WorldWideScience

Sample records for bound tritium obt

  1. Current understanding of organically bound tritium (OBT) in the environment.

    Science.gov (United States)

    Kim, S B; Baglan, N; Davis, P A

    2013-12-01

    It has become increasingly recognized that organically bound tritium (OBT) is the more significant tritium fraction with respect to understanding tritium behaviour in the environment. There are many different terms associated with OBT; such as total OBT, exchangeable OBT, non-exchangeable OBT, soluble OBT, insoluble OBT, tritiated organics, and buried tritium, etc. A simple classification is required to clarify understanding within the tritium research community. Unlike for tritiated water (HTO), the environmental quantification and behaviour of OBT are not well known. Tritiated water cannot bio-accumulate in the environment. However, it is not clear whether or not this is the case for OBT. Even though OBT can be detected in terrestrial biological materials, aquatic biological materials and soil samples, its behaviour is still in question. In order to evaluate the radiation dose from OBT accurately, further study will be required to understand OBT measurements and determine OBT fate in the environment. The relationship between OBT speciation and the OBT/HTO ratio in environmental samples will be useful in this regard, providing information on the previous tritium exposure conditions in the environment and the current tritium dynamics. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Organically bound tritium (OBT) formation in rainbow trout (Oncorhynchus mykiss): HTO and OBT-spiked food exposure experiments

    International Nuclear Information System (INIS)

    Kim, S.B.; Shultz, C.; Stuart, M.; McNamara, E.; Festarini, A.; Bureau, D.P.

    2013-01-01

    In order to determine the rate of organically bound tritium (OBT) formation, rainbow trout (Oncorhynchus mykiss) were exposed to tritiated water (HTO) or OBT-spiked food. The HTO (in water) exposure study was conducted using a tritium activity concentration of approximately 7000 Bq/L and the OBT (in food) exposure study was conducted using a tritium activity concentration of approximately 30,000 Bq/L. Fish in both studies were expected to be exposed to similar tritium levels assuming 25% incorporation of the tritiated amino acids found in the food. Four different sampling campaigns of HTO exposure (Day 10, 30, 70, 140) and five different sampling campaigns of OBT-spiked food exposure (Day 9, 30, 70, 100, 140) were conducted to measure HTO and OBT activity concentrations in fish tissues. OBT depuration was also evaluated over a period of 30 days following the 140 d exposure studies. The results suggested that the OBT formation rate was slower when the fish were exposed to HTO compared to when the fish were ingesting OBT. In addition, the results indicated that OBT can bioaccumulate in fish tissues following OBT-spiked food exposure. - Highlights: ► The rate of organically bound tritium (OBT) formation was determined in rainbow trout. ► Rainbow trout were exposed to tritium in the form of tritiated water (HTO) and OBT-spiked food. ► OBT formation rate was slower when the fish were exposed to HTO compared to when the fish were ingesting OBT.

  3. Canadian inter-laboratory organically bound tritium (OBT) analysis exercise.

    Science.gov (United States)

    Kim, S B; Olfert, J; Baglan, N; St-Amant, N; Carter, B; Clark, I; Bucur, C

    2015-12-01

    Tritium emissions are one of the main concerns with regard to CANDU reactors and Canadian nuclear facilities. After the Fukushima accident, the Canadian Nuclear Regulatory Commission suggested that models used in risk assessment of Canadian nuclear facilities be firmly based on measured data. Procedures for measurement of tritium as HTO (tritiated water) are well established, but there are no standard methods and certified reference materials for measurement of organically bound tritium (OBT) in environmental samples. This paper describes and discusses an inter-laboratory comparison study in which OBT in three different dried environmental samples (fish, Swiss chard and potato) was measured to evaluate OBT analysis methods currently used by CANDU Owners Group (COG) members. The variations in the measured OBT activity concentrations between all laboratories were less than approximately 20%, with a total uncertainty between 11 and 17%. Based on the results using the dried samples, the current OBT analysis methods for combustion, distillation and counting are generally acceptable. However, a complete consensus OBT analysis methodology with respect to freeze-drying, rinsing, combustion, distillation and counting is required. Also, an exercise using low-level tritium samples (less than 100 Bq/L or 20 Bq/kg-fresh) would be useful in the near future to more fully evaluate the current OBT analysis methods. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. Organically bound tritium (OBT) formation in rainbow trout (Oncorhynchus mykiss): HTO and OBT-spiked food exposure experiments.

    Science.gov (United States)

    Kim, S B; Shultz, C; Stuart, M; McNamara, E; Festarini, A; Bureau, D P

    2013-02-01

    In order to determine the rate of organically bound tritium (OBT) formation, rainbow trout (Oncorhynchus mykiss) were exposed to tritiated water (HTO) or OBT-spiked food. The HTO (in water) exposure study was conducted using a tritium activity concentration of approximately 7000 Bq/L and the OBT (in food) exposure study was conducted using a tritium activity concentration of approximately 30,000 Bq/L. Fish in both studies were expected to be exposed to similar tritium levels assuming 25% incorporation of the tritiated amino acids found in the food. Four different sampling campaigns of HTO exposure (Day 10, 30, 70, 140) and five different sampling campaigns of OBT-spiked food exposure (Day 9, 30, 70, 100, 140) were conducted to measure HTO and OBT activity concentrations in fish tissues. OBT depuration was also evaluated over a period of 30 days following the 140 d exposure studies. The results suggested that the OBT formation rate was slower when the fish were exposed to HTO compared to when the fish were ingesting OBT. In addition, the results indicated that OBT can bioaccumulate in fish tissues following OBT-spiked food exposure. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  5. Quantification of exchangeable and non-exchangeable organically bound tritium (OBT) in vegetation

    International Nuclear Information System (INIS)

    Kim, S.B.; Korolevych, V.

    2013-01-01

    The objective of this study is to quantify the relative amounts of exchangeable organically bound tritium (OBT) and non-exchangeable OBT in various vegetables. A garden plot at Perch Lake, where tritium levels are slightly elevated due to releases of tritium from a nearby nuclear waste management area and Chalk River Laboratories (CRL) operations, was used to cultivate a variety of vegetables. Five different kinds of vegetables (lettuce, cabbage, tomato, radish and beet) were studied. Exchangeable OBT behaves like tritium in tissue free water in living organisms and, based on past measurements, accounts for about 20% of the total tritium in dehydrated organic materials. In this study, the percentage of the exchangeable OBT was determined to range from 20% to 57% and was found to depend on the type of vegetables as well as the sequence of the plants exposure to HTO. -- Highlights: ► This study was to quantify the amount of exchangeable OBT compared to non-exchangeable OBT in vegetables. ► The percentage of exchangeable OBT varied between vegetable types and HTO exposure conditions. ► Exchangeable OBT varied from 20 to 36% in un-treated vegetables and from 30 to 57% in treated vegetables

  6. Tritium metrology within different media: focus on organically bound tritium (OBT); Metrologie du tritium dans differentes matrices: cas du tritium organiquement lie (TOL)

    Energy Technology Data Exchange (ETDEWEB)

    Baglan, N. [CEA Bruyeres-le-Chatel, DIF, 91 (France); Ansoborlo, E. [CEA Marcoule, DEN/DRCP/CETAMA, 30 (France); Cossonnet, C. [IRSN, DEI/STEME/LMRE, 91 - Orsay (France); Fouhal, L. [CEA Cadarache, DEN/D2S/LANSE, 13 - Saint-Paul-lez-Durance (France); Deniau, I.; Mokili, M. [SUBATECH/IN2P3/CNRS, 44 - Nantes (France); Henry, A. [AREVA-NC/DQSSE/PR - La Hague, 50 - Beaumont-Hague, (France); Fourre, E. [CEA Saclay, DSM/DRECAM/LSCE, 91 - Gif-sur-Yvette (France); Olivier, A. [GEA-Marine nationale, 50 - Cherbourg (France)

    2010-07-15

    The measurement of tritium in its various forms (mainly gas (HT), water (HTO) or solid (hydrides)), is an important key step for evaluating health and environmental risks and finally, dosimetry assessment. In vegetable or animal samples, tritium is often associated with the free water fraction, but may be included in the organic form as organically bound tritium (OBT). In this case, 2 forms exist: (i) a fraction called exchangeable or labile (E-OBT), bound to oxygen and nitrogen atoms, and (ii) a so-called non-exchangeable fraction (NE-OBT) bound to carbon atoms. The main technique for tritium analysis is liquid scintillation, which enables one to measure concentrations in the range of several Bq.L{sup -1}. The standards (AFNOR, ISO) published to date relate only to tritium analysis in water. Only one CETAMA method addresses OBT analysis in biological environments. This method has been tested since 2001 through intercomparison circuits on grass samples collected from the environment. Regarding tritium analysis in water, the strengths are reliability of this analysis at low concentrations (order of Bq.L{sup -1}), robustness and simplicity, and weaknesses are linked to problems of background, conservation and contamination of samples. Concerning OBT analysis, the analysis is reliable for values around 50 Bq.kg{sup -1} of fresh sample. The weaknesses are problems of contamination, reproducibility, analysis time (2 to 6 days) and lack of reference materials. The difficulty to date is the separation between E-OBT and NE-OBT, that will need experimental validation. (authors)

  7. Quantification of exchangeable and non-exchangeable organically bound tritium (OBT) in vegetation.

    Science.gov (United States)

    Kim, S B; Korolevych, V

    2013-04-01

    The objective of this study is to quantify the relative amounts of exchangeable organically bound tritium (OBT) and non-exchangeable OBT in various vegetables. A garden plot at Perch Lake, where tritium levels are slightly elevated due to releases of tritium from a nearby nuclear waste management area and Chalk River Laboratories (CRL) operations, was used to cultivate a variety of vegetables. Five different kinds of vegetables (lettuce, cabbage, tomato, radish and beet) were studied. Exchangeable OBT behaves like tritium in tissue free water in living organisms and, based on past measurements, accounts for about 20% of the total tritium in dehydrated organic materials. In this study, the percentage of the exchangeable OBT was determined to range from 20% to 57% and was found to depend on the type of vegetables as well as the sequence of the plants exposure to HTO. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. Effect of organically bound tritium (OBT) on pre-implantation mouse embryos in vitro

    International Nuclear Information System (INIS)

    Yamada, Takeshi; Ohyama, Harumi

    1989-01-01

    Effect of organically bound tritium (OBT), such as tritiated thymidine and tritium-labeled amino acids, on mouse preimplantation embryos was examined in vitro. Mouse zygotes fertilized in vitro (BC3F 1 eggs x ICR sperm) were cultured in the media containing OBT in various concentrations up to the blastocyst stage. The LD 50 in terms of tritium concentrations in the culture medium were determined by measuring tritium concentrations in the medium to inhibit 50 % of embryos to form blastocyst in vitro. Tritium activities in the embryos were measured at various times during culture of embryos at LD 50 concentration in order to estimate absorbed radiation dose in embryonic cells. The LD 50 values obtained indicate that OBT could inhibit the embryonic development 1000 times more effectively that tritiated water (HTO). However, differences in LD 50 values in terms of absorbed radiation dose between OBT and HTO is not so essential, and might be explained by localized spatial distribution of OBT within the cell. (author)

  9. Investigation of tritium transfer to plants via the OBT/HTO and OBT/TFWT ratios; Etude du transfert du tritium aux vegetaux via les ratios OBT/HTO ET OBT/TFWT

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, C.; Guetat, P.; Vichot, L.; Losset, Y. [CEA Valduc, UMR, 21 - Is-sur-Tille (France); Boyer, C.; Fromm, M.; Mavon, C. [UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, F-25030 Besancon cedex (France); Boyer, C.; Tatin-Froux, F.; Badot, P.M. [CNRS-Universite de Franche Comte / UMR 6249 Chrono-environnement usc INRA, Place Leclerc, F-25030 Besancon cedex (France)

    2009-07-01

    After having recalled some concepts used to distinguish the various forms of water present in plants, and the reactions in presence of tritium, the authors discuss the biochemical behaviour of tritium. Then, they briefly report a literature survey and, for different plants and crops, indicate the values of the OBT/HTO (organically bound tritium/tritiated water) and OBT/TFWT (organically bound tritium/tissue free water tritium) ratios. They also report experimental studies performed by exposures of lettuces at the vicinity of a nuclear installation

  10. Tritium ingestion as organically bound tritium (OBT) - incorporation in different organs of pregnant and non-pregnant rats

    International Nuclear Information System (INIS)

    Bhatia, A.L.; Pollaris, K.; Vandecasteele, C.M.; Kowalska, M.

    1998-01-01

    For a better understanding of the hazard of tritium, its bound form in the food constituents (organically bound tritium (OBT)) has not been investigated though study on tritiated water are many. Hence an evaluation of the uptake of tritium incorporated in basic constituents of food viz, proteins, carbohydrates and lipids is warranted. Present study cells with the incorporated three organically bound tritium components separated from tritiated milk powder (casein, butter and lactose). This is further compared in the organs of pregnant (after parturition) and non-pregnant rats

  11. Investigation of tritium transfer to plants via the OBT/HTO and OBT/TFWT ratios

    International Nuclear Information System (INIS)

    Boyer, C.; Guetat, P.; Vichot, L.; Losset, Y.; Boyer, C.; Fromm, M.; Mavon, C.; Boyer, C.; Tatin-Froux, F.; Badot, P.M.

    2009-01-01

    After having recalled some concepts used to distinguish the various forms of water present in plants, and the reactions in presence of tritium, the authors discuss the biochemical behaviour of tritium. Then, they briefly report a literature survey and, for different plants and crops, indicate the values of the OBT/HTO (organically bound tritium/tritiated water) and OBT/TFWT (organically bound tritium/tissue free water tritium) ratios. They also report experimental studies performed by exposures of lettuces at the vicinity of a nuclear installation

  12. Organically bound tritium (OBT) for various plants in the vicinity of a continuous atmospheric tritium release

    International Nuclear Information System (INIS)

    Vichot, L.; Boyer, C.; Boissieux, T.; Losset, Y.; Pierrat, D.

    2008-01-01

    In order to quantify tritium impact on the environmental, we studied vegetation continuously exposed to a tritiated atmosphere. We chose lichens as bio-indicators, trees for determination of past tritium releases of the Valduc Centre, and lettuce as edible vegetables for dose calculation regarding neighbourhood. The Pasquill and Doury models from the literature were tested to estimate tritium concentration in the air around vegetable for distance from the release point less than 500 m. The results in tree rings show that organically bound tritium (OBT) concentration was strongly correlated with tritium releases. Using the GASCON model, the modelled variation of OBT concentration with distance was correlated with the measurements. Although lichens are recognized as bio-indicators, our experiments show that they were not convenient for environmental surveys because their age is not definitive. Thus, tritium integration time cannot be precisely determined. Furthermore, their biological metabolism is not well known and tritium concentration appears to be largely dependent on species. An average conversion rate of HTO to OBT was determined for lettuce of about 0.20-0.24% h -1 . Nevertheless, even if it is equivalent to values already published in the literature for other vegetation, we have shown that this conversion rate, established by weekly samples, varies by a factor of 10 during the different stages of lettuce development, and that its variation is linked to the biomass derivative

  13. Organically bound tritium (OBT) for various plants in the vicinity of a continuous atmospheric tritium release

    Energy Technology Data Exchange (ETDEWEB)

    Vichot, L. [Commissariat a l' Energie Atomique, CVA/DSTA/SPR/LMSE, 21120 Is-sur-Tille (France)], E-mail: laurent.vichot@cea.fr; Boyer, C.; Boissieux, T.; Losset, Y.; Pierrat, D. [Commissariat a l' Energie Atomique, CVA/DSTA/SPR/LMSE, 21120 Is-sur-Tille (France)

    2008-10-15

    In order to quantify tritium impact on the environmental, we studied vegetation continuously exposed to a tritiated atmosphere. We chose lichens as bio-indicators, trees for determination of past tritium releases of the Valduc Centre, and lettuce as edible vegetables for dose calculation regarding neighbourhood. The Pasquill and Doury models from the literature were tested to estimate tritium concentration in the air around vegetable for distance from the release point less than 500 m. The results in tree rings show that organically bound tritium (OBT) concentration was strongly correlated with tritium releases. Using the GASCON model, the modelled variation of OBT concentration with distance was correlated with the measurements. Although lichens are recognized as bio-indicators, our experiments show that they were not convenient for environmental surveys because their age is not definitive. Thus, tritium integration time cannot be precisely determined. Furthermore, their biological metabolism is not well known and tritium concentration appears to be largely dependent on species. An average conversion rate of HTO to OBT was determined for lettuce of about 0.20-0.24% h{sup -1}. Nevertheless, even if it is equivalent to values already published in the literature for other vegetation, we have shown that this conversion rate, established by weekly samples, varies by a factor of 10 during the different stages of lettuce development, and that its variation is linked to the biomass derivative.

  14. Organically bound tritium (OBT) for various plants in the vicinity of a continuous atmospheric tritium release.

    Science.gov (United States)

    Vichot, L; Boyer, C; Boissieux, T; Losset, Y; Pierrat, D

    2008-10-01

    In order to quantify tritium impact on the environmental, we studied vegetation continuously exposed to a tritiated atmosphere. We chose lichens as bio-indicators, trees for determination of past tritium releases of the Valduc Centre, and lettuce as edible vegetables for dose calculation regarding neighbourhood. The Pasquill and Doury models from the literature were tested to estimate tritium concentration in the air around vegetable for distance from the release point less than 500 m. The results in tree rings show that organically bound tritium (OBT) concentration was strongly correlated with tritium releases. Using the GASCON model, the modelled variation of OBT concentration with distance was correlated with the measurements. Although lichens are recognized as bio-indicators, our experiments show that they were not convenient for environmental surveys because their age is not definitive. Thus, tritium integration time cannot be precisely determined. Furthermore, their biological metabolism is not well known and tritium concentration appears to be largely dependent on species. An average conversion rate of HTO to OBT was determined for lettuce of about 0.20-0.24% h(-1). Nevertheless, even if it is equivalent to values already published in the literature for other vegetation, we have shown that this conversion rate, established by weekly samples, varies by a factor of 10 during the different stages of lettuce development, and that its variation is linked to the biomass derivative.

  15. Effects of organically bound tritium (OBT) on cultured midbrain cells from embryonic mice

    International Nuclear Information System (INIS)

    Wang Bing; Akihiro Shima; Takeshi Yamada; Keiko Watganabe

    1997-01-01

    Objective: Four kinds of organically bound tritium compounds (OBT s ) including 3 H-thymidine, 3 H-uridine, 3 H-arginine and 3 H-glutamic acid, were investigated on proliferation and differentiation of cultured mouse embryonic midbrain cells (MBCs). Methods: MBCs were isolated from day 11 embryos, cultured at a high concentration with the medium containing OBT. Results: Differentiation of MBC was more sensitive to radiation than proliferation. Dose-dependent decrease of DNA and protein contents were also observed. The RBE values, ranging from 4.6 to 8.7, of β rays from OBTs were obtained when compared with X-irradiation at their ID50s (inhibitory dose that reduced assessment value by 50% of the control) on inhibition of cell proliferation and differentiation, and on reduction of DNA and protein contents of the cultures. The mixed exposure to X-rays and one kind of OBTs or to any two kinds of OBTs resulted in more efficiently inhibitory effect on differentiation. Conclusions: MBC culture system was more sensitive to beta radiation from OBTs than to X-rays, which resulted in very high RBE values

  16. The organically bound tritium: an analyst vision

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Baglan, N.

    2009-01-01

    The authors report the work of a work group on tritium analysis. They recall the different physical forms of tritium: gas (HT, hydrogen-tritium), water vapour (HTO or tritiated water) or methane (CH3T), but also in organic compounds (OBT, organically bound tritium) which are either exchangeable or non-exchangeable. They evoke measurement techniques and methods, notably to determine the tritium volume activity. They discuss the possibilities to analyse and distinguish exchangeable and non-exchangeable OBTs

  17. Measurement of organically bound tritium in urine and feces

    International Nuclear Information System (INIS)

    Trivedi, A.; Duong, T.; Leon, J.W.; Linauskas, S.H.

    1993-11-01

    A bioassay method was developed for directly measuring organically bound tritium (OBT) in urine and feces. Samples first undergo low-temperature distillation and vacuum separation to isolate tritiated water (HTO) and exchangeable tritium. This is followed by converting the non-exchangeable tritium (i.e., OBT) into HTO through oxygen combustion. The method was investigated to: optimise the sample preparation procedures; establish OBT recovery (64% ± 7% for urine and 71% ± 8% for feces); and, determine the detection limit for OBT in urine (0.3 Bq · g -1 ) and feces (5 Bq · g -1 ). The method was evaluated for error sources that are associated with the exchange between HTO and OBT. It is concluded that this bioassay method can reliably measure OBT in urine and feces within the range of ± 10%

  18. Tritium uptake in rainbow trout (Oncorhynchus mykiss): HTO and OBT-spiked feed exposures simultaneously

    International Nuclear Information System (INIS)

    Kim, S.B.; Shultz, C.; Stuart, M.; Festarini, A.

    2015-01-01

    There is currently considerable interest in organically bound tritium (OBT) formation in edible fish. The major questions revolve around whether or not tritium can accumulate in fish after being released into aquatic environments. Since OBT formation rates in large, edible fish are poorly understood, rainbow trout (Oncorhynchus mykiss) studies, where fish were simultaneously exposed to tritiated water (HTO) and OBT-spiked feed over 130 days, were conducted to evaluate tritium uptake. The measured HTO activity concentrations in fish tissue confirmed that HTO in fish tissue equilibrates quickly with HTO in tank water. The data obtained also confirmed that OBT uptake is faster when fish are ingesting OBT-spiked feed compared to when fish are living in tritiated water (and consuming non-OBT-spiked feed). The difference between the two exposure types is such that the groups exposed to tritiated water and OBT-spiked feed simultaneously were showing the same uptake rates as OBT-spiked feed only exposures. Contrary to what was expected, the rate of OBT uptake (from OBT-spiked feed) seemed to be higher in slow growing fish compared to fast growing fish. Another observation from these studies was that OBT activity concentrations in all organs (viscera) had a tendency to be higher than OBT activity concentrations measured in fish flesh. - Highlights: • Edible size of rainbow trout (Oncorhynchus mykiss) were simultaneously exposed to tritiated water (HTO) and OBT-spiked feed over 130 days. • OBT uptake is faster when fish are ingesting OBT-spiked feed compared to when fish are living in tritiated water (and consuming non-OBT-spiked feed). • The rate of OBT uptake (from OBT-spiked feed) seemed to be higher in slow growing fish compared to fast growing fish

  19. Tritium metabolism in cow's milk after administration of tritiated water and of organically bound tritium

    International Nuclear Information System (INIS)

    Hoek, J. van den

    1982-01-01

    Tritium was administered as THO and as organically bound tritium (OBT) to lactating cows. Urine and milk samples were collected and analyzed for tritium content. Plateau levels in milk water and in milk fat, lactose and casein were reached in about 20 days after feeding either THO or OBT. Comparison of the specific activity (pCi 3 H/g H) of the various milk constituents with the specific activity of the body water showed that, after administration of THO, the highest tritium incorporation occurred in lactose (0.58), followed by milk fat (0.36) and casein (0.27). Tritium incorporation in milk dry matter (0.45) is considerably higher than in most tissue components of several mammalian species after continuous ingestion of THO as reported in the literature. After feeding OBT, the highest tritium incorporation occurred in milk fat and to a lesser extent in casein. Tritium levels in lactose were surprisingly low and the reason for this is not clear. They were similar to those in milk water. Tritium levels in milk and urine water showed systematic differences during administration of OBT and after this was stopped. There was more tritium in milk water until the last day of OBT feeding and this situation was reversed after this. (author)

  20. Tritium metabolism in cow's milk after administration of tritiated water and of organically bound tritium

    Energy Technology Data Exchange (ETDEWEB)

    van den Hoek, J [Landbouwhogeschool Wageningen (Netherlands). Lab. voor Fysiologie der Dieren; Gerber, G; Kirchmann, R [Centre d' Etude de l' Energie Nucleaire, Mol (Belgium)

    1982-01-01

    Tritium was administered as THO and as organically bound tritium (OBT) to lactating cows. Urine and milk samples were collected and analyzed for tritium content. Plateau levels in milk water and in milk fat, lactose and casein were reached in about 20 days after feeding either THO or OBT. Comparison of the specific activity (pCi/sup 3/H/g H) of the various milk constituents with the specific activity of the body water showed that, after administration of THO, the highest tritium incorporation occurred in lactose (0.58), followed by milk fat (0.36) and casein (0.27). Tritium incorporation in milk dry matter (0.45) is considerably higher than in most tissue components of several mammalian species after continuous ingestion of THO as reported in the literature. After feeding OBT, the highest tritium incorporation occurred in milk fat and to a lesser extent in casein. Tritium levels in lactose were surprisingly low and the reason for this is not clear. They were similar to those in milk water. Tritium levels in milk and urine water showed systematic differences during administration of OBT and after this was stopped. There was more tritium in milk water until the last day of OBT feeding and this situation was reversed after this.

  1. Assessment of the significance of organically-bound tritium in environmental materials

    International Nuclear Information System (INIS)

    Brown, R.M.

    1988-09-01

    The present state of knowledge of the significance, with respect to dose, or organically-bound tritium (OBT) in diet items has been reviewed. Ratios of the specific activity of the OBT to that of the free water (HTO) in foodstuffs have been commonly reported in the range of 1 to 4. A metabolism model of Etnier, Travis and Hetrick that takes direct assimilation of food OBT into account indicates that such levels result in a dose two to three times greater than that calculated solely on the basis of body water tritium content. Very high OBT/HTO values reported by Italian studies on food items are discounted. It is recommended that OBT/HTO measurements be done on Canadian diet items and that tritium metabolism models be more thoroughly evaluated. 71 refs

  2. Measurements of tritium (HTO, TFWT, OBT) in environmental samples at varying distances from a nuclear generating station

    Energy Technology Data Exchange (ETDEWEB)

    Kotzer, T.G.; Workman, W.J.G

    1999-12-01

    Concentrations of tritium have been measured in environmental samples (vegetation, water, soil, air) from sites distal and proximal to a CANDU nuclear generating station in Southern Ontario (OPG-Pickering). Levels of tissue-free water tritium (TFWT) and organically bound tritium (OBT) in vegetation are as high as 24,000 TU immediately adjacent to the nuclear generating station and rapidly decrease to levels of tritium which are comparable to natural ambient concentrations for tritium in the environment (approximately {<=} 60 TU). Tritium concentrations (OBT, TFTW) have also been measured in samples of vegetation and tree rings growing substantial distances away from nuclear generating stations and are within a factor of 1 to 2 of the ambient levels of tritium measured in precipitation in several parts of Canada (approximately {<=}30 TU). (author)

  3. Measurements of tritium (HTO, TFWT, OBT) in environmental samples at varying distances from a nuclear generating station

    International Nuclear Information System (INIS)

    Kotzer, T.G.; Workman, W.J.G.

    1999-12-01

    Concentrations of tritium have been measured in environmental samples (vegetation, water, soil, air) from sites distal and proximal to a CANDU nuclear generating station in Southern Ontario (OPG-Pickering). Levels of tissue-free water tritium (TFWT) and organically bound tritium (OBT) in vegetation are as high as 24,000 TU immediately adjacent to the nuclear generating station and rapidly decrease to levels of tritium which are comparable to natural ambient concentrations for tritium in the environment (approximately ≤ 60 TU). Tritium concentrations (OBT, TFTW) have also been measured in samples of vegetation and tree rings growing substantial distances away from nuclear generating stations and are within a factor of 1 to 2 of the ambient levels of tritium measured in precipitation in several parts of Canada (approximately ≤30 TU). (author)

  4. Enhanced activities of organically bound tritium in biota samples.

    Science.gov (United States)

    Svetlik, I; Fejgl, M; Malátová, I; Tomaskova, L

    2014-11-01

    A pilot study aimed on possible occurrence of elevated activity of non-exchangable organically bound tritium (NE-OBT) in biota was performed. The first results showed a significant surplus of NE-OBT activity in biota of the valley of Mohelno reservoir and Jihlava river. The liquid releases of HTO from the nuclear power plant Dukovany is the source of tritium in this area. This area can be a source of various types of natural samples for future studies of tritium pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Organically bound tritium analysis in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Baglan, N. [CEA/DAM/DIF, Arpajon (France); Kim, S.B. [AECL, Chalk River Laboratories, Chalk River, ON (Canada); Cossonnet, C. [IRSN/PRP-ENV/STEME/LMRE, Orsay (France); Croudace, I.W.; Warwick, P.E. [GAU-Radioanalytical, University of Southampton, Southampton (United Kingdom); Fournier, M. [IRSN/DG/DMQ, Fontenay-aux-Roses (France); Galeriu, D. [IFIN-HH, Horia-Hulubei, Inst. Phys. and Nucl. Eng., Bucharest (Romania); Momoshima, N. [Kyushu University, Radioisotope Ctr., Fukuoka (Japan); Ansoborlo, E. [CEA/DEN/DRCP/CETAMA, Bagnols-sur-Ceze (France)

    2015-03-15

    Organically bound tritium (OBT) has become of increased interest within the last decade, with a focus on its behaviour and also its analysis, which are important to assess tritium distribution in the environment. In contrast, there are no certified reference materials and no standard analytical method through the international organization related to OBT. In order to resolve this issue, an OBT international working group was created in May 2012. Over 20 labs from around the world participated and submitted their results for the first intercomparison exercise results on potato (Sep 2013). The samples, specially-prepared potatoes, were provided in March 2013 to each participant. Technical information and results from this first exercise are discussed here for all the labs which have realised the five replicates necessary to allow a reliable statistical treatment. The results are encouraging as the increased number of participating labs did not degrade the observed dispersion of the results for a similar activity level. Therefore, the results do not seem to depend on the analytical procedure used. From this work an optimised procedure can start to be developed to deal with OBT analysis and will guide subsequent planned OBT trials by the international group.

  6. Ultralow-level measurement of organically-bound tritium in bioassay samples

    International Nuclear Information System (INIS)

    Kotzer, T.; Trivedi, A.; Waito, G.; Workman, W.

    1998-12-01

    An intercomparison study of urine samples having high levels (5 Bq·L -1 ) of organically-bound tritium (OBT) was conducted, in conjunction with the oxygen combustion-liquid scintillation counting (LSC) method, to evaluate the suitability and sensitivity of the 3 He-ingrowth mass spectrometry (MS) technique for OBT in bioassay samples. The study established that 3 He ingrowth-MS has the required sensitivity to measure ultralow levels of OBT-in-urine (∼0.1 Bq·L -1 ). Cumulative 24 h urine samples from a few members of the general population, living in the vicinity of the heavy-water research reactor facility at Chalk River Laboratories (CRL) at Chalk River, were collected and analyzed for tritiated water (HTO) and OBT. The participants were from Ottawa (200 km east), Deep River (10 km west) and an occasionally occupationally HTO-exposed worker at CRL. HTO-in-urine values were 6.5 Bq·L -1 for the Ottawa resident, 15.8 Bq·L -1 for the Deep River resident, and 1260 Bq·L -1 for the exposed worker. OBT-in-urine levels from these same individuals were 0.06 Bq·L -1 (Ottawa), 0.29 Bq·L -1 (Deep River), and 2.2 Bq·L -1 (exposed worker). With a model developed for calculating OBT dose fraction from the measured ratio of HTO to OBT in urine, we estimated that the dose arising from OBT in the body was about 26% of the total tritium dose for the Ottawa resident and 50% for the Deep River resident. The CRL individual had a 5% dose contribution from OBT, but had higher overall tritium dose due to frequent intakes of HTO. The study indicates that the bulk of the tritium dose to the population is the result of HTO intakes and not due to dietary intake of OBT. (author)

  7. The human body retention time of environmental organically bound tritium

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, John; Bailey, Trevor [Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT (United Kingdom); Reese, Allan [Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, Dorset DT4 8UB (United Kingdom)], E-mail: john.hunt@cefas.co.uk

    2009-03-15

    Tritium in the UK environment causes low radiation doses to the public, but uncertainty exists in the dose coefficient for the organically bound component of tritium (OBT). This can affect the assessment of effective doses to representative persons. Contributing to that uncertainty is poor knowledge of the body retention time of OBT and how this varies for different OBT compounds in food. This study was undertaken to measure the retention time of tritium by volunteers after eating sole from Cardiff Bay, which may contain OBT from discharges from the GE Healthcare Ltd plant. Five volunteers provided samples of excreta over periods up to 150 days after intake. The results, which are presented in raw form to allow independent analysis, suggest retention of total tritium with body half-times ranging from 4 to 11 days, with no evidence (subject to experimental noise) of a significant contribution due to retention with a longer half-time. This range covers the half-time of 10 days used by the ICRP for tritiated water. The short timescale could be due to rapid hydrolysis in body tissues of the particular form of OBT used in this study. Implications for the dose coefficient for OBT are that the use of the ICRP value of 4.2 x 10{sup -11} Sv Bq{sup -1} may be cautious in this specific situation. These observations on dose coefficients are separate from any implications of recent discussion on whether the tritium radiation weighting factor should be increased from 1 to 2.

  8. A follow up of the decrease of non exchangeable organically bound tritium levels in the surroundings of a nuclear research center.

    Science.gov (United States)

    Baglan, N; Alanic, G; Le Meignen, R; Pointurier, F

    2011-07-01

    In the past decades limited amounts of tritium were handled on the CEA site of Bruyères le Châtel with authorised atmospheric releases. A small fraction of the tritium released entered into environmental samples under three forms: (i) as part of free water (TFWT - Tissue Free Water Tritium), or associated with organic matter in two ways; either (ii) bound to the oxygen and nitrogen atoms of the material as exchangeable organically bound tritium (E-OBT), or (iii) bound to carbon atoms as non exchangeable organically bound tritium (NE-OBT). The first two components provide only a picture of atmospheric tritium concentrations at the sampling time as they are in equilibrium with atmospheric moisture and soil humidity. Unlike these exchangeable forms, however, NE-OBT is tightly bound to the organic matter and provides an integrated record of atmospheric tritium during the growing phase of the vegetation. We mapped NE-OBT in tree leaf samples in an area of about 25×30km(2) around the centre of the CEA site and compared the results with those obtained during a previous sampling exercise in 1989. At this time, the activity levels were almost ten times higher than those observed presently in a similar area almost 20 years later which is consistent with the decrease of atmospheric releases issued from the centre. As the activity levels are now close to environmental background specific attention was also paid to the analytical procedure to ensure reliable low level NE-OBT detection. 2011 Elsevier Ltd. All rights reserved.

  9. An evaluation of an organically bound tritium measurement method in artificial and natural urine

    International Nuclear Information System (INIS)

    Trivedi, A.; Duong, T.

    1993-03-01

    The accurate measurement of tritium in urine in the form of tritiated water (HTO) as well as in organic forms (organically bound tritium (OBT)) is an essential step in assessing tritium exposures correctly. Exchange between HTO and OBT, arising intrinsically in the separation of HTO from urine samples, is a source of error in determining the concentration of OBT using the low-temperature distillation (LTD) bioassay method. The accuracy and precision of OBT measurements using the LTD method was investigated using spiked natural and artificial urine samples. The relative bias for most of the measurements was less than 25%. The choice of testing matrix, artificial urine versus human urine, made little difference: the precisions for each urine type were similar. The appropriateness of the use of artificial urine for testing purposes was judged using a ratio of performance indices. Based on this evaluation, the artificial urine is a suitable test matrix for intercomparisons of OBT in urine measurements. It is further concluded that the LTD method is reliable for measuring OBT in urine samples. (author). 7 refs., 6 tabs

  10. An evaluation of an organically bound tritium measurement method in artificial and natural urine

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A; Duong, T

    1993-03-01

    The accurate measurement of tritium in urine in the form of tritiated water (HTO) as well as in organic forms (organically bound tritium (OBT)) is an essential step in assessing tritium exposures correctly. Exchange between HTO and OBT, arising intrinsically in the separation of HTO from urine samples, is a source of error in determining the concentration of OBT using the low-temperature distillation (LTD) bioassay method. The accuracy and precision of OBT measurements using the LTD method was investigated using spiked natural and artificial urine samples. The relative bias for most of the measurements was less than 25%. The choice of testing matrix, artificial urine versus human urine, made little difference: the precisions for each urine type were similar. The appropriateness of the use of artificial urine for testing purposes was judged using a ratio of performance indices. Based on this evaluation, the artificial urine is a suitable test matrix for intercomparisons of OBT in urine measurements. It is further concluded that the LTD method is reliable for measuring OBT in urine samples. (author). 7 refs., 6 tabs.

  11. Retention in young pigs of organically bound tritium given during pregnancy and lactation

    International Nuclear Information System (INIS)

    Hees, M. Van; Gerber, G.B.; Kirchmann, R.; Vankerkom, J.H.; Bruwaene, R. Van

    1986-01-01

    A sow was given organically bound tritium (OBT) in food consisting of potato, milk and algal powder from 84 days before until 42 days after delivery. Shortly after birth, some piglets were exchanged with those from a non-contaminated sow to determine the amount of activity incorporated in utero and during lactation. The specific activity of tissue OBT at birth was about equal to that of food. The piglets given OBT only during suckling attained about the same tissue OBT activity as those exposed during pregnancy. Estimates of total tissue dose indicate that after OBT feeding, OBT contributes about 5-10 times more to this dose than HTO. Compared to the experiment in which HTO had been given in drinking water, the dose from OBT in food was about 40%. Under realistic conditions of water and OBT food intake, the total dose would thus probably not exceed more than 1.5 times that from HTO only. Although most long-lived tissue OBT is probably located distally from radiosensitive targets, some tissues might be at risk if the tritium is close to radiosensitive sites. Transfer factors of OBT to liver and muscle are calculated. (author)

  12. Incorporation of organically bound tritium (OBT) of food or tritium (OBT) of food or tritiated water (TW) into foetuses, placentas and some tissues of pregnant rat

    International Nuclear Information System (INIS)

    Rochalska, M.; Szot, Z.

    1978-01-01

    Pregnant rats between 9 and 17 days of gestation were given OBT or TW during 5 days. On the 6th day the animals were sacrificed (13, 15, 17, 19 and 21st day gestation). Tritium radioactivity of foetuses, placentas, yolk sacs, some organs of mother and some organic compounds separated from foetuses and placentas were examined. The results were referred to the last day of experiment. The highest tritium concentration in the foetuses and placentas was found on the 13th day of gestation and decreased until the 17th day. Then, after a short lasting increase, the incorporation values attained the lowest values on the 21st day. Tritium radioactivity of foetuses was of the order of magnitude of that in the mother's liver and small intestine. During the last days of pregnancy diminished incorporation into phospholipids, nucleic acids and proteins and an increase into acid-soluble fraction was observed. (author)

  13. Dose from organically bound tritium after an acute tritiated water intake in humans

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A; Richardson, R B; Galeriu, D [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1995-10-01

    We have analyzed the urinary excretion data from eight male workers following an acute intake of tritiated water (HTO) and assessed the dose contribution from organically bound tritium (OBT) in the body. The individuals affected increased their fluid intakes during the first month or more post-exposure, to accelerate the turnover of tritium in the body water for dose mitigation purposes. The volumes of cumulative 24 h urine samples were similar to Reference Man in the latter part of the study (100-300 d post-exposure). The workers` urine samples were analyzed for total tritium up to 300 d post-exposure. The results suggest that a measurement of the tritium activity per unit mass of organic matter in urine can provide an assessment of the specific activity of tritium in the organic fraction of the soft tissue, providing an equilibrium condition exists. A mathematical model is proposed to estimate the dose increase from the retained OBT by examining the kinetics of total tritium excretion in urine. The model accounts for the variable rates of fluid intake. The influence of measurement errors and the limited duration of the study (0-300 d post-exposure) on the OBT dose contribution was assessed through statistical analysis, while the role of direct OBT excretion in urine was estimated by using metabolic models. Based on the time series of tritium concentration in urine, the average dose increase to the workers from the metabolised OBT was calculated as 6.2 {+-} 1.3% of the HTO dose. 78 refs., 36 tabs., 11 figs.

  14. Dose from organically bound tritium after an acute tritiated water intake in humans

    International Nuclear Information System (INIS)

    Trivedi, A.; Richardson, R.B.; Galeriu, D.

    1995-10-01

    We have analyzed the urinary excretion data from eight male workers following an acute intake of tritiated water (HTO) and assessed the dose contribution from organically bound tritium (OBT) in the body. The individuals affected increased their fluid intakes during the first month or more post-exposure, to accelerate the turnover of tritium in the body water for dose mitigation purposes. The volumes of cumulative 24 h urine samples were similar to Reference Man in the latter part of the study (100-300 d post-exposure). The workers' urine samples were analyzed for total tritium up to 300 d post-exposure. The results suggest that a measurement of the tritium activity per unit mass of organic matter in urine can provide an assessment of the specific activity of tritium in the organic fraction of the soft tissue, providing an equilibrium condition exists. A mathematical model is proposed to estimate the dose increase from the retained OBT by examining the kinetics of total tritium excretion in urine. The model accounts for the variable rates of fluid intake. The influence of measurement errors and the limited duration of the study (0-300 d post-exposure) on the OBT dose contribution was assessed through statistical analysis, while the role of direct OBT excretion in urine was estimated by using metabolic models. Based on the time series of tritium concentration in urine, the average dose increase to the workers from the metabolised OBT was calculated as 6.2 ± 1.3% of the HTO dose. 78 refs., 36 tabs., 11 figs

  15. Cellular responses to tritium exposure in rainbow trout: HTO- and OBT-spiked feed exposure experiments

    Energy Technology Data Exchange (ETDEWEB)

    Festarini, A.; Shultz, C.; Stuart, M.; Kim, S.B., E-mail: amy.festarini@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Ferreri, C. [National Research Council of Italy, Dept. of Chemical Sciences and Materials Technologies, Bologna (Italy)

    2016-06-15

    Biological effects were evaluated in rainbow trout (Oncorhynchus mykiss) exposed to tritiated water (HTO) or food spiked with organically bound tritium (OBT). An HTO exposure study was conducted using a tritium activity concentration of 7000 Bq/L, and an OBT exposure study was conducted using a tritium activity concentration of 30 000 Bq/L. Following 140 days of in vivo HTO exposure, liver, heart, spleen, kidney, and brain cells did not show statistically significant differences in viability; kidney, liver, and spleen cells did not show significant differences in DNA double-strand break repair activity compared with control cells. Membrane fatty acid composition analysis was conducted on liver cells and no effects of HTO exposure could be detected. Following 140 days of in vivo OBT exposure, viability and DNA double-strand break repair activity were not statistically different from controls in liver, heart, spleen, kidney, and brain cells. Changes, however, were noted in the fatty acid composition of liver and muscle tissues. For both studies, all measurements were performed on each tissue and on a fraction of the same tissue that was exposed to a gamma 4 Gy dose in vitro to test for adaptive responses, and no effects were observed except for fatty acid composition. The findings demonstrated that membrane fatty acid composition is a sensitive marker and that microscopic evaluation of gamma-H2AX foci is more sensitive than the flow cytometric approach. These studies are the first to correlate uptake and depuration with biological health indicators in edible fish for tritium exposures within worldwide drinking water guidelines. (author)

  16. Cellular responses to tritium exposure in rainbow trout: HTO- and OBT-spiked feed exposure experiments

    International Nuclear Information System (INIS)

    Festarini, A.; Shultz, C.; Stuart, M.; Kim, S.B.; Ferreri, C.

    2016-01-01

    Biological effects were evaluated in rainbow trout (Oncorhynchus mykiss) exposed to tritiated water (HTO) or food spiked with organically bound tritium (OBT). An HTO exposure study was conducted using a tritium activity concentration of 7000 Bq/L, and an OBT exposure study was conducted using a tritium activity concentration of 30 000 Bq/L. Following 140 days of in vivo HTO exposure, liver, heart, spleen, kidney, and brain cells did not show statistically significant differences in viability; kidney, liver, and spleen cells did not show significant differences in DNA double-strand break repair activity compared with control cells. Membrane fatty acid composition analysis was conducted on liver cells and no effects of HTO exposure could be detected. Following 140 days of in vivo OBT exposure, viability and DNA double-strand break repair activity were not statistically different from controls in liver, heart, spleen, kidney, and brain cells. Changes, however, were noted in the fatty acid composition of liver and muscle tissues. For both studies, all measurements were performed on each tissue and on a fraction of the same tissue that was exposed to a gamma 4 Gy dose in vitro to test for adaptive responses, and no effects were observed except for fatty acid composition. The findings demonstrated that membrane fatty acid composition is a sensitive marker and that microscopic evaluation of gamma-H2AX foci is more sensitive than the flow cytometric approach. These studies are the first to correlate uptake and depuration with biological health indicators in edible fish for tritium exposures within worldwide drinking water guidelines. (author)

  17. Evaluation of storage conditions for tritiated thymidine as reference organically-bound tritium in urine

    International Nuclear Information System (INIS)

    Duong, T.; Trivedi, A.

    1997-01-01

    Interlaboratory intercomparison exercises have used tritiated thymidine as a reference material for organically-bound tritium (OBT) measurements in urine. We have examined the effects of storage conditions on the degradation behavior of tritium from OBT to tritiated water (HTO) in artificial and natural human urine samples. Tritiated thymidine decomposed less readily in artificial urine than natural urine samples. The degradation rate of tritiated thymidine in artificial urine, at -20 deg C, is about 10% for the first month. The rate of tritium conversion from OBT to HTO is the same at 4 deg C, but this storage temperature is less preferable, because of the danger of microbial contamination in the reference samples. The storage of the reference urine samples beyond three months after the preparation date is not recommended for quality control measurement data. (author)

  18. OBT measurement of vegetation by mass spectrometry and radiometry

    International Nuclear Information System (INIS)

    Tamari, T.; Kakiuchi, H.; Momoshima, N.; Sugihara, S.; Baglan, N.; Uda, T.

    2011-01-01

    We carried out OBT (organically bound tritium) measurement by two different methods those are radiometry and mass spectrometry and compared the applicability of these methods for environmental tritium analysis. The dried grass sample was used for the experiments. To eliminate the exchangeable OBT, the sample was washed with tritium free water before analysis. Three times washing reduced the tritium activity in the labile sites below the detectable level. In radiometry the sample was combusted to convert the OBT as well as other hydrogen isotopes to. water and tritium activity in the water was measured by liquid scintillation counting (LSC). In mass spectrometry, the sample was kept in a glass container and 3 He produced by tritium decay was measured by mass spectrometry. The results were in good agreement suggesting applicability of these methods for environmental tritium analysis. The mass spectrometry is more suitable for environmental tritium research because of a lower detection limit than that of the LSC. (authors)

  19. An overview of organically bound tritium experiments in plants following a short atmospheric HTO exposure.

    Science.gov (United States)

    Galeriu, D; Melintescu, A; Strack, S; Atarashi-Andoh, M; Kim, S B

    2013-04-01

    The need for a less conservative, but reliable risk assessment of accidental tritium releases is emphasized in the present debate on the nuclear energy future. The development of a standard conceptual model for accidental tritium releases must be based on the process level analysis and the appropriate experimental database. Tritium transfer from atmosphere to plants and the subsequent conversion into organically bound tritium (OBT) strongly depends on the plant characteristics, seasons, and meteorological conditions, which have a large variability. The present study presents an overview of the relevant experimental data for the short term exposure, including the unpublished information, also. Plenty of experimental data is provided for wheat, rice, and soybean and some for potato, bean, cherry tomato, radish, cabbage, and tangerine as well. Tritiated water (HTO) uptake by plants during the daytime and nighttime has an important role in further OBT synthesis. OBT formation in crops depends on the development stage, length, and condition of exposure. OBT translocation to the edible plant parts differs between the crops analyzed. OBT formation during the nighttime is comparable with that during the daytime. The present study is a preliminary step for the development of a robust model of crop contamination after an HTO accidental release. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Extracellular KCl effect on organic bound tritium in human cells

    International Nuclear Information System (INIS)

    Gonen, Rafi; Uzi, German; Priel, Esther; Alfassi, Zeev B.

    2008-01-01

    Tritium atoms can replace hydrogen atoms in organic compounds, forming Organic Bound Tritium. Therefore, exposure of the body to tritium may lead to binding of tritium in tissue molecules, retaining it in the body longer than HTO, and causing higher doses. Ignoring this effect when evaluating inner exposures, may lead to under-estimation of tritium exposures. It was published, that tritium bound to some organic molecules has the potential to accumulate in organisms at higher levels as in the surrounding media. In order to investigate this effect and to identify physiological factors, OBT production in human malignant MG-63 osteoblast cells was studied. The purpose of the present work was to investigate the influence of the ionic extracellular potassium concentration on the amount of tritium in cells. Potassium is known as an ionic compound present in the body, which has the potential to cause cells swelling. Therefore, cells were exposed to isotonic and hypotonic media, supplemented with different concentrations of KCl, and the tritium accumulations were determined after incubation with HTO. An increase in the total Organic Bound Tritium production was observed, as well as an increase of the intracellular HTO content when increasing the KCl concentration. (author)

  1. Empirical insights and considerations for the OBT inter-laboratory comparison of environmental samples.

    Science.gov (United States)

    Kim, Sang-Bog; Roche, Jennifer

    2013-08-01

    Organically bound tritium (OBT) is an important tritium species that can be measured in most environmental samples, but has only recently been recognized as a species of tritium in these samples. Currently, OBT is not routinely measured by environmental monitoring laboratories around the world. There are no certified reference materials (CRMs) for environmental samples. Thus, quality assurance (QA), or verification of the accuracy of the OBT measurement, is not possible. Alternatively, quality control (QC), or verification of the precision of the OBT measurement, can be achieved. In the past, there have been differences in OBT analysis results between environmental laboratories. A possible reason for the discrepancies may be differences in analytical methods. Therefore, inter-laboratory OBT comparisons among the environmental laboratories are important and would provide a good opportunity for adopting a reference OBT analytical procedure. Due to the analytical issues, only limited information is available on OBT measurement. Previously conducted OBT inter-laboratory practices are reviewed and the findings are described. Based on our experiences, a few considerations were suggested for the international OBT inter-laboratory comparison exercise to be completed in the near future. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Empirical insights and considerations for the OBT inter-laboratory comparison of environmental samples

    International Nuclear Information System (INIS)

    Kim, Sang-Bog; Roche, Jennifer

    2013-01-01

    Organically bound tritium (OBT) is an important tritium species that can be measured in most environmental samples, but has only recently been recognized as a species of tritium in these samples. Currently, OBT is not routinely measured by environmental monitoring laboratories around the world. There are no certified reference materials (CRMs) for environmental samples. Thus, quality assurance (QA), or verification of the accuracy of the OBT measurement, is not possible. Alternatively, quality control (QC), or verification of the precision of the OBT measurement, can be achieved. In the past, there have been differences in OBT analysis results between environmental laboratories. A possible reason for the discrepancies may be differences in analytical methods. Therefore, inter-laboratory OBT comparisons among the environmental laboratories are important and would provide a good opportunity for adopting a reference OBT analytical procedure. Due to the analytical issues, only limited information is available on OBT measurement. Previously conducted OBT inter-laboratory practices are reviewed and the findings are described. Based on our experiences, a few considerations were suggested for the international OBT inter-laboratory comparison exercise to be completed in the near future. -- Highlights: ► Inter-laboratory OBT comparisons would provide a good opportunity for developing reference OBT analytical procedures. ► The measurement of environmental OBT concentrations has a higher associated uncertainty. ► Certified reference materials for OBT in environmental samples are required

  3. Tritium in plants

    International Nuclear Information System (INIS)

    Vichot, L.; Losset, Y.

    2009-01-01

    The presence of tritium in the environment stems from its natural production by cosmic rays, from the fallout of the nuclear weapon tests between 1953 and 1964, and locally from nuclear industry activities. A part of the tritiated water contained in the foliage of plants is turned into organically bound tritium (OBT) by photosynthesis. The tritium of OBT, that is not exchangeable and then piles up in the plant, can be used as a marker of the past. It has been shown that the quantity of OBT contained in the age-rings of an oak that grew near the CEA center of Valduc was directly correlated with the tritium releases of the center. (A.C.)

  4. Apparent enrichment of organically bound tritium in rivers explained by the heritage of our past.

    Science.gov (United States)

    Eyrolle-Boyer, Frédérique; Boyer, Patrick; Claval, David; Charmasson, Sabine; Cossonnet, Catherine

    2014-10-01

    The global inventory of naturally produced tritium (3H) is estimated at 2.65 kg, whereas more than 600 kg have been released during atmospheric nuclear tests (NCRP, 1979; UNSCEAR, 2000) constituting the main source of artificial tritium throughout the Anthropocene. The behaviour of this radioactive isotope in the environment has been widely studied since the 1950s, both through laboratory experiments and, more recently, through field observations (e.g., Cline, 1953; Kirchmann et al., 1979; Daillant et al., 2004; McCubbin et al., 2001; Kim et al., 2012). In its "free" forms, [i.e. 3H gas or 3H hydride (HT); methyl 3H gas (CH3T); tritiated H2O or 3H-oxide (HTO); and Tissue Free Water 3H (TFWT)], tritium closely follows the water cycle. However, 3H bound with organic compounds, mainly during the basic stages of photosynthesis or through weak hydrogen links, is less exchangeable with water, which explains its persistence in the carbon cycle as re underlined recently by Baglan et al. (2013), Jean-Batiste and Fourré (2013), Kim et al. (2013a,b). In this paper, we demonstrate that terrestrial biomass pools, historically contaminated by global atmospheric fallout from nuclear testing, have constituted a significant delayed source of organically bound tritium (OBT) for aquatic systems, resulting in an apparent enrichment of OBT as compared to HTO. This finding helps to explain concentration factors (tritium concentration in biota/concentration in water) greater than 1 observed in areas that are not directly affected by industrial radioactive wastes, and thus sheds light on the controversies regarding tritium 'bioaccumulation'. Such apparent enrichment of OBT is expected to be more pronounced in the Northern Hemisphere where fallout was most significant, depending on the nature and biodegradability of terrestrial biomass at the regional scale. We further believe that OBT transfers from the continent to oceans have been sufficient to affect tritium concentrations in

  5. Tritium uptake in cultivated plants after short-term exposure to atmospheric tritium

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.; Paunescu, N.

    1998-01-01

    The tritium behavior in crop plants is of particular interest for the prediction of doses to humans due to ingestion. Tritium is present in plants in two forms: tritium free water tissue (TWT) and organically bound tritium (OBT). The both forms are to be considered in models calculating the ingestion dose. Potato plants belong to the major food crops in many countries and were chosen as representatives of crops whose edible parts grow under ground. Green bean were chosen as representatives of vegetables relevant in human diet. This vegetable may be consumed as green pod and it may be conserved over a long period of time. Green bean and potato plants were exposed to tritiated water vapor in the atmosphere during their generative phase of development. The uptake of tritium and the conversion into organic matter was studied under laboratory conditions at two different light intensities. The tritium concentrations in plants were followed until harvest. In leaves, the tritium uptake into tissue water under night conditions was 5-6 times lower than under day-time conditions. The initial incorporation into organic matter under night conditions was 0.7% of the tissue water concentration in leaves of both plant species. However, under light irradiation, this value increased to only 1.8% in bean leaves and 0.9% in potato leaves, which indicates a participation of processes other than photosynthesis in tritium incorporation into organic material. Organically bound tritium (OBT) was translocated into pods and tubers which represented a high percentage of the total organically bound tritium at harvest. The behavior of total OBT in all plants under study showed that OBT, once generated, is lost very slowly until harvest, in particular when storage organs of plants were in their phase of development at the time of exposure. OBT is translocated into the storage organs which may be used in the human diet and thus may contribute to the ingestion dose for a long time after the

  6. Tritium in plants; Le tritium dans la matiere organique des vegetaux

    Energy Technology Data Exchange (ETDEWEB)

    Vichot, L.; Losset, Y. [CEA Valduc, 21 - Is-sur-Tille (France)

    2009-07-01

    The presence of tritium in the environment stems from its natural production by cosmic rays, from the fallout of the nuclear weapon tests between 1953 and 1964, and locally from nuclear industry activities. A part of the tritiated water contained in the foliage of plants is turned into organically bound tritium (OBT) by photosynthesis. The tritium of OBT, that is not exchangeable and then piles up in the plant, can be used as a marker of the past. It has been shown that the quantity of OBT contained in the age-rings of an oak that grew near the CEA center of Valduc was directly correlated with the tritium releases of the center. (A.C.)

  7. The human body retention time of environmental organically bound Tritium : preliminary analysis of results from a volunteer study

    International Nuclear Information System (INIS)

    Hunt, John; Bailey, Trevor; Reese, Allan

    2008-01-01

    Tritium in the UK environment causes low radiation doses to the public, but uncertainty exists in the dose coefficient for the organically-bound component of tritium (OBT). This can affect the assessment of effective doses to representative persons. Contributing to that uncertainty is poor knowledge of the body retention time of OBT and how this varies for different OBT compounds in food. This study was undertaken to measure the retention time of tritium by volunteers after eating sole from Cardiff Bay, which may contain OBT from discharges from the GE Healthcare Ltd. plant. Five volunteers provided samples of excreta over periods up to 150 days after intake. Preliminary analysis of the results suggests retention of total tritium with body half-times ranging from 4 to 11 days, with no evidence of a significant contribution due to retention with a longer half-time. This range covers the half-time of 10 days used by the ICRP for tritiated water. The short timescale could be due to rapid hydrolysis in body tissues of the particular form of OBT used in this study. Implications for the dose coefficient for OBT are that the use of the ICRP value of 4.2 10- 11 Sv Bq -1 may be cautious in this specific situation, and the value of 1.6 10 -11 Sv Bq-1 used by the ICRP for tritiated water might even be more appropriate. These observations on dose coefficients are separate from any implications of recent discussion on whether the tritium radiation weighting factor should be increased from 1 to 2. (author)

  8. Tritium forms discrimination in ryegrass under constant tritium exposure: From seed germination to seedling autotrophy.

    Science.gov (United States)

    Renard, H; Maro, D; Le Dizès, S; Escobar-Gutiérrez, A; Voiseux, C; Solier, L; Hébert, D; Rozet, M; Cossonnet, C; Barillot, R

    2017-10-01

    Uncertainties remain regarding the fate of atmospheric tritium after it has been assimilated in grasslands (ryegrass) in the form of TFWT (Tissue Free Water Tritium) or OBT (Organically Bound Tritium). One such uncertainty relates to the tritium forms discrimination during transfer from TFWT to OBT resulting from photosynthesis (OBT photo ), corresponding to the OBT photo /TFWT ratio. In this study, the OBT/TFWT ratio is determined by experiments in the laboratory using a ryegrass model and hydroponic cultures, with constant activity of tritium in the form of tritiated water (denoted as HTO) in the "water" compartment (liquid HTO) and "air" compartment (HTO vapour in the air). The OBT photo /TFWT ratio and the exchangeable OBT fraction are measured for three parts of the plant: the leaf, seed and root. Plant growth is modelled using dehydrated biomass measurements taken over time in the laboratory and integrating physiological functions of the plant during the first ten days after germination. The results suggest that there is no measurable discrimination of tritium in the plant organic matter produced by photosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mesocosm experiments on tritium dynamics in carp fish

    International Nuclear Information System (INIS)

    Reji, T.K.; Vishnu, M.S.; Joshi, R.M.; Dileep, B.N.; Baburajan, A.; Ravi, P.M.

    2013-01-01

    Tritium dynamics in carp fish (Cyprinus carpio) was studied in a locally designed mesocosm simulating a lake condition. The fishes were reared in an experimental tank containing tritiated water. Tissue Free water tritium (TFWT) concentration and Organically Bound Tritium (OBT) was measured for 3 months period. TFWT reached equilibrium with exposed water within one day. Detectable amount of OBT was observed after two months of exposure. OBT to TFWT ratio was 0.1. Estimated OBT was in agreement with that calculated using IAEA specific activity model. (author)

  10. Probabilistic and possibilistic approach for assessment of radiological risk due to organically bound and tissue free water tritium

    International Nuclear Information System (INIS)

    Dahiya, Sudhir; Hegde, A.G.; Joshi, M.L.; Verma, P.C.; Kushwaha, H.S.

    2006-01-01

    This study illustrates use of two approaches namely probabilistic using Monte Carlo simulation (MCS) and possibilistic using fuzzy α-cut (FAC) to estimate the radiological cancer risk to the population from ingestion of organically bound tritium (OBT) and tissue free water tritium (TFWT) from fish consumption from the Rana Pratap Sagar Lake (RPSL), Kota. Using FAC technique, radiological cancer risk rate (year -1 ) at A αl.0 level were 1.15E-08 and 1.50E-09 for OBT and TFWT respectively from fish ingestion pathway. The radiological cancer risk rate (year -1 ) using MCS approach at 50th percentile (median) level is 1.14E-08 and 1.49E-09 for OBT and HTO respectively from ingestion of fresh water fish. (author)

  11. Tritium (HTO and OBT) uptake within the environment and the potential risks to man

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.B.; Stuart, M.; Shultz, C. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    A series of rainbow trout experiments were conducted in the Chalk River Laboratories' (CRL) Biological Research Facility (BRF) to evaluate OBT formation in Rainbow trout. These were: 1) HTO exposure (7kBq/L in water) using un-tagged fish,2) OBT-spiked food exposure (30kBq/L) also using un-tagged fish,3) simultaneous exposure to HTO (7kBq/L in water) and OBT-spiked food (30kBq/L) using tagged fish, and 4)validation experiment (simultaneous exposure to HTO (7kBq/L in water) and OBT-spiked food (30 kBq/L)) using tagged fish.Each of the experiments was maintained for 130-150 days.Using all experimental results, tritium (HTO and OBT) dose was calculated based on Canadian fish products consumption. (author)

  12. Studies on tritium incorporation into wheat plants after short-term exposure to atmospheric tritium

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.; Raskob, W.

    1996-01-01

    The paper summarizes the results of a series of laboratory experiments to study the uptake, loss, conversion and translocation of tritium in wheat plants following a short-term exposure to atmospheric tritiated water vapour (HTO) under laboratory conditions. The experiments were accompanied by the development of a Plant-OBT-Model to calculate the tritium behaviour in wheat. Exposures of potted plants were carried out between anthesis and maturity, under day conditions at two different light intensities (900 μmol m -2 s -1 and 120 μmol m -2 s -1 photosynthetic active radiation) and under night conditions. In leaves, the tritium uptake into tissue water tritium (TWT) was about four times lower under night conditions than day conditions. Organically bound tritium (OBT) was generated in leaves, stems and ears under day as well as under night conditions. The initial relative OBT concentrations in leaves observed under night conditions were about 50% of those under day conditions. OBT was translocated into the grain in dependence on the growth rate of the grain. Due to incorporation of new organic matter with lower OBT concentration into the grain, the specific OBT concentrations decreased slightly until harvest but the total OBT was rather constant. Once translocation to grain has taken place, OBT is lost only slowly. The growth of the plants has been calibrated with the measured growth data of winter wheat and spring wheat. Subsequently, the tritium incorporation was calibrated using the results of the exposure experiments in the same year. The final OBT concentration in the grain can be predicted with sufficient precision. However, the modelling of the OBT formation and turnover processes right after exposure to tritium needs improvement. A comprehensive validation of the model with independent data sets is still necessary. (J.P.N.)

  13. Preparatory steps for a robust dynamic model for organically bound tritium dynamics in agricultural crops

    Energy Technology Data Exchange (ETDEWEB)

    Melintescu, A.; Galeriu, D. [' Horia Hulubei' National Institute for Physics and Nuclear Engineering, Bucharest-Magurele (Romania); Diabate, S.; Strack, S. [Institute of Toxicology and Genetics, Karlsruhe Institute of Technology - KIT, Eggenstein-Leopoldshafen (Germany)

    2015-03-15

    The processes involved in tritium transfer in crops are complex and regulated by many feedback mechanisms. A full mechanistic model is difficult to develop due to the complexity of the processes involved in tritium transfer and environmental conditions. First, a review of existing models (ORYZA2000, CROPTRIT and WOFOST) presenting their features and limits, is made. Secondly, the preparatory steps for a robust model are discussed, considering the role of dry matter and photosynthesis contribution to the OBT (Organically Bound Tritium) dynamics in crops.

  14. Experimental investigation of buried tritium in plant and animal tissues

    International Nuclear Information System (INIS)

    Kim, S. B.; Workman, W. J. G.; Davis, P. A.

    2008-01-01

    Buried exchangeable tritium appears as part of organically bound tritium (OBT) in the traditional experimental determination of OBT. Since buried tritium quickly exchanges with hydrogen atoms in the body following ingestion, assuming that it is part of OBT rather than part of tritiated water (HTO) could result in a significant overestimate of the ingestion dose. This paper documents an experimental investigation into the existence, amount and significance of buried tritium in plant and fish samples. OBT concentrations in the samples were determined in the traditional way and also following denaturing with five chemical solutions that break down large molecules and expose buried tritium to exchange with free hydrogen atoms. A comparison of the OBT concentrations before and after denaturing, together with the concentration of HTO in the supernatant obtained after denaturing, suggests that buried OBT may exist but makes up less than 5% of the OBT concentration in plants and at most 20% of the OBT concentration in fish. The effects of rinse time and rinse water volumes were investigated to optimize the removal of exchangeable OBT from the samples. (authors)

  15. Uptake of atmospheric tritium by market foods

    International Nuclear Information System (INIS)

    Inoue, Y.; Tanaka-Miyamoto, K.; Iwakura, T.

    1992-01-01

    In this paper uptake of tritium by market foods from tritiated water vapor in the air is investigated using cereals and beans purchased in Deep River, Canada. The concentrations of tissue free water tritium (TFWT) and organically bound tritium (OBT) range from 12 to 79% and from 10 to 38% respectively, of that estimated for atmospheric water vapor of the sampling month. The specific activity ratios of OBT to TFWT were constant for cereals, but variable for beans. The elevated OBT was shown to be the result of isotopic exchange of labile hydrogen by the fact that washing the foods with tritium free-water reduced their tritium contents to levels characteristic of their production sites

  16. Method validation and uncertainty evaluation of organically bound tritium analysis in environmental sample.

    Science.gov (United States)

    Huang, Yan-Jun; Zeng, Fan; Zhang, Bing; Chen, Chao-Feng; Qin, Hong-Juan; Wu, Lian-Sheng; Guo, Gui-Yin; Yang, Li-Tao; Shang-Guan, Zhi-Hong

    2014-08-01

    The analytical method for organically bound tritium (OBT) was developed in our laboratory. The optimized operating conditions and parameters were established for sample drying, special combustion, distillation, and measurement on a liquid scintillation spectrometer (LSC). Selected types of OBT samples such as rice, corn, rapeseed, fresh lettuce and pork were analyzed for method validation of recovery rate reproducibility, the minimum detection concentration, and the uncertainty for typical low level environmental sample was evaluated. The combustion water recovery rate of different dried environmental sample was kept at about 80%, the minimum detection concentration of OBT ranged from 0.61 to 0.89 Bq/kg (dry weight), depending on the hydrogen content. It showed that this method is suitable for OBT analysis of environmental sample with stable recovery rate, and the combustion water yield of a sample with weight about 40 g would provide sufficient quantity for measurement on LSC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Transfer parameters for routine release of HTO. Consideration of OBT

    International Nuclear Information System (INIS)

    Galeriu, D.; Paunescu, N.; Cotarlea

    1997-01-01

    Knowledge of the transfer parameters for tritium is a key requirement to assess the public dose or to establish Derived Release Limit (DRL) proper for a heavy water reactor. This report revised the transfer parameters used to assess tritium doses via the ingestion pathway. First, the procedure used in Canadian standard CSA-N288.1 to assess the DRL for tritium is revisited, clearing up some misunderstandings about the derivation of transfer parameters from air to forage and animal products. Secondly, we derive the transfer parameters applying conditions of full equilibrium to dynamic equations that describe the transfer of tritiated water in food. The new transfer parameters for tritiated water in food are more plant- and site-specific then the generic transfer parameters. The most important improvement is the introduction of organically bound tritium (OBT) production in plants or animal products. Bulk transfer parameters are introduced, which include OBT as well as HTO. Based on a standard Canadian diet, the dose increase considering OBT is almost 50 %. Recent experimental data obtained under equilibrium condition are discussed, and the revised transfer parameters for assessment purposes is demonstrated. (authors)

  18. Transfer parameters for routine release of HTO - consideration of OBT

    International Nuclear Information System (INIS)

    Galeriu, D.

    1994-06-01

    Knowledge of the transfer parameters for tritium is a key requirement to assess the public dose or to establish Derived Release Limits (DRL) appropriate for a heavy-water reactor. This report revises the transfer parameters used to assess tritium doses via the ingestion pathway. First, the procedure used in Canadian standard CSA-N288.1 to assess the DRL for tritium is revised, clearing up some misunderstandings about the derivation of transfer parameters for air to forage and animal products. Second, we rederive the transfer parameters, applying conditions of full equilibrium to dynamic equations that describe the transfer of tritiated water in food. The new transfer parameters for tritiated water in food are more plant- and site-specific than the generic transfer parameters. The most important improvement is the introduction of organically bound tritium (OBT) production in plants or animal products. Bulk transfer parameters are introduced, which include OBT as well as HTO. Based on a standard Canadian diet, the dose increase considering OBT is almost 50%. Recent experimental data obtained under equilibrium conditions are discussed, and the appropriateness of the revised transfer parameters for assessment purposes is demonstrated. (author). 26 refs., 7 tabs

  19. HTO and OBT activity concentrations in soil at the historical atmospheric HT release site (Chalk River Laboratories)

    International Nuclear Information System (INIS)

    Kim, S.B.; Bredlaw, M.; Korolevych, V.Y.

    2012-01-01

    Tritium is routinely released by the Chalk River Laboratories (CRL) nuclear facilities. Three International HT release experiments have been conducted at the CRL site in the past. The site has not been disturbed since the last historical atmospheric testing in 1994 and presents an opportunity to assess the retention of tritium in soil. This study is devoted to the measurement of HTO and OBT activity concentration profiles in the subsurface 25 cm of soil. In terms of soil HTO, there is no evidence from the past HT release experiments that HTO was retained. The HTO activity concentration in the soil pore water appears similar to concentrations found in background areas in Ontario. In contrast, OBT activity concentrations in soil at the same site were significantly higher than HTO activity concentrations in soil. Elevated OBT appears to reside in the top layer of the soil (0–5 cm). In addition, OBT activity concentrations in the top soil layer did not fluctuate much with season, again, quite in contrast with soil HTO. This result suggests that OBT activity concentrations retained the signature of the historical tritium releases. Highlights: ► At the historical HT release site, HTO and OBT activity concentrations in soil depths were investigated. ► Most organically bound tritium exists in the top layer of the soil. ► The results indicated that OBT activity concentrations can be reflective of historical tritium releases into the environment.

  20. Levels of tritium in soils and vegetation near Canadian nuclear facilities releasing tritium to the atmosphere: implications for environmental models

    International Nuclear Information System (INIS)

    Thompson, P.A.; Kwamena, N.-O.A.; Ilin, M.; Wilk, M.; Clark, I.D.

    2015-01-01

    Concentrations of organically bound tritium (OBT) and tritiated water (HTO) were measured over two growing seasons in vegetation and soil samples obtained in the vicinity of four nuclear facilities and two background locations in Canada. At the background locations, with few exceptions, OBT concentrations were higher than HTO concentrations: OBT/HTO ratios in vegetation varied between 0.3 and 20 and values in soil varied between 2.7 and 15. In the vicinity of the four nuclear facilities OBT/HTO ratios in vegetation and soils deviated from the expected mean value of 0.7, which is used as a default value in environmental transfer models. Ratios of the OBT activity concentration in plants ([OBT] plant ) to the OBT activity concentration in soils ([OBT] soil ) appear to be a good indicator of the long-term behaviour of tritium in soil and vegetation. In general, OBT activity concentrations in soils were nearly equal to OBT activity concentrations in plants in the vicinity of the two nuclear power plants. [OBT] plant /[OBT] soil ratios considerably below unity observed at one nuclear processing facility represents historically higher levels of tritium in the environment. The results of our study reflect the dynamic nature of HTO retention and OBT formation in vegetation and soil during the growing season. Our data support the mounting evidence suggesting that some parameters used in environmental transfer models approved for regulatory assessments should be revisited to better account for the behavior of HTO and OBT in the environment and to ensure that modelled estimates (e.g., plant OBT) are appropriately conservative. - Highlights: • We measured tritium in soils and plants near four nuclear facilities in Canada. • OBT/HTO ratios in plants are higher than default value in environmental models. • OBT/HTO ratios in background soils reflect historically higher atmospheric tritium. • Implications for environmental transfer models are discussed

  1. Role of soil-to-leaf tritium transfer in controlling leaf tritium dynamics: Comparison of experimental garden and tritium-transfer model results.

    Science.gov (United States)

    Ota, Masakazu; Kwamena, Nana-Owusua A; Mihok, Steve; Korolevych, Volodymyr

    2017-11-01

    Environmental transfer models assume that organically-bound tritium (OBT) is formed directly from tissue-free water tritium (TFWT) in environmental compartments. Nevertheless, studies in the literature have shown that measured OBT/HTO ratios in environmental samples are variable and generally higher than expected. The importance of soil-to-leaf HTO transfer pathway in controlling the leaf tritium dynamics is not well understood. A model inter-comparison of two tritium transfer models (CTEM-CLASS-TT and SOLVEG-II) was carried out with measured environmental samples from an experimental garden plot set up next to a tritium-processing facility. The garden plot received one of three different irrigation treatments - no external irrigation, irrigation with low tritium water and irrigation with high tritium water. The contrast between the results obtained with the different irrigation treatments provided insights into the impact of soil-to-leaf HTO transfer on the leaf tritium dynamics. Concentrations of TFWT and OBT in the garden plots that were not irrigated or irrigated with low tritium water were variable, responding to the arrival of the HTO-plume from the tritium-processing facility. In contrast, for the plants irrigated with high tritium water, the TFWT concentration remained elevated during the entire experimental period due to a continuous source of high HTO in the soil. Calculated concentrations of OBT in the leaves showed an initial increase followed by quasi-equilibration with the TFWT concentration. In this quasi-equilibrium state, concentrations of OBT remained elevated and unchanged despite the arrivals of the plume. These results from the model inter-comparison demonstrate that soil-to-leaf HTO transfer significantly affects tritium dynamics in leaves and thereby OBT/HTO ratio in the leaf regardless of the atmospheric HTO concentration, only if there is elevated HTO concentrations in the soil. The results of this work indicate that assessment models

  2. Development and validation of a dynamical atmosphere-vegetation-soil HTO transport and OBT formation model

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Masakazu, E-mail: ohta.masakazu@jaea.go.jp [Research Group for Environmental Science, Division of Environment and Radiation, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency (Japan); Nagai, Haruyasu [Research Group for Environmental Science, Division of Environment and Radiation, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency (Japan)

    2011-09-15

    A numerical model simulating transport of tritiated water (HTO) in atmosphere-soil-vegetation system, and, accumulation of organically bound tritium (OBT) in vegetative leaves was developed. Characteristic of the model is, for calculating tritium transport, it incorporates a dynamical atmosphere-soil-vegetation model (SOLVEG-II) that calculates transport of heat and water, and, exchange of CO{sub 2}. The processes included for calculating tissue free water tritium (TFWT) in leaves are HTO exchange between canopy air and leaf cellular water, root uptake of aqueous HTO in soil, photosynthetic assimilation of TFWT into OBT, and, TFWT formation from OBT through respiration. Tritium fluxes at the last two processes are input to a carbohydrate compartment model in leaves that calculates OBT translocation from leaves and allocation in them, by using photosynthesis and respiration rate in leaves. The developed model was then validated through a simulation of an existing experiment of acute exposure of grape plants to atmospheric HTO. Calculated TFWT concentration in leaves increased soon after the start of HTO exposure, reaching to equilibrium with the atmospheric HTO within a few hours, and then rapidly decreased after the end of the exposure. Calculated non-exchangeable OBT amount in leaves linearly increased during the exposure, and after the exposure, rapidly decreased in daytime, and, moderately nighttime. These variations in the calculated TFWT concentrations and OBT amounts, each mainly controlled by HTO exchange between canopy air and leaf cellular water and by carbohydrates translocation from leaves, fairly agreed with the observations within average errors of a factor of two. - Highlights: > TFWT retention and OBT formation in leaves were modeled > The model fairly well calculates TFWT concentration after an acute HTO exposure > The model well assesses OBT formation and attenuation of OBT amount in leaves.

  3. Energy Metabolism and Human Dosimetry of Tritium

    International Nuclear Information System (INIS)

    Galeriu, D.; Takeda, H.; Melintescu, A.; Trivedi, A.

    2005-01-01

    In the frame of current revision of human dosimetry of 14 C and tritium, undertaken by the International Commission of Radiological Protection, we propose a novel approach based on energy metabolism and a simple biokinetic model for the dynamics of dietary intake (organic 14 C, tritiated water and Organically Bound Tritium-OBT). The model predicts increased doses for HTO and OBT comparing to ICRP recommendations, supporting recent findings

  4. Tritium behaviour in higher plants

    International Nuclear Information System (INIS)

    Guenot, J.

    1984-05-01

    Vine grapes and potato seedlings have been exposed in situ to tritiated water vapor and 14 C labeled carbon dioxide. Leaves sampling was done during and after the exposition. Measurements allowed to distinguish the three forms of tritium in leaves, i.e. tissue free water tritium (TFWT) and organically bound tritium (OBT), in exchangeable position or not. The results lead to a description of the dynamical behaviour of tritium between these three compartments. It has been shown that 20% of organically bound hydrogen is readily exchangeable thus being in permanent isotopic equilibium with tissue free water. Moreover, the activity of nonexchangeable OBT appears to be strongly related to the organic 14 C, which shows that photosynthesis is responsible of tritium incorporation in organic nonexchangeable position, and occurs with a 20% discrimination in favor of protium. In contrast with the other two compartments, this fixation is almost irreversible, which is a fact of importance from a radiological point of view [fr

  5. Tritium dynamics in soils and plants grown under three irrigation regimes at a tritium processing facility in Canada

    International Nuclear Information System (INIS)

    Mihok, S.; Wilk, M.; Lapp, A.; St-Amant, N.; Kwamena, N.-O.A.; Clark, I.D.

    2016-01-01

    The dynamics of tritium released from nuclear facilities as tritiated water (HTO) have been studied extensively with results incorporated into regulatory assessment models. These models typically estimate organically bound tritium (OBT) for calculating public dose as OBT itself is rarely measured. Higher than expected OBT/HTO ratios in plants and soils are an emerging issue that is not well understood. To support the improvement of models, an experimental garden was set up in 2012 at a tritium processing facility in Pembroke, Ontario to characterize the circumstances under which high OBT/HTO ratios may arise. Soils and plants were sampled weekly to coincide with detailed air and stack monitoring. The design included a plot of native grass/soil, contrasted with sod and vegetables grown in barrels with commercial topsoil under natural rain and either low or high tritium irrigation water. Air monitoring indicated that the plume was present infrequently at concentrations of up to about 100 Bq/m"3 (the garden was not in a major wind sector). Mean air concentrations during the day on workdays (HTO 10.3 Bq/m"3, HT 5.8 Bq/m"3) were higher than at other times (0.7–2.6 Bq/m"3). Mean Tissue Free Water Tritium (TFWT) in plants and soils and OBT/HTO ratios were only very weakly or not at all correlated with releases on a weekly basis. TFWT was equal in soils and plants and in above and below ground parts of vegetables. OBT/HTO ratios in above ground parts of vegetables were above one when the main source of tritium was from high tritium irrigation water (1.5–1.8). Ratios were below one in below ground parts of vegetables when irrigated with high tritium water (0.4–0.6) and above one in vegetables rain-fed or irrigated with low tritium water (1.3–2.8). In contrast, OBT/HTO ratios were very high (9.0–13.5) when the source of tritium was mainly from the atmosphere. TFWT varied considerably through time as a result of SRBT's operations; OBT/HTO ratios showed no clear

  6. Bioassay of hair for estimation of body burden by tritium exposure

    International Nuclear Information System (INIS)

    Takeda, Hiroshi; Iwakura, Tetsuo

    1989-01-01

    For accurate estimation of radiation dose to human body from tritium exposure, it is needed to assess the concentration of tritium organically bound to the tissue constituents(OBT) as well as body water tritium. Since hair is an easily accessible tissue, it seems to be interesting to study the possibility of using hair for this purpose. In the present study, the pattern of tritium incorporation into hair and the quantitative relationship between OBT content in hair and in other internal tissues were investigated in rats exposed singly or continously to tritiated water, tritiated leucine and tritiated glycine. The rate of tritium incorporation into hair was slower than that into other tissues and the maximum concentrations were found on the 15-30th day after a single ingestion. The alterations in the concentration of OBT in internal tissues due to the difference of chemical form of ingested tritium were reflected on the OBT concentration in hair. Especially, the OBT content in hair under the condition of continuous exposure was almost the same as that in other tissues. These findings indicate the validity of hair analysis as a means for assessing OBT deposition in the body or tissues. (author)

  7. Organically bound tritium

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.

    1993-01-01

    Tritium released into the environment may be incorporated into organic matter. Organically bound tritium in that case will show retention times in organisms that are considerably longer than those of tritiated water which has significant consequences on dose estimates. This article reviews the most important processes of organically bound tritium production and transport through food networks. Metabolic reactions in plant and animal organisms with tritiated water as a reaction partner are of great importance in this respect. The most important production process, in quantitative terms, is photosynthesis in green plants. The translocation of organically bound tritium from the leaves to edible parts of crop plants should be considered in models of organically bound tritium behavior. Organically bound tritium enters the human body on several pathways, either from the primary producers (vegetable food) or at a higher tropic level (animal food). Animal experiments have shown that the dose due to ingestion of organically bound tritium can be up to twice as high as a comparable intake of tritiated water in gaseous or liquid form. In the environment, organically bound tritium in plants and animals is often found to have higher specific tritium concentrations than tissue water. This is not due to some tritium enrichment effects but to the fact that no equilibrium conditions are reached under natural conditions. 66 refs

  8. Tritium in organic matter around Krsko Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kristof, Romana; Zorko, Benjamin; Kozar Logar, Jasmina; Kosenina, Suzana

    2017-01-01

    The aim of the research was to obtain first results of tritium in the organic matter of environmental samples in the vicinity of Krsko NPP. The emphasis was on the layout of suitable sampling network of crops and fruits in nearby agricultural area. Method for determination of tritium in organic matter in the form of Tissue Free Water Tritium (TFWT) and Organically Bound Tritium (OBT) has been implemented. Capabilities of the methods were tested on real environmental samples and its findings were compared to modeled activities of tritium from atmospheric releases and literature based results of TFWT and OBT. (author)

  9. Radiation quality of tritium: a comparison with 60Co gamma rays.

    Science.gov (United States)

    Chen, Jing

    2013-09-01

    In a previous study, microdosimetric simulations were performed for tritium uniformly distributed in a medium, and for tritium bound to biologically critical sites of dimensions from 10 nm to 2 µm. Results of local energy density, i.e. energy deposition in microscopic regions, are different for these two cases. Based on the spatial distribution of energy deposition, dose mean lineal energies are calculated for tritium in the forms of tritiated water (HTO) and organically bound tritium (OBT). The dose mean lineal energies of OBT are about a factor of 1.7 higher than those of HTO in a wide range of target dimensions of biological interest. The results are consistent with radiobiological findings that OBT is about twice as effective as HTO. In this study, the same calculations were performed for (60)Co gamma rays in a wide range of target dimensions of biological interest (10 nm to 2 µm). Compared with (60)Co gamma rays, the estimated relative biological effectiveness could vary from 1.3 to 3.5 for HTO, and 2.3 to 5.6 for OBT. The results are consistent with radiobiological findings for various biological endpoints in different biological systems that OBT is about twice as effective as HTO.

  10. Tritium dynamics in soils and plants at a tritium processing facility in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Mihok, S.; St-Amanat, N.; Kwamena, N.O. [Canadian Nuclear Safety Commission (Canada); Clark, I.; Wilk, M.; Lapp, A. [University of Ottawa (Canada)

    2014-07-01

    The dynamics of tritium released as tritiated water (HTO) have been studied extensively with results incorporated into environmental models such as CSA N288.1 used for regulatory purposes in Canada. The dispersion of tritiated gas (HT) and rates of oxidation to HTO have been studied under controlled conditions, but there are few studies under natural conditions. HT is a major component of the tritium released from a gaseous tritium light manufacturing facility in Canada (CNSC INFO-0798). To support the improvement of models, a garden was set up in one summer near this facility in a spot with tritium in air averaging ∼ 5 Bq/m{sup 3} HTO (passive diffusion monitors). Atmospheric stack releases (575 GBq/week) were recorded weekly. HT releases occur mainly during working hours with an HT:HTO ratio of 2.6 as measured at the stack. Soils and plants (leaves/stems and roots/tubers) were sampled for HTO and organically-bound tritium (OBT) weekly. Active day-night monitoring of air was conducted to interpret tritium dynamics relative to weather and solar radiation. The experimental design included a plot of natural grass/soil, contrasted with grass (sod) and Swiss chard, pole beans and potatoes grown in barrels under different irrigation regimes (in local topsoil at 29 Bq/L HTO, 105 Bq/L OBT). All treatments were exposed to rain (80 Bq/L) and atmospheric releases of tritium (weekdays), and reflux of tritium from soils (initial conditions of 284 Bq/L HTO, 3,644 Bq/L OBT) from 20 years of operations. Three irrigation regimes were used for barrel plants to mimic home garden management: rain only, low tritium tap water (5 Bq/L), and high tritium well water (mean 10,013 Bq/L). This design provided a range of plants and starting conditions with contrasts in initial HTO/OBT activity in soils, and major tritium inputs from air versus water. Controls were two home gardens far from any tritium sources. Active air monitoring indicated that the plume was only occasionally present for

  11. Tritium dynamics in soils and plants grown under three irrigation regimes at a tritium processing facility in Canada.

    Science.gov (United States)

    Mihok, S; Wilk, M; Lapp, A; St-Amant, N; Kwamena, N-O A; Clark, I D

    2016-03-01

    The dynamics of tritium released from nuclear facilities as tritiated water (HTO) have been studied extensively with results incorporated into regulatory assessment models. These models typically estimate organically bound tritium (OBT) for calculating public dose as OBT itself is rarely measured. Higher than expected OBT/HTO ratios in plants and soils are an emerging issue that is not well understood. To support the improvement of models, an experimental garden was set up in 2012 at a tritium processing facility in Pembroke, Ontario to characterize the circumstances under which high OBT/HTO ratios may arise. Soils and plants were sampled weekly to coincide with detailed air and stack monitoring. The design included a plot of native grass/soil, contrasted with sod and vegetables grown in barrels with commercial topsoil under natural rain and either low or high tritium irrigation water. Air monitoring indicated that the plume was present infrequently at concentrations of up to about 100 Bq/m(3) (the garden was not in a major wind sector). Mean air concentrations during the day on workdays (HTO 10.3 Bq/m(3), HT 5.8 Bq/m(3)) were higher than at other times (0.7-2.6 Bq/m(3)). Mean Tissue Free Water Tritium (TFWT) in plants and soils and OBT/HTO ratios were only very weakly or not at all correlated with releases on a weekly basis. TFWT was equal in soils and plants and in above and below ground parts of vegetables. OBT/HTO ratios in above ground parts of vegetables were above one when the main source of tritium was from high tritium irrigation water (1.5-1.8). Ratios were below one in below ground parts of vegetables when irrigated with high tritium water (0.4-0.6) and above one in vegetables rain-fed or irrigated with low tritium water (1.3-2.8). In contrast, OBT/HTO ratios were very high (9.0-13.5) when the source of tritium was mainly from the atmosphere. TFWT varied considerably through time as a result of SRBT's operations; OBT/HTO ratios showed no clear temporal

  12. Transfer of tritium released into the marine environment by French nuclear facilities bordering the English Channel.

    Science.gov (United States)

    Fiévet, Bruno; Pommier, Julien; Voiseux, Claire; Bailly du Bois, Pascal; Laguionie, Philippe; Cossonnet, Catherine; Solier, Luc

    2013-06-18

    Controlled amounts of liquid tritium are discharged as tritiated water (HTO) by the nuclear industry into the English Channel. Because the isotopic discrimination between 3H and H is small, organically bound tritium (OBT) and HTO should show the same T/H ratio under steady-state conditions. We report data collected from the environment in the English Channel. Tritium concentrations measured in seawater HTO, as well as in biota HTO and OBT, confirm that tritium transfers from HTO to OBT result in conservation of the T/H ratio (ca. 1 × 10(-16)). The kinetics of the turnover of tritium between seawater HTO, biota HTO, and OBT was investigated. HTO in two algae and a mollusk is shown to exchange rapidly with seawater HTO. However, the overall tritium turnover between HTO and the whole-organism OBT is a slow process with a tritium biological half-life on the order of months. Nonsteady-state conditions exist where there are sharp changes in seawater HTO. As a consequence, for kinetic reasons, the T/H ratio in OBT may deviate transiently from that observed in HTO of samples from the marine ecosystem. Dynamic modeling is thus more realistic for predicting tritium transfers to biota OBT under nonsteady-state conditions.

  13. Levels of tritium in soils and vegetation near Canadian nuclear facilities releasing tritium to the atmosphere: implications for environmental models.

    Science.gov (United States)

    Thompson, P A; Kwamena, N-O A; Ilin, M; Wilk, M; Clark, I D

    2015-02-01

    Concentrations of organically bound tritium (OBT) and tritiated water (HTO) were measured over two growing seasons in vegetation and soil samples obtained in the vicinity of four nuclear facilities and two background locations in Canada. At the background locations, with few exceptions, OBT concentrations were higher than HTO concentrations: OBT/HTO ratios in vegetation varied between 0.3 and 20 and values in soil varied between 2.7 and 15. In the vicinity of the four nuclear facilities OBT/HTO ratios in vegetation and soils deviated from the expected mean value of 0.7, which is used as a default value in environmental transfer models. Ratios of the OBT activity concentration in plants ([OBT]plant) to the OBT activity concentration in soils ([OBT]soil) appear to be a good indicator of the long-term behaviour of tritium in soil and vegetation. In general, OBT activity concentrations in soils were nearly equal to OBT activity concentrations in plants in the vicinity of the two nuclear power plants. [OBT]plant/[OBT]soil ratios considerably below unity observed at one nuclear processing facility represents historically higher levels of tritium in the environment. The results of our study reflect the dynamic nature of HTO retention and OBT formation in vegetation and soil during the growing season. Our data support the mounting evidence suggesting that some parameters used in environmental transfer models approved for regulatory assessments should be revisited to better account for the behavior of HTO and OBT in the environment and to ensure that modelled estimates (e.g., plant OBT) are appropriately conservative. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  14. An updated review on tritium in the environment.

    Science.gov (United States)

    Eyrolle, Frédérique; Ducros, Loïc; Le Dizès, Séverine; Beaugelin-Seiller, Karine; Charmasson, Sabine; Boyer, Patrick; Cossonnet, Catherine

    2018-01-01

    Various studies indicated more or less recently that organically bound tritium (OBT) formed from gaseous or liquid tritium releases into the environment potentially accumulates in organisms contradicting hypotheses associated to methods used to assess the biological impact of tritium on humans (ASN, 2010). Increasing research works were then performed during the last decade in order to gain knowledge on this radionuclide expected to be increasingly released by nuclear installations in the near future within the environment. This review focusses on publications of the last decade. New unpublished observations revealing the presence of technogenic tritium in a sedimentary archive collected in the upper reaches of the Rhône river and findings from the Northwestern Mediterranean revealing in all likelihood the impact of terrigenous tritium inputs on OBT levels recorded in living organisms are also presented. Identifying and understanding the physicochemical forms of tritium and the processes leading to its persistence in environmental compartments would explain most observations regarding OBT concentrations in organisms and definitively excludes that tritium would "bio accumulate" within living organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Tritium uptake kinetics in crayfish (Orconectes immunis)

    International Nuclear Information System (INIS)

    Patrick, P.H.

    1985-06-01

    Uptake of tritiated water (HTO) by Orconectes immunis was investigated under laboratory conditions. Tritium uptake in the tissue-free water fraction (TFWT) was described using an exponential model. When steady-state was reached, the ratio of TFWT to HTO was approximately 0.9. Uptake of tritium in the organically-bound fraction (OBT) proceeded slowly, and had not reached steady-state after 117 days of culture. Although steady-state was never reached, the maximum observed ration of OBT to TFWT in whole animals was approximately 0.6. However, this ratio exceeded unity in the exoskeleton. Specific activity ratios of OBT between crayfish and lettuce (food source) were less than or at unity for various test conditions

  16. Metabolism of organically bound tritium

    International Nuclear Information System (INIS)

    Travis, C.C.

    1984-01-01

    The classic methodology for estimating dose to man from environmental tritium ignores the fact that organically bound tritium in foodstuffs may be directly assimilated in the bound compartment of tissues without previous oxidation. We propose a four-compartment model consisting of a free body water compartment, two organic compartments, and a small, rapidly metabolizing compartment. The utility of this model lies in the ability to input organically bound tritium in foodstuffs directly into the organic compartments of the model. We found that organically bound tritium in foodstuffs can increase cumulative total body dose by a factor of 1.7 to 4.5 times the free body water dose alone, depending on the bound-to-loose ratio of tritium in the diet. Model predictions are compared with empirical measurements of tritium in human urine and tissue samples, and appear to be in close agreement. 10 references, 4 figures, 3 tables

  17. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    International Nuclear Information System (INIS)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D.

    2015-01-01

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ( 14 C from organically compounds, 36 Cl as chloride and free chlorine, 40 K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na 2 O 2 and KMnO 4 ), lyophilization, chemical treatment (Na 2 O 2 and KMnO 4 ) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization

  18. Organically bound tritium in the environment: First investigation of environmental survey in the vicinity of a French research centre

    Energy Technology Data Exchange (ETDEWEB)

    Vichot, L.; Boyer, C.; Boissieux, T.; Losset, Y.; Pierrat, D. [CEA Valduc, CVA DSTA SPR LMSE, 21 - Is-sur-Tille (France)

    2008-07-15

    This paper deals with the experimentation made on different plants such as lichens, trees and lettuces exposed to HT and HTO throughout their lives. These experiments included, in the same time, consideration of meteorological data, measurement of tritium diffusion, characterization of the tritium transfer into biological materials, and dose estimation through the food chain. Works on lichens collected around the site have confirmed previous results quoted in the literature in regards to OBT levels. However, because of their potential of pollutants accumulation and the difficulty to date them, lichens can not be chosen as bio-indicators. Measurements carried out on annual rings of trees have shown the related evolutions in time of the OBT levels and the tritium releases of the Valduc Centre. These measures have underlined the possibility to reveal past contamination by OBT analysis around the centre in good correlation with the atmospheric discharge. The results obtained on lettuces cultivated into the site near a source of tritium appeared as very promising. A global conversion rate from tissue free water tritium to OBT was evaluated to 0.20 - 0.24 %.h{sup -1} in average on the whole growing period, corresponding to the order of magnitude given for many vegetables in the literature. (authors)

  19. Organically bound tritium in the environment: First investigation of environmental survey in the vicinity of a French research centre

    International Nuclear Information System (INIS)

    Vichot, L.; Boyer, C.; Boissieux, T.; Losset, Y.; Pierrat, D.

    2008-01-01

    This paper deals with the experimentation made on different plants such as lichens, trees and lettuces exposed to HT and HTO throughout their lives. These experiments included, in the same time, consideration of meteorological data, measurement of tritium diffusion, characterization of the tritium transfer into biological materials, and dose estimation through the food chain. Works on lichens collected around the site have confirmed previous results quoted in the literature in regards to OBT levels. However, because of their potential of pollutants accumulation and the difficulty to date them, lichens can not be chosen as bio-indicators. Measurements carried out on annual rings of trees have shown the related evolutions in time of the OBT levels and the tritium releases of the Valduc Centre. These measures have underlined the possibility to reveal past contamination by OBT analysis around the centre in good correlation with the atmospheric discharge. The results obtained on lettuces cultivated into the site near a source of tritium appeared as very promising. A global conversion rate from tissue free water tritium to OBT was evaluated to 0.20 - 0.24 %.h -1 in average on the whole growing period, corresponding to the order of magnitude given for many vegetables in the literature. (authors)

  20. Transfer of tritium-labeled organic material from grass into cow's milk

    International Nuclear Information System (INIS)

    van den Hoek, J.; ten Have, M.H.J.; Gerber, G.B.; Kirchmann, R.

    1985-01-01

    Two lactating cows were given tritiated hay containing organically bound tritium (OBT) only for about 4 weeks. Tritium activity was determined in milk fat, casein, lactose, milk water, and whole milk. In one cow, milk was sampled for approximately 450 days, covering two lactation periods. At steady state, specific tritium activities in casein, lactose, and milk water were 58, 10, and 11%, respectively, of those in milk fat. Some OBT was converted into THO during catabolism and entered the body water pool. This 3 H source accounted for nearly 40% of tritium in lactose, but in casein and milk fat about 97% of tritium was derived from ingested OBT. Comparison of the specific activity of milk constituents with the specific activity of ingested hay showed the following values: 0.84 for milk fat, 0.49 for casein, 0.05 for lactose, 0.10 for milk water. Decrease of tritium activity with time could be represented by three components with different half-lives for the organic milk constituents. Those for milk fat and casein were quite similar, with a slow component of nearly 3 months

  1. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    Energy Technology Data Exchange (ETDEWEB)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D. [National Institute for Cryogenics and Isotopic Technologies, Valcea (Romania)

    2015-03-15

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ({sup 14}C from organically compounds, {sup 36}Cl as chloride and free chlorine, {sup 40}K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}), lyophilization, chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization.

  2. Relation between the tritium in continuous atmospheric release and the tritium contents of fruits and tubers.

    Science.gov (United States)

    Korolevych, V Y; Kim, S B

    2013-04-01

    Concentrations of organically bound tritium (OBT) and tissue-free water tritium (TFWT, also referred to as HTO) in fruits and tubers were measured at a garden plot in the vicinity of the source of chronic airborne tritium emissions during the 2008, 2010, and 2011 growing seasons. A continuous record of HTO concentration in the air moisture was reconstructed from the continuous record of Ar-41 ambient gamma radiation, as well as from frequent measurements of air HTO by active samplers at the garden plot and Ar-41 and air HTO monitoring data from the same sector. Performed measurements were used for testing the modified Specific Activity (SA) model based on the assumption that the average air HTO during the pod-filling period provides an appropriate basis for estimating the levels of OBT present in pods, fruits and tubers. It is established that the relationship between the OBT of fruits and tubers and the average air HTO from a 15-20 day wide window centred at the peak of the pod-filling period is consistent throughout the three analysed years, and could be expressed by the fruit or tuber's OBT to air-HTO ratio of 0.93 ± 0.21. For all three years, the concentration of HTO in fruits and tubers was found to be related to levels of HTO in the air, as averaged within a 3-day pre-harvest window. The variability in the ratio of plant HTO to air HTO appears to be three times greater than that for the OBT of the fruits and tubers. It is concluded that the OBT of fruits and tubers adequately follows an empirical relationship based on the average level of air HTO from the pod-filling window, and therefore is clearly in line with the modified SA approach. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  3. The valley system of the Jihlava river and Mohelno reservoir with enhanced tritium activities

    Czech Academy of Sciences Publication Activity Database

    Šimek, Pavel; Kořínková, Tereza; Světlík, Ivo; Povinec, P. P.; Fejgl, Michal; Malátová, I.; Tomášková, Lenka; Štěpán, Václav

    2017-01-01

    Roč. 166, SI (2017), s. 83-90 ISSN 0265-931X Institutional support: RVO:61389005 Keywords : Tritium (H-3) * non-exchangeable organically bound tritium (NE-OBT) * tissue free water tritium (TFWT) * nuclear power plant (NPP) * biota * HTO Subject RIV: DO - Wilderness Conservation OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 2.310, year: 2016

  4. Determination of changes to TFWT and OBT concentrations in potatoes and Swiss chard as a result of preparation for human consumption

    International Nuclear Information System (INIS)

    Kim, S.B.; Bredlaw, M.; Farrow, F.

    2014-01-01

    Ingestion is one of the most important pathways to consider for calculating tritium dose to human beings. The objective of this study is to determine changes to TFWT and OBT concentrations in food as a result of its preparation for consumption. The contribution of OBT to the total tritium dose can be reduced by the oxidation of OBT during food preparation. The results show that preparation for consumption can result in reductions of up to 46% in TFWT concentration and 54% in OBT concentration in potato, and 22% in TFWT concentration and 57% in OBT concentration in Swiss chard. - Highlights: • Determine changes to TFWT and OBT concentrations in potatoes and Swiss chard. • The contribution of OBT to the total tritium dose can be reduced by the oxidation of OBT during food preparation. • Reductions were up to 46% in TFWT and 57% in OBT

  5. Reconstructing Tritium Exposure Using Tree Rings at Lawrence Berkeley National Laboratory, California

    Science.gov (United States)

    LOVE, ADAM H.; HUNT, JAMES R.; KNEZOVICH, JOHN P.

    2010-01-01

    Annual tritium exposures were reconstructed using tree cores from Pinus jeffreyi and Eucalyptus globulus near a tritiated water vapor release stack. Both tritium (3H) and carbon-14 (14C) from the wood were measured from milligram samples using accelerator mass spectrometry. Because the annual nature of the eucalyptus tree rings was in doubt, 14C measurements provided growth rates used to estimate the age for 3H determinations. A 30-yr comparison of organically bound tritium (OBT) levels to reported 3H release data is achieved using OBT measurements from three trees near the stack. The annual average 3H, determined from atmospheric water vapor monitoring stations, is comparable to the OBT in proximal trees. For situations without adequate historical monitoring data, this measurement-based historical assessment provides the only independent means of assessing exposure as compared to fate and transport models that require prior knowledge of environmental conditions and 3H discharge patterns. PMID:14572081

  6. Knowledge status for the impact of tritium on health; Etat des connaissances de l'impact du tritium sur la sante

    Energy Technology Data Exchange (ETDEWEB)

    Lebaron-Jacobs, L. [CEA Cadarache, Direction des Sciences du Vivant, Protection Sanitaire contre les rayonnements ionisants et les toxiques nucleaires, 13 - Saint-Paul-lez-Durance (France)

    2009-07-01

    The author proposes a review about the presence of tritium in water and in food under different forms (HTO or tritiated water, OBT or organically bound tritium, or tritiated gas), and of its possible effects on health due to its behaviour in relationship with other molecules. She also evokes the assessment of the received dose, gives an assessment of the elimination delay of the three different forms of tritium for an adult. She discusses the risk assessment and some epidemiological studies

  7. Tritium isotope fractionation in biological systems and in analytical procedures

    International Nuclear Information System (INIS)

    Kim, M.A.; Baumgaertner, Franz

    1989-01-01

    The organically bound tritium (OBT) is evaluated in biological systems by determining the tritium distribution ratio (R-value), i.e. tritium concentrations in organic substance to cell water. The determination of the R-value always involves isotope fractionation is applied analytical procedures and hence the evaluation of the true OBT -value in a given biological system appears more complicated than hitherto known in the literature. The present work concentrates on the tritium isotope fractionation in the cell water separation and on the resulting effects on the R-value. The analytical procedures examined are vacuum freeze drying under equilibrium and non-equilibrium conditions and azeotropic distillation. The vaporization isotope effects are determined separately in the phase transition of solid or liquid to gas in pure tritium water systems as well as in real biological systems, e.g. corn plant. The results are systematically analyzed and the influence of isotope effects on the R-value is rigorously quantified

  8. Tritium fractionation in biological systems and in analytical procedures

    International Nuclear Information System (INIS)

    Kim, M.A.; Baumgaertner, F.

    1991-01-01

    The organically bound tritium (OBT) is evaluated in biological systems by measuring the tritium distribution ratio (R-value), i.e. tritium concentrations in organic substance to tissue water. The determination of the R-value is found to involve always isotope fractionation in applied analytical procedures and hence the evaluation of the true OBT-value in a given biological system appears more complicated than hitherto known in the literature. The present work concentrates on the tritium isotope fraction in the tissue water separation and on the resulting effects on the R-value. The analytical procedures examined are vacuum freeze drying under equilibrium and non-equilibrium conditions and azeotropic distillation. The vaporization isotope effects are determined separately in the phase transition of solid or liquid to gas in pure water systems as well as in real biological systems, e.g. maize plant. The results are systematically analysed and the influence of isotope effects on the R-value is rigorously quantified. (orig.)

  9. Analysis of the organically bound tritium

    International Nuclear Information System (INIS)

    Baglan, N.; Alanic, G.

    2011-01-01

    In environmental samples, tritium is very often combined with the fraction of bulk water accumulated in the sample but also in the form of organically bound tritium. When the tritium is organically bound, 2 forms can coexist: the exchangeable fraction and the non-exchangeable fraction. The analysis of the different forms of tritium present in the sample is necessary to assess the sanitary hazards due to tritium. The total tritium is obtained from the analysis of the water released when the fresh sample is burnt while the organically bound tritium is obtained from the analysis of the water released when the dry extract of the sample is burnt. The measurement of the exchangeable fraction and the non-exchangeable fraction requires an additional stage of labile exchange. The exchangeable fraction is determined from the analysis of the water released during the labile exchange and the non-exchangeable fraction is determined from the water released during the combustion of the dry extract of the labile exchange

  10. Isotopic fractionation of tritium in biological systems.

    Science.gov (United States)

    Le Goff, Pierre; Fromm, Michel; Vichot, Laurent; Badot, Pierre-Marie; Guétat, Philippe

    2014-04-01

    Isotopic fractionation of tritium is a highly relevant issue in radiation protection and requires certain radioecological considerations. Sound evaluation of this factor is indeed necessary to determine whether environmental compartments are enriched/depleted in tritium or if tritium is, on the contrary, isotopically well-distributed in a given system. The ubiquity of tritium and the standard analytical methods used to assay it may induce biases in both the measurement and the signification that is accorded to the so-called fractionation: based on an exhaustive review of the literature, we show how, sometimes large deviations may appear. It is shown that when comparing the non-exchangeable fraction of organically bound tritium (neOBT) to another fraction of tritium (e.g. tritiated water) the preparation of samples and the measurement of neOBT reported frequently led to underestimation of the ratio of tritium to hydrogen (T/H) in the non-exchangeable compartment by a factor of 5% to 50%. In the present study, corrections are proposed for most of the biological matrices studied so far. Nevertheless, the values of isotopic fractionation reported in the literature remain difficult to compare with each other, especially since the physical quantities and units often vary between authors. Some improvements are proposed to better define what should encompass the concepts of exchangeable and non-exchangeable fractions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Daily tritium intakes by people living near a heavy-water research reactor facility: dosimetric significance

    International Nuclear Information System (INIS)

    Trivedi, A.; Cornett, R.J.; Galeriu, D.; Workman, W.; Brown, R.M.

    1997-02-01

    We have estimated the relative daily intakes of tritiated water (HTO) and organically bound tritium (OBT), and have measured HTO-in-urine, in an adult population residing in the town of Deep River, Ontario, near a heavy-water research reactor facility at Chalk River. The daily intake of elevated levels of atmospheric tritium has been estimated from its concentration in environmental and biological samples, and various food items from a local tritium-monitoring program. Where the available data were inadequate, we used estimates generated by an environmental tritium-transfer model. From these data and estimates, we calculated a total daily tritium intake of about 55 Bq. Of this amount, 2.5 Bq is obtained from OBT-in-diet. Inhalation of HTO-in-air (15 Bq d -1 ) and HTO-in-drinking water (15 Bq d -1 ) accounts for more than half of the HTO intake. Skin absorption of HTO from air and bathing or swimming (for 30 min d -1 ) accounts for another 9 Bq d -1 and 0.1 Bq d -1 , respectively. The remaining intake of HTO is from food as tissue-free water tritium. The International Commission on Radiological Protection's recommended two-compartment metabolic model for tritium predicts an equilibrium body burden of about 900 Bq from HTO (818 Bq) and OBT (83 Bq) in the body, which corresponds to an annual tritium dose of 0.41 μSv. The model-predicted urinary excretion of HTO (∼18 Bq L -1 ) agrees well with measured HTO-in-urine (range, 10-32 Bq L -1 ). The OBT dose contribution to the total tritium dose is about 16%. We conclude that for the people living near the Chalk River research reactor facility, the bulk of the tritium dose is due to HTO intake. (author)

  12. TRIF - an intermediate approach to environmental tritium modelling

    International Nuclear Information System (INIS)

    Higgins, N.A.

    1997-01-01

    The movement of tritium through the environment, from an initial atmospheric release to selected end points in the food chain, involves a series of closely coupled and complex processes which are, consequently, difficult to model. TRIF (tritium transfer into food) provides a semi-empirical approach to this transport problem, which can be adjusted to bridge the gap between simple steady state approximations and a fully coupled model of tritium dispersion and migration (Higgins et al., 1996). TRIF provides a time-dependent description of the behaviour of tritium in the form of tritium gas (HT) and tritiated water (HTO) as it enters and moves through the food chain into pasture, crops and animals. This includes a representation of the production and movement of organically bound tritium (OBT). (Author)

  13. Study of atmospheric tritium transfers in lettuce: kinetic study, equilibrium and organic incorporation during a continuous atmospheric exposure

    International Nuclear Information System (INIS)

    Boyer, C.

    2009-01-01

    This thesis has explored the mechanisms of tritium 'absorption and incorporation in a human-consumed plant, lettuce (Lactuca sativa L.), due to atmospheric exposure. Foliar uptake appears to play a key role in absorption of tritium as tissue free water tritium. Whatever the development stage and the light conditions, the specific activity in tissue free water reaches that of water vapour in air in several hours. The specific activity ratio is then about 0, 4. The time to reach equilibrium in soil is over 24 hours in most cases: the specific activity ratio ranges then 0, 01 to 0, 26. Incorporation rate of tissue free water tritium as organically-bound tritium has been estimated to 0, 13 to 0, 16 % h-l in average over the growing period of the plant, but marked variations are observed during growth. In particular, a significant increase appeared at the exponential growth stage. Deposition and diffusion of tritium in soil lead to significant OBT activities in soil. Results globally indicate equilibrium between the different environmental compartments (air, soil, plant). However, some experiments have revealed high OBT concentrations regarding atmospheric level exposure and ask for a possible phenomenon of local tritium accumulation in OBT for particular conditions of exposure. (author) [fr

  14. An improved combustion apparatus for the determination of organically bound tritium in environmental samples

    International Nuclear Information System (INIS)

    Du, Lin; Shan, Jian; Ma, Yu-Hua; Wang, Ling; Qin, Lai-Lai; Pi, Li; Zeng, You-Shi; Xia, Zheng-Hai; Wang, Guang-Hua; Liu, Wei

    2016-01-01

    This paper reports an improved combustion apparatus for the determination of organically bound tritium in environmental samples. The performance of this apparatus including the recovery rate and reproducibility was investigated by combusting lettuce and pork samples. To determine the factors for the different recovery rates of lettuce and pork and investigate whether the samples were completely oxidized, the ashes and exhaust gases produced by the combustion were analyzed. The results indicate that the apparatus showed an excellent performance in the combustion of environmental samples. Thus, the improvements conducted in this study were effective. - Highlights: • Three major improvements were made to develop the combustion apparatus for OBT. • The recovery is higher and more stable than that of current equipment. • Little hydrogen was present in the ashes and exhaust after combustion.

  15. Tritiated water uptake kinetics in tissue-free water and organically-bound fractions of tomato plants

    International Nuclear Information System (INIS)

    Spencer, F.S.

    1984-03-01

    The kinetics of tritiated water (HTO) vapour uptake into tissue-free water tritium (TFWT) and organically bound tritium (OBT) fractions of tomato, Lycopersicon esculentum Mill., cv Vendor, were investigated under controlled growing conditions. Most uptake data fitted a first-order kinetic model, C t = C ∞ (1-e -kt ), where C t is the tritium concentration at time t, Ca the steady-state concentration and k the uptake rate constant. During atmospheric-HTO exposure with clean-water irrigation in open pots the TFWT k values were 0.024 ± 0.023 h -1 for new foliage, 0.104 ± 0.067 h -1 for old foliage and 0.042 ± to 0.136 h -1 for new green fruit. OBT uptake rate constants were 20 percent less for new foliage and 76 percent less for new green fruit. Under steady-state conditions the ratio of tritium specific activities of TWFT to atmospheric HTO were 0.43 in new foliage, 0.46 in old foliage and 0.19 in green fruit. Within the plant, OBT and TFWT ratios were 0.70 for new foliage, 0.63 for old foliage (maximum) and between 0.72 and 1.92 for green fruit. The greater than unity tritium specific activity ratios in green fruit were not attributed to tritium enrichment but rather to the translocation of foliar OBT to the growing fruit which contained lower specific activity TFWT derived from soil water

  16. Diurnal variations of tritium uptake by plants

    International Nuclear Information System (INIS)

    Hettinger, M.; Diabate, S.; Strack, S.

    1991-02-01

    The influence of the diurnal cycle is important for the behaviour of environmental tritium in the vegetation. A mathematical model has been used to calculate the deposition of tritium in plants as a function of diurnal variations of climatic parameters. The necessary physiological parameters (relationship of net photosynthesis and growth) were derived from growth experiments for tomatoes and maize. In chamber experiments, tomato and maize plants were exposed to tritium with natural diurnal variations of the climatic conditions. Within the range of standard deviations the measured concentrations of tritium in tissue free water of tomatoes correspond well to the estimated values. Furthermore, the incorporation into non-exchangeable organically bound tritium (OBT nx) can be sufficiently modelled and explained. There are deviations from the estimated concentrations in some parts of maize leaves. (orig.) [de

  17. Tritium in organic compounds of brain of rats exposed to tritiated water or tritiated food during three successive generations

    International Nuclear Information System (INIS)

    Major, Z.

    1987-01-01

    The study was performed on Wistar rats which were chronically exposed to tritiated water (HTO, 37.0 kBq/ml) or to tritiated food (48.1 kBq/g). The tritium exposure of the rats was started before mating and was continued up to delivery of the F 3 generation. The incorporation of organically bound tritium (OBT) was determined in whole brain and in some organic components of rats at various ages. The specific activity of OBT in whole brain and in its organic components with the exception of proteins significantly increased in the F 1 +F 2 generations of rats in comparison with F 0 females. The contribution of OBT to the total dose rate was about 6 per cent in HTO group and 9 per cent in T-food group. The contribution of lipids and proteins to the dose rate from OBT was similar in both treatment groups, being 60 and 20 per cent, respectively. 20 refs. (author)

  18. Incorporation of tritium into planctonic algae in a continuous culture under dynamic conditions

    International Nuclear Information System (INIS)

    Strack, S.; Kistner, G.; Emeis, C.C.

    1979-01-01

    For the purpose of modelling the ecologic behaviour of organically bound tritium (OBT) in aquatic food chains under dynamic conditions (i.e. by changing tritium concentrations), a continuous culture of algae was chosen to which tritium was added by a single injection as tritiated water (HTO). The culture was working according to the chemostatic principle where the concentration of cells is in a steady state. Therefore, according to the growth of algae, tritium is incorporated into the organic substance, while in a parallel process HTO and algae are eliminated from the system at the same rate. From these two processes of first-order kinetics, a special function resulted for the concentration process of OBT in the fermenter that is well known in the field of drug kinetics. Initially it increases until it reaches a maximum value where it intersects the elimination curve of HTO, then decreases and asymptotically approaches the time axis - in the same manner as the elimination curve - only at a superior level. A comparison of this theoretically calculated function with the concentration actually found shows that also under dynamic conditions tritium is undergoing discrimination because of isotopic effects up to a ratio of I=0.80. The calculation of the ratios R=(OBT)/(HTO) in the continuous culture by comparing the function for OBT with the elimination curve for HTO shows a linear increase of R-values during the experiment. At maximum tritium concentration in the algae, the ratio becomes greater than one, and at the end of the experiment it reaches a value of about 6. However, by extrapolating to a time of 40 half-lives, when the absolute concentration of HTO has already decreased by a factor of 10 -12 , a ratio of about 25 was found. The discrimination enters the estimation of R-values at a constant factor of 0.80. (author)

  19. Monitoring of tritium, 60Co and 137Cs in the vicinity of the warm water outlet of the Paks Nuclear Power Plant, Hungary.

    Science.gov (United States)

    Janovics, R; Bihari, Á; Papp, L; Dezső, Z; Major, Z; Sárkány, K E; Bujtás, T; Veres, M; Palcsu, L

    2014-02-01

    Danube water, sediment and various aquatic organisms (snail, mussel, predatory and omnivorous fish) were collected upstream (at a background site) and downstream of the outlet of the warm water channel of Paks Nuclear Power Plant. Gamma emitters, tissue free-water tritium (TFWT) and total organically-bound tritium (T-OBT) measurements were performed. A slight contribution of the power plant to the natural tritium background concentration was measured in water samples from the Danube section downstream of the warm water channel. Sediment samples also contained elevated tritium concentrations, along with a detectable amount of (60)Co. In the case of biota samples, TFWT exhibited only a very slight difference compared to the tritium concentration of the Danube water, however, the OBT was higher than the tritium concentration in the Danube, independent of the origin of the samples. The elevated OBT concentration in the mollusc samples downstream of the warm water channel may be attributed to the excess emission from the nuclear power plant. The whole data set obtained was used for dose rate calculations and will be contributed to the development of the ERICA database. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Tritium in the food chain. Comparison of predicted and observed behaviour. A: Re-emission from soil and vegetation. B: Formation of organically bound tritium in grain of spring wheat

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P. [AECL, Chalk River, ON (Canada); Strack, S. [Forschungszentrum Karlsruhe (Germany); Barry, P. [PJS Barry, (Canada)] [and others

    1996-09-01

    This is the second Technical Report of the Special Radionuclides Tritium Working Group. It deals specifically with two major sources of model uncertainty concerning tritium re-emission from soils and vegetation, and the formation of organically bound tritium (OBT) in plant tissues under light and dark conditions which were identified during work undertaken for the first tritium Technical Report. Information obtained from two experiments was formulated into two specific Approach A type scenarios to investigate these aspects of tritium behaviour so that model predictions could be compared with actual observations and data. Data for HTO re-emission measured at two different field sampling sites in Canada were used as the basis for the model test exercise Scenario V2.1. One site was a wetland receiving groundwater discharge containing HTO from a nearby waste management area. The other site was a meadow which had been exposed to a gaseous discharge containing HTO vapour from a nearby CANDU nuclear power generating station. HTO re-emission was measured on several occasions while the prevailing wind carried the plume away from the site. For both sites, relevant site specific information was obtained including HTO concentrations in soil and vegetation and meteorological data for each of about 20 determinations each lasting for 30 to 45 minutes. Modelers were requested to predict net fluxes of water and HTO vapours at the two sites and specified times. Their predictions were compared with the actual water fluxes at the sites, which had been measured by both eddy-correlation and Bowen Ratio, and the HTO flux which had been obtained by measured concentration gradients and estimates of eddy diffusivities. Predicted water vapour fluxes agreed with those observed within 20% where the observed fluxes exceeded about 0.04 g m{sup -2} s{sup -1}. Lower fluxes were associated with meteorological conditions such as strong stability and light winds when assumptions underlying the

  1. Retention of tritium in reference persons: a metabolic model. Derivation of parameters and application of the model to the general public and to workers

    International Nuclear Information System (INIS)

    Galeriu, D; Melintescu, A

    2010-01-01

    Tritium ( 3 H) is a radioactive isotope of hydrogen that is ubiquitous in environmental and biological systems. Following debate on the human health risk from exposure to tritium, there have been claims that the current biokinetic model recommended by the International Commission on Radiological Protection (ICRP) may underestimate tritium doses. A new generic model for tritium in mammals, based on energy metabolism and body composition, together with all its input data, has been described in a recent paper and successfully tested for farm and laboratory mammals. That model considers only dietary intake of tritium and was extended to humans. This paper presents the latest development of the human model with explicit consideration of brain energy metabolism. Model testing with human experimental data on organically bound tritium (OBT) in urine after tritiated water (HTO) or OBT intakes is presented. Predicted absorbed doses show a moderate increase for OBT intakes compared with doses recommended by the ICRP. Infants have higher tritium retention-a factor of 2 longer than the ICRP estimate. The highest tritium concentration is in adipose tissue, which has a very low radiobiological sensitivity. The ranges of uncertainty in retention and doses are investigated. The advantage of the new model is its ability to be applied to the interpretation of bioassay data.

  2. Retention of tritium in reference persons: a metabolic model. Derivation of parameters and application of the model to the general public and to workers

    Energy Technology Data Exchange (ETDEWEB)

    Galeriu, D; Melintescu, A, E-mail: galdan@ifin.nipne.r, E-mail: dangaler@yahoo.co [' Horia Hulubei' National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 407 Atomistilor Street, Bucharest-Magurele, POB MG-6, RO-077125 (Romania)

    2010-09-15

    Tritium ({sup 3}H) is a radioactive isotope of hydrogen that is ubiquitous in environmental and biological systems. Following debate on the human health risk from exposure to tritium, there have been claims that the current biokinetic model recommended by the International Commission on Radiological Protection (ICRP) may underestimate tritium doses. A new generic model for tritium in mammals, based on energy metabolism and body composition, together with all its input data, has been described in a recent paper and successfully tested for farm and laboratory mammals. That model considers only dietary intake of tritium and was extended to humans. This paper presents the latest development of the human model with explicit consideration of brain energy metabolism. Model testing with human experimental data on organically bound tritium (OBT) in urine after tritiated water (HTO) or OBT intakes is presented. Predicted absorbed doses show a moderate increase for OBT intakes compared with doses recommended by the ICRP. Infants have higher tritium retention-a factor of 2 longer than the ICRP estimate. The highest tritium concentration is in adipose tissue, which has a very low radiobiological sensitivity. The ranges of uncertainty in retention and doses are investigated. The advantage of the new model is its ability to be applied to the interpretation of bioassay data.

  3. Determination of organically bound tritium background level in biological samples from a wide area in the south-west of France

    International Nuclear Information System (INIS)

    Pointurier, F.; Baglan, N.; Alanic, G.; Chiappini, R.

    2003-01-01

    In this paper, the authors describe a sensitive method for low-level non-exchangeable OBT determination. This methodology combines suitable sample treatment, a combustion apparatus for large-sized samples and low-background liquid scintillation spectrometry, along with precautions that substantially reduce the risks of sample contamination. Great care must be taken in the measurement of non-exchangeable OBT at environmental levels. Many authors have discussed the opportunities for cross-contamination between samples and contamination by exchange with the laboratory atmosphere. The authors also describe an application of the methodology to a large-scale sampling and measurement campaign, aimed at the determination of the environmental non-exchangeable OBT background level in tree leaves and ferns collected on the site and in the vicinity of a research centre located in the south-west of France, not far from Bordeaux. This study constitutes a 'zero level' for the non-exchangeable OBT activity, as, to our knowledge, there is no tritium source within or in the surroundings of the sampled area capable of producing non-exchangeable OBT activities above the natural levels. Our analyses showed that non-exchangeable OBT activities in the collected samples were very low, ranging from below the detection limit (ca 0.7 Bq kg -1 of dry material) to ca 2 Bq kg -1 of dry material. These values are similar to the natural tritium background measured in water samples. No discrepancies can be shown between fern samples and oak tree leaf samples or between samples collected inside and outside the research site

  4. Determination of organically bound tritium background level in biological samples from a wide area in the south-west of France

    Energy Technology Data Exchange (ETDEWEB)

    Pointurier, F. E-mail: fabien.pointurier@cea.fr; Baglan, N.; Alanic, G.; Chiappini, R

    2003-07-01

    In this paper, the authors describe a sensitive method for low-level non-exchangeable OBT determination. This methodology combines suitable sample treatment, a combustion apparatus for large-sized samples and low-background liquid scintillation spectrometry, along with precautions that substantially reduce the risks of sample contamination. Great care must be taken in the measurement of non-exchangeable OBT at environmental levels. Many authors have discussed the opportunities for cross-contamination between samples and contamination by exchange with the laboratory atmosphere. The authors also describe an application of the methodology to a large-scale sampling and measurement campaign, aimed at the determination of the environmental non-exchangeable OBT background level in tree leaves and ferns collected on the site and in the vicinity of a research centre located in the south-west of France, not far from Bordeaux. This study constitutes a 'zero level' for the non-exchangeable OBT activity, as, to our knowledge, there is no tritium source within or in the surroundings of the sampled area capable of producing non-exchangeable OBT activities above the natural levels. Our analyses showed that non-exchangeable OBT activities in the collected samples were very low, ranging from below the detection limit (ca 0.7 Bq kg{sup -1} of dry material) to ca 2 Bq kg{sup -1} of dry material. These values are similar to the natural tritium background measured in water samples. No discrepancies can be shown between fern samples and oak tree leaf samples or between samples collected inside and outside the research site.

  5. Relevance of the ICRP biokinetic model for dietary organically bound tritium

    International Nuclear Information System (INIS)

    Trivedi, A.

    1999-10-01

    Ingested dietary tritium can participate in metabolic processes, and become synthesized into organically bound tritium in the tissues and organs. The distribution and retention of the organically bound tritium throughout the body are much different than tritium in the body water. The International Commission on Radiological Protection (ICRP) Publication 56 (1989) has a biokinetic model to calculate dose from the ingestion of organically bound dietary tritium. The model predicts that the dose from the ingestion of organically bound dietary tritium is about 2.3 times higher than from the ingestion of the same activity of tritiated water. Under steady-state conditions, the calculated dose rate (using the first principle approach) from the ingestion of dietary organically bound tritium can be twice that from the ingestion of tritiated water. For an adult, the upper-bound dose estimate for the ingestion of dietary organically bound tritium is estimated to be close to 2.3 times higher than that of tritiated water. Therefore, given the uncertainty in the dose calculation with respect to the actual relevant dose, the ICRP biokinetic model for organically bound tritium is sufficient for dosimetry for adults. (author)

  6. Bioaccumulation of tritiated water in phytoplankton and trophic transfer of organically bound tritium to the blue mussel, Mytilus edulis.

    Science.gov (United States)

    Jaeschke, Benedict C; Bradshaw, Clare

    2013-01-01

    Large releases of tritium are currently permitted in coastal areas due to assumptions that it rapidly disperses in the water and has a low toxicity due to its low energy emissions. This paper presents a laboratory experiment developed to identify previously untested scenarios where tritium may concentrate or transfer in biota relevant to Baltic coastal communities. Phytoplankton populations of Dunaliella tertiolecta and Nodularia spumigena were exposed at different growth-stages, to tritiated water (HTO; 10 MBq l(-1)). Tritiated D. tertiolecta was then fed to mussels, Mytilus edulis, regularly over a period of three weeks. Activity concentrations of phytoplankton and various tissues from the mussel were determined. Both phytoplankton species transformed HTO into organically-bound tritium (OBT) in their tissues. D. tertiolecta accumulated significantly more tritium when allowed to grow exponentially in HTO than if it had already reached the stationary growth phase; both treatments accumulated significantly more than the corresponding treatments of N. spumigena. No effect of growth phase on bioaccumulation of tritium was detectable in N. spumigena following exposure. After mussels were given 3 feeds of tritiated D. tertiolecta, significant levels of tritium were detected in the tissues. Incorporation into most mussel tissues appeared to follow a linear relationship with number of tritiated phytoplankton feeds with no equilibrium, highlighting the potential for biomagnification. Different rates of incorporation in species from a similar functional group highlight the difficulties in using a 'representative' species for modelling the transfer and impact of tritium. Accumulations of organic tritium into the mussel tissues from tritiated-phytoplankton demonstrate an environmentally relevant transfer pathway of tritium even when water-concentrations are reduced, adding weight to the assertion that organically bound tritium acts as a persistent organic pollutant. The

  7. The measurement of tritium in Canadian food items

    International Nuclear Information System (INIS)

    Brown, R.M.

    1995-03-01

    Food items locally grown near Perth, Ontario and grocery store produce and locally grown items from the Pickering-Ajax area in the vicinity of the Pickering Nuclear Generating Station (PNGS) have been analyzed for free water tritium (HTO) and organically bound tritium (OBT). The technique of measuring 3 He ingrowth in samples by mass spectrometry has been used because of its sensitivity and freedom from opportunity for contamination during processing and measurement. Concentrations observed at each site were of the order expected on the basis of known levels of tritium in the local atmosphere and precipitation. There was considerable variation between different materials and limited correlation between materials of a single type. (author). 10 refs., 8 tabs., 4 figs

  8. Lichens as indicators of tritium and radiocarbon contamination

    International Nuclear Information System (INIS)

    Daillant, Olivier; Kirchner, Gerald; Pigree, Gilbert; Porstendorfer, Justin

    2004-01-01

    Lichens were collected in France in the surroundings of a military nuclear facility in Burgundy, near the la Hague reprocessing plant and in an area away from any direct source of contamination. Organically bound tritium (OBT) has been analysed on 18 samples and radiocarbon on 11. It appeared that on the most contaminated spots, the OBT activity in lichens was higher than the background by a factor of 1000 and was still a factor 10-100 at a distance of 20 km from the source. Radiocarbon from la Hague could be traced by lichens. The slow metabolism of lichens makes them suitable for the follow-up of 3 H and 14 C, which have been incorporated by photosynthesis

  9. Tritium conference days; Journees tritium

    Energy Technology Data Exchange (ETDEWEB)

    Garnier-Laplace, J.; Lebaron-Jacobs, L.; Sene, M.; Devin, P.; Chretien, V.; Le Guen, B.; Guetat, Ph.; Baglan, N.; Ansoborlo, E.; Boyer, C.; Masson, M.; Bailly-Du-Bois, P.; Jenkinson, St.; Wakeford, R.; Saintigny, Y.; Romeo, P.H.; Thompson, P.; Leterq, D.; Chastagner, F.; Cortes, P.; Philippe, M.; Paquet, F.; Fournier, M.

    2009-07-01

    This document gathers the slides of the available presentations given during this conference day. Twenty presentations out of 21 are assembled in the document and deal with: 1 - tritium in the environment (J. Garnier-Laplace); 2 - status of knowledge about tritium impact on health (L. Lebaron-Jacobs); 3 - tritium, discrete but present everywhere (M. Sene); 4 - management of tritium effluents from Areva NC La Hague site - related impact and monitoring (P. Devin); 5 - tritium effluents and impact in the vicinity of EDF's power plants (V. Chretien and B. Le Guen); 6 - contribution of CEA-Valduc centre monitoring to the knowledge of atmospheric tritiated water transfers to the different compartments of the environment (P. Guetat); 7 - tritium analysis in environment samples: constraints and means (N. Baglan); 8 - organically-linked tritium: the analyst view (E. Ansoborlo); 9 - study of tritium transfers to plants via OBT/HTO{sub air} and OBT/HTO{sub free} (C. Boyer); 10 - tritium in the British Channel (M. Masson and P. Bailly-Du-Bois); 11 - tritium in British coastal waters (S. Jenkinson); 12 - recent results from epidemiology (R. Wakeford); 13 - effects of tritiated thymidine on hematopoietic stem cells (P.H. Romeo); 14 - tritium management issue in Canada: the point of view from authorities (P. Thompson); 15 - experience feedback of the detritiation process of Valduc centre (D. Leterq); 16 - difficulties linked with tritiated wastes confinement (F. Chastagner); 17 - optimisation of tritium management in the ITER project (P. Cortes); 18 - elements of thought about the management of tritium generated by nuclear facilities (M. Philippe); 19 - CIPR's position about the calculation of doses and risks linked with tritium exposure (F. Paquet); 20 - tritium think tanks (M. Fournier). (J.S.)

  10. Activities of the EMRAS Tritium/C14 Working Group

    International Nuclear Information System (INIS)

    Davis, P.A.; Balonov, M.; Venter, A.

    2005-01-01

    A new model evaluation program, Environmental Modeling for Radiation Safety (EMRAS), was initiated by the International Atomic Energy Agency in September 2003. EMRAS includes a working group (WG) on modeling tritium and C-14 transfer through the environment to biota and man. The main objective of this WG is to develop and test models of the uptake, formation and translocation of organically bound tritium (OBT) in food crops, animals and aquatic systems. To the extent possible, the WG is carrying out its work by comparing model predictions with experimental data to identify the modeling approaches and assumptions that lead to the best agreement between predictions and observations. Results for scenarios involving a chronically contaminated aquatic ecosystem and short-term exposure of soybeans are presently being analyzed. In addition, calculations for scenarios involving chronically contaminated terrestrial food chains and hypothetical short-term releases are currently underway, and a pinetree scenario is being developed. The preparation of datasets on tritium dynamics in large animals and fish is being encouraged, since these are the areas of greatest uncertainty in OBT modeling. These activities will be discussed in this paper

  11. Metabolism of tritium uptake due to handling of metal surfaces exposed to tritiated hydrogen gas

    International Nuclear Information System (INIS)

    Johnson, J.R.; Peterman, B.F.

    1987-08-01

    Hairless rats were exposed to tritium by rubbing HT contaminated stainless steel planchets on them. The pattern of tritium excretion in the urine (n=4), shows the OBT (organically bound tritium) retention curve to be approximated by the sum of 2 exponential curves, one with a half-life of 0.4 days and another with a half-life of 1.4 days. The retention of HTO fit a single exponential curve with a half-life of 3.1 days. Exposed skin, unexposed skin, liver, muscle and blood (n=6) were assayed for HBO, and free HTO. Highest activity was found in the exposed skin, other organs with high activity are the unexposed skin and liver. Examination of the exposed skin showed HTO to be concentrated in the uppermost layers. The distribution of OBT was similar but was incorporated at a faster rate. The basal layer is exposed to a tritium concentration between 70-90% of that of the surface. The two macromolecule fractions with the highest amount of radioactivity were lipid and insoluble protein (mainly collagen)

  12. Dynamic model for tritium transfer in an aquatic food chain.

    Science.gov (United States)

    Melintescu, A; Galeriu, D

    2011-08-01

    Tritium ((3)H) is released from some nuclear facilities in relatively large quantities. It is a ubiquitous isotope because it enters straight into organisms, behaving essentially identically to its stable analogue (hydrogen). Tritium is a key radionuclide in the aquatic environment, in some cases, contributing significantly to the doses received by aquatic, non-human biota and by humans. The updated model presented here is based on more standardized, comprehensive assessments than previously used for the aquatic food chain, including the benthic flora and fauna, with an explicit application to the Danube ecosystem, as well as an extension to the special case of dissolved organic tritium (DOT). The model predicts the organically bound tritium (OBT) in the primary producers (the autotrophs, such as phytoplankton and algae) and in the consumers (the heterotrophs) using their bioenergetics, which involves the investigation of energy expenditure, losses, gains and efficiencies of transformations in the body. The model described in the present study intends to be more specific than a screening-level model, by including a metabolic approach and a description of the direct uptake of DOT in marine phytoplankton and invertebrates. For a better control of tritium transfer into the environment, not only tritiated water must be monitored, but also the other chemical forms and most importantly OBT, in the food chain.

  13. Tritium in the food chain. Comparison of predicted and observed behaviour. A: Re-emission from soil and vegetation. B: Formation of organically bound tritium in grain of spring wheat

    International Nuclear Information System (INIS)

    Davis, P.; Strack, S.; Barry, P.

    1996-09-01

    This is the second Technical Report of the Special Radionuclides Tritium Working Group. It deals specifically with two major sources of model uncertainty concerning tritium re-emission from soils and vegetation, and the formation of organically bound tritium (OBT) in plant tissues under light and dark conditions which were identified during work undertaken for the first tritium Technical Report. Information obtained from two experiments was formulated into two specific Approach A type scenarios to investigate these aspects of tritium behaviour so that model predictions could be compared with actual observations and data. Data for HTO re-emission measured at two different field sampling sites in Canada were used as the basis for the model test exercise Scenario V2.1. One site was a wetland receiving groundwater discharge containing HTO from a nearby waste management area. The other site was a meadow which had been exposed to a gaseous discharge containing HTO vapour from a nearby CANDU nuclear power generating station. HTO re-emission was measured on several occasions while the prevailing wind carried the plume away from the site. For both sites, relevant site specific information was obtained including HTO concentrations in soil and vegetation and meteorological data for each of about 20 determinations each lasting for 30 to 45 minutes. Modelers were requested to predict net fluxes of water and HTO vapours at the two sites and specified times. Their predictions were compared with the actual water fluxes at the sites, which had been measured by both eddy-correlation and Bowen Ratio, and the HTO flux which had been obtained by measured concentration gradients and estimates of eddy diffusivities. Predicted water vapour fluxes agreed with those observed within 20% where the observed fluxes exceeded about 0.04 g m -2 s -1 . Lower fluxes were associated with meteorological conditions such as strong stability and light winds when assumptions underlying the equation are

  14. Biokinetic aspects of tissue-bound tritium in algae

    International Nuclear Information System (INIS)

    Strack, S.; Kistner, G.

    1978-01-01

    For the estimate of the radiation exposure of man and for the calculation of the risk of artificial tritium from nuclear power plants, organic tissue-bound tritium is of decisive importance. In model experiments, a tritium incorporation of 61 to 71% was found from tritiated water (HTO) into organic matter of planctonic algae under reproducible conditions and this was related to the theoretical value. In further experiments the tritium release from these high tritiated algae was of interest. Kept in darkness in tritium-free, non-sterile river water, so that autolytic processes and bacterial decomposition could occur, the concentration of HTO was measured over a period of three weeks. A relatively long half-life of tissue-bound tritium was found under various temperature conditions. Therefore it must be considered that a significant retention of tritium in biological matter has to be taken into account in a natural ecosystem. In streams into which the cooling water of a nuclear reactor is released all conditions are found already for a long turnover and cycling of artificial tritium in living organisms as well as the conditions for a favourable transport of tritium by food chains to man. (Auth.)

  15. Bioaccumulation of tritiated water in phytoplankton and trophic transfer of organically bound tritium to the blue mussel, Mytilus edulis

    International Nuclear Information System (INIS)

    Jaeschke, Benedict C.; Bradshaw, Clare

    2013-01-01

    Large releases of tritium are currently permitted in coastal areas due to assumptions that it rapidly disperses in the water and has a low toxicity due to its low energy emissions. This paper presents a laboratory experiment developed to identify previously untested scenarios where tritium may concentrate or transfer in biota relevant to Baltic coastal communities. Phytoplankton populations of Dunaliella tertiolecta and Nodularia spumigena were exposed at different growth-stages, to tritiated water (HTO; 10 MBq l −1 ). Tritiated D. tertiolecta was then fed to mussels, Mytilus edulis, regularly over a period of three weeks. Activity concentrations of phytoplankton and various tissues from the mussel were determined. Both phytoplankton species transformed HTO into organically-bound tritium (OBT) in their tissues. D. tertiolecta accumulated significantly more tritium when allowed to grow exponentially in HTO than if it had already reached the stationary growth phase; both treatments accumulated significantly more than the corresponding treatments of N. spumigena. No effect of growth phase on bioaccumulation of tritium was detectable in N. spumigena following exposure. After mussels were given 3 feeds of tritiated D. tertiolecta, significant levels of tritium were detected in the tissues. Incorporation into most mussel tissues appeared to follow a linear relationship with number of tritiated phytoplankton feeds with no equilibrium, highlighting the potential for biomagnification. Different rates of incorporation in species from a similar functional group highlight the difficulties in using a ‘representative’ species for modelling the transfer and impact of tritium. Accumulations of organic tritium into the mussel tissues from tritiated-phytoplankton demonstrate an environmentally relevant transfer pathway of tritium even when water-concentrations are reduced, adding weight to the assertion that organically bound tritium acts as a persistent organic pollutant. The

  16. Incorporation and distribution of tritium in rats after chronic exposure to various tritiated compounds

    International Nuclear Information System (INIS)

    Takeda, H.

    1991-01-01

    Rats were chronically exposed to tritiated water ( 3 HHO) and several tritiated organic compounds ([ 3 H]leucine, [ 3 H]lysine, [ 3 H]glucose, [ 3 H]glucosamine, [ 3 H]thymidine and [ 3 H]uridine) dissolved in their drinking water. An analysis of tritium in wet and dry tissues of rats at the end of 22 days' chronic exposure showed that the chemical form of the ingested tritium was more important for tritium uptake in dry tissues than in wet tissues. The highest concentrations of OBT (organically bound tritium) were found in rats exposed to tritiated amino acids ([sup (3)/H]lysine and [ 3 H]leucine), 4-9 times higher than those in rats exposed to 3 HHO. The next highest concentrations were found in rats exposed to [ 3 H]uridine., The result of radiation dose estimations at the end of chronic exposure showed the contribution of OBT to total dose rate was higher in the tissues of rats exposed to tritiated organic compounds than that after exposure to 3 HHO. The differences between total dose rates from 3 HHO and those from tritiated organic compounds were within a factor of 2. (author)

  17. Development of CROPTRIT Model: The Dynamics of Tritium in Agricultural Crops

    Energy Technology Data Exchange (ETDEWEB)

    Galeriu, Dan; Melintescu, Anca [' Horia Hulubei' National Institute for Physics and Nuclear Engineering, Department of Environmental Physics and Life, 30 Reactorului St., POB MG-6, Bucharest-Magurele, RO-077125 (Romania); Lazar, Catalin [National Agricultural Research and Development Institute Fundulea, 915200 Fundulea, Calarasi County (Romania)

    2014-07-01

    Tritium has a complex behaviour once released into the environment. Tritium can be effectively incorporated into biological systems, including the human body, as organically bound tritium (OBT) with a larger residence time than tritiated water (HTO). In the last years robust models were developed for tritium dynamics in mammals (human included), birds and fish but all of them depend on the knowledge of intake for both terrestrial or aquatic food chain. The uncertainty of the present models for tritium in crops following an accidental atmospheric release, is very high and has impacts on the engineering actions for handling and decreasing the nuclear risk. The gaps in knowledge or the local variability of key parameters were recognised as source of uncertainty. Based on an interdisciplinary approach, CROPTRIT model was gradually developed in the last decade focusing on the detecting of the uncertainty sources. Crops of interest depends on each specific case but wheat and rice cover the majority of the practical needs for radiological risk modelling (the major food in Europe and Asia). An analysis of the processes involved in the Soil-Vegetation-Atmosphere Transfer (SVAT) of tritium was done in connection with the available experimental results. The agricultural research is focused on the improving of the yield and the crop growth models were developed in relation with the genotype, weather and management of fertilisation and water. For the radiological purposes, the interest lies in the pollutant concentration at harvest and the CROPTRIT model is focused on the influence of various processes contributing to variability and uncertainty of tritium (OBT and HTO) at harvest. The current results evidentiate the role of the stomatal conductance and difficulties at the day/night transitions, as well as the complex behaviour of the maintenance respiration. A review of the experimental results demonstrates the importance of OBT formation in night conditions and difficulties

  18. A dynamic compartment mode for evaluating the contamination level of tritium in agricultural plants

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Lee, Han Soo; Kang, Hee Seok; Jun, In; Choi, Yong Ho; Lee, Chang Woo

    2006-03-15

    This report describes a dynamic compartment model for evaluating the tritium level in agricultural plants after a short-term exposure to HTO vapor and its comparison with experimental results to test the predictive accuracy of the model. The model uses a time-dependent growth equation of a plant so that it can predict the contamination level of tritium depending on the stage of the growth of the plant, which is a major difference from some other compartment models using a constant crop yield. The model is able to calculate the time variable concentrations of the compartments representing the atmosphere, soil, and plants of four categories including leafy vegetables, root vegetables, grains, and tuber plants. Experimental results include the tissue free water tritium (TFWT) and the organically bound tritium (OBT) concentration of rice, soybean, cabbage, and radish exposed to HTO vapor for 1 h in the daytime at different growth stages. The model predictions showed that the model could simulate well not only the time-dependent tritium concentration of the plants but also the effect of the growth stage of the plant at the exposure time. Comparison of the model predictions with the experimental results suggested that the model could predict reasonably well the observed TFWT and OBT concentrations of the plants considered.

  19. Modelling the Environmental Transfer of Tritium and Carbon-14 to Biota and Man. Report of the Tritium and Carbon-14 Working Group of EMRAS Theme 1

    International Nuclear Information System (INIS)

    2012-01-01

    Hydrogen and carbon are biologically-regulated, essential elements that are highly mobile in the environment and the human body. As isotopes of these elements, tritium and 14 C enter freely into water (in the case of tritium), plants, animals and humans. This complex behaviour means that there are substantial uncertainties in the predictions of models that calculate the transfer of tritium and 14 C through the environment. The EMRAS Tritium/C14 Working Group (WG) was set up to establish the confidence that can be placed in the predictions of such models, to recommend improved modelling approaches, and to encourage experimental work leading to the development of data sets for model testing. The activities of the WG focused on the assessment of models for organically bound tritium (OBT) formation and translocation in plants and animals, the area where model uncertainties are largest. Environmental 14 C models were also addressed because the dynamics of carbon and OBT are similar. The goals of the WG were achieved primarily through nine test scenarios in which model predictions were compared with observations obtained in laboratory or field studies. Seven of the scenarios involved tritium, covering terrestrial and aquatic ecosystems and steady-state and dynamic conditions. The remaining two scenarios concerned 14 C, one addressing steady-state concentrations in plants and the other time-dependent concentrations in animals. The WG also considered one model intercomparison exercise involving the calculation of doses following a hypothetical, short-term release of tritium to the atmosphere in a farming area. Finally, the WG discussed the nature of OBT and proposed a definition to promote common understanding and usage within the international tritium community. The models used by the various participants varied in complexity from simple specific activity approaches to dynamic compartment models and process-oriented models, in which the various transfer processes were

  20. Modelling the Environmental Transfer of Tritium and Carbon-14 to Biota and Man. Report of the Tritium and Carbon-14 Working Group of EMRAS Theme 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    Hydrogen and carbon are biologically-regulated, essential elements that are highly mobile in the environment and the human body. As isotopes of these elements, tritium and {sup 14}C enter freely into water (in the case of tritium), plants, animals and humans. This complex behaviour means that there are substantial uncertainties in the predictions of models that calculate the transfer of tritium and {sup 14}C through the environment. The EMRAS Tritium/C14 Working Group (WG) was set up to establish the confidence that can be placed in the predictions of such models, to recommend improved modelling approaches, and to encourage experimental work leading to the development of data sets for model testing. The activities of the WG focused on the assessment of models for organically bound tritium (OBT) formation and translocation in plants and animals, the area where model uncertainties are largest. Environmental {sup 14}C models were also addressed because the dynamics of carbon and OBT are similar. The goals of the WG were achieved primarily through nine test scenarios in which model predictions were compared with observations obtained in laboratory or field studies. Seven of the scenarios involved tritium, covering terrestrial and aquatic ecosystems and steady-state and dynamic conditions. The remaining two scenarios concerned {sup 14}C, one addressing steady-state concentrations in plants and the other time-dependent concentrations in animals. The WG also considered one model intercomparison exercise involving the calculation of doses following a hypothetical, short-term release of tritium to the atmosphere in a farming area. Finally, the WG discussed the nature of OBT and proposed a definition to promote common understanding and usage within the international tritium community. The models used by the various participants varied in complexity from simple specific activity approaches to dynamic compartment models and process-oriented models, in which the various

  1. Tritium conference days

    International Nuclear Information System (INIS)

    Garnier-Laplace, J.; Lebaron-Jacobs, L.; Sene, M.; Devin, P.; Chretien, V.; Le Guen, B.; Guetat, Ph.; Baglan, N.; Ansoborlo, E.; Boyer, C.; Masson, M.; Bailly-Du-Bois, P.; Jenkinson, St.; Wakeford, R.; Saintigny, Y.; Romeo, P.H.; Thompson, P.; Leterq, D.; Chastagner, F.; Cortes, P.; Philippe, M.; Paquet, F.; Fournier, M.

    2009-01-01

    This document gathers the slides of the available presentations given during this conference day. Twenty presentations out of 21 are assembled in the document and deal with: 1 - tritium in the environment (J. Garnier-Laplace); 2 - status of knowledge about tritium impact on health (L. Lebaron-Jacobs); 3 - tritium, discrete but present everywhere (M. Sene); 4 - management of tritium effluents from Areva NC La Hague site - related impact and monitoring (P. Devin); 5 - tritium effluents and impact in the vicinity of EDF's power plants (V. Chretien and B. Le Guen); 6 - contribution of CEA-Valduc centre monitoring to the knowledge of atmospheric tritiated water transfers to the different compartments of the environment (P. Guetat); 7 - tritium analysis in environment samples: constraints and means (N. Baglan); 8 - organically-linked tritium: the analyst view (E. Ansoborlo); 9 - study of tritium transfers to plants via OBT/HTO air and OBT/HTO free (C. Boyer); 10 - tritium in the British Channel (M. Masson and P. Bailly-Du-Bois); 11 - tritium in British coastal waters (S. Jenkinson); 12 - recent results from epidemiology (R. Wakeford); 13 - effects of tritiated thymidine on hematopoietic stem cells (P.H. Romeo); 14 - tritium management issue in Canada: the point of view from authorities (P. Thompson); 15 - experience feedback of the detritiation process of Valduc centre (D. Leterq); 16 - difficulties linked with tritiated wastes confinement (F. Chastagner); 17 - optimisation of tritium management in the ITER project (P. Cortes); 18 - elements of thought about the management of tritium generated by nuclear facilities (M. Philippe); 19 - CIPR's position about the calculation of doses and risks linked with tritium exposure (F. Paquet); 20 - tritium think tanks (M. Fournier). (J.S.)

  2. Estimation of Biological Effects of Tritium.

    Science.gov (United States)

    Umata, Toshiyuki

    2017-01-01

    Nuclear fusion technology is expected to create new energy in the future. However, nuclear fusion requires a large amount of tritium as a fuel, leading to concern about the exposure of radiation workers to tritium beta radiation. Furthermore, countermeasures for tritium-polluted water produced in decommissioning of the reactor at Fukushima Daiichi Nuclear Power Station may potentially cause health problems in radiation workers. Although, internal exposure to tritium at a low dose/low dose rate can be assumed, biological effect of tritium exposure is not negligible, because tritiated water (HTO) intake to the body via the mouth/inhalation/skin would lead to homogeneous distribution throughout the whole body. Furthermore, organically-bound tritium (OBT) stays in the body as parts of the molecules that comprise living organisms resulting in long-term exposure, and the chemical form of tritium should be considered. To evaluate the biological effect of tritium, the effect should be compared with that of other radiation types. Many studies have examined the relative biological effectiveness (RBE) of tritium. Hence, we report the RBE, which was obtained with radiation carcinogenesis classified as a stochastic effect, and serves as a reference for cancer risk. We also introduce the outline of the tritium experiment and the principle of a recently developed animal experimental system using transgenic mouse to detect the biological influence of radiation exposure at a low dose/low dose rate.

  3. Dose contribution from metabolized organically bound tritium after chronic tritiated water intakes in humans

    International Nuclear Information System (INIS)

    Trivedi, A.; Lamothe, E.; Galeriu, D.

    2001-01-01

    Our earlier study of acute tritiated water intakes in humans has demonstrated that the dose contribution from metabolized organically bound tritium is less than 10% of the body water dose. To further demonstrate that the dose contribution from the organically bound tritium per unit intake of tritiated water is the same, regardless of whether the intake is acute (all at once) or chronic (spread over time), urine samples from six male radiation workers with chronic tritiated water intakes were collected and analyzed for tritium. These workers have a well-documented dose history and a well-controlled tritium bioassay database, providing assurance that their tritium intakes were in the form of tritiated water. Each month for a full calendar year, urine samples were collected from each exposed worker. The monthly concentration of tritium-in-urine for each exposed worker was no lower than 104 Bq L -1 but no higher than 105 Bq L -1 . These urine samples were analyzed for tritiated water and organically bound tritium to determine the ratio of these tritiated species in urine. The average ratio of tritiated water to organically bound tritium in urine for each exposed worker was 330-129 (range, 297-589). In calculating the dose to these workers, we assumed that, under steady-state conditions, the ratio of the specific activity of tritium ( 3 H activity per gH) in the organic matter and water fractions of urine is representative of the ratio of the specific activity of tritium in the organic matter and water fractions of soft tissue. A mathematical model was developed and used to estimate the dose increase from the metabolized organically bound tritium based on the ratio of tritiated water to organically bound tritium in urine. The resulting average dose from the organically bound tritium was 6.9-3.1% (range, 4.7-9.9%) of the body water dose for the six male workers, and agrees well with the value obtained from our acute tritiated water intakes study in humans. The observed

  4. Modeling and validating tritium transfer in a grassland ecosystem in response to {sup 3}H releases

    Energy Technology Data Exchange (ETDEWEB)

    Le Dizes, S.; Maro, D.; Rozet, M.; Hebert, D.; Solier, L.; Nicoulaud, V. [Institut de radioportection et de surete nucleaire - IRSN (France); Vermorel, F.; Aulagnier, C. [Electricite de France - EDF (France)

    2014-07-01

    Tritium ({sup 3}H) is a major radionuclide released in several forms (HTO, HT) by nuclear facilities under normal operating conditions. In terrestrial ecosystems, tritium can be found under two forms: tritium in tissue free water (TFWT) following absorption of tritiated water by leaves or roots and Organically Bound Tritium (OBT) resulting from TFWT incorporation by the plant organic matter during photosynthesis. In order to study transfers of tritium from atmospheric releases to terrestrial ecosystem such as grasslands, an in-situ laboratory has been set up by IRSN on a ryegrass field plot located 2 km downwind the AREVA NC La Hague nuclear reprocessing plant (North-West of France), as was done in the past for the assessment of transfer of radiocarbon in grasslands. The objectives of this experimental field are: (i) to better understand the OBT formation in plant by photosynthesis, (ii) to evaluate transfer processes of tritium in several forms (HT, HTO) from the atmosphere (air and rainwater) to grass and soil, (iii) to develop a modeling allowing to reproduce the dynamic response of the ecosystem to tritium atmospheric releases depending of variable environmental conditions. For this purpose, tritium activity measurements will be carried out in grass (monthly measurements of HTO, OBT), in air, rainwater, soil (daily measurements of HT, HTO) and CO{sub 2}, H{sub 2}O fluxes between soil and air compartments will be carried out. Then, the TOCATTA-c model previously developed to simulate {sup 14}C transfers to pasture on a hourly time-step basis will be adapted to take account for processes specific to tritium. The model will be tested by a comparison between simulated results and measurements. The objectives of this presentation are (1) to present the organization of the experimental design of the VATO study (Validation of TOCATTA) dedicated to transfers of tritium in a grassland ecosystem, (2) to document the major assumptions, conceptual modelling and

  5. Importance of root HTO uptake in controlling land-surface tritium dynamics after an-acute HT deposition: a numerical experiment

    International Nuclear Information System (INIS)

    Ota, Masakazu; Nagai, Haruyasu; Koarashi, Jun

    2012-01-01

    To investigate the role of belowground root uptake of tritiated water (HTO) in controlling land-surface tritium (T) dynamics, a sophisticated numerical model predicting tritium behavior in an atmosphere-vegetation-soil system was developed, and numerical experiments were conducted using the model. The developed model covered physical tritiated hydrogen (HT) transport in a multilayered atmosphere and soil, as well as microbial oxidation of HT to HTO in the soil, and it was incorporated into a well-established HTO-transfer organically bound tritium (OBT)-formation model. The model performance was tested through the simulation of an existing HT-release experiment. Numerical experiments involving a hypothetical acute HT exposure to a grassland field with a range of rooting depths showed that the HTO release from the leaves to the atmosphere, driven by the root uptake of the deposited HTO, can exceed the HTO evaporation from the ground surface to the atmosphere when root water absorption preferentially occurs beneath the ground surface. Such enhanced soil-leaf-atmosphere HTO transport, caused by the enhanced root HTO uptake, increased HTO concentrations in both the surface atmosphere and in the cellular water of the leaf. Consequently, leaf OBT assimilation calculated for shallow rooting depths increased by nearly an order of magnitude compared to that for large rooting depths. - Highlights: ► A model that calculates HT deposition from atmosphere to soil was developed. ► Tritium dynamics after an-acute HT deposition was studied by numerical experiments. ► OBT formation highly depends on magnitude of uptake of the deposited HTO by roots.

  6. The modelling of tritium behaviour in the environment

    International Nuclear Information System (INIS)

    Raskob, W.

    1991-01-01

    In view of the operation of reprocessing plants and fusion reactors the release of tritium may play a dominant role during normal operation as well as after accidents. Tritium, however, is chemically identical to hydrogen and thus interacts directly with water and organic substances, making processes like conversion of HT to HTO, re-emission after deposition, and the conversion of HTO into organically bound tritium (OBT) relevant, all of which may modify the total balance of the available HT or HTO inventories. Because of these physical and chemical properties which differ significantly from those of other radionuclides, the model UFOTRI for assessing the radiological consequences of accidental tritium releases has been developed. It describes the behaviour of tritium in the biosphere and calculates the radiological impact on individuals and the population due to inhalation and skin absorption and by ingestion pathways. The significance of the re-emission process in dose assessments - especially for HT-releases - has been clearly demonstrated in example calculations and applications of UFOTRI. The results of a comparison between an HT-release experiment in Canada 1987 and calculations of UFOTRI can be taken as a first validation of the model

  7. FDNH - the tritium module in RODOS

    International Nuclear Information System (INIS)

    Galeriu, D.; Melintescu, A.; Turcanu, C. O.; Raskob, W.

    2001-01-01

    soil-plant-atmosphere system, plant physiology, photosynthesis, growth and hydrogen metabolism in mammals. A unique feature of FDMH is the coherent modelling of tritium uptake by plant canopies and its conversion to organic matter, using a physiological plant parameter data base which can reproduce plant growth under various pedo-climatic conditions. By this approach, the difficulties of scaling from leaf to canopy are avoided and the model parameters are tested by concomitant reproduction of plant growth, using an appropriate crop growth model- developed at process level. In order to predict the tritium transfer in animal products in the absence of a complete experimental database, results from basic research on hydrogen metabolism in mammals is applied. Both forms of tritium are considered and the transfer and the conversion from tritiated water (HTO) or organics (OBT) in feed to HTO and OBT in animal products are explicitly introduced. Incorporating the environmental tritium dynamics with time steps ranging from less than one hour up to days, FDMH illustrates seasonal and diurnal effects on public dose related to the time of the accident. Due to the novel modelling approach, FDMH can be easily customised for any European site and can predict the time evolution of tritiated water or organically bound tritium in such details that it can be easily used in establishing countermeasures. The present model as integrated in the RODOS platform contains a database for Central Europe but it is not directly coupled to real-time weather prognosis data, due to external constraints. In order to increase the model flexibility and reliability some upgrades are now on going and an international, stand-alone version is in preparation. (authors)

  8. An interdisciplinary approach to modeling tritium transfer into the environment

    International Nuclear Information System (INIS)

    Galeriu, D; Melintescu, A.

    2005-01-01

    More robust radiological assessment models are required to support the safety case for the nuclear industry. Heavy water reactors, fuel processing plants, radiopharmaceutical factories, and the future fusion reactor, all have large tritium loads. While of low probability, large accidental tritium releases cannot be ignored. For Romania that uses CANDU600 for nuclear energy, tritium is the national radionuclide. Tritium enters directly into the life cycle in many physicochemical forms. Tritiated water (HTO) is leaked from most nuclear installations but is partially converted into organically bound tritium (OBT) through plant and animal metabolic processes. Hydrogen and carbon are elemental components of major nutrients and animal tissues and their radioisotopes must be modeled differently from those of most other radionuclides. Tritium transfer from atmosphere to plant and conversion into organically bound tritium strongly depend on plant characteristics, season, and weather conditions. In order to cope with this large variability and avoid expensive calibration experiments, we developed a model using knowledge of plant physiology, agrometeorology, soil sciences, hydrology, and climatology. The transfer of tritiated water to plant was modeled with resistance approach including sparse canopy. The canopy resistance was modeled using the Jarvis-Calvet approach modified in order to make direct use of the canopy photosynthesis rate. The crop growth model WOFOST was used for photosynthesis rate both for canopy resistance and formation of organically bound tritium. Using this formalism, the tritium transfer parameters were directly linked to processes and parameters known from agricultural sciences. Model predictions for tritium in wheat were close to a factor two, according to experimental data without any calibration. The model was also tested on rice and soybean and can be applied for various plants and environmental conditions. For sparse canopy, the model used coupled

  9. Study of atmospheric tritium transfers in lettuce: kinetic study, equilibrium and organic incorporation during a continuous atmospheric exposure; Etude des transferts du tritium atmospherique chez la laitue: Etude cinetique, etat d'equilibre et integration du tritum sous forme organique lors d'une exposition atmospherique continue

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, C.

    2009-11-30

    This thesis has explored the mechanisms of tritium 'absorption and incorporation in a human-consumed plant, lettuce (Lactuca sativa L.), due to atmospheric exposure. Foliar uptake appears to play a key role in absorption of tritium as tissue free water tritium. Whatever the development stage and the light conditions, the specific activity in tissue free water reaches that of water vapour in air in several hours. The specific activity ratio is then about 0, 4. The time to reach equilibrium in soil is over 24 hours in most cases: the specific activity ratio ranges then 0, 01 to 0, 26. Incorporation rate of tissue free water tritium as organically-bound tritium has been estimated to 0, 13 to 0, 16 % h-l in average over the growing period of the plant, but marked variations are observed during growth. In particular, a significant increase appeared at the exponential growth stage. Deposition and diffusion of tritium in soil lead to significant OBT activities in soil. Results globally indicate equilibrium between the different environmental compartments (air, soil, plant). However, some experiments have revealed high OBT concentrations regarding atmospheric level exposure and ask for a possible phenomenon of local tritium accumulation in OBT for particular conditions of exposure. (author) [French] Ce travail de these a concerne l'etude des phenomenes d'absorption et d'incorporation sous forme organique du tritium dans un vegetal de consommation courante, la laitue (Lactuca sativa L.), en reponse a une exposition atmospherique. Il apparait que la voie foliaire joue un role primordial dans l'absorption du tritium au sein de l'eau tissulaire des plants. Quels que soient le stade de developpement des plants et les conditions d'eclairement, le temps necessaire pour atteindre l'equilibre des concentrations dans l'eau libre et dans la vapeur d'eau de l'air est de plusieurs heures; le rapport des concentrations est alors de

  10. Incorporation of tritium in milk lipids after feeding organically bound tritium to cows

    International Nuclear Information System (INIS)

    Rochalska, M.; Hoek, J. van den

    1982-01-01

    Hay labelled with organically bound tritium was given to two cows for a period of 26 to 28 days. During hay feeding and at different times thereafter, lipids (fatty acids, cholesterol, glycerol, choline phospholipids, other phospholipids, flycolipids and gangliosides) were isolated from milk fat, and their total and specific activities were determined. During tritium administration, fatty acids and cholesterol contained the highest total activity, but the specific activity was highest in cholesterol and choline phospholipids. Activity decreased most rapidly for fatty acids and cholesterol, so that at 56 and 182 days after termination of 3 H feedings, phospholipids and glycolipids made an important contribution to lipid activity in milk. Regression analysis of the values for tritium activity in milk fat samples after stopping tritium administration, showed that three components with different half lives could be distinguished. The differences in metabolic behaviour of the various lipids in milk fat are mainly concerned with their relative participation in these components. (author)

  11. Dose contribution from metabolized organically bound tritium after acute tritiated water intakes in humans

    International Nuclear Information System (INIS)

    Trivedi, A.; Galeriu, D.; Richardson, R.B.

    1997-01-01

    Urine samples from eight male radiation workers who had an unplanned acute tritiated water intake were measured for tritium-in-urine up to 300 d post-exposure. During the first month or so post-exposure, these individuals increased their fluid intakes to accelerate the turnover rate of tritium in the body for dose mitigation. Their daily fluid intakes reverted to normal levels in the latter period of the study. A non-linear regressional analysis of the tritium-in-urine data showed that the average biological half-life of tritium in body water, with standard deviation, was 63 ± 1.0 d (range, 5.0-8.1 d) and 8.4 ± 2.0 d (range, 6.2-12.8 d) during the respective periods of increased fluid intake and the later period of normal fluid intake. A longer term component of tritium excretion was also observed with average biological half-life of 74 ± 18 d (range, 58-104 d), indicating the incorporation of tritium, and its retention, in the organic fractions of the body. A mathematical model was developed and used to estimate the dose increase from the metabolized organically bound tritium on the basis of the kinetics of tritium-in-urine. The model accounts for a change in the rates of urinary excretion caused by variable fluid intakes. The average dose to the body, for the eight male workers, due to the metabolized organically bound tritium was estimated to be 6.2 ± 1.3% (range, 3.5% to 8.9%) of the committed effective dose due to tritium in the body water. This value for the dose increase from organically bound tritium is in the range of the current recommendations of the International Commission on Radiological Protection, i.e., organically bound tritium incorporated into the body contributes about 10% of the dose to the body water following tritiated water intakes. (author)

  12. Occurrence of organically bound tritium in the Mohelno lake system

    Czech Academy of Sciences Publication Activity Database

    Kořínková, Tereza; Světlík, Ivo; Fejgl, Michal; Povinec, P. P.; Šimek, Pavel; Tomášková, Lenka

    2016-01-01

    Roč. 307, č. 3 (2016), s. 2295-2299 ISSN 0236-5731. [10th International Conference on Methods and Applications of Radioanalytical Chemistry (MARC). Kailua Kona, 12.04.2015-17.04.2015] Institutional support: RVO:61389005 Keywords : Mohelno reservoir * Dukovany nuclear power plant * Tissue free water tritium * Non-exchangeable organically bound tritium Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.282, year: 2016

  13. Influence of beta radiation from tritium and gamma radiation from 60Co on the biological half-times of organically bound tritium

    International Nuclear Information System (INIS)

    Radwan, I.

    1981-01-01

    The influence of beta radiation from tritium on the biological half-times of organically bound tritium in particular tissues of the rat is compred with the influence of fractionated gamma radiation from 60 Co. (M.F.W.)

  14. Organic tritium in freshwater ecosystems: long-term trends in the environment of French nuclear power plants

    International Nuclear Information System (INIS)

    Gontier, G.; Siclet, F.

    2011-01-01

    From 1977 to 2009, more than 600 measurements of organic tritium were performed on fish, aquatic plants and sediments upstream and downstream of the 15 French NPP located along rivers. Examination of the results shows that organic tritium activities have exponentially decreased over the last thirty years, in all components of aquatic ecosystems. Upstream of all NPP, OBT levels in sediments are higher than in plants and fish, themselves larger than HTO in surface water. The magnitude of these differences and the long-term trends depend on the river basin and can be explained by the varying nature of tritium sources. In river catchment, where atmospheric test fallout is the main source of tritium, the observed levels result from the exposure of aquatic organisms to two distinct tritium pools of different ages: atmospheric tritiated water (representing present fallout), and organic tritium from soils (formed over several decades) which supplies particulate matter to surface waters. In the Rhone and Rhine river basins, an additional source of organic tritium of very low bio-availability, probably originating from the luminescent paint industry, is responsible for the spiking of sediment organic matter up to 100 to 100 000 Bq.L -1 combustion water. The comparison of upstream and downstream NPP tritium levels shows that the influence of tritium discharges is detectable only in rivers, with low background OBT activities, i.e in basins other than the Rhone and Rhine. The observed increase in plant and fish OBT is lower than the added HTO activity in water due to discharge, which supports the absence of bioaccumulation for tritium originating from HTO and the absence of highly bio-available tritiated organic molecules in NPP discharges. (authors)

  15. Metabolic evaluation of skin absorption of tritiated formaldehyde in hairless rats

    International Nuclear Information System (INIS)

    Trivedi, A.

    1993-11-01

    Tritiated organics are present as trace impurities in tritium handling facilities. Tritiated formaldehyde has been detected in the atmosphere and gaseous effluents of tritium handling and storage sites. The ability of tritiated formaldehyde to diffuse through the skin is a possible route of intake. Since the metabolism of tritium through this mode of contamination is not currently established, experiments were performed in which tritiated formaldehyde was applied topically on the dorsal skin of hairless rats. These experiments demonstrated that tritium was assimilated and retained in the exposed skin as organically bound tritium (OBT). This retained OBT dominates tritium turnover in the body. OBT retention in the unexposed skin, liver, heart and kidneys was also observed. The loss of tritium from the animals showed that about 10% of the applied tritium was excreted in urine. It is assumed that the rest of the applied activity may have been lost through other excretory pathways, or may not have entered into the body. The biokinetics of tritium excretion is best described by a sum of three exponential functions. Most of the excreted tritium was in the form of OBT (90%) and results in the rapid clearing of OBT in the skin to urine and retention in other tissues. The evaluation of the dose-rate data showed that the dose-rate to exposed skin was almost a magnitude greater than the dose-rate to other organs. (author). 21 refs., 4 tabs., 4 figs

  16. Metabolic evaluation of skin absorption of tritiated formaldehyde in hairless rats

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A

    1993-11-01

    Tritiated organics are present as trace impurities in tritium handling facilities. Tritiated formaldehyde has been detected in the atmosphere and gaseous effluents of tritium handling and storage sites. The ability of tritiated formaldehyde to diffuse through the skin is a possible route of intake. Since the metabolism of tritium through this mode of contamination is not currently established, experiments were performed in which tritiated formaldehyde was applied topically on the dorsal skin of hairless rats. These experiments demonstrated that tritium was assimilated and retained in the exposed skin as organically bound tritium (OBT). This retained OBT dominates tritium turnover in the body. OBT retention in the unexposed skin, liver, heart and kidneys was also observed. The loss of tritium from the animals showed that about 10% of the applied tritium was excreted in urine. It is assumed that the rest of the applied activity may have been lost through other excretory pathways, or may not have entered into the body. The biokinetics of tritium excretion is best described by a sum of three exponential functions. Most of the excreted tritium was in the form of OBT (90%) and results in the rapid clearing of OBT in the skin to urine and retention in other tissues. The evaluation of the dose-rate data showed that the dose-rate to exposed skin was almost a magnitude greater than the dose-rate to other organs. (author). 21 refs., 4 tabs., 4 figs.

  17. Comparison of the regulatory models assessing off-site radiological dose due to the routine releases of tritium

    International Nuclear Information System (INIS)

    Hwang, W. T.; Kim, E. H.; Han, M. H.; Choi, Y. H.; Lee, H. S.; Lee, C. W.

    2005-01-01

    Methodologies of NEWTRIT model, NRC model and AIRDOS-EPA model, which are off-site dose assessment models for regulatory compliance from routine releases of tritium into the environment, were investigated. Using the domestic data, if available, the predictive results of the models were compared. Among them, recently developed NEWTRIT model considers only doses from organically bounded tritium (OBT) due to environmental releases of tritiated water (HTO). A total dose from all exposure pathways predicted from AIRDOS-EPA model was 1.03 and 2.46 times higher than that from NEWTRIT model and NRC model, respectively. From above result, readers should not have an understanding that a predictive dose from NRC model may be underestimated compared with a realistic dose. It is because of that both mathematical models and corresponding parameter values for regulatory compliance are based on the conservative assumptions. For a dose by food consumption predicted from NEWTRIT model, the contribution of OBT was nearly equivalent to that of HTO due to relatively high consumption of grains in Korean. Although a total dose predicted from NEWTRIT model is similar to that from AIRDOS-EPA model, NEWTRIT model may be have a meaning in the understanding of phenomena for the behavior of HTO released into the environment

  18. Field measurements of key parameters associated with nocturnal OBT formation in vegetables grown under Canadian conditions

    International Nuclear Information System (INIS)

    Kim, S.B.; Workman, W.G.; Korolevych, V.; Davis, P.A.

    2012-01-01

    The objective of this study was to provide the parameter values required to model OBT formation in the edible parts of plants following a hypothetical accidental tritium release to the atmosphere at night. The parameters considered were leaf area index, stomatal resistance, photosynthesis rate, the photosynthetic production rate of starch, the nocturnal hydrolysis rate of starch, the fraction of starch produced daily by photosynthesis that appears in the fruits, and the mass of the fruit. Values of these parameters were obtained in the summer of 2002 for lettuce, radishes and tomatoes grown under typical Canadian environmental conditions. Based on the maximum observed photosynthetic rate and growth rate, the fraction of starch translocated to the fruit was calculated to be 17% for tomato fruit and 14% for radish root. - Highlights: ► Plant physiological parameters affecting nocturnal OBT formation have been investigated. ► The fraction of starch produced daily by photosynthesis in the leaves that appears in the fruit was calculated. ► Realistic estimates of OBT concentrations following a nighttime accidental HTO release to the atmosphere.

  19. Behavioral effects of chronic exposure to organically bound tritium and tritiated water

    International Nuclear Information System (INIS)

    Radwan, I.

    1982-01-01

    The results of developmental testing of F-1 and F-2-animals indicate that in HTO group no differences with control animals were observed, while there was delay in development of righting reflex in F-1-animals of T-food exposed rats, but the difference was not statistically significant. The comparison of data obtained for F-1 and F2-generation shows no cumulative effect of tritium irradiation in subsequent generations. The effects of HTO and organically bound tritium exposure on acute individual locomotor activity of 70 days old rats showed statistically significant hypoactivity of females of t-food group. The differences with the control animals were highest and statistically significant in first 20 minutes of their run in the maze, what suggests that tritium esposure alters the females reactivity to a novel situation. This effects may nor persists for the lifetime. The data of locomotor activity of 110 days old rats recorded in diurnal and nocturnal periods, showed no differences between HTO-group and control group and only slight but no statistically significant hypoactivity of females exposed to organically bound tritium. (orig./MG)

  20. OBT analysis method using polyethylene beads for limited quantities of animal tissue

    International Nuclear Information System (INIS)

    Kim, S.B.; Stuart, M.

    2015-01-01

    This study presents a polyethylene beads method for OBT determination in animal tissues and animal products for cases where the amount of water recovered by combustion is limited by sample size or quantity. In the method, the amount of water recovered after combustion is enhanced by adding tritium-free polyethylene beads to the sample prior to combustion in an oxygen bomb. The method reduces process time by allowing the combustion water to be easily collected with a pipette. Sufficient water recovery was achieved using the polyethylene beads method when 2 g of dry animal tissue or animal product were combusted with 2 g of polyethylene beads. Correction factors, which account for the dilution due to the combustion water of the beads, are provided for beef, chicken, pork, fish and clams, as well as egg, milk and cheese. The method was tested by comparing its OBT results with those of the conventional method using animal samples collected on the Chalk River Laboratories (CRL) site. The results determined that the polyethylene beads method added no more than 25% uncertainty when appropriate correction factors are used. - Highlights: • Polyethylene beads method for OBT determination in animal tissues and animal products were determined. • The method reduces process time. • The polyethylene beads method added no more than 25% uncertainty when appropriate correction factors are used

  1. Tritium and 14C background levels in pristine aquatic systems and their potential sources of variability.

    Science.gov (United States)

    Eyrolle-Boyer, Frédérique; Claval, David; Cossonnet, Catherine; Zebracki, Mathilde; Gairoard, Stéphanie; Radakovitch, Olivier; Calmon, Philippe; Leclerc, Elisabeth

    2015-01-01

    Tritium and (14)C are currently the two main radionuclides discharged by nuclear industry. Tritium integrates into and closely follows the water cycle and, as shown recently the carbon cycle, as does (14)C (Eyrolle-Boyer et al., 2014a, b). As a result, these two elements persist in both terrestrial and aquatic environments according to the recycling rates of organic matter. Although on average the organically bound tritium (OBT) activity of sediments in pristine rivers does not significantly differ today (2007-2012) from the mean tritiated water (HTO) content on record for rainwater (2.4 ± 0.6 Bq/L and 1.6 ± 0.4 Bq/L, respectively), regional differences are expected depending on the biomass inventories affected by atmospheric global fallout from nuclear testing and the recycling rate of organic matter within watersheds. The results obtained between 2007 and 2012 for (14)C show that the levels varied between 94.5 ± 1.5 and 234 ± 2.7 Bq/kg of C for the sediments in French rivers and across a slightly higher range of 199 ± 1.3 to 238 ± 3.1 Bq/kg of C for fish. This variation is most probably due to preferential uptake of some organic carbon compounds by fish restraining (14)C dilution with refractory organic carbon and/or with old carbonates both depleted in (14)C. Overall, most of these ranges of values are below the mean baseline value for the terrestrial environment (232.0 ± 1.8 Bq/kg of C in 2012, Roussel-Debet, 2014a) in relation to dilution by the carbonates and/or fossil organic carbon present in aquatic systems. This emphasises yet again the value of establishing regional baseline value ranges for these two radionuclides in order to account for palaeoclimatic and lithological variations. Besides, our results obtained from sedimentary archive investigation have confirmed the delayed contamination of aquatic sediments by tritium from the past nuclear tests atmospheric fallout, as recently demonstrated from data chronicles (Eyrolle

  2. Effect of physiological factors on dose due to organically bound tritium

    International Nuclear Information System (INIS)

    Trivedi, A.

    1998-01-01

    The International Commission on Radiological Protection (ICRP) recommends the understanding of the effect of age, anatomical and physiological data on the doses in order to prescribe dose coefficient for radionuclides. The published data on OBT dose fraction after acute or chronic intakes of HTO are evaluated to examine the variation of OBT dose with the age and physiology of occupational workers. (author)

  3. Tritium and 14C background levels in pristine aquatic systems and their potential sources of variability

    International Nuclear Information System (INIS)

    Eyrolle-Boyer, Frédérique; Claval, David; Cossonnet, Catherine; Zebracki, Mathilde; Gairoard, Stéphanie; Radakovitch, Olivier; Calmon, Philippe; Leclerc, Elisabeth

    2015-01-01

    Tritium and 14 C are currently the two main radionuclides discharged by nuclear industry. Tritium integrates into and closely follows the water cycle and, as shown recently the carbon cycle, as does 14 C (Eyrolle-Boyer et al., 2014a, b). As a result, these two elements persist in both terrestrial and aquatic environments according to the recycling rates of organic matter. Although on average the organically bound tritium (OBT) activity of sediments in pristine rivers does not significantly differ today (2007–2012) from the mean tritiated water (HTO) content on record for rainwater (2.4 ± 0.6 Bq/L and 1.6 ± 0.4 Bq/L, respectively), regional differences are expected depending on the biomass inventories affected by atmospheric global fallout from nuclear testing and the recycling rate of organic matter within watersheds. The results obtained between 2007 and 2012 for 14 C show that the levels varied between 94.5 ± 1.5 and 234 ± 2.7 Bq/kg of C for the sediments in French rivers and across a slightly higher range of 199 ± 1.3 to 238 ± 3.1 Bq/kg of C for fish. This variation is most probably due to preferential uptake of some organic carbon compounds by fish restraining 14 C dilution with refractory organic carbon and/or with old carbonates both depleted in 14 C. Overall, most of these ranges of values are below the mean baseline value for the terrestrial environment (232.0 ± 1.8 Bq/kg of C in 2012, Roussel-Debet, 2014a) in relation to dilution by the carbonates and/or fossil organic carbon present in aquatic systems. This emphasises yet again the value of establishing regional baseline value ranges for these two radionuclides in order to account for palaeoclimatic and lithological variations. Besides, our results obtained from sedimentary archive investigation have confirmed the delayed contamination of aquatic sediments by tritium from the past nuclear tests atmospheric fallout, as recently demonstrated from data chronicles (Eyrolle-Boyer et al., 2014a

  4. Enhanced activities of organically bound tritium in biota samples

    Czech Academy of Sciences Publication Activity Database

    Světlík, Ivo; Fejgl, Michal; Malátová, I.; Tomášková, Lenka

    2014-01-01

    Roč. 93, NOV (2014), s. 82-86 ISSN 0969-8043 Institutional support: RVO:61389005 Keywords : NE-OBT * HTO * NPPs * combustion * biota Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.231, year: 2014

  5. Phenomenological study and modeling of tritium trapping in tritiated waste drums

    International Nuclear Information System (INIS)

    Le-Floch, Anais

    2016-01-01

    ITER (International Tokamak Experimental Reactor) is a fusion machine which should demonstrate scientific and technological feasibility of fusion energy by means of D-T fusion reaction. Therefore, most of the solid radioactive waste produced during operation and dismantling phase (around 34000 tons) will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. One of the main issues in tritiated waste management is the confinement of tritium which presents a good ability to diffusion. One of the solutions is to trap the tritium directly in waste drums. In containers tritium is under gaseous form (HT and T_2), tritiated water vapor (HTO and T_2O) and organic bounded tritium species (OBT). as an hydrogen isotope, HT and T_2 trapping and conversion is possible thanks to a reaction with a mix of metal oxides MnO_2 and Ag_2O, which can be used for hydrogen hazards mitigation. an experimental study was conducted at the CEA on the study of tritium trapping by a mixture of 90% of manganese oxide and 10% of silver oxide. The tests showed that the addition of Pt and Pd catalysts did not improve the trapping capacity of the powder mixture, such as impregnation of the powder mixture when preparing the mixture, with solutions of KOH or NaOH. Crystal-chemical analysis revealed the formation of a mixed oxide in the preparation of powders, questioning the mechanisms previously established. Two new mechanisms have been proposed and a model on the trapping kinetics was presented. The results of modeling the competition between the trapping phenomenon and the diffusion of tritium through the wall of the waste package showed that the trapper decreased the value of the quantity of tritiated hydrogen degassed from the package. (author) [fr

  6. Metabolism and dosimetry of tritium

    International Nuclear Information System (INIS)

    Hill, R.L.; Johnson, J.R.

    1993-01-01

    This document was prepared as a review of the current knowledge of tritium metabolism and dosimetry. The physical, chemical, and metabolic characteristics of various forms of tritium are presented as they pertain to performing dose assessments for occupational workers and for the general public. For occupational workers, the forms of tritium discussed include tritiated water, elemental tritium gas, skin absorption from elemental tritium gas-contaminated surfaces, organically bound tritium in pump oils, solvents and other organic compounds, metal tritides, and radioluminous paints. For the general public, age-dependent tritium metabolism is reviewed, as well as tritiated water, elemental tritium gas, organically bound tritium, organically bound tritium in food-stuffs, and tritiated methane. 106 refs

  7. Data on the bound tritium level in fish from the great French rivers

    International Nuclear Information System (INIS)

    Foulquier, L.; Pally, M.

    1982-01-01

    The sampling stations were chosen as a function of the French nuclear program. Considering the sampling periods (1977-1982) and the operating nuclear plants, three areas were determined: 1) affected by fallout, 2) affected by power plant releases and 3) also affected by the releases from a fuel reprocessing plant. Tritium levels in water in the first, second and third areas were estimated at 210, 330 and 490 pCil -1 respectively. In the first two areas, differences in bound tritium levels in fish were not significant (average value: 1230+-520 pci.kg -1 dry). Downstream from the reprocessing plant, the average value reached 5360+-1330. Tritium ratios in fish vs water varied according to the sampling points and were always above 1. (Data) (author)

  8. Studies on translocation of tritiated assimilates into potatoes and wheat grains

    International Nuclear Information System (INIS)

    Mueller, J.; Diabate, S.; Strack, S.; Raskob, W.

    1993-01-01

    Tritium released in the enviroment may be converted to organically bound tritium (OBT), mainly by photosynthesis in green leaves. Tritiated assimilates can be translocated from leaves to storage organs of crop plants. This should be considered in models calculating the dose due to the ingestion pathway. This paper describes experiments with wheat and potatoes, which have been designed to study the translocation of tritiated assimilates. Additionally, gas exchange measurements have been performed with the leaves of those plants. A model has been developed to estimate the generation of OBT and the translocation of tritiated assimilates into edible plant parts. (orig.) [de

  9. Evidence for the preservation of technogenic tritiated organic compounds in an estuarine sedimentary environment.

    Science.gov (United States)

    Croudace, Ian W; Warwick, Phillip E; Morris, Jenny E

    2012-06-05

    The macrotidal Severn Estuary (southwestern UK) has received a broad range of industrial discharges since the beginning of the Industrial Revolution. A more recent anthropogenic input to the estuary has been technogenic tritium (specifically organically bound tritium, OBT). This was derived from a specialized industrial laboratory producing custom radiolabeled compounds for life science research and diagnostic testing from 1980 until 2008. While it was generally acknowledged that the radiological impact of the tritium discharges into the Estuary was small, public concern motivated the company and regulatory agencies to commission several research studies from 1998 to 2005 to better understand their environmental impact. This study examined OBT interaction with estuarine sediment by acquiring a broad range of geochemical and sedimentological data from a suite of sediment cores collected from the northern side of the Estuary. Two important observations are that the OBT compounds are strongly bound to the clay/silt fraction of sediment and that the down-core OBT profiles in intertidal and subtidal sediments are broadly similar to the discharge record. Geochemical and chronometric methods (Cu, Pb and Zn elemental profiles, (210)Pb, (137)Cs) provide important corroboration of the OBT record. A key additional piece of evidence that firmly authenticated the established chronology was the discovery of a previously unreported sedimentary marker layer that was generated by a major storm surge that occurred on December 13, 1981. Although this study has provided clear evidence of systematic accumulation of OBT in sedimentary sinks of the region, an estimation of its depositional inventory shows it represents only a small fraction of the total discharge. This modest retention in the principal sedimentary sinks of the Severn Estuary system reflects the particular dynamics of this highly macrotidal sediment starved estuary.

  10. Environmental aspects of tritium

    International Nuclear Information System (INIS)

    Quisenberry, D.R.

    1979-01-01

    The potential radiological implications of environmental tritium releases must be determined in order to develop a programme for dealing with the tritium inventory predicted for the nuclear power industry which, though still in its infancy, produces tritium in megacurie quantities annually. Should the development of fusion power generation become a reality, it will create a potential source for large releases of tritium, much of it in the gaseous state. At present about 90% of the tritium produced enters the environment through gaseous and liquid effluents and is deposited in the hydrosphere as tritiated water. Tritium can be assimilated by plants and animals and organically bound, regardless of the exposure pathway. However, there appears to be no concentration factor relative to hydrogen at any level of food chains analysed to date. The body burden, for man, is dependent on the exposure pathway and tissue-bound fractions are primarily the result of organically bound tritium in food. (author)

  11. Environmental tritium in trees

    International Nuclear Information System (INIS)

    Brown, R.M.

    1979-01-01

    The distribution of environmental tritium in the free water and organically bound hydrogen of trees growing in the vicinity of the Chalk River Nuclear Laboratories (CRNL) has been studied. The regional dispersal of HTO in the atmosphere has been observed by surveying the tritium content of leaf moisture. Measurement of the distribution of organically bound tritium in the wood of tree ring sequences has given information on past concentrations of HTO taken up by trees growing in the CRNL Liquid Waste Disposal Area. For samples at background environmental levels, cellulose separation and analysis was done. The pattern of bomb tritium in precipitation of 1955-68 was observed to be preserved in the organically bound tritium of a tree ring sequence. Reactor tritium was discernible in a tree growing at a distance of 10 km from CRNL. These techniques provide convenient means of monitoring dispersal of HTO from nuclear facilities. (author)

  12. Dose Assessment Model for Chronic Atmospheric Releases of Tritium

    International Nuclear Information System (INIS)

    Shen Huifang; Yao Rentai

    2010-01-01

    An improved dose assessment model for chronic atmospheric releases of tritium was proposed. The proposed model explicitly considered two chemical forms of tritium.It was based on conservative assumption of transfer of tritiated water (HTO) from air to concentration of HTO and organic beam tritium (OBT) in vegetable and animal products.The concentration of tritium in plant products was calculated based on considering dividedly leafy plant and not leafy plant, meanwhile the concentration contribution of tritium in the different plants from the tritium in soil was taken into account.Calculating the concentration of HTO in animal products, average water fraction of animal products and the average weighted tritium concentration of ingested water based on the fraction of water supplied by each source were considered,including skin absorption, inhalation, drinking water and food.Calculating the annual doses, the ingestion doses were considered, at the same time the contribution of inhalation and skin absorption to the dose was considered. Concentrations in foodstuffs and dose of annual adult calculated with the specific activity model, NEWTRI model and the model proposed by the paper were compared. The results indicate that the model proposed by the paper can predict accurately tritium doses through the food chain from chronic atmospheric releases. (authors)

  13. Tritium in the food chain

    International Nuclear Information System (INIS)

    Koenig, L.A.

    1988-01-01

    Tritium is a hydrogen isotope taking part in the global hydrogen cycle as well as in all metabolic processes. The resultant problems with respect to the food chain are summarized briefly with emphasis on 'organically bound tritium'. However, only a small number of the numerous publications on this topic can be taken into consideration. Publications describing experiments under defined conditions are reported, thus allowing a semiempirical interpretation to be made. Tritium activity measurements of food grown in the vicinity of the Karlsruhe Nuclear Research Center have been carried out. A list of the results is given. A dose assessment is performed under simplifying assumptions. Even when the organically bound tritium is taken into account, a radiation exposure of less than 1% of that of K-40 is obtained under these conditions. To avoid misinterpretation, the specific activity (Bq H-3/g H) of water-bound and organically bound tritium has to be considered separately. (orig.) [de

  14. Tritium in the food chain. Intercomparison of model predictions of contamination in soil, crops, milk and beef after a short exposure to tritiated water vapour in air

    Energy Technology Data Exchange (ETDEWEB)

    Barry, P. [PJS Barry (Canada)] [and others

    1996-09-01

    crops or slaughter of beef cattle. Milk was collected daily during the same period. Modelers were given 30 days of real-time hourly weather observations and some hydrological and agricultural conditions. They were asked to predict hourly concentrations of HTO and, where appropriate, organically bound tritium in soil, leafy vegetables, grain, milk and beef for the first 24 hours after the start of the exposure and at twice weekly intervals during the rest of the 30 days to harvest. The models were evaluated by intercomparison of the predicted concentrations and identifying causes for the significant differences that arose between them. In most cases, predicted concentrations among models agreed within an order of magnitude. In a few cases, they agreed within two orders of magnitude. The worst cases of agreement occurred after the night-time release when concentrations are relatively low and discrepancies less important radiologically. Some processes are highlighted that need more experimental study to improve overall model performance. These are: HTO in soil: deposition beneath plant canopies and re-emission from soil, particularly in stable air and low wind speeds; numbers and thicknesses of soil layers needed to describe vertical movement in soil and between soil surfaces and atmosphere. HTO in vegetation: deposition from the atmosphere particularly at night when leaf stomata close or partially close; effective rooting depth of different species. OBT in vegetation: rates of OBT formation, particularly at night; translocation of HTO and OBT to plant storage tissues, grain, tubers, roots, etc; effect of stage of development of grain when release occurs. HTO and OBT in animal products: rates of OBT formation in animals; rates of loss of OBT from milk and meat; effect of time elapsed between release and slaughter on concentrations of OBT in beef.

  15. Tritium in the food chain. Intercomparison of model predictions of contamination in soil, crops, milk and beef after a short exposure to tritiated water vapour in air

    International Nuclear Information System (INIS)

    Barry, P.

    1996-09-01

    or slaughter of beef cattle. Milk was collected daily during the same period. Modelers were given 30 days of real-time hourly weather observations and some hydrological and agricultural conditions. They were asked to predict hourly concentrations of HTO and, where appropriate, organically bound tritium in soil, leafy vegetables, grain, milk and beef for the first 24 hours after the start of the exposure and at twice weekly intervals during the rest of the 30 days to harvest. The models were evaluated by intercomparison of the predicted concentrations and identifying causes for the significant differences that arose between them. In most cases, predicted concentrations among models agreed within an order of magnitude. In a few cases, they agreed within two orders of magnitude. The worst cases of agreement occurred after the night-time release when concentrations are relatively low and discrepancies less important radiologically. Some processes are highlighted that need more experimental study to improve overall model performance. These are: HTO in soil: deposition beneath plant canopies and re-emission from soil, particularly in stable air and low wind speeds; numbers and thicknesses of soil layers needed to describe vertical movement in soil and between soil surfaces and atmosphere. HTO in vegetation: deposition from the atmosphere particularly at night when leaf stomata close or partially close; effective rooting depth of different species. OBT in vegetation: rates of OBT formation, particularly at night; translocation of HTO and OBT to plant storage tissues, grain, tubers, roots, etc; effect of stage of development of grain when release occurs. HTO and OBT in animal products: rates of OBT formation in animals; rates of loss of OBT from milk and meat; effect of time elapsed between release and slaughter on concentrations of OBT in beef

  16. Effects of microdistribution of tritium on dose calculations

    International Nuclear Information System (INIS)

    Prestwich, W.V.; Kwok, C.S.; Nunes, J.

    1992-06-01

    Literature and data pertaining to the microdosimetry, relative biological effectiveness, subcellular distribution, organ uptake and retention for organically-bound tritium are reviewed. The quality factor for the electron degradation spectrum associated with the radiation field of tritium β-rays in water was calculated. The value was found to be 1.9 ± .2. A related experimental measure of quality with value 1.6 ± .2 and an estimate of 1.3 based on simulation studies are cited. The average value for relative biological effectiveness for a data base of 55 values was found to be 1.8 ± .1. The influence of reference radiation, in vivo versus in vitro methodologies, and the use of tritiated thymidine or tritiated water are discussed. A methodology designed to estimate the effects of subcellular distribution is described and a suitable parameter, the localization factor defined. Estimates of this factor are made for both nuclear-bound and organically-bound tritium. Values of 4 and 1.5 respectively are suggested. Organ uptake studies in rodents following long-term feeding of organically-bound tritium are compared. The tritium is found to be unequally distributed among the tissues studied. The highest specific activity occurs in liver, with the lowest in femur. The specific activity of tritium in tissue-free water slightly exceeds that of organically-bound tritium in liver. Retention studies reveal a three-component exponential decrease of organically-bound tritium. No discernible trends of the periods of the three components with specific organs could be established. Average values of the periods are 1.2 ± .2, 10 ± 2, and 65 ± 8 days. It is concluded that specific enhancement of radiobiological effectiveness due to incorporation of tritium in DNA does probably not occur. The radiotoxicological impact of organically-bound tritium could warrant the use of a radiation weighing factor between 2 and 3

  17. Biological effects of tritium releases from fusion power plants

    International Nuclear Information System (INIS)

    Strand, J.A.; Thompson, R.C.

    1976-09-01

    Tritium released as tritium oxide is a much more significant potential hazard to the environment than is elemental tritium. Although most biochemical reactions discriminate against the incorporation of tritium in favor of hydrogen, the possibility of some concentration should not be overlooked. A fraction of tritium accumulated as tritiated water becomes organically bound, that is, exchanges with hydrogen bound in organic molecules. The rate and extent of incorporation are dependent upon metabolic activity of the organism. On this basis, the highest concentration of organically-bound tritium would be expected in tissues and population segments which are in formative or growth stages at the time of exposure. Furthermore, as exposure duration increases from acute to chronic situations, tritium concentrations are shown to approach equilibrium levels with a single tritium-to-hydrogen ratio common to all parts of the hydrogen pool. Organic binding would not be expected to result in significant bioaccumulation of tritium from tritiated water. Tritium loss, both from tissue-free water and the tissue-bound fraction, depends upon metabolic activity. Processes that allow accumulation and incorporation of tritium also assist its elimination. Tritium which is organically bound demonstrates a longer half-time, but it would appear to constitute a small fraction of the total tritium label. The radiation exposure of all living organisms by environmentally dispersed tritium, in whatever form, is essentially a whole body exposure. Uncertainties in the individual parameters, involved in converting measured intake to estimated dose equivalent are probably no larger than a factor of three or four. If fusion reactors hold tritium releases with ICRP standards, no significant adverse impact to the environment from those releases are expected

  18. Tritium sources

    International Nuclear Information System (INIS)

    Glodic, S.; Boreli, F.

    1993-01-01

    Tritium is the only radioactive isotope of hydrogen. It directly follows the metabolism of water and it can be bound into genetic material, so it is very important to control levels of contamination. In order to define the state of contamination it is necessary to establish 'zero level', i.e. actual global inventory. The importance of tritium contamination monitoring increases with the development of fusion power installations. Different sources of tritium are analyzed and summarized in this paper. (author)

  19. Tritium kinetics in a freshwater marsh ecosystem

    International Nuclear Information System (INIS)

    Adams, L.W.

    1976-01-01

    Ten curies of tritium (as tritiated water, HTO) were applied to a 2-ha enclosed Lake Erie marsh in northwestern Ohio on 29 October 1973. Tritium kinetics in the marsh water, bottom sediment, and selected aquatic plants and animals were determined. Following HTO application, peak tritium levels in the sediment were observed on day 13 in the top 1-cm layer, on day 27 at the 5-cm depth, and on day 64 at the 10-cm depth. Peak levels at 15 and 20 cm were not discernible, although there was some movement of HTO to the 20-cm depth. A model based on diffusion theory described tritium movement through the sediment. Unbound and bound tritium levels in curly-leaf pondweed (Potamogeton crispus), pickerelweed (Pontederia cordata), and smartweed (Polygonum lapathifolium) generally tended to follow tritium levels in marsh water. The unbound tritium:marsh water tritium ratio was significantly larger (P < 0.001) in curly-leaf pondweed than in either of the two emergents. Tritium uptake into the unbound compartments of crayfish (Procambarus blandingi), carp (Cyprinus carpio), and bluegills (Lepomis macrochirus) was rapid. For crayfish, maximum HTO levels were observed on days 3 and 2 for viscera and muscle, respectively. Unbound HTO in carp viscera peaked on day 2, and levels in carp muscle reached a maximum in 4 hours. Maximum levels of unbound HTO in bluegill viscera and muscle were observed on day 1. After peak levels were obtained, unbound HTO paralleled marsh water HTO activity in all species. Tritium uptake into the bound compartments was not as rapid nor were the levels as high as for unbound HTO in any of the species. Peak bound levels in crayfish viscera were observed on day 20 and maximum levels in muscle were noted on day 10. Bound tritium in carp viscera and muscle reached maximum levels on day 20. In bluegills, peaks were reached on days 7 and 5 for viscera and muscle, respectively. Bound tritium in all species decreased following maximum levels

  20. Environmental and radiological impact of accidental tritium release

    Energy Technology Data Exchange (ETDEWEB)

    Guetat, Ph. [CEA Valduc, 21 - Is-sur-Tille (France); Patryl, L. [CEA Bruyeres-le-Chatel, 91 (France)

    2008-07-15

    Within the IAEA program EMRAS, an exercise has been performed by 7 countries to evaluate the consequences of an acute atmospheric release of tritium (10 g). This study aimed at giving practical technical information to decision-makers. Three scenarios with different meteorological conditions were modeled. The objective of this paper is to give the main information about transfer and impact, evaluate uncertainties in models/assessments and so help to set countermeasures. From the results of this exercise, reference activity values for countermeasures can be discussed. All pathways and chemical forms (HTO-HT-OBT) are considered. (authors)

  1. Tritium oxide uptake and desorption kinetics in a primary producer: chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Dunstall, T.G.

    1983-01-01

    The alga Chlorella pyrenoidosa grown in batch culture under chronic tritium oxide exposure was used to model behavior of tritium at the primary producer level of an aquatic food chain. The specific activity ratio of organically bound tritium to medium tritium increased during initial growth stages, then reached an asymptotic steady state value of 0.59 after approximately seven cell doublings. The intracellular to extracellular concentrations of tritium oxide appeared to be in equilibrium. Loss of previously formed organically bound tritium in cells transferred to tritium-free media averaged less than 5 % for exponential growth phase cultures which had undergone more than three cell doublings. Over a comparable time period, a greater loss of organically bound tritium from stationary cells (average 13.4 %) was attributed to increased degradative metabolism in senescent cultures. Concentration of tritium in organically bound form may exceed environmental tritium oxide levels under dynamic conditions in which a pulse of tritium oxide to the environment is dissipated over time

  2. Tritium behaviour in aquatic plants and animals in a freshwater marsh ecosystem

    International Nuclear Information System (INIS)

    Adams, L.W.; Peterle, T.J.; White, G.C.

    1979-01-01

    Ten curies of tritium as tritiated water (HTO) were experimentally added to an enclosed 2-ha Lake Erie marsh on 20 October 1973. Tritium kinetics in selected plants and animals were determined over a one-year period. Tritium levels in the marsh bottom sediment averaged 1.8 times the marsh water levels, with little evidence of tritium concentration above the marsh water tritium levels in the flora and fauna. The unbound tritium: marsh water tritium ratios in smartweed (Polygonum lapathifolium) and pickerelweed (Pontederia cordata) (both emergents) were lower than the same ratio for pondweed (Potamogeton crispus) (a submergent). There was some evidence of bound tritium buildup in midsummer, particularly in the pondweed. Tritium uptake into the unbound compartments of crayfish (Procambarus blandingi), carp (Cyprinus carpio) and bluegills (Lepomis macrochirus) was rapid. For crayfish, maximum HTO levels were observed on days 2 and 3 following treatment for muscle and viscera respectively. Unbound HTO in carp muscle peaked in 4 hours and the level in carp viscera reached a maximum in 2 days, in bluegill muscle and viscera on day 1. Unbound HTO in all species decreased following peak levels, paralleling marsh water HTO activity. Tritium uptake into the bound compartments was not as rapid nor were the levels as high as for unbound HTO in the fauna. The peak bound level in crayfish muscle was observed on day 10 (bound : unbound ratio of 0.34) and the maximum level in viscera was noted on day 20 (bound : unbound ratio of 0.23). Bound tritium in carp muscle and viscera reached maximum levels on day 20 (bound : unbound ratios of 0.25 and 0.39 respectively). In bluegills, peaks were reached on days 5 and 7 (bound : unbound ratios of 0.35 and 0.38 for muscle and viscera respectively). Bound tritium in all species decreased following maximum levels

  3. Problems of anthropogenic tritium limitation

    Directory of Open Access Journals (Sweden)

    Kochetkov О.A.

    2013-12-01

    Full Text Available This article contains the current situation in respect to the environmental concentrations of anthropogenic and natural tritium. There are presented and analyzed domestic standards for НТО of all Radiation Safety Standards (NRB, as well as the regulations analyzed for tritium in drinking water taken in other countries today. This article deals with the experience of limitation of tritium and focuses on the main problem of rationing of tritium — rationing of organically bound tritium.

  4. Tritium concentrations in tree ring cellulose

    International Nuclear Information System (INIS)

    Kaji, Toshio; Momoshima, Noriyuki; Takashima, Yoshimasa.

    1989-01-01

    Measurements of tritium (tissue bound tritium; TBT) concentration in tree rings are presented and discussed. Such measurement is expected to provide a useful means of estimating the tritium level in the environment in the past. The concentration of tritium bound in the tissue (TBT) in a tree ring considered to reflect the environmental tritium level in the area at the time of the formation of the ring, while the concentration of tritium in the free water in the tissue represents the current environmental tritium level. First, tritium concentration in tree ring cellulose sampled from a cedar tree grown in a typical environment in Fukuoka Prefecture is compared with the tritium concentration in precipitation in Tokyo. Results show that the year-to-year variations in the tritium concentration in the tree rings agree well with those in precipitation. The maximum concentration, which occurred in 1963, is attibuted to atmospheric nuclear testing which was performed frequently during the 1961 - 1963 period. Measurement is also made of the tritium concentration in tree ring cellulose sampled from a pine tree grown near the Isotope Center of Kyushu University (Fukuoka). Results indicate that the background level is higher probably due to the release of tritium from the facilities around the pine tree. Thus, measurement of tritium in tree ring cellulose clearly shows the year-to-year variation in the tritium concentration in the atmosphere. (N.K.)

  5. Observed and Modeled Tritium Concentrations in the Terrestrial Food Chain near a Continuous Atmospheric Source

    International Nuclear Information System (INIS)

    Davis, P.A.; Kim, S.B.; Chouhan, S.L.; Workman, W.J.G.

    2005-01-01

    Tritium concentrations were measured in a large number of environmental and biological samples collected during 2002 at two dairy farms and a hobby farm near Pickering Nuclear Generating Station in Ontario, Canada. The data cover most compartments of the terrestrial food chain in an agricultural setting and include detailed information on the diets of the local farm animals. Ratios of plant OBT concentration to air moisture HTO varied between 0.12 and 0.56, and were generally higher for the forage crops collected at the dairy farms than for the garden vegetables sampled at the hobby farm. Animal OBT to air HTO ratios were more uniform, ranging from 0.18 to 0.45, and were generally higher for the milk and beef samples from the dairy farms than for the chicken products from the hobby farm. The observed OBT concentrations in plants and animals were compared with predictions of IMPACT, the model used by the Canadian nuclear industry to calculate annual average doses due to routine releases. The model performed well on average for the animal endpoints but overestimated concentrations in plants by a factor of 2

  6. Effect of lifetime intake of organically bound tritium and tritiated water on the oocytes of rats

    International Nuclear Information System (INIS)

    Pietrzak-Flis, Z.; Wasilewska-Gomulka, M.

    1984-01-01

    Rats were continuously exposed to constant activity of tritium in drinking water (HTO group) or to tritium organically bound in food (T-food group) in the period from conception of F 1 generation through maturity. Female offspring were killed at the age of 21 and 71 days and the oocytes in their ovaries were counted. Mean dose rates absorbed in the ovaries were for the HTO groups 7.25+-0.37 and 14.73+-0.79 mGy/day and for the T-food group 4.84+-0.25 mGy/day. Reduction in the oocyte number in the ovaries of females exposed to tritiated food was bigger than in the ovaries of females exposed to tritiated water. The dependence of the survival of small oocytes on the dose rate and the corresponding total accumulated dose had an exponential character. The damaging effect of tritium was for the period from conception to 21 days of age bigger than from 21 to 71 days of age. Of all stages of oocyte development, the highest sensitivity to tritium irradiation was observed in small oocytes and oocytes with one complete layer of follicle cells. As a result, relative number of the growing and large oocytes increased. (orig.)

  7. An assessment method of long-term radiation impacts to environment and public individual from tritium discharged by inland NPP

    International Nuclear Information System (INIS)

    Shangguan Zhihong; Huang Yanjun; Tao Yunliang

    2012-01-01

    In this paper, an assessment method of environmental impacts from long-term releases of tritium of inland nuclear power plant is proposed; the tritium concentrations in different environmental materials, including the two main chemical form HTO and OBT. and the radiation dose to public individuals including drinking water, food, inhalation. skin adsorption, are estimated based on the method and environmental parameters from typical inland NPP. The two discharge pathways, gaseous and liquid, are considered with particular concerns to drinking and irrigation ascribed to liquid discharge. This study would contribute to the assessment techniques of environmental impacts and safety of inland NPP. (authors)

  8. Tritium monitoring in the environment of the French territory

    Energy Technology Data Exchange (ETDEWEB)

    Leprieur, F.; Roussel-Debet, S.; Pierrard, O.; Tournieux, D.; Boissieux, T.; Caldera-Ideias, P. [Institut de radioprotection et de surete nucleaire (France)

    2014-07-01

    Introduction: Radioactive releases in the environment from civilian and military nuclear facilities have significantly decreased over the last few decades, except for discharges of tritium which are forecast to increase due to changes in the fuel management in power plants and in the longer term by new tritium-emitting units (fusion reactors). In the aim to perform its radiological monitoring mission throughout the French territory, IRSN uses and develops advanced technology equipment to sample and to analyze tritium in the different environmental compartments. Methodology: IRSN uses bubblers to collect both tritium vapour (HTO) and gaseous tritium (mainly HT) in the air. Another method, developed by IRSN, consists in directly sampling the water vapour in the air by condensing in a cold trap and more recently with passive sampler. In continental and marine surface water, samples are usually collected by automatic water samplers. Instantaneous surface water samples are also collected by grab sample devices. In addition, IRSN conducts animal and plant samples near French nuclear facilities. Natural origin and tritium remaining from testing of nuclear weapons In the atmosphere, the background levels of tritium of 1 to 2 Bq/L measured in water vapour, equivalent to an activity of 0.01 to 0.02 Bq/m{sup 3} of air. In fresh waters, the tritium activity currently ranges between 1 and 3 Bq/L of water. In the marine environment, tritium emitted during nuclear weapon tests has been totally 'diluted' in cosmogenic tritium and concentration levels at the surface have remained around 0.1 to 0.2 Bq/L. In biological matrices, total tritium concentration range from 1 to 3 Bq/kg f.w. with a variable proportion of free and organically bounded forms. Tritium around nuclear facilities: Close to facilities releasing more than 2x10{sup 13} Bq/year of gaseous tritium, higher activity levels, ranging from a few tens to a few hundred Bq/L, are observed in the atmospheric and

  9. Compartmental model for tritium persistence in the soil-plant system

    International Nuclear Information System (INIS)

    Iyengar, T.S.; Sadarangani, S.H.; Vaze, P.K.; Soman, S.D.

    1977-01-01

    A three-component computer model for tritium persistence in the soil-plant system, on the basis of an exponential polynomial is attempted. A series of field experiments with four species of trees, viz. Cardia sebastina, Terminalia catappa, Aracaria bidwilli and Mangifera indica, were carried out to generate data for testing the model. It is observed that there are two short-term components and one long-term component for tritium mean residence time, corresponding to the three phases of tritium in the system, viz. Tissue-Free-Water-Tritium, labile component of Tissue-Bound-Tritium and non-labile component of Tissue-Bound-Tritium. (author)

  10. Tritium sources; Izvori tricijuma

    Energy Technology Data Exchange (ETDEWEB)

    Glodic, S [Institute of Nuclear Sciences VINCA, Belgrade (Yugoslavia); Boreli, F [Elektrotehnicki fakultet, Belgrade (Yugoslavia)

    1993-07-01

    Tritium is the only radioactive isotope of hydrogen. It directly follows the metabolism of water and it can be bound into genetic material, so it is very important to control levels of contamination. In order to define the state of contamination it is necessary to establish 'zero level', i.e. actual global inventory. The importance of tritium contamination monitoring increases with the development of fusion power installations. Different sources of tritium are analyzed and summarized in this paper. (author)

  11. Modelization of tritium transfer into the organic compartments of algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Gerber, G.B.; Arapis, G.; Kirchmann, R.

    1982-01-01

    Uptake of tritium oxide and its conversion into organic tritium was studied in four different types of algae with widely varying size and growth characteristics (Acetabularia acetabulum, Boergesenia forbesii, two strains of Chlamydomonas and Dunaliella bioculata). Water in the cell and the vacuales equilibrates rapidly with external tritium water. Tritium is actively incorporated into organically bound form as the organisms grow. During the stationary phase, incorporation of tritium is slow. There exists a discrimination against the incorporation of tritium into organically bound form. A model has been elaborated taking in account these different factors. It appears that transfer of organic tritium by algae growing near the sites of release would be significant only for actively growing algae. Algae growing slowly may, however, be useful as cumulative indicators of discontinuous tritium release. (author)

  12. Tritium Room Air Monitor Operating Experience Review

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader; B. J. Denny

    2008-09-01

    Monitoring the breathing air in tritium facility rooms for airborne tritium is a radiological safety requirement and a best practice for personnel safety. Besides audible alarms for room evacuation, these monitors often send signals for process shutdown, ventilation isolation, and cleanup system actuation to mitigate releases and prevent tritium spread to the environment. Therefore, these monitors are important not only to personnel safety but also to public safety and environmental protection. This paper presents an operating experience review of tritium monitor performance on demand during small (1 mCi to 1 Ci) operational releases, and intentional airborne inroom tritium release tests. The tritium tests provide monitor operation data to allow calculation of a statistical estimate for the reliability of monitors annunciating in actual tritium gas airborne release situations. The data show a failure to operate rate of 3.5E-06/monitor-hr with an upper bound of 4.7E-06, a failure to alarm on demand rate of 1.4E-02/demand with an upper bound of 4.4E-02, and a spurious alarm rate of 0.1 to 0.2/monitor-yr.

  13. Distribution of tritium in a chronically contaminated lake

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Frank, M.L.

    1978-01-01

    White Oak Lake located on the U.S. Department of Energy's Oak Ridge Reservation receives a continuous input of tritium from operating facilities and waste disposal operations at the Oak Ridge National Laboratory. The purpose of this paper was (1) to determine the distribution and concentration of tritium in an aquatic environment which has received releases of tritium significantly greater than expected releases from nuclear power plants, and (2) to determine the effect of fluctuating tritium concentrations in ambient water on the concentration of tritium in fish. Aquatic biota from White Oak Lake were analyzed for tissue water tritium and tissue bound tritium. Except for one plant species, the ratio of tissue water tritium to lake water tritium ranged from 0.80 to 1.02. The tissue water tritium in Gambusia affinis, the mosquito fish, followed closely the significant changes in tritium concentration in lake water. The turnover of tissue water tritium was very rapid; Gambusia from White Oak Lake eliminated 50% of their tissue water tritium in 14 min. The ratio of the specific activity of the tissue bound tritium to the specific activity of the lake water was greatest for the larger species of fish but never exceeded unity. The radiation dose to man from tritium which could be acquired through the aquatic food chain was relatively small when compared to other pathways. The whole body dose to a hypothetical individual taking in concentrations of tritium measured in White Oak Lake was 1.8 mrem/yr from eating fish and 10.0 mrem/yr from drinking water

  14. Impact of low-level radiation with special reference to tritium in environment

    International Nuclear Information System (INIS)

    Bhatia, A.L.

    2005-01-01

    trend of acclimatization to tritium exposure is always there along with the presence of radiation-induced repair mechanism. But the danger is that the low level exposure may effect in unpredictable ways not only human kind but also its evolving process which may or may not have visible and beneficial (?) influence, what people are calling hormesis. They will act not only on people, but on those biological systems which support us. Because these changes may be beyond the ability of scientists to judge, and in so many disparate ways, we will not notice the decline in the spiritual and physical quality of our world. When finally the effects of this process are so bad that no one can disagree, it will be too late to put the genie back in the bottle. In biological systems the same degree of damage has not been produced by the same absorbed dose of different types of radiation. This difference in the radiobiological effectiveness (RBE) needs to be taken into account if we wish to add doses of different radiation to obtain the total biologically effective dose. For this, the absorbed dose of each type of radiation is required to be multiplied by a Quality Factor (QF). For the sake of simplicity, QF for tritium has been assigned a value of unity (ICRP, 1977). Radiotoxic effects of long term tritium exposure are consistent and apparently higher with those expected from an equivalent absorbed dose from external X-irradiation. Hence, a possibility for a higher RBE for tritium can not be ruled out. Four main areas of tritium studies are proposed for the education and careful evaluation:- (1) Specific models and their validity and suitability to predict environmental transfer of tritium released from various sources especially from thermonuclear devices. (2) The organically bound tritium (OBT) in the food chain and its possible biological consequences (3) The need for evaluation of the chemical form of tritium in environmental samples and their fate after interaction

  15. Transfer and incorporation of tritium in mammals

    International Nuclear Information System (INIS)

    Hoek, J. van den; Juan, N.B.

    1979-01-01

    The metabolism of tritium in mammals has been studied in a number of laboratories which have participated in the IAEA Co-ordinated Research Programme on the Behaviour of Tritium in the Environment. The results of these studies are discussed and related to data obtained elsewhere. The animals studied are small laboratory and domestic animals. Tritium has been administered as THO, both in single and long-term dosing experiments, and also as organically bound tritium. The biological half-life of tritium in the body water pool has been determined in different species. The following values have been found: 1.1 days in mice; 13.2 days in kangaroo rats; 3.8 days in pigs; 4.1 days in lactating versus 8.3 in non-lactating goats and 3.1-4.0 days in lactating cows and steers. Much attention has been paid to the incorporation of tritium into organic constituents, both in the animal organism (organs, tissues) and in the secretions of the animal after continuous administration of tritium, mostly as THO. When compared with tritium levels in body water, and expressed as the ratio of specific activities, values of 0.25 and 0.40 have been found in mice liver and testis respectively. In cow's milk, these ratios vary from 0.30 for casein to 0.60 for lactose. The transfer of tritium into milk after continuous ingestion of THO by a lactating cow is about 1.50% of the daily ingested tritium per litre of milk. Some results of experiments, utilizing organically bound tritium, are also presented. (author)

  16. Doses due to tritium releases by NET - data base and relevant parameters on biological tritium behaviour

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.

    1990-12-01

    This study gives an overview on the current knowledge about the behaviour of tritium in plants and in food chains in order to evaluate the ingestion pathway modelling of existing computer codes for dose estimations. The tritium uptake and retention by plants standing at the beginning of the food chains is described. The different chemical forms of tritium, which may be released into the atmosphere (HT, HTO and tritiated organics), and incorporation of tritium into organic material of plants are considered. Uptake and metabolism of tritiated compounds in animals and man are reviewed with particular respect to organically bound tritium and its significance for dose estimations. Some basic remarks on tritium toxicity are also included. Furthermore, a choice of computer codes for dose estimations due to chronic or accidental tritium releases has been compared with respect to the ingestion pathway. (orig.) [de

  17. Intercomparison of model predictions of tritium concentrations in soil and foods following acute airborne HTO exposure

    International Nuclear Information System (INIS)

    Barry, P.J.; Watkins, B.M.; Belot, Y.; Davis, P.A.; Edlund, O.; Galeriu, D.; Raskob, W.; Russell, S.; Togawa, O.

    1998-01-01

    This paper describes the results of a model intercomparision exercise for predicting tritium transport through foodchains. Modellers were asked to assume that farmland was exposed for one hour to an average concentration in air of 10 4 MBq tritium m -3 . They were given the initial soil moisture content and 30 days of hourly averaged historical weather and asked to predict HTO and OBT concentrations in foods at selected times up to 30 days later when crops were assumed to be harvested. Two fumigations were postulated, one at 10.00 h (i.e., in day-light), and the other at 24.00 h (i.e., in darkness).Predicted environmental media concentrations after the daytime exposure agreed within an order of magnitude in most cases. Important sources of differences were variations in choices of numerical values for transport parameters. The different depths of soil layers used in the models appeared to make important contributions to differences in predictions for the given scenario. Following the night-time exposure, however, greater differences in predicted concentrations appeared. These arose largely because of different ways key processes were assumed to be affected by darkness. Uptake of HTO by vegetation and the rate it is converted to OBT were prominent amongst these processes. Further research, experimental data and modelling intercomparisons are required to resolve some of these issues. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Evaluation of the effect of cooling towers on the transfer to the ground environment of the tritium from a receiving stream

    International Nuclear Information System (INIS)

    Kirchmann, R.; Dupont, J.C.; Fontaine-Delcambe, P.

    1982-01-01

    The studies on the impact of the cooling towers (mechanical draught) of the Tihange-1 Nuclear Power Plant, started in 1978. The first study dealt with the evaluation of the transfer in the terrestrial environment of the tritium released in the Meuse River, upstream of the NPP. This study involved, in 1978, four campaigns of plants exposure of one month duration each, two with the cooling towers in operation and two without. In 1979, three campaigns were performed, one with the towers in operation. The results of measurement of the tritium content of the Meuse water, rainwater, water vapor in air as well as the tissue free water (TFWT) of the plants cultivated in the 9 stations have shown that there was no influence, except in one case, due to the operation of the towers, on the levels of TFWT in the exposed plants. Besides, the comparison of the ratios of the specific activities (OBT plant THO rain) does not show a significant difference between the plants, neither between the stations, with or without the towers operating. One sees nevertheless that this ratio has a value ranging from 2.7 to 7.0 which means that an organic 3 H source is available for the plant, this does not seem to be the substratum. On the other hand, the OBT contents of the foliage of trees growing on the site and of algae growing in a pond receiving the water from the Meuse are about the same as the values observed in the plants grown at the stations. On the contrary the OBT content of algae growing in the cooling towers are significantly higher (3 to 9 times), which would indicate the presence in the Meuse Water of tritiated organic molecules biologically available. (author)

  19. Validation of tritium measurements in biological materials

    International Nuclear Information System (INIS)

    Kim, M.A.; Baumgartner, F.

    1988-01-01

    The maximum deviation of experimental R value from its real value, which is defined as the ratio of tissue bound to tissue water tritium, has been calculated and verified experimentally by taking consideration of isotopic fractionation arised in the course of water separation. Experimental procedures examined for the purpose are the azeotropic distillation and lyophilization for the removal of tissue water and the oxidative combustion of organic residue either by thermal process or by low temperature plasma generation. Each procedure optimalized by obviating or correcting isotope effects as well as other sources of error has been tested with mixed standards and biological samples. By washing out the exchangeable tritium and also physically bound tritium, the precision and accuracy of R values are further improved

  20. Analysis and speciation of the tritium in environmental matrices

    International Nuclear Information System (INIS)

    Bacchetta, Audrey

    2014-01-01

    This study deals with environmental monitoring. The main aims are (i) the optimisation of the analytical procedure for the tritium in organic form determination, and (ii) the identification of the tritium bearing molecules which are responsible for its transfer from the environment to man. The study was divided into three stages. First an analytical method was developed to determine hydrogen content of several samples, which is a key element to calculate accurate organically bound tritium activities. Secondly, the impact of the organically bound tritium fractions separation (labile exchange) for the determination of the representative fraction of the level of environmental tritium activity was then evaluated. For that, the amount of solubilised sample was estimated. Finally, the speciation of tritium in environmental samples was investigated. Several molecules classes and organic compounds dissolved in the labile exchanges solvent were identified. The results show that the distribution of tritium in organisms depends on both properties of the chemical bond in which it is involved and chemical properties of tritium bearing molecules. The identified compounds belong to the molecules classes such as carbohydrates or amino acids, constitutive of living organisms. It would now be of interest to study the tritium distribution in an environmental sample to target molecules of interest and study the impact of tritium from the environment to man. (author) [fr

  1. Non-labile tritium in Savannah River Plant pine trees

    International Nuclear Information System (INIS)

    Sanders, S.M. Jr.

    1976-06-01

    Non-labile tritium bound in cellulose of pine trees was measured to learn about the effects and fate of tritium contributed to the environment by the Savannah River Plant (SRP). An estimation of the regional inventory and the distance tritium can be observed from SRP was desired because tritium is a major component of the radioactivity released by SRP, and as the oxide, it readily disperses in the environment

  2. Differences in the behaviour of HTO and H2O in soil after condensation from the atmosphere and conversion of HT to HTO and OBT in soil relative to moisture content and pore volume

    International Nuclear Information System (INIS)

    Bunnenberg, C.; Feinhals, J.; Wiener, B.

    1986-01-01

    Theoretical considerations and field and soil column experiments have identified the condensation of atmospheric water vapour as an additional process in the HTO contamination of soils. In contrast to wash-out, where tritium concentrations of the deposited water are the same as in the falling drops, the specific activity of the condensed water is increased compared with that of the atmospheric humidity, when the partial vapour pressure gradient of HTO between atmosphere and soil is higher than the H 2 O pressure gradient. With respect to HTO deposition, condensation may therefore be more effective per unit precipitation than wash-out. Experiments on the conversion rates of HT to HTO and OBT in soils have exhibited a pronounced dependence on moisture content and free pore volume. With rising moisture content, conversion increases due to enhanced bacterial action; while close to field capacity a decrease occurs as a result of restricted HT diffusion through the soil pores. In short-term experiments about 0.1% of the converted HT was found in the OBT form. (author)

  3. A metabolic derivation of tritium transfer factors in animal products

    International Nuclear Information System (INIS)

    Galeriu, D.; Melintescu, A.; Crout, N. M. J.; Bersford, N. A.; Peterson, S. R.; Hess, M. van

    2001-01-01

    Tritium is a potentially important environmental contaminant arising from the nuclear industry. Because tritium is an isotope of hydrogen, its behaviour in the environment is controlled by the behaviour of hydrogen. Chronic releases of tritium to the atmosphere, in particular, will result in tritium-to-hydrogen (T/H) ratios in plants and animals that are more or less in equilibrium with T/H ratios in the air moisture. Tritium is thus a potentially important contaminant of plant and animal food products. The transfer of tritium from air moisture to plants is quite well understood. In contrast, although a number of regulatory agencies have published transfer coefficient values for diet tritium transfer for a limited number of animal products, a fresh evaluation of these transfers needs to be made In this paper we present an approach for the derivation of tritium transfer coefficients which is based on the metabolism of hydrogen in animals in conjunction with experimental data on tritium transfer. The derived transfer coefficients separately account for transfer to and from free (i.e. water) and organically bound tritium. The predicted transfer coefficients are compared to available data independent of model development. Agreement is good, with the exception of the transfer coefficient for transfer from tritiated water to organically bound tritium in ruminants, which may be attributable to the particular characteristics of ruminant digestion. We show that transfer coefficients will vary in response to the metabolic status of an animal (e.g. stage of lactation, digestibility of diet, etc.) and that the use of a single transfer coefficient from diet to animal product is not appropriate for tritium. It is possible to derive concentration ratio values which relate the concentration of tritiated water and organically bound tritium in an animal product to the corresponding concentrations in the animals diet. These concentration ratios are shown to be less subject to

  4. Transfer of fallout tritium from environment to human body

    International Nuclear Information System (INIS)

    Hisamatsu, Shun-ichi; Takizawa, Yukio

    1989-01-01

    A large quntity of tritium will be used as a fuel of nuclear fusion in the future. It is, therefore, considered important to elucidate tritium behavior present in the environment and the process of tritium transfer from the environment to the human body. Fallout tritium is an applicable material in searching for the long term behavior of tritium in the environment. This paper focuses on the American, Italian, Japanese literature concerning fallout tritium in food and in the human body. The specific activity ratio of bound to free tritium poses an important problem. The mechanism of biological concentration must await further studies. (N.K.) 63 refs

  5. Bioaccumulation factor of tritium in oyster and tilapia

    International Nuclear Information System (INIS)

    Garcia, T.Y.; Juan, N.B.

    1984-01-01

    This paper reports on the bioaccumulation factor as well as the residence time of tritium in marine organisms such as tilapia fish (Tilapia mossambica) and oyster (Crassostrea iredalei) reared under laboratory conditions. The organisms were submerged in aquarium water containing tritium with specific activity of 1.0 nCi/ml. The samples were analyzed for tissue-free water tritium (TFWT) by freeze drying and for tissue-bound tritium (TBT) by combustion methods. Tritiated water collected was assayed using the liquid scintillation counting technique. (author)

  6. Determination of total tritium in urine from residents living in the vicinity of nuclear power plants in Qinshan, China.

    Science.gov (United States)

    Shen, Bao-Ming; Ji, Yan-Qin; Tian, Qing; Shao, Xiang-Zhang; Yin, Liang-Liang; Su, Xu

    2015-01-16

    To estimate the tritium doses of the residents living in the vicinity of a nuclear power plant, urine samples of 34 adults were collected from residents living near the Qinshan nuclear power plant. The tritium-in-urine (HTO plus OBT) was measured by liquid scintillation counting. The doses of tritium-in-urine from participants living at 2, 10 and 22 km were in a range of 1.26-6.73 Bq/L, 1.31-3.09 Bq/L and 2.21-3.81 Bq/L, respectively, while the average activity concentrations of participants from the three groups were 3.53 ± 1.62, 2.09 ± 0.62 and 2.97 ± 0.78 Bq/L, respectively. The personal committed effective doses for males were 2.5 ± 1.7 nSv and for females they were 2.9 ± 1.3 nSv. These results indicate that tritium concentrations in urine samples from residents living at 2 km from a nuclear power plant are significantly higher than those at 10 km. It may be the downwind direction that caused a higher dose in participants living at 22 km. All the measured doses of tritium-in-urine are in a background level range.

  7. Uptake of tritium through foliage in capsicum fruitescens, L

    International Nuclear Information System (INIS)

    Iyengar, T.S.; Sadarangani, S.H.; Vaze, P.K.; Soman, S.D.

    1977-01-01

    Tritium uptake and release patterns throuogh foliage in Capsicum fruitescens, L. were investigated using twelve potted plants, under different conditions of exposure and release. The plants studied belonged to two age groups, 3 months and 5 months. The average half residence time for the species was found to be 42.6 min, on the basis of treating the entire group of plants as a single cluster. The individual release rates showed a variation of up to a factor of two, for half residence time values (Tsub(1/2)). The second component was not easily resolvable in most of the cases. Tissue bound tritium showed interesting uptake patterns. The ratios between tissue bound tritium and tissue free water tritium concentrations indicated regular mode of uptake with well defined rate constants in the case of long exposure periods. (author)

  8. Tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products

  9. Behaviour of three chemical forms of tritium in the environment after release from inertial fusion reactors

    International Nuclear Information System (INIS)

    Velarde, M.; Perlado, J.M.; Sedano, L.

    2006-01-01

    In order to fully simulate the behaviour of elementary tritium (HT), tritiated water vapour (HTO) in the environment, it is necessary to take into account diffusion and deposition processes in the soil and vegetables. In addition this work also incorporates the penetration in the underground, re-emission and later conversion to organic tritium (OBT). The whole study has led to the conclusion that the behaviour of the tritium should be simulated using two well-differentiated studies: deterministic and probabilistic. Deterministic calculations are based on a fixed meteorological data given 'a priori'. The probabilistic study is based on measured real meteorological analysis every hour, and the probability that individuals can present dose for internal irradiation. Both options have been considered for a specific mediterranean environment of the system. Once the elementary tritium has been deposited in the soil, it can be oxidized by microbial action of the enzymes of the soil, and the resulting tritium form (in its oxidize form) goes back to the atmosphere. This process of re-emission is shown to be very important since it has been typically considered that the inhaled tritium is only, HTO, when, in fact part of that account is due to the HT converted to HTO and re-emitted to the atmosphere. Our calculations demonstrate that the HT contributes very significantly to the dose for inhalation through the re-emission processes. A final aspect of this work is the dosimetric analysis of the contamination through all ways: inhalation, re-emission and ingestion. Early and chronic doses have been assessed

  10. Evaluation and mitigation of tritium memory in detritiation dryers

    International Nuclear Information System (INIS)

    Malara, C.; Ricapito, I.; Edwards, R.A.H.; Toci, F.

    1999-01-01

    In atmospheric detritiation, and other tritium processes, tritium is adsorbed on zeolites (molecular sieves) in the form of tritiated water. Regeneration removes almost all the physically adsorbed water, but a proportion remains permanently in the zeolite and binder structure as chemically bound water or hydroxyl groups. Exchange between adsorbed water and bound water means that tritiated water is retained in the structure after regeneration. At the end of its life, the zeolite therefore constitutes a tritiated waste. Furthermore, if an atmosphere detritiation dryer (ADD) gets highly contaminated from a tritium spill, retained tritium contaminates both the small amount of vapour leaving the bed during the next drying cycle, and the water produced in the subsequent regeneration. This report first describes experiments to measure the tritiated water retained in a 5A zeolite bed after standard regeneration treatments, and then investigates strategies to mitigate the effect: more thorough regeneration and isotope swamping or elution. The effect of zeolite ageing after thermal cycling is also seen. (orig.)

  11. Incorporation of tritium due to foliar exposure in certain vegetation

    International Nuclear Information System (INIS)

    Iyengar, T.S.; Sadarangani, S.H.; Vaze, P.K.; Soman, S.D.

    1981-01-01

    Tritium uptake, release and incorporation patterns through the foliage of seedlings of certain edible vegetation were investigated, for exposure periods ranging from an hour to about 20 hours. A large number of plants belonging to the family of lettuce (Lactuca sativa L.), cabbage (Brassica Oleracea L.) and capsicum (Capsicum fruitescens L.) were exposed to tritiated air under dynamic and static conditions. The half times for tissue-free-water-tritium (TFWT) were found to be about 46 and 32 minutes for capsicum and lettuce and 45 minutes for cabbage. Tissue-bound-tritium (TBT) in the seedlings and the grown plants showed different incorporation rates as a result of foliar exposure. The relative concentration factors were larger by a factor of ten for TFWT in the leaves of the grown plants than in the shoots of the seedlings. However, tissue-bound-tritium concentration values in the shoots/stems of the young and grown plants were of the same order, as related to the tissue-free-water-tritium concentrations. Thus the study indicates a larger translocation of tritium from aqueous to organic phase in the leaves of the grown plants than in the shoots of young seedlings. (auth.)

  12. Statistical Analysis of Environmental Tritium around Wolsong Site

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of)

    2010-04-15

    To find the relationship among airborne tritium, tritium in rainwater, TFWT (Tissue Free Water Tritium) and TBT (Tissue Bound Tritium), statistical analysis is conducted based on tritium data measured at KHNP employees' house around Wolsong nuclear power plants during 10 years from 1999 to 2008. The results show that tritium in such media exhibits a strong seasonal and annual periodicity. Tritium concentration in rainwater is observed to be highly correlated with TFWT and directly transmitted to TFWT without delay. The response of environmental radioactivity of tritium around Wolsong site is analyzed using time-series technique and non-parametric trend analysis. Tritium in the atmosphere and rainwater is strongly auto-correlated by seasonal and annual periodicity. TFWT concentration in pine needle is proven to be more sensitive to rainfall phenomenon than other weather variables. Non-parametric trend analysis of TFWT concentration within pine needle shows a increasing slope in terms of confidence level of 95%. This study demonstrates a usefulness of time-series and trend analysis for the interpretation of environmental radioactivity relationship with various environmental media.

  13. Tritium in the DIII-D carbon tiles

    International Nuclear Information System (INIS)

    Taylor, P.L.; Kellman, A.G.; Lee, R.L.

    1993-06-01

    The amount of tritium in the carbon tiles used as a first wall in the DIII-D tokamak was measured recently when the tiles were removed and cleaned. The measurements were made as part of the task of developing the appropriate safety procedures for processing of the tiles. The surface tritium concentration on the carbon tiles was surveyed and the total tritium released from tile samples was measured in test bakes. The total tritium in all the carbon tiles at the time the tiles were removed for cleaning is estimated to be 15 mCi and the fraction of tritium retained in the tiles from DIII-D operations has a lower bound of 10%. The tritium was found to be concentrated in a narrow surface layer on the plasma facing side of the tile, was fully released when baked to 1,000 degree C, and was released in the form of tritiated gas (DT) as opposed to tritiated water (DTO) when baked

  14. DOE handbook: Tritium handling and safe storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

  15. DOE handbook: Tritium handling and safe storage

    International Nuclear Information System (INIS)

    1999-03-01

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance

  16. Tritium monitoring at NPP and enviromental area under survey

    International Nuclear Information System (INIS)

    Nurislamov, I.R.; Kham'yanov, L.P.; Panichkin, V.F.

    1983-01-01

    Methods and devices for tritium monitoring at NPP with the WWER-type reactors and the environment are described. Aqueous solutions of inorganic and organic compounds, water vapours in the air of NPP rooms and the environment atmosphere, free and bound water in soils and vegetation were the objects for monitoring. Methods of tritium sampling from the atmosphere as well as determination of its content in samples are presented. Special attention is paid to sample enrichment with tritium

  17. Tritium transport around nuclear facilities

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Sweet, C.W.

    1981-01-01

    The transport and cycling of tritium around nuclear facilities is reviewed with special emphasis on studies at the Savannah River Laboratory, Aiken, South Carolina. These studies have shown that the rate of deposition from the atmosphere, the site of deposition, and the subsequent cycling are strongly influenced by the compound with which the tritium is associated. Tritiated hydrogen is largely deposited in the soil, while tritiated water is deposited in the greatest quantity in the vegetation. Tritiated hydrogen is converted in the soil to tritiated water that leaves the soil slowly, through drainage and transpiration. Tritiated water deposited directly to the vegetation leaves the vegetation more rapidly after exposure. Only a small part of the tritium entering the vegetation becomes bound in organic molecules. However, it appears tht the existence of soil organic compounds with tritium concentrations greater than the equilibrium concentration in the associated water can be explained by direct metabolism of tritiated hydrogen in vegetation

  18. Tritium transport around nuclear faciliteis

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Sweet, C.W.

    1982-01-01

    The transport and cycling of tritium around nuclear facilities is reviewed with special emphasis on studies at the Savannah River Laboratory, Aiken, South Carolina. These studies have shown that the rate of deposition from the atmosphere, the site of deposition, and the subsequent cycling are strongly influenced by the compound with which the tritium is associated. Tritiated hydrogen is largely deposited in the soil, while tritiated water is deposited in the greatest quantity in the vegetation. Tritiated hydrogen is converted in the soil to tritiated water that leaves the soil slowly, through drainage and transpiration. Tritiated water deposited directly to the vegetation leaves the vegetation more rapidly after exposure. Only a small part of the tritium entering the vegetation becomes bound in organic molecules. However, it appears that the existence of soil organic compounds with tritium concentrations greater than the equilibrium concentration in the associated water can be explained by direct metabolism of tritiated hydrogen in vegetation. (J.P.N.)

  19. Two investigations concerning the release of tritium. I. Tritium leakage from 3H(Sc) EC-detectors

    International Nuclear Information System (INIS)

    Bergman, C.; Wesslen, E.

    1977-01-01

    Recently the manufacturers of EC-detectors for gas chromatographs introduced a new type of 3 H EC-detector where the tritium is bound to scandium instead of to titanium and has an activity up to 1 Ci. It is expected that the scandium-based detector will take a great part of the Swedish EC-detector market. The Swedish National Institute of Radiation Protection is anxious to make sure that the introduction of the new detector, which will be used at higher temperature, will not give rise to any increased risk of tritium intake to the personnel handling the chromatographs. The leakage of tritium from commercially available 3 H(Sc) EC-detectors containing 1 Ci of tritium was measured as a function of the detector temperature. Tritium appears both in the form of tritium gas dissolved in the scandium and in the form of tritide. The gas evaporates rather easily with increasing temperature while the dissociation of the tritide is a slower process. The evaporation of tritium due to the dissociation of the tritide was found to be negligible, less than 0.2 μCi/h at temperatures less than 100 0 C, but rises rapidly with temperature. The study also showed that even when the detector is stored at room temperature, a re-distribution of the tritium occures, from the tritide to the dissolved tritium gas, which then easily evaporates even at moderately elevated temperatures

  20. Tritium and plutonium content in the Italian diet and transfer to man

    International Nuclear Information System (INIS)

    Clemente, G.F.; Belloni, P.; Di Pietro, S.; Santori, G.

    1979-01-01

    Complete daily diets together with total daily excretion and blood samples have been collected for five days in a group of healthy subjects of both sexes, representative of the normal Italian population living in an environment unexposed to local releases of plutonium and tritium. The tritiated water content available by freeze drying ('loose water fraction') has been measured together with the additional tritium available by complete combustion ('organic bound fraction') in the various samples collected. The mean values of the daily dietary intake of tritium were 974 pCi for the organic bound fraction and 310 pCi for the loose water fraction. The metabolic balance in man was evaluated for both fractions by comparing the daily intake with the daily excretion and blood concentration data. The results indicate that to assess tritium exposure of the general population one must take into account the environmental sources and the metabolic behaviour in man of tritium in both the bound and loose compartments. The plutonium content has been measured in the diet samples only because of the very low concentration in excreta and blood. The yearly dietary intake of plutonium in Italy is of the order of 1.5 pCi, in good agreement with the data available in other countries. (author)

  1. Investigation of tritium incorporation by means of excreted metabolites

    International Nuclear Information System (INIS)

    Biro, T.; Szilagyi, M.

    1978-01-01

    The commonly accepted urine analysis by liquid scintillation method was applied for whole body dose estimating. After the separation of metabolite fractions the organically bound tritium in urine could be measured. Urine samples from workers repeatedly exposed to tritium incorporation during the chemical processing of various labeled compounds have been collected and analyzed. The time dependence of tritium activity in certain metabolites was found to be characteristic, significantly differing from the 3 H concentration curve of the native or treated urine sample. (Auth.)

  2. Binder-free Na-mordenite pellets for tritium processing

    International Nuclear Information System (INIS)

    Toci, F.; Viola, A.; Edwards, R.A.H.; Mencarelli, T.; Brossa, P.

    1995-01-01

    Gas separation systems based on adsorption on zeolites are used in various applications involving tritium: air and inert gas detritiation, purification of Q 2 and Q 2 O, and isotope separation. Differential adsorption processes are attractive because efficient separation can be combined with small plant dimensions, low energy consumption and a small tritium inventory. Zeolites are the usual choice for the adsorbate because they combine high adsorption capacity with high selectivity and stability. However, commercial pellets show appreciable tritium retention due to inappropriate activation procedures or the presence of a binder. In this paper we report a research study aimed at producing a pelletized zeolite without binder (self-bound) with low tritium retention. (orig.)

  3. Problems bound to the tritium in materials for the nuclear - some illustrations; Problematiques liees au tritium dans les materiaux dans le domaine nucleaire - quelques illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Gastaldi, O. [CEA Cadarache (DTN/STPA/LPC), 13 - Saint-Paul-lez-Durance (France)

    2007-07-01

    The tritium control takes more and more importance in the nuclear industry because of the release more and more limited, in the environment. After a presentation on the tritium sources in the environment, the author presents the different ways of its production. Then for each reactor channel, the main problems are presented (fission and fusion). The last part deals with the behavior of the tritium in materials: the tritium inventory control in a fusion system, the tritium management after the reactor exploitation. (A.L.B.)

  4. Tritium distribution in newborn mice after providing mother mice with drinking water containing tritiated thymidine

    International Nuclear Information System (INIS)

    Saito, M.; Streffer, C.; Molls, M.

    1983-01-01

    Throughout gestation pregnant mice received drinking water which contained [methyl- 3 H]thymidine (18.5 kBq/ml). The newborn mice were divided into two groups. One group was nursed by their own mothers, which were further supplied with tritiated thymidine until 4 weeks after delivery (Experiment I). The other group was nursed by ''nonradioactive mothers'' which were given no tritiated thymidine (Experiment II). Tritium incorporation into the small molecular components of the acid-soluble fraction, lipid, RNA, DNA, and protein was analyzed for the newborn mice at various ages. In Experiment II, total radioactivity per gram tissue decreased initially after birth with a half life of 2.5-2.9 days in spleen, liver, intestine, stomach, thymus, lung, kidney, heart, and brain. At about 2 weeks after birth, a slower component of tritium elimination due mainly to the DNA-bound tritium appeared. Specific activity of DNA at birth was organ specific, highest in heart and lowest in thymus. Cumulative absorbed dose in various organs was estimated for the first 4 weeks after birth based upon an assumption that total and DNA-bound tritium are uniformly distributed. The result showed that organ specificity of dose accumulation is obvious for DNA-bound tritium, highest in spleen (1.15 mGy) and lowest in brain (0.13 mGy). It was also shown that the tritium supply from mother's milk is of minor importance for dose accumulation of DNA-bound tritium in the cell nuclei of organs of suckling mice

  5. Tritium distribution in newborn mice after providing mother mice with drinking water containing tritiated thymidine

    International Nuclear Information System (INIS)

    Saito, M.; Streffer, C.; Molls, M.

    1983-01-01

    Throughout gestation pregnant mice received drinking water which contained [methyl- 3 H]thymidine (18.5 kBq/ml). The newborn mice were divided into two groups. One group was nursed by their own mothers, which were further supplied with tritiated thymidine until 4 weeks after delivery (Experiment I). The other group was nursed by nonradioactive mothers which were given no tritiated thymidine (Experiment II). Tritium incorporation into the small molecular components of the acid-soluble fraction, lipid, RNA, DNA, and protein was analyzed for the newborn mice at various ages. In Experiment II, total radioactivity per gram tissue decreased initially after birth with a half life of 2.5 to 2.9 days in spleen, liver, intestine, stomach, thymus, lung, kidney, heart, and brain. At about 2 weeks after birth, a slower component of tritium elimination due mainly to the DNA-bound tritium appeared. Specific activity of DNA at birth was organ specific, highest in heart and lowest in thymus. Cumulative absorbed dose in various organs was estimated for the first 4 weeks after birth based upon an assumption that total and DNA-bound tritium are uniformly distributed. The result showed that organ specificity of dose accumulation is obvious for DNA-bound tritium, highest in spleen (1.15 mGy) and lowest in brain (0.13 mGy). It was also shown that the tritium supply from mother's milk is of minor importance for dose accumulation of DNA-bound tritium in the cell nuclei of organs of suckling mice

  6. Tritium persistence pattern in some terrestrial plants-field investigations

    International Nuclear Information System (INIS)

    Soman, S.D.; Iyengar, T.S.; Krishnamoorthy, T.M.; Sadarangani, S.H.; Vaze, P.K.; Gogate, S.S.; Deo, J.V.

    1977-01-01

    The uptake and release pattern of tritium in certain trees in their natural conditions of growth were investigated by artificial simulation of active conditions by incorporating tritium in the system through stem or roots. These trees are grown in some of the nuclear sites wherein a number of nuclear facilities are located. The species studied include palms, casuarinas and banana trees. In most of the cases a single component corresponding to the tree compartment tritium was obtained. The second component of the tissue free water tritium and the tissue bound compartment of tritium were not easily resolvable due to tremendous variation caused by the environmental conditions such as rain, humidity etc. Repeated humps were observed in certain cases of root uptake studies due to the variation in the meteorological factors. In most of the cases the half residence times for tritium (Tsub(1/2)) (tissue free water tritium) were found to be below two days. (author)

  7. Tritium labeling of simple 7-membered ring compounds

    International Nuclear Information System (INIS)

    Hiltunen, J.; Peng, C.T.; Yang, Z.C.

    1990-01-01

    Seven-membered ring compounds, from cycloheptane to complex ring structures containing heteroatoms, substituents and fused phenyl rings, were labeled with tritium, using activated and adsorbed tritium. The 7-membered ring structures are generally stable towards reactions with tritium, which allows compounds like 1-benzosuberone, 1-aza-2-methoxy-1-cycloheptane, iminostilbene and clozapine to be labeled to reasonably high specific activities. The best method varies greatly from compound to compound. By optimizing the labeling conditions and use of efficient support exceptionally good results can be obtained. The Pd-on-alumina support gives consistently higher specific activity and less radioimpurity than other supports. Even molecules containing carbon-halogen bond and hydrogen bound to nitrogen can usually be labeled with tritium at stable positions and without dehalogenation. (author)

  8. Use of Tritium Accelerator Mass Spectrometry for Tree Ring Analysis

    Science.gov (United States)

    LOVE, ADAM H.; HUNT, JAMES R.; ROBERTS, MARK L.; SOUTHON, JOHN R.; CHIARAPPA - ZUCCA, MARINA L.; DINGLEY, KAREN H.

    2010-01-01

    Public concerns over the health effects associated with low-level and long-term exposure to tritium released from industrial point sources have generated the demand for better methods to evaluate historical tritium exposure levels for these communities. The cellulose of trees accurately reflects the tritium concentration in the source water and may contain the only historical record of tritium exposure. The tritium activity in the annual rings of a tree was measured using accelerator mass spectrometry to reconstruct historical annual averages of tritium exposure. Milligram-sized samples of the annual tree rings from a Tamarix located at the Nevada Test Site are used for validation of this methodology. The salt cedar was chosen since it had a single source of tritiated water that was well-characterized as it varied over time. The decay-corrected tritium activity of the water in which the salt cedar grew closely agrees with the organically bound tritium activity in its annual rings. This demonstrates that the milligram-sized samples used in tritium accelerator mass spectrometry are suited for reconstructing anthropogenic tritium levels in the environment. PMID:12144257

  9. Tritium turnover in succulent plants

    International Nuclear Information System (INIS)

    Krishnamoorthy, T.M.; Gogate, S.S.; Soman, S.D.

    1977-01-01

    Measurements of turnover rates for tissue free water tritium (TFWT) and tissue bound tritium (TBT) were carried out in three succulent plants, Opuntia sp., E. Trigona and E. Mili using tritiated water as tracer. The estimated half-times were 52, 57.5 and 80 days for TFWT and 212, 318 and 132 days for TBT in the stems of the above plants respectively. Opuntia sp. showed significant incorporation of TBT, 10% of TFWT on weight basis, while the other two plants showed lesser incorporation, 2-3% of TFWT. However, the leaves of E. Mili indicated the same level of fixation of TBT as the stem of Opuntia sp. (author)

  10. Investigation of tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Cohen, L.K.

    1977-01-01

    The behavior, cycling and distribution of tritium in an aquatic ecosystem was studied in the field and in the laboratory from 1969 through 1971. Field studies were conducted in the Hudson River Estuary, encompassing a 30 mile region centered about the Indian Point Nuclear Plant. Samples of water, bottom sediment, rooted emergent aquatic plants, fish, and precipitation were collected over a year and a half period from more than 15 locations. Specialized equipment and systems were built to combust and freeze-dry aquatic media to remove and recover the loose water and convert the bound tritium into an aqueous form. An electrolysis system was set up to enrich the tritium concentrations in the aqueous samples to improve the analytical sensitivity. Liquid scintillation techniques were refined to measure the tritium activity in the samples. Over 300 samples were analyzed during the course of the study

  11. A versatile model for tritium transfer from atmosphere to plant and soil

    International Nuclear Information System (INIS)

    Melintescu, A.; Galeriu, D.

    2004-01-01

    The need to increase the predictive power of risk assessment for large tritium releases implies a process level approach for model development. Tritium transfer for atmosphere to plant and the conversion in organically bound tritium depend strongly on plant characteristics, season, and meteorological conditions.In order to cope with this large variability and to avoid also, expensive calibration experiments, we developed a model using knowledge of plant physiology, agro-meteorology, soil sciences, hydrology, and climatology. The transfer of tritiated water to plant is modelled with resistance approach including sparse canopy. The canopy resistance is modelled using Jarvis-Calvet approach modified in order to directly use the canopy photosynthesis rate.The crop growth model WOFOST is used for photosynthesis rate both for canopy resistance and formation of organically bound tritium, also. Using this formalism, the tritium transfer parameters are directly linked to known processes and parameters from agricultural sciences. The model predictions for tritium in wheat are closed to a factor two to experimental data without any calibration. The model also is tested for rice and soya bean and can be applied for various plants and environmental conditions. For sparse canopy the model uses coupled equations between soil and plants. (author)

  12. Tritium behavior in an aquatic ecosystem

    International Nuclear Information System (INIS)

    Komatsu, K.

    1982-01-01

    Tritium behavior in aquatic organisms through a model food chain was investigated. In this model food chain, tritium in water reaches bacteria or Japanese killifish via diatoms and brine shrimps. Tritium accumulation in these organisms as organic bound form was expressed as the R value which is defined as the ratio of tritium specific activity in lyophilized organisms (μCi/gH) to that in water (μCi/gH). The maximum R values were 0.5 in diatoms: Chaetoceros gracilis, 0.2 in bacteria: Escherichia coli, 0.5 in brine shrimps: Artemia salina, and 0.32 in Japanese killifish: Oryzias latipes under the growing condition in which tritium accumulation was due to tritium in tritiated water and not tritiated foods. Brine shrimps and Japanese killifish were grown from larve to adult in tritiated sea water and were fed on tritiated foods (model food chain). Their R values were 0.70 and 0.67, respectively. Bacteria, which grew in tritiated water by adding the hydrolysate of tritiated brine shrimps, showed a maximum R value at 0.32. The R values of each organ of Japanese killifish and of DNA and the nucleotides purified from brine shrimps growing in tritiated water with or without tritiated food were measured to estimate the tritium distribution in the body or various molecules of the organisms. These results did not indicate concentration of tritium in specific organs or compounds. The changes of specific activity of tritium in these organisms were measured when they were transferred to non-tritiated water. These retention of tritium was not only different among the tissues but also depended on whether or not the organisms were reared with tritiated foods. (author)

  13. Production of DNA Double Strand Breaks in Human Cells due to Acute Exposure to Tritiated Water (HTO)

    International Nuclear Information System (INIS)

    Gonen, R.; German, U.; Alfassi, Z. B.; Priel, E.

    2014-01-01

    The average and maximum energies of the beta emission from 3H are 5.69 keV and 18.6 keV respectively. The average range in water (or soft tissues), around 0.5 1/4m (500 nm), is considerably less than the typical diameter of a cell (10-30 1/4m), and even of a cell nucleus (5-10 1/4m), thus the micro-location of the tritium atom may well be crucial in determining its biochemical consequences. Due to the high ionization density of the beta particles emitted by tritium (about 400 ion pairs/1/4m) possible interaction of tritium beta radiation with DNA may play a significant role. Tritiated water (HTO) is the main chemical form in which tritium is found in the environment. In the body it may be retained as organically bound tritium (OBT), binding to biological molecules or remaining as OBT with various degrees of solubility. OBT can be retained in the human body much longer than HTO and therefore the dose arising from OBT can reach 50% of the total tritium dose . Histones are major protein components of chromatin. They function as spools around which DNA winds and play an important role in the regulation of gene expression. In the absence of histones, the DNA in chromosomes would be unmanageably long, as human cells each have about 1.8 m of DNA. During mitosis, DNA is duplicated and condensed, resulting in about 120 1/4m of chromosomes. It was recently reported that the phosphorylation of histone H2AX on serine residue 139 (D 3 -H2AX) is associated with Double Strand Breaks (DSB) sites in DNA), which indicates the possibility of research based on the detection of DSBs in DNA. The phosphorylated megabase chromatin domain surrounding the DSB can be immunostained and visualized as discrete foci by fluorescence microscopy, as each DNA DSB formed produces a visible D 3 -H2AX focus. Since 1 Gy of radiation produces approximately 60 DSBs/cell, doses of a few mGy should be distinguishable from the background, and it was recently shown that the exposure to 1 mGy of X-rays induces

  14. Dose-to-risk conversion factors for low-level tritium exposures

    International Nuclear Information System (INIS)

    Straume, T.

    1992-01-01

    During the past decade, a large number of radiobiological studies have become available for tritium-many of them focusing on the relative biological effectiveness (RBE) of tritium beta rays. These and previous studies indicate that tritium in body water produces the same spectrum of radiogenic effects, e.g., cancer, genetic effects, developmental abnormalities, and reproductive effects, observed following whole-body exposure to penetrating radiations such as gamma rays and x rays. The only significant difference in biological response between tritium beta-rays and the other common low linear-energy transfer (LET) radiations, such as gamma rays and x rays, appears to be the greater biological effectiveness of tritium beta rays. For example, tritium in the oxide form (HTO) is about 2 to 3 times more effective at low doses or low dose rates than gamma rays from 137 Cs or 60 CO (Straume, 1991). When tritium is bound to organic molecules, RBE values may be somewhat larger than those for HTO. It is now clear from the wealth of tritium data available that RBEs for tritium beta rays are higher than the quality factor of unity generally used in radiation protection

  15. Reassessment of tritium dose coefficients for the general public

    International Nuclear Information System (INIS)

    Melintescu, A.; Galeriu, D.; Takeda, H.

    2007-01-01

    Concerns of increased risk from tritium intake by humans have been claimed in the past. The arguments concerning the radiobiological effectiveness of tritium, its longer retention in the human body and the presence of tritium in the DNA hydration shell are analysed in this paper. A biokinetic model for tritiated water and organically bound tritium retention in the human body is used, based on a common approach for mammals using energy and hydrogen metabolism and tested separately with animal experiments. Extension to this model to humans considers the increased role of the brain, food quality and unique growth patterns of humans. Various ages and genders for Caucasians are considered. For an intake of tritium in organic forms in the diet, the retention for the female is of about a factor 2 compared with ICRP recommendations. Effective dose coefficients are estimated to be about a factor of 2 to 3 higher than those of the ICRP. (authors)

  16. The requirement for proper storage of nuclear and related decommissioning samples to safeguard accuracy of tritium data.

    Science.gov (United States)

    Kim, Daeji; Croudace, Ian W; Warwick, Phillip E

    2012-04-30

    Large volumes of potentially tritium-contaminated waste materials are generated during nuclear decommissioning that require accurate characterisation prior to final waste sentencing. The practice of initially determining a radionuclide waste fingerprint for materials from an operational area is often used to save time and money but tritium cannot be included because of its tendency to be chemically mobile. This mobility demands a specific measurement for tritium and also poses a challenge in terms of sampling, storage and reliable analysis. This study shows that the extent of any tritium redistribution during storage will depend on its form or speciation and the physical conditions of storage. Any weakly or moderately bound tritium (e.g. adsorbed water, waters of hydration or crystallisation) may be variably lost at temperatures over the range 100-300 °C whereas for more strongly bound tritium (e.g. chemically bound or held in mineral lattices) the liberation temperature can be delayed up to 800 °C. For tritium that is weakly held the emanation behaviour at different temperatures becomes particularly important. The degree of (3)H loss and cross-contamination that can arise after sampling and before analysis can be reduced by appropriate storage. Storing samples in vapour tight containers at the point of sampling, the use of triple enclosures, segregating high activity samples and using a freezer all lead to good analytical practice. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. FDMH - The tritium model in RODOS

    International Nuclear Information System (INIS)

    Galeriu, D.; Mateescu, G.; Melintescu, A.; Turcanu, C.; Raskob, W.

    2000-01-01

    Under the auspices of its RTD (Research and Technological Development) Framework Programmes, the European Commission has supported the development of the RODOS (Real-time On-line DecisiOn Support) system for off-site emergency management. The project started in 1989 focusing on PWR/LWR type accidents and using experience from the Chernobyl accident. In 1996 it was realised that tritium should be included in the list of radionuclides, as large tritium sources exist in Europe and to allow a potential expansion of the RODOS system for application on future fusion reactor accidents. The National Institute for Physics and Nuclear Engineering (IFIN-HH) in Romania - in close co-operation with the Research Centre Karlsruhe (FZK) - was charged to develop the tritium module, based on previous experience in environmental tritium modelling and the operation of CANDU reactor-based NPP in Romania (with potential tritium accidents). Tritium, being an isotope of hydrogen, is incorporated immediately in the life cycle and its transport into the biosphere differs considerably from other radionuclides treated by the RODOS system. Concentrations in the individual compartments may change very rapidly (hours) under varying environmental conditions and conversion to organic forms by biochemical and metabolic processes takes place in plants and animals. Consequently, the tritium code in RODOS was developed as a separate module and harmonisation in data sets and interfaces with other food chain modules integrated in RODOS was ensured. Presently, the tritium module - FDMH- is integrated and documented in the RODOS system, delivering time dependent tritium concentration (as tritiated water or organically bound tritium) in plant and animal products, inhalation dose and ingestion dose for various groups of population, after an accident emitting tritiated water and for up to 2520 locations around the source. FDMH incorporates many improved techniques in radiological assessment and makes

  18. Tritium NMR spectroscopy of ligand binding to maltose-binding protein

    International Nuclear Information System (INIS)

    Gehring, K.; Williams, P.G.; Pelton, J.G.; Morimoto, H.; Wemmer, D.E.

    1991-01-01

    Tritium-labeled α- and β-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR specctroscopy of the labeled sugars showed large upfield chamical shift changes upon binding and strong anomeric specficity. At 10 degrees C, MBP bound α-maltose with 2.7 ± 0.5-fold higher affinity than β-maltose, and, for longer maltodextrins, the ratio of affinities was even larger. The maximum chemical shift change was 2.2 ppm, suggesting that the reducing end of bound α-maltodextrin makes close contact with an aromatic residue in the MBP-binding site. Experiments with maltotriose (and longer maltodextrins) also revealed the presence of two bound β-maltotriose resonances in rapid exchange. The authors interpret these two resonances as arising from two distinct sugar-protein complexes. In one complex, the β-maltodextrin is bound by its reducing end, and, in the other complex, the β-maltodextrin is bound by the middle glucose residue(s). This interpretation also suggests how MBP is able to bind both linear and circular maltodextrins

  19. ANCLI's conclusions and recommendations made after the ANCLI colloquium 'Tritium, discrete, but present everywhere'

    International Nuclear Information System (INIS)

    Sene, M.

    2009-01-01

    The authors briefly state the conclusions of the colloquium about the presence of tritium in the environment, its sanitary impact, the re-examination of a management based on release, the need to reduce tritium production. The recommendations are also indicated: to continue researches on organically bound tritium, not to allow any release increase as long as effects are not better known. The role of the ANCLI is outlined

  20. Foot-printing of Protein Interactions by Tritium Labeling

    International Nuclear Information System (INIS)

    Mousseau, Guillaume; Thomas, Olivier P.; Agez, Morgane; Thai, Robert; Cintrat, Jean-Christophe; Rousseau, Bernard; Raffy, Quentin; Renault, Jean Philippe; Pin, Serge; Ochsenbein, Francoise

    2010-01-01

    A new foot-printing method for mapping protein interactions has been developed, using tritium as a radioactive label. As residues involved in an interaction are less labeled when the complex is formed, they can be identified via comparison of the tritium incorporation of each residue of the bound protein with that of the unbound one. Application of this foot-printing method to the complex formed by the histone H3 fragment H3 122-135 and the protein hAsflA 1-156 afforded data in good agreement with NMR results. (authors)

  1. Vertical distribution of tritium in core sediment of Mumbai Harbour Bay

    International Nuclear Information System (INIS)

    Rupali, C.K.; Joshi, Vikram; Jha, S.K.; Tripathi, R.M.; Sonali, B.; Priyanka, R.

    2014-01-01

    In the past few years there has been an increasing interest in the study of behavior of tritium in the environment, worldwide many countries have initiated monitoring of organically bound tritium in the environmental samples as part of their radiological assessments. Tritium ( 3 H) is ubiquitous in the aquatic environment and has a various sources of origin. It is transported to the earth's surface via hydrological cycle. 3 H is produced in variety of processes in nuclear power plants. Discharges to aquatic environment from these establishment results in locally enhanced water concentrations. Levels of 3 H have been further elevated due to atmospheric weapons testing between 1952 and 1962. Recent studies have demonstrated significant accumulation of tritium in both organic-rich sediments and food chain. The present study describes the vertical profile of tritium distribution in core sediment collected from Mumbai Harbour Bay (MHB). This will help in better understanding of the biogeochemical behavior and ecological impacts of tritium in the sediment

  2. Tritium metabolism in newborn mice and estimation of the accumulated dose

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M; Ishida, M R

    1986-01-01

    Suckling mice received tritium from their mothers who were supplied with tritiated water as drinking water. After weaning, the offspring were sacrificed and the tritium concentration was determined for various organs and various molecular components including acid soluble component, lipid, RNA, DNA and protein. The accumulated dose for the period between 3 and 41 weeks after birth was calculated for various organs and the contributions of the acid insoluble components to the total dose estimated. The per cent contribution of the acid insoluble components to the total dose was organ specific and was between about 17% and 42%. The result indicates that the inhomogeneous distribution of tritium in subcellular structures needs to be taken into account. The contribution of organically bound tritium to dose is then comparable to that of tritium in the free water component.

  3. Metabolism and risks from tritium and carbon-14 in the developing organism

    International Nuclear Information System (INIS)

    Gerber, G.B.; Kirchmann, R.; Hoek, J. van den

    1987-01-01

    In this review the risks are considered from tritium and carbon-14 to the developing organs of mammals. It mainly deals with H-3 but the conclusions are largely valid also for C-14. The metabolism and average tissue of THO as well as of organically bound tritium are discussed. Dosimetry of radiosensitive structures is also considered. 14 refs.; 2 figs.; 1 table

  4. Tritium in pine needles and its significant sources in the environment

    International Nuclear Information System (INIS)

    Takashima, Y.; Momoshima, N.; Inoue, M.; Nakamura, Y.

    1987-01-01

    Tissue-free water tritium (TFWT) and tissue-bound tritium (TBT) were analyzed in pine needles collected at 21 locations of the general environment in Japan. The TFWT was recovered by freeze-drying and the TBT was obtained in the form of water by combustion of dried samples. Tritium was measured by liquid scintillation counting. The concentration of TFWT were comparable with those in natural waters in Japan. The concentration of TBT, however, was higher than that of TFWT. This excess TBT may be attributed to direct assimilation of HT that is present in the atmosphere with extremely high specific activity. (author)

  5. Age-dependent dose coefficients for tritium in Asian populations

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A

    1999-10-01

    The International Commission on Radiological Protection (ICRP) Publications 56 (1989) and 67 (1993) have prescribed the biokinetic models and age-dependent dose coefficients for tritiated water and organically bound tritium. The dose coefficients are computed from values selected to specify the anatomical, morphological and physiological characteristics of a three-month-old, one-year-old, five-year-old, 10-year-old, 15-year-old and adult (Reference Man) Caucasian living in North America and Western Europe. However, values for Reference Man and other age groups are not directly applicable to Asians, because of differences in race, custom, dietary habits and climatic conditions. An Asian Man model, including five age groups, has been proposed by Tanaka and Kawamura (1996, 1998) for use in internal dosimetry. The basic concept of the ICRP Reference Man and the system describing body composition in ICRP Publication 23 (1975) were used. Reference values for Asians were given for the body weight and height, the mass of soft tissue, the mass of body water and the daily fluid balance, and are used to compute the dose coefficients for tritium. The age-dependent dose coefficients for Asians for tritiated water intakes are smaller by 20 to 30% of the currently prescribed values (Trivedi, 1998). The reduction in the dose coefficient values is caused by the increased daily fluid balance among Asians. The dose coefficient for tritiated water is 1.4 x 10{sup -11} Sv Bq{sup -1} for Asian Man compared to 2.0 x 10{sup -11} Sv Bq{sup -1} for Reference Man. The dose coefficients for organically bound tritium are only marginally different from those of the ICRP values. The dose coefficient for organically bound tritium for Asian Man is 4.0 x 10{sup -11} Sv Bq{sup -11} compared to 4.6 x 10{sup -11} Sv Bq{sup -1} for Reference Man. (author)

  6. Age-dependent dose coefficients for tritium in Asian populations

    International Nuclear Information System (INIS)

    Trivedi, A.

    1999-10-01

    The International Commission on Radiological Protection (ICRP) Publications 56 (1989) and 67 (1993) have prescribed the biokinetic models and age-dependent dose coefficients for tritiated water and organically bound tritium. The dose coefficients are computed from values selected to specify the anatomical, morphological and physiological characteristics of a three-month-old, one-year-old, five-year-old, 10-year-old, 15-year-old and adult (Reference Man) Caucasian living in North America and Western Europe. However, values for Reference Man and other age groups are not directly applicable to Asians, because of differences in race, custom, dietary habits and climatic conditions. An Asian Man model, including five age groups, has been proposed by Tanaka and Kawamura (1996, 1998) for use in internal dosimetry. The basic concept of the ICRP Reference Man and the system describing body composition in ICRP Publication 23 (1975) were used. Reference values for Asians were given for the body weight and height, the mass of soft tissue, the mass of body water and the daily fluid balance, and are used to compute the dose coefficients for tritium. The age-dependent dose coefficients for Asians for tritiated water intakes are smaller by 20 to 30% of the currently prescribed values (Trivedi, 1998). The reduction in the dose coefficient values is caused by the increased daily fluid balance among Asians. The dose coefficient for tritiated water is 1.4 x 10 -11 Sv Bq -1 for Asian Man compared to 2.0 x 10 -11 Sv Bq -1 for Reference Man. The dose coefficients for organically bound tritium are only marginally different from those of the ICRP values. The dose coefficient for organically bound tritium for Asian Man is 4.0 x 10 -11 Sv Bq -11 compared to 4.6 x 10 -11 Sv Bq -1 for Reference Man. (author)

  7. Tritium Assay and Dispensing of KEPRI Tritium Lab

    International Nuclear Information System (INIS)

    Sohn, S. H.; Song, K. M.; Lee, S. K.; Lee, K.W.; Ko, B. W.

    2009-01-01

    The Wolsong Tritium Removal Facility(WTRF) has been constructed to reduce tritium levels in the heavy water systems and environmental emissions at the site. The WTRF was designed to process 100 kg/h of heavy water with the overall tritium extraction efficiency of 97% per single pass and to produce ∼700 g of tritium as T2 per year at the feed concentration of 0.37 TBq/kg. The high purity tritium greater than 99% is immobilized as a metal hydride to secure its long term storage. The recovered tritium will be made available for industrial uses and some research applications in the future. Then KEPRI is constructing the tritium lab. to build-up infrastructure to support tritium research activities and to support tritium control and accountability systems for tritium export. This paper describes the initial phases of the tritium application program including the laboratory infrastructure to support the tritium related R and D activities and the tritium controls in Korea

  8. substantiation of the standards for tritium amino acids intake by human organism

    International Nuclear Information System (INIS)

    Zhesko, T.V.; Balonov, M.I.

    1984-01-01

    Calculated values of β-irradiation tissue doses of bound tritium and tritium oxide absorbed by animals treated with different amino acids are given. The obtained dose values are compared with tritium water doses. The data obtained in animal studies are extrapolated to man in order to determine the dose equivalent to the incorporated 3 H-amino acids dose. It is assumed that the dose equivalent to 3 H-amino acids radiation is three times as high as the equivalent amount of tritium oxide. 9 mCi/yr is established as the maximum allowable blood intake of 3 H-amino acids. Due to their metabolic characteristics, air permissible concentrations of 3 H-amino acids and tritium oxide have approximately the same values. The value of 30 nCi/cm 2 is recommended as a standard for work clothing contamination with 3 H-amino acids

  9. Distribution of tritiated compounds (tritiated thymidine and tritiated water) in the mother-fetus system and its consequences for the radiotoxic effect of tritium

    Energy Technology Data Exchange (ETDEWEB)

    Schreml, W; Fliedner, T M [Ulm Univ. (Germany, F.R.). Abt. Klinische Physiologie

    1978-01-01

    The incorporation and distribution of tritiated thymidine (/sup 3/H-TdR) and tritiated water (HTO) have been measured in newborn rats exposed to various levels of tritium by continuous infusion into pregnant rats from day 9 until term. In the animals exposed to HTO, the tritium activity was homogeneously distributed while /sup 3/H-TdR led to accumulation of DNA-bound and homogeneously distributed tritium. The incorporated activity and the specific activity of DNA from ovaries which showed a reduction of total oocyte number by approximately 50% were used to estimate the dose absorbed by the ovarian cell nuclei in both systems. From the absorbed dose a factor of 3.7 was calculated for the 'internal relative biological effectiveness' of DNA-bound tritium as compared to homogeneously distributed /sup 3/H under the restrictive assumption that the static description of the system at birth reflects the situation during the time of dynamic development of the ovaries when the toxic effect occurs. The influence of these dynamic factors of changing nuclear size and tritium incorporation during the sensitive period is weighed against the possibility that the continuous /sup 3/H-TdR infusion during pregnancy might represent a model in which DNA-bound tritium shows a higher effectiveness than homogeneously distributed tritium.

  10. Tritium

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The role played the large amount supply of tritium and its effects are broadly reviewed. This report is divided into four parts. The introductory part includes the history of tritium research. The second part deals with the physicochemical properties of tritium and the compounds containing tritium such as tritium water and labeled compounds, and with the isotope effects and self radiation effects of tritium. The third part deals with the tritium production by artificial reaction. Attention is directed to the future productivity of tritium from B, Be, N, C, O, etc. by using the beams of high energy protons or neutrons. The problems of the accepting market and the accuracy of estimating manufacturing cost are discussed. The expansion of production may bring upon the reduction of cost but also a large possibility of social impact. The irradiation problem and handling problem in view of environmental preservation are discussed. The fourth part deals with the use of tritium as a target, as a source of radiation or light, and its utilization for geochemistry. The future development of the solid tritium target capable of elongating the life of neutron sources is expected. The rust thickness of the surface of iron can be measured with the X-ray of Ti-T or Zr-T. The tritium can substitute self-light emission paint or lamp. The tritium is suitable for tracing the movement of sea water and land surface water because of its long half life. (Iwakiri, K.)

  11. Mound Laboratory tritium environmental study: 1976--1977

    International Nuclear Information System (INIS)

    Kershner, C.J.; Rhinehammer, T.B.

    1978-01-01

    In the course of an extensive investigation of tritium in the aquifer underlying the Mound Facility site, an unusual behavior was noted for a beta-emitting radionuclide contaminant present in the environs of the abandoned Miami-Erie Canal adjacent to the laboratory site. The soil contaminant was determined to be tritium, of which 90% was in the form of a relatively stable or bound species that was not readily exchangeable with the free water in the soil. (Bound-to-exchangeable transfer half-time was found to be approximately 3 yr.) The contamination was found to be concentrated within two feet of the surface in the center of the canal channel and near the Facility site drainage ditch and canal confluence. In order to characterize the contaminant and to assess its potential for reaching the aquifer, an analysis program and study were initiated in September 1976. The results and findings from the first phase of this work which was completed in February 1977 are the subject of this report

  12. Determination of organically bound Tritium in environmental samples by application of the oxidizing plasma technique

    International Nuclear Information System (INIS)

    Strack, S.; Koenig, L.A.

    1981-12-01

    The low-temperature oxidizing plasma technique with a suitable system for trapping the water formed in the oxidation process can be used to determine T bound organically in low-level samples. First, the samples are freeze-dried and the tissue water obtained in this way is measured, after distillation, in a liquid scintillation spectrometer. The residual dry matter is ashed in the reactor chamber of the plasma system. Oxidation takes place at temperatures not exceeding 200 0 C in an oxygen flow of about 40 ml/min. The water of oxidation is collected in a cold trap installed behind the reactor chamber. A volume of about 10 ml of water is sufficient to measure the tritium activity without enrichment. The oxidation behavior of various organic materials has been tested. Some first results of T concentrations in tissue water and the organic dry matter from food and plant samples collected in the vicinity of the Nuclear Research Center are presented. The method has the advantage that a commercially available instrument can be used requiring only little additional equipment. Handling is much less dangerous and contamination effects by atmospheric T can be easily kept at a minimum. (orig./HP) [de

  13. The valley system of the Jihlava river and Mohelno reservoir with enhanced tritium activities.

    Science.gov (United States)

    Simek, P; Kořínková, T; Svetlik, I; Povinec, P P; Fejgl, M; Malátová, I; Tomaskova, L; Stepan, V

    2017-01-01

    The Dukovany nuclear power plant (NPP Dukovany) releases liquid effluents, including HTO, to the Mohelno reservoir, located in a deep valley. Significantly enhanced tritium activities were observed in the form of non-exchangeable organically bound tritium in the surrounding biota which lacks direct contact with the water body. This indicates a tritium uptake by plants from air moisture and haze, which is, besides the uptake by roots from soil, one of the most important mechanisms of tritium transfer from environment to plants. Results of a pilot study based on four sampling campaigns in 2011-2015 are presented and discussed, with the aim to provide new information on tritium transport in the Mohelno reservoir - Jihlava River - plants ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. An interdisciplinary approach for the transport of tritium in animals and human dosimetry

    International Nuclear Information System (INIS)

    Galeriu, Dan; Melintescu, Anca; Takeda, Hiroshi; Beresford, Nick

    2007-01-01

    Further development of nuclear energy needs robust radioecological models for predicting the transfer of radionuclides in the environment and robust dose conversion coefficients. Concerns of increased risk from tritium intakes by humans have been raised in the past years, from both tritiated water and organically bound tritium. In the last few years we have concentrated on modelling tritium (and carbon) transfer in mammals, aquatic flora and fauna and birds. We use basic processes from environmental physics, animal physiology, nutrition and metabolism. Recent progresses are reported, in conjunction with international cooperation within IAEA programmes and other organisations. (author)

  15. Tritium : health risks, regulatory issues and the nuclear future

    International Nuclear Information System (INIS)

    Chambers, D. B.; Garva, A.

    2010-10-01

    The refurbishment of existing reactors and proposed new build reactors in Canada has resulted in increased public opposition to nuclear power. This opposition has been fuelled by information provided to local groups by highly motivated national and international anti-nuclear groups who foster overstated and often incorrect views on the risks of low doses of radiation. Over the past several years, there has been increased scientific and public interest in the risks of low exposures to tritium. Scientific aspects which have received considerable attention include amongst others, behaviour in the environment, the possibility of increasing the relative biological effectiveness for tritium, the importance of organically bound tritium, and tritium dosimetry. In Canada at least, the perception of harm from exposures to low levels of tritium has been enhanced in the public mind by a proposal in one Province to lower the drinking water standard for tritium from 7,000 Bq/L to 20 Bq/L, which certain non-governmental organizations use to suggest the risks have been greatly underestimated in the past. Actually regulatory environment, the approval of local public of often a requirement for licensing a nuclear facility and thus it is important to ensure that correct information is not only available but available in a technically correct but easily understood form. This paper reviews the currently available scientific information on the risks from exposure to tritium and provides a context of the implications for regulatory actions and communications with the public. (Author)

  16. The VATO project: Development and validation of a dynamic transfer model of tritium in grassland ecosystem.

    Science.gov (United States)

    Le Dizès, S; Aulagnier, C; Maro, D; Rozet, M; Vermorel, F; Hébert, D; Voiseux, C; Solier, L; Godinot, C; Fievet, B; Laguionie, P; Connan, O; Cazimajou, O; Morillon, M

    2017-05-01

    In this paper, a dynamic compartment model with a high temporal resolution has been investigated to describe tritium transfer in grassland ecosystems exposed to atmospheric 3 H releases from nuclear facilities under normal operating or accidental conditions. TOCATTA-χ model belongs to the larger framework of the SYMBIOSE modelling and simulation platform that aims to assess the fate and transport of a wide range of radionuclides in various environmental systems. In this context, the conceptual and mathematical models of TOCATTA-χ have been designed to be relatively simple, minimizing the number of compartments and input parameters required. In the same time, the model achieves a good compromise between easy-to-use (as it is to be used in an operational mode), explicative power and predictive accuracy in various experimental conditions. In the framework of the VATO project, the model has been tested against two-year-long in situ measurements of 3 H activity concentration monitored by IRSN in air, groundwater and grass, together with meteorological parameters, on a grass field plot located 2 km downwind of the AREVA NC La Hague nuclear reprocessing plant, as was done in the past for the evaluation of transfer of 14 C in grass. By considering fast exchanges at the vegetation-air canopy interface, the model correctly reproduces the observed variability in TFWT activity concentration in grass, which evolves in accordance with spikes in atmospheric HTO activity concentration over the previous 24 h. The average OBT activity concentration in grass is also correctly reproduced. However, the model has to be improved in order to reproduce punctual high concentration of OBT activity, as observed in December 2013. The introduction of another compartment with a fast kinetic (like TFWT) - although outside the model scope - improves the predictions by increasing the correlation coefficient from 0.29 up to 0.56 when it includes this particular point. Further experimental

  17. Radiation doses to lungs and whole body from use of tritium in luminous paint industry

    International Nuclear Information System (INIS)

    Rudran, K.

    1988-01-01

    The radiation dose to persons exposed to tritium in the luminous paint industry is reported. The biological half-life of labile tritium is observed to be 7 to 10 days. There is evidence of exposure of lung tissue from tritium labelled polystyrene deposited in the pulmonary region and of soft tissue from organically bound tritium. Delayed excretion of labile tritium in urine following removal of the individuals from tritium handling, presence of tritium in organic constituents of blood and urine, and presence of non-volatile tritium in faecal excretion have been verified. From in vitro studies using fresh bovine serum, solubilisation half-life of tritium from the labelled paint is estimated to be 35 to 70 days after the initial fast clearance. Probable annual doses to the whole body, soft tissue and lungs under the prevailing working conditions have been estimated from the urinary and faecal excretion data. It is revealed that the actual values thus estimated are likely to exceed the values estimated by the conventional technique based on urine analysis for tritiated water. (author)

  18. Japanese university program on tritium radiobiology and environmental tritium

    International Nuclear Information System (INIS)

    Okada, Shigefumi

    1989-01-01

    The university program of the tritium study in the Special Research Project of Nuclear Fusion (1980-1989) is now on its 9th year. The study's aim is to assess tritium risk on man and environment for development of Japanese Nuclear Fusion Program. The tritium study begun by establishing various tritium safe-handling devices and methods to protect scientists from tritium contamination. Then, the tritium studies were initiated in three areas: The first was the studies on biological effects of tritiated water, where their RBE values, their modifying factors and mechanisms were investigated. Also, several human monitoring systems for detection of tritium-induced damage were developed. The second was the metabolic studies of tritium, including a daily tritium monitoring system, methods to enhance excretion of tritiated water from body and means to prevent oxidation of tritium gas in the body. The third was the study of environmental tritium. Tritium levels in environmental waters of various types were estimated all-over in Japan and their seasonal or regional variation were analyzed. Last two years, the studies were extended to estimate tritium activities of plants, foods and man in Japan. (author)

  19. Tritium fuel cycle modeling and tritium breeding analysis for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Pan, Lei; Lv, Zhongliang; Li, Wei; Zeng, Qin, E-mail: zengqin@ustc.edu.cn

    2016-05-15

    Highlights: • A modified tritium fuel cycle model with more detailed subsystems was developed. • The mean residence time method applied to tritium fuel cycle calculation was updated. • Tritium fuel cycle analysis for CFETR was carried out. - Abstract: Attaining tritium self-sufficiency is a critical goal for fusion reactor operated on the D–T fuel cycle. The tritium fuel cycle models were developed to describe the characteristic parameters of the various elements of the tritium cycle as a tool for evaluating the tritium breeding requirements. In this paper, a modified tritium fuel cycle model with more detailed subsystems and an updated mean residence time calculation method was developed based on ITER tritium model. The tritium inventory in fueling system and in plasma, supposed to be important for part of the initial startup tritium inventory, was considered in the updated mean residence time method. Based on the model, the tritium fuel cycle analysis of CFETR (Chinese Fusion Engineering Testing Reactor) was carried out. The most important two parameters, the minimum initial startup tritium inventory (I{sub m}) and the minimum tritium breeding ratio (TBR{sub req}) were calculated. The tritium inventories in steady state and tritium release of subsystems were obtained.

  20. Confinement and Tritium Stripping Systems for APT Tritium Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Heung, L.K.

    1997-10-20

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented.

  1. Confinement and Tritium Stripping Systems for APT Tritium Processing

    International Nuclear Information System (INIS)

    Hsu, R.H.; Heung, L.K.

    1997-01-01

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented

  2. Modeling tritium behavior in Li{sub 2}ZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M C [Argonne National Lab., IL (United States). Fusion Power Program

    1998-03-01

    Lithium metazirconate (Li{sub 2}ZrO{sub 3}) is a promising tritium breeder material for fusion reactors because of its excellent tritium release characteristics. In particular, for water-cooled breeding blankets (e.g., ITER), Li{sub 2}ZrO{sub 3} is appealing from a design perspective because of its good tritium release at low operating temperatures. The steady-state and transient tritium release/retention database for Li{sub 2}ZrO{sub 3} is reviewed, along with conventional diffusion and first-order surface desorption models which have been used to match the database. A first-order surface desorption model is recommended in the current work both for best-estimate and conservative (i.e., inventory upper-bound) predictions. Model parameters are determined and validated for both types of predictions, although emphasis is placed on conservative design predictions. The effects on tritium retention of ceramic microstructure, protium partial pressure in the purge gas and purge gas flow rate are discussed, along with other mechanisms for tritium retention which may not be dominant in the experiments, but may be important in blanket design analyses. The proposed tritium retention/release model can be incorporated into a transient thermal performance code to enable whole-blanket predictions of tritium retention/release during cyclic reactor operation. Parameters for the ITER driver breeding blanket are used to generate a numerical set of model predictions for steady-state operation. (author)

  3. Tritium behavior pattern in some soil-plant systems in a tropical environment

    International Nuclear Information System (INIS)

    Soman, S.D.; Iyengar, T.S.; Sadarangani, S.H.; Vaze, P.K.

    1975-01-01

    A study of the distribution pattern of tritium in the soil/plant environment gives valuable ecological information on the natural water balance. The results of such a study for the conditions obtaining in India are given in this paper. Field studies are carried out by injection of tritium into some soil/plant systems and following the transfer pathways. The method of extraction for tissue-free-water-tritium (TFWT) is based on the vacuum freeze-drying technique while the tissue-bound-tritium (TBT) is estimated by a modified version of the Shoniger method. The determination of residence time of tritium in aqueous and organic phase in a number of tropical trees has been carried out both for stem-injection as well as intake from the soil. From the results of this study the tree biomass and transpiration rates have been determined. The tritium profile over time, for an acute exposure in certain trees such as Morinda Tinetoria, Achras Sapota etc. shows significantly different patterns compared to the normal pattern shown by Mangifera Indica, Terminalia Catappa, Ficus Glomerata etc. The period of investigation in each case varied from 400 to 1000 h. In most of the cases, the TBT fractions were very low compared to TFWT fractions in the initial stages. The tritium behavior in the tree reflects significant characteristics of the tritium behavior in the soil system. The authors have found that the leaf sampling can be used as an indicator of total environmental tritium behavior. (author)

  4. Tritium transport calculations for the IFMIF Tritium Release Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Jana, E-mail: jana.freund@kit.edu; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro

    2014-10-15

    Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the

  5. Tritium transport calculations for the IFMIF Tritium Release Test Module

    International Nuclear Information System (INIS)

    Freund, Jana; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro

    2014-01-01

    Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the

  6. Nuclear graphite waste's behaviour under disposal conditions: Study of the release and repartition of organic and inorganic forms of carbon 14 and tritium in alkaline media

    International Nuclear Information System (INIS)

    Vende, L.

    2012-01-01

    23000 tons of graphite wastes will be generated during dismantling of the first generation of French reactors (9 gas cooled reactors). These wastes are classified as Long Lived Low Level wastes (LLW-LL). As requested by the law, the French National Radioactive Waste Management Agency (Andra) is studying concepts of low-depth disposals.In this work we focus on carbon 14, the main long-lived radionuclide in graphite waste (5730 y), but also on tritium, which is the main contributor to the radioactivity in the short term. Carbon 14 and tritium may be released from graphite waste in many forms in gaseous phase ( 14 CO 2 , HT...) or in solution ( 14 CO 3 2- , HTO...). Their speciation will strongly affect their migration from the disposal site to the environment. Leaching experiments, in alkaline solution (0.1 M NaOH simulating repository conditions) have been performed on irradiated graphite, from Saint-Laurent A2 and G2 reactors, in order to quantify their release and characterize their speciation. The studies show that carbon 14 exists in both gaseous and aqueous phases. In the gaseous phase, release is weak (≤0.1%) and corresponds to oxidizable species. Carbon 14 is mainly released into liquid phase, as both inorganic and organic species. 65% of released fraction is inorganic and 35% organic carbon. Two tritiated species have been identified in gaseous phase: HTO and HT/Organically Bond Tritium. More than 90% of tritium in that phase corresponds to HT/OBT. But release is weak (≤0.1%). HTO is mainly in the liquid phase. (author)

  7. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1990-01-01

    This document represents a synthesis relative to tritium storage. After indicating the main storage particularities as regards tritium, storages under gaseous and solid form are after examined before establishing choices as a function of the main criteria. Finally, tritium storage is discussed regarding tritium devices associated to Fusion Reactors and regarding smaller devices [fr

  8. Tritium incorporation in corn and bean after an accute contamination with tritiated water

    International Nuclear Information System (INIS)

    Silva, H.A.; Archundia, C.; Bravo, G.; Nulman, R.; Ortiz Magana, J.R.

    1979-01-01

    Tritium produced by natural or artificial processes is set free in the environment, generally as tritiated water, which the plants use to produce organic compounds such as proteins, fats and carbohidrates. The metabolism of tritium depends on the chemical form in which it is found, transport studies of tritium in different ecosystems, and in particular in food chains, gradually have become more important as a result of the tritium increase in the environment. In Mexico, corn and beans have been studied due to their great importance in the human food chain. The determination of tritium in organic compounds (bound tritium) requires an efficient conversion to tritiated water. For this reason, in this work we have detailed a dry oxidation method, which is a modification of the method of Schoniger, which consists of combustion in oxygen initiated by a simple electrical device using a disposable nichrome resistance, which is also used as a sample carrier. Tritium determination is done by a liquid scintillation counter with quenching correction using an internal standard. Graphs of tritium activity are shown plotted against the time between the application of tritiated water and the time of harvest. The highest activity is found about the 18th day for corn and the 16th day for beans. The calculated values for the half-lives for corn and beans are approximately 56 and 43 days respectively. (author)

  9. Thermal Removal of Tritium from Concrete and Soil to Reduce Groundwater Impacts - 13197

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Dennis G. [Savannah River National Laboratory, Building 773-42A, Aiken, South Carolina 29808 (United States); Blount, Gerald C. [Savannah River Nuclear Solutions (United States); Wells, Leslie H.; Cardoso, Joao E.; Kmetz, Thomas F.; Reed, Misty L. [U.S Department of Energy-Savannah River Site (United States)

    2013-07-01

    Legacy heavy-water moderator operations at the Savannah River Site (SRS) have resulted in the contamination of equipment pads, building slabs, and surrounding soil with tritium. At the time of discovery the tritium had impacted the shallow (< 3-m) groundwater at the facility. While tritium was present in the groundwater, characterization efforts determined that a significant source remained in a concrete slab at the surface and within the associated vadose zone soils. To prevent continued long-term impacts to the shallow groundwater a CERCLA non-time critical removal action for these source materials was conducted to reduce the leaching of tritium from the vadose zone soils and concrete slabs. In order to minimize transportation and disposal costs, an on-site thermal treatment process was designed, tested, and implemented. The on-site treatment consisted of thermal detritiation of the concrete rubble and soil. During this process concrete rubble was heated to a temperature of 815 deg. C (1,500 deg. F) resulting in the dehydration and removal of water bound tritium. During heating, tritium contaminated soil was used to provide thermal insulation during which it's temperature exceeded 100 deg. C (212 deg. F), causing drying and removal of tritium. The thermal treatment process volatiles the water bound tritium and releases it to the atmosphere. The released tritium was considered insignificant based upon Clean Air Act Compliance Package (CAP88) analysis and did not exceed exposure thresholds. A treatability study evaluated the effectiveness of this thermal configuration and viability as a decontamination method for tritium in concrete and soil materials. Post treatment sampling confirmed the effectiveness at reducing tritium to acceptable waste site specific levels. With American Recovery and Reinvestment Act (ARRA) funding three additional treatment cells were assembled utilizing commercial heating equipment and common construction materials. This provided a

  10. Stainless steel electrochemical behaviour - application to the decontamination of steel parts contaminated by tritium

    International Nuclear Information System (INIS)

    Bellanger, G.

    1991-01-01

    This purpose of this work is the study of an electrochemical decontamination process of stainless steel in which tritium is present on the surface of the metal, in the oxide layer and in the metal. We have first investigated the behaviour of the oxide layer. Then we have studied the hydrogen evolution, its diffusion and retrodiffusion in the metal. The results are applied to the decontamination of steel parts contamined by tritium. Part of the tritium can be eliminated by reducing the oxyde layer, which contains large amounts of tritium. However, it is more beneficial to electrolyse at the potential at which the H + ions are reduced. The hydrogen on the steel surface enters in the metal and displaces most of tritium located in the metallic layers near the surface. The tritium surface elimination rate is about 95%. The tritium eliminated through electrolysis is only a small fraction of all the tritium contained in the metal. However, according to conservation experiments of parts after electrolysis, it can be concluded that hydrogen, probably more strongly bound than tritium to steel, forms near the surface a barrier that prevents tritium retrodiffusion. Electrolysis appears as a satisfactory process for the surface decontamination of slightly tritiated steel parts. A decontamination automaton based on the preceding results is described using a pad electrolyser. This type of decontamination is little polluting, and the parts can be recycled after the in situ treatment [fr

  11. Environmental monitoring for tritium in tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, Ioan; Steflea, Dumitru; Lazar, Roxana Elena

    2001-01-01

    The Cryogenic Pilot is an experimental project in the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and chemical plants make up almost entire neighborhood of the Experimental Cryogenic Pilot. It is necessary to emphasize this aspect because the hall sewage system of the pilot is connected with the one of other three chemical plants from vicinity. This is the reason why we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and sewage from neighboring industrial activity. In this work, a low background liquid scintillation was used to determine tritium activity concentration according to ISO 9698/1998 standard. We measured drinking water, precipitation, river water, underground water and wastewater. The tritium level was between 10 TU and 27 TU what indicates that there is no source of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decided to monitor monthly each location. In this paper it is presented a standard method used for tritium determination in water samples, the precautions needed to achieve reliable results and the evolution of tritium level in different location near the Experimental Pilot for Tritium and Deuterium Cryogenic Separation. (authors)

  12. Environmental monitoring for tritium at tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, C.; Stefanescu, I.; Steflea, D.; Lazar, R.E.

    2001-01-01

    The Cryogenic Pilot is an experimental project in the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and the Experimental Cryogenic Pilot's, almost the entire neighborhood are chemical plants. It is necessary to emphasize this aspect because the sewerage system is connected with the other three chemical plants from the neighborhood. This is the reason that we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and waste water of industrial activity from neighborhood. In this work, a low background liquid scintillation is used to determine tritium activity concentration according to ISO 9698/1998. We measured drinking water, precipitation, river water, underground water and waste water. The tritium level was between 10 TU and 27 TU that indicates there is no source of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decide to monitories monthly each location. In this paper a standard method is presented which it is used for tritium determination in water sample, the precautions needed in order to achieve reliable results, and the evolution of tritium level in different location near the Experimental Pilot Tritium and Deuterium Cryogenic Separation.(author)

  13. Dosimetry of skin-contact exposure to tritium gas contaminated surfaces

    International Nuclear Information System (INIS)

    Legare, M.

    1990-12-01

    The radiological hazards from tritium are usually associated with exposure to tritium oxide either by inhalation, ingestion or permeation through skin. However, exposure from skin contact with tritium gas contaminated surfaces represents a different radiological hazard in tritium removal facilities and future fusion power plants. Previous experiments on humans and more recent experiments on hairless rats at Chalk River Laboratories have shown that when a tritium gas-contaminated surface is brought into contact with intact skin, high concentrations of organically-bound tritium in urine and skin are observed which were not seen from single tritiated water (liquid or vapour form) contamination. The results of the rat experiments, which involved measurements of tritium activity in urine and skin, after contact with contaminated stainless steel, are described. These results are also compared to previous data from human experiments. The effect of various exposure conditions and different contaminated surfaces such as brass, aluminum and glass are analysed and related to the results from contaminated stainless steel exposure. Dosimetric models are being developed in order to improve the basis for dose assessment for this mode of tritium uptake. The presently studied model is explained along with the assumptions and methods involved in its derivation. The features of 'STELLA', the software program used to implement the model, are discussed. The methods used to estimate skin and whole body dose from a model are demonstrated. Finally, some experiments for improving the accuracy of the model are proposed. Briefly, this study compares the results from animal and human experiments as well as different exposure conditions, and determines the range of whole body and skin dose that may be involved from skin-contact intake. This information is essential for regulatory purposes particularly in the derivation of doses for skin-contact contamination. (15 figs., 7 tabs., 29 refs.)

  14. Simulation of tritium behavior after intended tritium release in ventilated room

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Hayashi, Takumi; Yamanishi, Toshihiko; Kobayashi, Kazuhiro; Nishi, Masataka

    2001-01-01

    At the Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute (JAERI), Caisson Assembly for Tritium Safety study (CATS) with 12 m 3 of large airtight vessel (Caisson) was fabricated for confirmation and enhancement of fusion reactor safety to estimate tritium behavior in the case where a tritium leak event should happen. One of the principal objectives of the present studies is the establishment of simulation method to predict the tritium behavior after the tritium leak event should happen in a ventilated room. The RNG model was found to be valid for eddy flow calculation in the 50 m 3 /h ventilated Caisson with acceptable engineering precision. The calculated initial and removal tritium concentration histories after intended tritium release were consistent with the experimental observations in the 50 m 3 /h ventilated Caisson. It is found that the flow near a wall plays an important role for the tritium transport in the ventilated room. On the other hand, tritium behavior intentionally released in the 3,000 m 3 of tritium handling room was investigated experimentally under a US-Japan collaboration. The tritium concentration history calculated with the same method was consistent with the experimental observations, which proves that the present developed method can be applied to the actual scale of tritium handling room. (author)

  15. Design and test about de tritium system to filling tritium glove box

    International Nuclear Information System (INIS)

    Lei, Jiarong; Du, Yang; Yang, Yong

    2008-01-01

    In order to deal tritium permeated from inflating tritium system at the scene of inflating tritium, dealing waste tritium gas system was designed according to demand and action of dealing waste tritium gas from inflating tritium, and the data of character and volume about appliance of catalyst reaction and drying agent was calculated. Through the test at the scene of inflating tritium, it is result that dealing waste tritium gas system's efficiency reaches above 85% average in circulatory system, so that it can be used in practice extensively. (author)

  16. Water quality - Determination of tritium activity concentration - Liquid scintillation counting method (International Standard Publication ISO 9698:1989)

    International Nuclear Information System (INIS)

    Stefanik, J.

    1999-01-01

    This International Standard specifies a method for the determination of tritiated water ([ 3 H]H 2 O) activity concentration in water by liquid scintillation counting. The method is applicable to all types of water including seawater with tritium activity concentrations of up to 10 6 Bq/m 3 when using 20 ml counting vials. Below tritium activity concentrations of about 5 x 10 4 Bq/m 3[ 8], a prior enrichment step and/or the measurement of larger sample volumes can significantly improve the accuracy of the determination and lower the limit of detection. Tritium activity concentrations higher than 10 6 Bq/m 3 may be determined after appropriate dilution with distilled water of proven low tritium content. An alternative method for the determination of these higher activities involves increasing the tritium activity concentrations of the internal standard solution. The method is not applicable to the analysis of organically bound tritium; its determination requires an oxidative digestion

  17. ZEPHYR tritium system

    International Nuclear Information System (INIS)

    Swansiger, W.; Andelfinger, C.; Buchelt, E.; Fink, J.; Sandmann, W.; Stimmelmayr, A.; Wegmann, H.G.; Weichselgartner, H.

    1982-04-01

    The ignition experiment ZEPHYR will need tritium as an essential component of the fuel. The ZEPHYR Tritium Systems are designed as to recycle the fuel directly at the experiment. An amount of tritium, which is significantly below the total throughput, for example 10 5 Ci will be stored in uranium getters and introduced into the torus by a specially designed injection system. The torus vacuum system operates with tritium-tight turbomolecular pumps and multi-stage roots pumps in order to extract and store the spent fuel in intermediate storage tanks at atmospheric pressure. A second high vacuum system, similar in design, serves as to evacuate the huge containments of the neutral injection system. The spent fuel will be purified and subsequently processed by an isotope separation system in which the species D 2 , DT and T 2 will be recovered for further use. This isotope separation will be achieved by a preparative gaschromatographic process. All components of the tritium systems will be installed within gloveboxes which are located in a special tritium handling room. The atmospheres of the gloveboxes and of the tritium rooms are controlled by a tritium monitor system. In the case of a tritium release - during normal operation as well as during an accident - these atmospheres become processed by efficient tritium absorption systems. All ZEPHYR tritium handling systems are designed as to minimize the quantity of tritium released to the environment, so that the stringent German laws on radiological protection are satisfied. (orig.)

  18. Three-nucleon forces and the trinucleon bound states

    International Nuclear Information System (INIS)

    Friar, J.L.; Frois, B.

    1986-04-01

    A summary of the bound-state working group session of the ''International Symposium on the Three-Body Force in the Three-Nucleon System'' is presented. The experimental evidence for three-nucleon forces has centered on two ground state properties: the tritium binding energy and the trinucleon form factors. Both are discussed

  19. Development of a tritium recovery system from CANDU tritium removal facility

    International Nuclear Information System (INIS)

    Draghia, M.; Pasca, G.; Porcariu, F.

    2015-01-01

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consists of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)

  20. Development of a tritium recovery system from CANDU tritium removal facility

    Energy Technology Data Exchange (ETDEWEB)

    Draghia, M.; Pasca, G.; Porcariu, F. [SC.IS.TECH SRL, Timisoara (Romania)

    2015-03-15

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consists of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)

  1. Incorporation of tritium into hair proteins of rat

    International Nuclear Information System (INIS)

    Rochalska, M.; Ardelt, W.; Szot, Z.

    1981-01-01

    A simple and relatively rapid procedure for the extraction and fractionation of hair proteins, was elaborated and used for an analysis of rat hair proteins, tritiated in vivo. The most radioactive protein, containing over 6% of the initial hair radioactivity, was isolated in a homogeneous state. The protein had a molecular weight of about 190,000 daltons, and showed high proportions of glutamic acid, cysteine, aspartic acid, serine, and glycine and a low content of methionine and histidine. More than 80% of total tritium radioactivity incorporated into this protein was distributed among indispensable phenylalanine (30.3%) and, isoleucine (17.2%), valine (17.6%), proline (10,5%) and tyrosine (8.4%). The highest values of specific radioactivity were recorded for phenylalanine, isoleucine, valine and methionine. The radioactivity recovered in the amino acids is due to the presence of firmly bound tritium. (author)

  2. STAR facility tritium accountancy

    International Nuclear Information System (INIS)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-01-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  3. Tritium release from lithium titanate, a low-activation tritium breeding material

    International Nuclear Information System (INIS)

    Kopasz, J.P.; Miller, J.M.; Johnson, C.E.

    1994-01-01

    The goals for fusion power are to produce energy in as safe, economical, and environmentally benign a manner as possible. To ensure environmentally sound operation low-activation materials should be used where feasible. The ARIES Tokamak Reactor Study has based reactor designs on the concept of using low-activation materials throughout the fusion reactor. For the tritium breeding blanket, the choices for low activation tritium breeding materials are limited. Lithium titanate is an alternative low-activation ceramic material for use in the tritium breeding blanket. To date, very little work has been done on characterizing the tritium release for lithium titanate. We have thus performed laboratory studies of tritium release from irradiated lithium titanate. The results indicate that tritium is easily removed from lithium titanate at temperatures as low as 600 K. The method of titanate preparation was found to affect the tritium release, and the addition of 0.1% H 2 to the helium purge gas did not improve tritium recovery. ((orig.))

  4. Tritium breeders and tritium permeation barrier coatings for fusion reactor

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Kawamura, Hiroshi; Tsuchiya, Kunihiko

    2004-01-01

    A state of R and D of tritium breeders and tritium permeation barrier coatings for fusion reactor is explained. A list of candidate for tritium breeders consists of ceramics containing lithium, for examples, Li 2 O, Li 2 TiO 3 , Li 2 ZrO 3 , Li 4 SiO 4 and LiAlO 2 . The characteristics and form are described. The optimum particle size is from 1 to 10 μm. The production technologies of tritium breeders in the world are stated. Characteristics of ceramics with lithium as tritium breeders are compared. TiC, TiN/TiC, Al 2 O 3 and Cr 2 O 3 -SiO 2 -P 2 O 5 are tritium permeation barrier coating materials. These production methods and evaluation of characteristics are explained. (S.Y.)

  5. Accumulation of tritium in aquatic organisms through a food chain with three trophic levels

    International Nuclear Information System (INIS)

    Komatsu, Kenshi; Higuchi, Masataka; Sakka, Masatoshi

    1981-01-01

    Accumulation of tritium in aquatic organisms was estimated through a model food chain such as; tritiated water (THO) → diatoms → brine shrimps → Japanese killifish. Tritium accumulations in each organism as organic bound form are expressed as the R value which is defined as the ratio of tritium specific activity in lyophilized organisms (μCi/gH) to that in water (μCi/gH). The maximum R values were 0.5 in diatoms, Chaetoceros gracilis, 0.5 in brine shrimps, Artamia salina, and 0.32 in Japanese killifish, Oryzias latipes under the growing condition where tritium accumulation took place from tritiated water without tritiated diets. Brine shrimps and Japanese killifish, which grew from larvae to adult in tritiated sea water with feeding on tritiated diets (model food chain), had the R value at 0.70 and 0.67 respectively, indicating that more tritium accumulation in consumer populations with tritiated diets than those without tritiated diets. In addition, the R values of each organ of Japanese killifish, of DNA and the nucleotides purified from brine shrimps growing under the condition with or without our model food chain were measured to estimate the tritium distribution in the body or various components of the organism. These results did not indicate the seeking characteristic of tritium to some specific organs of compounds. (author)

  6. Accumulation of tritium in aquatic organisms through a food chain with three trophic levels

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, K.; Higuchi, M.; Sakka, M. (Tohoku Univ., Sendai (Japan). School of Medicine)

    1981-06-01

    Accumulation of tritium in aquatic organisms was estimated through a model food chain such as; tritiated water (THO) ..-->.. diatoms ..-->.. brine shrimps ..-->.. Japanese killifish. Tritium accumulations in each organism as organic bound form are expressed as the R value which is defined as the ratio of tritium specific activity in lyophilized organisms (..mu..Ci/gH) to that in water (..mu..Ci/gH). The maximum R values were 0.5 in diatoms, Chaetoceros gracilis, 0.5 in brine shrimps, Artamia salina, and 0.32 in Japanese killifish, Oryzias latipes under the growing condition where tritium accumulation took place from tritiated water without tritiated diets. Brine shrimps and Japanese killifish, which grew from larvae to adult in tritiated sea water with feeding on tritiated diets (model food chain), had the R value at 0.70 and 0.67 respectively, indicating that more tritium accumulation in consumer populations with tritiated diets than those without tritiated diets. In addition, the R values of each organ of Japanese killifish, of DNA and the nucleotides purified from brine shrimps growing under the condition with or without our model food chain were measured to estimate the tritium distribution in the body or various components of the organism. These results did not indicate the seeking characteristic of tritium to some specific organs of compounds.

  7. Safe handling of tritium

    International Nuclear Information System (INIS)

    1991-01-01

    The main objective of this publication is to provide practical guidance and recommendations on operational radiation protection aspects related to the safe handling of tritium in laboratories, industrial-scale nuclear facilities such as heavy-water reactors, tritium removal plants and fission fuel reprocessing plants, and facilities for manufacturing commercial tritium-containing devices and radiochemicals. The requirements of nuclear fusion reactors are not addressed specifically, since there is as yet no tritium handling experience with them. However, much of the material covered is expected to be relevant to them as well. Annex III briefly addresses problems in the comparatively small-scale use of tritium at universities, medical research centres and similar establishments. However, the main subject of this publication is the handling of larger quantities of tritium. Operational aspects include designing for tritium safety, safe handling practice, the selection of tritium-compatible materials and equipment, exposure assessment, monitoring, contamination control and the design and use of personal protective equipment. This publication does not address the technologies involved in tritium control and cleanup of effluents, tritium removal, or immobilization and disposal of tritium wastes, nor does it address the environmental behaviour of tritium. Refs, figs and tabs

  8. Studies on chemical phenomena of high concentration tritium water and organic compounds of tritium from viewpoint of the tritium confinement

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Hayashi, Takumi; Iwai, Yasunori; Isobe, Kanetsugu; Hara, Masanori; Sugiyama, Takahiko; Okuno, Kenji

    2009-01-01

    As a part of the grant-in-aid for scientific research on priority areas entitled 'frontiers of tritium researches toward fusion reactors', coordinated two research programs on chemical phenomena of high concentration tritium water and organic compounds of tritium from view point of the tritium confinement have been conducted by the C01 team. The results are summarized as follows: (1) Chemical effects of the high concentration tritium water on stainless steels as structural materials of fusion reactors were investigated. Basic data on tritium behaviors at the metal-water interface and corrosion of metal in tritium water were obtained. (2) Development of the tritium confinement and extraction system for the circulating cooling water in the fusion reactor was studied. Improvement was obtained in the performance of a chemical exchange column and catalysts as major components of the water processing system. (J.P.N.)

  9. Tritium inventories and tritium safety design principles for the fuel cycle of ITER

    International Nuclear Information System (INIS)

    Cristescu, I.R.; Cristescu, I.; Doerr, L.; Glugla, M.; Murdoch, D.

    2007-01-01

    Within the tritium plant of ITER a total inventory of about 2-3 kg will be necessary to operate the machine in the DT phase. During plasma operation, tritium will be distributed in the different sub-systems of the fuel cycle. A tool for tritium inventory evaluation within each sub-system of the fuel cycle is important with respect to both the process of licensing ITER and also for operation. It is very likely that measurements of total tritium inventories may not be possible for all sub-systems; however, tritium accounting may be achieved by modelling its hold-up within each sub-system and by validating these models in real-time against the monitored flows and tritium streams between the sub-systems. To get reliable results, an accurate dynamic modelling of the tritium content in each sub-system is necessary. A dynamic model (TRIMO) for tritium inventory calculation reflecting the design of each fuel cycle sub-systems was developed. The amount of tritium needed for ITER operation has a direct impact on the tritium inventories within the fuel cycle sub-systems. As ITER will function in pulses, the main characteristics that influence the rapid tritium recovery from the fuel cycle as necessary for refuelling are discussed. The confinement of tritium within the respective sub-systems of the fuel cycle is one of the most important safety objectives. The design of the deuterium/tritium fuel cycle of ITER includes a multiple barrier concept for the confinement of tritium. The buildings are equipped with a vent detritiation system and re-circulation type room atmosphere detritiation systems, required for tritium confinement barrier during possible tritium spillage events. Complementarily to the atmosphere detritiation systems, in ITER a water detritiation system for tritium recovery from various sources will also be operated

  10. Tritium processing tests for the validation of upgraded PERMCAT mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D.; Glugla, M.; Guenther, K.; Le, T. L.; Simon, K. H.; Wagner, R.; Welte, S. [Forschungszentrum Karlsruhe GmbH, Institue for Technical Physics, Tritium Laboratory Karlsruhe, P.O Box 36 40, D-76021 Karlsruhe (Germany)

    2008-07-15

    The PERMCAT process, chosen for the final clean-up stage of the Tritium Exhaust Processing system in ITER, directly combines a Pd/Ag membrane and a catalyst bed for the detritiation of gaseous mixtures containing molecular and chemically bound tritium. Upgraded PERMCAT mechanical designs have been proposed to both increase the robustness and simplify the design of the reactor. One uses a special corrugated Pd/Ag membrane able to withstand change in length of the membrane during both normal operation and in the case of off-normal events. Based on this design, an upgraded PERMCAT reactor has been produced at FZK and successfully tested at TLK with ITER relevant tritiated gaseous mixtures using the CAPER facility. (authors)

  11. Tritium processing tests for the validation of upgraded PERMCAT mechanical design

    International Nuclear Information System (INIS)

    Demange, D.; Glugla, M.; Guenther, K.; Le, T. L.; Simon, K. H.; Wagner, R.; Welte, S.

    2008-01-01

    The PERMCAT process, chosen for the final clean-up stage of the Tritium Exhaust Processing system in ITER, directly combines a Pd/Ag membrane and a catalyst bed for the detritiation of gaseous mixtures containing molecular and chemically bound tritium. Upgraded PERMCAT mechanical designs have been proposed to both increase the robustness and simplify the design of the reactor. One uses a special corrugated Pd/Ag membrane able to withstand change in length of the membrane during both normal operation and in the case of off-normal events. Based on this design, an upgraded PERMCAT reactor has been produced at FZK and successfully tested at TLK with ITER relevant tritiated gaseous mixtures using the CAPER facility. (authors)

  12. Development of tritium technology at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Anderson, J.L.; Bartlit, J.R.

    1982-01-01

    The Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for large scale fusion reactor systems starting with the Fusion Engineering Device (FED) or the International Tokamak Reactor (INTOR). This paper briefly describes the fuel cycle and safety systems at TSTA including the Vacuum Facility, Fuel Cleanup, Isotope Separation, Transfer Pumping, Emergency Tritium Cleanup, Tritium Waste Treatment, Tritium Monitoring, Data Acquisition and Control, Emergency Power and Gas Analysis systems. Discussed in further detail is the experimental program proposed for the startup and testing of these systems

  13. Development of a compact tritium activity monitor and first tritium measurements

    Energy Technology Data Exchange (ETDEWEB)

    Röllig, M., E-mail: marco.roellig@kit.edu; Ebenhöch, S.; Niemes, S.; Priester, F.; Sturm, M.

    2015-11-15

    Highlights: • We report about experimental results of a new tritium activity monitoring system using the BIXS method. • The system is compact and easy to implement. It has a small dead volume of about 28 cm{sup 3} and can be used in a flow-through mode. • Gold coated surfaces are used to improve significantly count rate stability of the system and to reduce stored inventory. - Abstract: To develop a convenient tool for in-line tritium gas monitoring, the TRitium Activity Chamber Experiment (TRACE) was built and commissioned at the Tritium Laboratory Karlsruhe (TLK). The detection system is based on beta-induced X-ray spectrometry (BIXS), which observes the bremsstrahlung X-rays generated by tritium decay electrons in a gold layer. The setup features a measuring chamber with a gold-coated beryllium window and a silicon drift detector. Such a detection system can be used for accountancy and process control in tritium processing facilities like the Karlsruhe Tritium Neutrino Experiment (KATRIN). First characterization measurements with tritium were performed. The system demonstrates a linear response between tritium partial pressure and the integral count rate in a pressure range of 1 Pa up to 60 Pa. Within 100 s measurement time the lower detection limit for tritium is (143.63 ± 5.06) · 10{sup 4} Bq. The system stability of TRACE is limited by a linear decrease of integral count rate of 0.041 %/h. This decrease is most probably due to exchange interactions between tritium and the stainless steel walls. By reducing the interaction surface with stainless steel, the decrease of the integral count rate was reduced to 0.008 %/h. Based on the first results shown in this paper it can be concluded that TRACE is a promising complement to existing tritium monitoring tools.

  14. Tritium monitoring techniques

    International Nuclear Information System (INIS)

    DeVore, J.R.; Buckner, M.A.

    1996-05-01

    As part of their operations, the U.S. Navy is required to store or maintain operational nuclear weapons on ships and at shore facilities. Since these weapons contain tritium, there are safety implications relevant to the exposure of personnel to tritium. This is particularly important for shipboard operations since these types of environments can make low-level tritium detection difficult. Some of these ships have closed systems, which can result in exposure to tritium at levels that are below normally acceptable levels but could still cause radiation doses that are higher than necessary or could hamper ship operations. This report describes the state of the art in commercial tritium detection and monitoring and recommends approaches for low-level tritium monitoring in these environments

  15. Tritium dosimetry and standardization

    International Nuclear Information System (INIS)

    Balonov, M.I.

    1983-01-01

    Actual problem of radiation hygiene such as an evaluation of human irradiation hazard due to a contact with tritium compounds both in industrial and public spheres is under discussion. Sources of tritium release to environment are characterized. Methods of tritium radiation monitoring are discussed. Methods of dosimetry of internal human exposure resulted from tritium compounds are developed on the base of modern representations on metbolism and tritium radiobiological effect. A system of standardization of permissible intake of tritium compounds for personnel and persons of population is grounded. Some protection measures are proposed as applied to tritium overdosage

  16. Tritium production distribution in the accelerator production of tritium device

    International Nuclear Information System (INIS)

    Kidman, R.B.

    1997-11-01

    Helium-3 ( 3 He) gas is circulated throughout the accelerator production of tritium target/blanket (T/B) assembly to capture neutrons and convert 3 He to tritium. Because 3 He is very expensive, it is important to know the tritium producing effectiveness of 3 He at all points throughout the T/B. The purpose of this paper is to present estimates of the spatial distributions of tritium production, 3 He inventory, and the 3 He FOM

  17. The use of Tritium measurements for environmental monitoring

    International Nuclear Information System (INIS)

    Camus, H.; Carrere, D; Simeon, C.

    1987-05-01

    Impact studies, compulsory for large installations and land use, require an environmental monitoring program throughout the plant operation. Therefore, and in appliance with the specific regulations concerning them, industrial plants of the nuclear fuel cycle must ensure environmental monitoring including measurements both on the air and water vectors and on the receiving compartments, i.e. food chains and consumers. The development of fine methods in order to assess the limiting capacity of the environment and evaluate the fate of the releases requires to have sensitive bioindicators. For radioactive releases, this is the case of tritium: following the fate of hydrogen, it combines with the vegetal or animal organic molecule, and therefore presents a biological half-life longer than in the elemental water on which measurements were carried out systematically up to now. The interest of measuring organically bound tritium in food chains is presented, and the corresponding technique is described [fr

  18. Atmospheric tritium 1968-1984. Tritium Laboratory data report No. 14

    International Nuclear Information System (INIS)

    Oestlund, H.G.; Mason, A.S.

    1985-04-01

    Tritium in the form of water, HTO, from the atmospheric testing of nuclear devices in the 60s has now mainly disappeared from the atmosphere and entered the ocean. The additions of such tritium from Chinese and French tests in the 70s were observed but did not make a big impression on the diminishing inventory of atmospheric HTO. Tritium in elemental form, HT, went through a maximum in the mid 70s, apparently primarily as a results of some underground testing of large nuclear devices and releases from civilian and military nuclear industry. The mid 70s maximum was 1.3 kg of tritium in this form, and in 1984 0.5 kg remain. The disappearance is slower than the decay rate of tritium, so sources must still have been present during this time. The global distribution shows, not unexpectedly, smaller inventory in the Southern Hemisphere across the equator and thus southward transport of HT. The chemical lifetime of hydrogen gas in the atmosphere, assuming the elemental tritium being in the form of HT, not T 2 , has been estimated between 6 and 10 years. It is to be expected that increasing activity of nuclear fuel reprocessing would in the near future again increase the global tritium gas inventory. Tritium in the form of light hydrocarbons, primarily methane, has also been measured, and in this form a quantity of 200 g of tritium resided in the global atmosphere 1956 to 1976. By 1982 it had decreased to 50 g. 25 refs., 5 figs., 11 tabs

  19. Analysis on tritium permeation in tritium storage bed with gas flowing calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi; Hayashi, Takumi; Suzuki, Takumi; Nishi, Masataka [Japan Atomic Energy Research Inst., Naka Fusion Research Establishment, Department of Fusion Engineering Research, Naka, Ibaraki (Japan); Yoshida, Hiroshi [Japan Atomic Energy Research Inst., Naka Fusion Research Establishment, ITER-Joint Centeral Team, Naka, Ibaraki (Japan)

    2000-10-01

    Tritium permeation amount in a tritium storage bed with gas flowing calorimetric was evaluated under a condition of new operation mode for International Thermonuclear Experimental Reactor (ITER). As a result, tritium permeation under the new operation mode was estimated to be about twice of that under the practical operation mode. This result show that it would be regardless in a view point of material control of tritium, however, it was suggested to be required additional tritium removal or evacuate system in a view points of safety control or performance of accountability or thermal insulating of the tritium storage bed. (author)

  20. Tissue-specific incorporation and genotoxicity of different forms of tritium in the marine mussel, Mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Jaeschke, Benedict C., E-mail: ben@ecology.su.s [Ecotoxicology Research and Innovation Centre, School of Biomedical and Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Millward, Geoffrey E. [Consolidated Radio-isotope Facility, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Moody, A. John; Jha, Awadhesh N. [Ecotoxicology Research and Innovation Centre, School of Biomedical and Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2011-01-15

    Marine mussels (Mytilus edulis) were exposed to seawater spiked with tritiated water (HTO) at a dose rate of 122 and 79 {mu}Gy h{sup -1} for 7 and 14 days, respectively, and tritiated glycine (T-Gly) at a dose rate of 4.9 {mu}Gy h{sup -1} over 7 days. This was followed by depuration in clean seawater for 21 days. Tissues (foot, gills, digestive gland, mantle, adductor muscle and byssus) and DNA extracts from tissues were analysed for their tritium activity concentrations. All tissues demonstrated bio-accumulation of tritium from HTO and T-Gly. Tritium from T-Gly showed increased incorporation into DNA compared to HTO. About 90% of the initial activity from HTO was depurated within one day, whereas T-Gly was depurated relatively slowly, indicating that tritium may be bound with different affinities in tissues. Both forms of tritium caused a significant induction of micronuclei in the haemocytes of mussels. Our findings identify significant differential impacts on Mytilus edulis of the two chemical forms of tritium and emphasise the need for a separate classification and control of releases of tritiated compounds, to adequately protect the marine ecosystem. - Tritium from tritiated glycine demonstrates greater accumulation and persistence in tissues and enhanced genotoxicity in haemocytes of marine mussels, compared to tritium from tritiated water.

  1. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1989-01-01

    A general synthesis about tritium storage is achieved in this paper and a particular attention is given to practical application in the Fusion Technology Program. Tritium, storage under gaseous form and solid form are discussed (characteristics, advantages, disadvantages and equipments). The way of tritium storage is then discussed and a choice established as a function of a logic which takes into account the main working parameters

  2. Tritium emissions reduction facility (TERF)

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Hedley, W.H.

    1993-01-01

    Tritium handling operations at Mound include production of tritium-containing devices, evaluation of the stability of tritium devices, tritium recovery and enrichment, tritium process development, and research. In doing this work, gaseous process effluents containing 400,000 to 1,000,000 curies per year of tritium are generated. These gases must be decontaminated before they can be discharged to the atmosphere. They contain tritium as elemental hydrogen, as tritium oxide, and as tritium-containing organic compounds at low concentrations (typically near one ppm). The rate at which these gases is generated is highly variable. Some tritium-containing gas is generated at all times. The systems used at Mound for capturing tritium from process effluents have always been based on the open-quotes oxidize and dryclose quotes concept. They have had the ability to remove tritium, regardless of the form it was in. The current system, with a capacity of 1.0 cubic meter of gas per minute, can effectively remove tritium down to part-per-billion levels

  3. Oxidative Tritium Decontamination System

    International Nuclear Information System (INIS)

    Gentile, Charles A.; Parker, John J.; Guttadora, Gregory L.; Ciebiera, Lloyd P.

    2002-01-01

    The Princeton Plasma Physics Laboratory, Tritium Systems Group has developed and fabricated an Oxidative Tritium Decontamination System (OTDS), which is designed to reduce tritium surface contamination on various components and items. The system is configured to introduce gaseous ozone into a reaction chamber containing tritiated items that require a reduction in tritium surface contamination. Tritium surface contamination (on components and items in the reaction chamber) is removed by chemically reacting elemental tritium to tritium oxide via oxidation, while purging the reaction chamber effluent to a gas holding tank or negative pressure HVAC system. Implementing specific concentrations of ozone along with catalytic parameters, the system is able to significantly reduce surface tritium contamination on an assortment of expendable and non-expendable items. This paper will present the results of various experimentation involving employment of this system

  4. Tritium levels in milk in the vicinity of chronic tritium releases

    International Nuclear Information System (INIS)

    Le Goff, P.; Guétat, Ph.; Vichot, L.; Leconte, N.; Badot, P.M.; Gaucheron, F.; Fromm, M.

    2016-01-01

    Tritium is the radioactive isotope of hydrogen. It can be integrated into most biological molecules. Even though its radiotoxicity is weak, the effects of tritium can be increased following concentration in critical compartments of living organisms. For a better understanding of tritium circulation in the environment and to highlight transfer constants between compartments, we studied the tritiation of different agricultural matrices chronically exposed to tritium. Milk is one of the most frequently monitored foodstuffs in the vicinity of points known for chronic release of radionuclides firstly because dairy products find their way into most homes but also because it integrates deposition over large areas at a local scale. It is a food which contains all the main nutrients, especially proteins, carbohydrates and lipids. We thus studied the tritium levels of milk in chronic exposure conditions by comparing the tritiation of the main hydrogenated components of milk, first, component by component, then, sample by sample. Significant correlations were found between the specific activities of drinking water and free water of milk as well as between the tritium levels of cattle feed dry matter and of the main organic components of milk. Our findings stress the importance of the metabolism on the distribution of tritium in the different compartments. Overall, dilution of hydrogen in the environmental compartments was found to play an important role dimming possible isotopic effects even in a food chain chronically exposed to tritium. - Highlights: • Tritium can be incorporated in all the hydrogenated components of milk. • Components' isotopic ratios T/H of chronically exposed milk remain in the same range. • In environmental conditions, distribution of tritium in milk components varies. • Metabolism plays a role in the distribution of tritium in the components of milk. • In environmental conditions, dilution of hydrogen dims possible isotopic effects.

  5. TFTR tritium handling concepts

    International Nuclear Information System (INIS)

    Garber, H.J.

    1976-01-01

    The Tokamak Fusion Test Reactor, to be located on the Princeton Forrestal Campus, is expected to operate with 1 to 2.5 MA tritium--deuterium plasmas, with the pulses involving injection of 50 to 150 Ci (5 to 16 mg) of tritium. Attainment of fusion conditions is based on generation of an approximately 1 keV tritium plasma by ohmic heating and conversion to a moderately hot tritium--deuterium ion plasma by injection of a ''preheating'' deuterium neutral beam (40 to 80 keV), followed by injection of a ''reacting'' beam of high energy neutral deuterium (120 to 150 keV). Additionally, compressions accompany the beam injections. Environmental, safety and cost considerations led to the decision to limit the amount of tritium gas on-site to that required for an experiment, maintaining all other tritium in ''solidified'' form. The form of the tritium supply is as uranium tritide, while the spent tritium and other hydrogen isotopes are getter-trapped by zirconium--aluminum alloy. The issues treated include: (1) design concepts for the tritium generator and its purification, dispensing, replenishment, containment, and containment--cleanup systems; (2) features of the spent plasma trapping system, particularly the regenerable absorption cartridges, their integration into the vacuum system, and the handling of non-getterables; (3) tritium permeation through the equipment and the anticipated releases to the environment; (4) overview of the tritium related ventilation systems; and (5) design bases for the facility's tritium clean-up systems

  6. JET experiments with tritium and deuterium–tritium mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Lorne, E-mail: Lorne.Horton@jet.uk [JET Exploitation Unit, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); European Commission, B-1049 Brussels (Belgium); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Batistoni, P. [Unità Tecnica Fusione - ENEA C. R. Frascati - via E. Fermi 45, Frascati (Roma), 00044, Frascati (Italy); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Boyer, H.; Challis, C.; Ćirić, D. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Donné, A.J.H. [EUROfusion Programme Management Unit, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); FOM Institute DIFFER, PO Box 1207, NL-3430 BE Nieuwegein (Netherlands); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Eriksson, L.-G. [European Commission, B-1049 Brussels (Belgium); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Garcia, J. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Garzotti, L.; Gee, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Hobirk, J. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Joffrin, E. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); and others

    2016-11-01

    Highlights: • JET is preparing for a series of experiments with tritium and deuterium–tritium mixtures. • Physics objectives include integrated demonstration of ITER operating scenarios, isotope and alpha physics. • Technology objectives include neutronics code validation, material studies and safety investigations. • Strong emphasis on gaining experience in operation of a nuclear tokamak and training scientists and engineers for ITER. - Abstract: Extensive preparations are now underway for an experiment in the Joint European Torus (JET) using tritium and deuterium–tritium mixtures. The goals of this experiment are described as well as the progress that has been made in developing plasma operational scenarios and physics reference pulses for use in deuterium–tritium and full tritium plasmas. At present, the high performance plasmas to be tested with tritium are based on either a conventional ELMy H-mode at high plasma current and magnetic field (operation at up to 4 MA and 4 T is being prepared) or the so-called improved H-mode or hybrid regime of operation in which high normalised plasma pressure at somewhat reduced plasma current results in enhanced energy confinement. Both of these regimes are being re-developed in conjunction with JET's ITER-like Wall (ILW) of beryllium and tungsten. The influence of the ILW on plasma operation and performance has been substantial. Considerable progress has been made on optimising performance with the all-metal wall. Indeed, operation at the (normalised) ITER reference confinement and pressure has been re-established in JET albeit not yet at high current. In parallel with the physics development, extensive technical preparations are being made to operate JET with tritium. The state and scope of these preparations is reviewed, including the work being done on the safety case for DT operation and on upgrading machine infrastructure and diagnostics. A specific example of the latter is the planned calibration at

  7. Sources of tritium

    International Nuclear Information System (INIS)

    Phillips, J.E.; Easterly, C.E.

    1980-12-01

    A review of tritium sources is presented. The tritium production and release rates are discussed for light water reactors (LWRs), heavy water reactors (HWRs), high temperature gas cooled reactors (HTGRs), liquid metal fast breeder reactors (LMFBRs), and molten salt breeder reactors (MSBRs). In addition, release rates are discussed for tritium production facilities, fuel reprocessing plants, weapons detonations, and fusion reactors. A discussion of the chemical form of the release is included. The energy producing facilities are ranked in order of increasing tritium production and release. The ranking is: HTGRs, LWRs, LMFBRs, MSBRs, and HWRs. The majority of tritium has been released in the form of tritiated water

  8. Description of the new version 4.0 of the tritium model UFOTRI including user guide

    International Nuclear Information System (INIS)

    Raskob, W.

    1993-08-01

    In view of the future operation of fusion reactors the release of tritium may play a dominant role during normal operation as well as after accidents. Because of its physical and chemical properties which differ significantly from those of other radionuclides, the model UFOTRI for assessing the radiological consequences of accidental tritium releases has been developed. It describes the behaviour of tritium in the biosphere and calculates the radiological impact on individuals and the population due to the direct exposure and by the ingestion pathways. Processes such as the conversion of tritium gas into tritiated water (HTO) in the soil, re-emission after deposition and the conversion of HTO into organically bound tritium, are considered. The use of UFOTRI in its probabilistic mode shows the spectrum of the radiological impact together with the associated probability of occurrence. A first model version was established in 1991. As the ongoing work on investigating the main processes of the tritium behaviour in the environment shows up new results, the model has been improved in several points. The report describes the changes incorporated into the model since 1991. Additionally provides the up-dated user guide for handling the revised UFOTRI version which will be distributed to interested organizations. (orig.) [de

  9. A Hydrogen Exchange Method Using Tritium and Sephadex: Its Application to Ribonuclease*

    Science.gov (United States)

    Englander, S. Walter

    2012-01-01

    A new method for measuring the hydrogen exchange of macromolecules in solution is described. The method uses tritium to trace the movement of hydrogen, and utilizes Sephadex columns to effect, in about 2 minutes, a separation between tritiated macromolecule and tritiated solvent great enough to allow the measurement of bound tritium. High sensitivity and freedom from artifact is demonstrated and the possible value of the technique for investigation of other kinds of colloid-small molecule interaction is indicated. Competition experiments involving tritium, hydrogen, and deuterium indicate the absence of any equilibrium isotope effect in the ribonuclease-hydrogen isotope system, though a secondary kinetic isotope effect is apparent when ribonuclease is largely deuterated. Ribonuclease shows four clearly distinguishable kinetic classes of exchangeable hydrogens. Evidence is marshaled to suggest the independently measurable classes II, III, and IV (in order of decreasing rate of exchange) to represent “random-chain” peptides, peptides involved in α-helix, and otherwise shielded side-chain and peptide hydrogens, respectively. PMID:14075117

  10. Overview of tritium processing development at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1986-01-01

    The Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory has been operating with tritium since June 1984. Presently there are some 50 g of tritium in the main processing loop. This 50 g has been sufficient to do a number of experiments involving the cryogenic distillation isotope separation system and to integrate the fuel cleanup system into the main fuel processing loop. In January 1986 two major experiments were conducted. During these experiments the fuel cleanup system was integrated, through the transfer pumping system, with the isotope separation system, thus permitting testing on the integrated fuel processing loop. This integration of these systems leaves only the main vacuum system to be integrated into the TSTA fuel processing loop. In September 1986 another major tritium experiment was performed in which the integrated loop was operated, the tritium inventory increased to 50 g and additional measurements on the performance of the distillation system were taken. In the period June 1984 through September 1986 the TSTA system has processed well over 10 8 Ci of tritium. Total tritium emissions to the environment over this period have been less than 15 Ci. Personnel exposures during this period have totaled less than 100 person-mRem. To date, the development of tritium technology at TSTA has proceeded in progressive and orderly steps. In two years of operation with tritium, no major design flows have been uncovered

  11. Tritium confinement in a new tritium processing facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Heung, L.K.; Owen, J.H.; Hsu, R.H.; Hashinger, R.F.; Ward, D.E.; Bandola, P.E.

    1991-01-01

    A new tritium processing facility, named the Replacement Tritium Facility (RTF), has been completed and is being prepared for startup at the Savannah River Site (SRS). The RTF has the capability to recover, purify and separate hydrogen isotopes from recycled gas containers. A multilayered confinement system is designed to reduce tritium losses to the environment. This confinement system is expected to confine and recover any tritium that might escape the process equipment, and to maintain the tritium concentration in the nitrogen glovebox atmosphere to less than 10 -2 μCi/cc tritium

  12. Tritium labeling of amino acids and peptides with liquid and solid tritium

    International Nuclear Information System (INIS)

    Peng, C.T.; Hua, R.L.; Souers, P.C.; Coronado, P.R.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21 K and 9 K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenyl-alanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritium are potentially useful agents for labeling peptides and proteins. 11 refs., 1 fig., 3 tabs

  13. Tritium labeling of amino acids and peptides with liquid and solid tritium

    International Nuclear Information System (INIS)

    Souers, P.C.; Coronado, P.R.; Peng, C.T.; Hua, R.L.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21/degree/K and 9/degree/K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenylalanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritiums are potentially useful agents for labeling peptides and proteins

  14. Tritium contaminated waste management at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Jalbert, R.A.; Carlson, R.V.

    1987-01-01

    The Tritium Systems Test Assembly (TSTA) at Los Alamos continues to move toward full operation of an integrated, full-sized, computer-controlled fusion fuel processing loop. Concurrent nonloop experiments further the development of advanced tritium technologies and handling methods. Since tritium operations began in June 1984, tritium contaminated wastes have been produced at TSTA that are roughly typical in kind and amount of those to be produced by tritium fueling operations at fusion reactors. Methods of managing these wastes are described, including information on some methods of decontamination so that equipment can be reused. Data are given on the kinds and amounts of wastes and the general level of contamination. Also included are data on environmental emissions and doses to personnel that have resulted from TSTA operations. Particular problems in waste managements are discussed

  15. In-vessel tritium

    International Nuclear Information System (INIS)

    Ueda, Yoshio; Ohya, Kaoru; Ashikawa, Naoko; Ito, Atsushi M.; Kato, Daiji; Kawamura, Gakushi; Takayama, Arimichi; Tomita, Yukihiro; Nakamura, Hiroaki; Ono, Tadayoshi; Kawashima, Hisato; Shimizu, Katsuhiro; Takizuka, Tomonori; Nakano, Tomohide; Nakamura, Makoto; Hoshino, Kazuo; Kenmotsu, Takahiro; Wada, Motoi; Saito, Seiki; Takagi, Ikuji; Tanaka, Yasunori; Tanabe, Tetsuo; Yoshida, Masafumi; Toma, Mitsunori; Hatayama, Akiyoshi; Homma, Yuki; Tolstikhina, Inga Yu.

    2012-01-01

    The in-vessel tritium research is closely related to the plasma-materials interaction. It deals with the edge-plasma-wall interaction, the wall erosion, transport and re-deposition of neutral particles and the effect of neutral particles on the fuel recycling. Since the in-vessel tritium shows a complex nonlinear behavior, there remain many unsolved problems. So far, behaviors of in-vessel tritium have been investigated by two groups A01 and A02. The A01 group performed experiments on accumulation and recovery of tritium in thermonuclear fusion reactors and the A02 group studied theory and simulation on the in-vessel tritium behavior. In the present article, outcomes of the research are reviewed. (author)

  16. Tritium sampling and measurement

    International Nuclear Information System (INIS)

    Wood, M.J.; McElroy, R.G.; Surette, R.A.; Brown, R.M.

    1993-01-01

    Current methods for sampling and measuring tritium are described. Although the basic techniques have not changed significantly over the last 10 y, there have been several notable improvements in tritium measurement instrumentation. The design and quality of commercial ion-chamber-based and gas-flow-proportional-counter-based tritium monitors for tritium-in-air have improved, an indirect result of fusion-related research in the 1980s. For tritium-in-water analysis, commercial low-level liquid scintillation spectrometers capable of detecting tritium-in-water concentrations as low as 0.65 Bq L-1 for counting times of 500 min are available. The most sensitive method for tritium-in-water analysis is still 3He mass spectrometry. Concentrations as low as 0.35 mBq L-1 can be detected with current equipment. Passive tritium-oxide-in-air samplers are now being used for workplace monitoring and even in some environmental sampling applications. The reliability, convenience, and low cost of passive tritium-oxide-in-air samplers make them attractive options for many monitoring applications. Airflow proportional counters currently under development look promising for measuring tritium-in-air in the presence of high gamma and/or noble gas backgrounds. However, these detectors are currently limited by their poor performance in humidities over 30%. 133 refs

  17. Transfer of atmospheric tritiated water to foliage and fruit of crops

    International Nuclear Information System (INIS)

    Fellows, R.J.; Cataldo, D.A.; Ligotke, M.W.; Napier, B.A.

    1993-01-01

    Tritiated water (THO) released to the environment from the effluent streams of nuclear reactors may be easily assimilated by organisms through metabolic fixation following foliar interception of THO vapor. This study was initiated to characterize atmospheric THO exchange parameters in two crops agronomically important to eastern Washington, grape (Vitus vinifera) and alfalfa (Medicago sativa). Short-term exposures using atmospheric THO concentrations ranging from 458 to 1,300,900 pCi/m 3 indicated no statistically significant concentration influences on THO exchange into the leaf tissue free-water (TFW) and organically bound tritium (OBT) of the leaves of either species. Long-term exposures indicated that equilibration of the leaf TFW with atmospheric THO concentrations occurred within 24 to 48 h for both species while equilibration of grape TFW appeared to take over 20 days. The rate of THO saturation of the foliage TFW appeared to be directly related to the stomatal resistance of the leaves and fruit. Desorption rates from both leaves and fruit were greater in the light than in the dark, again correlating with stomatal resistance. More than 90% of the absorbed THO was lost from the leaf TFW pool within 24 h following cessation of exposure for both species, while loss of THO from grape TFW and OBT pools was minimal. It appeared that more than 95 to 98% of the THO found in the TFW and OBT pools of the grape fruit was of atmospheric origin and not from transport from other parts of the plant

  18. Tritium monitoring at the Sandia Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Devlin, T.K.

    1978-10-01

    Sandia Laboratories at Livermore, California, is presently beginning operation of a Tritium Research Laboratory (TRL). The laboratory incorporates containment and cleanup facilities such that any unscheduled tritium release is captured rather than vented to the atmosphere. A sophisticated tritium monitoring system is in use at the TRL to protect operating personnel and the environment, as well as ensure the safe and effective operation of the TRL decontamination systems. Each monitoring system has, in addition to a local display, a display in a centralized control room which, when coupled room which, when coupled with the TRL control computer, automatically provides an immediate assessment of the status of the entire facility. The computer controls a complex alarm array status of the entire facility. The computer controls a complex alarm array and integrates and records all operational and unscheduled tritium releases

  19. Establish the Foundation of Environmental Assessment Technique in ROK via the International Environmental Modelling for Radiation Safety Managed by IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Soo; Choi, Y. H.; Keum, D. K.; Kang, H. S.; Ahn, S. S.; Chung, Y. S.; Lee, C. W.; Hwang, W. T.; Seo, K. S

    2005-08-15

    Tritiated water (HTO) released from the nuclear facilities can easily be absorbed by plants via their stomata and incorporated into organics by metabolic processes such as photosynthesis. Organically bound tritium (OBT) in plant cells is mostly inexchangeable and remains at harvest to contribute some to the ingestion radiation dose (Barry et al., 1999). In assessing the ingestion dose due to an accidental release of HTO, a dynamic model simulating its environmental behaviors is needed. Various types of dynamic HTO models have been developed in many different countries. Joint international researches have been conducted many times for model comparisons and validations (BIOMOVS II, 1996a, 1996b). In 2003, however, with the understanding of an insufficiency in the validation test, the IAEA started on a joint international research program for the validation of environmental models (EMRAS : Environmental Modelling for Radiation Safety) as a successor to the BIOMASS (2001). The KAERI submitted 'a scenario of an acute soybean exposure to HTO' to the Tritium Working Group (Theme 1) in the EMRAS program. It was accepted as Task 2 of the working group. This report is the result of a joint research for the KAERI scenario carried out by the EMRAS tritium working group with the KAERI playing a role of a coordinator.

  20. Establish the Foundation of Environmental Assessment Technique in ROK via the International Environmental Modelling for Radiation Safety Managed by IAEA

    International Nuclear Information System (INIS)

    Lee, Han Soo; Choi, Y. H.; Keum, D. K.; Kang, H. S.; Ahn, S. S.; Chung, Y. S.; Lee, C. W.; Hwang, W. T.; Seo, K. S.

    2005-08-01

    Tritiated water (HTO) released from the nuclear facilities can easily be absorbed by plants via their stomata and incorporated into organics by metabolic processes such as photosynthesis. Organically bound tritium (OBT) in plant cells is mostly inexchangeable and remains at harvest to contribute some to the ingestion radiation dose (Barry et al., 1999). In assessing the ingestion dose due to an accidental release of HTO, a dynamic model simulating its environmental behaviors is needed. Various types of dynamic HTO models have been developed in many different countries. Joint international researches have been conducted many times for model comparisons and validations (BIOMOVS II, 1996a, 1996b). In 2003, however, with the understanding of an insufficiency in the validation test, the IAEA started on a joint international research program for the validation of environmental models (EMRAS : Environmental Modelling for Radiation Safety) as a successor to the BIOMASS (2001). The KAERI submitted 'a scenario of an acute soybean exposure to HTO' to the Tritium Working Group (Theme 1) in the EMRAS program. It was accepted as Task 2 of the working group. This report is the result of a joint research for the KAERI scenario carried out by the EMRAS tritium working group with the KAERI playing a role of a coordinator

  1. Tritium activities in Canada

    International Nuclear Information System (INIS)

    Gierszewski, P.

    1995-01-01

    Canadian tritium activites comprise three major interests: utilites, light manufacturers, and fusion. There are 21 operating CANDU reactors in Canada; 19 with Ontario Hydro and one each with Hydro Quebec and New Brunswick Power. There are two light manufacturers, two primary tritium research facilities (at AECL Chalk River and Ontario Hydro Technologies), and a number of industry and universities involved in design, construction, and general support of the other tritium activities. The largest tritum program is in support of the CANDU reactors, which generate tritium in the heavy water as a by-product of normal operation. Currently, there are about 12 kg of tritium locked up in the heavy water coolant and moderator of these reactors. The fusion work is complementary to the light manufacturing, and is concerned with tritium handling for the ITER program. This included design, development and application of technologies related to Isotope Separation, tritium handling, (tritiated) gas separation, tritium-materials interaction, and plasma fueling

  2. Tritium autoradiography

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1981-01-01

    Hydrogen distribution and diffusion within many materials may be investigated by autoradiography if the radioactive isotope tritium is used in the study. Tritium is unstable and decays to helium-3 by emission of a low energy (18 keV) beta particle which may be detected photographically. The basic principles of tritium autoradiography will be discussed. Limitations are imposed on the technique by: (1) the low energy of the beta particles; (2) the solubility and diffusivity of hydrogen in materials; and (3) the response of the photographic emulsion to beta particles. These factors control the possible range of application of tritium autoradiography. The technique has been applied successfully to studies of hydrogen solubility and distribution in materials and to studies of hydrogen damage

  3. Theoretical and experimental proof of the accumulating transfer of tritium from water into DNA and other biomolecules in vitro and in vivo

    International Nuclear Information System (INIS)

    Baumgaertner, F.

    2000-01-01

    Heisenberg's Uncertainity Relation leads to the conclusion, tritium accumulates in the exchangeable hydrogen positions of biomolecules if it is administered in the state of water. Appropriate tests of fishsperm DNA and the biomolecules of piglet's liver resulted in a fractionation factor of about 2 favouring such organically bound tritium. Furthermore, a fractionation factor of 1.4 is found in the hydration sheet of the biomolecules. The logistic growth analysis of maize and barley confirms the accumulation of tritium from water in the tissue solids of the plants. (orig.) [de

  4. Tritium technology. A Canadian overview

    Energy Technology Data Exchange (ETDEWEB)

    Hemmings, R.L. [Canatom NPM (Canada)

    2002-10-01

    An overview of the various tritium research and operational activities in Canada is presented. These activities encompass tritium processing and recovery, tritium interactions with materials, and tritium health and safety. Many of these on-going activities form a sound basis for the tritium use and handling aspects of the ITER project. Tritium management within the CANDU heavy water reactor, associated detritiation facilities, research and development facilities, and commercial industry and improving the understanding of tritium behaviour in humans and the environment remain the focus of a long-standing Canadian interest in tritium. While there have been changes in the application of this knowledge and experience over time, the operating experience and the supporting research and development continue to provide for improved plant and facility operations, an improved understanding of tritium safety issues, and improved products and tools that facilitate tritium management. (author)

  5. Tritium technology. A Canadian overview

    International Nuclear Information System (INIS)

    Hemmings, R.L.

    2002-01-01

    An overview of the various tritium research and operational activities in Canada is presented. These activities encompass tritium processing and recovery, tritium interactions with materials, and tritium health and safety. Many of these on-going activities form a sound basis for the tritium use and handling aspects of the ITER project. Tritium management within the CANDU heavy water reactor, associated detritiation facilities, research and development facilities, and commercial industry and improving the understanding of tritium behaviour in humans and the environment remain the focus of a long-standing Canadian interest in tritium. While there have been changes in the application of this knowledge and experience over time, the operating experience and the supporting research and development continue to provide for improved plant and facility operations, an improved understanding of tritium safety issues, and improved products and tools that facilitate tritium management. (author)

  6. Measurement of Tritium Activity in Plants by Ice Extraction Method

    International Nuclear Information System (INIS)

    Pelled, O.; Ovad, S.; Tubul, Y.; Tsroya, S.; Gonen, R.; Abraham, A.; Weinstein, M.; German, U.

    2014-01-01

    Tritium is produced primarily by interactions of cosmic rays with the atmosphere. However, nuclear installations may add significantly tritium to the surroundings, increasing its concentration. The main sources of tritium released by man are linked to the nuclear power cycle: nuclear power stations, nuclear fuel reprocessing plants or tritium production plants. Tritium is found in the environment mainly as tritiated water, in gaseous or liquid form (HTO, T2O), in the surrounding air and in soil. It accumulates in plants, which may use as a measure to the level of tritium concentration in the environment. The most common routes of tritium uptake from the environment in plants are from atmospheric humidity and by precipitation water which entered the soil. The fraction of tritium bound to the plant tissue is small compared to that present as tritiated water in the plant (from 0.06% to 0.3% for growing crops). The tritiated water uptake is through the roots, as tritiated water from the soil follows a pathway similar to that of ordinary water. As most tritium in plants consists of tritiated water, the measurements of only the tissue free water tritium concentration (as HTO or T2O) gives an accurate estimate of the tritium content in the plant. Analyzing free tritium in biological matrices usually requires using the freeze-drying method to extract the water from the sample, and then measure the water collected in a cold trap with a Liquid Scintillation Counter (LSC). The 'freeze-drying' occurs because of the sublimation of the frozen water inside the plant, that takes place when the temperature is beneath the triple point and the vapour pressure is low. In the temperature range of -5° to -10° C the mechanism that plants use to avoid freezing is drawing of water from the cell protoplasm into the intercellular spaces. Changes in cell membrane permeability allow water to leave the cell and enter the spaces between the cells where it freezes instead of freezing within the

  7. Tritium

    International Nuclear Information System (INIS)

    Fiege, A.

    1992-07-01

    This report contains information on chemical and physical properties, occurence, production, use, technology, release, radioecology, radiobiology, dose estimates, radioprotection and legal aspects of tritium. The objective of this report is to provide a reliable data base for the public discussion on tritium, especially with regard to its use in future nuclear fusion plants and its radiological assessment. (orig.) [de

  8. Tritium levels in milk in the vicinity of chronic tritium releases.

    Science.gov (United States)

    Le Goff, P; Guétat, Ph; Vichot, L; Leconte, N; Badot, P M; Gaucheron, F; Fromm, M

    2016-01-01

    Tritium is the radioactive isotope of hydrogen. It can be integrated into most biological molecules. Even though its radiotoxicity is weak, the effects of tritium can be increased following concentration in critical compartments of living organisms. For a better understanding of tritium circulation in the environment and to highlight transfer constants between compartments, we studied the tritiation of different agricultural matrices chronically exposed to tritium. Milk is one of the most frequently monitored foodstuffs in the vicinity of points known for chronic release of radionuclides firstly because dairy products find their way into most homes but also because it integrates deposition over large areas at a local scale. It is a food which contains all the main nutrients, especially proteins, carbohydrates and lipids. We thus studied the tritium levels of milk in chronic exposure conditions by comparing the tritiation of the main hydrogenated components of milk, first, component by component, then, sample by sample. Significant correlations were found between the specific activities of drinking water and free water of milk as well as between the tritium levels of cattle feed dry matter and of the main organic components of milk. Our findings stress the importance of the metabolism on the distribution of tritium in the different compartments. Overall, dilution of hydrogen in the environmental compartments was found to play an important role dimming possible isotopic effects even in a food chain chronically exposed to tritium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Tritium pellet injector results

    International Nuclear Information System (INIS)

    Fisher, P.W.; Bauer, M.L.; Baylor, L.R.; Deleanu, L.E.; Fehling, D.T.; Milora, S.L.; Whitson, J.C.

    1988-01-01

    Injection of solid tritium pellets is considered to be the most promising way of fueling fusion reactors. The Tritium Proof-of- Principle (TPOP) experiment has demonstrated the feasibility of forming and accelerating tritium pellets. This injector is based on the pneumatic pipe-gun concept, in which pellets are formed in situ in the barrel and accelerated with high-pressure gas. This injector is ideal for tritium service because there are no moving parts inside the gun and because no excess tritium is required in the pellet production process. Removal of 3 He from tritium to prevent blocking of the cryopumping action by the noncondensible gas has been demonstrated with a cryogenic separator. Pellet velocities of 1280 m/s have been achieved for 4-mm-diam by 4-mm-long cylindrical tritium pellets with hydrogen propellant at 6.96 MPa (1000 psi). 10 refs., 10 figs

  10. JET experiments with tritium and deuterium–tritium mixtures

    NARCIS (Netherlands)

    Horton, L.; Batistoni, P.; Boyer, H.; Challis, C.; Ciric, D.; Donne, A. J. H.; Eriksson, L. G.; Garcia, J.; Garzotti, L.; Gee, S.; Hobirk, J.; Joffrin, E.; Jones, T.; King, D. B.; Knipe, S.; Litaudon, X.; Matthews, G. F.; Monakhov, I.; Murari, A.; Nunes, I.; Riccardo, V.; Sips, A. C. C.; Warren, R.; Weisen, H.; Zastrow, K. D.

    2016-01-01

    Extensive preparations are now underway for an experiment in the Joint European Torus (JET) using tritium and deuterium–tritium mixtures. The goals of this experiment are described as well as the progress that has been made in developing plasma operational scenarios and physics reference pulses for

  11. Mean residence times for tritium in some terrestrial plants

    International Nuclear Information System (INIS)

    Gogate, S.S.; Krishnamoorthy, T.M.; Soman, S.D.

    1975-01-01

    Uptake of tritiated water from a single or multiple exposure, its fixation and elimination from 3 terrestrial plants, Raphanus sativus L., Amaranthus viridis L. and Phyllanthus fraternus Webster under experimental field conditions are described. Tissue free water tritium (TFWT) attains peak concentration within 4 hr after a single exposure in R. sativus and then decreases with a single component from both leaves and root, with a biological half-time of 36.4 +- 4.2 and 48.5 +- 7.2 hr respectively. TFWT in leaves of A. viridis reaches its peak value within 0.5 hr of exposure and its decay exhibits 2 component fall, one having a very short half-life of 2.4 +- 0.7 hr and the other a long half-time of 86.1 +- 2.0 hr. The two component decay of tritium in TFWT is well represented in P. fraternus. The long-lived components are nearly 8 times of the short-lived ones, both in leaves and stems respectively. Generally, the long -lived component accounts for 15% of the peak TFWT. Tissue bound tritium (TBT) reaches to 4% of TFWT in Phyllanthus sp. TBT elimination time is many times longer than the experimental periods employed in the present study. (author)

  12. Tritium in nuclear power plants

    International Nuclear Information System (INIS)

    Badyaev, V.V.; Egorov, Yu.A.; Sklyarov, V.P.; Stegachev, G.V.

    1981-01-01

    The problem of tritium formation during NPP operation is considered on the basis of available published data. Tritium characteristics are given, sources of the origin of natural and artificial tritium are described. NPP contribution to the total tritium amount in the environment is determined, as well as contribution of each process in the reactor to the quantity of tritium, produced at the NPP. Thermal- and fast-neutron reactions with tritium production are shown, their contribution to the total amount of tritium in a coolant is estimated, taking into account the type of reactor. Data on tritium content in NPP wastes and in the air of working premises are presented. Methods for sampling and sample preparation to measurements as well as the appropriate equipment are considered. Design of the gas-discharge counter of internal filling, used for measuring tritium activity in samples is described [ru

  13. Tritium-assisted fusion breeders

    International Nuclear Information System (INIS)

    Greenspan, E.; Miley, G.H.

    1983-08-01

    This report undertakes a preliminary assessment of the prospects of tritium-assisted D-D fuel cycle fusion breeders. Two well documented fusion power reactor designs - the STARFIRE (D-T fuel cycle) and the WILDCAT (Cat-D fuel cycle) tokamaks - are converted into fusion breeders by replacing the fusion electric blankets with 233 U producing fission suppressed blankets; changing the Cat-D fuel cycle mode of operation by one of the several tritium-assisted D-D-based modes of operation considered; adjusting the reactor power level; and modifying the resulting plant cost to account for the design changes. Three sources of tritium are considered for assisting the D-D fuel cycle: tritium produced in the blankets from lithium or from 3 He and tritium produced in the client fission reactors. The D-D-based fusion breeders using tritium assistance are found to be the most promising economically, especially the Tritium Catalyzed Deuterium mode of operation in which the 3 He exhausted from the plasma is converted, by neutron capture in the blanket, into tritium which is in turn fed back to the plasma. The number of fission reactors of equal thermal power supported by Tritium Catalyzed Deuterium fusion breeders is about 50% higher than that of D-T fusion breeders, and the profitability is found to be slightly lower than that of the D-T fusion breeders

  14. The tritium operations experience on TFTR

    International Nuclear Information System (INIS)

    Halle, A. von; Anderson, J.L.; Gentile, C.; Grisham, L.; Hosea, J.; Kamperschroer, J.; LaMarche, P.; Oldaker, M.; Nagy, A.; Raftopoulos, S.; Stevenson, T.

    1995-01-01

    The Tokamak Fusion Test Reactor (TFTR) tritium gas system is administratively limited to 5 grams of tritium and provides the feedstock gas for the neutral beam and torus injection systems. Tritium operations on TFTR began with leak checking of gas handling systems, qualification of the gas injection systems, and high power plasma operations using trace amounts of tritium in deuterium feedstock gas. Full tritium operation commenced with four highly diagnosed neutral beam pulses into a beamline calorimeter to verify planned tritium beam operating routines and to demonstrate the deuterium to tritium beam isotope exchange. Since that time, TFTR has successfully operated each of the twelve neutral beam ion sources in tritium during hundreds of tritium beam pulses and torus gas injections. This paper describes the TFTR tritium gas handling systems and TFTR tritium operations of the gas injection systems and the neutral beam ion sources. Tritium accounting and accountability is discussed, including tritium retention issues of the torus limiters and beam impinged surfaces of the beamline components. Also included is tritium beam velocity analysis that compares the neutral beam extracted ion species composition for deuterium and tritium and that determines the extent of beam isotope exchange on subsequent deuterium and tritium beam pulses. The required modifications to TFTR operating routines to meet the U.S. Department of Energy regulations for a low hazard nuclear facility and the problems encountered during initial tritium operations are described. (orig.)

  15. The tritium operations experience on TFTR

    International Nuclear Information System (INIS)

    von Halle, A.; Gentile, C.

    1994-01-01

    The Tokamak Fusion Test Reactor (TFTR) tritium gas system is administratively limited to 5 grains of tritium and provides the feedstock gas for the neutral beam and torus injection systems. Tritium operations on TFTR began with leak checking of gas handling systems, qualification of the gas injection systems, and high power plasma operations using using trace amounts of tritium in deuterium feedstock gas. Full tritium operation commenced with four highly diagnosed neutral beam pulses into a beamline calorimeter to verify planned tritium beam operating routines and to demonstrate the deuterium to tritium beam isotope exchange. Since that time, TFTR has successfully operated each of the twelve neutral beam ion sources in tritium during hundreds of tritium beam pulses and torus gas injections. This paper describes- the TFTR tritium gas handling systems and TFTR tritium operations of the gas injection systems and the neutral beam ion sources. Tritium accounting and accountability is discussed, including tritium retention issues of the torus limiters and beam impinged surfaces of the beamline components. Also included is tritium beam velocity analysis that compares the neutral beam extracted ion species composition for deuterium and tritium and that determines the extent of beam isotope exchange on subsequent deuterium and tritium beam pulses. The required modifications to TFTR operating routines to meet the US Department of Energy regulations for a low hazard nuclear facility and the problems encountered during initial tritium operations are described

  16. In-pile test of tritium release from tritium breeding materials (VOM-21H experiment)

    International Nuclear Information System (INIS)

    Kurasawa, Toshimasa; Takeshita, Hidefumi; Watanabe, Hitoshi; Yoshida, Hiroshi.

    1986-10-01

    Material development and blanket design of lithium-based ceramics such as lithium oxide, lithium aluminate, lithium silicate and lithium zirconate have been performed in Japan, United State of America and Europian Communities. Lithium oxide is a most attractive candidate for tritium breeding materials because of its high lithium density, high thermal conductivity and good tritium release performance. This work has been done to clarify the characteristics of tritium release and recovery from Li 2 O by means of in-situ tritium release measurement. The effects of temperature and sweep gas composition on the tritium release were investigated in this VOM-21H Experiment. Good measurement of tritium release was achieved but there were uncertainties in reproduciblity of data. The experimental results show that the role of surface adsorption/desorption makes a significant contribution to the tritium release and tritium inventory. Also, it is necessary to define the rate limiting process either diffusion or surface adsorption/desorption. (author)

  17. Tritium contamination of concrete walls and floors in tritium-handling laboratory

    International Nuclear Information System (INIS)

    Kawano, T.; Kuroyanagi, M.; Tabei, T.

    2006-01-01

    A tritium handling laboratory was constructed at the National Institute for Fusion Science about twenty years ago and it was recently closed down. We completed the necessary work that is legally required in Japan at the laboratory, when the use of radioisotopes is discontinued, involving measurements of radioactive contamination. We mainly used smear and direct-immersion methods for the measurements. In applying the smear method, we used a piece of filter paper to wipe up the tritium staining the surfaces. The filter paper containing the tritium was placed directly into a dedicated vial, a scintillation cocktail was then poured over it, and the tritium was measured with a liquid scintillation counter. With the direct-immersion method, a piece of concrete was placed directly into a vial containing a scintillation cocktail, and the tritium in the concrete was measured with a liquid scintillation counter. As well as these measurements, we investigated water-extraction and heating-cooling methods for measuring tritium contamination in concrete. With the former, a piece of concrete was placed into water in a tube to extract the tritium, the water containing the extracted tritium was then poured into a dedicated vial containing a scintillation cocktail, and the tritium contamination was measured. With the latter, a piece of concrete was placed into a furnace and heated to 800 degrees centigrade to vaporize the tritiated water into flowing dry air. The flowing air was then cooled to collect the vaporized tritiated water in a tube. The collected water was placed in a vial for scintillation counting. To evaluate the direct-immersion method, ratios were determined by dividing the contamination measured with the heating-cooling method by that measured with the direct-immersion method. The average ratio was about 2.5, meaning a conversion factor from contamination obtained with the direct-immersion method to that with the heating-cooling method. We also investigated the

  18. Properties of tritium and its compounds

    International Nuclear Information System (INIS)

    Belovodskij, L.F.; Gaevoj, V.K.; Grishmanovskij, V.I.

    1985-01-01

    Ways of tritium preparation and different aspects of its application are considered. Physicochemical properties of this isotope and some compounds of it - tritium oxides, lithium, titanium, zirconium, uranium tritides, tritium organic compounds - are discussed. In particular, diffusion of tritium and its oxide through different materials, tritium oxidation processes, decomposition of tritium-containing compounds under the action of self-radiation are considered. Main radiobiological tritium properties are described

  19. Comparison of tritium production facilities

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2002-01-01

    Detailed investigation and research on the source of tritium, tritium production facilities and their comparison are presented based on the basic information about tritium. The characteristics of three types of proposed tritium production facilities, i.e., fissile type, accelerator production tritium (APT) and fusion type, are presented. APT shows many advantages except its rather high cost; fusion reactors appear to offer improved safety and environmental impacts, in particular, tritium production based on the fusion-based neutron source costs much lower and directly helps the development of fusion energy source

  20. Protection against tritium radiations

    International Nuclear Information System (INIS)

    Bal, Georges

    1964-05-01

    This report presents the main characteristics of tritium, describes how it is produced as a natural or as an artificial radio-element. It outlines the hazards related to this material, presents how materials and tools are contaminated and decontaminated. It addresses the issue of permissible maximum limits: factors of assessment of the risk induced by tritium, maximum permissible activity in body water, maximum permissible concentrations in the atmosphere. It describes the measurement of tritium activity: generalities, measurement of gas activity and of tritiated water steam, tritium-induced ionisation in an ionisation chamber, measurement systems using ionisation chambers, discontinuous detection of tritium-containing water in the air, detection of surface contamination [fr

  1. ARIES-I tritium system

    International Nuclear Information System (INIS)

    Sze, D.K.; Tam, S.W.; Billone, M.C.; Hassanein, A.M.; Martin, R.

    1990-09-01

    A key safety concern in a D-T fusion reactor is the tritium inventory. There are three components in a fusion reactor with potentially large inventories, i.e., the blanket, the fuel processing system and the plasma facing components. The ARIES team selected the material combinations, decided the operating conditions and refined the processing systems, with the aiming of minimizing the tritium inventories and leakage. The total tritium inventory for the ARIES-I reactor is only 700 g. This paper discussed the calculations and assumptions we made for the low tritium inventory. We also addressed the uncertainties about the tritium inventory. 13 refs., 2 figs., 3 tabs

  2. Tritium control in fusion reactor materials: A model for Tritium Extracting System

    International Nuclear Information System (INIS)

    Zucchetti, Massimo; Utili, Marco; Nicolotti, Iuri; Ying, Alice; Franza, Fabrizio; Abdou, Mohamed

    2015-01-01

    Highlights: • A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a Molecular sieve as adsorbent material. • A computational model has been setup and tested in this paper. • The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. • It turns out the capability to model the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT). - Abstract: In fusion reactors, tritium is bred by lithium isotopes inside the blanket and then extracted. However, tritium can contaminate the reactor structures, and can be eventually released into the environment. Tritium in reactor components should therefore be kept under close control throughout the fusion reactor lifetime, bearing in mind the risk of accidents, the need for maintenance and the detritiation of dismantled reactor components before their re-use or disposal. A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a molecular sieve as adsorbent material. A computational model has been setup and tested. The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. It turns out the capability of the model to describe the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT).

  3. Tritium control in fusion reactor materials: A model for Tritium Extracting System

    Energy Technology Data Exchange (ETDEWEB)

    Zucchetti, Massimo [DENERG, Politecnico di Torino (Italy); Utili, Marco, E-mail: marco.utili@enea.it [ENEA UTIS – C.R. Brasimone, Bacino del Brasimone, Camugnano, BO (Italy); Nicolotti, Iuri [DENERG, Politecnico di Torino (Italy); Ying, Alice [University of California Los Angeles (UCLA), Los Angeles, CA (United States); Franza, Fabrizio [Karlsruhe Institute of Technology, Karlsruhe (Germany); Abdou, Mohamed [University of California Los Angeles (UCLA), Los Angeles, CA (United States)

    2015-10-15

    Highlights: • A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a Molecular sieve as adsorbent material. • A computational model has been setup and tested in this paper. • The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. • It turns out the capability to model the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT). - Abstract: In fusion reactors, tritium is bred by lithium isotopes inside the blanket and then extracted. However, tritium can contaminate the reactor structures, and can be eventually released into the environment. Tritium in reactor components should therefore be kept under close control throughout the fusion reactor lifetime, bearing in mind the risk of accidents, the need for maintenance and the detritiation of dismantled reactor components before their re-use or disposal. A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a molecular sieve as adsorbent material. A computational model has been setup and tested. The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. It turns out the capability of the model to describe the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT).

  4. The Tritium White Paper

    International Nuclear Information System (INIS)

    2009-01-01

    This publication proposes a synthesis of the activities of two work-groups between May 2008 and April 2010. It reports the ASN's (the French Agency for Nuclear Safety) point of view, describes its activities and actions, and gives some recommendations. It gives a large and detailed overview of the knowledge status on tritium: tritium source inventory, tritium origin, management processes, capture techniques, reduction, tritium metrology, impact on the environment, impacts on human beings

  5. Experience in handling concentrated tritium

    International Nuclear Information System (INIS)

    Holtslander, W.J.

    1985-12-01

    The notes describe the experience in handling concentrated tritium in the hydrogen form accumulated in the Chalk River Nuclear Laboratories Tritium Laboratory. The techniques of box operation, pumping systems, hydriding and dehydriding operations, and analysis of tritium are discussed. Information on the Chalk River Tritium Extraction Plant is included as a collection of reprints of papers presented at the Dayton Meeting on Tritium Technology, 1985 April 30 - May 2

  6. Tritium in precipitation of Vostok (Antarctica): conclusions on the tritium latitude effect.

    Science.gov (United States)

    Hebert, Detlef

    2011-09-01

    During the Antarctic summer of 1985 near the Soviet Antarctic station Vostok, firn samples for tritium measurements were obtained down to a depth of 2.40 m. The results of the tritium measurements are presented and discussed. Based on this and other data, conclusions regarding the tritium latitude effect are derived.

  7. Tritium inventory tracking and management

    International Nuclear Information System (INIS)

    Eichenberg, T.W.; Klein, A.C.

    1990-01-01

    This investigation has identified a number of useful applications of the analysis of the tracking and management of the tritium inventory in the various subsystems and components in a DT fusion reactor system. Due to the large amounts of tritium that will need to be circulated within such a plant, and the hazards of dealing with the tritium an electricity generating utility may not wish to also be in the tritium production and supply business on a full time basis. Possible scenarios for system operation have been presented, including options with zero net increase in tritium inventory, annual maintenance and blanket replacement, rapid increases in tritium creation for the production of additional tritium supplies for new plant startup, and failures in certain system components. It has been found that the value of the tritium breeding ratio required to stabilize the storage inventory depends strongly on the value and nature of other system characteristics. The real operation of a DT fusion reactor power plant will include maintenance and blanket replacement shutdowns which will affect the operation of the tritium handling system. It was also found that only modest increases in the tritium breeding ratio are needed in order to produce sufficient extra tritium for the startup of new reactors in less than two years. Thus, the continuous operation of a reactor system with a high tritium breeding ratio in order to have sufficient supplies for other plants is not necessary. Lastly, the overall operation and reliability of the power plant is greatly affected by failures in the fuel cleanup and plasma exhaust systems

  8. Tritium behavior in ITER beryllium

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1990-10-01

    The beryllium neutron multiplier in the ITER breeding blanket will generate tritium through transmutations. That tritium constitutes a safety hazard. Experiments evaluating tritium storage and release mechanisms have shown that most of the tritium comes out in a burst during thermal ramping. A small fraction of retained tritium is released by thermally activated processes. Analysis of recent experimental data shows that most of the tritium resides in helium bubbles. That tritium is released when the bubbles undergo swelling sufficient to develop porosity that connects with the surface. That appears to occur when swelling reaches about 10--15%. Other tritium appears to be stored chemically at oxide inclusions, probably as Be(OT) 2 . That component is released by thermal activation. There is considerable variation in published values for tritium diffusion through the beryllium and solubility in it. Data from experiments using highly irradiated beryllium from the Idaho National Engineering Laboratory showed diffusivity generally in line with the most commonly accepted values for fully dense material. Lower density material, planned for use in the ITER blanket may have very short diffusion times because of the open structure. The beryllium multiplier of the ITER breeding blanket was analyzed for tritium release characteristics using temperature and helium production figures at the midplane generated in support of the ITER Summer Workshop, 1990 in Garching. Ordinary operation, either in Physics or Technology phases, should not result in the release of tritium trapped in the helium bubbles. Temperature excursions above 600 degree C result in large-scale release of that tritium. 29 refs., 10 figs., 3 tabs

  9. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  10. Procedures for the retention of gaseous tritium released from a tritium enrichment plant

    International Nuclear Information System (INIS)

    Gutowski, H.; Bracha, M.

    1987-01-01

    General aim of the study is the comparison of two alternative processes for the retention of gaseous tritium which is released during normal operation and emergency operation in a tritium-enrichment-plant. Two processes for the retention of tritium were compared: 1. Oxidation-process. The hydrogen-gas containing HT will be burnt on an oxidation catalyst to H 2 O and HTO. In a subsequent step the water will be removed from the process by condensation, freezing and adsorption. 2. TROC-process (Tritium Removal by Organic Compounds). The tritium is added to an organic compound (acid) via catalyst. This reaction is irreversible and leads to solid products. (orig./RB) [de

  11. HYLIFE-II tritium management system

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Dolan, T.J.

    1993-06-01

    The tritium management system performs seven functions: (1) tritium gas removal from the blast chamber, (2) tritium removal from the Flibe, (3) tritium removal from helium sweep gas, (4) tritium removal from room air, (5) hydrogen isotope separation, (6) release of non-hazardous gases through the stack, (7) fixation and disposal of hazardous effluents. About 2 TBq/s (5 MCi/day) of tritium is bred in the Flibe (Li 2 BeF 4 ) molten salt coolant by neutron absorption. Tritium removal is accomplished by a two-stage vacuum disengager in each of three steam generator loops. Each stage consists of a spray of 0.4 mm diameter, hot Flibe droplets into a vacuum chamber 4 m in diameter and 7 m tall. As droplets fall downward into the vacuum, most of the tritium diffuses out and is pumped away. A fraction Φ∼10 -5 of the tritium remains in the Flibe as it leaves the second stage of the vacuum disengager, and about 24% of the remaining tritium penetrates through the steam generator tubes, per pass, so the net leakage into the steam system is about 4.7 MBq/s (11 Ci/day). The required Flibe pumping power for the vacuum disengager system is 6.6 MW. With Flibe primary coolant and a vacuum disengager, an intermediate coolant loop is not needed to prevent tritium from leaking into the steam system. An experiment is needed to demonstrate vacuum disengager operation with Flibe. A secondary containment shell with helium sweep gas captures the tritium permeating out of the Flibe ducts, limiting leaks there to about 1 Ci/day. The tritium inventory in the reactor is about 190 g, residing mostly in the large Flibe recirculation duct walls. The total cost of the tritium management system is 92 M$, of which the vacuum disengagers cost = 56%, the blast chamber vacuum system = 15%, the cryogenic plant = 9%, the emergency air cleanup and waste treatment systems each = 6%, the protium removal system = 3%, and the fuel storage system and inert gas system each = 2%

  12. Tritium release of titan-tritium layers in air, aqueous solutions and living organisms of animals

    International Nuclear Information System (INIS)

    Biro, J.; Feher, I.; Mate, L.; Varga, L.

    1978-01-01

    Samples containing 400-1100 MBq (10-30 mCi) tritium were prepared and the effect of storage time on tritium release was followed. In 250 days one thousandth of the tritium was released in aqueous solution; in air the ratio of release per hour fell in the range of 10 -6 -10 -7 . Ti-T plates with different storage times were surgically placed in the abdomen of rats. Their tritium release dropped with time and the activity appearing in the circulation was lower than that of plates with 5-6 orders of magnitude. Checking the tritium incorporation of neutron generator operators it must be held in mind that only a minor part of tritium can be detected by the measurement of the tritium content of urine. (author)

  13. Evaluation of specific tritium transfer parameters in equilibrium conditions for Cernavoda area

    International Nuclear Information System (INIS)

    Paunescu, N.; Galeriu, D.; Mocanu, N.; Margineanu, R.

    1998-01-01

    In Romania, a CANDU nuclear power plant with five reactors of 600 MWe is under construction. The first unit reached its criticality on April 1996 and became operational at full power on December 1996. The nuclear power plant is placed in Cernavoda area, in the S-E of Romania, between the Danube River and the Danube-Black Sea Canal. The prevalent local climate is continental and agricultural activity in the neighbourhood of the nuclear power plant is of intensive type. The routine atmospheric tritium release from the 3 GWe nuclear power plant is expected to be about 460 TBq/year and the aqueous release is expected to be 350 TBq/year. The aim of this study was to evaluate the environmental tritium reference level before commissioning the nuclear power plant. Representative samples for Cernavoda area were analysed: air humidity; water from Danube River, Danube-Black Sea Canal, lakes; drinking and ground water, rain (snow) water; soil at different depths; tissue free water tritium in vegetal and animal foodstuff relevant for human diet: cereals (wheat, maize, barley), vegetables (potato, tomato, cabbage, onion, bean), fruits, grapes, wine and milk; organically bound tritium in wheat and maize grains. The equipment and methods used were: Liquid scintillation analyzer of type TRICARB 1900 TR; scintillation cocktails of Instagel and Pico Fluor LLT type; sampling system for trapping the atmospheric tritium on molecular sieves; furnace; vacuum line and freeze trap (-60 deg. C); equipment for simple, fractionating and azeotropic distillation. The background level of tritium concentration was determined in environmental samples in Cernavoda area, in preoperational stage of nuclear power plant. The mean values determined during 1994-early 1996 are : (7.4±5.5) Bq/L in air humidity, (3.1±1.0) Bq/L in water, (3.53±0.4) Bq/L in tissue water from vegetable and (4.9±1.7) Bq/L in tissue water from cereals (grains). The values of tritium concentration in air, water, soil and

  14. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M. [National Institute for Fusion Science, Toki, Gifu (Japan); Sugiyama, T. [Nagoya University, Fro-cho, Chikusa-ku, Nagoya (Japan)

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of the proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.

  15. Tritium accounting for PHWR plants

    International Nuclear Information System (INIS)

    Nair, P.S.; Duraisamy, S.

    2012-01-01

    Tritium, the radioactive isotope of hydrogen, is produced as a byproduct of the nuclear reactions in the nuclear power plants. In a Pressurized Heavy Water Reactor (PHWR) tritium activity is produced in the Heat Transport and Moderator systems due to neutron activation of deuterium in heavy water used in these systems. Tritium activity build up occurs in some of the water systems in the PHWR plants through pick up from the plant atmosphere, inadvertent D 2 O ingress from other systems or transfer during processes. The tritium, produced by the neutron induced reactions in different systems in the reactor undergoes multiple processes such as escape through leaks, storage, transfer to external locations, decay, evaporation and diffusion and discharge though waste streams. Change of location of tritium inventory takes place during intentional transfer of heavy water, both reactor grade and downgraded, from one system to another. Tritium accounting is the application of accounting techniques to maintain knowledge of the tritium inventory present in different systems of a facility and to construct activity balances to detect any discrepancy in the physical inventories. It involves identification of all the tritium hold ups, transfers and storages as well as measurement of tritium inventories in various compartments, decay corrections, environmental release estimations and evaluation of activity generation during the accounting period. This paper describes a methodology for creating tritium inventory balance based on periodic physical inventory taking, tritium build up, decay and release estimations. Tritium accounting in the PHWR plants can prove to be an effective regulatory tool to monitor its loss as well as unaccounted release to the environment. (author)

  16. Tritium permeation through iron

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1989-01-01

    An experimental method for measuring diffusion coefficients and permeation rates of tritium in metals around room temperature has been established, and their values in iron have been obtained by using the method. Permeation rates of tritium and hydrogen through iron were measured by the electrochemical method in which a tritiated aqueous solution was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a membrane specimen by cathodic polarization, while at the other side of the specimen the permeating tritium and hydrogen were extracted by potentiostatical ionization. The amount of permeated hydrogen was obtained by integrating the anodic current, and that of tritium was determined by measuring the radioactivity of the electrolyte sampled from the extraction side. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) were determined from the time lag of tritium and hydrogen permeation. D T =9x10 -10 m 2 /s and D H =4x10 -9 m 2 /s at 286 K for annealed iron specimens. These values of D T and D H were compared with the previous data of the diffusion coefficients of hydrogen and deuterium, and the isotope effect in diffusion was discussed. (orig.)

  17. Tritium oxidation and exchange: preliminary studies

    International Nuclear Information System (INIS)

    Phillips, J.E.; Easterly, C.E.

    1978-05-01

    The radiological hazard resulting from an exposure to either tritium oxide or tritium gas is discussed and the factors contributing to the hazard are presented. From the discussion it appears that an exposure to tritium oxide vapor is 10 4 to 10 5 times more hazardous than exposure to tritium gas. Present and future sources of tritium are briefly considered and indicate that most of the tritium has been and is being released as tritium oxide. The likelihood of gaseous releases, however, is expected to increase in the future, calling to task the present general release assumption that 100% of all tritium released is as oxide. Accurate evaluation of the hazards from a gaseous release will require a knowledge of the conversion rate of tritium gas to tritium oxide. An experiment for determining the conversion rate of tritium gas to tritium oxide is presented along with some preliminary data. The conversion rates obtained for low initial concentrations (10 -4 to 10 -1 mCi/ml) indicate the conversion may proceed more rapidly than would be expected from an extrapolation of previous data taken at higher concentrations

  18. TFTR tritium operations lessons learned

    International Nuclear Information System (INIS)

    Gentile, C.A.; Raftopoulos, S.; LaMarche, P.

    1996-01-01

    The Tokamak Fusion Test Reactor which is the progenitor for full D-T operating tokamaks has successfully processed > 81 grams of tritium in a safe and efficient fashion. Many of the fundamental operational techniques associated with the safe movement of tritium through the TFTR facility were developed over the course of many years of DOE tritium facilities (LANL, LLNL, SRS, Mound). In the mid 1980's The Tritium Systems Test Assembly (TSTA) at LANL began reporting operational techniques for the safe handling of tritium, and became a major conduit for the transfer of safe tritium handling technology from DOE weapons laboratories to non-weapon facilities. TFTR has built on many of the TSTA operational techniques and has had the opportunity of performing and enhancing these techniques at America's first operational D-T fusion reactor. This paper will discuss negative pressure employing 'elephant trunks' in the control and mitigation of tritium contamination at the TFTR facility, and the interaction between contaminated line operations and Δ pressure control. In addition the strategy employed in managing the movement of tritium through TFTR while maintaining an active tritium inventory of < 50,000 Ci will be discussed. 5 refs

  19. Exploration for tritium-free water

    International Nuclear Information System (INIS)

    Hussain, S.D.

    1982-10-01

    Tritium-free water is generally required in large quantities for the preparation of laboratory tritium standards as well as blanks which are used to determine background count rate in the measurement of low level tritium concentrations in water samples by liquid scintillation counting method. In order to meet the requirements of tritium-free water and save the recurring expenditure on its import from abroad, exploration for locating its source in the country was undertaken. Water samples collected from a few possible sources were analysed precisely for their tritium content at the International Atomic Energy Agency, Vienna, Austria and a source of tritium-free water was determined. (authors)

  20. Tritium protective clothing

    International Nuclear Information System (INIS)

    Fuller, T.P.; Easterly, C.E.

    1979-06-01

    Occupational exposures to radiation from tritium received at present nuclear facilities and potential exposures at future fusion reactor facilities demonstrate the need for improved protective clothing. Important areas relating to increased protection factors of tritium protective ventilation suits are discussed. These areas include permeation processes of tritium through materials, various tests of film permeability, selection and availability of suit materials, suit designs, and administrative procedures. The phenomenological nature of film permeability calls for more standardized and universal test methods, which would increase the amount of directly useful information on impermeable materials. Improvements in suit designs could be expedited and better communicated to the health physics community by centralizing devlopmental equipment, manpower, and expertise in the field of tritium protection to one or two authoritative institutions

  1. Tritium protective clothing

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, T. P.; Easterly, C. E.

    1979-06-01

    Occupational exposures to radiation from tritium received at present nuclear facilities and potential exposures at future fusion reactor facilities demonstrate the need for improved protective clothing. Important areas relating to increased protection factors of tritium protective ventilation suits are discussed. These areas include permeation processes of tritium through materials, various tests of film permeability, selection and availability of suit materials, suit designs, and administrative procedures. The phenomenological nature of film permeability calls for more standardized and universal test methods, which would increase the amount of directly useful information on impermeable materials. Improvements in suit designs could be expedited and better communicated to the health physics community by centralizing devlopmental equipment, manpower, and expertise in the field of tritium protection to one or two authoritative institutions.

  2. Technology developments for improved tritium management

    International Nuclear Information System (INIS)

    Miller, J.M.; Spagnolo, D.A.

    1994-06-01

    Tritium technology developments have been an integral part of the advancement of CANDU reactor technology. An understanding of tritium behaviour within the heavy-water systems has led to improvements in tritium recovery processes, tritium measurement techniques and overall tritium control. Detritiation technology has been put in place as part of heavy water and tritium management practices. The advances made in these technologies are summarized. (author). 20 refs., 5 figs

  3. Tritium monitor and collection system

    Science.gov (United States)

    Bourne, G.L.; Meikrantz, D.H.; Ely, W.E.; Tuggle, D.G.; Grafwallner, E.G.; Wickham, K.L.; Maltrud, H.R.; Baker, J.D.

    1992-01-14

    This system measures tritium on-line and collects tritium from a flowing inert gas stream. It separates the tritium from other non-hydrogen isotope contaminating gases, whether radioactive or not. The collecting portion of the system is constructed of various zirconium alloys called getters. These alloys adsorb tritium in any of its forms at one temperature and at a higher temperature release it as a gas. The system consists of four on-line getters and heaters, two ion chamber detectors, two collection getters, and two guard getters. When the incoming gas stream is valved through the on-line getters, 99.9% of it is adsorbed and the remainder continues to the guard getter where traces of tritium not collected earlier are adsorbed. The inert gas stream then exits the system to the decay chamber. Once the on-line getter has collected tritium for a predetermined time, it is valved off and the next on-line getter is valved on. Simultaneously, the first getter is heated and a pure helium purge is employed to carry the tritium from the getter. The tritium loaded gas stream is then routed through an ion chamber which measures the tritium activity. The ion chamber effluent passes through a collection getter that readsorbs the tritium and is removable from the system once it is loaded and is then replaced with a clean getter. Prior to removal of the collection getter, the system switches to a parallel collection getter. The effluent from the collection getter passes through a guard getter to remove traces of tritium prior to exiting the system. The tritium loaded collection getter, once removed, is analyzed by liquid scintillation techniques. The entire sequence is under computer control except for the removal and analysis of the collection getter. 7 figs.

  4. Operation of the tokamak fusion test reactor tritium systems during initial tritium experiments

    International Nuclear Information System (INIS)

    Anderson, J.L.; Gentile, C.; Kalish, M.; Kamperschroer, J.; Kozub, T.; LaMarche, P.; Murray, H.; Nagy, A.; Raftopoulos, S.; Rossmassler, R.; Sissingh, R.; Swanson, J.; Tulipano, F.; Viola, M.; Voorhees, D.; Walters, R.T.

    1995-01-01

    The high power D-T experiments on the tokamak fusion test reactor (TFTR) at the Princeton Plasma Physics Laboratory commenced in November 1993. During initial operation of the tritium systems a number of start-up problems surfaced and had to be corrected. These were corrected through a series of system modifications and upgrades and by repair of failed or inadequate components. Even as these operational concerns were being addressed, the tritium systems continued to support D-T operations on the tokamak. During the first six months of D-T operations more than 107kCi of tritium were processed successfully by the tritium systems. D-T experiments conducted at TFTR during this period provided significant new data. Fusion power in excess of 9MW was achieved in May 1994. This paper describes some of the early start-up issues, and reports on the operation of the tritium system and the tritium tracking and accounting system during the early phase of TFTR D-T experiments. (orig.)

  5. Tritium emissions from a detritiation facility

    International Nuclear Information System (INIS)

    Rodrigo, L.; El-Behairy, O.; Boniface, H.; Hotrum, C.; McCrimmon, K.

    2010-01-01

    Tritium is produced in heavy-water reactors through neutron capture by the deuterium atom. Annual production of tritium in a CANDU reactor is typically 52-74 TBq/MW(e). Some CANDU reactor operators have implemented detritiation technology to reduce both tritium emissions and dose to workers and the public from reactor operations. However, tritium removal facilities also have the potential to emit both elemental tritium and tritiated water vapor during operation. Authorized releases to the environment, in Canada, are governed by Derived Release Limits (DRLs). DRLs represent an estimate of a release that could result in a dose of 1 mSv to an exposed member of the public. For the Darlington Nuclear Generating Station, the DRLs for airborne elemental tritium and tritiated water emissions are ~15.6 PBq/week and ~825 TBq/week respectively. The actual tritium emissions from Darlington Tritium Removal Facility (DTRF) are below 0.1% of the DRL for elemental tritium and below 0.2% of the DRL for tritiated water vapor. As part of an ongoing effort to further reduce tritium emissions from the DTRF, we have undertaken a review and assessment of the systems design, operating performance, and tritium control methods in effect at the DTRF on tritium emissions. This paper discusses the results of this study. (author)

  6. The ITER tritium systems

    International Nuclear Information System (INIS)

    Glugla, M.; Antipenkov, A.; Beloglazov, S.; Caldwell-Nichols, C.; Cristescu, I.R.; Cristescu, I.; Day, C.; Doerr, L.; Girard, J.-P.; Tada, E.

    2007-01-01

    ITER is the first fusion machine fully designed for operation with equimolar deuterium-tritium mixtures. The tokamak vessel will be fuelled through gas puffing and pellet injection, and the Neutral Beam heating system will introduce deuterium into the machine. Employing deuterium and tritium as fusion fuel will cause alpha heating of the plasma and will eventually provide energy. Due to the small burn-up fraction in the vacuum vessel a closed deuterium-tritium loop is required, along with all the auxiliary systems necessary for the safe handling of tritium. The ITER inner fuel cycle systems are designed to process considerable and unprecedented deuterium-tritium flow rates with high flexibility and reliability. High decontamination factors for effluent and release streams and low tritium inventories in all systems are needed to minimize chronic and accidental emissions. A multiple barrier concept assures the confinement of tritium within its respective processing components; atmosphere and vent detritiation systems are essential elements in this concept. Not only the interfaces between the primary fuel cycle systems - being procured through different Participant Teams - but also those to confinement systems such as Atmosphere Detritiation or those to fuelling and pumping - again procured through different Participant Teams - and interfaces to buildings are calling for definition and for detailed analysis to assure proper design integration. Considering the complexity of the ITER Tritium Plant configuration management and interface control will be a challenging task

  7. Purification of tritium-free water

    International Nuclear Information System (INIS)

    Hussain, S.D.

    1982-10-01

    Ground water which has been out of contact with the atmosphere for a long time as compared to the half life of tritium (12.43 years) does not contain any measureable amount of tritium. Such water is called tritium-free water. It may contain dissolved and suspended impurities and has to be purified before it can be used for the preparation of blanks and standards required in the routine measurement of low level tritium in water samples. The purification of tritium-free water by distillation in a closed system has been described. The quality of processed tritium-free water was precisely checked at International Atomic Energy Agency (IAEA) Vienna and found satisfactory. (authors)

  8. Tritium trick

    Science.gov (United States)

    Green, W. V.; Zukas, E. G.; Eash, D. T.

    1971-01-01

    Large controlled amounts of helium in uniform concentration in thick samples can be obtained through the radioactive decay of dissolved tritium gas to He3. The term, tritium trick, applies to the case when helium, added by this method, is used to simulate (n,alpha) production of helium in simulated hard flux radiation damage studies.

  9. Tritium breeding in fusion reactors

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1982-10-01

    Key technological problems that influence tritium breeding in fusion blankets are reviewed. The breeding potential of candidate materials is evaluated and compared to the tritium breeding requirements. The sensitivity of tritium breeding to design and nuclear data parameters is reviewed. A framework for an integrated approach to improve tritium breeding prediction is discussed with emphasis on nuclear data requirements

  10. Pebble fabrication and tritium release properties of an advanced tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi, E-mail: hoshino.tsuyoshi@jaea.go.jp [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Edao, Yuki [Tritium Technology Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-4 Shirakata, Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kawamura, Yoshinori [Blanket Technology Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Ochiai, Kentaro [BA Project Coordination Group, Department of Fusion Power Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Li{sub 2}TiO{sub 3} with excess Li (Li{sub 2+x}TiO{sub 3+y}) pebble as an advanced tritium breeders was fabricated using emulsion method. • Grain size of Li{sub 2+x}TiO{sub 3+y} pebbles was controlled to be less than 5 μm. • Li{sub 2+x}TiO{sub 3+y} pebbles exhibited good tritium release properties similar to that of Li{sub 2}TiO{sub 3} pebbles. - Abstract: Li{sub 2}TiO{sub 3} with excess Li (Li{sub 2+x}TiO{sub 3+y}) has been developed as an advanced tritium breeder. With respect to the tritium release characteristics of the blanket, the optimum grain size after sintering was less than 5 μm. Therefore, an emulsion method was developed to fabricate pebbles with this target grain size. The predominant factor affecting grain growth was assumed to be the presence of binder in the gel particles; this remaining binder was hypothesized to react with the excess Li, thereby generating Li{sub 2}CO{sub 3}, which promotes grain growth. To inhibit the generation of Li{sub 2}CO{sub 3}, calcined Li{sub 2+x}TiO{sub 3+y} pebbles were sintered under vacuum and subsequently under a 1% H{sub 2}–He atmosphere. The average grain size of the sintered Li{sub 2+x}TiO{sub 3+y} pebbles was less than 5 μm. Furthermore, the tritium release properties of Li{sub 2+x}TiO{sub 3+y} pebbles were evaluated, and deuterium–tritium (DT) neutron irradiation experiments were performed at the Fusion Neutronics Source facility in the Japan Atomic Energy Agency. To remove the tritium produced by neutron irradiation, 1% H{sub 2}–He purge gas was passed through the Li{sub 2+x}TiO{sub 3+y} pebbles. The Li{sub 2+x}TiO{sub 3+y} pebbles exhibited good tritium release properties, similar to those of Li{sub 2}TiO{sub 3} pebbles. In particular, the released amount of tritiated hydrogen gas for easier tritium handling was greater than the released amount of tritiated water.

  11. Tritium. Today's and tomorrow's developments

    International Nuclear Information System (INIS)

    Gazal, S.; Amiard, J.C.; Caussade, Bernard; Chenal, Christian; Hubert, Francoise; Sene, Monique

    2010-01-01

    Radioactive hydrogen isotope, tritium is one of the radionuclides which is the most released in the environment during the normal operation of nuclear facilities. The increase of nuclear activities and the development of future generations of reactors, like the EPR and ITER, would lead to a significant increase of tritium effluents in the atmosphere and in the natural waters, thus raising many worries and questions. Aware about the importance of this question, the national association of local information commissions (ANCLI) wished to make a status of the existing knowledge concerning tritium and organized in 2008 a colloquium at Orsay (France) with an inquiring approach. The scientific committee of the ANCLI, renowned for its expertise skills, mobilized several nuclear specialists to carry out this thought. This book represents a comprehensive synthesis of today's knowledge about tritium, about its management and about its impact on the environment and on human health. Based on recent scientific data and on precise examples, it treats of the overall questions raised by this radionuclide: 1 - tritium properties and different sources (natural and anthropic), 2 - the problem of tritiated wastes management; 3 - the bio-availability and bio-kinetics of the different tritium species; 4 - the tritium labelling of environments; 5 - tritium measurement and modeling of its environmental circulation; 6 - tritium radio-toxicity and its biological and health impacts; 7 - the different French and/or international regulations concerning tritium. (J.S.)

  12. Tritium containing polymers having a polymer backbone substantially void of tritium

    Science.gov (United States)

    Jensen, G.A.; Nelson, D.A.; Molton, P.M.

    1992-03-31

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.

  13. Tritium in metals

    International Nuclear Information System (INIS)

    Schober, T.

    1990-01-01

    In this Chapter a review is given of some of the important features of metal tritides as opposed to hydrides and deuterides. After an introduction to the topics of tritium and tritium in metals information will be presented on a variety of metal-tritium systems. Of main interest here are the differences from the classic hydrogen behavior; the so called isotope effect. A second important topic is that of aging effects produced by the accumulation of 3 He in the samples. (orig.)

  14. Behaviour of tritium in the environment

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: There is considerable interest in the behaviour of radionuclides of global character that may be released to the environment through the development of nuclear power. Tritium is of particular interest due to its direct incorporation into water and organic tissue. Although there has been a large decrease (more than ten times) in tritium concentration since the stopping of nuclear weapons tests in the atmosphere, the construction in the near future of many water reactors and in the far future of fusion reactors could increase the present levels. Progress has been made during recent years in the assessment of tritium distribution, in detection methods and in biological studies While several meetings have given scientists an opportunity to present papers on tritium, no specific symposium on this topic has been organized by the IAEA since 1961. Thus the purpose of the meeting was to review recent advances and to report on the practical aspects of tritium utilization and monitoring. The symposium was jointly organized with OECD/NEA, in co-operation with the US Department of Energy and the Lawrence Livermore Laboratory. Papers were presented on distribution of tritium, evaluation of future discharges, measurement of tritium, tritium in the aquatic environment, tritium in the terrestrial environment, tritium in man and monitoring of tritium Very interesting papers were given on distribution of tritium and participants got a good idea of the circulation of this radionuclide Some new data were provided on tritium pollution from luminous compounds and we learnt that the tritium release of the Swiss luminous compounds industry is of the same order of magnitude as the tritium release of Windscale. Projections indicate that, in the USA, the total quantity of tritium contained in discarded digital watches will be equal, approximately ten years in the future, to the release of nuclear power reactors Whereas nuclear reactor discharges are controlled there is no control

  15. Overview of tritium fast-fission yields

    International Nuclear Information System (INIS)

    Tanner, J.E.

    1981-03-01

    Tritium production rates are very important to the development of fast reactors because tritium may be produced at a greater rate in fast reactors than in light water reactors. This report focuses on tritium production and does not evaluate the transport and eventual release of the tritium in a fast reactor system. However, if an order-of-magnitude increase in fast fission yields for tritium is confirmed, fission will become the dominant production source of tritium in fast reactors

  16. Radioecological studies of tritium movement in a tropical rain forest

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J R; Jordan, C F; Koranda, J J; Kline, J R [Bio-Medical Division, Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    injected input pulse due to the continuous root uptake of tritium as the diffuse peak moved down into the soil past the root zone. Tritium was removed from the plot by transpiration and by interflow. Using transpiration rates from the previous experiment, rainfall records, tree density data and other measurements, average transpiration for the Puerto Rico rainforest was computed to be 3.64 kg/m{sup 2}/day. The effective capacity of the soil compartment was calculated to be 280 {+-} 12 kg/m{sup 2}. In the final experiment, tritiated water was injected directly into several species of successional trees in a cleared plot. After several weeks, the trees were harvested and aliquots selected for bound tritium assay. The amount of tritium incorporated into the tissue was about 0.1 percent of the total amount applied to the tree. Based on all experimental data, the distribution of tritium from a simulated rainout following a one megaton thermonuclear detonation is presented for a climax tropical rainforest and for successional vegetation. The fraction of input tritium remaining in each compartment as a function of time is tabulated. The residence time for each of the compartments determines the persistence of tritium deposited in a tropical ecosystem. (author)

  17. Radioecological studies of tritium movement in a tropical rain forest

    International Nuclear Information System (INIS)

    Martin, J.R.; Jordan, C.F.; Koranda, J.J.; Kline, J.R.

    1970-01-01

    pulse due to the continuous root uptake of tritium as the diffuse peak moved down into the soil past the root zone. Tritium was removed from the plot by transpiration and by interflow. Using transpiration rates from the previous experiment, rainfall records, tree density data and other measurements, average transpiration for the Puerto Rico rainforest was computed to be 3.64 kg/m 2 /day. The effective capacity of the soil compartment was calculated to be 280 ± 12 kg/m 2 . In the final experiment, tritiated water was injected directly into several species of successional trees in a cleared plot. After several weeks, the trees were harvested and aliquots selected for bound tritium assay. The amount of tritium incorporated into the tissue was about 0.1 percent of the total amount applied to the tree. Based on all experimental data, the distribution of tritium from a simulated rainout following a one megaton thermonuclear detonation is presented for a climax tropical rainforest and for successional vegetation. The fraction of input tritium remaining in each compartment as a function of time is tabulated. The residence time for each of the compartments determines the persistence of tritium deposited in a tropical ecosystem. (author)

  18. Tritium in rad waste management

    International Nuclear Information System (INIS)

    Gandhi, P.M.; Ali, S.S.; Mathur, R.K.; Rastogi, R.C.

    1990-01-01

    Radioactive waste arising from PHWR's are invariably contaminated with tritium activity. Their disposal is crucial as it governs the manner and extent of radioactive contamination of human environment. The technique of tritium measurement and its application plays an important role in assessing the safety of the disposal system. Thus, typical applications involving tritium measurements include the evaluation of a site for solid waste burial facility and evaluation of a water body for liquid waste dispersal. Tritium measurement is also required in assessing safe air route dispersal of tritium. (author)

  19. Tritium processing in JT-60U

    International Nuclear Information System (INIS)

    Miya, Naoyuki; Masaki, Kei

    1997-01-01

    Tritium retention analysis and tritium concentration measurement have been made during the large Tokamak JT-60U deuterium operations. This work has been carried out to evaluate the tritium retention for graphite tiles inside the vacuum vessel and tritium release characteristics in the tritium cleanup operations. JT-60U has carried out D-D experiments since July 1991. In the deuterium operations during the first two years, about 1.7 x 10 19 D-D fusion neutrons were produced by D (d, p) T reactions in plasma, which are expected to produce ∼31 GBq of tritium. The tritium produced is evacuated by a pumping system. A part of tritium is, however, trapped in the graphite tiles. Several sample tiles were removed from the vessel and the retained tritium Distribution in the tiles was measured using a liquid scintillator. The results of poloidal distribution showed that the tritium concentration in the divertor tiles was higher than that in the first wall tiles and it peaked in the tiles between two strike points of divertor magnetic lines. Tritium concentration in the exhaust gas from the vessel have also been measured with an ion chamber during the tritium cleanup operations with hydrogen divertor discharges and He-GDC. Total of recovered tritium during the cleanup operations was ∼ 7% of that generated. The results of these measurements showed that the tritium of 16-23 GBq still remained in the graphite tiles, which corresponded to about 50-70% of the tritium generated in plasma. The vessel is ventilated during the in-vessel maintenance works, then the atmosphere is always kept lower than the legal concentration guide level of 0.7 Bq/cm 3 for radiation work permit requirements. (author)

  20. Tritium waste package

    Science.gov (United States)

    Rossmassler, Rich; Ciebiera, Lloyd; Tulipano, Francis J.; Vinson, Sylvester; Walters, R. Thomas

    1995-01-01

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  1. The Chalk River Tritium Extraction Plant

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Harrison, T.E.; Spagnolo, D.A.

    1990-01-01

    The Chalk River Tritium Extraction Plant for removal of tritium from heavy water is described. Tritium is present in the heavy water from research reactors in the form of DTO at a concentration in the range of 1-35 Ci/kg. It is removed by a combination of catalytic exchange to transfer the tritium from DTO to DT, followed by cryogenic distillation to separate and concentrate the tritium to T 2 . The tritium product is reacted with titanium and packaged for transportation and storage as titanium tritide. The plant processes heavy water at a rate of 25 kg/h and removes 80% of the tritium and 90% of the protium per pass. Catalytic exchange is carried out in the liquid phase using a proprietary wetproofed catalyst. The plant serves two roles in the Canadian fusion program: it produces pure tritium for use in fusion research and development, and it demonstrates on an industrial scale many of the tritium technologies that are common to the tritium systems in fusion reactors (author)

  2. The Chalk River Tritium Extraction Plant

    Energy Technology Data Exchange (ETDEWEB)

    Holtslander, W J; Harrison, T E; Spagnolo, D A

    1990-07-01

    The Chalk River Tritium Extraction Plant for removal of tritium from heavy water is described. Tritium is present in the heavy water from research reactors in the form of DTO at a concentration in the range of 1-35 Ci/kg. It is removed by a combination of catalytic exchange to transfer the tritium from DTO to DT, followed by cryogenic distillation to separate and concentrate the tritium to T{sub 2}. The tritium product is reacted with titanium and packaged for transportation and storage as titanium tritide. The plant processes heavy water at a rate of 25 kg/h and removes 80% of the tritium and 90% of the protium per pass. Catalytic exchange is carried out in the liquid phase using a proprietary wetproofed catalyst. The plant serves two roles in the Canadian fusion program: it produces pure tritium for use in fusion research and development, and it demonstrates on an industrial scale many of the tritium technologies that are common to the tritium systems in fusion reactors (author)

  3. Simulation study of intentional tritium release experiments in the caisson assembly for tritium safety at the TPL/JAERI

    International Nuclear Information System (INIS)

    Iwai, Y.; Hayashi, T.; Kobayashi, K.; Nishi, M.

    2001-01-01

    At the Tritium Process Laboratory (TPL) in Japan Atomic Energy Research Institute (JAERI), Caisson assembly for tritium safety study (CATS) with 12 m 3 of large airtight vessel (Caisson) was fabricated for confirmation and enhancement of fusion reactor safety to estimate the tritium behavior in the case, where the tritium leak accident should happen. One of the principal objectives of the present studies is the establishment of simulation method to predict the tritium behavior after the tritium leak accident should happen in a ventilated room. As for the understanding of initial tritium behavior until the tritium concentration become steady, the precise estimation of local flow rate in a room and time-dependent release behavior from the leak point are essential to predict the tritium behavior by simulation code. The three-dimensional eddy flow model considering, tritium-related phenomena was adopted to estimate the local flow rate in the 50 m 3 /h ventilated Caisson. The time-dependent tritium release behavior from the sample container was calculated by residence time distribution function. The calculated tritium concentrations were in good agreement with the experimental observations. The primary removal tritium behavior was also investigated by another code. Tritium gas concentrations decreased logarithmically to the time by ventilation. These observations were understandable by the reason that the flow in the ventilated Caisson was regarded as the perfectly mixing flow. The concentrations of tritiated water measured, and indications of tritium concentration by tritium monitors became gradually flat. This phenomena called 'tritium soaking effect' was found to be reasonably explained by considering the contribution of the exhaustion velocity by ventilation system, and the adsorption and desorption reaction rate of tritiated water on the wall material which is SUS 304. The calculated tritium concentrations were in good agreement with the experimental observations

  4. Tritium loss in molten flibe systems

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A. [Idaho National Eng. and Environ. Lab., Idaho Falls, ID (United States); Scott Willms, R. [Los Alamos National Lab., NM (United States)

    2000-04-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF{sub 2}, commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  5. Tritium resources available for fusion reactors

    Science.gov (United States)

    Kovari, M.; Coleman, M.; Cristescu, I.; Smith, R.

    2018-02-01

    The tritium required for ITER will be supplied from the CANDU production in Ontario, but while Ontario may be able to supply 8 kg for a DEMO fusion reactor in the mid-2050s, it will not be able to provide 10 kg at any realistic starting time. The tritium required to start DEMO will depend on advances in plasma fuelling efficiency, burnup fraction, and tritium processing technology. It is in theory possible to start up a fusion reactor with little or no tritium, but at an estimated cost of 2 billion per kilogram of tritium saved, it is not economically sensible. Some heavy water reactor tritium production scenarios with varying degrees of optimism are presented, with the assumption that only Canada, the Republic of Korea, and Romania make tritium available to the fusion community. Results for the tritium available for DEMO in 2055 range from zero to 30 kg. CANDU and similar heavy water reactors could in theory generate additional tritium in a number of ways: (a) adjuster rods containing lithium could be used, giving 0.13 kg per year per reactor; (b) a fuel bundle with a burnable absorber has been designed for CANDU reactors, which might be adapted for tritium production; (c) tritium production could be increased by 0.05 kg per year per reactor by doping the moderator with lithium-6. If a fusion reactor is started up around 2055, governments in Canada, Argentina, China, India, South Korea and Romania will have the opportunity in the years leading up to that to take appropriate steps: (a) build, refurbish or upgrade tritium extraction facilities; (b) extend the lives of heavy water reactors, or build new ones; (c) reduce tritium sales; (d) boost tritium production in the remaining heavy water reactors. All of the alternative production methods considered have serious economic and regulatory drawbacks, and the risk of diversion of tritium or lithium-6 would also be a major concern. There are likely to be serious problems with supplying tritium for future

  6. Tritium loss in molten flibe systems

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Scott Willms, R.

    2000-01-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF 2 , commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  7. Use of tritium and sources

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi

    1997-01-01

    There are many kinds of tritium, sources in the environment. The maximum inventory of them is the nuclear tests, although the atmospheric nuclear test has not been carried out since 1981. So that the inventory originated from them will decrease. By the latest data in 1989, the total amount of released tritium was about 24 PBq/yr by the use of atomic energy in the world. The maximum source was the heavy water moderated reactors, for example, CANDU reactor. In the future, large amount of tritium inventory may be the fusion reactor. The test of JET (Joint European Torus) released about 600 GBq of tritium until March in 1992. 80-90% of them were tritium water (HTO). The amount of tritium released from industries and medicine are limited. Although ITER has a large amount of tritium inventory, the amount of release is seemed not to be larger than other nuclear power facility. (S.Y.)

  8. Change in radionuclide content of crops as a result of food preparation

    International Nuclear Information System (INIS)

    Watterson, J.; Nicholson, K.W.

    1996-01-01

    Radionuclides, including 3 H, 14 C and 35 S, are periodically and routinely discharged from nuclear powered electricity generation sites and it is important to assess the radiological impact of such discharges on humans due to food consumption. Foodstuffs may be cooked before being eaten and this can change their radionuclide content. The aim of this study was to examine the effects of a range of domestic food preparation techniques on the radionuclide contents of a range of food types. Radionuclide concentrations of tritium (free tritium, HTO, and organically bound tritium, (OBT), 14 C and 35 S were examined in a selection of fruit and vegetables that would form part of a typical diet. The foodstuffs included blackberries, broad beans, cabbages, carrots and potatoes (at two stages of development). The preparation techniques included boiling (potatoes, carrots, broad beans), roasting (potatoes), steaming (cabbage), or stewing (blackberries). In general, the radionuclide concentrations were reduced at the crops by at least 30% after preparation using any of the cooking techniques. The concentrations of 35 S fell by at least 60%, and this radionuclide showed the greatest reductions in the levels of HTO and 35 S. The results of this work indicate that the effects of cooking should be considered when assessing the dose received from the intake of foodstuffs. (Author)

  9. Tritium transport studies with use of the ISEP NPA during tritium trace experimental campaign on JET

    International Nuclear Information System (INIS)

    Mironov, M I; Afanasyev, V I; Murari, A; Santala, M; Beaumont, P

    2010-01-01

    The neutral particle analyzer (NPA) known as ISEP (Ion SEParator) was applied to measure the tritium neutral flux during the tritium trace experiment (TTE) on JET. The energy dependence (in the 5-28 keV energy range) of the tritium neutral flux rise time after a short ∼100 ms tritium gas puff into deuterium plasmas has been observed for the first time. The dependence has been interpreted as being due to the penetration of the tritium ions from the plasma boundary into the core and has been used for the calculation of the tritium diffusion coefficient and convective velocity values.

  10. Overview of the tritium system of Ignitor

    International Nuclear Information System (INIS)

    Rizzello, C.; Tosti, S.

    2008-01-01

    Among the recent design activities of the Ignitor program, the analysis of the tritium system has been carried out with the aim to describe the main equipments and the operations needed for supplying the deuterium-tritium mixtures and recovering the plasma exhaust. In fact, the tritium system of Ignitor provides for injecting deuterium-tritium mixtures into the vacuum chamber in order to sustain the fusion reaction: furthermore, it generally manages and controls the tritium and the tritiated materials of the machine fuel cycle. Main functions consist of tritium storage and delivery, tritium injection, tritium recovery from plasma exhaust, treatment of the tritiated wastes, detritiation of the contaminated atmospheres, tritium analysis and accountability. In this work an analysis of the designed tritium system of Ignitor is summarized

  11. Tritium breeding blanket

    International Nuclear Information System (INIS)

    Smith, D.; Billone, M.; Gohar, Y.; Baker, C.; Mori, S.; Kuroda, T.; Maki, K.; Takatsu, H.; Yoshida, H.; Raffray, A.; Sviatoslavsky, I.; Simbolotti, G.; Shatalov, G.

    1991-01-01

    The terms of reference for ITER provide for incorporation of a tritium breeding blanket with a breeding ratio as close to unity as practical. A breeding blanket is required to assure an adequate supply of tritium to meet the program objectives. Based on specified design criteria, a ceramic breeder concept with water coolant and an austenitic steel structure has been selected as the first option and lithium-lead blanket concept has been chosen as an alternate option. The first wall, blanket, and shield are integrated into a single unit with separate cooling systems. The design makes extensive use of beryllium to enhance the tritium breeding ratio. The design goals with a tritium breeding ratio of 0.8--0.9 have been achieved and the R ampersand D requirements to qualify the design have been identified. 4 refs., 8 figs., 2 tabs

  12. Results of observations of the tritium concentration in water fractions in the disposition regions of tritium laboratories

    International Nuclear Information System (INIS)

    Koval, G.N.; Kuzmina, A.I.; Kolomiets, N.F.; Svarichevskaya, E.V.; Rogosin, V.N.; Svyatun, O.V.

    1995-01-01

    In this paper results of the long term of control of tritium concentration in the water fractions in the region close to the tritium laboratories of INR NAS of Ukraine are presented. The regular observations for the tritium concentration in the water fractions (thawed water of the snow cover, birch juice and sewer water) in the influence region of tritium laboratories shows small amount of tritium concentration in all kinds of investigated water fractions in comparison with the tritium concentration in the reper points. The proper connection of the levels of tritium concentration of the water samples with the quantity of the technology production is observed. In common, the tritium pollution on the territory of INR shows the tendency for a considerable decrease of the environmental pollution levels from year to year. It can be explained by the perfection of the production technology of tritium structures and targets as well as the rising of the qualification of the personnel. 3 refs., 4 figs

  13. 14C and tritium dynamics in wild mammals: a metabolic model

    International Nuclear Information System (INIS)

    Galeriu, D.; Beresford, N.A.; Melintescu, A.; Crout, N.M.J.; Takeda, H.

    2004-01-01

    The protection of biota from ionising radiations needs reliable predictions of radionuclide dynamics in wild animals. Data specific for many wild animals radionuclide combinations is lacking and a number of approaches including allometry have been proposed to address this. However, for 14 C and tritium, which are integral components of animals tissues and their diets, a different approach is needed in the absence of experimental data. Here we propose a metabolically based model which can be parameterized predominantly on the basis of published metabolic data. We begin with a metabolic definition of the 14 C and OBT loss rate (assumed to be the same) from the whole body and also specific organs, using available information on field metabolic rate and body composition. The mammalian body is conceptually partitioned into compartments (body water, viscera, adipose, muscle, blood and remainder) and a simple model defined using net maintenance and growth needs of mammals. Intake and excretion, and transfer to body water are modelled using basic metabolic knowledge and published relationships. The model is tested with data from studies using rats and sheep. It provides a reliable prediction for whole body and muscle activity concentrations without the requirement for any calibration specific to 3 H and 14 C. Predictions from the model for representative wild mammals (as selected to be reference organisms within international programmes) are presented. Potential developments of a metabolic model for birds and the application of our work to human food chain modelling are also discussed. (author)

  14. Tritium in the environment. Knowledge synthesis

    International Nuclear Information System (INIS)

    2009-01-01

    This report first presents the nuclear and physical-chemical properties of tritium and addresses the notions of bioaccumulation, bio-magnification and remanence. It describes and comments the natural and anthropic origins of tritium (natural production, quantities released in the environment in France by nuclear tests, nuclear plants, nuclear fuel processing plants, research centres). It describes how tritium is measured as a free element (sampling, liquid scintillation, proportional counting, enrichment method) or linked to organic matter (combustion, oxidation, helium-3-based measurement). It discusses tritium concentrations noticed in different parts of the environment (soils, continental waters, sea). It describes how tritium is transferred to ecosystems (transfer of atmospheric tritium to ground ecosystems, and to soft water ecosystems). It discusses existing models which describe the behaviour of tritium in ecosystems. It finally describes and comments toxic effects of tritium on living ground and aquatic organisms

  15. Imaging of tritium implanted into graphite

    International Nuclear Information System (INIS)

    Malinowski, M.E.; Causey, R.A.

    1988-01-01

    The extensive use of graphite in plasma-facing surfaces of tokamaks such as the Tokamak Fusion Test Reactor, which has planned tritium discharges, makes two-dimensional tritium detection techniques important in helping to determine torus tritium inventories. We have performed experiments in which highly oriented pyrolytic graphite (HOPG) samples were first tritium implanted with fluences of ∼10 16 T/cm 2 at energies approx. 0 C resulted in no discernible motion of tritium along the basal plane, but did show that significant desorption of the implanted tritium occurred. The current results indicate that tritium in quantities of 10 12 T/cm 2 in tritiated components could be readily detected by imaging at lower magnifications

  16. Tritium containment of controlled thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa; Tsukumo, Kiyohiko; Suzuki, Tatsushi

    1979-01-01

    It is well known that tritium is used as the fuel for nuclear fusion reactors. The neutrons produced by the nuclear fusion reaction of deuterium and tritium react with lithium in blankets, and tritium is produced. The blankets reproduce the tritium consumed in the D-T reaction. Tritium circulates through the main cooling system and the fuel supply and evacuation system, and is accumulated. Tritium is a radioactive substance emitting β-ray with 12.6 year half-life, and harmful to human bodies. It is an isotope of hydrogen, and apt to diffuse and leak. Especially at high temperature, it permeates through materials, therefore it is important to evaluate the release of tritium into environment, to treat leaked tritium to reduce its release, and to select the method of containing tritium. The permeability of tritium and its solubility in structural materials are discussed. The typical blanket-cooling systems of nuclear fusion reactors are shown, and the tungsten coating of steam generator tubes and tritium recovery system are adopted for reducing tritium leak. In case of the Tokamak type reactor of JAERI, the tritium recovery system is installed, in which the tritium gas produced in blankets is converted to tritium steam with a Pd-Pt catalytic oxidation tower, and it is dehydrated and eliminated with a molecular sieve tower, then purified and recovered. (Kako, I.)

  17. Tritium problems in fusion reactor systems

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1975-01-01

    A brief introduction is given to the role tritium will play in the development of fusion power. The biological and worldwide environmental behavior of tritium is reviewed. The tritium problems expected in fusion power reactors are outlined. A few thoughts on tritium permeation and recent results for tritium cleanup and CT 4 accumulation are presented. Problems involving the recovery of tritium from the breeding blanket in fusion power reactors are also considered, including the possible effect of impurities in lithium blankets and the use of lithium as a regenerable getter pump. (auth)

  18. Tritium transport and control in the FED

    International Nuclear Information System (INIS)

    Rogers, M.L.

    1981-01-01

    The tritium systems for the FED have three primary purposes. The first is to provide tritium and deuterium fuel for the reactor. This fuel can be new tritium or deuterium delivered to the plant site, or recycled DT from the reactor that must be processed before it can be recycled. The second purpose of the FED tritium systems is to provide state-of-the-art tritium handling to limit worker radiation exposure and to minimize tritium losses to the environment. The final major objective of the FED tritium systems is to provide an integrated system test of the tritium handling technology necessary to support the fusion reactor program. Every effort is being made to incorporate available information from the Tritium System Test Assembly (TSTA) at Los Alamos National Laboratory, the Tokamak Fusion Test Reactor (TFTR) tritium systems, and the tritium handling information generated within DOE for the past 20 years

  19. Tritium Mitigation/Control for Advanced Reactor System

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong; Christensen, Richard; Saving, John P

    2018-03-31

    A tritium removal facility, which is similar to the design used for tritium recovery in fusion reactors, is proposed in this study for fluoride-salt-cooled high-temperature reactors (FHRs) to result in a two-loop FHR design with the elimination of an intermediate loop. Using this approach, an economic benefit can potentially be obtained by removing the intermediate loop, while the safety concern of tritium release can be mitigated. In addition, an intermediate heat exchanger (IHX) that can yield a similar tritium permeation rate to the production rate of 1.9 Ci/day in a 1,000 MWe PWR needs to be designed to prevent the residual tritium that is not captured in the tritium removal system from escaping into the power cycle and ultimately the environment. The main focus of this study is to aid the mitigation of tritium permeation issue from the FHR primary side to significantly reduce the concentration of tritium in the secondary side and the process heat application side (if applicable). The goal of the research is to propose a baseline FHR system without the intermediate loop. The specific objectives to accomplish the goals are: 1. To estimate tritium permeation behavior in FHRs; 2. To design a tritium removal system for FHRs; 3. To meet the same tritium permeation level in FHRs as the tritium production rate of 1.9 Ci/day in 1,000 MWe PWRs; 4. To demonstrate economic benefits of the proposed FHR system via comparing with the three-loop FHR system. The objectives were accomplished by designing tritium removal facilities, developing a tritium analysis code, and conducting an economic analysis. In the fusion reactor community, tritium extraction has been widely investigated and researched. Borrowing the experiences from the fusion reactor community, a tritium control and mitigation system was proposed. Based on mass transport theories, a tritium analysis code was developed, and the tritium behaviors were analyzed using the developed code. Tritium removal facilities

  20. The effective cost of tritium for tokamak fusion power reactors with reduced tritium production systems

    International Nuclear Information System (INIS)

    Gilligan, J.G.; Evans, K.

    1983-01-01

    If sufficient tritium cannot be produced and processed in tokamak blankets then at least two alternatives are possible. Tritium can be purchased; or reactors with reduced tritium (RT) content in the plasma can be designed. The latter choice may require development of magnet technology etc., but the authors show that the impact on the cost-of-electricity may be mild. Cost tradeoffs are compared to the market value of tritium. Adequate tritium production in fusion blankets is preferred, but the authors show there is some flexibility in the deployment of fusion if this is not possible

  1. The introduction of tritium in lactose and saccharose by isotope exchange with gaseous tritium

    International Nuclear Information System (INIS)

    Akulov, G.P.; Snetkova, E.V.; Kaminskij, Yu.L.; Kudelin, B.K.; Efimova, V.L.

    1991-01-01

    Methods for conducting reactions of catalytic protium-tritium isotopic exchange with gaseous tritium were developed in order to synthesize tritium labelled lactose and saccharose. These methods enabled to prepare these labelled disaccharides with high molar activity. The yield was equal to 50-60%, radiochemical purity ∼ 95%

  2. Tritium accountancy in fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S. [Savannah River National Laboratory, Aiken, SC (United States); Moore, M.L. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  3. A prototype wearable tritium monitor

    International Nuclear Information System (INIS)

    Surette, R. A.; Dubeau, J.

    2008-01-01

    Sudden unexpected changes in tritium-in-air concentrations in workplace air can result in significant unplanned exposures. Although fixed area monitors are used to monitor areas where there is a potential for elevated tritium in air concentrations, they do not monitor personnel air space and may require some time for acute tritium releases to be detected. There is a need for a small instrument that will quickly alert staff of changing tritium hazards. A moderately sensitive tritium instrument that workers could wear would bring attention to any rise in tritium levels that were above predetermined limits and help in assessing the potential hazard therefore minimizing absorbed dose. Hand-held instruments currently available can be used but require the assistance of a fellow worker or restrict the user to using only one hand to perform some duties. (authors)

  4. Tritium pellet injection sequences for TFTR

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Milora, S.L.; Attenberger, S.E.; Singer, C.E.; Schmidt, G.L.

    1983-01-01

    Tritium pellet injection into neutral deuterium, beam heated deuterium plasmas in the Tokamak Fusion Test Reactor (TFTR) is shown to be an attractive means of (1) minimizing tritium use per tritium discharge and over a sequence of tritium discharges; (2) greatly reducing the tritium load in the walls, limiters, getters, and cryopanels; (3) maintaining or improving instantaneous neutron production (Q); (4) reducing or eliminating deuterium-tritium (D-T) neutron production in non-optimized discharges; and (5) generally adding flexibility to the experimental sequences leading to optimal Q operation. Transport analyses of both compression and full-bore TFTR plasmas are used to support the above observations and to provide the basis for a proposed eight-pellet gas gun injector for the 1986 tritium experiments

  5. Radionuclide Basics: Tritium

    Science.gov (United States)

    Tritium is a hydrogen atom that has two neutrons in the nucleus and one proton. It is radioactive and behaves like other forms of hydrogen in the environment. Tritium is produced naturally in the upper atmosphere and as a byproduct of nuclear fission.

  6. Tritium release from advanced beryllium materials after loading by tritium/hydrogen gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, Vladimir, E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, Rolf; Moeslang, Anton; Kurinskiy, Petr; Vladimirov, Pavel [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Dorn, Christopher [Materion Beryllium & Composites, 6070 Parkland Boulevard, Mayfield Heights, OH 44124-4191 (United States); Kupriyanov, Igor [Bochvar Russian Scientific Research Institute of Inorganic Materials, Rogova str., 5, 123098 Moscow (Russian Federation)

    2016-06-15

    Highlights: • A major tritium release peak for beryllium samples occurs at temperatures higher than 1250 K. • A beryllium grade with comparatively smaller grain size has a comparatively higher tritium release compared to the grade with larger grain size. • The pebbles of irregular shape with the grain size of 10–30 μm produced by the crushing method demonstrate the highest tritium release rate. - Abstract: Comparison of different beryllium samples on tritium release and retention properties after high-temperature loading by tritium/hydrogen gas mixture and following temperature-programmed desorption (TPD) tests has been performed. The I-220-H grade produced by hot isostatic pressing (HIP) having the smallest grain size, the pebbles of irregular shape with the smallest grain size (10–30 μm) produced by the crushing method (CM), and the pebbles with 1 mm diameter produced by the fluoride reduction method (FRM) having a highly developed inherent porosity show the highest release rate. Grain size and porosity are considered as key structural parameters for comparison and ranking of different beryllium materials on tritium release and retention properties.

  7. Tritium: a model for low level long-term ionizing radiation exposure

    International Nuclear Information System (INIS)

    Carsten, A.L.

    1984-01-01

    The somatic, cytogenetic and genetic effects of single and chronic tritiated water (HTO) ingestion in mice was investigated. This study serves not only as an evaluation of tritium toxicity (TRITOX) but due to its design involving long-term low concentration ingestion of HTO may serve as a model for low level long-term ionizing radiation exposure in general. Long-term studies involved animals maintained on HTO at concentrations of 0.3 μCi/ml, 1.0 μCi/ml, 3.0 μCi/ml or depth dose equivalent chronic external exposures to 137 Cs gamma rays. Maintenance on 3.0 μCi/ml resulted in no effect on growth, life-time shortening or bone marrow cellularity, but did result in a reduction of bone marrow stem cells, an increase in DLM's in second generation animals maintained on this regimen and cytogenetic effects as indicated by increased sister chromatid exchanges (SCE's) in bone marrow cells, increased chromosome aberrations in the regenerating liver and an increase in micronuclei in red blood cells. Biochemical and microdosimetry studies showed that animals placed on the HTO regimen reached tritium equilibrium in the body water in approximately 17 to 21 days with a more gradual increase in bound tritium. When animals maintained for 180 days on 3.0 μCi/ml HTO were placed on a tap water regimen, the tritium level in tissue dropped from the equilibrium value of 2.02 μCi/ml before withdrawal to 0.001 μCi/ml at 28 days. 18 references

  8. An assembly of tritium production experiment

    International Nuclear Information System (INIS)

    Abe, Toshihiko

    1981-01-01

    An assembly for tritium production experiment, i.e. Tritium Extraction System (TREX) constructed as a small scale test facility for tritium production, and Tritium Removal System (TRS) attached to TREX, and the preliminary results of the experiments with them are described. The radiological safety of the process and operation is also an important consideration. Lithium-aluminum alloy was selected as the most promising target material. The following matters are involved in the scope of production technology: the selection of a target material and target preparation, reactor irradiation, the construction of a facility for the extraction of tritium from the irradiated target, the establishment of the optimum conditions of extraction, the purification, collection and storage of tritium, and the inspection of the product. The tritium production experiment at JAERI is yet on the initial stage; the development is to be continued with the stepwise increase of the scale of tritium production. (J.P.N.)

  9. Tritium migration in nuclear desalination plants

    International Nuclear Information System (INIS)

    Muralev, E.D.

    2003-01-01

    Tritium transport, as one of important items of radiation safety assessment, should be taken into consideration before construction of a Nuclear Desalination Plant (NDP). The influence of tritium internal exposition to the human body is very dangerous because of 3 H associations with water molecules. The problem of tritium in nuclear engineering is connected to its high penetration ability (through fuel element cans and other construction materials of a reactor), with the difficulty of extracting tritium from process liquids and gases. Sources of tritium generation in NDP are: nuclear fuel, boron in control rods, and deuterium in heat carrier. Tritium passes easily through the walls of a reactor vessel, intermediate heat exchangers, steam generators and other technological equipment, through the walls of heat carrier pipelines. The release of tritium and its transport could be assessed, using mathematical models, based on the assumption that steady state equilibrium has been attained between the sources of tritium, produced water and release to the environment. Analysis of the model shows the tritium concentration dependence in potable water on design features of NDP. The calculations obtained and analysis results for NDP with BN-350 reactor give good convergence. According to the available data, tritium concentration in potable water is less than the statutory maximum concentration limit. The design of a NDP requires elaboration of technical solutions, capable of minimising the release of tritium to potable water produced. (author)

  10. Tritium issues in plasma wall interactions

    International Nuclear Information System (INIS)

    Tanabe, T.

    2009-01-01

    In order to establish a D-T fusion reactor as an energy source, it is not enough to have a DT burning plasma, and economical conversion of fusion energy to electricity and/or heat, a large enough margin of tritium breeding and tritium safety must be simultaneously achieved. In particular, handling of huge amount of tritium needs a significant effort to ensure that the radiation dose of radiological workers and of the public is below the limits specified by the International Commission on Radiological Protection. For the safety reasons, tritium in a reactor will be limited to only a few kg orders in weight, with radioactivity up to 10 17 Bq. Since public exposure to tritium is regulated at a level as tiny as a few Bq/cm 2 , tritium must be strictly confined in a reactor system with accountancy of an order of pg (pico-gram). Generally qualitative analysis with the accuracy of more than 3 orders of magnitude is hardly possible. We are facing to lots of safety concerns in the handling of huge amounts of radioactive tritium as a fuel and to be bred in a blanket. In addition, tritium resources are very limited. Not only for the safety reason but also for the saving of tritium resources, tritium retention in a reactor must be kept as small as possible. In the present tokamaks, however, hydrogen retention is significantly large, i.e. more than 20% of fueled hydrogen is continuously piled up in the vacuum vessel, which must not be allowed in a reactor. After the introduction of tritium as a hydrogen radioisotope, this lecture will present tritium issues in plasma wall interactions, in particular, fueling, retention and recovering, considering the handling of large amounts of tritium, i.e. confinement, leakage, contamination, permeation, regulations and tritium accountancy. Progress in overcoming such problems will be also presented. This document is made of the slides of the presentation. (author)

  11. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Tanaka, S.; Yamawaki, M.

    1994-01-01

    In a fusion reactor or tritium handling facilities, contamination of concrete by tritium and subsequent release from it to the reactor or experimental rooms is a matter of problem for safety control of tritium and management of operational environment. In order to evaluate these tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were studied by combining various experimental methods. From the basic studies on tritium-cement interactions, it has become possible to evaluate tritium uptake by cement or concrete and subsequent tritium release behavior as well as tritium removing methods from them

  12. Process and device for step by step enrichment of deuterium and/or tritium by isotope exchange

    International Nuclear Information System (INIS)

    Iniotakis, N.; Decken, C.B. von der.

    1984-01-01

    Deuterium and/or tritium are bound to steam by isotope exchange after permeation through an exchange wall. Primary and secondary flows are guided by the counterflow principle. The secondary side has a metal oxide as oxidation catalyst. The plant can consist of several enrichment stages. The various flows and parts of the plant are described. (PW) [de

  13. The distribution of tritium in the terrestrial and aquatic environments of the Creys-Malville nuclear power plant (2002-2005)

    International Nuclear Information System (INIS)

    Jean-Baptiste, P.; Baumier, D.; Fourre, E.; Dapoigny, A.; Clavel, B.

    2007-01-01

    The Creys-Malville nuclear plant, located on the left bank of the Rhone, was shut down in 1998. The facilities are currently in their initial stage of dismantling. In order to establish a baseline for tritium in the vicinity of the site prior to the main dismantling phase, we carried out a monitoring program between 2002 and 2005 in the main terrestrial and aquatic compartments of the local environment. Tritium levels in the groundwaters and in the Rhone waters correspond to the regional tritium concentration in precipitation. The data obtained for the terrestrial environment are also in good agreement with the regional background and do not show any specific signature linked to the nuclear plant. The various aquatic compartments of the Rhone (fish, plant, sediment) are significantly enriched in tritium both upstream and downstream of the power plant: although Tissue-Free Water Tritium concentrations are in equilibrium with the river water, the non-exchangeable fraction of organic bound tritium in plants and fishes shows values which outpace the river water background by one to two orders of magnitude, and up to four to five orders of magnitude in the sediments. This tritium anomaly is not related to the nuclear plant, as it is already present at the Swiss border 100 km upstream of the site. Although fine particles of tritiated polystyrene entering the composition of the luminous paints used by the clock industry have been suspected on several occasions, the exact nature and the origin of this tritium source remain unknown and require further investigations

  14. Effects of tritium in elastomers

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1982-01-01

    Elastomers are used as flange gaskets in the piping system of the Savannah River Plant tritium facilities. A number of elastomers is being examined to identify those compounds more radiation-resistant than the currently specified Buna-N rubber and to study the mechanism of tritium radiation damage. Radiation resistance is evaluated by compression set tests on specimens exposed to about 1 atm tritium for several months. Initial results show that ethylene-propylene rubber and three fluoroelastomers are superior to Buna-N. Off-gassing measurements and autoradiography show that retained surface absorption of tritium varies by more than an order of magnitude among the different elastomer compounds. Therefore, tritium solubility and/or exchange may have a role in addition to that of chemical structure in the damage process. Ongoing studies of the mechanism of radiation damage include: (1) tritium absorption kinetics, (2) mass spectroscopy of radiolytic products, and (3) infrared spectroscopy

  15. A proposed model for the transfer of environmental tritium to man and tritium metabolism in model animals

    International Nuclear Information System (INIS)

    Saito, Masahiro; Ishida, M.R.

    1987-01-01

    To evaluate the accumulated dose in human bodies due to the environmental tritium, it is of required to establish an adequate model for the tritium transfer from the environment to man and to obtain enough information on the metabolic behaviour of tritium in animal bodies using model animal system. In this report, first we describe about a proposed model for the transfer of environmental tritium to man and secondly mention briefly about the recent works on the tritium metabolism in newborn animals which have been treated as a model system of tritium intake through food chain. (author)

  16. Contribution to the tritium continental effect

    International Nuclear Information System (INIS)

    Lewis, R.R.; Froehlich, K.; Hebert, D.

    1987-01-01

    The results of tritium measurements of atmospheric water vapour and precipitation samples for 1982 and 1983 are presented. The data were used to establish a simple model describing the tritium continental effect taking into account re-evaporation of tritium from the continental land surfaces and man-made tritium. (author)

  17. Tritium transport analysis for CFETR WCSB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Yang, Wanli; Li, Yuanjie; Ge, Zhihao; Nie, Xingchen; Gao, Zhongping

    2017-01-15

    Highlights: • A simplified tritium transport model for CFETR WCSB blanket was developed. • Tritium transport process in CFETR WCSB blanket was analyzed. • Sensitivity analyses of tritium transport parameters were carried out. - Abstract: Water Cooled Solid Breeder (WCSB) blanket was put forward as one of the breeding blanket candidate schemes for Chinese Fusion Engineering Test Reactor (CFETR). In this study, a simplified tritium transport model was developed. Based on the conceptual engineering design, neutronics and thermal-hydraulic analyses of CFETR WCSB blanket, tritium transport process was analyzed. The results show that high tritium concentration and inventory exist in primary water loop and total tritium losses exceed CFETR limits under current conditions. Conducted were sensitivity analyses of influential parameters, including tritium source, temperature, flow-rate capacity and surface condition. Tritium performance of WCSB blanket can be significantly improved under a smaller tritium impinging rate, a larger flow-rate capacity or a better surface condition. This work provides valuable reference for the enhancement of tritium transport behavior in CFETR WCSB blanket.

  18. Tritium proof-of-principle pellet injector

    International Nuclear Information System (INIS)

    Fisher, P.W.

    1991-07-01

    The tritium proof-of-principle (TPOP) experiment was designed and built by Oak Ridge National Laboratory (ORNL) to demonstrate the formation and acceleration of the world's first tritium pellets for fueling of future fusion reactors. The experiment was first used to produce hydrogen and deuterium pellets at ORNL. It was then moved to the Tritium Systems Test Assembly at Los Alamos National Laboratory for the production of tritium pellets. The injector used in situ condensation to produce cylindrical pellets in a 1-m-long, 4-mm-ID barrel. A cryogenic 3 He separator, which was an integral part of the gun assembly, was capable of lowering 3 He levels in the feed gas to <0.005%. The experiment was housed to a glovebox for tritium containment. Nearly 1500 pellets were produced during the course of the experiment, and about a third of these were pure tritium or mixtures of deuterium and tritium. Over 100 kCi of tritium was processed through the experiment without incident. Tritium pellet velocities of 1400 m/s were achieved with high-pressure hydrogen propellant. The design, operation, and results of this experiment are summarized. 34 refs., 44 figs., 3 tabs

  19. Tritium permeation and recovery

    International Nuclear Information System (INIS)

    Bond, R.A.; Hamilton, A.M.

    1987-01-01

    The paper is an appendix to a study of the reactor relevance of the NET design concept. The latter study examines whether the technologies and design principles proposed for NET can be directly extrapolated to a demonstration (DEMO) reactor. In this appendix, tritium transport in the DEMO breeding blanket is considered with emphasis on the permeation rate from the lithium-lead breeder into the coolant. A computational model used to calculate the tritium transport in the breeder blanket is described. Results are reported for the tritium transport in the NET/INTOR type blanket as well as the DEMO blanket in order to provide a comparison. In addition, results are presented for the helium coolant tritium extraction analysis. (U.K.)

  20. The LLNL portable tritium processing system

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The end of the Cold War significantly reduced the need for facilities to handle radioactive materials for the US nuclear weapons program. The LLNL Tritium Facility was among those slated for decommissioning. The plans for the facility have since been reversed, and it remains open. Nevertheless, in the early 1990s, the cleanup (the Tritium Inventory Removal Project) was undertaken. However, removing the inventory of tritium within the facility and cleaning up any pockets of high-level residual contamination required that we design a system adequate to the task and meeting today's stringent standards of worker and environmental protection. In collaboration with Sandia National Laboratory and EG ampersand G Mound Applied Technologies, we fabricated a three-module Portable Tritium Processing System (PTPS) that meets current glovebox standards, is operated from a portable console, and is movable from laboratory to laboratory for performing the basic tritium processing operations: pumping and gas transfer, gas analysis, and gas-phase tritium scrubbing. The Tritium Inventory Removal Project is now in its final year, and the portable system continues to be the workhorse. To meet a strong demand for tritium services, the LLNL Tritium Facility will be reconfigured to provide state-of-the-art tritium and radioactive decontamination research and development. The PTPS will play a key role in this new facility

  1. Fixation and long-term accumulation of tritium from tritiated water in an experimental aquatic environment

    International Nuclear Information System (INIS)

    Strand, J.A.; Templeton, W.L.; Olson, P.A.

    1975-01-01

    The accumulation of tritium in selected freshwater biota was studied in a 10 m diameter concrete-lined pond at the Hanford Atomic Energy Works. Tritium as tritiated water was introduced for 8 months continuously in the replacement water at a concentration of μCi per liter; and water, biota (carp, clams, crayfish, periphyton, pondweed), and sediments were sampled on a predetermined schedule. The pond was maintained on uncontaminated replacement waters for an additional 8 months to determine the rate of elimination from the ecosystem. After the first day, tissue-free-water tritium in all biota approached an equilibrium with pond water. Final concentration factors of 0.89, 0.87, 0.82, 0.92, 0.77, 0.88 were calculated for carp, clam, crayfish, snail, periphyton, and pondweed. Although highly variable, analyses of pond sediments suggested an initial rapid uptake by the loose water fraction, attaining 0.30 of the pond equilibrium level in three days. There was evidence to suggest a secondary slower rate of uptake that accounted for 0.65 of the pond equilibrium level as determined at seven months. Tissue-bond tritium initially increased rapidly in all biota sampled, but slowed with time. Equilibrium conditions were not reached. Final concentration factors for carp, clam, crayfish, snail, periphyton, and pondweed were calculated to be 0.49, 0.10, 0.53, 0.54, 0.15, and 0.62. Analyses of sediments after removal of the loose water fraction revealed little or no organically bound tritium

  2. Contribution to the tritium continental effect

    International Nuclear Information System (INIS)

    Lewis, R.R.; Froehlich, K.; Hebert, D.

    1987-01-01

    The results of tritium measurements of atmospheric water vapour and precipitation samples for 1982 and 1983 are presented. The data were used to establish a simple model describing the tritium continental effect taking into account re-evaporation of tritium from the continental land surfaces. Some comments on man made tritium are given. (author)

  3. Removal of contaminating tritium and tritium pressure measurement by a secondary electron multiplier

    International Nuclear Information System (INIS)

    Ichimura, K.; Watanabe, K.; Nishizawa, K.; Fujita, J.

    1984-01-01

    A ceramic secondary electron multiplier (SEM), Ceratron, was used to study impairment of the SEM performance due to adsorbed tritium, its decontamination, and the applicability of the SEM to measure tritium pressure. The background level of the SEM increased significantly, up to its counting limit, due to tritium adsorption. Heating it to 300 0 C in vacuo and/or in the presence of reactive gases such as D 2 and CO at 1 x 10 -4 Pa was not effective to decontaminate the SEM, whereas photon irradiation was extremely powerful for the decontamination. The tritium (HT) pressure in a range of 1 x 10 -6 - 1 x 10 -3 Pa could be measured with no significant impairment of the SEM performance with the aid of photon irradiation. It is revealed that a particle flux as low as 1 particle/s will be able to measure in the presence of tritium if suitable photon sources are installed in the systems. (orig.)

  4. Metabolism distribution and transfer of tritium in pregnant mice after exposure to tritium water

    International Nuclear Information System (INIS)

    Lu Huimin; Zhou Xiangyan; Li Li; Zhang Zhixing

    1993-01-01

    Tritium water with three kind of different dose was singly injected intraperitoneally to pregnant mice in various time. The tritium concentration in the tissues from mother mice were measured on the 3.5 days after mother mice parturition. Dose rates in baby mice were estimated, as well as the transfer coefficient of tritium from mother mice to baby mice was calculated based on the tritium concentrations. The results of the experiment showed that tritium was almost uniformly distributed among the tissues after exposure to tritiated water at three experimental groups. However, it was found that relative concentrations of tritium in the baby mice tissues were consistently higher than that in mother mice tissues for three experimental groups. The relative concentration of tritium in the tissues was not affected by the different dose but developing on the exposure time. The results of radiation dose rates from baby mice estimation at the end of exposure showed that the higher radiation dose rates was found in the mice exposed to tritiated water during 7.5 days. The transfer coefficient of tritium from mother mice into baby mice was almost no different among the three radiation dose groups. The highest transfer coefficient was observed in mother mice exposed to tritiated baby mice was almost no different among the three radiation dose groups. The highest coefficient was observed in mother mice exposed to tritiated water during 16.5 days, however it was not found that transfer coefficient were higher in the mother mice exposed to tritiated water during 11.5 days than that of 7.5 days

  5. Conceptual design of tritium treatment facility

    International Nuclear Information System (INIS)

    Tachikawa, Katsuhiro

    1982-01-01

    In connection with the development of fusion reactors, the development of techniques concerning tritium fuel cycle, such as the refining and circulation of fuel, the recovery of tritium from blanket, waste treatment and safe handling, is necessary. In Japan Atomic Energy Research Institute, the design of the tritium process research laboratory has been performed since fiscal 1977, in which the following research is carried out: 1) development of hydrogen isotope separation techniques by deep cooling distillation method and thermal diffusion method, 2) development of the refining, collection and storage techniques for tritium using metallic getters and palladium-silver alloy films, and 3) development of the safe handling techniques for tritium. The design features of this facility are explained, and the design standard for radiation protection is shown. At present, in the detailed design stage, the containment of tritium and safety analysis are studied. The building is of reinforced concrete, and the size is 48 m x 26 m. Glove boxes and various tritium-removing facilities are installed in two operation rooms. Multiple wall containment system and tritium-removing facilities are explained. (Kako, I.)

  6. Tritium experiments on components for fusion fuel processing at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Konishi, S.; Yoshida, H.; Naruse, Y.; Carlson, R.V.; Binning, K.E.; Bartlit, J.R.; Anderson, J.L.

    1990-01-01

    Under a collaborative agreement between US and Japan, two tritium processing components, a palladium diffuser and a ceramic electrolysis cell have been tested with tritium for application to a Fuel Cleanup System (FCU) for plasma exhaust processing at the Los Alamos National Laboratory. The fundamental characteristics, compatibility with tritium, impurities effects with tritium, and long-term behavior of the components, were studied over a three year period. Based on these studies, an integrated process loop, ''JAERI Fuel Cleanup System'' equipped with above components was installed at the TSTA for full scale demonstration of the plasma exhaust reprocessing

  7. Radiation-induced tritium labelling and product analysis

    Energy Technology Data Exchange (ETDEWEB)

    Peng, C.T. (California Univ., San Francisco, CA (United States). Dept. of Pharmaceutical Chemistry)

    1993-05-01

    By-products formed in radiation-induced tritium labelling are identified by co-chromatography with authentic samples or by structure prediction using a quantitative structure-retention index relationship. The by-products, formed from labelling of steroids, polynuclear aromatic hydrocarbons, 7-membered heterocyclic ring structures, 1,4-benzodiazepines, 1-haloalkanes, etc. with activated tritium and adsorbed tritium, are shown to be specifically labelled and anticipated products from known chemical reactions. From analyses of the by-products, one can conclude that the hydrogen abstraction by tritium atoms and the substitution by tritium ions are the mechanisms of labelling. Classification of the tritium labelling methods, on the basis of the type of tritium reagent, clearly shows the active role played by tritium atoms and ions in radiation-induced methods. (author).

  8. Tritium activity balance in hairless rats following skin-contact exposure to tritium-gas-contaminated stainless-steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A

    1994-06-01

    Studies using animals and human volunteers have demonstrated that the dosimetry for skin-contact exposure to contaminated metal surfaces differs from that for the intake of tritiated water or tritium gas. However, despite the availability of some information on the dosimetry for skin-contact with tritium-gas-contaminated metal surfaces, uncertainties in estimating skin doses remain, because of poor accounting for the applied tritium activity in the body (Eakins et al., 1975; Trivedi, 1993). Experiments on hairless rats were performed to account for the tritium activity applied onto the skin. Hairless rats were contaminated through skin-contact exposure to tritium-gas-contaminated stainless-steel planchets. The activity in the first smear was about 35% of the total removable activity (measured by summing ten consecutive swipes). The amount of tritium applied onto the skin can be approximated by estimating the tritium activity in the first smear removed form the contaminated surfaces. 87 {+-} 9% of the transferred tritium was retained in the exposed skin 30 min post-exposure. 30 min post exposure, the unexposed skin and the carcass retained 8 {+-} 6% and 3 {+-} 2% of the total applied tritium activity, respectively. The percentage of tritium evolved from the body or breathed out was estimated to be 2 {+-} 1% of the total applied activity 30 min post-exposure. It is recommended that to evaluate accurately the amount of tritium transferred to the skin, alternative measurement approaches are required that can directly account for the transferred activity onto the skin. 15 refs., 13 tabs., 7 figs.

  9. Tritium monitoring in environment at ICIT Tritium Separation Facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, I.; Vagner, Irina; Faurescu, I.; Toma, A.; Dulama, C.; Dobrin, R.

    2008-01-01

    Full text: The Cryogenic Pilot is an experimental project developed within the national nuclear energy research program, which is designed to develop the required technologies for tritium and deuterium separation by cryogenic distillation of heavy water. The process used in this installation is based on a combination between liquid-phase catalytic exchange (LPCE) and cryogenic distillation. Basically, there are two ways that the Cryogenic Pilot could interact with the environment: by direct atmospheric release and through the sewage system. This experimental installation is located 15 km near the region biggest city and in the vicinity - about 1 km, of Olt River. It must be specified that in the investigated area there is an increased chemical activity; almost the entire Experimental Cryogenic Pilot's neighborhood is full of active chemical installations. This aspect is really essential for our study because the sewerage system is connected with the other three chemical plants from the neighborhood. For that reason we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and wastewater of industrial activity from neighborhood. In order to establish the base level of tritium concentration in the environment around the nuclear facilities, we investigated the sample preparation treatment for different types of samples: onion, green beams, grass, apple, garden lettuce, tomato, cabbage, strawberry and grapes. We used azeotropic distillation of all types of samples, the carrier solvent being toluene from different Romanian providers. All measurements for the determination of environmental tritium concentration were performed using liquid scintillation counting (LSC), with the Quantulus 1220 spectrometer. (authors)

  10. Tritium inventory prediction in a CANDU plant

    International Nuclear Information System (INIS)

    Song, M.J.; Son, S.H.; Jang, C.H.

    1995-01-01

    The flow of tritium in a CANDU nuclear power plant was modeled to predict tritium activity build-up. Predictions were generally in good agreement with field measurements for the period 1983--1994. Fractional contributions of coolant and moderator systems to the environmental tritium release were calculated by least square analysis using field data from the Wolsong plant. From the analysis, it was found that: (1) about 94% of tritiated heavy water loss came from the coolant system; (2) however, about 64% of environmental tritium release came from the moderator system. Predictions of environmental tritium release were also in good agreement with field data from a few other CANDU plants. The model was used to calculate future tritium build-up and environmental tritium release at Wolsong site, Korea, where one unit is operating and three more units are under construction. The model predicts the tritium inventory at Wolsong site to increase steadily until it reaches the maximum of 66.3 MCi in the year 2026. The model also predicts the tritium release rate to reach a maximum of 79 KCi/yr in the year 2012. To reduce the tritium inventory at Wolsong site, construction of a tritium removal facility (TRF) is under consideration. The maximum needed TRF capacity of 8.7 MCi/yr was calculated to maintain tritium concentration effectively in CANDU reactors

  11. Management of tritium at nuclear facilities

    International Nuclear Information System (INIS)

    1984-01-01

    This report presents extending summaries of the works of the participants to an IAEA co-ordinated research programme, ''Handling Tritium - bearing effluents and wastes''. The subjects covered include production of tritium in nuclear power plants (mainly heavy water and light water reactors), as well as at reprocessing plants; removal and enrichment of tritium at nuclear facilities; conditioning methods and characteristics of immobilized tritium of low and high concentration; some potential methods of storage and disposal of tritium. In addition to the conclusions of this three-years work, possible activities in the field are recommended

  12. Handling of tritium at TFTR

    International Nuclear Information System (INIS)

    Pierce, C.W.; Howe, H.J.; Yemin, L.; Lind, K.

    1977-01-01

    Some of the engineering approaches taken at TFTR for the tritium control systems are discussed as the requirements being placed on the tritium systems by the operating scenarios of the Tokamak. The tritium control systems presently being designed for TFTR will limit the annual release to the environment to less than 100 curies

  13. Tritium monitor with improved gamma-ray discrimination

    Science.gov (United States)

    Cox, Samson A.; Bennett, Edgar F.; Yule, Thomas J.

    1985-01-01

    Apparatus and method for selective measurement of tritium oxide in an environment which may include other radioactive components and gamma radiation, the measurement including the selective separation of tritium oxide from a sample gas through a membrane into a counting gas, the generation of electrical pulses individually representative by rise times of tritium oxide and other radioactivity in the counting gas, separation of the pulses by rise times, and counting of those pulses representative of tritium oxide. The invention further includes the separate measurement of any tritium in the sample gas by oxidizing the tritium to tritium oxide and carrying out a second separation and analysis procedure as described above.

  14. Tritium means of detection and of protection; Le tritium moyens de detection et de protection

    Energy Technology Data Exchange (ETDEWEB)

    Sutra-Fourcade, Y [Commissariat a l' Energie Atomique, Marcoule (France). Centre d' Etudes Nucleaires

    1967-07-01

    The report is an attempt to correlate present data concerning tritium, especially from the health physics points of view. The various detection and measurement methods are reviewed in turn: measurement of tritium in the atmosphere, in liquids and on surfaces. The operation of various types of apparatus is analyzed and the sensitivity limits deduced from laboratory tests are given. Otter sections are devoted to the means of protection which can be used against inhalation of tritium (ventilation, protective clothing) and to calculations of the changes in atmospheric pollution in a given place and of the time spent in a contaminated zone. The last part deals with the decontamination of equipment contaminated with tritium. (author) [French] Le rapport represente un essai de synthese des connaissances actuelles sur le tritium, essentiellement du point de vue de la radioprotection. Les differents moyens de detection et de mesure sont successivement passes en revue: mesure du tritium dans l'atmosphere, dans les liquides, sur les surfaces. Le fonctionnement de differents types d'appareils est analyse et les limites de sensibilite sont donnees d'apres les essais effectues en laboratoire. D'autres paragraphes sont consacres aux moyens de protection contre l'inhalation du tritium (ventilation, vetements de protection), a des calculs d'evolution de pollution atmospherique dans les locaux et de temps de presence en atmosphere contaminee. La derniere partie se rapporte a la de contamination de materiel contamine par du tritium. (auteur)

  15. A review of tritium licensing requirements

    International Nuclear Information System (INIS)

    Meikle, A.B.

    1982-12-01

    Present Canadian regulations and anticipated changes to these regulations relevant to the utilization of tritium in fusion facilities and in commercial applications have been reviewed. It is concluded that there are no serious licensing obstacles, but there are a number of requirements which must be met. A license will be required from Atomic Energy Control Board if Ontario Hydro tritium is to be applied by other users. A license is required from the Federal Government to export or import tritium. A licensed container will be required for the storage and shipping of tritium. The containers being designed by AECL and Ontario Hydro and which are currently being tested will adequately store and ship all of the Ontario Hydro tritium but are unnecessarily large for the small quantities required by the commercial tritium users. Also, some users may prefer to receive tritium in gaseous form. An additional, smaller container should be considered. The licensing of overseas fusion facilities for the use of tritium is seen as a major undertaking offering opportunities to Canadian Fusion Fuels Technology Project to undertake health, safety and environmental analysis on behalf of these facilities

  16. Tritium Systems Test Facility. Volume I

    International Nuclear Information System (INIS)

    Anderson, G.W.; Battleson, K.W.; Bauer, W.

    1976-10-01

    Sandia Laboratories proposes to build and operate a Tritium Systems Test Facility (TSTF) in its newly completed Tritium Research Laboratory at Livermore, California (see frontispiece). The facility will demonstrate at a scale factor of 1:200 the tritium fuel cycle systems for an Experimental Power Reactor (EPR). This scale for each of the TSTF subsystems--torus, pumping system, fuel purifier, isotope separator, and tritium store--will allow confident extrapolation to EPR dimensions. Coolant loop and reactor hall cleanup facilities are also reproduced, but to different scales. It is believed that all critical details of an EPR tritium system will be simulated correctly in the facility. Tritium systems necessary for interim devices such as the Ignition Test Reactor (ITR) or The Next Step (TNS) can also be simulated in TSTF at other scale values. The active tritium system will be completely enclosed in an inert atmosphere glove box which will be connected to the existing Gas Purification System (GPS) of the Tritium Research Laboratory. In effect, the GPS will become the scaled environmental control system which otherwise would have to be built especially for the TSTF

  17. Management of Tritium in ITER Waste

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Benchikhoune, M.; Ciattaglia, S.; Uzan, J. Elbez; Na, B. C.; Taylor, N.; Gastaldi, O.

    2011-01-01

    ITER will use tritium as fuel. Procedures and processes are thus put in place in order to recover the tritium that is not used in the fusion reaction, including from waste and effluents. The tritium thus recovered can be re-injected into the fuel cycle. Moreover, tritium content and thus outgassing may be a safety concern, because of the potential for releases to the environment, both from the facility and from the final disposal (subjected to stringent acceptance criteria in the current waste final disposal). The aim of this paper is to present the measures considered to deal with the specific case of tritium in the liquid and solid waste that will arise from ITER operation and decommissioning. It concerns the processes that are considered from the waste production to its final disposal and in particular: the tritium removal stages (in-situ divertor baking at 350 C and tritium removal from solid waste and liquid and gaseous effluents), the removal of dust contamination (dust containing tritium produced by plasma-wall interaction and by the maintenance/ refurbishment processes) and the measures to enable safe processing and storage of the waste (wall-liner in the hot cell facility to limit concrete contamination and interim storage enabling tritium decay for waste that could not be directly accepted in the host-country final disposal facilities). (authors)

  18. Tritium concentrations in natural waters in Japan before use of a large quantity of tritium on its fusion program

    International Nuclear Information System (INIS)

    Kaji, Toshio; Momoshima, Noriyuki; Takashima, Yoshimasa.

    1989-01-01

    To clarify environmental tritium levels in Japan before use of a large quantity of tritium on its fusion program, the authors analyzed the tritium concentrations in various water samples, such as rain, river, lake, coastal sea and deep sea waters in Japan. The tritium concentrations in rain water were high at higher latitude. The definite differences of the tritium concentrations due to the weather conditions or seasons were not observed. The average tritium concentration in river water was 51.5 pCi/l in 1982 and that in lake water was 63.5 pCi/l in 1983. The vertical profiles of the tritium concentrations in the representative lakes were almost homogeneous except surface water. The average tritium concentrations in coastal seawater were about 20 pCi/l in both 1982 and 1983. The tendency of the increased tritium level with latitude as reported in literature was not observed by these experiments. Tritium levels in natural water in small isolated islands were lower than those at other places. In the Japan Sea, it was recognized that tritium was distributed down to around 2000 m in depth. This means that the more active vertical mixing of water masses than that in the Pacific Ocean is taking place. (author)

  19. Tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foust, C.R.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Wilgen, J.B.; Schmidt, G.L.; Barnes, G.W.; Persing, R.G.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellet. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  20. Issues Associated with Tritium Legacy Materials

    International Nuclear Information System (INIS)

    Mills, Michael

    2008-01-01

    This paper highlights some of the issues associated with the treatment of legacy materials linked to research into tritium over many years and also of materials used to contain or store tritium. The aim of the work is to recover tritium where practicable, and to leave the residual materials passively safe, either for disposal or for continued storage. A number of materials are currently stored at AWE which either contain tritium or have been used in tritium processing. It is essential that these materials are characterised such that a strategy may be developed for their safe stewardship, and ultimately for their treatment and disposal. Treatment processes for such materials are determined by the application of best practicable means (BPM) studies in accordance with the requirements of the Environment Agency of England and Wales. Clearly, it is necessary to understand the objectives of legacy material treatment / processing and the technical options available before a definitive BPM study is implemented. The majority of tritium legacy materials with which we are concerned originate from the decommissioning of a facility that was operational from the late 1950's through to the late 1990's when, on post-operative clear-out (POCO), the entire removable and transportable tritium inventory was moved to new, purpose built facilities. One of the principle tasks to be undertaken in the new facilities is the treatment of the legacy materials to recover tritium wherever practicable, and render the residual materials passively safe for disposal or continued storage. Where tritium recovery was not reasonably or technically feasible, then a means to assure continued safe storage was to be devised and implemented. The legacy materials are in the following forms: - Uranium beds which may or may not contain adsorbed tritium gas; - Tritium gas stored in containers; - Tritide targets for neutron generation; - Tritides of a broad spectrum of metals manufactured for research / long

  1. Analysis of in-pile tritium release experiments

    International Nuclear Information System (INIS)

    Kopasz, J.P.; Tam, S.W.; Johnson, C.E.

    1992-01-01

    The objective of this work is to characterize tritium release behavior from lithium ceramics and develop insight into the underlying tritium release mechanisms. Analysis of tritium release data from recent laboratory experiments with lithium aluminate has identified physical processes which were previously unaccounted for in tritium release models. A new model that incorporates the recent data and provides for release from multiple sites rather than only one site was developed. Calculations of tritium release using this model are in excellent agreement with the tritium release behavior reported for the MOZART experiment

  2. Five years of tritium handling experience at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Carlson, R.V.

    1989-01-01

    The Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory is a facility designed to develop and demonstrate, in full scale, technologies necessary for safe and efficient operation of tritium systems required for tokamak fusion reactors. TSTA currently consists of systems for evacuating reactor exhaust gas with compound cryopumps; for removing impurities from plasma exhaust gas and recovering the chemically-combined tritium; for separating the isotopes of hydrogen; for transfer pumping; or storage of hydrogen isotopes; for gas analysis; and for assuring safety by the necessary control, monitoring, and tritium removal from effluent streams. TSTA also has several small scale experiments to develop and test new equipment and processes necessary for fusion reactors. In this paper, data on component reliability, failure types and rates, and waste quantities are presented. TSTA has developed a Quality Assurance program for preparing and controlling the documentation of the procedures required for the design, purchase, and operation of the tritium systems. Operational experience under normal, abnormal, and emergency conditions is presented. One unique aspect of operations at TSTA is that the design personnel for the TSTA systems are also part of the operating personnel. This has allowed for the relatively smooth transition from design to operations. TSTA has been operated initially as a research facility. As the system is better defined, operations are proceeding toward production modes. The DOE requirements for the operation of a tritium facility like TSTA include personnel training, emergency preparedness, radiation protection, safety analysis, and preoperational appraisals. The integration of these requirements into TSTA operations is discussed. 4 refs., 3 figs., 3 tabs

  3. Tritium behavior intentionally released in the room

    International Nuclear Information System (INIS)

    Kobayashi, K.; Hayashi, T.; Iwai, Y.; Yamanishi, T.; Willms, R. S.; Carlson, R. V.

    2008-01-01

    To construct a fusion reactor with high safety and acceptability, it is necessary to establish and to ensure tritium safe handling technology. Tritium should be well-controlled not to be released to the environment excessively and to prevent workers from excess exposure. It is especially important to grasp tritium behavior in the final confinement area, such as the room and/or building. In order to obtain data for actual tritium behavior in a room and/or building, a series of intentional Tritium Release Experiments (TREs) were planned and carried out within a radiologically controlled area (main cell) at Tritium System Test Assembly (TSTA) in Los Alamos National Laboratory (LANL) under US-JAPAN collaboration program. These experiments were carried out three times. In these experiments, influence of a difference in the tritium release point and the amount of hydrogen isotope for the initial tritium behavior in the room were suggested. Tritium was released into the main cell at TSTA/LANL. The released tritium reached a uniform concentration about 30 - 40 minutes in all the experiments. The influence of the release point and the amount of hydrogen isotope were not found to be important in these experiments. The experimental results for the initial tritium behavior in the room were also simulated well by the modified three-dimensional eddy flow analysis code FLOW-3D. (authors)

  4. Tritium proof-of-principle pellet injector results

    International Nuclear Information System (INIS)

    Fisher, P.W.; Fehling, D.T.; Gouge, M.J.; Milora, S.L.

    1989-01-01

    The tritium proof-of-principle (TPOP) experiment was built by Oak Ridge National Laboratory (ORNL) to demonstrate the feasibility of forming solid tritium pellets and accelerating them to high velocities for fueling future fusion reactors. TPOP used a pneumatic pipe-gun with a 4-mm-i.d. by 1-m-long barrel. Nearly 1500 pellets were fired by the gun during the course of the experiment; about a third of these were tritium or mixtures of deuterium and tritium. The system also contained a cryogenic 3 He separator that reduced the 3 He level to <0.005%. Pure tritium pellets were accelerated to 1400 m/s. Experiments evaluated the effect of cryostat temperature and fill pressure on pellet size, the production of pellets from mixtures of tritium and deuterium, and the effect of aging on pellet integrity. The tritium phase of these experiments was performed at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. About 100 kCi of tritium was processed through the apparatus without incident. 8 refs., 7 figs

  5. Overview of light sources powered by tritium

    International Nuclear Information System (INIS)

    Wu Jian; Lei Jiarong; Liu Wenke

    2012-01-01

    Due to their long lifespan and stable intensity, light sources initiated by tritium instead of electricity or batteries are suitable for low level lighting applications. Therefore, tritium-based radioluminescent (RL) light sources are widely used in both military and civil applications. However, traditional tritium lights with the gas tube structure have several shortcomings: (1) the phosphors are opaque; (2) the glass tube is fragile and easily broken; and (3) the beta kinetic energy is attenuated due to the sorption by the gas; etc. As a result, further application of the tritium lights is limited. In this paper, the lighting mechanism and radiation safety of tritium-based RL light sources are briefly reviewed. Besides, the history and prospects of the development of tritium-based RL light source are discussed. Due to their long lifespan and stable intensity, light sources initiated by tritium instead of electricity or batteries are suitable for low level lighting applications. Therefore, tritium- based radioluminescent (RL) light sources are widely used in both military and civil applications. However, traditional tritium lights with the gas tube structure have several short- comings: (1) the phosphors are opaque; (2) the glass tube is fragile and easily broken; and (3) the beta kinetic energy is attenuated due to the sorption by the gas; etc. As a result, further application of the tritium lights is limited. In this paper, the lighting mechanism and radiation safety of tritium-based RL, light sources are briefly reviewed. Besides, the history and prospects of the development of tritium-based RL light source are discussed. (authors)

  6. Atmospheric tritium. Measurement and application

    International Nuclear Information System (INIS)

    Frejaville, Gerard

    1967-02-01

    The possible origins of atmospheric tritium are reviewed and discussed. A description is given of enrichment (electrolysis and thermal diffusion) and counting (gas counters and liquid scintillation counters) processes which can be used for determining atmospheric tritium concentrations. A series of examples illustrates the use of atmospheric tritium for resolving a certain number of hydrological and glaciological problems. (author) [fr

  7. Measurement of tritium concentration in urine

    International Nuclear Information System (INIS)

    Sekiyama, Shigenobu; Deshimaru, Takehide

    1979-01-01

    Concerning the safety management of the advanced thermal reactor ''Fugen'', the internal exposure management for tritium is important, because heavy water is used as the moderator in the reactor, and tritium is produced in the heavy water. Tritium is the radioactive nuclide with the maximum β-ray energy of 18 keV, and the radiation exposure is limited to the internal exposure in human bodies, as tritium is taken in through the skin and by breathing. The tritium concentration in urine of the operators of the Fugen plant was measured. As for tritium measurement, the analysis of raw urine, the analysis after passing through mixed ion exchange resin and the analysis after distillation are applied. The scintillator, the liquid scintillation counter, the ion exchange resin and the distillator are introduced. The preliminary survey was conducted on the urine sample, the scintillator the calibration, etc. The measuring condition, the measurement of efficiency, and the limitation of detection with various background are explained, with the many experimental data and the calculating formula. Concerning the measured tritium concentration in urine, the tritium concentrations in distilled urine, raw urine and the urine refined with ion exchange resin were compared, and the correlation formulae are presented. The actual tritium concentration value in urine was less than 50 pci/ml. The measuring methods of raw urine and the urine refined with ion exchange resin are adequate as they are quick and accurate. (Nakai, Y.)

  8. Tritium-related materials problems in fusion reactors

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1976-01-01

    Pressing materials problems that must be solved before tritium can be used to produce energy economically in fusion reactors are discussed. The following topics are discussed: (1) breeding tritium, (2) recovering bred tritium, (3) containing tritium, (4) fuel recycling, and (5) laser-fusion fueling

  9. Consequences of tritium release to water pathways from postulated accidents in a DOE production reactor

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Olson, R.L.; Hamby, D.M.

    1991-01-01

    A full-scale PRA of a DOE production reactor has been completed that considers full release of tritium as part of the severe accident source term. Two classes of postulated reactor accidents, a loss-of-moderator pumping accident and a loss-of-coolant accident, are used to bound the expected dose consequence from liquid pathway release. Population doses from the radiological release associated with the two accidents are compared for aqueous discharge and atmospheric release modes. The expectation values of the distribution of possible values for the societal effective dose equivalent to the general public, given a tritium release to the atmosphere, is 2.8 person-Sv/PBq (9.9 x 10 -3 person-rem/Ci). The general public drinking water dose to downstream water consumers is 6.5 x 10 -2 person-Sv/Pbq (2.4 x 10 -4 person-rem/Ci) for aqueous releases to the surface streams eventually reaching the Savannah River. Negligible doses are calculated for freshwater fish and saltwater invertebrate consumption, irrigation, and recreational use of the river, given that an aqueous release is assumed to occur. Relative to the balance of fission products released in a hypothetical severe accident, the tritium-related dose is small. This study suggests that application of regional models (1610 km radius) will indicate larger dose consequences from short-term tritium release to the atmosphere than from comparable tritium source terms to water pathways. However, the water pathways assessment is clearly site-specific, and the overall aqueous dose will be dependent on downstream receptor populations and uses of the river

  10. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Yamawaki, M.

    1995-01-01

    In a fusion reactor or tritium-handling facilities, contamination of concrete by tritium and subsequent release from it to the reator or experimental room is a matter of problem for safe control of tritium and management of operational environment. In order to evaluate this tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were experimentally studied.(1)Sorption experiments were conducted using columns packed with cement particles of different sizes. From the analysis of the breakthrough curve, tritium diffusivity in macropores and microparticles were evaluated.(2)From the short-term tritium release experiments, effective desorption rate constants were evaluated and the effects of temperature and moisture were studied.(3)In the long-term tritium release experiments to 6000h, the tritium release mechanism was found to be composed of three kinds of water: initially from capillary water, and in the second stage from gel water and from the water in the cement crystal.(4)Tritium release behavior by heat treatment to 800 C was studied. A high temperature above 600 C was required for the tritium trapped in the crystal water to be released. (orig.)

  11. Tritium environmental transport studies at TFTR

    International Nuclear Information System (INIS)

    Ritter, P.D.; Dolan, T.J.; Longhurst, G.R.

    1993-01-01

    Environmental tritium concentrations will be measured near the Tokamak Fusion Test Reactor (TFTR) to help validate dynamic models of tritium transport in the environment. For model validation the database must contain sequential measurements of tritium concentrations in key environmental compartments. Since complete containment of tritium is an operational goal, the supplementary monitoring program should be able to glean useful data from an unscheduled acute release. Portable air samplers will be used to take samples automatically every 4 hours for a weak after an acute release, thus obtaining the time resolution needed for code validation. Samples of soil, vegetation, and foodstuffs will be gathered daily at the same locations as the active air monitors. The database may help validate the plant/soil/air part of tritium transport models and enhance environmental tritium transport understanding for the International Thermonuclear Experimental Reactor (ITER)

  12. Tritium environmental transport studies at TFTR

    Science.gov (United States)

    Ritter, P. D.; Dolan, T. J.; Longhurst, G. R.

    1993-06-01

    Environmental tritium concentrations will be measured near the Tokamak Fusion Test Reactor (TFTR) to help validate dynamic models of tritium transport in the environment. For model validation the database must contain sequential measurements of tritium concentrations in key environmental compartments. Since complete containment of tritium is an operational goal, the supplementary monitoring program should be able to glean useful data from an unscheduled acute release. Portable air samplers will be used to take samples automatically every 4 hours for a week after an acute release, thus obtaining the time resolution needed for code validation. Samples of soil, vegetation, and foodstuffs will be gathered daily at the same locations as the active air monitors. The database may help validate the plant/soil/air part of tritium transport models and enhance environmental tritium transport understanding for the International Thermonuclear Experimental Reactor (ITER).

  13. Tritium system design studies of fusion experimental breeder

    International Nuclear Information System (INIS)

    Deng Baiquan; Huang Jinhua

    2003-01-01

    A summary of the tritium system design studies for the engineering outline design of a fusion experimental breeder (FEB-E) is presented. This paper is divided into three sections. In first section, the geometry, loading features and tritium concentrations in liquid lithium of tritium breeding zones of blanket are described. The tritium flow chart corresponding to the tritium fuel cycle system has been constructed, and the inventories in ten subsystems are calculated using SWITRIM code in section 2. Results show that the necessary initial tritium storage to start up FEB-E with fusion power of 143 MW is about 319 g. In final section, the tritium leakage issues under different operation circumstances have been analyzed. It was found that the potential danger of tritium leakage could be resulted from the exhausted gas of the diverter system. It is important to elevate the tritium burnup fraction and reduce the tritium throughput. (authors)

  14. Tritium in metals: Techniques of preparation

    International Nuclear Information System (INIS)

    Laesser, R.; Klatt, K.H.; Mecking, P.; Wenzl, H.

    1982-08-01

    In order to study the behavior of tritium in metals, an all metal apparatus has been built for the safe handling of 100 mg of tritium. Samples of palladium, vanadium, niobium, and tantalum were loaded with tritium, deuterium or hydrogen. Some details of the phase diagrams could be established by DTA and by measurement of the lattice parameters. The diffusion of tritium in V, Nb, and Ta was studied with the Gorsky-effect. (TWO)

  15. Tritium research activities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Jung, E-mail: kjjung@nfri.re.kr [National Fusion Research Institute, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Yun, Sei-Hun, E-mail: shyun@nfri.re.kr [National Fusion Research Institute, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Chang, Min Ho; Kang, Hyun-Goo; Chung, Dongyou; Cho, Seungyon; Lee, Hyeon Gon [National Fusion Research Institute, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Chung, Hongsuk; Choi, Woo-Seok [Korea Atomic Energy Research Institute, Yusung-gu, Daejeon 305-353 (Korea, Republic of); Song, Kyu-Min; Moon, Chang-Bae [Korea Hydro & Nuclear Power Central Research Institute, Yusung-gu, Daejeon 305-343 (Korea, Republic of); Lee, Euy Soo [Dongguk University, Jung-gu, Seoul, 100-715 (Korea, Republic of); Cho, Jungho; Kim, Dong-Sun [Kongju National University, Cheonan, Chungnam, 330-717 (Korea, Republic of); Moon, Hung-Man [Daesung Industrial Gases Co., Ltd., Danwon-gu, Ansan-si, Gyeonggi-do, 425-090 (Korea, Republic of); Noh, Seung Jeong [Dankook University, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of); Ju, Hyunchul [Inha University, Nam-gu, Incheon, 402-751 (Korea, Republic of); Hong, Tae-Whan [Korea National University of Transportation, Chungju, Chungbuk, 380-702 (Korea, Republic of)

    2016-12-15

    Highlights: • NFRI, KAERI and KHNP CRI are major leading group for the ITER tritium SDS design; studying engineering, simulation of hydride bed, risk analysis (on safety, HAZOP), basic study, control logic & sequential operation, and others. KHNP has WTRF which gives favorable experiences for collaboration researchers. • Supplementary research partners: Five Universities (Dongguk University and POSTECH, Inha University, Dankook University, Korea National Transport University, and Kongju National University) and one industrial company (Daesung Industrial Gases Co., Ltd.); studying on basic and engineering, programming & simulation on the various topics for ITER tritium SDS, TEP, ISS, ADS, and etc. - Abstract: Major progress in tritium research in the Republic of Korea began when Korea became responsible for ITER tritium Storage and Delivery System (SDS) procurement package which is part of the ITER Fuel Cycle. To deliver the tritium SDS package, a variety of research institutes, universities and industry have respectively taken roles and responsibilities in developing technologies that have led to significant progress. This paper presents the current work and status of tritium related technological research and development (R&D) in Korea and introduces future R&D plans in the area of fuel cycle systems for fusion power generation.

  16. Tritium metabolism in rat tissues

    International Nuclear Information System (INIS)

    Takeda, H.

    1982-01-01

    As part of a series of studies designed to evaluate the relative radiotoxicity of various tritiated compounds, metabolism of tritium in rat tissues was studied after administration of tritiated water, leucine, thymidine, and glucose. The distribution and retention of tritium varied widely, depending on the chemical compound administered. Tritium introduced as tritiated water behaved essentially as body water and became uniformly distributed among the tissues. However, tritium administered as organic compounds resulted in relatively high incorporation into tissue constituents other than water, and its distribution differed among the various tissues. Moreover, the excretion rate of tritium from tissues was slower for tritiated organic compounds than for tritiated water. Administrationof tritiated organic compounds results in higher radiation doses to the tissues than does administration of tritiated water. Among the tritiated compounds examined, for equal radioactivity administered, leucine gave the highest radiation dose, followed in turn by thymidine, glucose, and water. (author)

  17. Radiation protection with consumer products containing gaseous tritium light sources; Strahlenschutz bei Konsumguetern mit Tritium-Gaslichtquellen

    Energy Technology Data Exchange (ETDEWEB)

    Rahders, Erio; Haeusler, Uwe [Bundesamt fuer Strahlenschutz, Berlin (Germany)

    2017-08-01

    Consumer products containing gaseous tritium light sources (GTLS) were examined with respect to their radiological safety potential regarding leak tightness or accidents. The maximum tritium leakage rate of 2.7 Bq/d determined from experimental testing is well below the criterion for leak tightness of sealed radioactive sources in DIN 25426-4. In order to investigate the incorporation of tritium due to contact with consumer products, 2 scenarios were reviewed; the correct use of a tritium watch and the accident scenario with a keyring.

  18. Calculation of tritium release from reactor's stack

    International Nuclear Information System (INIS)

    Akhadi, M.

    1996-01-01

    Method for calculation of tritium release from nuclear to environment has been discussed. Part of gas effluent contain tritium in form of HTO vapor released from reactor's stack was sampled using silica-gel. The silica-gel was put in the water to withdraw HTO vapor absorbed by silica-gel. Tritium concentration in the water was measured by liquid scintillation counter of Aloka LSC-703. Tritium concentration in the gas effluent and total release of tritium from reactor's stack during certain interval time were calculated using simple mathematic formula. This method has examined for calculation of tritium release from JRR-3M's stack of JAERI, Japan. From the calculation it was obtained the value of tritium release as much as 4.63 x 10 11 Bq during one month. (author)

  19. Tritium production and processing in a Tokamak reactor

    International Nuclear Information System (INIS)

    Leger, D.

    1986-09-01

    Important aspects of the tritium system in Tokamak reactors that have to be controlled are overviewed in this paper. The doubling time is one of them, that is to say the time required to produce, in addition to the tritium burned enough tritium to be able to supply the initial tritium inventory. Another one is the tritium permeation through walls. In addition to the permeation phenomena, large tritium inventories are trapped in the reactor structural material. Finally, the different atmospheres of halls, etc.., that can be contaminated with tritium, have to be reprocessed

  20. Derivation of dose conversion factors for tritium

    Energy Technology Data Exchange (ETDEWEB)

    Killough, G. G.

    1982-03-01

    For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed.

  1. Derivation of dose conversion factors for tritium

    International Nuclear Information System (INIS)

    Killough, G.G.

    1982-03-01

    For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed

  2. Tritium Issues in Next Step Devices

    Energy Technology Data Exchange (ETDEWEB)

    C.H. Skinner; G. Federici

    2001-09-05

    Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning plasma tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma-facing components will scale up with the pulse length from being barely measurable on existing machines to centimeter scale. Magnetic Fusion Energy (MFE) devices with carbon plasma-facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove co-deposited tritium from carbon plasma-facing components in tokamaks. A major fraction of the tritium trapped in a co-deposited layer during the deuterium-tritium (DT) campaign on the Tokamak Fusion Test Reactor (TFTR) was released by heating with a scanning laser beam. This technique offers the potential for tritium removal in a next-step DT device without the use of oxidation and the associated deconditioning of the plasma-facing surfaces and expense of processing large quantities of tritium oxide. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the

  3. Tritium Issues in Next Step Devices

    International Nuclear Information System (INIS)

    C.H. Skinner; G. Federici

    2001-01-01

    Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning plasma tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma-facing components will scale up with the pulse length from being barely measurable on existing machines to centimeter scale. Magnetic Fusion Energy (MFE) devices with carbon plasma-facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove co-deposited tritium from carbon plasma-facing components in tokamaks. A major fraction of the tritium trapped in a co-deposited layer during the deuterium-tritium (DT) campaign on the Tokamak Fusion Test Reactor (TFTR) was released by heating with a scanning laser beam. This technique offers the potential for tritium removal in a next-step DT device without the use of oxidation and the associated deconditioning of the plasma-facing surfaces and expense of processing large quantities of tritium oxide. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the

  4. Modeling tritium transport in the environment

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1986-01-01

    A model of tritium transport in the environment near an atmospheric source of tritium is presented in the general context of modeling material cycling in ecosystems. The model was developed to test hypotheses about the process involved in tritium cycling. The temporal and spatial scales of the model were picked to allow comparison to environmental monitoring data collected in the vicinity of the Savannah River Plant. Initial simulations with the model showed good agreement with monitoring data, including atmospheric and vegetation tritium concentrations. The model can also simulate values of tritium in vegetation organic matter if the key parameter distributing the source of organic hydrogen is varied to fit the data. However, because of the lack of independent conformation of the distribution parameter, there is still uncertainty about the role of organic movement of tritium in the food chain, and its effect on the dose to man

  5. Tritium extraction technologies and DEMO requirements

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D., E-mail: david.demange@kit.edu [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Antunes, R.; Borisevich, O.; Frances, L. [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rapisarda, D. [Laboratorio Nacional de Fusión, EURATOM-CIEMAT, 28040 Madrid (Spain); Santucci, A. [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Utili, M. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy)

    2016-11-01

    Highlights: • We detail the R&D plan for tritium technology of the European DEMO breeding blanket. • We study advanced and efficient extraction techniques to improve tritium management. • We consider inorganic membranes and catalytic membrane reactor for solid blankets. • We consider permeator against vacuum and vacuum sieve tray for liquid blankets. - Abstract: The conceptual design of the tritium extraction system (TES) for the European DEMO reactor is worked out in parallel for four different breeding blankets (BB) retained by EUROfusion. The TES design has to be tackled in an integrated manner optimizing the synergy with the directly interfacing inner fuel cycle, while minimizing the tritium permeation into the coolant. Considering DEMO requirements, it is most likely that only advanced technologies will be suitable for the tritium extraction systems of the BB. This paper overviews the European work programme for R&D on tritium technology for the DEMO BB, summaries the general first outcomes, and details the specific and comprehensive R&D program to study experimentally immature but promising technologies such as vacuum sieve tray or permeator against vacuum for tritium extraction from PbLi, and advanced inorganic membranes and catalytic membrane reactor for tritium extraction from He. These techniques are simple, fully continuous, likely compact with contained energy consumption. Several European Laboratories are joining their efforts to deploy several new experimental setups to accommodate the tests campaigns that will cover small scale experiments with tritium and inactive medium scale tests so as to improve the technology readiness level of these advanced processes.

  6. Tritium compatibility of alumina and Fosterite

    Energy Technology Data Exchange (ETDEWEB)

    Coffin, D.O.

    1979-09-01

    Many pressure measurements are required to control processing of the fuel gases associated with fusion power reactors. Since most pressure transducers respond to changes in pressure sensitive electrical parameters, insulators will be required to withstand chronic exposures to concentrated tritium. For this investigation samples of alumina and Fosterite were exposed to concentrated tritium gas for 11 weeks. Gas phase impurities were then analyzed for clues that would indicate decomposition of the exposed materials. The only gaseous impurity resulting from these tritium exposures was tritio-methane, which is always produced when tritium is stored in stainless steel containers. There was no evidence that either alumina or Fosterite decomposed in the presence of tritium.

  7. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  8. The organic tritium in the environment

    International Nuclear Information System (INIS)

    Kirchmann, R.

    1979-01-01

    Sources, organization process, and biological availability of organic tritium released in the environment, transfer of organic tritium in the environment from methane or soil to plants and from food to mammals, transfer of tritium in aquatic ecosystems, and dose to man resulting of the ingestion of tritiated food were reviewed and discussed. Some data about transfer of organic tritium in terrestrial and aquatic ecosystems reported by literatures were summarized and were supplied with recent data on biological accumulation of organic tritium in the food chain. It was stressed that more research must be done in future because data available were still insufficient. Last, some research programs in progress or planned were stated. (Tsunoda, M.)

  9. Tritium immobilisation

    International Nuclear Information System (INIS)

    Bridger, N.J.

    1982-01-01

    Tritium is immobilised for long term storage by absorption in a hydridable/tritidable material, such as zirconium. A gas permeable container is packed with the material in the form of sponge fragments, rods or tubes, and a gaseous mixture of hydrogen and tritium introduced into the container whilst the container is at a temperature of about 600 deg C or above. Thermal expansion of the material during reaction with the gaseous mixture compacts the material into a coherent body in the container relatively free from finely divided hydride/ tritide material. (author)

  10. Behavior of tritium in the environment. Proceedings series

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fifty papers are presented in these proceedings. Individual items are being entered onto the data base. The papers are grouped into seven sections for purposes of continuity. These sections include: distribution of tritium (7 papers); evaluation of future discharges (3 papers); measurement of tritium (3 papers); tritium in the aquatic environment (10 papers); tritium in the terrestrial environment (13 papers); tritium in man (8 papers); and monitoring of tritium (6 papers). (ERB)

  11. Tritium practices past and present

    International Nuclear Information System (INIS)

    Gede, V.P.; Gildea, P.D.

    1980-01-01

    History of the production and use of tritium, as well as handling techniques, are reviewed. Handling techniques first used at Lawrence Livermore National Laboratory made use of glass vacuum systems and relatively crude ion chambers for monitoring airborne activity. The first use of inert atmosphere glove boxes demonstrated that uptake through the skin could be a serious personnel exposure problem. Growing environmental concerns in the early 1970's resulted in the implementation by the Atomic Energy Commission of a new criteria to limit atmospheric tritium releases to levels as low as practicable. An important result of the new criteria was the development of containment and recovery systems to capture tritium rather than vent it to the atmosphere. The Sandia National Laboratories, Livermore, Tritium Research Laboratory containment and decontamination systems are presented as a typical example of this technology. The application of computers to control systems is expected to provide the greatest potential for change in future tritium handling practices

  12. Handling of tritium-bearing wastes

    International Nuclear Information System (INIS)

    1981-01-01

    The generation of nuclear power and reprocessing of nuclear fuel results in the production of tritium and the possible need to control the release of tritium-contaminated effluents. In assessing the need for controls, it is necessary to know the production rates of tritium at different nuclear facilities, the technologies available for separating tritium from different gaseous and liquid streams, and the methods that are satisfactory for storage and disposal of tritiated wastes. The intention in applying such control technologies and methods is to avoid undesirable effects on the environment, and to reduce the radiation burden on operational personnel and the general population. This technical report is a result of the IAEA Technical Committee Meeting on Handling of Tritium-bearing Effluents and Wastes, which was held in Vienna, 4 - 8 December 1978. It summarizes the main topics discussed at the meeting and appends the more detailed reports on particular aspects that were prepared for the meeting by individual participants

  13. Improving tritium exposure reconstructions using accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Love, A.H.; Hunt, J.R.; Vogel, J.S.; Knezovich, J.P.

    2004-01-01

    Direct measurement of tritium atoms by accelerator mass spectrometry (AMS) enables rapid low-activity tritium measurements from milligram-sized samples and permits greater ease of sample collection, faster throughput, and increased spatial and/or temporal resolution. Because existing methodologies for quantifying tritium have some significant limitations, the development of tritium AMS has allowed improvements in reconstructing tritium exposure concentrations from environmental measurements and provides an important additional tool in assessing the temporal and spatial distribution of chronic exposure. Tritium exposure reconstructions using AMS were previously demonstrated for a tree growing on known levels of tritiated water and for trees exposed to atmospheric releases of tritiated water vapor. In these analyses, tritium levels were measured from milligram-sized samples with sample preparation times of a few days. Hundreds of samples were analyzed within a few months of sample collection and resulted in the reconstruction of spatial and temporal exposure from tritium releases. Although the current quantification limit of tritium AMS is not adequate to determine natural environmental variations in tritium concentrations, it is expected to be sufficient for studies assessing possible health effects from chronic environmental tritium exposure. (orig.)

  14. Improving tritium exposure reconstructions using accelerator mass spectrometry

    Science.gov (United States)

    Hunt, J. R.; Vogel, J. S.; Knezovich, J. P.

    2010-01-01

    Direct measurement of tritium atoms by accelerator mass spectrometry (AMS) enables rapid low-activity tritium measurements from milligram-sized samples and permits greater ease of sample collection, faster throughput, and increased spatial and/or temporal resolution. Because existing methodologies for quantifying tritium have some significant limitations, the development of tritium AMS has allowed improvements in reconstructing tritium exposure concentrations from environmental measurements and provides an important additional tool in assessing the temporal and spatial distribution of chronic exposure. Tritium exposure reconstructions using AMS were previously demonstrated for a tree growing on known levels of tritiated water and for trees exposed to atmospheric releases of tritiated water vapor. In these analyses, tritium levels were measured from milligram-sized samples with sample preparation times of a few days. Hundreds of samples were analyzed within a few months of sample collection and resulted in the reconstruction of spatial and temporal exposure from tritium releases. Although the current quantification limit of tritium AMS is not adequate to determine natural environmental variations in tritium concentrations, it is expected to be sufficient for studies assessing possible health effects from chronic environmental tritium exposure. PMID:14735274

  15. Tritium safety issues for TFCX

    International Nuclear Information System (INIS)

    Reilly, H.J.; Piet, S.J.; Merrill, B.J.

    1985-01-01

    Estimated tritium releases from the Tokamak Fusion Core Experiment are compared to the expected limits. A reaction kinetics model is described that predicts the conversion of tritium to the oxide form in free space. An analysis of the required capacity of the Emergency Tritium Cleanup System is also presented. The conclusions of this work are expected to be applicable to other experimental fusion devices that are now being considered

  16. Risks of tritium and their mitigation

    International Nuclear Information System (INIS)

    Ichimasa, Y.; Shiba, H.; Ichimasa, M.; Chikuuti, M.; Akita, Y.

    1992-01-01

    In this study, the effects of an antibacterial drug, norfloxacin, and an antibiotic, clindamycin, on in vivo oxidation of tritium gas in rats were investigated. Wistar strain male rats were used. They were provided with a standard diet, water ad libitum, and maintained in glass metabolic cages of approximately 20 liters capacity. The air flow and temperature were controlled. To investigate the availability of norfloxacin and clindamycin on the inhibition effects of the oxidation of tritium gas, two types of the experiments were conducted one was that, before the exposure to tritium gas for 2 hours, norfloxacin or clindamycin was administrated to rats three times a day for 4 days, and the other was administration of a drug after tritium gas exposure. After the exposure to tritium gas, blood, the liver, urine and feces samples were collected from rats and the radioactivity of them was determined after combustion using a sample oxidizer. In the case of norfloxacin, tritium concentration in rat body decreased one fifth of that in non-treated rats. On the other hand, administration of clindamycin shortened the biological half-life of tritium in urine to three fifth of that of non-treated rats. (author)

  17. Temporal sealing material of tritium-contaminated stainless steel

    International Nuclear Information System (INIS)

    Wen Wei; Dan Guiping; Zhang Dong; Qiu Yongmei; Zhang Li

    2010-01-01

    Tritium can be released from the exterior of tritium-contaminated stainless steel by slight stirring while decontaminating and disassembling. In order to avoid secondary tritium contamination to environment and operators, it is necessary to cover with an effective coating to tritium on the exterior of tritium-contaminated stainless steel and fill an effective substance to tritium inside. The results of tritium sealed experiments show that sealing efficiency of neutral silicone rubber is more than 85% for condition of static state and more than 99% for foam concrete condition of dynamic state. Neutral silicone rubber and foam concrete which have finer sealing efficiency can be used as temporal sealed material for the decontamination and disassembly of tritium-contaminated stainless steel. (authors)

  18. Tritium analysis at TFTR

    International Nuclear Information System (INIS)

    Voorhees, D.R.; Rossmassler, R.L.; Zimmer, G.

    1995-01-01

    The tritium analytical system at TFRR is used to determine the purity of tritium bearing gas streams in order to provide inventory and accountability measurements. The system includes a quadrupole mass spectrometer and beta scintillator originally configured at Monsanto Mound Research Laboratory in the late 1970's and early 1980's. The system was commissioned and tested between 1991 and 1992 and is used daily for analysis of calibration standards, incoming tritium shipments, gases evolved from uranium storage beds and measurement of gases returned to gas holding tanks. The low resolution mass spectrometer is enhanced by the use of a metal getter pump to aid in resolving the mass 3 and 4 species. The beta scintillator complements the analysis as it detects tritium bearing species that often are not easily detected by mass spectrometry such as condensable species or hydrocarbons containing tritium. The instruments are controlled by a personal computer with customized software written with a graphical programming system designed for data acquisition and control. A discussion of the instrumentation, control systems, system parameters, procedural methods, algorithms, and operational issues will be presented. Measurements of gas holding tanks and tritiated water waste streams using ion chamber instrumentation are discussed elsewhere

  19. Tritium handling experience at Atomic Energy of Canada Limited

    Energy Technology Data Exchange (ETDEWEB)

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I. [Atomic Energy of Canad Limited - AECL, Chalk River Laboratories, Chalk River, ON (Canada)

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  20. Torus evacuation and tritium handling on NET

    International Nuclear Information System (INIS)

    Dinner, P.; Chazalon, M.; Iseli, M.

    1986-08-01

    The use of tritium as a fuel affects the design of many systems, as well as requiring several new systems not needed on non DT-burning Tokamaks. This paper summarizes: major tritium process interconnections, tritium flows and inventories; primary requirements, preferred design alternatives, and related development issues; design philosophy for tritium and primary vacuum systems. 14 refs

  1. Tritium module for ITER/Tiber system code

    International Nuclear Information System (INIS)

    Finn, P.A.; Willms, S.; Busigin, A.; Kalyanam, K.M.

    1988-01-01

    A tritium module was developed for the ITER/Tiber system code to provide information on capital costs, tritium inventory, power requirements and building volumes for these systems. In the tritium module, the main tritium subsystems/emdash/plasma processing, atmospheric cleanup, water cleanup, blanket processing/emdash/are each represented by simple scaleable algorithms. 6 refs., 2 tabs

  2. Storage and Assay of Tritium in STAR

    International Nuclear Information System (INIS)

    Longhurst, Glen R.; Anderl, Robert A.; Pawelko, Robert J.; Stoots, Carl J.

    2005-01-01

    The Safety and Tritium Applied Research (STAR) facility at the Idaho National Engineering and Environmental Laboratory (INEEL) is currently being commissioned to investigate tritium-related safety questions for fusion and other technologies. The tritium inventory for the STAR facility will be maintained below 1.5 g to avoid the need for STAR to be classified as a Category 3 nuclear facility. A key capability in successful operation of the STAR facility is the ability to receive, inventory, and dispense tritium to the various experiments underway there. The system central to that function is the Tritium Storage and Assay System (SAS).The SAS has four major functions: (1) receiving and holding tritium, (2) assaying, (3) dispensing, and (4) purifying hydrogen isotopes from non-hydrogen species.This paper describes the design and operation of the STAR SAS and the procedures used for tritium accountancy in the STAR facility

  3. PRODUCTION OF TRITIUM

    Science.gov (United States)

    Jenks, G.H.; Shapiro, E.M.; Elliott, N.; Cannon, C.V.

    1963-02-26

    This invention relates to a process for the production of tritium by subjecting comminuted solid lithium fluoride containing the lithium isotope of atomic mass number 6 to neutron radiation in a self-sustaining neutronic reactor. The lithium fiuoride is heated to above 450 deg C. in an evacuated vacuum-tight container during radiation. Gaseous radiation products are withdrawn and passed through a palladium barrier to recover tritium. (AEC)

  4. Automation system for tritium contaminated surface monitoring

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Curuia, Marian; Raceanu, Mircea; Enache, Adrian; Stefanescu, Ioan; Ducu, Catalin; Malinovschi, Viorel

    2005-01-01

    The low energy of betas makes tritium difficult to detect. However, there are several methods used in tritium detection, such as liquid scintillation and ionization chambers. Tritium on or near a surface can be also detected using proportional counter and, recently, solid state devices. The paper presents our results in the design and achievement of a surface tritium monitor using a PIN photodiode as a solid state charged particle detector to count betas emitted from the surface. That method allows continuous, real-time and non-destructively measuring of tritium. (authors)

  5. Study on tritium recovery from breeder materials

    International Nuclear Information System (INIS)

    Moriyama, H.; Moritani, K.

    1997-01-01

    For the development of fusion reactor blanket systems, some of the key issues on the tritium recovery performance of solid and liquid breeder materials were studied. In the case of solid breeder materials, a special attention was focussed on the effects of irradiation on the tritium recovery performance, and tritium release experiments, luminescence measurements of irradiation defects and modeling studies were systematically performed. For liquid breeder materials, tritium recovery experiments from molten salt and liquid lithium were performed, and the technical feasibility of tritium recovery methods was discussed. (author)

  6. Study and application of hydrophobic catalyst in treating tritium waste

    International Nuclear Information System (INIS)

    Dan, Gui-ping; Zhang, Dong; Qiu, Yong-mei; Yuan, Guo-Qi

    2008-01-01

    Tritium decontamination from tritium waste is important for the management of tritium waste. Tritium removal from waste tritium oxide can not only get tritium, but also reduce the amount of waste tritium. At the meantime, by cleaning the tritium pollution gas can also reduce the tritium exhausting from tritium facility. At present, the process of hydrogen isotopic exchange in tritium removal from waste tritium oxide and coordination oxidisation-adsorption in tritium cleaning from waste tritium gas are the mainly methods. In these methods, hydrophobic catalysts which can be used in these process are the key technology. There are many references about their preparing and applying, but few on the estimation about their performance changing during their applying. However, their performance stability on isotopic catalytic exchange and catalytic oxidisation will affect their using in reaction. Hydrophobic catalyst Pt-SDB which can be used in tritium isotopic exchange between tritium oxide and hydrogen and the cleaning of tritium pollution gas have been prepared in our laboratory in early days. In order to estimating their performance stability during their using, this work will investigate their stability on their catalytic activity and their radiation-resistance tritium. (author)

  7. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  8. Description of NORMTRI: a computer program for assessing the off-site consequences from air-borne releases of tritium during normal operation of nuclear facilities

    International Nuclear Information System (INIS)

    Raskob, W.

    1994-10-01

    The computer program NORMTRI has been developed to calculate the behaviour of tritium in the environment released into the atmosphere under normal operation of nuclear facilities. It is possible to investigate the two chemical forms tritium gas and tritiated water vapour. The conversion of tritium gas into tritiated water followed by its reemission back to the atmosphere as well as the conversion into organically bound tritium is considered. NORMTRI is based on the statistical Gaussian dispersion model ISOLA, which calculates the activity concentration in air near the ground contamination due to dry and wet deposition at specified locations in a polar grid system. ISOLA requires a four-parametric meteorological statistics derived from one or more years synoptic recordings of 1-hour-averages of wind speed, wind direction, stability class and precipitation intensity. Additional features of NORMTRI are the possibility to choose several dose calculation procedures, ranging from the equations of the German regulatory guidelines to a pure specific equilibrium approach. (orig.)

  9. A new tritium process monitor based on scintillating fibres

    International Nuclear Information System (INIS)

    Pacenti, P.; Edwards, R.A.H.; Monte, A. de; Campi, F.

    1998-01-01

    The main requirements for tritium monitoring in processes related with fusion fuel cycle are low tritium memory, fast response and accuracy, in decreasing order of importance. At present, in-line tritium monitoring in such tritium processing is done mostly using ionization chambers, which suffer a number of drawbacks: output and sensitivity depends on total gas pressure, composition and flow, etc., and have problems such as tritium memory and generally of saturation effect at high tritium concentrations. Solid scintillators can only work well with tritium if they offer a large surface area, because tritium is absorbed within the first microns of material. The present design uses entirely inorganic scintillator and construction materials, chosen to minimize tritium memory. The described on line and real time tritium detector presents some advantages in comparison with well established flow-through tritium process monitors, such as ionization chambers and thermal conductivity detectors. (authors)

  10. Tritium Removal from Carbon Plasma Facing Components

    International Nuclear Information System (INIS)

    Skinner, C.H.; Coad, J.P.; Federici, G.

    2003-01-01

    Tritium removal is a major unsolved development task for next-step devices with carbon plasma-facing components. The 2-3 order of magnitude increase in duty cycle and associated tritium accumulation rate in a next-step tokamak will place unprecedented demands on tritium removal technology. The associated technical risk can be mitigated only if suitable removal techniques are demonstrated on tokamaks before the construction of a next-step device. This article reviews the history of codeposition, the tritium experience of TFTR (Tokamak Fusion Test Reactor) and JET (Joint European Torus) and the tritium removal rate required to support ITER's planned operational schedule. The merits and shortcomings of various tritium removal techniques are discussed with particular emphasis on oxidation and laser surface heating

  11. Dependence of CuO particle size and diameter of reaction tubing on tritium recovery for tritium safety operation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Cui, E-mail: cdxohc10000@163.com [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Uemura, Yuki; Yuyama, Kenta; Fujita, Hiroe; Sakurada, Shodai; Azuma, Keisuke [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Taguchi, Akira; Hara, Masanori; Hatano, Yuji [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan); Chikada, Takumi; Oya, Yasuhisa [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan)

    2016-12-15

    Highlights: • Influence of CuO particle size and diameter of reaction tubing on the tritium recovery was evaluated. • Reaction rate constant of tritium with CuO particle has been calculated by the combination of experimental results and a simulation code. • Dependence of reaction tubing length on tritium conversion ratio has been explored. - Abstract: Usage of CuO and water bubbler is one of the conventional and convenient methods for tritium recovery. In present work, influence of CuO particle size and diameter of reaction tubing on the tritium recovery was evaluated. Reaction rate constant of tritium with CuO particle has been calculated by the combination of experimental results and a simulation code. Then, these results were applied for exploring the dependence of reaction tubing length on tritium conversion ratio. The results showed that the surface area of CuO has a great influence on the oxidation rate constant. The frequency factor of the reaction would be approximately doubled by reducing the CuO particle size from 1.0 mm to 0.2 mm. Cross section of reaction tubing mainly affected on the duration of tritium at the temperature below 600 K. Reaction tubing with length of 1 m at temperature of 600 K would be suitable for keeping the tritium conversion ratio above 99.9%. The length of reaction tubing can be reduced by using the smaller CuO particle or increasing the CuO temperature.

  12. Tritium effluent removal system

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Gibbs, G.E.

    1978-01-01

    An air detritiation system has been developed and is in routine use for removing tritium and tritiated compounds from glovebox effluent streams before they are released to the atmosphere. The system is also used, in combination with temporary enclosures, to contain and decontaminate airborne releases resulting from the opening of tritium containment systems during maintenance and repair operations. This detritiation system, which services all the tritium handling areas at Mound Facility, has played an important role in reducing effluents and maintaining them at 2 percent of the level of 8 y ago. The system has a capacity of 1.7 m 3 /min and has operated around the clock for several years. A refrigerated in-line filtration system removes water, mercury, or pump oil and other organics from gaseous waste streams. The filtered waste stream is then heated and passed through two different types of oxidizing beds; the resulting tritiated water is collected on molecular sieve dryer beds. Liquids obtained from regenerating the dryers and from the refrigerated filtration system are collected and transferred to a waste solidification and packaging station. Component redundancy and by-pass capabilities ensure uninterrupted system operation during maintenance. When processing capacity is exceeded, an evacuated storage tank of 45 m 3 is automatically opened to the inlet side of the system. The gaseous effluent from the system is monitored for tritium content and recycled or released directly to the stack. The average release is less than 1 Ci/day. The tritium effluent can be reduced by isotopically swamping the tritium; this is accomplished by adding hydrogen prior to the oxidizer beds, or by adding water to the stream between the two final dryer beds

  13. TFTR tritium inventory accountability system

    International Nuclear Information System (INIS)

    Saville, C.; Ascione, G.; Elwood, S.; Nagy, A.; Raftopoulos, S.; Rossmassler, R.; Stencel, J.; Voorhees, D.; Tilson, C.

    1995-01-01

    This paper discusses the program, PPPL (Princeton Plasma Physics Laboratory) Material Control and Accountability Plan, that has been implemented to track US Department of Energy's tritium and all other accountable source material. Specifically, this paper details the methods used to measure tritium in various systems at the Tokamak Fusion Test Reactor; resolve inventory differences; perform inventory by difference inside the Tokamak; process and measure plasma exhaust and other effluent gas streams; process, measure and ship scrap or waste tritium on molecular sieve beds; and detail organizational structure of the Material Control and Accountability group. In addition, this paper describes a Unix-based computerized software system developed at PPPL to account for all tritium movements throughout the facility. 5 refs., 2 figs

  14. Tritium management for fusion reactors

    International Nuclear Information System (INIS)

    Rouyer, J.L.; Djerassi, H.

    1985-01-01

    To determine a waste management strategy, one has to identify first the wastes (quantities, activities, etc.), then to define options, and to compare these options by appropriate criteria and evaluations. Two European Associations are working together, i.e., Studsvik and CEA, on waste treatment and tritium problems. A contribution to fusion specific tritiated waste management strategy is presented. It is demonstrated that the best strategy is to retain tritium (outgas and recover, or immobilize it) so that residual tritium releases are kept to a minimum. For that, wastes are identified, actual regulations are described and judged inadequate without amendments for fusion problems. Appropriate criteria are defined. Options for treatment and disposal of tritiated wastes are proposed and evaluated. A tritium recovery solution is described

  15. Radiotoxicity of tritium in mammals

    International Nuclear Information System (INIS)

    Silini, G.; Metalli, P.; Vulpis, G.

    1972-12-01

    Basic data relative to tritium, its physicochemical behaviour in environment, its major sources of contamination and its metabolism through the mammalian organisms are reviewed. After considering the radiotoxicity of tritium particularly at the cellular and whole-body level the conclusion is drawn that the major uncertainties regard the fraction of tritium incorporated into the nuclei of some tissues. This fraction is eliminated very slowly and is capable of modifying the genetic structures of the nucleus. A more refined analysis of radiobiological phenomena and a better knowledge of the dose effect relationship should permit the extrapolation of the data to the low doses of tritium contamination. This extrapolation is of great interest in the field of public health for the elaboration of the relevant radioprotection standards

  16. Environmental monitoring for tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, Ioan; Steflea, Dumitru; Lazar, Roxana Elena

    2001-01-01

    The Cryogenic Pilot is an experimental project within the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and almost all the neighbors of the Experimental Cryogenic Pilot are chemical plants. It is necessary to emphasize this aspect because the sewage system is connected with the other tree chemical plants from the neighborhood. In this work, a low background liquid scintillation is used to determine tritium activity concentration according to ISO 9698/1998. We measured drinking water, precipitation, river water, underground and waste water. The tritium level was between 10 TU and 27 TU what indicates that there is no sources of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decided to monitor monthly each location. In this paper it is presented the standard method used for tritium determination in water samples, the precautions needed in order to achieve reliable results, and the evolution of tritium level in different location near the Tritium and Deuterium Cryogenic Separation Experimental Pilot. (authors)

  17. Tritium labelled steroids, preparation process and application to synthesis of tritium labelled estrane derivatives

    International Nuclear Information System (INIS)

    1978-01-01

    Process for preparing new steroids labelled with tritium in 6.7 and comprising in 3 a blocked ketonic group as ketal, thioketal or derivatives. Application of these products to the synthesis of tritium labelled estrane derivatives [fr

  18. 10 CFR 30.55 - Tritium reports.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Tritium reports. 30.55 Section 30.55 Energy NUCLEAR..., Inspections, Tests, and Reports § 30.55 Tritium reports. (a)-(b) [Reserved] (c) Except as specified in paragraph (d) of this section, each licensee who is authorized to possess tritium shall report promptly to...

  19. Tritium migration studies at the Nevada Test Site

    International Nuclear Information System (INIS)

    Schulz, R.K.; Weaver, M.O.

    1993-05-01

    Emanation of tritium from waste containers is a commonly known phenomenon. Release of tritium from buried waste packages was anticipated; therefore, a research program was developed to study both the rate of tritium release from buried containers and subsequent migration of tritium through soil. Migration of tritium away from low-level radioactive wastes buried in Area 5 of the Nevada Test Site was studied. Four distinct disposal events were investigated. The oldest burial event studied was a 1976 emplacement of 3.5 million curies of tritium in a shallow land burial trench. In another event, 248 thousand curies of tritium was disposed of in an overpack emplaced 6 m below the floor of a low-level waste disposal pit. Measurement of the emanation rate of tritium out of 55 gallon drums to the overpack was studied, and an annual doubling of the emanation rate over a seven year period, ending in 1990, was found. In a third study, upward tritium migration in the soil, resulting in releases in the atmosphere were observed in a greater confinement disposal test. Releases of tritium to the atmosphere were found to be insignificant. The fourth event consisted of burial of 2.2 million curies of tritium in a greater confinement disposal operation. Emanation of tritium from the buried containers has been increasing since disposal, but no significant migration was found four years following backfilling of the disposal hole

  20. Experiences with decontaminating tritium-handling apparatus

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1992-01-01

    Tritium-handling apparatus has been decontaminated as part of the downsizing of the LLNL Tritium Facility. Two stainless-steel glove boxes that had been used to process lithium deuteride-tritide (LiDT) slat were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. In this paper the details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium, in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given

  1. Recent environmental tritium levels in Japan

    International Nuclear Information System (INIS)

    Iwakura, T.; Inoue, Y.; Tanaka, K.; Kasida, Y.

    1982-01-01

    Data of the tritium surveillance program are summarized for the period of 1967 through 1980. Samples of surface water, tap water, coastal sea water and ground water were collected from environs of commercial nuclear power plants and nuclear facilities, and were analyzed by liquid scintillation counting. Although the results show some differences in tritium concentrations in water samples from various part of the country, there is a general tendency of the concentration in surface waters to decline as a function of time. This implies that environmental waters in Japan generally have not been influenced by the discharged effluents of the facilities or the stations with regard to tritium contamination and that the tritium content of precipitation still plays the dominant role in reflecting annual variation of tritium concentration in surface waters. (J.P.N.)

  2. Study of tritium decontamination of stainless steel, copper, aluminum metals by tritium dry desorption

    International Nuclear Information System (INIS)

    Xie Yun; Shi Zhengkun; Wu Tao

    2014-01-01

    In order to study the decontamination efficiency of stainless steel, copper, aluminum metals contaminated by tritium, the metals were decontaminated by exposing to UV, ozone, heating, and the combination of heating, UV and ozone. The result indicates that the elevation of temperature can obviously improve decontamination. While irradiated by 172 nm UV, the decontamination efficiency is low, but it is better while heated and irradiated by 172 nm UV. If the stainless steel is irradiated by 172 nm UV and heated at 500℃ for 4 h, the decontamination efficiency is 99.2%. There is better decontamination efficiency of copper while exposed to ozone. While exposed to ozone and heated at 500℃, the decontamination efficiencies of stainless steel, copper and aluminum are higher than 99.2%. The decontamination efficiency can more obviously improve when metal is heated at high temperature (500℃) than low temperature (300℃). The surface tritium of metal placed at 30 d after decontamination increases because of diffusion and penetration of the tritium. Resolution spectra of tritium show that there are four kinds of contamination adsorbed tritium of stainless steel. (authors)

  3. Tritium Management Loop Design Status

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jordan D. [ORNL; Felde, David K. [ORNL; McFarlane, Joanna [ORNL; Greenwood, Michael Scott [ORNL; Qualls, A L. [ORNL; Calderoni, Pattrick [Idaho National Laboratory (INL)

    2017-12-01

    This report summarizes physical, chemical, and engineering analyses that have been done to support the development of a test loop to study tritium migration in 2LiF-BeF2 salts. The loop will operate under turbulent flow and a schematic of the apparatus has been used to develop a model in Mathcad to suggest flow parameters that should be targeted in loop operation. The introduction of tritium into the loop has been discussed as well as various means to capture or divert the tritium from egress through a test assembly. Permeation was calculated starting with a Modelica model for a transport through a nickel window into a vacuum, and modifying it for a FLiBe system with an argon sweep gas on the downstream side of the permeation interface. Results suggest that tritium removal with a simple tubular permeation device will occur readily. Although this system is idealized, it suggests that rapid measurement capability in the loop may be necessary to study and understand tritium removal from the system.

  4. Tritium decay helium-3 effects in tungsten

    Directory of Open Access Journals (Sweden)

    M. Shimada

    2017-08-01

    Full Text Available Tritium (T implanted by plasmas diffuses into bulk material, especially rapidly at elevated temperatures, and becomes trapped in neutron radiation-induced defects in materials that act as trapping sites for the tritium. The trapped tritium atoms will decay to produce helium-3 (3He atoms at a half-life of 12.3 years. 3He has a large cross section for absorbing thermal neutrons, which after absorbing a neutron produces hydrogen (H and tritium ions with a combined kinetic energy of 0.76 MeV through the 3He(n,HT nuclear reaction. The purpose of this paper is to quantify the 3He produced in tungsten by tritium decay compared to the neutron-induced helium-4 (4He produced in tungsten. This is important given the fact that helium in materials not only creates microstructural damage in the bulk of the material but alters surface morphology of the material effecting plasma-surface interaction process (e.g. material evolution, erosion and tritium behavior of plasma-facing component materials. Effects of tritium decay 3He in tungsten are investigated here with a simple model that predicts quantity of 3He produced in a fusion DEMO FW based on a neutron energy spectrum found in literature. This study reveals that: (1 helium-3 concentration was equilibrated to ∼6% of initial/trapped tritium concentration, (2 tritium concentration remained approximately constant (94% of initial tritium concentration, and (3 displacement damage from 3He(n,HT nuclear reaction became >1 dpa/year in DEMO FW.

  5. Conceptual design of tritium accountancy system for LLCB TBM

    International Nuclear Information System (INIS)

    Patel, Rudreksh; Sircar, Amit

    2017-01-01

    Lead Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) will be tested in ITER for performance evaluation of high grade of heat extraction and tritium breeding. The bred tritium in the breeder materials is extracted and recovered by Tritium Extraction System (TES), whereas tritium permeated from breeder materials to helium coolants, viz., primary coolant and secondary coolant, is recovered by Coolant Purification System (CPS). This recovered tritium has to be accounted before transferring it to tritium plant (i.e., ITER inner fuel). This tritium accountancy is performed by Tritium Accountancy System (TAS). In addition to tritium accountancy, TAS also provides necessary data for the validation of design and modelling tools.In this work, we have presented conceptual design of TAS. It also describes operational philosophy, process parameters, process flow diagram, and interface details with ITER tritium plant. (author)

  6. Free water {sup 3}H concentration in diet samples collected during 1969-88 in Akita, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, S. [Institute for Environmental Sciences, Rokkasho, Aomori (Japan); Inoue, Y.; Miyamoto, K. [National Inst. of Radiological Sciences, Chiba (Japan); Takizawa, Y. [National Institute for Minamata Disease, Minamata, Kumamoto (Japan)

    2000-05-01

    Fallout {sup 3}H concentrations in diet samples collected during 1969-88 in Akita Prefecture are reported in this paper. Since {sup 3}H is a potential nuclear fuel for fusion reactors in future, its environmental behavior is important for dose assessment of released {sup 3}H from the plants. Tritium in foods is classified into two types; free water {sup 3}H (FWT) and organically-bound {sup 3}H (OBT). The FWT is practically separated by means of freeze-drying, while the OBT is measured with water sample collected by combustion of dried sample. The OBT concentrations in foods and human tissue samples were reported for {sup 3}H originating from nuclear weapon fallout. We already published {sup 3}H concentrations in diet samples collected in Akita City during 1985-88. Although results for the samples collected in U.S.A. and European countries in the 1970s showed higher specific activity of OBT than FWT, our recent results in Japan indicate almost the same specific activity between them. Since the measurements for the samples in 1960s and 1970s are important to understand the long-term movement of {sup 3}H in the environment, we have searched old diet samples. Recently, diet samples collected in Akita Prefecture during 1969-80 were found and obtained for {sup 3}H analysis. The samples were originally gathered for nutrition survey programs and consisted of duplicate diet samples for 1 day from 10-30 persons. Food samples excluding boiled rice which is the staple food was homogenized by electric mixers after adding tap water. Then, the food and the boiled rice samples were stored in a refrigerator at -20degC. Free water in the samples was collected with lyophilization, then {sup 3}H in the water sample was measured after purification with low-level liquid scintillation counters. The free water {sup 3}H concentrations were measured for 57 diet samples (dish excluding boiled rice) and 17 boiled rice samples. The free water {sup 3}H concentrations in diet and rice samples

  7. Design options to minimize tritium inventories at Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E., E-mail: james.klein@srnl.doe.gov; Wilson, J.; Heroux, K.J.; Poore, A.S.; Babineau, D.W.

    2016-11-01

    Highlights: • La-Ni-Al alloys are used as tritium storage materials and retain He-3. • La-Ni-Al He-3 effects decrease useable process tritium inventory. • Use of Pd or depleted uranium beds decreases process tritium inventories. • Reduced inventory tritium facilities will lower public risk. - Abstract: Large quantities of tritium are stored and processed at the Savannah River Site (SRS) Tritium Facilities. In many design basis accidents (DBAs), it is assumed the entire tritium inventory of the in-process vessels are released from the facility and the site for inclusion in public radiological dose calculations. Pending changes in public dose calculation methodologies are driving the need for smaller in-process tritium inventories to be released during DBAs. Reducing the in-process tritium inventory will reduce the unmitigated source term for public dose calculations and will also reduce the production demand for a lower inventory process. This paper discusses process design options to reduce in-process tritium inventories. A Baseline process is defined to illustrate the impact of removing or replacing La-Ni-Al alloy tritium storage beds with palladium (Pd) or depleted uranium (DU) storage beds on facility in-process tritium inventories. Elimination of La-Ni-Al alloy tritium storage beds can reduce in-process tritium inventories by over 1.5 kg, but alternate process technologies may needed to replace some functions of the removed beds.

  8. Design options to minimize tritium inventories at Savannah River

    International Nuclear Information System (INIS)

    Klein, J.E.; Wilson, J.; Heroux, K.J.; Poore, A.S.; Babineau, D.W.

    2016-01-01

    Highlights: • La-Ni-Al alloys are used as tritium storage materials and retain He-3. • La-Ni-Al He-3 effects decrease useable process tritium inventory. • Use of Pd or depleted uranium beds decreases process tritium inventories. • Reduced inventory tritium facilities will lower public risk. - Abstract: Large quantities of tritium are stored and processed at the Savannah River Site (SRS) Tritium Facilities. In many design basis accidents (DBAs), it is assumed the entire tritium inventory of the in-process vessels are released from the facility and the site for inclusion in public radiological dose calculations. Pending changes in public dose calculation methodologies are driving the need for smaller in-process tritium inventories to be released during DBAs. Reducing the in-process tritium inventory will reduce the unmitigated source term for public dose calculations and will also reduce the production demand for a lower inventory process. This paper discusses process design options to reduce in-process tritium inventories. A Baseline process is defined to illustrate the impact of removing or replacing La-Ni-Al alloy tritium storage beds with palladium (Pd) or depleted uranium (DU) storage beds on facility in-process tritium inventories. Elimination of La-Ni-Al alloy tritium storage beds can reduce in-process tritium inventories by over 1.5 kg, but alternate process technologies may needed to replace some functions of the removed beds.

  9. Tritium release experiments with CATS and numerical simulation

    International Nuclear Information System (INIS)

    Munakata, Kenzo; Wajima, Takaaki; Hara, Keisuke; Wada, Kohei; Takeishi, Toshiharu; Shinozaki, Yohei; Mochizuki, Kazuhiro; Katekari, Kenichi; Kobayashi, Kazuhiro; Iwai, Yasunori; Hayashi, Takumi; Yamanishi, Toshihiko

    2010-01-01

    In D-T fusion power plants, large amounts of tritium would be handled. Tritium is the radioisotope of protium, and is easily taken into the human body, and thus the behavior of tritium accidentally released in fusion power plants should be studied for the safety design and radioprotection of workers. Therefore, it is necessary to investigate the behavior of tritium released into large rooms with objectives, since complex flow fields should exist in such rooms and they could influence the ventilation of the air containing released tritium. Thus, tritium release experiments were conducted using Caisson Assembly for Tritium Safety Study (CATS) in TPL/JAEA. Some data were taken for tritium behavior in the ventilated area and response of tritium monitors. In the experiments, approximately 17 GBq of tritium was released into Caisson with the total volume of 12 m 3 , and the room was ventilated at the rate of 12 m 3 /h after release of tritium. It was found that placement of an objective in the vessel substantially affects decontamination efficiency. With regard to an experimental result, numerical calculation was performed and the experimental result and the result of numerical calculation were compared, which indicates that experimental results are qualitatively reproduced by numerical calculation. However, further R and D needs to be carried out for quantitative reproduction of the experimental results.

  10. Tritium release experiments with CATS and numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Munakata, Kenzo, E-mail: kenzo@gipc.akita-u.ac.jp [Faculty of Engineering and Resource Sciences, Akita University, Tegata-gakuen-cho 1-1, Akita 010-8502 (Japan); Wajima, Takaaki; Hara, Keisuke; Wada, Kohei [Faculty of Engineering and Resource Sciences, Akita University, Tegata-gakuen-cho 1-1, Akita 010-8502 (Japan); Takeishi, Toshiharu; Shinozaki, Yohei; Mochizuki, Kazuhiro; Katekari, Kenichi [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan); Kobayashi, Kazuhiro; Iwai, Yasunori; Hayashi, Takumi; Yamanishi, Toshihiko [Tritium Technology Group, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2010-12-15

    In D-T fusion power plants, large amounts of tritium would be handled. Tritium is the radioisotope of protium, and is easily taken into the human body, and thus the behavior of tritium accidentally released in fusion power plants should be studied for the safety design and radioprotection of workers. Therefore, it is necessary to investigate the behavior of tritium released into large rooms with objectives, since complex flow fields should exist in such rooms and they could influence the ventilation of the air containing released tritium. Thus, tritium release experiments were conducted using Caisson Assembly for Tritium Safety Study (CATS) in TPL/JAEA. Some data were taken for tritium behavior in the ventilated area and response of tritium monitors. In the experiments, approximately 17 GBq of tritium was released into Caisson with the total volume of 12 m{sup 3}, and the room was ventilated at the rate of 12 m{sup 3}/h after release of tritium. It was found that placement of an objective in the vessel substantially affects decontamination efficiency. With regard to an experimental result, numerical calculation was performed and the experimental result and the result of numerical calculation were compared, which indicates that experimental results are qualitatively reproduced by numerical calculation. However, further R and D needs to be carried out for quantitative reproduction of the experimental results.

  11. Separation of Tritium from Wastewater

    International Nuclear Information System (INIS)

    JEPPSON, D.W.

    2000-01-01

    A proprietary tritium loading bed developed by Molecular Separations, Inc (MSI) has been shown to selectively load tritiated water as waters of hydration at near ambient temperatures. Tests conducted with a 126 (micro)C 1 tritium/liter water standard mixture showed reductions to 25 (micro)C 1 /L utilizing two, 2-meter long columns in series. Demonstration tests with Hanford Site wastewater samples indicate an approximate tritium concentration reduction from 0.3 (micro)C 1 /L to 0.07 (micro)C 1 /L for a series of two, 2-meter long stationary column beds Further reduction to less than 0.02 (micro)C 1 /L, the current drinking water maximum contaminant level (MCL), is projected with additional bed media in series. Tritium can be removed from the loaded beds with a modest temperature increase and the beds can be reused Results of initial tests are presented and a moving bed process for treating large quantities of wastewaters is proposed. The moving bed separation process appears promising to treat existing large quantities of wastewater at various US Department of Energy (DOE) sites. The enriched tritium stream can be grouted for waste disposition. The separations system has also been shown to reduce tritium concentrations in nuclear reactor cooling water to levels that allow reuse. Energy requirements to reconstitute the loading beds and waste disposal costs for this process appear modest

  12. Tritium Systems Test Facility

    International Nuclear Information System (INIS)

    Cafasso, F.A.; Maroni, V.A.; Smith, W.H.; Wilkes, W.R.; Wittenberg, L.J.

    1978-01-01

    This TSTF proposal has two principal objectives. The first objective is to provide by mid-FY 1981 a demonstration of the fuel cycle and tritium containment systems which could be used in a Tokamak Experimental Power Reactor for operation in the mid-1980's. The second objective is to provide a capability for further optimization of tritium fuel cycle and environmental control systems beyond that which is required for the EPR. The scale and flow rates in TSTF are close to those which have been projected for a prototype experimental power reactor (PEPR/ITR) and will permit reliable extrapolation to the conditions found in an EPR. The fuel concentrations will be the same as in an EPR. Demonstrations of individual components of the deuterium-tritium fuel cycle and of monitoring, accountability and containment systems and of a maintenance methodology will be achieved at various times in the FY 1979-80 time span. Subsequent to the individual component demonstrations--which will proceed from tests with hydrogen (and/or deuterium) through tracer levels of tritium to full operational concentrations--a complete test and demonstration of the integrated fuel processing and tritium containment facility will be performed. This will occur near the middle of FY 1981. Two options were considered for the TSTF: (1) The modification of an existing building and (2) the construction of a new facility

  13. Develop of omni-tritium sample preparation device

    International Nuclear Information System (INIS)

    Tian Junhua; Zheng Min; Zhang Dong

    2008-06-01

    The content of total tritium analysis is required in order to know the tritium contaminated degree of biological samples accurately. But the conversion and collection of organic tritium are difficult. A device to treat total tritium samples was developed. Plant samples were treated by combustion and catalysis. After expelling the free HTO in the samples when heated in abundant oxygen, the samples were ignited. Combustion gas passed the catalysts at 800 degree C and its oxidation was catalyzed, and then the combined tritium in tissues was converted into HTO. HTO was collected by water-cooling tube and condenser. For other samples, HTO was treated and collected by high temperature (The highest temperature is 1000 degree C)-catalysis-double condensation method. This device had solved the problem that organic tritium is difficult to gather. (authors)

  14. History of 232-F, tritium extraction processing

    International Nuclear Information System (INIS)

    Blackburn, G.W.

    1994-08-01

    In 1950 the Atomic Energy Commission authorized the Savannah River Project principally for the production of tritium and plutonium-239 for use in thermonuclear weapons. 232-F was built as an interim facility in 1953--1954, at a cost of $3.9M. Tritium extraction operations began in October, 1955, after the reactor and separations startups. In July, 1957 a larger tritium facility began operation in 232-H. In 1958 the capacity of 232-H was doubled. Also, in 1957 a new task was assigned to Savannah River, the loading of tritium into reservoirs that would be actual components of thermonuclear weapons. This report describes the history of 232-F, the process for tritium extraction, and the lessons learned over the years that were eventually incorporated into the new Replacement Tritium Facility

  15. Comparison of Tritium Component Failure Rate Data

    International Nuclear Information System (INIS)

    Lee C. Cadwallader

    2004-01-01

    Published failure rate values from the US Tritium Systems Test Assembly, the Japanese Tritium Process Laboratory, the German Tritium Laboratory Karlsruhe, and the Joint European Torus Active Gas Handling System have been compared. This comparison is on a limited set of components, but there is a good variety of data sets in the comparison. The data compared reasonably well. The most reasonable failure rate values are recommended for use on next generation tritium handling system components, such as those in the tritium plant systems for the International Thermonuclear Experimental Reactor and the tritium fuel systems of inertial fusion facilities, such as the US National Ignition Facility. These data and the comparison results are also shared with the International Energy Agency cooperative task on fusion component failure rate data

  16. Effects of interfering constituents on tritium smears

    International Nuclear Information System (INIS)

    Levi, G.D. Jr.; Cheeks, K.E.

    1993-01-01

    Tritium smears are performed by Health Protection Operations (HPO) to assess transferable contamination on work place surfaces, materials for movement outside Radiologically Controlled Areas (RCA), and product containers being shipped between facilities. Historically, gas proportional counters were used to detect transferable tritium contamination collected by smearing. Because tritium is a low-energy beta emitter, gas proportional counters do not provide the sensitivity or the counting efficiency to accurately measure the tritium activity on the smear. Liquid Scintillation Counters (LSC) provide greater counting efficiency for the low-energy beta particles along with greater reliability and reproducibility compared to gas flow proportional counters. The purpose of this technical evaluation was to determine the effects of interfering constituents such as filters, dirt and oil on the counting efficiency and tritium recoveries of tritium smears by LSC

  17. An overview of tritium production

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinghua; Feng Kaiming

    2002-01-01

    The characteristics of three types of proposed tritium production facilities, fissile type, accelerator production tritium (APT), and fusion type, are presented. The fissile reactors, especially commercial light water reactor, use comparatively mature technology and are designed to meet current safety and environmental guidelines. Conversely, APT shows many advantages except its rather high cost, while fusion reactors appear to offer improved safety and environmental impact, in particular, tritium production based on the fusion-based neutron source. However, its cost keeps unknown

  18. Tritium removal and retention device

    International Nuclear Information System (INIS)

    Boyle, R.F.; Durigon, D.D.

    1980-01-01

    A device is provided for removing and retaining tritium from a gaseous medium, and also a method of manufacturing the device. The device, consists of an inner core of zirconium alloy, preferably Zircaloy-4, and an outer adherent layer of nickel which acts as a selective and protective window for passage of tritium. The tritium then reacts with or is absorbed by the zirconium alloy, and is retained until such time as it is desirable to remove it during reprocessing. (auth)

  19. Tritium in water monitor for measurement of tritium activity in the process water

    International Nuclear Information System (INIS)

    Rathnakaran, M.; Ravetkar, R.M.; Abani, M.C.; Mehta, S.K.

    1999-01-01

    This paper presents the evaluation of a tritium in water monitor for measurement of tritium activity in the secondary coolant in pressurised heavy water reactor used for power generation. For this purpose it uses a plastic scintillator flow cell detector in a continuous on-line mode. It is observed that the sensitivity of the system depends on the transparency of the detector, which gradually reduces with use because of the collection of dirt around the scintillator. A simple type of sample conditioner based on polypropylene candle filter and filter paper is developed and installed at RAPS along with tritium in water monitor. The functioning of this system is reported here. (author)

  20. Increase in the specific radioactivity of tritium-labeled compounds obtained by tritium thermal activation method

    International Nuclear Information System (INIS)

    Badun, G.A.; Chernysheva, M.G.; Ksenofontov, A.L.

    2012-01-01

    A method of tritium introduction into different types of organic molecules that is based on the interaction of atomic tritium with solid organic target is described. Tritium atoms are formed on the hot W-wire, which is heated by the electric current. Such an approach is called 'tritium thermal activation method'. Here we summarize the results of labeling globular proteins (lysozyme, human and bovine serum albumins); derivatives of pantothenic acid and amino acids; ionic surfactants (sodium dodecylsulfate and alkyltrimethylammonium bromides) and nonionic high-molecular weight surfactants - pluronics. For the first time it is observed that if the target-compound is fixed and its radicals are stable the specific radioactivity of the labeled product can be drastically increased (up to 400 times) when the target temperature is ca. 295 K compared with the results obtained at 77 K. The influence of labeling parameters as tritium gas pressure, exposure time and W-wire temperature was tested for each target temperature that results in the optimum labeling conditions with high specific radioactivity and chemical yield of the resulting compound. (orig.)