution of artificial elements which are initially absent in the clay formation. The second is to test and validate in clay the measured physico chemical parameters which are the basis for the geochemical modelling of the behaviour of the natural and artificial radioelements. The paper presents the main results previously obtained on granitic waters and the research strategy established for the ARCHIMEDE project. (authors). 2 figs., 2 refs

  12. Defining an EPOR- regulated transcriptome for primary progenitors, including Tnfr-sf13c as a novel mediator of EPO- dependent erythroblast formation.

    Directory of Open Access Journals (Sweden)

    Seema Singh

    Full Text Available Certain concepts concerning EPO/EPOR action modes have been challenged by in vivo studies: Bcl-x levels are elevated in maturing erythroblasts, but not in their progenitors; truncated EPOR alleles that lack a major p85/PI3K recruitment site nonetheless promote polycythemia; and Erk1 disruption unexpectedly bolsters erythropoiesis. To discover novel EPO/EPOR action routes, global transcriptome analyses presently are applied to interrogate EPO/EPOR effects on primary bone marrow-derived CFUe-like progenitors. Overall, 160 EPO/EPOR target transcripts were significantly modulated 2-to 21.8-fold. A unique set of EPO-regulated survival factors included Lyl1, Gas5, Pim3, Pim1, Bim, Trib3 and Serpina 3g. EPO/EPOR-modulated cell cycle mediators included Cdc25a, Btg3, Cyclin-d2, p27-kip1, Cyclin-g2 and CyclinB1-IP-1. EPO regulation of signal transduction factors was also interestingly complex. For example, not only Socs3 plus Socs2 but also Spred2, Spred1 and Eaf1 were EPO-induced as negative-feedback components. Socs2, plus five additional targets, further proved to comprise new EPOR/Jak2/Stat5 response genes (which are important for erythropoiesis during anemia. Among receptors, an atypical TNF-receptor Tnfr-sf13c was up-modulated >5-fold by EPO. Functionally, Tnfr-sf13c ligation proved to both promote proerythroblast survival, and substantially enhance erythroblast formation. The EPOR therefore engages a sophisticated set of transcriptome response circuits, with Tnfr-sf13c deployed as one novel positive regulator of proerythroblast formation.

  13. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere.

    Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  14. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  15. Limonene protects osteoblasts against methylglyoxal-derived adduct formation by regulating glyoxalase, oxidative stress, and mitochondrial function.

    Science.gov (United States)

    Suh, Kwang Sik; Chon, Suk; Choi, Eun Mi

    2017-12-25

    Methylglyoxal (MG) is a potent protein glycating agent and an important precursor of advanced glycation end products, which are involved in the pathogenesis of diabetic osteopathy. In this study, we investigated the effects of limonene on MG-induced damage in osteoblastic MC3T3-E1 cells. Pretreating cells with limonene prevented MG-induced protein adduct formation, tumor necrosis factor alpha and interleukin-6 release, mitochondrial superoxide production, and cardiolipin peroxidation. In addition, limonene increased glyoxalase I activity, and glutathione and heme oxygenase-1 levels in the presence of MG. Pretreatment with limonene prior to MG exposure reduced MG-induced mitochondrial dysfunction by preventing mitochondrial membrane potential dissipation and adenosine triphosphate loss, and reduced the levels of adenosine monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ coactivator 1α, and nitric oxide. These results demonstrate that limonene may prevent the development of diabetic osteopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The histone H3K9 methylation and RNAi pathways regulate normalnucleolar and repeated DNA organization by inhibiting formation ofextrachromosomal DNAs

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C.; Karpen, Gary H.

    2006-06-15

    In order to identify regulators of nuclear organization, Drosophila mutants in the Su(var)3-9 histone H3K9 methyltransferase, RNAi pathway components, and other regulators of heterochromatin-mediated gene silencing were examined for altered nucleoli and positioning of repeated DNAs. Animals lacking components of the H3K9 methylation and RNAi pathways contained disorganized nucleoli, ribosomal DNA (rDNA) and satellite DNAs. The levels of H3K9 dimethylation (H3K9me2) in chromatin associated with repeated DNAs decreased dramatically in Su(var)3-9 and dcr-2 (dicer-2) mutant tissues compared to wild type. We also observed a substantial increase in extrachromosomal repeated DNAs in mutant tissues. The disorganized nucleolus phenotype depends on the presence of Ligase 4 (Lig4), and ecc DNA formation is not induced by removal of cohesin. We conclude that H3K9 methylation of rDNA and satellites, maintained by Su(var)3-9, HP1, and the RNAi pathway, is necessary for the structural stability of repeated DNAs, which is mediated through suppression of non-homologous end joining (NHEJ). These results suggest a mechanism for how local chromatin structure can regulate genome stability, and the organization of chromosomal elements and nuclear organelles.

  17. The cAMP-PKA Signaling Pathway Regulates Pathogenicity, Hyphal Growth, Appressorial Formation, Conidiation, and Stress Tolerance in Colletotrichum higginsianum.

    Science.gov (United States)

    Zhu, Wenjun; Zhou, Man; Xiong, Zeyang; Peng, Fang; Wei, Wei

    2017-01-01

    Colletotrichum higginsianum is an economically important pathogen that causes anthracnose disease in a wide range of cruciferous crops. Understanding the mechanisms of the cruciferous plant- C. higginsianum interactions will be important in facilitating efficient control of anthracnose diseases. The cAMP-PKA signaling pathway plays important roles in diverse physiological processes of multiple pathogens. C. higginsianum contains two genes, ChPKA1 and ChPKA2 , that encode the catalytic subunits of cyclic AMP (cAMP)-dependent protein kinase A (PKA). To analyze the role of cAMP signaling pathway in pathogenicity and development in C. higginsianum , we characterized ChPKA1 and ChPKA2 genes, and adenylate cyclase ( ChAC ) gene. The ChPKA1 and ChAC deletion mutants were unable to cause disease and significantly reduced in hyphal growth, tolerance to cell wall inhibitors, conidiation, and appressorial formation with abnormal germ tubes, but they had an increased tolerance to elevated temperatures and exogenous H 2 O 2 . In contrast, the ChPKA2 mutant had no detectable alteration of phenotypes, suggesting that ChPKA1 contributes mainly to PKA activities in C. higginsianum . Moreover, we failed to generate Δ ChPKA1ChPKA2 double mutant, indicating that deletion of both PKA catalytic subunits is lethal in C. higginsianum and the two catalytic subunits possibly have overlapping functions. These results indicated that ChPKA1 is the major PKA catalytic subunit in cAMP-PKA signaling pathway and plays significant roles in hyphal growth, pathogenicity, appressorial formation, conidiation, and stress tolerance in C. higginsianum .

  18. The cAMP-PKA Signaling Pathway Regulates Pathogenicity, Hyphal Growth, Appressorial Formation, Conidiation, and Stress Tolerance in Colletotrichum higginsianum

    Directory of Open Access Journals (Sweden)

    Wenjun Zhu

    2017-07-01

    Full Text Available Colletotrichum higginsianum is an economically important pathogen that causes anthracnose disease in a wide range of cruciferous crops. Understanding the mechanisms of the cruciferous plant–C. higginsianum interactions will be important in facilitating efficient control of anthracnose diseases. The cAMP-PKA signaling pathway plays important roles in diverse physiological processes of multiple pathogens. C. higginsianum contains two genes, ChPKA1 and ChPKA2, that encode the catalytic subunits of cyclic AMP (cAMP-dependent protein kinase A (PKA. To analyze the role of cAMP signaling pathway in pathogenicity and development in C. higginsianum, we characterized ChPKA1 and ChPKA2 genes, and adenylate cyclase (ChAC gene. The ChPKA1 and ChAC deletion mutants were unable to cause disease and significantly reduced in hyphal growth, tolerance to cell wall inhibitors, conidiation, and appressorial formation with abnormal germ tubes, but they had an increased tolerance to elevated temperatures and exogenous H2O2. In contrast, the ChPKA2 mutant had no detectable alteration of phenotypes, suggesting that ChPKA1 contributes mainly to PKA activities in C. higginsianum. Moreover, we failed to generate ΔChPKA1ChPKA2 double mutant, indicating that deletion of both PKA catalytic subunits is lethal in C. higginsianum and the two catalytic subunits possibly have overlapping functions. These results indicated that ChPKA1 is the major PKA catalytic subunit in cAMP-PKA signaling pathway and plays significant roles in hyphal growth, pathogenicity, appressorial formation, conidiation, and stress tolerance in C. higginsianum.

  19. Political State Boundary (National)

    Data.gov (United States)

    Department of Transportation — State boundaries with political limit - boundaries extending into the ocean (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an...

  20. Allegheny County Municipal Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...

  1. HUD GIS Boundary Files

    Data.gov (United States)

    Department of Housing and Urban Development — The HUD GIS Boundary Files are intended to supplement boundary files available from the U.S. Census Bureau. The files are for community planners interested in...

  2. State Agency Administrative Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This database comprises 28 State agency boundaries and point of contact. The Kansas Geological Survey collected legal descriptions of the boundaries for various...

  3. Regulator LdhR and d-Lactate Dehydrogenase LdhA of Burkholderia multivorans Play Roles in Carbon Overflow and in Planktonic Cellular Aggregate Formation.

    Science.gov (United States)

    Silva, Inês N; Ramires, Marcelo J; Azevedo, Lisa A; Guerreiro, Ana R; Tavares, Andreia C; Becker, Jörg D; Moreira, Leonilde M

    2017-10-01

    LysR-type transcriptional regulators (LTTRs) are the most commonly found regulators in Burkholderia cepacia complex, comprising opportunistic pathogens causing chronic respiratory infections in cystic fibrosis (CF) patients. Despite LTTRs being global regulators of pathogenicity in several types of bacteria, few have been characterized in Burkholderia Here, we show that gene ldhR of B. multivorans encoding an LTTR is cotranscribed with ldhA encoding a d-lactate dehydrogenase and evaluate their implication in virulence traits such as exopolysaccharide (EPS) synthesis and biofilm formation. A comparison of the wild type (WT) and its isogenic Δ ldhR mutant grown in medium with 2% d-glucose revealed a negative impact on EPS biosynthesis and on cell viability in the presence of LdhR. The loss of viability in WT cells was caused by intracellular acidification as a consequence of the cumulative secretion of organic acids, including d-lactate, which was absent from the Δ ldhR mutant supernatant. Furthermore, LdhR is implicated in the formation of planktonic cellular aggregates. WT cell aggregates reached 1,000 μm in size after 24 h in liquid cultures, in contrast to Δ ldhR mutant aggregates that never grew more than 60 μm. The overexpression of d-lactate dehydrogenase LdhA in the Δ ldhR mutant partially restored the formed aggregate size, suggesting a role for fermentation inside aggregates. Similar results were obtained for surface-attached biofilms, with WT cells producing more biofilm. A systematic evaluation of planktonic aggregates in Burkholderia CF clinical isolates showed aggregates in 40 of 74. As CF patients' lung environments are microaerophilic and bacteria are found as free aggregates/biofilms, LdhR and LdhA might have central roles in adapting to this environment. IMPORTANCE Cystic fibrosis patients often suffer from chronic respiratory infections caused by several types of microorganisms. Among them are the Burkholderia cepacia complex bacteria, which

  4. On boundary superalgebras

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2010-01-01

    We examine the symmetry breaking of superalgebras due to the presence of appropriate integrable boundary conditions. We investigate the boundary breaking symmetry associated with both reflection algebras and twisted super-Yangians. We extract the generators of the resulting boundary symmetry as well as we provide explicit expressions of the associated Casimir operators.

  5. Evidence for feedback and stellar-dynamically regulated bursty star cluster formation: the case of the Orion Nebula Cluster

    Science.gov (United States)

    Kroupa, Pavel; Jeřábková, Tereza; Dinnbier, František; Beccari, Giacomo; Yan, Zhiqiang

    2018-04-01

    A scenario for the formation of multiple co-eval populations separated in age by about 1 Myr in very young clusters (VYCs, ages less than 10 Myr) and with masses in the range 600-20 000 M⊙ is outlined. It rests upon a converging inflow of molecular gas building up a first population of pre-main sequence stars. The associated just-formed O stars ionise the inflow and suppress star formation in the embedded cluster. However, they typically eject each other out of the embedded cluster within 106 yr, that is before the molecular cloud filament can be ionised entirely. The inflow of molecular gas can then resume forming a second population. This sequence of events can be repeated maximally over the life-time of the molecular cloud (about 10 Myr), but is not likely to be possible in VYCs with mass <300 M⊙, because such populations are not likely to contain an O star. Stellar populations heavier than about 2000 M⊙ are likely to have too many O stars for all of these to eject each other from the embedded cluster before they disperse their natal cloud. VYCs with masses in the range 600-2000 M⊙ are likely to have such multi-age populations, while VYCs with masses in the range 2000-20 000 M⊙ can also be composed solely of co-eval, mono-age populations. More massive VYCs are not likely to host sub-populations with age differences of about 1 Myr. This model is applied to the Orion Nebula Cluster (ONC), in which three well-separated pre-main sequences in the colour-magnitude diagram of the cluster have recently been discovered. The mass-inflow history is constrained using this model and the number of OB stars ejected from each population are estimated for verification using Gaia data. As a further consequence of the proposed model, the three runaway O star systems, AE Aur, μ Col and ι Ori, are considered as significant observational evidence for stellar-dynamical ejections of massive stars from the oldest population in the ONC. Evidence for stellar

  6. Campylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation

    Science.gov (United States)

    2012-01-01

    Background Although Campylobacter jejuni is consistently ranked as one of the leading causes of bacterial diarrhea worldwide, the mechanisms by which C. jejuni causes disease and how they are regulated have yet to be clearly defined. The global regulator, CsrA, has been well characterized in several bacterial genera and is known to regulate a number of independent pathways via a post transcriptional mechanism, but remains relatively uncharacterized in the genus Campylobacter. Previously, we reported data illustrating the requirement for CsrA in several virulence related phenotypes of C. jejuni strain 81–176, indicating that the Csr pathway is important for Campylobacter pathogenesis. Results We compared the Escherichia coli and C. jejuni orthologs of CsrA and characterized the ability of the C. jejuni CsrA protein to functionally complement an E. coli csrA mutant. Phylogenetic comparison of E. coli CsrA to orthologs from several pathogenic bacteria demonstrated variability in C. jejuni CsrA relative to the known RNA binding domains of E. coli CsrA and in several amino acids reported to be involved in E. coli CsrA-mediated gene regulation. When expressed in an E. coli csrA mutant, C. jejuni CsrA succeeded in recovering defects in motility, biofilm formation, and cellular morphology; however, it failed to return excess glycogen accumulation to wild type levels. Conclusions These findings suggest that C. jejuni CsrA is capable of efficiently binding some E. coli CsrA binding sites, but not others, and provide insight into the biochemistry of C. jejuni CsrA. PMID:23051923

  7. Is Polysialylated NCAM Not Only a Regulator during Brain Development But also during the Formation of Other Organs?

    Directory of Open Access Journals (Sweden)

    Christina E. Galuska

    2017-04-01

    Full Text Available In mammals several cell adhesion molecules are involved during the pre- and postnatal development of all organ systems. A very prominent member of this family is the neural cell adhesion molecule (NCAM. Interestingly, NCAM can be a target for a special form of posttranslational modification: polysialylation. Whereas nearly all extracellular proteins bear mono-sialic acid residues, only a very small group can be polysialylated. Polysialic acid is a highly negatively-charged sugar polymer and can comprise more than 90 sialic acid residues in postnatal mouse brains increasing dramatically the hydrodynamic radius of their carriers. Thus, adhesion and communication processes on cell surfaces are strongly influenced allowing, e.g., the migration of neuronal progenitor cells. In the developing brain the essential role of polysialylated NCAM has been demonstrated in many studies. In comparison to the neuronal system, however, during the formation of other organs the impact of the polysialylated form of NCAM is not well characterized and the number of studies is limited so far. This review summarizes these observations and discusses possible roles of polysialylated NCAM during the development of organs other than the brain.

  8. Mutation in PLK4, encoding a master regulator of centriole formation, defines a novel locus for primordial dwarfism.

    Science.gov (United States)

    Shaheen, Ranad; Al Tala, Saeed; Almoisheer, Agaadir; Alkuraya, Fowzan S

    2014-12-01

    Primordial dwarfism (PD) is a heterogeneous clinical entity characterised by severe prenatal and postnatal growth deficiency. Despite the recent wave of disease gene discovery, the causal mutations in many PD patients remain unknown. To describe a PD family that maps to a novel locus. Clinical, imaging and laboratory phenotyping of a new family with PD followed by autozygosity mapping, linkage analysis and candidate gene sequencing. We describe a multiplex consanguineous Saudi family in which two full siblings and one half-sibling presented with classical features of Seckel syndrome in addition to optic nerve hypoplasia. We were able to map the phenotype to a single novel locus on 4q25-q28.2, in which we identified a five base-pair deletion in PLK4, which encodes a master regulator of centriole duplication. Our discovery further confirms the role of genes involved in centriole biology in the pathogenesis of PD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Formation of the sacrum requires down-regulation of sonic hedgehog signaling in the sacral intervertebral discs.

    Science.gov (United States)

    Bonavita, Raffaella; Vincent, Kathleen; Pinelli, Robert; Dahia, Chitra Lekha

    2018-05-21

    In humans, the sacrum forms an important component of the pelvic arch, and it transfers the weight of the body to the lower limbs. The sacrum is formed by collapse of the intervertebral discs (IVDs) between the five sacral vertebrae during childhood, and their fusion to form a single bone. We show that collapse of the sacral discs in the mouse is associated with the down-regulation of sonic hedgehog (SHH) signaling in the nucleus pulposus (NP) of the disc, and many aspects of this phenotype can be reversed by experimental postnatal activation of HH signaling. We have previously shown that SHH signaling is essential for the normal postnatal growth and differentiation of intervertebral discs elsewhere in the spine, and that loss of SHH signaling leads to pathological disc degeneration, a very common disorder of aging. Thus, loss of SHH is pathological in one region of the spine but part of normal development in another. © 2018. Published by The Company of Biologists Ltd.

  10. Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress.

    Science.gov (United States)

    Garaigorta, Urtzi; Heim, Markus H; Boyd, Bryan; Wieland, Stefan; Chisari, Francis V

    2012-10-01

    Stress granules (SGs) are cytoplasmic structures that are induced in response to environmental stress, including viral infections. Here we report that hepatitis C virus (HCV) triggers the appearance of SGs in a PKR- and interferon (IFN)-dependent manner. Moreover, we show an inverse correlation between the presence of stress granules and the induction of IFN-stimulated proteins, i.e., MxA and USP18, in HCV-infected cells despite high-level expression of the corresponding MxA and USP18 mRNAs, suggesting that interferon-stimulated gene translation is inhibited in stress granule-containing HCV-infected cells. Finally, in short hairpin RNA (shRNA) knockdown experiments, we found that the stress granule proteins T-cell-restricted intracellular antigen 1 (TIA-1), TIA1-related protein (TIAR), and RasGAP-SH3 domain binding protein 1 (G3BP1) are required for efficient HCV RNA and protein accumulation at early time points in the infection and that G3BP1 and TIA-1 are required for intracellular and extracellular infectious virus production late in the infection, suggesting that they are required for virus assembly. In contrast, TIAR downregulation decreases extracellular infectious virus titers with little effect on intracellular RNA content or infectivity late in the infection, suggesting that it is required for infectious particle release. Collectively, these results illustrate that HCV exploits the stress granule machinery at least two ways: by inducing the formation of SGs by triggering PKR phosphorylation, thereby downregulating the translation of antiviral interferon-stimulated genes, and by co-opting SG proteins for its replication, assembly, and egress.

  11. Photoautotrophic Polyhydroxybutyrate Granule Formation Is Regulated by Cyanobacterial Phasin PhaP in Synechocystis sp. Strain PCC 6803

    Science.gov (United States)

    Hauf, Waldemar; Watzer, Björn; Roos, Nora; Klotz, Alexander

    2015-01-01

    Cyanobacteria are photoautotrophic microorganisms which fix atmospheric carbon dioxide via the Calvin-Benson cycle to produce carbon backbones for primary metabolism. Fixed carbon can also be stored as intracellular glycogen, and in some cyanobacterial species like Synechocystis sp. strain PCC 6803, polyhydroxybutyrate (PHB) accumulates when major nutrients like phosphorus or nitrogen are absent. So far only three enzymes which participate in PHB metabolism have been identified in this organism, namely, PhaA, PhaB, and the heterodimeric PHB synthase PhaEC. In this work, we describe the cyanobacterial PHA surface-coating protein (phasin), which we term PhaP, encoded by ssl2501. Translational fusion of Ssl2501 with enhanced green fluorescent protein (eGFP) showed a clear colocalization to PHB granules. A deletion of ssl2501 reduced the number of PHB granules per cell, whereas the mean PHB granule size increased as expected for a typical phasin. Although deletion of ssl2501 had almost no effect on the amount of PHB, the biosynthetic activity of PHB synthase was negatively affected. Secondary-structure prediction and circular dichroism (CD) spectroscopy of PhaP revealed that the protein consists of two α-helices, both of them associating with PHB granules. Purified PhaP forms oligomeric structures in solution, and both α-helices of PhaP contribute to oligomerization. Together, these results support the idea that Ssl2501 encodes a cyanobacterial phasin, PhaP, which regulates the surface-to-volume ratio of PHB granules. PMID:25911471

  12. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression.

    Directory of Open Access Journals (Sweden)

    Jonathan J Wilksch

    2011-08-01

    Full Text Available Klebsiella pneumoniae causes significant morbidity and mortality worldwide, particularly amongst hospitalized individuals. The principle mechanism for pathogenesis in hospital environments involves the formation of biofilms, primarily on implanted medical devices. In this study, we constructed a transposon mutant library in a clinical isolate, K. pneumoniae AJ218, to identify the genes and pathways implicated in biofilm formation. Three mutants severely defective in biofilm formation contained insertions within the mrkABCDF genes encoding the main structural subunit and assembly machinery for type 3 fimbriae. Two other mutants carried insertions within the yfiN and mrkJ genes, which encode GGDEF domain- and EAL domain-containing c-di-GMP turnover enzymes, respectively. The remaining two isolates contained insertions that inactivated the mrkH and mrkI genes, which encode for novel proteins with a c-di-GMP-binding PilZ domain and a LuxR-type transcriptional regulator, respectively. Biochemical and functional assays indicated that the effects of these factors on biofilm formation accompany concomitant changes in type 3 fimbriae expression. We mapped the transcriptional start site of mrkA, demonstrated that MrkH directly activates transcription of the mrkA promoter and showed that MrkH binds strongly to the mrkA regulatory region only in the presence of c-di-GMP. Furthermore, a point mutation in the putative c-di-GMP-binding domain of MrkH completely abolished its function as a transcriptional activator. In vivo analysis of the yfiN and mrkJ genes strongly indicated their c-di-GMP-specific function as diguanylate cyclase and phosphodiesterase, respectively. In addition, in vitro assays showed that purified MrkJ protein has strong c-di-GMP phosphodiesterase activity. These results demonstrate for the first time that c-di-GMP can function as an effector to stimulate the activity of a transcriptional activator, and explain how type 3 fimbriae

  13. Turning behaviors of T cells climbing up ramp-like structures are regulated by myosin light chain kinase activity and lamellipodia formation.

    Science.gov (United States)

    Song, Kwang Hoon; Lee, Jaehyun; Jung, Hong-Ryul; Park, HyoungJun; Doh, Junsang

    2017-09-14

    T cells navigate diverse microenvironments to perform immune responses. Micro-scale topographical structures within the tissues, which may inherently exist in normal tissues or may be formed by inflammation or injury, can influence T cell migration, but how T cell migration is affected by such topographical structures have not been investigated. In this study, we fabricated ramp-like structures with a 5 μm height and various slopes, and observed T cells climbing up the ramp-like structures. T cells encountering the ramp-like structures exhibited MLC accumulation near head-tail junctions contacting the ramp-like structures, and made turns to the direction perpendicular to the ramp-like structures. Pharmacological study revealed that lamellipodia formation mediated by arp2/3 and contractility regulated by myosin light chain kinase (MLCK) were responsible for the intriguing turning behavior of T cells climbing the ramp-like structures. Arp2/3 or MLCK inhibition substantially reduced probability of T cells climbing sharp-edged ramp-like structures, indicating intriguing turning behavior of T cells mediated by lamellipodia formation and MLCK activity may be important for T cells to access inflamed or injured tissues with abrupt topographical changes.

  14. The Acinetobacter baumannii Two-Component System AdeRS Regulates Genes Required for Multidrug Efflux, Biofilm Formation, and Virulence in a Strain-Specific Manner

    Directory of Open Access Journals (Sweden)

    Grace E. Richmond

    2016-04-01

    Full Text Available The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR, causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery.

  15. Poly(ADP-ribose) Glycohydrolase and Poly(ADP-ribose)-interacting Protein Hrp38 Regulate Pattern Formation during Drosophila Eye Development

    Science.gov (United States)

    Ji, Yingbiao; Jarnik, Michael; Tulin, Alexei V.

    2013-01-01

    Drosophila Hrp38, a homolog of human hnRNP A1, has been shown to regulate splicing, but its function can be modified by poly(ADP-ribosyl)ation. Notwithstanding such findings, our understanding of the roles of poly(ADP-ribosyl)ated Hrp38 on development is limited. Here, we have demonstrated that Hrp38 is essential for fly eye development based on a rough-eye phenotype with disorganized ommatidia observed in adult escapers of the hrp38 mutant. We also observed that Poly(ADP-ribose) Glycohydrolase (Parg) loss-of-function, which caused increased Hrp38 poly(ADP-ribosyl)ation, also resulted in the rough-eye phenotype with disrupted ommatidial lattice and reduced number of photoreceptor cells. In addition, ectopic expression of DE-cadherin, which is required for retinal morphogenesis, fully rescued the rough-eye phenotype of the hrp38 mutant. Similarly, Parg mutant eye clones had decreased expression level of DE-cadherin with orientation defects, which is reminiscent of DE-cadherin mutant eye phenotype. Therefore, our results suggest that Hrp38 poly(ADP-ribosyl)ation controls eye pattern formation via regulation of DE-cadherin expression, a finding which has implications for understanding the pathogenic mechanisms of Hrp38-related Fragile X syndrome and PARP1-related retinal degeneration diseases. PMID:23711619

  16. Functional interactions between 17 β -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures.

    Science.gov (United States)

    Zielniok, Katarzyna; Motyl, Tomasz; Gajewska, Malgorzata

    2014-01-01

    Mammary gland epithelium forms a network of ducts and alveolar units under control of ovarian hormones: 17-beta-estradiol (E2) and progesterone (P4). Mammary epithelial cells (MECs) cultured on reconstituted basement membrane (rBM) form three-dimensional (3D) acini composed of polarized monolayers surrounding a lumen. Using the 3D culture of BME-UV1 bovine MECs we previously demonstrated that autophagy was induced in the centrally located cells of developing spheroids, and sex steroids increased this process. In the present study we showed that E2 and P4 enhanced the expression of ATG3, ATG5, and BECN1 genes during acini formation, and this effect was accelerated in the presence of both hormones together. The stimulatory action of E2 and P4 was also reflected by increased levels of Atg5, Atg3, and LC3-II proteins. Additionally, the activity of kinases involved in autophagy regulation, Akt, ERK, AMPK, and mTOR, was examined. E2 + P4 slightly increased the level of phosphorylated AMPK but diminished phosphorylated Akt and mTOR on day 9 of 3D culture. Thus, the synergistic actions of E2 and P4 accelerate the development of bovine mammary acini, which may be connected with stimulation of ATGs expression, as well as regulation of signaling pathways (PI3K/Akt/mTOR; AMPK/mTOR) involved in autophagy induction.

  17. SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleolus upon DNA damage.

    Science.gov (United States)

    Brun, Sonia; Abella, Neus; Berciano, Maria T; Tapia, Olga; Jaumot, Montserrat; Freire, Raimundo; Lafarga, Miguel; Agell, Neus

    2017-01-01

    We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus.

  18. Grain boundary migration

    International Nuclear Information System (INIS)

    Dimitrov, O.

    1975-01-01

    Well-established aspects of grain-boundary migration are first briefly reviewed (influences of driving force, temperature, orientation and foreign atoms). Recent developments of the experimental methods and results are then examined, by considering the various driving of resistive forces acting on grain boundaries. Finally, the evolution in the theoretical models of grain-boundary motion is described, on the one hand for ideally pure metals and, on the other hand, in the presence of solute impurity atoms [fr

  19. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  20. Mathematical simulation of point defect interaction with grain boundaries

    International Nuclear Information System (INIS)

    Bojko, V.S.

    1987-01-01

    Published works, where the interaction of point defects and grain boundaries was studied by mathematical simulation methods, have been analysed. Energetics of the vacancy formation both in nuclei of large-angle special grain boundaries and in lattice regions adjoining them has been considered. The data obtained permit to explain specific features of grain-boundary diffusion processes. Results of mathematical simulation of the interaction of impurity atoms and boundaries have been considered. Specific features of the helium atom interaction with large-angle grain boundaries are analysed as well

  1. Investigations of the boundary conditions of acicular ferrite formation in fast-quenched welded materials. Final report; Untersuchungen der Randbedingungen fuer die Bildung von 'acicular ferrite' in Schweissguetern bei schneller Abkuehlung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Dilthey, U.; Biesenbach, M.

    2000-06-19

    The authors investigated the boundary conditions in which a fine-grained ferritic needle structure with sufficient low-temperature toughness is obtained in conditions of extreme heating and cooling. Alloy compositions and welding boundary conditions were investigated for laser welding, electron beam welding in a vacuum and electron beam welding at atmospheric pressure. [German] Im Rahmen dieser Arbeit soll untersucht werden, welche Randbedingungen erfuellt sein muessen, damit sich unter extremen Aufheiz- und Abkuehlbedingungen, wie sie bei den Strahlschweissverfahren vorliegen, ein feinkoerniges nadelferritisches Gefuege mit ausreichend hoher Tieftemperaturzaehigkeit bildet. Diesbezueglich ist fuer die Strahlschweissverfahren Laserstrahlschweissen, Elektronenstrahlschweissen im Vakuum und Elektronenstrahlschweissen unter Atmosphaerendruck zu ermitteln, welche Legierungszusammensetzungen diese Voraussetzungen erfuellen und wie sie unter realen Schweissbedingungen verwirklicht werden koennen. (orig.)

  2. The fission yeast minichromosome maintenance (MCM)-binding protein (MCM-BP), Mcb1, regulates MCM function during prereplicative complex formation in DNA replication.

    Science.gov (United States)

    Santosa, Venny; Martha, Sabrina; Hirose, Noriaki; Tanaka, Katsunori

    2013-03-08

    The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1(+), two temperature-sensitive mcb1 gene mutants (mcb1(ts)) were isolated. Extensive genetic analysis showed that the mcb1(ts) mutants were suppressed by a mcm5(+) multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1(ts) mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1(ts) mutants. Furthermore, the mcb1(ts) mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex.

  3. The Fission Yeast Minichromosome Maintenance (MCM)-binding Protein (MCM-BP), Mcb1, Regulates MCM Function during Prereplicative Complex Formation in DNA Replication*

    Science.gov (United States)

    Santosa, Venny; Martha, Sabrina; Hirose, Noriaki; Tanaka, Katsunori

    2013-01-01

    The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1+, two temperature-sensitive mcb1 gene mutants (mcb1ts) were isolated. Extensive genetic analysis showed that the mcb1ts mutants were suppressed by a mcm5+ multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1ts mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1ts mutants. Furthermore, the mcb1ts mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex. PMID:23322785

  4. Anti-osteoporotic activity of harpagide by regulation of bone formation in osteoblast cell culture and ovariectomy-induced bone loss mouse models.

    Science.gov (United States)

    Chung, Hwa-Jin; Kyung Kim, Won; Joo Park, Hyen; Cho, Lan; Kim, Me-Riong; Kim, Min Jeong; Shin, Joon-Shik; Ho Lee, Jin; Ha, In-Hyuk; Kook Lee, Sang

    2016-02-17

    Harpagide, an iridoid glucoside, is a constituent of the root of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, Devil's claw which has been used in patients with osteoarthritis (OA). In the present study, we investigated the anti-osteoporotic potential of harpagide and its underlying mechanism of action in in vitro cell culture and in vivo bone loss animal models. Harpagide was obtained from the alkalic hydrolysis of harpagoside, a major constituent of H. procumbens var. sublobatum Analysis of biomarkers for bone formation in osteoblastic MC3T3-E1 cells and bone resorption in osteoclast cells derived from mouse bone marrow cells was performed to evaluate the mechanism of action. The protective activity of harpagide against bone loss was also evaluated in ovariectomized (OVX) mouse model. Harpagide improved bone properties by stimulating the process of differentiation and maturation of osteoblast cells and suppressing the process of RANKL-induced differentiation of osteoclast cells. In OVX-induced bone loss mouse model, oral administration of harpagide significantly improved recovery of bone mineral density, trabecular bone volume, and trabecular number in the femur. Harpagide also prevented increase of trabecular separation and structure model index induced by OVX. Harpagide effectively inhibited the serum levels of biochemical markers of bone loss, including alkaline phosphatase, osteocalcin, C-terminal telopeptide, and tartrate-resistant acid phosphatase. Taken together, the present study demonstrates that harpagide has a potential for prevention of bone loss in OVX mice by regulating the stimulation of osteoblast differentiation and the suppression of osteoclast formation. Therefore, these findings suggest that harpagide might serve as a bioactive compound derived from H. procumbens var. sublobatum for improvement of age-dependent bone destruction disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. SclR, a basic helix-loop-helix transcription factor, regulates hyphal morphology and promotes sclerotial formation in Aspergillus oryzae.

    Science.gov (United States)

    Jin, Feng Jie; Takahashi, Tadashi; Matsushima, Ken-ichiro; Hara, Seiichi; Shinohara, Yasutomo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko; Koyama, Yasuji

    2011-07-01

    Most known basic-region helix-loop-helix (bHLH) proteins belong to a superfamily of transcription factors often involved in the control of growth and differentiation. Therefore, inappropriate expression of genes encoding bHLH proteins is frequently associated with developmental dysfunction. In our previously reported study, a novel bHLH protein-encoding gene (AO090011000215) of Aspergillus oryzae was identified. The gene-disrupted strain was found to produce dense conidia, but sparse sclerotia, relative to the parent strain. Here, to further analyze its function, we generated an overexpressing strain using the A. oryzae amyB gene promoter. Genetic overexpression led to a large number of initial hyphal aggregations and then the formation of mature sclerotia; it was therefore designated sclR (sclerotium regulator). At the same time, the sclR-overexpressing strain also displayed both delayed and decreased conidiation. Scanning electron microscopy indicated that the aerial hyphae of the sclR-overexpressing strain were extremely branched and intertwined with each other. In the generation of the SclR-enhanced green fluorescent protein (EGFP) expression strain, the SclR-EGFP protein fusion was conditionally detected in the nuclei. In addition, the loss of sclR function led to rapid protein degradation and cell lysis in dextrin-polypeptone-yeast extract liquid medium. Taken together, these observations indicate that SclR plays an important role in hyphal morphology, asexual conidiospore formation, and the promotion of sclerotial production, even retaining normal cell function, at least in submerged liquid culture.

  6. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  7. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum.

    Science.gov (United States)

    Wei, Qinglv; Du, Yanru; Jin, Kai; Xia, Yuxian

    2017-12-01

    Homeodomain transcription factor Ste12 is a key target activated by the pathogenic mitogen-activated-protein kinase pathway, and the activated Ste12p protein regulates downstream gene expression levels to modulate phenotypes. However, the functions of Ste12-like genes in entomopathogenic fungi remain poorly understood and little is known about the downstream genes regulated by Ste12. In this study, we characterized the functions of a Ste12 orthologue in Metarhizium acridum, MaSte12, and identified its downstream target genes. The deletion mutant (ΔMaSte12) is defective in conidial germination but not in hyphal growth, conidiation, or stress tolerance. Bioassays showed that ΔMaSte12 had a dramatically decreased virulence in topical inoculations, but no significant difference was found in intrahemolymph injections when the penetration process was bypassed. The mature appressorium formation rate of ΔMaSte12 was less than 10% on locust wings, with the majority hyphae forming appressorium-like, curved but no swollen structures. Digital gene expression profiling revealed that some genes involved in cell wall synthesis and remodeling, appressorium development, and insect cuticle penetration were downregulated in ΔMaSte12. Thus, MaSte12 has critical roles in the pathogenicity of the entomopathogenic fungus M. acridum, and our study provides some explanations for the impairment of fungal virulence in ΔMaSte12. In addition, virulence is very important for fungal biocontrol agents to control insect pests effectively. This study demonstrated that MaSte12 is involved in fungal virulence but not conidial yield or fungal stress tolerance in M. acridum. Thus, MaSte12 and its downstream genes may be candidates for enhancing fungal virulence to improve mycoinsecticides.

  8. 3D Characterization of Recrystallization Boundaries

    DEFF Research Database (Denmark)

    Zhang, Yubin; Godfrey, Andrew William; MacDonald, A. Nicole

    2016-01-01

    A three-dimensional (3D) volume containing a recrystallizing grain and a deformed matrix in a partially recrystallized pure aluminum was characterized using the 3D electron backscattering diffraction technique. The 3D shape of a recrystallizing boundary, separating the recrystallizing grain...... on the formation of protrusions/retrusions....

  9. Effect of Plant Growth Regulators on a Shoot and Root Formation from the Leaf and Flower Culture of a Standard-type Chrysanthemum 'Jinba'

    International Nuclear Information System (INIS)

    Lee, J.S.; Lee, G.J.; Chung, S.J.; Kim, J.B.; Kim, D.S.; Kang, S.Y.

    2008-01-01

    In this study we investigated the conditions of a higher frequency for regenerated plants from different explants of a standard-type chrysanthemum 'Jinba'. In vitro culture was initiated on an MS medium containing 3% sucrose, 0.8% agar, and 5 μM benzyl adenine (BA) with naphthalene acetic acid (NAA) by using surface-sterilized leaf and flower tissues from greenhouse-grown plants. Direct shoot regeneration from the leaf and flower explants was obtained 21 to 28 days after the initial culture. Among the seven combinations of the growth regulators used for the culture, the most efficient condition for the shoot and root formation from the leaf tissue was obtained when the MS basic medium was supplemented with 0.5 mg L-¹ BA and 1.0 mg L-¹ NAA, and 0.1 mg L-¹ BA and 0.5 mg L-¹ NAA, while the culture using floret tissues was most efficient on the medium supplemented with 0.5 mg L-¹ BA and 0.5 mg L-¹ NAA, and 0.1 mg L-¹ BA and 1.0 mg L-¹ NAA. These results will provide valuable information to help set up an efficient system for a tissue culture of chrysanthemum cv. Jinba to improve one or some of its negative traits in combination with a radiation mutagenesis approach

  10. Dissection of Molecular Mechanisms Regulating Protein Body Formation in Maize Endosperm - DE-FG03-95-ER20183 B139

    Energy Technology Data Exchange (ETDEWEB)

    Brian A. Larkins

    2003-03-21

    Dissection of Molecular Mechanisms Regulating Protein Body Formation in Maize Endosperm - DE-FG03-95-ER20183 Final Technical Report and Patent Summary Dr. Brian A. Larkins, Department of Plant Sciences, University of Arizona, Tucson, AZ 85721 Endosperm texture is an important quality trait in maize, as it influences the shipping characteristics of the grain, its susceptibility to insects, the yield of grits from dry milling, energy costs during wet milling, and the baking and digestibility properties of the flour. There appears to be a causal relationship between kernel hardness and the formation of zein-containing protein bodies, as mutations affecting protein body number and structure are associated with a soft, starchy kernel. In this project we used a variety of approaches to better understand this relationship and investigate the molecular and biochemical changes associated with starchy endosperm mutants. We characterized the distribution of zein mRNAs on endosperm rough endoplasmic reticulum (RER) membranes and the interactions between zein proteins, as each of these could influence the structure of protein bodies. Based on in situ hybridization, mRNAs encoding the 22-kD alpha- and 27-kD gamma-zeins are randomly distributed on RER; hence, mRNA targeting does not appear to influence the formation of protein bodies. Investigation of the interactions between zein proteins (alpha, beta, gamma, delta) with the yeast two-hybrid system showed that interactions between the 19- and 22-alpha-zeins are relatively weak, although each of them interacted strongly with the 10-kD delta-zein. Strong interactions were detected between the alpha- and delta-zeins and the 16-kD gamma- and 15-kD beta-zeins; however, the 50-kD and 27-kD gamma-zeins did not interact detectably with the alpha- and delta-zein proteins. The NH2- and COOH-terminal domains of the 22-kD alpha-zein were found to interact most strongly with the 15-kD beta- and 16-kD gamma-zeins, suggesting the 16-kD and 15

  11. Administrative Area Boundaries 2 (State Boundaries), Region 9, 2010, NAVTEQ

    Data.gov (United States)

    U.S. Environmental Protection Agency — NAVTEQ Administrative Area Boundaries 2 (State Boundaries) for Region 9. There are five Administrative Area Boundaries layers (1, 2, 3, 4, 5). These layers contain...

  12. Administrative Area Boundaries 4 (City Boundaries), Region 9, 2010, NAVTEQ

    Data.gov (United States)

    U.S. Environmental Protection Agency — NAVTEQ Administrative Area Boundaries 4 (City Boundaries) for Region 9. There are five Administrative Area Boundaries layers (1, 2, 3, 4, 5). These layers contain...

  13. Tlx and Pax6 co-operate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon.

    Science.gov (United States)

    Stenman, Jan; Yu, Ruth T; Evans, Ronald M; Campbell, Kenneth

    2003-03-01

    We have examined the role of Tlx, an orphan nuclear receptor, in dorsal-ventral patterning of the mouse telencephalon. Tlx is expressed broadly in the ventricular zone, with the exception of the dorsomedial and ventromedial regions. The expression spans the pallio-subpallial boundary, which separates the dorsal (i.e. pallium) and ventral (i.e. subpallium) telencephalon. Despite being expressed on both sides of the pallio-subpallial boundary, Tlx homozygous mutants display alterations in the development of this boundary. These alterations include a dorsal shift in the expression limits of certain genes that abut at the pallio-subpallial boundary as well as the abnormal formation of the radial glial palisade that normally marks this boundary. The Tlx mutant phenotype is similar to, but less severe than, that seen in Small eye (i.e. Pax6) mutants. Interestingly, removal of one allele of Pax6 on the homozygous Tlx mutant background significantly worsens the phenotype. Thus Tlx and Pax6 cooperate genetically to regulate the establishment of the pallio-subpallial boundary. The patterning defects in the Tlx mutant telencephalon result in a loss of region-specific gene expression in the ventral-most pallial region. This correlates well with the malformation of the lateral and basolateral amygdala in Tlx mutants, both of which have been suggested to derive from ventral portions of the pallium.

  14. Tax Unit Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — The Statewide GIS Tax Unit boundary file was created through a collaborative partnership between the State of Kansas Department of Revenue Property Valuation...

  15. 500 Cities: City Boundaries

    Data.gov (United States)

    U.S. Department of Health & Human Services — This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities...

  16. National Forest Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme shows the USFS national forest boundaries in the state. This data was acquired from the GIS coordinators at both the Chippewa National Forest and the...

  17. Allegheny County Parcel Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains parcel boundaries attributed with county block and lot number. Use the Property Information Extractor for more control downloading a filtered...

  18. Boundary representation modelling techniques

    CERN Document Server

    2006-01-01

    Provides the most complete presentation of boundary representation solid modelling yet publishedOffers basic reference information for software developers, application developers and users Includes a historical perspective as well as giving a background for modern research.

  19. NM School District Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The dataset represents the boundaries of all public school districts in the state of New Mexico. The source for the data layer is the New Mexico Public Education...

  20. Site Area Boundaries

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of site boundaries from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times and...

  1. HUC 8 Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set is a digital hydrologic unit boundary that is at the 4-digit, 6-digit, 8-digit, and 11-digit level. The data set was developed by delineating the...

  2. State Park Statutory Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — Legislative statutory boundaries for sixty six state parks, six state recreation areas, and eight state waysides. These data are derived principally from DNR's...

  3. GIVETIAN–FRASNIAN BOUNDARY CONODONTS FROM KERMAN PROVINCE, CENTRAL IRAN

    OpenAIRE

    GHOLAMALIAN, HOSSEIN; HAIRAPETIAN, VACHIK; BARFEHEI, NAHID; MANGELIAN, SOHEYLA; FARIDI, PARVANEH

    2013-01-01

    The Middle - Late Devonian boundary is investigated based on twenty-two conodont species and subspecies from three sections in the north and west of Kerman, southeastern central Iran. Upper Givetian - lower Frasnian carbonates of the basal part of the Bahram Formation transgressively overlie the sandstone beds of the top of (?) Early - Middle Devonian Padeha Formation. These massive skeletal limestones encompass the G-F boundary. The base of Frasnian is identified by the appearance of early f...

  4. Shifting Institutional Boundaries through Cross-Border Higher Education

    Science.gov (United States)

    Amaral, Alberto; Tavares, Orlanda; Cardoso, Sónia; Sin, Cristina

    2016-01-01

    Cross-border higher education (CBHE) has been changing the organizational boundaries of higher education institutions (HEIs). This study aims to analyze the shifting boundaries of Portuguese HEIs through the lens of the identity concept in organization theories, considering three contexts with different levels of regulation: African…

  5. Expression of angiopoietin-1 in hypoxic pericytes: Regulation by hypoxia-inducible factor-2α and participation in endothelial cell migration and tube formation.

    Science.gov (United States)

    Park, Yoon Shin; Kim, Gyungah; Jin, Yoon Mi; Lee, Jee Young; Shin, Jong Wook; Jo, Inho

    2016-01-08

    We previously reported that hypoxia increases angiopoietin-1 (Ang1), but not Ang2, mRNA expression in bovine retinal pericytes (BRP). However, the mechanism underlying Ang1 expression is unknown. Here, we report that Ang1 protein expression increased in hypoxic BRP in a dose- and time-dependent manner. This increase was accompanied by an increase in hypoxia-inducible factor-2α (HIF2α) expression. Transfection with an antisense oligonucleotide for HIF2α partially inhibited the hypoxia-induced increase in Ang1 expression. HIF2α overexpression further potentiated hypoxia-stimulated Ang1 expression, suggesting that HIF2α plays an important role in Ang1 regulation in BRP. When fused the Ang1 promoter (-3040 to +199) with the luciferase reporter gene, we found that hypoxia significantly increased promoter activity by 4.02 ± 1.68 fold. However, progressive 5'-deletions from -3040 to -1799, which deleted two putative hypoxia response elements (HRE), abolished the hypoxia-induced increase in promoter activity. An electrophoretic mobility shift assay revealed that HIF2α was predominantly bound to a HRE site, located specifically at nucleotides -2715 to -2712. Finally, treatment with conditioned medium obtained from hypoxic pericytes stimulated endothelial cell migration and tube formation, which was completely blocked by co-treatment with anti-Ang1 antibody. This study is the first to demonstrate that hypoxia upregulates Ang1 expression via HIF2α-mediated transcriptional activation in pericytes, which plays a key role in angiogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Grain boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.

    1979-01-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of our knowledge of these fundamentals is given. Included are the following: (1) structure of ideal perfect boundaries; (2) defect structure of grain boundaries; (3) diffusion at grain boundaries; (4) grain boundaries as sources/sinks for point defects; (5) grain boundary migration; (6) dislocation phenomena at grain boundaries; (7) atomic bonding and cohesion at grain boundaries; (8) non-equilibrium properties of grain boundaries; and (9) techniques for studying grain boundaries

  7. Outer Magnetospheric Boundaries Cluster Results

    CERN Document Server

    Paschmann, Goetz; Schwartz, S J

    2006-01-01

    When the stream of plasma emitted from the Sun (the solar wind) encounters Earth's magnetic field, it slows down and flows around it, leaving behind a cavity, the magnetosphere. The magnetopause is the surface that separates the solar wind on the outside from the Earth's magnetic field on the inside. Because the solar wind moves at supersonic speed, a bow shock must form ahead of the magnetopause that acts to slow the solar wind to subsonic speeds. Magnetopause, bow shock and their environs are rich in exciting processes in collisionless plasmas, such as shock formation, magnetic reconnection, particle acceleration and wave-particle interactions. They are interesting in their own right, as part of Earth's environment, but also because they are prototypes of similar structures and phenomena that are ubiquitous in the universe, having the unique advantage that they are accessible to in situ measurements. The boundaries of the magnetosphere have been the target of direct in-situ measurements since the beginning ...

  8. The Bottom Boundary Layer.

    Science.gov (United States)

    Trowbridge, John H; Lentz, Steven J

    2018-01-03

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  9. The Bottom Boundary Layer

    Science.gov (United States)

    Trowbridge, John H.; Lentz, Steven J.

    2018-01-01

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  10. Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2

    International Nuclear Information System (INIS)

    Burch, R.M.; Axelrod, J.

    1987-01-01

    In Swiss 3T3 fibroblasts bradykinin stimulated inositol phosphate (InsP) formation and prostaglandin E 2 (PGE 2 ) synthesis. The EC 50 values for stimulation of PGE 2 synthesis and InsP formation by bradykinin were similar, 200 pM and 275 pM, respectively. Guanosine-5'-[γ-thio]triphosphate stimulated PGE 2 synthesis and InsP formation, and guanosine-5'-[β-thio]diphosphate inhibited both PGE 2 synthesis and InsP formation stimulated by bradykinin. Neither bradykinin-stimulated PGE 2 synthesis nor InsP formation was sensitive to pertussis toxin. Phorbol ester, dexamethasone, and cycloheximide distinguished between bradykinin-stimulated PGE 2 synthesis and InsP formation. Phorbol 12-myristate 13-acetate enhanced bradykinin-stimulated PGE 2 synthesis but inhibited bradykinin-stimulated InsP formation. Pretreatment of cells with dexamethasone for 24 hr inhibited bradykinin-stimulated PGE 2 synthesis but was without effect on bradykinin-stimulated InsP formation. Cycloheximide inhibited on bradykinin-stimulated InsP formation. When bradykinin was added to cells prelabeled with [ 3 H] choline, the phospholipase A 2 products lysophosphatidylcholine and glycerophosphocholine were generated. The data suggest that bradykinin receptors are coupled by GTP-binding proteins to both phospholipase C and phospholipase A 2 and that phospholipase A 2 is the enzyme that catalyzes release of arachidonate for prostaglandin synthesis

  11. Minnesota County Boundaries - lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....

  12. Boundary-Object Trimming

    DEFF Research Database (Denmark)

    Bossen, Claus; Jensen, Lotte Groth; Udsen, Flemming Witt

    2014-01-01

    implementation, which also coupled the work of medical secretaries more tightly to that of other staff, and led to task drift among professions. Medical secretaries have been relatively invisible to health informatics and CSCW, and we propose the term ‘boundary-object trimming’ to foreground and conceptualize...

  13. Minnesota County Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....

  14. Boundaries of the universe

    CERN Document Server

    Glasby, John S

    2013-01-01

    The boundaries of space exploration are being pushed back constantly, but the realm of the partially understood and the totally unknown is as great as ever. Among other things this book deals with astronomical instruments and their application, recent discoveries in the solar system, stellar evolution, the exploding starts, the galaxies, quasars, pulsars, the possibilities of extraterrestrial life and relativity.

  15. Conformal boundary loop models

    International Nuclear Information System (INIS)

    Jacobsen, Jesper Lykke; Saleur, Hubert

    2008-01-01

    We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling

  16. The civRT operon is important for Campylobacter jejuni strain 81-176 host cell interactions through regulation of the formate dehydrogenase operon

    Science.gov (United States)

    C. jejuni colonizes the intestinal mucosa, and the severity of disease in different strains is correlated with host cell interaction and invasion. A microarray screen to identify genes differentially regulated during C. jejuni interaction with tissue culture cells revealed the up-regulation of a two...

  17. Boundary Conditions of Methamphetamine Craving

    Science.gov (United States)

    Lopez, Richard B.; Onyemekwu, Chukwudi; Hart, Carl L.; Ochsner, Kevin N.; Kober, Hedy

    2015-01-01

    Methamphetamine use has increased significantly and become a global health concern. Craving is known to predict methamphetamine use and relapse following abstinence. Some have suggested that cravings are automatic, generalized, and uncontrollable, but experimental work addressing these claims is lacking. In two exploratory studies we tested the boundary conditions of methamphetamine craving by asking: (1) is craving specific to users’ preferred route of administration? and (2) can craving be regulated by cognitive strategies? Two groups of methamphetamine users were recruited. In Study 1, participants were grouped by their preferred route of administration (intranasal vs. smoking), and rated their craving in response to photographs and movies depicting methamphetamine use (via the intranasal vs. smoking route). In Study 2, methamphetamine smokers implemented cognitive regulation strategies while viewing photographs depicting methamphetamine smoking. Strategies involved either focusing on the positive aspects of smoking methamphetamine or the negative consequences of doing so – the latter strategy based on treatment protocols for addiction. In Study 1, we found a significant interaction between group and route of administration, such that participants who preferred to smoke methamphetamine reported significantly stronger craving for smoking stimuli, whereas those who preferred the intranasal route reported stronger craving for intranasal stimuli. In Study 2, participants reported significantly lower craving when focusing on the negative consequences associated with methamphetamine use. Taken together, these findings suggest that strength of craving for methamphetamine is moderated by users’ route of administration and can be reduced by cognitive strategies. This has important theoretical, methodological, and clinical implications. PMID:26302338

  18. Grain Boundary Segregation in Metals

    CERN Document Server

    Lejcek, Pavel

    2010-01-01

    Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.

  19. Reactor pressure boundary materials

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Chi, S. H.; Lee, B. S.

    2002-04-01

    With a long-term operation of nuclear power plants, the component materials are degraded under severe reactor conditions such as neutron irradiation, high temperature, high pressure and corrosive environment. It is necessary to establish the reliable and practical technologies for improving and developing the component materials and for evaluating the mechanical properties. Especially, it is very important to investigate the technologies for reactor pressure boundary materials such as reactor vessel and pipings in accordance with their critical roles. Therefore, this study was focused on developing and advancing the microstructural/micro-mechanical evaluation technologies, and on evaluating the neutron irradiation characteristics and radiation effects analysis technology of the reactor pressure boundary materials, and also on establishing a basis of nuclear material property database

  20. Grain Boundary Complexions

    Science.gov (United States)

    2014-05-01

    Cantwell et al. / Acta Materialia 62 (2014) 1–48 challenging from a scientific perspective, but it can also be very technologically rewarding , given the...energy) is a competing explanation that remains to be explored. Strategies to drive the grain boundary energy toward zero have produced some success...Thompson AM, Soni KK, Chan HM, Harmer MP, Williams DB, Chabala JM, et al. J Am Ceram Soc 1997;80:373. [172] Behera SK. PhD dissertation, Materials Science

  1. Boundary-layer theory

    CERN Document Server

    Schlichting (Deceased), Hermann

    2017-01-01

    This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

  2. Exchanges in boundary layer and low troposphere and consequences on pollution of Fos-Berre-Marseille area (ESCOMPTE experiment); Les aerosols: emissions, formation d'aerosols organiques secondaires, transport longue distance. Zoom sur les aerosols carbones en Europe

    Energy Technology Data Exchange (ETDEWEB)

    Guillaume, B

    2006-01-15

    There are two types of 'carbonaceous aerosols': 'black carbon' (BC) and 'organic carbon'(OC). BC is directly emitted in the atmosphere while OC is either directly emitted (primary OC, OCp) or secondarily formed through oxidation processes in the atmosphere (secondary organic aerosols, SOA). Complexity of carbonaceous aerosols is still poorly represented in existing aerosol models and uncertainties appear mainly both in their emission inventories and in their complex atmospheric evolution (transport, gas-particle interactions, dry/wet deposition), making difficult the estimation of their radiative impact. In this framework, I developed during my PhD at Laboratoire d'Aerologie, a new approach to deal with this complexity, with implementation of both a new carbonaceous aerosol emission inventory and a new aerosol modelling tool at global scale. My work is divided in 5 different tasks: - better characterisation of BC and OCp emissions, achieved through the development of a new emission inventory from fossil fuel and biofuel combustion sources (industrial, domestic and mobile sources). This inventory provides BC and OCp emissions for Europe at 25 km * 25 km resolution for the years 1990, 1995, 2000, 2005 and 2010, with two additional regional zooms: on France, at 10 km * 10 km resolution for the years 2000 and 2010 with improved road traffic, and in Marseille region (Escompte campaign, 1999,-2001) at 1 km * 1 km resolution for the year 1999; - better modelling of carbonaceous aerosol complex atmospheric evolution, through coupling of a global scale gas transport/chemistry model (TM4) with an aerosol module (ORISAM) featuring size-distributed aerosols (on 8 diameter sections from 40 nm to 10 {mu}m) organic/inorganic chemical composition and explicit treatment of SOA formation; - simulations with this new aerosol model ORISAM-TM4 and model/measurements comparisons to study BC and OC long-range transport; - sensitivity tests on SOA

  3. The Atmospheric Boundary Layer

    Science.gov (United States)

    Garratt, J. R.

    1994-05-01

    A comprehensive and lucid account of the physics and dynamics of the lowest one to two kilometers of the Earth's atmosphere in direct contact with the Earth's surface, known as the atmospheric boundary layer (ABL). Dr. Garratt emphasizes the application of the ABL problems to numerical modeling of the climate, which makes this book unique among recent texts on the subject. He begins with a brief introduction to the ABL before leading to the development of mean and turbulence equations and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modeling of the ABL is crucially dependent for its realism on the surface boundary conditions, so chapters four and five deal with aerodynamic and energy considerations, with attention given to both dry and wet land surfaces and the sea. The author next treats the structure of the clear-sky, thermally stratified ABL, including the convective and stable cases over homogeneous land, the marine ABL, and the internal boundary layer at the coastline. Chapter seven then extends this discussion to the cloudy ABL. This is particularly relevant to current research because the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic have been identified as key players in the climate system. In the final chapters, Dr. Garratt summarizes the book's material by discussing appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate stimulation.

  4. Regional boundaries study

    International Nuclear Information System (INIS)

    Zavatsky, S.; Phaneuf, P.; Topaz, D.; Ward, D.

    1978-02-01

    The NRC Office of Inspection and Enforcement (IE) has elected to evaluate the effectiveness and efficiency of its existing regional boundary alignment because of the anticipated future growth of nuclear power generating facilities and corresponding inspection requirements. This report documents a management study designed to identify, analyze, and evaluate alternative regional boundary configurations for the NRC/IE regions. Eight boundary configurations were chosen for evaluation. These configurations offered alternatives ranging from two to ten regions, and some included the concepts of subregional or satellite offices. Each alternative configuration was evaluated according to three major criteria: project workload, cost, and office location. Each major criterion included elements such as management control, program uniformity, disruption, costs, and coordination with other agencies. The conclusion reached was that regional configurations with regions of equal and relatively large workloads, combined with the concepts of subregional or satellite offices, may offer a significant benefit to the Office of Inspection and Enforcement and the Commission and are worthy of further study. A phased implementation plan, which is suitable to some configurations, may help mitigate the disruption created by realignment

  5. Shared care and boundaries:

    DEFF Research Database (Denmark)

    Winthereik, Brit Ross

    2008-01-01

    Purpose – The paper seeks to examine how an online maternity record involving pregnant women worked as a means to create shared maternity care. Design/methodology/approach – Ethnographic techniques have been used. The paper adopts a theoretical/methodological framework based on science and techno......Purpose – The paper seeks to examine how an online maternity record involving pregnant women worked as a means to create shared maternity care. Design/methodology/approach – Ethnographic techniques have been used. The paper adopts a theoretical/methodological framework based on science...... and technology studies. Findings – The paper shows how a version of “the responsible patient” emerges from the project which is different from the version envisioned by the project organisation. The emerging one is concerned with the boundary between primary and secondary sector care, and not with the boundary......, IT designers and project managers should attend to the specific ways in which boundaries are inevitably enacted and to the ways in which care is already shared. This will provide them with opportunities to use the potentials of new identities and concerns that emerge from changing the organisation...

  6. Direct activation of EXPANSIN14 by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis.

    Science.gov (United States)

    Kim, Jungmook; Lee, Han Woo

    2013-02-01

    Root system architecture is important for plants to adapt to a changing environment. The major determinant of the root system is lateral roots originating from the primary root. The developmental process of lateral root formation can be divided into priming, initiation, primordium development and the emergence of lateral roots, and is well characterized in Arabidopsis. The hormone auxin plays a critical role in lateral root development, and several auxin response modules involving AUXIN RESPONSE FACTORS (ARFs), transcriptional regulators of auxin-regulated genes and Aux/IAA, negative regulators of ARFs, regulate lateral root formation. The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family encodes a unique class of transcription factors harbouring a conserved plant-specific lateral organ boundary domain and plays a role in lateral organ development of plants including lateral root formation. In our previous study, we showed that LBD18 stimulates lateral root formation in combination with LBD16 downstream of ARF7 and ARF19 during the auxin response. We have recently demonstrated that LBD18 activates expression of EXP14, a gene encoding the cell-wall loosening factor, by directly binding to the EXP14 promoter to promote lateral root emergence. Here we present the molecular function of LBD18 and its gene regulatory network during lateral root formation.

  7. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  8. The control of fruiting body formation in the ascomycete Sordaria macrospora Auersw. by regulation of hyphal development : An analysis based on scanning electron and light microscopic observations.

    Science.gov (United States)

    Hock, B; Bahn, M; Walk, R A; Nitschke, U

    1978-01-01

    The morphological effects of biotin and L-arginine on fruiting body formation of the ascomycete Sordaria macrospora are investigated by scanning electron and light microscopy. Biotin is recognized as an elongation factor and arginine as a branching factor in vegetative and reproductive hyphae. In the absence of exogenous biotin, development is blocked after the ascogonium-core hypha stage of protoperithecial morphogenesis, whereas linear growth of the myceliar front is maintained. The addition of exogenous arginine to a biotin deficient culture induces the formation of numerous side branches even in the older mycelium. Fruiting body formation, however, remains blocked at the protoperithecial stage as before, because of the inability of the side branches to elongate. When biotin and arginine are administered simultaneously, a most vigorous branching and growth are induced in the older mycelium, accompanied by a rapid and maximal formation of fruiting bodies. The results are summarized in a model of the exogenous control of hyphal morphogenesis. The model is designed to explain the relationship between fruiting and hyphal density as well as the edge effect on fruiting body formation.

  9. Bristled shark skin: a microgeometry for boundary layer control?

    International Nuclear Information System (INIS)

    Lang, A W; Hidalgo, P; Westcott, M; Motta, P

    2008-01-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry

  10. Bristled shark skin: a microgeometry for boundary layer control?

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A W; Hidalgo, P; Westcott, M [Aerospace Engineering and Mechanics Department, University of Alabama, Box 870280, Tuscaloosa, AL 35487 (United States); Motta, P [Biology Department, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)], E-mail: alang@eng.ua.edu

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  11. Extracellular Na+ levels regulate formation and activity of the NaX/alpha1-Na+/K+-ATPase complex in neuronal cells.

    Directory of Open Access Journals (Sweden)

    Emmanuelle eBerret

    2014-12-01

    Full Text Available MnPO neurons play a critical role in hydromineral homeostasis regulation by acting as sensors of extracellular sodium concentration ([Na+]out. The mechanism underlying Na+-sensing involves Na+-flow through the NaX channel, directly regulated by the Na+/K+-ATPase α1-isoform which controls Na+-influx by modulating channel permeability. Together, these two partners form a complex involved in the regulation of intracellular sodium ([Na+]in. Here we aim to determine whether environmental changes in Na+ could actively modulate the NaX/Na+/K+-ATPase complex activity.We investigated the complex activity using patch-clamp recordings from rat MnPO neurons and Neuro2a cells. When the rats were fed with a high-salt-diet, or the [Na+] in the culture medium was increased, the activity of the complex was up-regulated. In contrast, drop in environmental [Na+] decreased the activity of the complex. Interestingly under hypernatremic condition, the colocalization rate and protein level of both partners were up-regulated. Under hyponatremic condition, only NaX protein expression was increased and the level of NaX/Na+/K+-ATPase remained unaltered. This unbalance between NaX and Na+/K+-ATPase pump proportion would induce a bigger portion of Na+/K+-ATPase-control-free NaX channel. Thus we suggest that hypernatremic environment increases NaX/Na+/K+-ATPase α1-isoform activity by increasing the number of both partners and their colocalization rate, whereas hyponatremic environment down-regulates complex activity via a decrease in the relative number of NaX channels controlled by the pump.

  12. Dual boundary spanning

    DEFF Research Database (Denmark)

    Li-Ying, Jason

    2016-01-01

    The extant literature runs short in understanding openness of innovation regarding and the different pathways along which internal and external knowledge resources can be combined. This study proposes a unique typology for outside-in innovations based on two distinct ways of boundary spanning......: whether an innovation idea is created internally or externally and whether an innovation process relies on external knowledge resources. This yields four possible types of innovation, which represent the nuanced variation of outside-in innovations. Using historical data from Canada for 1945...

  13. Nonlinear Transient Growth and Boundary Layer Transition

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  14. Ethyl Carbamate Formation Regulated by Lactic Acid Bacteria and Nonconventional Yeasts in Solid-State Fermentation of Chinese Moutai-Flavor Liquor.

    Science.gov (United States)

    Du, Hai; Song, Zhewei; Xu, Yan

    2018-01-10

    This study aimed to identify specific microorganisms related to the formation of precursors of EC (ethyl carbamate) in the solid-state fermentation of Chinese Moutai-flavor liquor. The EC content was significantly correlated with the urea content during the fermentation process (R 2 = 0.772, P solid-state fermentation can be controlled using lactic acid bacteria and nonconventional yeasts.

  15. BcR-induced apoptosis involves differential regulation of C-16 and C-24-ceramide formation and sphingolipid-dependent activation of the proteasome

    NARCIS (Netherlands)

    Kroesen, BJ; Jacobs, Susan; Pettus, BJ; Sietsma, H; Kok, JW; Hannun, YA; de Leij, LFMH

    2003-01-01

    In this study, we describe an ordered formation of long- and very long-chain ceramide species in relation to the progression of B-cell receptor (BcR) triggering induced apoptosis. An early and caspase-independent increase in long-chain ceramide species, in which C-24-ceramide predominated, was

  16. Curcumin-induced fibroblast apoptosis and in vitro wound contraction are regulated by antioxidants and heme oxygenase: implications for scar formation.

    NARCIS (Netherlands)

    Scharstuhl, A.; Mutsaers, H.A.M.; Pennings, S.W.C.; Szarek, W.A.; Russel, F.G.M.; Wagener, F.A.D.T.G.

    2009-01-01

    Fibroblast apoptosis plays a crucial role in normal and pathological scar formation and therefore we studied whether the putative apoptosis-inducing factor curcumin affects fibroblast apoptosis and may function as a novel therapeutic. We show that 25-microM curcumin causes fibroblast apoptosis and

  17. Regulation of Autotrophic and Heterotrophic Metabolism in Pseudomonas oxalaticus OX1 : Growth on Mixtures of Acetate and Formate in Continuous Culture

    NARCIS (Netherlands)

    Dijkhuizen, L.; Harder, W.

    1979-01-01

    Growth of Pseudomonas oxalaticus in carbon- and energy-limited continuous cultures with mixtures of acetate and formate resulted in the simultaneous utilization of both substrates at all dilution rates tested. During growth on these mixtures, acetate repressed the synthesis of ribulosebisphosphate

  18. Differential gene expression analysis of tubule forming and non-tubule forming endothelial cells: CDC42GAP as a counter-regulator in tubule formation

    NARCIS (Netherlands)

    Engelse, M.A.; Laurens, N.; Verloop, R.E.; Koolwijk, P.; Hinsbergh, V.W.M. van

    2008-01-01

    The formation of new tubular structures from a quiescent endothelial lining is one of the hallmarks of sprouting angiogenesis. This process can be mimicked in vitro by inducing capillary-like tubular structures in a three-dimensional (3D) fibrin matrix. We aimed to analyze the differential mRNA

  19. Information dynamics of boundary perception

    DEFF Research Database (Denmark)

    Kragness, Haley; Hansen, Niels Christian; Vuust, Peter

    It has long been noted that expert musicians lengthen notes at phrase boundaries in expressive performance. Recently, we have extended research on this phenomenon by showing that undergraduates with no formal musical training and children as young as 3 years lengthen phrase boundaries during self...... uncertain than low-entropy contexts. Because phrase boundaries tend to afford high-entropy continuations, thus generating uncertain expectations in the listener, one possibility is that boundary perception is directly related to entropy. In other words, it may be hypothesized that entropy underlies...... on predictive uncertainty to the timing domain, as well as potentially answer key questions relating to boundary perception in musical listening....

  20. Slip systems, dislocation boundaries and lattice rotations in deformed metals

    DEFF Research Database (Denmark)

    Winther, Grethe

    2009-01-01

    Metals are polycrystals and consist of grains, which are subdivided on a finer scale upon plastic deformation due to formation of dislocation boundaries. The crystallographic alignment of planar dislocation boundaries in face centred cubic metals, like aluminium and copper, deformed to moderate...... of the mechanical anisotropy of rolled sheets. The rotation of the crystallographic lattice in each grain during deformation also exhibits grain orientation dependence, originating from the slip systems. A combined analysis of dislocation boundaries and lattice rotations concludes that the two phenomena are coupled...

  1. Regulation of Autotrophic and Heterotrophic Metabolism in Pseudomonas oxalaticus OX1. Growth on Fructose and on Mixtures of Fructose and Formate in Batch and Continuous Cultures

    NARCIS (Netherlands)

    Dijkhuizen, L.; Harder, W.

    1984-01-01

    In Pseudomonas oxalaticus the synthesis of enzymes involved in autotrophic CO2 fixation via the Calvin cycle is regulated by repression/derepression. During growth of the organism on fructose alone, the synthesis of ribulosebisphosphate carboxylase (RuBPCase) remained fully repressed, both in batch

  2. Analysis of the Protein Kinase A-Regulated Proteome of Cryptococcus neoformans Identifies a Role for the Ubiquitin-Proteasome Pathway in Capsule Formation

    Directory of Open Access Journals (Sweden)

    J. M. H. Geddes

    2016-01-01

    Full Text Available The opportunistic fungal pathogen Cryptococcus neoformans causes life-threatening meningitis in immunocompromised individuals. The expression of virulence factors, including capsule and melanin, is in part regulated by the cyclic-AMP/protein kinase A (cAMP/PKA signal transduction pathway. In this study, we investigated the influence of PKA on the composition of the intracellular proteome to obtain a comprehensive understanding of the regulation that underpins virulence. Through quantitative proteomics, enrichment and bioinformatic analyses, and an interactome study, we uncovered a pattern of PKA regulation for proteins associated with translation, the proteasome, metabolism, amino acid biosynthesis, and virulence-related functions. PKA regulation of the ubiquitin-proteasome pathway in C. neoformans showed a striking parallel with connections between PKA and protein degradation in chronic neurodegenerative disorders and other human diseases. Further investigation of proteasome function with the inhibitor bortezomib revealed an impact on capsule production as well as hypersusceptibility for strains with altered expression or activity of PKA. Parallel studies with tunicamycin also linked endoplasmic reticulum stress with capsule production and PKA. Taken together, the data suggest a model whereby expression of PKA regulatory and catalytic subunits and the activation of PKA influence proteostasis and the function of the endoplasmic reticulum to control the elaboration of the polysaccharide capsule. Overall, this study revealed both broad and conserved influences of the cAMP/PKA pathway on the proteome and identified proteostasis as a potential therapeutic target for the treatment of cryptococcosis.

  3. Stage-specific regulation of four HD-ZIP III transcription factors during polar pattern formation in Larix leptolepis somatic embryos.

    Science.gov (United States)

    Li, Shui-gen; Li, Wan-feng; Han, Su-ying; Yang, Wen-hua; Qi, Li-wang

    2013-06-15

    Polar auxin transport provides a developmental signal for cell fate specification during somatic embryogenesis. Some members of the HD-ZIP III transcription factors participate in regulation of auxin transport, but little is known about this regulation in somatic embryogenesis. Here, four HD-ZIP III homologues from Larix leptolepis were identified and designated LaHDZ31, 32, 33 and 34. The occurrence of a miR165/166 target sequence in all four cDNA sequences indicated that they might be targets of miR165/166. Identification of the cleavage products of LaHDZ31 and LaHDZ32 in vivo confirmed that they were regulated by miRNA. Their mRNA accumulation patterns during somatic embryogenesis and the effects of 1-N-naphthylphthalamic acid (NPA) on their transcript levels and somatic embryo maturation were investigated. The results showed that the four genes had higher transcript levels at mature stages than at the proliferation stage, and that NPA treatment down-regulated the mRNA abundance of LaHDZ31, 32 and 33 at cotyledonary embryo stages, but had no effect on the mRNA abundance of LaHDZ34. We concluded that these four members of Larix HD-ZIP III family might participate in polar auxin transport and the development of somatic embryos, providing new insights into the regulatory mechanisms of somatic embryogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Uniforms, status and professional boundaries in hospital.

    Science.gov (United States)

    Timmons, Stephen; East, Linda

    2011-11-01

    Despite their comparative neglect analytically, uniforms play a key role in the delineation of occupational boundaries and the formation of professional identity in healthcare. This paper analyses a change to the system of uniforms in one UK hospital, where management have required all professions (with the exception of doctors) to wear the same 'corporate' uniform. Focus groups were conducted with the professionals and patients. We analyse this initiative as a kind of McDonaldisation, seeking to create a new 'corporate' worker whose allegiance is principally to the organisation, rather than a profession. Our findings show how important uniforms are to their wearers, both in terms of the defence of professional boundaries and status, as well as the construction of professional identity. © 2011 The Authors. Sociology of Health & Illness © 2011 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.

  5. Extracellular matrix components and culture regimen selectively regulate cartilage formation by self-assembling human mesenchymal stem cells in vitro and in vivo.

    Science.gov (United States)

    Ng, Johnathan; Wei, Yiyong; Zhou, Bin; Burapachaisri, Aonnicha; Guo, Edward; Vunjak-Novakovic, Gordana

    2016-12-09

    Cartilage formation from self-assembling mesenchymal stem cells (MSCs) in vitro recapitulate important cellular events during mesenchymal condensation that precedes native cartilage development. The goal of this study was to investigate the effects of cartilaginous extracellular matrix (ECM) components and culture regimen on cartilage formation by self-assembling human MSCs in vitro and in vivo. Human bone marrow-derived MSCs (hMSCs) were seeded and compacted in 6.5-mm-diameter transwell inserts with coated (type I, type II collagen) or uncoated (vehicle) membranes, at different densities (0.5 × 10 6 , 1.0 × 10 6 , 1.5 × 10 6 per insert). Pellets were formed by aggregating hMSCs (0.25 × 10 6 ) in round-bottomed wells. All tissues were cultured for up to 6 weeks for in vitro analyses. Discs (cultured for 6, 8 or 10 weeks) and pellets (cultured for 10 weeks) were implanted subcutaneously in immunocompromised mice to evaluate the cartilage stability in vivo. Type I and type II collagen coatings enabled cartilage disc formation from self-assembling hMSCs. Without ECM coating, hMSCs formed dome-shaped tissues resembling the pellets. Type I collagen, expressed in the prechondrogenic mesenchyme, improved early chondrogenesis versus type II collagen. High seeding density improved cartilage tissue properties but resulted in a lower yield of disc formation. Discs and pellets exhibited compositional and organizational differences in vitro and in vivo. Prolonged chondrogenic induction of the discs in vitro expedited endochondral ossification in vivo. The outcomes of cartilage tissues formed from self-assembling MSCs in vitro and in vivo can be modulated by the control of culture parameters. These insights could motivate new directions for engineering cartilage and bone via a cartilage template from self-assembling MSCs.

  6. Challenging the Boundaries

    DEFF Research Database (Denmark)

    Nørgaard, Nina

    2004-01-01

    To many people, challenging the boundaries between the traditional disciplines in foreign language studies means doing cultural studies. The aim of this article is to pull in a different direction by suggesting how the interface between linguistics and literature may be another fertile field...... to explore in the study and teaching of foreign languages. Not only may linguistics and literature be employed to shed light on each other, the insights gained may furthermore prove useful in a broader context in our foreign language studies. The article begins with a brief introduction to literary...... linguistics in general and to Hallidayan linguistics in particular. The theoretical framework thus laid out, it is exemplified how Halliday's theory of language may be employed in the analysis of literature. The article concludes by considering the possible status of literary linguistics in a broader...

  7. Negotiating Cluster Boundaries

    DEFF Research Database (Denmark)

    Giacomin, Valeria

    2017-01-01

    Palm oil was introduced to Malay(si)a as an alternative to natural rubber, inheriting its cluster organizational structure. In the late 1960s, Malaysia became the world’s largest palm oil exporter. Based on archival material from British colonial institutions and agency houses, this paper focuses...... on the governance dynamics that drove institutional change within this cluster during decolonization. The analysis presents three main findings: (i) cluster boundaries are defined by continuous tug-of-war style negotiations between public and private actors; (ii) this interaction produces institutional change...... within the cluster, in the form of cumulative ‘institutional rounds’ – the correction or disruption of existing institutions or the creation of new ones; and (iii) this process leads to a broader inclusion of local actors in the original cluster configuration. The paper challenges the prevalent argument...

  8. Transcending Organizational Boundaries

    DEFF Research Database (Denmark)

    Kringelum, Louise Tina Brøns

    by applying the engaged scholarship approach, thereby providing a methodological contribution to both port and business model research. Emphasizing the interplay of intra- and inter-organizational business model innovation, the thesis adds insight into the roles of port authorities, business model trends......This thesis explores how processes of business model innovation can unfold in a port authority by transcending organizational boundaries through inter-organizational collaboration. The findings contribute to two fields of academic inquiry: the study of business model innovation and the study of how...... the roles of port authorities evolve. This contribution is made by combining the two fields, where the study of business model innovation is used as an analytical concept for understanding the evolution of port authorities, and where the study of port authorities is used as a contextual setting...

  9. Superfluid Boundary Layer.

    Science.gov (United States)

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  10. The POU homeodomain transcription factor POUM2 and broad complex isoform 2 transcription factor induced by 20-hydroxyecdysone collaboratively regulate vitellogenin gene expression and egg formation in the silkworm Bombyx mori.

    Science.gov (United States)

    Lin, Y; Liu, H; Yang, C; Gu, J; Shen, G; Zhang, H; Chen, E; Han, C; Zhang, Y; Xu, Y; Wu, J; Xia, Q

    2017-10-01

    Vitellogenin (Vg) is a source of nutrition for embryo development. Our previous study showed that the silkworm (Bombyx mori) transcription factor broad complex isoform 2 (BmBrC-Z2) regulates gene expression of the Vg gene (BmVg) by induction with 20-hydroxyecdysone (20E). However, the mechanism by which 20E regulates BmVg expression was not clarified. In this study, cell transfection experiments showed that the BmVg promoter containing the POU homeodomain transcription factor POUM2 (POUM2) and BrC-Z2 cis-response elements (CREs) showed a more significant response to 20E than that harbouring only the BrC-Z2 or POUM2 CRE. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay showed that BmPOUM2 could bind to the POUM2 CRE of the BmVg promoter. Over-expression of BmPOUM2 and BmBrC-Z2 in B. mori embryo-derived cell line (BmE) could enhance the activity of the BmVg promoter carrying both the POUM2 and BrC-Z2 CREs following 20E induction. Quantitative PCR and immunofluorescence histochemistry showed that the expression pattern and tissue localization of BmPOUM2 correspond to those of BmVg. Glutathione S-transferase pull-down and co-immunoprecipitation assays confirmed that BmPOUM2 interacts only with BmBrC-Z2 to regulate BmVg expression. Down-regulation of BmPOUM2 in female silkworm by RNA interference significantly reduced BmVg expression, leading to abnormal egg formation. In summary, these results indicate that BmPOUM2 binds only to BmBrC-Z2 to collaboratively regulate BmVg expression by 20E induction to control vitellogenesis and egg formation in the silkworm. Moreover, these findings suggest that homeodomain protein POUM2 plays a novel role in regulating insect vitellogenesis. © 2017 The Royal Entomological Society.

  11. Boundary Management Preferences, Boundary Control, and Work-Life Balance among Full-Time Employed Professionals in Knowledge-Intensive, Flexible Work

    Directory of Open Access Journals (Sweden)

    Christin Mellner

    2015-01-01

    Full Text Available Profound changes are taking place within working life, where established boundaries between work and personal life are challenged by increased global competition, ever-faster changing markets, and rapid development of boundary transcending information and communication technologies (ICT. The aim of this study was to investigate boundary management preferences in terms of keeping work and personal life domains separated or integrated, that is, segmenting or blending of domains, the perception of being in control of one´s preferred boundaries, and work-life balance among employees at a Swedish telecom company (N = 1,238, response rate 65%, men 73%, mean age 42 years. Psychosocial work factors, individual characteristics, sociodemographic factors, and work-life balance were investigated in relation to boundary management preferences and perceived boundary control. For high boundary control among segmenters, nearly all the studied psychosocial work factors were significant. Among integrators, this was the case only for clear expectations in work. For both groups, the individual capacity for self-regulation was associated with high boundary control. Regarding sociodemographic factors, cohabiting women with children who preferred segmentation had low boundary control. Finally, there was a main effect of boundary control on work-life balance. In particular, male segmenters perceiving high boundary control had better work-life balance than all others. Conclusions of the study are that segmenters need external boundaries in work for succesful boundary management. Moreover, self-regulation seems a crucial boundary competence in knowledge- intensive, flexible work. Results are of value for health promotion in modern work organizations in supporting employees achieving successful boundary control and subsequent work-life balance.

  12. Interaction with the 5D3 monoclonal antibody is regulated by intramolecular rearrangements but not by covalent dimer formation of the human ABCG2 multidrug transporter

    DEFF Research Database (Denmark)

    Özvegy-Laczka, Csilla; Laczkó, Rozália; Hegedűs, Csilla

    2008-01-01

    D3 monoclonal antibody shows a function-dependent reactivity to an extracellular epitope of the ABCG2 transporter. In the current experiments we have further characterized the 5D3-ABCG2 interaction. The effect of chemical cross-linking and the modulation of extracellular S-S bridges...... on the transporter function and 5D3 reactivity of ABCG2 were investigated in depth. We found that several protein cross-linkers greatly increased 5D3 labeling in ABCG2 expressing HEK cells; however, there was no correlation between covalent dimer formation, the inhibition of transport activity, and the increase in 5...

  13. Regulation of Pattern Formation and Gene Amplification During Drosophila Oogenesis by the miR-318 microRNA

    DEFF Research Database (Denmark)

    Ge, Wanzhong; Deng, Qiannan; Guo, Ting

    2015-01-01

    Pattern formation during epithelial development requires the coordination of multiple signaling pathways. Here, we investigate the functions of an ovary-enriched miRNA, miR-318, in epithelial development during Drosophila oogenesis. miR-318 maternal loss-of-function mutants were female sterile...... and laid eggs with abnormal morphology. Removal of miR-318 disrupted the dorsal-anterior follicle cell patterning, resulting in abnormal dorsal appendages. miR-318 mutant females also produced thin and fragile eggshells, due to impaired chorion gene amplification. We provide evidence that the ecdysone......RNAs in maintaining cell fate and promoting the developmental transition in the female follicular epithelium....

  14. Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation

    DEFF Research Database (Denmark)

    Bax, Daniel V; Mahalingam, Yashithra; Cain, Stuart

    2007-01-01

    We have defined the molecular basis of cell adhesion to fibrillin-1, the major structural component of extracellular microfibrils that are associated with elastic fibres. Using human dermal fibroblasts, and recombinant domain swap fragments containing the Arg-Gly-Asp motif, we have demonstrated...... a requirement for upstream domains for integrin-alpha(5)beta(1)-mediated cell adhesion and migration. An adjacent heparin-binding site, which supports focal adhesion formation, was mapped to the fibrillin-1 TB5 motif. Site-directed mutagenesis revealed two arginine residues that are crucial for heparin binding...

  15. Computation of airfoil buffet boundaries

    Science.gov (United States)

    Levy, L. L., Jr.; Bailey, H. E.

    1981-01-01

    The ILLIAC IV computer has been programmed with an implicit, finite-difference code for solving the thin layer compressible Navier-Stokes equation. Results presented for the case of the buffet boundaries of a conventional and a supercritical airfoil section at high Reynolds numbers are found to be in agreement with experimentally determined buffet boundaries, especially at the higher freestream Mach numbers and lower lift coefficients where the onset of unsteady flows is associated with shock wave-induced boundary layer separation.

  16. Boundary fluxes for nonlocal diffusion

    Science.gov (United States)

    Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi

    We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.

  17. Diversified boundaries of the firm

    OpenAIRE

    Kimura, Koichiro

    2012-01-01

    We analyze diversification of boundaries of local firms in developing countries under the economic globalization. The globalization has an aspect of homogenization of the world economy, but also has another aspect of diversification through international economic activities. Focusing on boundary-level of the firm, this article shows that the diversification from a comparison with boundaries of foreign firms in developed countries is brought by a disadvantage of technology deficit and a home a...

  18. Conformal boundaries of warped products

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2006-01-01

    In this note we prove a result on how to determine the conformal boundary of a type of warped product of two length spaces in terms of the individual conformal boundaries. In the situation, that we treat, the warping and conformal distortion functions are functions of distance to a base point....... The result is applied to produce examples of CAT(0)-spaces, where the conformal and ideal boundaries differ in interesting ways....

  19. HDL and CER-001 Inverse-Dose Dependent Inhibition of Atherosclerotic Plaque Formation in apoE-/- Mice: Evidence of ABCA1 Down-Regulation.

    Science.gov (United States)

    Tardy, Claudine; Goffinet, Marine; Boubekeur, Nadia; Cholez, Guy; Ackermann, Rose; Sy, Gavin; Keyserling, Constance; Lalwani, Narendra; Paolini, John F; Dasseux, Jean-Louis; Barbaras, Ronald; Baron, Rudi

    2015-01-01

    CER-001 is a novel engineered HDL-mimetic comprised of recombinant human apoA-I and charged phospholipids that was designed to mimic the beneficial properties of nascent pre-ß HDL. In this study, we have evaluated the dose-dependent regulation of ABCA1 expression in vitro and in vivo in the presence of CER-001 and native HDL (HDL3). CER-001 induced cholesterol efflux from J774 macrophages in a dose-dependent manner similar to natural HDL. A strong down-regulation of the ATP-binding cassette A1 (ABCA1) transporter mRNA (- 50%) as well as the ABCA1 membrane protein expression (- 50%) was observed at higher doses of CER-001 and HDL3 compared to non-lipidated apoA-I. In vivo, in an apoE-/- mouse "flow cessation model," in which the left carotid artery was ligatured to induce local inflammation, the inhibition of atherosclerotic plaque burden progression in response to a dose-range of every-other-day CER-001 or HDL in the presence of a high-fat diet for two weeks was assessed. We observed a U-shaped dose-response curve: inhibition of the plaque total cholesterol content increased with increasing doses of CER-001 or HDL3 up to a maximum inhibition (- 51%) at 5 mg/kg; however, as the dose was increased above this threshold, a progressively less pronounced inhibition of progression was observed, reaching a complete absence of inhibition of progression at doses of 20 mg/kg and over. ABCA1 protein expression in the same atherosclerotic plaque was decreased by-45% and-68% at 50 mg/kg for CER-001 and HDL respectively. Conversely, a-12% and 0% decrease in ABCA1 protein expression was observed at the 5 mg/kg dose for CER-001 and HDL respectively. These data demonstrate that high doses of HDL and CER-001 are less effective at slowing progression of atherosclerotic plaque in apoE-/- mice compared to lower doses, following a U-shaped dose-response curve. A potential mechanism for this phenomenon is supported by the observation that high doses of HDL and CER-001 induce a rapid and

  20. The Boundary Function Method. Fundamentals

    Science.gov (United States)

    Kot, V. A.

    2017-03-01

    The boundary function method is proposed for solving applied problems of mathematical physics in the region defined by a partial differential equation of the general form involving constant or variable coefficients with a Dirichlet, Neumann, or Robin boundary condition. In this method, the desired function is defined by a power polynomial, and a boundary function represented in the form of the desired function or its derivative at one of the boundary points is introduced. Different sequences of boundary equations have been set up with the use of differential operators. Systems of linear algebraic equations constructed on the basis of these sequences allow one to determine the coefficients of a power polynomial. Constitutive equations have been derived for initial boundary-value problems of all the main types. With these equations, an initial boundary-value problem is transformed into the Cauchy problem for the boundary function. The determination of the boundary function by its derivative with respect to the time coordinate completes the solution of the problem.